2003-06-08 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
c906108c
SS
45
46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
c906108c 50
e0f7ec59
AC
51static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
52
dd824b04
DJ
53/* A useful bit in the CP0 status register (PS_REGNUM). */
54/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55#define ST0_FR (1 << 26)
56
b0069a17
AC
57/* The sizes of floating point registers. */
58
59enum
60{
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
63};
64
0dadbba0 65
2e4ebe70
DJ
66static const char *mips_abi_string;
67
68static const char *mips_abi_strings[] = {
69 "auto",
70 "n32",
71 "o32",
28d169de 72 "n64",
2e4ebe70
DJ
73 "o64",
74 "eabi32",
75 "eabi64",
76 NULL
77};
78
cce74817 79struct frame_extra_info
c5aa993b
JM
80 {
81 mips_extra_func_info_t proc_desc;
82 int num_args;
83 };
cce74817 84
d929b26f
AC
85/* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
87 them. */
88
53904c9e
AC
89static const char size_auto[] = "auto";
90static const char size_32[] = "32";
91static const char size_64[] = "64";
d929b26f 92
53904c9e 93static const char *size_enums[] = {
d929b26f
AC
94 size_auto,
95 size_32,
96 size_64,
a5ea2558
AC
97 0
98};
99
7a292a7a
SS
100/* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
c906108c
SS
103
104enum mips_fpu_type
c5aa993b
JM
105 {
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
109 };
c906108c
SS
110
111#ifndef MIPS_DEFAULT_FPU_TYPE
112#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
113#endif
114static int mips_fpu_type_auto = 1;
115static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 116
9ace0497 117static int mips_debug = 0;
7a292a7a 118
c2d11a7d
JM
119/* MIPS specific per-architecture information */
120struct gdbarch_tdep
121 {
122 /* from the elf header */
123 int elf_flags;
70f80edf 124
c2d11a7d 125 /* mips options */
0dadbba0 126 enum mips_abi mips_abi;
2e4ebe70 127 enum mips_abi found_abi;
c2d11a7d
JM
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
a5ea2558 131 int mips_default_saved_regsize;
c2d11a7d 132 int mips_fp_register_double;
d929b26f 133 int mips_default_stack_argsize;
5213ab06 134 int gdb_target_is_mips64;
4014092b 135 int default_mask_address_p;
c2d11a7d
JM
136 };
137
0dadbba0 138#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 140
c2d11a7d 141#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 142
c2d11a7d 143#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 144
c2d11a7d 145#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 146
d929b26f
AC
147/* Return the currently configured (or set) saved register size. */
148
a5ea2558 149#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 150
53904c9e 151static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
152
153#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
154
95404a3e
AC
155/* MIPS16 function addresses are odd (bit 0 is set). Here are some
156 functions to test, set, or clear bit 0 of addresses. */
157
158static CORE_ADDR
159is_mips16_addr (CORE_ADDR addr)
160{
161 return ((addr) & 1);
162}
163
164static CORE_ADDR
165make_mips16_addr (CORE_ADDR addr)
166{
167 return ((addr) | 1);
168}
169
170static CORE_ADDR
171unmake_mips16_addr (CORE_ADDR addr)
172{
173 return ((addr) & ~1);
174}
175
22540ece
AC
176/* Return the contents of register REGNUM as a signed integer. */
177
178static LONGEST
179read_signed_register (int regnum)
180{
181 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
182 deprecated_read_register_gen (regnum, buf);
183 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
184}
185
186static LONGEST
187read_signed_register_pid (int regnum, ptid_t ptid)
188{
189 ptid_t save_ptid;
190 LONGEST retval;
191
192 if (ptid_equal (ptid, inferior_ptid))
193 return read_signed_register (regnum);
194
195 save_ptid = inferior_ptid;
196
197 inferior_ptid = ptid;
198
199 retval = read_signed_register (regnum);
200
201 inferior_ptid = save_ptid;
202
203 return retval;
204}
205
d1973055
KB
206/* Return the MIPS ABI associated with GDBARCH. */
207enum mips_abi
208mips_abi (struct gdbarch *gdbarch)
209{
210 return gdbarch_tdep (gdbarch)->mips_abi;
211}
212
d929b26f 213static unsigned int
acdb74a0 214mips_saved_regsize (void)
d929b26f
AC
215{
216 if (mips_saved_regsize_string == size_auto)
217 return MIPS_DEFAULT_SAVED_REGSIZE;
218 else if (mips_saved_regsize_string == size_64)
219 return 8;
220 else /* if (mips_saved_regsize_string == size_32) */
221 return 4;
222}
223
71b8ef93 224/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
225 marks it as 16-bit function. The MSB of the minimal symbol's
226 "info" field is used for this purpose. This field is already
227 being used to store the symbol size, so the assumption is
228 that the symbol size cannot exceed 2^31.
