Merge libitm changes to configure.ac from gcc master.
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
CommitLineData
75c9abc6 1/* Target-dependent code for GNU/Linux on MIPS processors.
a094c6fb 2
7b6bb8da 3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
76a9d10f 4 Free Software Foundation, Inc.
2aa830e4
DJ
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
2aa830e4
DJ
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
2aa830e4
DJ
20
21#include "defs.h"
22#include "gdbcore.h"
23#include "target.h"
24#include "solib-svr4.h"
19ed69dd 25#include "osabi.h"
96f026fc 26#include "mips-tdep.h"
19ed69dd 27#include "gdb_string.h"
96f026fc 28#include "gdb_assert.h"
6de918a6 29#include "frame.h"
2fdf551c 30#include "regcache.h"
5792a79b
DJ
31#include "trad-frame.h"
32#include "tramp-frame.h"
e6bb342a 33#include "gdbtypes.h"
5ea03926 34#include "solib.h"
7d522c90
DJ
35#include "solib-svr4.h"
36#include "solist.h"
982e9687 37#include "symtab.h"
822b6570 38#include "target-descriptions.h"
50e8a0d5 39#include "regset.h"
d37eb719 40#include "mips-linux-tdep.h"
db5f024e 41#include "glibc-tdep.h"
a5ee0f0c 42#include "linux-tdep.h"
385203ed 43#include "xml-syscall.h"
2aa830e4 44
7d522c90
DJ
45static struct target_so_ops mips_svr4_so_ops;
46
2aa830e4 47/* Figure out where the longjmp will land.
295093a4
MS
48 We expect the first arg to be a pointer to the jmp_buf structure
49 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
50 at. The pc is copied into PC. This routine returns 1 on
51 success. */
2aa830e4 52
19ed69dd
KB
53#define MIPS_LINUX_JB_ELEMENT_SIZE 4
54#define MIPS_LINUX_JB_PC 0
55
56static int
60ade65d 57mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2aa830e4
DJ
58{
59 CORE_ADDR jb_addr;
2eb4d78b 60 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 61 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2eb4d78b 62 char buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
2aa830e4 63
60ade65d 64 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
2aa830e4 65
bf072999 66 if (target_read_memory (jb_addr
819844ad 67 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
2eb4d78b 68 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
2aa830e4
DJ
69 return 0;
70
819844ad 71 *pc = extract_unsigned_integer (buf,
e17a4113
UW
72 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
73 byte_order);
2aa830e4
DJ
74
75 return 1;
76}
77
4246e332 78/* Transform the bits comprising a 32-bit register to the right size
23a6d369
AC
79 for regcache_raw_supply(). This is needed when mips_isa_regsize()
80 is 8. */
96f026fc
KB
81
82static void
28f5035f 83supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
96f026fc 84{
e17a4113
UW
85 struct gdbarch *gdbarch = get_regcache_arch (regcache);
86 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 87 gdb_byte buf[MAX_REGISTER_SIZE];
e17a4113
UW
88 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
89 extract_signed_integer (addr, 4, byte_order));
28f5035f 90 regcache_raw_supply (regcache, regnum, buf);
96f026fc
KB
91}
92
2aa830e4
DJ
93/* Unpack an elf_gregset_t into GDB's register cache. */
94
d37eb719 95void
28f5035f
UW
96mips_supply_gregset (struct regcache *regcache,
97 const mips_elf_gregset_t *gregsetp)
2aa830e4
DJ
98{
99 int regi;
28f5035f 100 const mips_elf_greg_t *regp = *gregsetp;
d9d9c31f 101 char zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 102 struct gdbarch *gdbarch = get_regcache_arch (regcache);
bf072999 103
d9d9c31f 104 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4 105
822b6570 106 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
28f5035f 107 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
2aa830e4 108
2eb4d78b 109 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
110 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
111
2eb4d78b
UW
112 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
113 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
56cea623 114
2eb4d78b 115 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 116 regp + EF_CP0_EPC);
2eb4d78b 117 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
118 regp + EF_CP0_BADVADDR);
119 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
2eb4d78b 120 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 121 regp + EF_CP0_CAUSE);
2aa830e4
DJ
122
123 /* Fill inaccessible registers with zero. */
822b6570 124 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
28f5035f 125 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
295093a4 126 for (regi = MIPS_FIRST_EMBED_REGNUM;
822b6570 127 regi <= MIPS_LAST_EMBED_REGNUM;
295093a4 128 regi++)
28f5035f 129 regcache_raw_supply (regcache, regi, zerobuf);
2aa830e4
DJ
130}
131
50e8a0d5
HZ
132static void
133mips_supply_gregset_wrapper (const struct regset *regset,
134 struct regcache *regcache,
135 int regnum, const void *gregs, size_t len)
136{
137 gdb_assert (len == sizeof (mips_elf_gregset_t));
138
139 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
140}
141
2aa830e4
DJ
142/* Pack our registers (or one register) into an elf_gregset_t. */
143
d37eb719 144void
28f5035f
UW
145mips_fill_gregset (const struct regcache *regcache,
146 mips_elf_gregset_t *gregsetp, int regno)
2aa830e4 147{
2eb4d78b 148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2aa830e4 149 int regaddr, regi;
d37eb719 150 mips_elf_greg_t *regp = *gregsetp;
96f026fc 151 void *dst;
2aa830e4
DJ
152
153 if (regno == -1)
154 {
d37eb719 155 memset (regp, 0, sizeof (mips_elf_gregset_t));
822b6570 156 for (regi = 1; regi < 32; regi++)
28f5035f 157 mips_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
158 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
159 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
160 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
161 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
28f5035f 162 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 163 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 164 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
2aa830e4
DJ
165 return;
166 }
167
822b6570 168 if (regno > 0 && regno < 32)
2aa830e4 169 {
2aa830e4 170 dst = regp + regno + EF_REG0;
28f5035f 171 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
172 return;
173 }
174
2eb4d78b
UW
175 if (regno == mips_regnum (gdbarch)->lo)
176 regaddr = EF_LO;
177 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 178 regaddr = EF_HI;
2eb4d78b 179 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 180 regaddr = EF_CP0_EPC;
2eb4d78b 181 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 182 regaddr = EF_CP0_BADVADDR;
24e05951 183 else if (regno == MIPS_PS_REGNUM)
56cea623 184 regaddr = EF_CP0_STATUS;
2eb4d78b 185 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 186 regaddr = EF_CP0_CAUSE;
2eb4d78b 187 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
188 && regno == MIPS_RESTART_REGNUM)
189 regaddr = EF_REG0;
56cea623
AC
190 else
191 regaddr = -1;
2aa830e4
DJ
192
193 if (regaddr != -1)
194 {
2aa830e4 195 dst = regp + regaddr;
28f5035f 196 regcache_raw_collect (regcache, regno, dst);
2aa830e4
DJ
197 }
198}
199
50e8a0d5
HZ
200static void
201mips_fill_gregset_wrapper (const struct regset *regset,
202 const struct regcache *regcache,
203 int regnum, void *gregs, size_t len)
204{
205 gdb_assert (len == sizeof (mips_elf_gregset_t));
206
207 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
208}
209
2aa830e4
DJ
210/* Likewise, unpack an elf_fpregset_t. */
211
d37eb719 212void
28f5035f
UW
213mips_supply_fpregset (struct regcache *regcache,
214 const mips_elf_fpregset_t *fpregsetp)
2aa830e4 215{
2eb4d78b 216 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 217 int regi;
d9d9c31f 218 char zerobuf[MAX_REGISTER_SIZE];
bf072999 219
d9d9c31f 220 memset (zerobuf, 0, MAX_REGISTER_SIZE);
2aa830e4
DJ
221
222 for (regi = 0; regi < 32; regi++)
3e8c568d 223 regcache_raw_supply (regcache,
2eb4d78b 224 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 225 *fpregsetp + regi);
2aa830e4 226
28f5035f 227 regcache_raw_supply (regcache,
2eb4d78b 228 mips_regnum (gdbarch)->fp_control_status,
28f5035f 229 *fpregsetp + 32);
2aa830e4 230
295093a4 231 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
28f5035f 232 regcache_raw_supply (regcache,
2eb4d78b 233 mips_regnum (gdbarch)->fp_implementation_revision,
23a6d369 234 zerobuf);
2aa830e4
DJ
235}
236
50e8a0d5
HZ
237static void
238mips_supply_fpregset_wrapper (const struct regset *regset,
239 struct regcache *regcache,
240 int regnum, const void *gregs, size_t len)
241{
242 gdb_assert (len == sizeof (mips_elf_fpregset_t));
243
244 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
245}
246
2aa830e4
DJ
247/* Likewise, pack one or all floating point registers into an
248 elf_fpregset_t. */
249
d37eb719 250void
28f5035f
UW
251mips_fill_fpregset (const struct regcache *regcache,
252 mips_elf_fpregset_t *fpregsetp, int regno)
2aa830e4 253{
2eb4d78b 254 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2aa830e4
DJ
255 char *from, *to;
256
2eb4d78b
UW
257 if ((regno >= gdbarch_fp0_regnum (gdbarch))
258 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
2aa830e4 259 {
2eb4d78b 260 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
28f5035f 261 regcache_raw_collect (regcache, regno, to);
2aa830e4 262 }
2eb4d78b 263 else if (regno == mips_regnum (gdbarch)->fp_control_status)
2aa830e4 264 {
2aa830e4 265 to = (char *) (*fpregsetp + 32);
28f5035f 266 regcache_raw_collect (regcache, regno, to);
2aa830e4
DJ
267 }
268 else if (regno == -1)
269 {
270 int regi;
271
272 for (regi = 0; regi < 32; regi++)
3e8c568d 273 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 274 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 275 mips_fill_fpregset (regcache, fpregsetp,
2eb4d78b 276 mips_regnum (gdbarch)->fp_control_status);
2aa830e4
DJ
277 }
278}
279
50e8a0d5
HZ
280static void
281mips_fill_fpregset_wrapper (const struct regset *regset,
282 const struct regcache *regcache,
283 int regnum, void *gregs, size_t len)
284{
285 gdb_assert (len == sizeof (mips_elf_fpregset_t));
286
287 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
288}
289
96f026fc
KB
290/* Support for 64-bit ABIs. */
291
96f026fc 292/* Figure out where the longjmp will land.
295093a4
MS
293 We expect the first arg to be a pointer to the jmp_buf structure
294 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
295 at. The pc is copied into PC. This routine returns 1 on
296 success. */
96f026fc
KB
297
298/* Details about jmp_buf. */
299
300#define MIPS64_LINUX_JB_PC 0
301
302static int
60ade65d 303mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
96f026fc
KB
304{
305 CORE_ADDR jb_addr;
2eb4d78b 306 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2eb4d78b
UW
308 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
309 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
96f026fc 310
60ade65d 311 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
96f026fc
KB
312
313 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
819844ad 314 buf,
2eb4d78b 315 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
96f026fc
KB
316 return 0;
317
819844ad 318 *pc = extract_unsigned_integer (buf,
e17a4113
UW
319 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
320 byte_order);
96f026fc
KB
321
322 return 1;
323}
324
d37eb719
DJ
325/* Register set support functions. These operate on standard 64-bit
326 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
327 target will still use the 64-bit format for PTRACE_GETREGS. */
328
329/* Supply a 64-bit register. */
96f026fc 330
63807e1d 331static void
28f5035f
UW
332supply_64bit_reg (struct regcache *regcache, int regnum,
333 const gdb_byte *buf)
d37eb719 334{
2eb4d78b
UW
335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
336 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
337 && register_size (gdbarch, regnum) == 4)
28f5035f 338 regcache_raw_supply (regcache, regnum, buf + 4);
d37eb719 339 else
28f5035f 340 regcache_raw_supply (regcache, regnum, buf);
d37eb719
DJ
341}
342
343/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
344
345void
28f5035f
UW
346mips64_supply_gregset (struct regcache *regcache,
347 const mips64_elf_gregset_t *gregsetp)
96f026fc
KB
348{
349 int regi;
28f5035f 350 const mips64_elf_greg_t *regp = *gregsetp;
d37eb719 351 gdb_byte zerobuf[MAX_REGISTER_SIZE];
2eb4d78b 352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
96f026fc 353
d9d9c31f 354 memset (zerobuf, 0, MAX_REGISTER_SIZE);
96f026fc 355
822b6570 356 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
28f5035f
UW
357 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
358 (const gdb_byte *)(regp + regi));
359
2eb4d78b 360 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
361 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
362 (const gdb_byte *)(regp + MIPS64_EF_REG0));
363
2eb4d78b 364 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
28f5035f 365 (const gdb_byte *) (regp + MIPS64_EF_LO));
2eb4d78b 366 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
28f5035f
UW
367 (const gdb_byte *) (regp + MIPS64_EF_HI));
368
2eb4d78b 369 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
28f5035f 370 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
2eb4d78b 371 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
28f5035f
UW
372 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
373 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
374 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
2eb4d78b 375 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
28f5035f 376 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
96f026fc
KB
377
378 /* Fill inaccessible registers with zero. */
822b6570 379 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
28f5035f 380 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
295093a4 381 for (regi = MIPS_FIRST_EMBED_REGNUM;
822b6570 382 regi <= MIPS_LAST_EMBED_REGNUM;
295093a4 383 regi++)
28f5035f 384 regcache_raw_supply (regcache, regi, zerobuf);
96f026fc
KB
385}
386
50e8a0d5
HZ
387static void
388mips64_supply_gregset_wrapper (const struct regset *regset,
389 struct regcache *regcache,
390 int regnum, const void *gregs, size_t len)
391{
392 gdb_assert (len == sizeof (mips64_elf_gregset_t));
393
394 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
395}
396
d37eb719 397/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
96f026fc 398
d37eb719 399void
28f5035f
UW
400mips64_fill_gregset (const struct regcache *regcache,
401 mips64_elf_gregset_t *gregsetp, int regno)
96f026fc 402{
2eb4d78b 403 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96f026fc
KB
405 int regaddr, regi;
406 mips64_elf_greg_t *regp = *gregsetp;
2ba93934 407 void *dst;
96f026fc
KB
408
409 if (regno == -1)
410 {
411 memset (regp, 0, sizeof (mips64_elf_gregset_t));
822b6570 412 for (regi = 1; regi < 32; regi++)
28f5035f 413 mips64_fill_gregset (regcache, gregsetp, regi);
2eb4d78b
UW
414 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
415 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
416 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
025bb325
MS
417 mips64_fill_gregset (regcache, gregsetp,
418 mips_regnum (gdbarch)->badvaddr);
28f5035f 419 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
2eb4d78b 420 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
822b6570 421 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
96f026fc
KB
422 return;
423 }
424
822b6570 425 if (regno > 0 && regno < 32)
d37eb719 426 regaddr = regno + MIPS64_EF_REG0;
2eb4d78b 427 else if (regno == mips_regnum (gdbarch)->lo)
56cea623 428 regaddr = MIPS64_EF_LO;
2eb4d78b 429 else if (regno == mips_regnum (gdbarch)->hi)
56cea623 430 regaddr = MIPS64_EF_HI;
2eb4d78b 431 else if (regno == mips_regnum (gdbarch)->pc)
56cea623 432 regaddr = MIPS64_EF_CP0_EPC;
2eb4d78b 433 else if (regno == mips_regnum (gdbarch)->badvaddr)
56cea623 434 regaddr = MIPS64_EF_CP0_BADVADDR;
24e05951 435 else if (regno == MIPS_PS_REGNUM)
56cea623 436 regaddr = MIPS64_EF_CP0_STATUS;
2eb4d78b 437 else if (regno == mips_regnum (gdbarch)->cause)
56cea623 438 regaddr = MIPS64_EF_CP0_CAUSE;
2eb4d78b 439 else if (mips_linux_restart_reg_p (gdbarch)
822b6570
DJ
440 && regno == MIPS_RESTART_REGNUM)
441 regaddr = MIPS64_EF_REG0;
56cea623
AC
442 else
443 regaddr = -1;
96f026fc
KB
444
445 if (regaddr != -1)
446 {
d37eb719
DJ
447 gdb_byte buf[MAX_REGISTER_SIZE];
448 LONGEST val;
449
28f5035f 450 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
451 val = extract_signed_integer (buf, register_size (gdbarch, regno),
452 byte_order);
96f026fc 453 dst = regp + regaddr;
e17a4113 454 store_signed_integer (dst, 8, byte_order, val);
96f026fc
KB
455 }
456}
457
50e8a0d5
HZ
458static void
459mips64_fill_gregset_wrapper (const struct regset *regset,
460 const struct regcache *regcache,
461 int regnum, void *gregs, size_t len)
462{
463 gdb_assert (len == sizeof (mips64_elf_gregset_t));
464
465 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
466}
467
96f026fc
KB
468/* Likewise, unpack an elf_fpregset_t. */
469
d37eb719 470void
28f5035f
UW
471mips64_supply_fpregset (struct regcache *regcache,
472 const mips64_elf_fpregset_t *fpregsetp)
96f026fc 473{
2eb4d78b 474 struct gdbarch *gdbarch = get_regcache_arch (regcache);
52f0bd74 475 int regi;
96f026fc 476
d37eb719
DJ
477 /* See mips_linux_o32_sigframe_init for a description of the
478 peculiar FP register layout. */
2eb4d78b 479 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
d37eb719
DJ
480 for (regi = 0; regi < 32; regi++)
481 {
28f5035f 482 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
2eb4d78b 483 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 484 reg_ptr += 4;
3e8c568d 485 regcache_raw_supply (regcache,
2eb4d78b 486 gdbarch_fp0_regnum (gdbarch) + regi,
3e8c568d 487 reg_ptr);
d37eb719
DJ
488 }
489 else
490 for (regi = 0; regi < 32; regi++)
3e8c568d 491 regcache_raw_supply (regcache,
2eb4d78b 492 gdbarch_fp0_regnum (gdbarch) + regi,
28f5035f 493 (const char *)(*fpregsetp + regi));
d37eb719 494
2eb4d78b 495 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
28f5035f 496 (const gdb_byte *)(*fpregsetp + 32));
d37eb719
DJ
497
498 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
499 include it - but the result of PTRACE_GETFPREGS does. The best we
500 can do is to assume that its value is present. */
28f5035f 501 supply_32bit_reg (regcache,
2eb4d78b 502 mips_regnum (gdbarch)->fp_implementation_revision,
28f5035f 503 (const gdb_byte *)(*fpregsetp + 32) + 4);
96f026fc
KB
504}
505
50e8a0d5
HZ
506static void
507mips64_supply_fpregset_wrapper (const struct regset *regset,
508 struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
510{
511 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
512
513 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
514}
515
96f026fc
KB
516/* Likewise, pack one or all floating point registers into an
517 elf_fpregset_t. */
518
d37eb719 519void
28f5035f
UW
520mips64_fill_fpregset (const struct regcache *regcache,
521 mips64_elf_fpregset_t *fpregsetp, int regno)
96f026fc 522{
2eb4d78b 523 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d37eb719 525 gdb_byte *to;
96f026fc 526
2eb4d78b
UW
527 if ((regno >= gdbarch_fp0_regnum (gdbarch))
528 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
96f026fc 529 {
d37eb719
DJ
530 /* See mips_linux_o32_sigframe_init for a description of the
531 peculiar FP register layout. */
2eb4d78b 532 if (register_size (gdbarch, regno) == 4)
d37eb719 533 {
2eb4d78b 534 int regi = regno - gdbarch_fp0_regnum (gdbarch);
d37eb719
DJ
535
536 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
2eb4d78b 537 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
d37eb719 538 to += 4;
28f5035f 539 regcache_raw_collect (regcache, regno, to);
d37eb719
DJ
540 }
541 else
542 {
025bb325
MS
543 to = (gdb_byte *) (*fpregsetp + regno
544 - gdbarch_fp0_regnum (gdbarch));
28f5035f 545 regcache_raw_collect (regcache, regno, to);
d37eb719 546 }
96f026fc 547 }
2eb4d78b 548 else if (regno == mips_regnum (gdbarch)->fp_control_status)
96f026fc 549 {
d37eb719
DJ
550 gdb_byte buf[MAX_REGISTER_SIZE];
551 LONGEST val;
552
28f5035f 553 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
554 val = extract_signed_integer (buf, register_size (gdbarch, regno),
555 byte_order);
d37eb719 556 to = (gdb_byte *) (*fpregsetp + 32);
e17a4113 557 store_signed_integer (to, 4, byte_order, val);
d37eb719 558 }
2eb4d78b 559 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
d37eb719
DJ
560 {
561 gdb_byte buf[MAX_REGISTER_SIZE];
562 LONGEST val;
563
28f5035f 564 regcache_raw_collect (regcache, regno, buf);
e17a4113
UW
565 val = extract_signed_integer (buf, register_size (gdbarch, regno),
566 byte_order);
d37eb719 567 to = (gdb_byte *) (*fpregsetp + 32) + 4;
e17a4113 568 store_signed_integer (to, 4, byte_order, val);
96f026fc
KB
569 }
570 else if (regno == -1)
571 {
572 int regi;
573
574 for (regi = 0; regi < 32; regi++)
3e8c568d 575 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 576 gdbarch_fp0_regnum (gdbarch) + regi);
28f5035f 577 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b 578 mips_regnum (gdbarch)->fp_control_status);
28f5035f 579 mips64_fill_fpregset (regcache, fpregsetp,
2eb4d78b
UW
580 (mips_regnum (gdbarch)
581 ->fp_implementation_revision));
96f026fc
KB
582 }
583}
584
50e8a0d5
HZ
585static void
586mips64_fill_fpregset_wrapper (const struct regset *regset,
587 const struct regcache *regcache,
588 int regnum, void *gregs, size_t len)
589{
590 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
96f026fc 591
50e8a0d5
HZ
592 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
593}
2aa830e4 594
50e8a0d5
HZ
595const struct regset *
596mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
597 const char *sect_name, size_t sect_size)
2aa830e4 598{
50e8a0d5 599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d37eb719
DJ
600 mips_elf_gregset_t gregset;
601 mips_elf_fpregset_t fpregset;
96f026fc
KB
602 mips64_elf_gregset_t gregset64;
603 mips64_elf_fpregset_t fpregset64;
2aa830e4 604
50e8a0d5 605 if (strcmp (sect_name, ".reg") == 0)
2aa830e4 606 {
50e8a0d5 607 if (sect_size == sizeof (gregset))
2aa830e4 608 {
50e8a0d5
HZ
609 if (tdep->gregset == NULL)
610 tdep->gregset = regset_alloc (gdbarch,
611 mips_supply_gregset_wrapper,
612 mips_fill_gregset_wrapper);
613 return tdep->gregset;
96f026fc 614 }
50e8a0d5 615 else if (sect_size == sizeof (gregset64))
96f026fc 616 {
50e8a0d5
HZ
617 if (tdep->gregset64 == NULL)
618 tdep->gregset64 = regset_alloc (gdbarch,
619 mips64_supply_gregset_wrapper,
620 mips64_fill_gregset_wrapper);
621 return tdep->gregset64;
2aa830e4
DJ
622 }
623 else
624 {
8a3fe4f8 625 warning (_("wrong size gregset struct in core file"));
2aa830e4
DJ
626 }
627 }
50e8a0d5 628 else if (strcmp (sect_name, ".reg2") == 0)
2aa830e4 629 {
50e8a0d5 630 if (sect_size == sizeof (fpregset))
2aa830e4 631 {
50e8a0d5
HZ
632 if (tdep->fpregset == NULL)
633 tdep->fpregset = regset_alloc (gdbarch,
634 mips_supply_fpregset_wrapper,
635 mips_fill_fpregset_wrapper);
636 return tdep->fpregset;
96f026fc 637 }
50e8a0d5 638 else if (sect_size == sizeof (fpregset64))
96f026fc 639 {
50e8a0d5
HZ
640 if (tdep->fpregset64 == NULL)
641 tdep->fpregset64 = regset_alloc (gdbarch,
642 mips64_supply_fpregset_wrapper,
643 mips64_fill_fpregset_wrapper);
644 return tdep->fpregset64;
2aa830e4
DJ
645 }
646 else
647 {
8a3fe4f8 648 warning (_("wrong size fpregset struct in core file"));
2aa830e4
DJ
649 }
650 }
2aa830e4 651
50e8a0d5
HZ
652 return NULL;
653}
2aa830e4 654
4eb0ad19
DJ
655static const struct target_desc *
656mips_linux_core_read_description (struct gdbarch *gdbarch,
657 struct target_ops *target,
658 bfd *abfd)
659{
660 asection *section = bfd_get_section_by_name (abfd, ".reg");
661 if (! section)
662 return NULL;
663
664 switch (bfd_section_size (abfd, section))
665 {
666 case sizeof (mips_elf_gregset_t):
667 return mips_tdesc_gp32;
668
669 case sizeof (mips64_elf_gregset_t):
670 return mips_tdesc_gp64;
671
672 default:
673 return NULL;
674 }
675}
676
96f026fc 677
295093a4
MS
678/* Check the code at PC for a dynamic linker lazy resolution stub.
679 Because they aren't in the .plt section, we pattern-match on the
680 code generated by GNU ld. They look like this:
6de918a6
DJ
681
682 lw t9,0x8010(gp)
683 addu t7,ra
684 jalr t9,ra
685 addiu t8,zero,INDEX
686
295093a4
MS
687 (with the appropriate doubleword instructions for N64). Also
688 return the dynamic symbol index used in the last instruction. */
6de918a6
DJ
689
690static int
691mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
692{
693 unsigned char buf[28], *p;
694 ULONGEST insn, insn1;
1cf3db46 695 int n64 = (mips_abi (target_gdbarch) == MIPS_ABI_N64);
e17a4113 696 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
6de918a6
DJ
697
698 read_memory (pc - 12, buf, 28);
699
700 if (n64)
701 {
702 /* ld t9,0x8010(gp) */
703 insn1 = 0xdf998010;
704 }
705 else
706 {
707 /* lw t9,0x8010(gp) */
708 insn1 = 0x8f998010;
709 }
710
711 p = buf + 12;
712 while (p >= buf)
713 {
e17a4113 714 insn = extract_unsigned_integer (p, 4, byte_order);
6de918a6
DJ
715 if (insn == insn1)
716 break;
717 p -= 4;
718 }
719 if (p < buf)
720 return 0;
721
e17a4113 722 insn = extract_unsigned_integer (p + 4, 4, byte_order);
6de918a6
DJ
723 if (n64)
724 {
725 /* daddu t7,ra */
726 if (insn != 0x03e0782d)
727 return 0;
728 }
729 else
730 {
731 /* addu t7,ra */
732 if (insn != 0x03e07821)
733 return 0;
734 }
295093a4 735
e17a4113 736 insn = extract_unsigned_integer (p + 8, 4, byte_order);
6de918a6
DJ
737 /* jalr t9,ra */
738 if (insn != 0x0320f809)
739 return 0;
740
e17a4113 741 insn = extract_unsigned_integer (p + 12, 4, byte_order);
6de918a6
DJ
742 if (n64)
743 {
744 /* daddiu t8,zero,0 */
745 if ((insn & 0xffff0000) != 0x64180000)
746 return 0;
747 }
748 else
749 {
750 /* addiu t8,zero,0 */
751 if ((insn & 0xffff0000) != 0x24180000)
752 return 0;
753 }
754
755 return (insn & 0xffff);
756}
757
295093a4 758/* Return non-zero iff PC belongs to the dynamic linker resolution
db5f024e 759 code, a PLT entry, or a lazy binding stub. */
6de918a6 760
7d522c90 761static int
6de918a6
DJ
762mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
763{
295093a4 764 /* Check whether PC is in the dynamic linker. This also checks
db5f024e 765 whether it is in the .plt section, used by non-PIC executables. */
7d522c90 766 if (svr4_in_dynsym_resolve_code (pc))
6de918a6
DJ
767 return 1;
768
295093a4
MS
769 /* Pattern match for the stub. It would be nice if there were a
770 more efficient way to avoid this check. */
6de918a6
DJ
771 if (mips_linux_in_dynsym_stub (pc, NULL))
772 return 1;
773
774 return 0;
775}
776
777/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
778 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
779 implementation of this triggers at "fixup" from the same objfile as
c4c5b7ba 780 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
db5f024e
DJ
781 "__dl_runtime_resolve" directly. An unresolved lazy binding
782 stub will point to _dl_runtime_resolve, which will first call
c4c5b7ba
AC
783 __dl_runtime_resolve, and then pass control to the resolved
784 function. */
6de918a6
DJ
785
786static CORE_ADDR
787mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
788{
789 struct minimal_symbol *resolver;
790
791 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
792
793 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
c7ce8faa 794 return frame_unwind_caller_pc (get_current_frame ());
6de918a6 795
db5f024e 796 return glibc_skip_solib_resolver (gdbarch, pc);
295093a4 797}
6de918a6 798
5792a79b
DJ
799/* Signal trampoline support. There are four supported layouts for a
800 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
801 n64 rt_sigframe. We handle them all independently; not the most
802 efficient way, but simplest. First, declare all the unwinders. */
803
804static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 805 struct frame_info *this_frame,
5792a79b
DJ
806 struct trad_frame_cache *this_cache,
807 CORE_ADDR func);
808
809static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 810 struct frame_info *this_frame,
5792a79b
DJ
811 struct trad_frame_cache *this_cache,
812 CORE_ADDR func);
813
814#define MIPS_NR_LINUX 4000
815#define MIPS_NR_N64_LINUX 5000
816#define MIPS_NR_N32_LINUX 6000
817
818#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
819#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
820#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
821#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
822
823#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
824#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
825#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
826#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
827#define MIPS_INST_SYSCALL 0x0000000c
828
2cd8546d
AC
829static const struct tramp_frame mips_linux_o32_sigframe = {
830 SIGTRAMP_FRAME,
5792a79b 831 4,
2cd8546d
AC
832 {
833 { MIPS_INST_LI_V0_SIGRETURN, -1 },
834 { MIPS_INST_SYSCALL, -1 },
835 { TRAMP_SENTINEL_INSN, -1 }
836 },
5792a79b
DJ
837 mips_linux_o32_sigframe_init
838};
839
2cd8546d
AC
840static const struct tramp_frame mips_linux_o32_rt_sigframe = {
841 SIGTRAMP_FRAME,
5792a79b 842 4,
2cd8546d
AC
843 {
844 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
845 { MIPS_INST_SYSCALL, -1 },
846 { TRAMP_SENTINEL_INSN, -1 } },
5792a79b
DJ
847 mips_linux_o32_sigframe_init
848};
849
2cd8546d
AC
850static const struct tramp_frame mips_linux_n32_rt_sigframe = {
851 SIGTRAMP_FRAME,
5792a79b 852 4,
2cd8546d
AC
853 {
854 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
855 { MIPS_INST_SYSCALL, -1 },
856 { TRAMP_SENTINEL_INSN, -1 }
857 },
5792a79b
DJ
858 mips_linux_n32n64_sigframe_init
859};
860
2cd8546d
AC
861static const struct tramp_frame mips_linux_n64_rt_sigframe = {
862 SIGTRAMP_FRAME,
5792a79b 863 4,
fcbd8a5c
TS
864 {
865 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
866 { MIPS_INST_SYSCALL, -1 },
867 { TRAMP_SENTINEL_INSN, -1 }
868 },
5792a79b
DJ
869 mips_linux_n32n64_sigframe_init
870};
871
872/* *INDENT-OFF* */
873/* The unwinder for o32 signal frames. The legacy structures look
874 like this:
875
876 struct sigframe {
877 u32 sf_ass[4]; [argument save space for o32]
eb195664 878 u32 sf_code[2]; [signal trampoline or fill]
5792a79b
DJ
879 struct sigcontext sf_sc;
880 sigset_t sf_mask;
881 };
882
883 struct sigcontext {
884 unsigned int sc_regmask; [Unused]
885 unsigned int sc_status;
886 unsigned long long sc_pc;
887 unsigned long long sc_regs[32];
888 unsigned long long sc_fpregs[32];
889 unsigned int sc_ownedfp;
890 unsigned int sc_fpc_csr;
891 unsigned int sc_fpc_eir; [Unused]
892 unsigned int sc_used_math;
893 unsigned int sc_ssflags; [Unused]
894 [Alignment hole of four bytes]
895 unsigned long long sc_mdhi;
896 unsigned long long sc_mdlo;
897
898 unsigned int sc_cause; [Unused]
899 unsigned int sc_badvaddr; [Unused]
900
901 unsigned long sc_sigset[4]; [kernel's sigset_t]
902 };
903
904 The RT signal frames look like this:
905
906 struct rt_sigframe {
907 u32 rs_ass[4]; [argument save space for o32]
eb195664 908 u32 rs_code[2] [signal trampoline or fill]
5792a79b
DJ
909 struct siginfo rs_info;
910 struct ucontext rs_uc;
911 };
912
913 struct ucontext {
914 unsigned long uc_flags;
915 struct ucontext *uc_link;
916 stack_t uc_stack;
917 [Alignment hole of four bytes]
918 struct sigcontext uc_mcontext;
919 sigset_t uc_sigmask;
920 }; */
921/* *INDENT-ON* */
922
5792a79b
DJ
923#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
924
925#define RTSIGFRAME_SIGINFO_SIZE 128
926#define STACK_T_SIZE (3 * 4)
927#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
928#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
929 + RTSIGFRAME_SIGINFO_SIZE \
930 + UCONTEXT_SIGCONTEXT_OFFSET)
931
932#define SIGCONTEXT_PC (1 * 8)
933#define SIGCONTEXT_REGS (2 * 8)
934#define SIGCONTEXT_FPREGS (34 * 8)
935#define SIGCONTEXT_FPCSR (66 * 8 + 4)
936#define SIGCONTEXT_HI (69 * 8)
937#define SIGCONTEXT_LO (70 * 8)
938#define SIGCONTEXT_CAUSE (71 * 8 + 0)
939#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
940
941#define SIGCONTEXT_REG_SIZE 8
942
943static void
944mips_linux_o32_sigframe_init (const struct tramp_frame *self,
b8a22b94 945 struct frame_info *this_frame,
5792a79b
DJ
946 struct trad_frame_cache *this_cache,
947 CORE_ADDR func)
948{
b8a22b94 949 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5792a79b 950 int ireg, reg_position;
eb195664
DD
951 CORE_ADDR frame_sp = get_frame_sp (this_frame);
952 CORE_ADDR sigcontext_base;
2eb4d78b 953 const struct mips_regnum *regs = mips_regnum (gdbarch);
37c4d197 954 CORE_ADDR regs_base;
5792a79b
DJ
955
956 if (self == &mips_linux_o32_sigframe)
eb195664 957 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 958 else
eb195664 959 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
295093a4
MS
960
961 /* I'm not proud of this hack. Eventually we will have the
962 infrastructure to indicate the size of saved registers on a
963 per-frame basis, but right now we don't; the kernel saves eight
37c4d197
DJ
964 bytes but we only want four. Use regs_base to access any
965 64-bit fields. */
2eb4d78b 966 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
37c4d197
DJ
967 regs_base = sigcontext_base + 4;
968 else
969 regs_base = sigcontext_base;
5792a79b 970
2eb4d78b 971 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
972 trad_frame_set_reg_addr (this_cache,
973 (MIPS_RESTART_REGNUM
2eb4d78b 974 + gdbarch_num_regs (gdbarch)),
822b6570 975 regs_base + SIGCONTEXT_REGS);
5792a79b
DJ
976
977 for (ireg = 1; ireg < 32; ireg++)
295093a4 978 trad_frame_set_reg_addr (this_cache,
f57d151a 979 ireg + MIPS_ZERO_REGNUM
2eb4d78b 980 + gdbarch_num_regs (gdbarch),
37c4d197 981 regs_base + SIGCONTEXT_REGS
5792a79b
DJ
982 + ireg * SIGCONTEXT_REG_SIZE);
983
37c4d197
DJ
984 /* The way that floating point registers are saved, unfortunately,
985 depends on the architecture the kernel is built for. For the r3000 and
986 tx39, four bytes of each register are at the beginning of each of the
987 32 eight byte slots. For everything else, the registers are saved
988 using double precision; only the even-numbered slots are initialized,
989 and the high bits are the odd-numbered register. Assume the latter
990 layout, since we can't tell, and it's much more common. Which bits are
991 the "high" bits depends on endianness. */
5792a79b 992 for (ireg = 0; ireg < 32; ireg++)
2eb4d78b 993 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
f57d151a
UW
994 trad_frame_set_reg_addr (this_cache,
995 ireg + regs->fp0 +
2eb4d78b 996 gdbarch_num_regs (gdbarch),
37c4d197
DJ
997 sigcontext_base + SIGCONTEXT_FPREGS + 4
998 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
999 else
f57d151a
UW
1000 trad_frame_set_reg_addr (this_cache,
1001 ireg + regs->fp0
2eb4d78b 1002 + gdbarch_num_regs (gdbarch),
37c4d197
DJ
1003 sigcontext_base + SIGCONTEXT_FPREGS
1004 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
5792a79b 1005
f57d151a 1006 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1007 regs->pc + gdbarch_num_regs (gdbarch),
37c4d197 1008 regs_base + SIGCONTEXT_PC);
5792a79b 1009
295093a4 1010 trad_frame_set_reg_addr (this_cache,
f57d151a 1011 regs->fp_control_status
2eb4d78b 1012 + gdbarch_num_regs (gdbarch),
5792a79b 1013 sigcontext_base + SIGCONTEXT_FPCSR);
f57d151a 1014 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1015 regs->hi + gdbarch_num_regs (gdbarch),
37c4d197 1016 regs_base + SIGCONTEXT_HI);
f57d151a 1017 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1018 regs->lo + gdbarch_num_regs (gdbarch),
37c4d197 1019 regs_base + SIGCONTEXT_LO);
f57d151a 1020 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1021 regs->cause + gdbarch_num_regs (gdbarch),
5792a79b 1022 sigcontext_base + SIGCONTEXT_CAUSE);
f57d151a 1023 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1024 regs->badvaddr + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1025 sigcontext_base + SIGCONTEXT_BADVADDR);
1026
1027 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1028 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1029}
1030
1031/* *INDENT-OFF* */
1032/* For N32/N64 things look different. There is no non-rt signal frame.
1033
1034 struct rt_sigframe_n32 {
1035 u32 rs_ass[4]; [ argument save space for o32 ]
eb195664 1036 u32 rs_code[2]; [ signal trampoline or fill ]
5792a79b
DJ
1037 struct siginfo rs_info;
1038 struct ucontextn32 rs_uc;
1039 };
1040
1041 struct ucontextn32 {
1042 u32 uc_flags;
1043 s32 uc_link;
1044 stack32_t uc_stack;
1045 struct sigcontext uc_mcontext;
1046 sigset_t uc_sigmask; [ mask last for extensibility ]
1047 };
295093a4 1048
e741f4d4 1049 struct rt_sigframe {
5792a79b
DJ
1050 u32 rs_ass[4]; [ argument save space for o32 ]
1051 u32 rs_code[2]; [ signal trampoline ]
1052 struct siginfo rs_info;
1053 struct ucontext rs_uc;
1054 };
1055
1056 struct ucontext {
1057 unsigned long uc_flags;
1058 struct ucontext *uc_link;
1059 stack_t uc_stack;
1060 struct sigcontext uc_mcontext;
1061 sigset_t uc_sigmask; [ mask last for extensibility ]
1062 };
1063
1064 And the sigcontext is different (this is for both n32 and n64):
1065
1066 struct sigcontext {
1067 unsigned long long sc_regs[32];
1068 unsigned long long sc_fpregs[32];
1069 unsigned long long sc_mdhi;
e741f4d4
DJ
1070 unsigned long long sc_hi1;
1071 unsigned long long sc_hi2;
1072 unsigned long long sc_hi3;
5792a79b 1073 unsigned long long sc_mdlo;
e741f4d4
DJ
1074 unsigned long long sc_lo1;
1075 unsigned long long sc_lo2;
1076 unsigned long long sc_lo3;
5792a79b 1077 unsigned long long sc_pc;
5792a79b 1078 unsigned int sc_fpc_csr;
5792a79b 1079 unsigned int sc_used_math;
e741f4d4
DJ
1080 unsigned int sc_dsp;
1081 unsigned int sc_reserved;
1082 };
1083
1084 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1085 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1086 included too. */
5792a79b
DJ
1087/* *INDENT-ON* */
1088
1089#define N32_STACK_T_SIZE STACK_T_SIZE
1090#define N64_STACK_T_SIZE (2 * 8 + 4)
1091#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1092#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1093#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1094 + RTSIGFRAME_SIGINFO_SIZE \
1095 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1096#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1097 + RTSIGFRAME_SIGINFO_SIZE \
1098 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1099
1100#define N64_SIGCONTEXT_REGS (0 * 8)
1101#define N64_SIGCONTEXT_FPREGS (32 * 8)
1102#define N64_SIGCONTEXT_HI (64 * 8)
e741f4d4
DJ
1103#define N64_SIGCONTEXT_LO (68 * 8)
1104#define N64_SIGCONTEXT_PC (72 * 8)
1105#define N64_SIGCONTEXT_FPCSR (73 * 8)
5792a79b
DJ
1106
1107#define N64_SIGCONTEXT_REG_SIZE 8
295093a4 1108
5792a79b
DJ
1109static void
1110mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
b8a22b94 1111 struct frame_info *this_frame,
5792a79b
DJ
1112 struct trad_frame_cache *this_cache,
1113 CORE_ADDR func)
1114{
b8a22b94 1115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5792a79b 1116 int ireg, reg_position;
eb195664
DD
1117 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1118 CORE_ADDR sigcontext_base;
2eb4d78b 1119 const struct mips_regnum *regs = mips_regnum (gdbarch);
5792a79b
DJ
1120
1121 if (self == &mips_linux_n32_rt_sigframe)
eb195664 1122 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
5792a79b 1123 else
eb195664 1124 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
295093a4 1125
2eb4d78b 1126 if (mips_linux_restart_reg_p (gdbarch))
822b6570
DJ
1127 trad_frame_set_reg_addr (this_cache,
1128 (MIPS_RESTART_REGNUM
2eb4d78b 1129 + gdbarch_num_regs (gdbarch)),
822b6570 1130 sigcontext_base + N64_SIGCONTEXT_REGS);
5792a79b
DJ
1131
1132 for (ireg = 1; ireg < 32; ireg++)
295093a4 1133 trad_frame_set_reg_addr (this_cache,
f57d151a 1134 ireg + MIPS_ZERO_REGNUM
2eb4d78b 1135 + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1136 sigcontext_base + N64_SIGCONTEXT_REGS
1137 + ireg * N64_SIGCONTEXT_REG_SIZE);
1138
1139 for (ireg = 0; ireg < 32; ireg++)
f57d151a
UW
1140 trad_frame_set_reg_addr (this_cache,
1141 ireg + regs->fp0
2eb4d78b 1142 + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1143 sigcontext_base + N64_SIGCONTEXT_FPREGS
1144 + ireg * N64_SIGCONTEXT_REG_SIZE);
1145
f57d151a 1146 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1147 regs->pc + gdbarch_num_regs (gdbarch),
5792a79b
DJ
1148 sigcontext_base + N64_SIGCONTEXT_PC);
1149
295093a4 1150 trad_frame_set_reg_addr (this_cache,
f57d151a 1151 regs->fp_control_status
2eb4d78b 1152 + gdbarch_num_regs (gdbarch),
5792a79b 1153 sigcontext_base + N64_SIGCONTEXT_FPCSR);
f57d151a 1154 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1155 regs->hi + gdbarch_num_regs (gdbarch),
5792a79b 1156 sigcontext_base + N64_SIGCONTEXT_HI);
f57d151a 1157 trad_frame_set_reg_addr (this_cache,
2eb4d78b 1158 regs->lo + gdbarch_num_regs (gdbarch),
5792a79b 1159 sigcontext_base + N64_SIGCONTEXT_LO);
5792a79b
DJ
1160
1161 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
eb195664 1162 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
5792a79b
DJ
1163}
1164
822b6570 1165static void
61a1198a 1166mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
822b6570 1167{
2eb4d78b
UW
1168 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1169 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
822b6570
DJ
1170
1171 /* Clear the syscall restart flag. */
2eb4d78b 1172 if (mips_linux_restart_reg_p (gdbarch))
61a1198a 1173 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
822b6570
DJ
1174}
1175
1176/* Return 1 if MIPS_RESTART_REGNUM is usable. */
1177
1178int
1179mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1180{
1181 /* If we do not have a target description with registers, then
1182 MIPS_RESTART_REGNUM will not be included in the register set. */
1183 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1184 return 0;
1185
1186 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1187 either be GPR-sized or missing. */
1188 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1189}
9f62d0e2 1190
e38d4e1a
DJ
1191/* When FRAME is at a syscall instruction, return the PC of the next
1192 instruction to be executed. */
1193
63807e1d 1194static CORE_ADDR
e38d4e1a
DJ
1195mips_linux_syscall_next_pc (struct frame_info *frame)
1196{
1197 CORE_ADDR pc = get_frame_pc (frame);
1198 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1199
1200 /* If we are about to make a sigreturn syscall, use the unwinder to
1201 decode the signal frame. */
1202 if (v0 == MIPS_NR_sigreturn
1203 || v0 == MIPS_NR_rt_sigreturn
1204 || v0 == MIPS_NR_N64_rt_sigreturn
1205 || v0 == MIPS_NR_N32_rt_sigreturn)
c7ce8faa 1206 return frame_unwind_caller_pc (get_current_frame ());
e38d4e1a
DJ
1207
1208 return pc + 4;
1209}
1210
385203ed
DD
1211/* Return the current system call's number present in the
1212 v0 register. When the function fails, it returns -1. */
1213
1214static LONGEST
1215mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1216 ptid_t ptid)
1217{
1218 struct regcache *regcache = get_thread_regcache (ptid);
1219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1222 /* The content of a register */
1223 gdb_byte buf[8];
1224 /* The result */
1225 LONGEST ret;
1226
1227 /* Make sure we're in a known ABI */
1228 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1229 || tdep->mips_abi == MIPS_ABI_N32
1230 || tdep->mips_abi == MIPS_ABI_N64);
1231
1232 gdb_assert (regsize <= sizeof (buf));
1233
1234 /* Getting the system call number from the register.
1235 syscall number is in v0 or $2. */
1236 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1237
1238 ret = extract_signed_integer (buf, regsize, byte_order);
1239
1240 return ret;
1241}
1242
5792a79b
DJ
1243/* Initialize one of the GNU/Linux OS ABIs. */
1244
19ed69dd 1245static void
295093a4
MS
1246mips_linux_init_abi (struct gdbarch_info info,
1247 struct gdbarch *gdbarch)
19ed69dd 1248{
96f026fc
KB
1249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1250 enum mips_abi abi = mips_abi (gdbarch);
822b6570 1251 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
96f026fc 1252
a5ee0f0c
PA
1253 linux_init_abi (info, gdbarch);
1254
385203ed
DD
1255 /* Get the syscall number from the arch's register. */
1256 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1257
96f026fc
KB
1258 switch (abi)
1259 {
1260 case MIPS_ABI_O32:
1261 set_gdbarch_get_longjmp_target (gdbarch,
1262 mips_linux_get_longjmp_target);
1263 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1264 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
fb2be677
AC
1265 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1266 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
385203ed 1267 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
96f026fc
KB
1268 break;
1269 case MIPS_ABI_N32:
1270 set_gdbarch_get_longjmp_target (gdbarch,
1271 mips_linux_get_longjmp_target);
1272 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1273 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
d05f6826
DJ
1274 set_gdbarch_long_double_bit (gdbarch, 128);
1275 /* These floatformats should probably be renamed. MIPS uses
1276 the same 128-bit IEEE floating point format that IA-64 uses,
1277 except that the quiet/signalling NaN bit is reversed (GDB
1278 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1279 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1280 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
385203ed 1281 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
96f026fc
KB
1282 break;
1283 case MIPS_ABI_N64:
1284 set_gdbarch_get_longjmp_target (gdbarch,
1285 mips64_linux_get_longjmp_target);
1286 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1287 (gdbarch, svr4_lp64_fetch_link_map_offsets);
d05f6826
DJ
1288 set_gdbarch_long_double_bit (gdbarch, 128);
1289 /* These floatformats should probably be renamed. MIPS uses
1290 the same 128-bit IEEE floating point format that IA-64 uses,
1291 except that the quiet/signalling NaN bit is reversed (GDB
1292 does not distinguish between quiet and signalling NaNs). */
8da61cc4 1293 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
fb2be677 1294 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
385203ed 1295 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
96f026fc
KB
1296 break;
1297 default:
96f026fc
KB
1298 break;
1299 }
6de918a6
DJ
1300
1301 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1302
0d0266c6 1303 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
b2756930
KB
1304
1305 /* Enable TLS support. */
1306 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1307 svr4_fetch_objfile_link_map);
7d522c90
DJ
1308
1309 /* Initialize this lazily, to avoid an initialization order
1310 dependency on solib-svr4.c's _initialize routine. */
1311 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1312 {
1313 mips_svr4_so_ops = svr4_so_ops;
1314 mips_svr4_so_ops.in_dynsym_resolve_code
1315 = mips_linux_in_dynsym_resolve_code;
1316 }
1317 set_solib_ops (gdbarch, &mips_svr4_so_ops);
822b6570
DJ
1318
1319 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1320
4eb0ad19
DJ
1321 set_gdbarch_core_read_description (gdbarch,
1322 mips_linux_core_read_description);
1323
50e8a0d5
HZ
1324 set_gdbarch_regset_from_core_section (gdbarch,
1325 mips_linux_regset_from_core_section);
1326
e38d4e1a
DJ
1327 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1328
822b6570
DJ
1329 if (tdesc_data)
1330 {
1331 const struct tdesc_feature *feature;
1332
1333 /* If we have target-described registers, then we can safely
1334 reserve a number for MIPS_RESTART_REGNUM (whether it is
1335 described or not). */
1336 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1337 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1338
1339 /* If it's present, then assign it to the reserved number. */
1340 feature = tdesc_find_feature (info.target_desc,
1341 "org.gnu.gdb.mips.linux");
1342 if (feature != NULL)
1343 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1344 "restart");
1345 }
19ed69dd
KB
1346}
1347
63807e1d
PA
1348/* Provide a prototype to silence -Wmissing-prototypes. */
1349extern initialize_file_ftype _initialize_mips_linux_tdep;
1350
2aa830e4 1351void
d1bacddc 1352_initialize_mips_linux_tdep (void)
2aa830e4 1353{
96f026fc
KB
1354 const struct bfd_arch_info *arch_info;
1355
96f026fc
KB
1356 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1357 arch_info != NULL;
1358 arch_info = arch_info->next)
1359 {
295093a4
MS
1360 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1361 GDB_OSABI_LINUX,
96f026fc
KB
1362 mips_linux_init_abi);
1363 }
2aa830e4 1364}
This page took 0.955553 seconds and 4 git commands to generate.