229
230 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
231 i.e. refers to a 16-bit function, and sets a "special" bit in a
232 minimal symbol to mark it as a 16-bit function
233
234 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
235 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
236 the "info" field with the "special" bit masked out */
237
5a89d8aa
MS
238static void
239mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
240{
241 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
242 {
243 MSYMBOL_INFO (msym) = (char *)
244 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
245 SYMBOL_VALUE_ADDRESS (msym) |= 1;
246 }
247}
248
71b8ef93
MS
249static int
250msymbol_is_special (struct minimal_symbol *msym)
251{
252 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
253}
254
255static long
256msymbol_size (struct minimal_symbol *msym)
257{
258 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
259}
260
88658117
AC
261/* XFER a value from the big/little/left end of the register.
262 Depending on the size of the value it might occupy the entire
263 register or just part of it. Make an allowance for this, aligning
264 things accordingly. */
265
266static void
267mips_xfer_register (struct regcache *regcache, int reg_num, int length,
268 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
269 int buf_offset)
270{
d9d9c31f 271 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 272 int reg_offset = 0;
cb1d2653
AC
273 /* Need to transfer the left or right part of the register, based on
274 the targets byte order. */
88658117
AC
275 switch (endian)
276 {
277 case BFD_ENDIAN_BIG:
278 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
279 break;
280 case BFD_ENDIAN_LITTLE:
281 reg_offset = 0;
282 break;
283 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
284 reg_offset = 0;
285 break;
286 default:
287 internal_error (__FILE__, __LINE__, "bad switch");
288 }
289 if (mips_debug)
cb1d2653
AC
290 fprintf_unfiltered (gdb_stderr,
291 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
292 reg_num, reg_offset, buf_offset, length);
88658117
AC
293 if (mips_debug && out != NULL)
294 {
295 int i;
cb1d2653 296 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 297 for (i = 0; i < length; i++)
cb1d2653 298 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
299 }
300 if (in != NULL)
301 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
302 if (out != NULL)
303 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
304 if (mips_debug && in != NULL)
305 {
306 int i;
cb1d2653 307 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 308 for (i = 0; i < length; i++)
cb1d2653 309 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
310 }
311 if (mips_debug)
312 fprintf_unfiltered (gdb_stdlog, "\n");
313}
314
dd824b04
DJ
315/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
316 compatiblity mode. A return value of 1 means that we have
317 physical 64-bit registers, but should treat them as 32-bit registers. */
318
319static int
320mips2_fp_compat (void)
321{
322 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
323 meaningful. */
324 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
325 return 0;
326
327#if 0
328 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
329 in all the places we deal with FP registers. PR gdb/413. */
330 /* Otherwise check the FR bit in the status register - it controls
331 the FP compatiblity mode. If it is clear we are in compatibility
332 mode. */
333 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
334 return 1;
335#endif
361d1df0 336
dd824b04
DJ
337 return 0;
338}
339
c2d11a7d
JM
340/* Indicate that the ABI makes use of double-precision registers
341 provided by the FPU (rather than combining pairs of registers to
342 form double-precision values). Do not use "TARGET_IS_MIPS64" to
343 determine if the ABI is using double-precision registers. See also
344 MIPS_FPU_TYPE. */
c2d11a7d 345#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 346
d929b26f
AC
347/* The amount of space reserved on the stack for registers. This is
348 different to MIPS_SAVED_REGSIZE as it determines the alignment of
349 data allocated after the registers have run out. */
350
0dadbba0 351#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
352
353#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
354
53904c9e 355static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
356
357static unsigned int
358mips_stack_argsize (void)
359{
360 if (mips_stack_argsize_string == size_auto)
361 return MIPS_DEFAULT_STACK_ARGSIZE;
362 else if (mips_stack_argsize_string == size_64)
363 return 8;
364 else /* if (mips_stack_argsize_string == size_32) */
365 return 4;
366}
367
5213ab06 368#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 369
92e1c15c 370#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 371
7a292a7a 372#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 373
a14ed312 374int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 375
570b8f7c
AC
376static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
377 struct frame_info *, int);
c906108c 378
a14ed312 379static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 380
a14ed312 381static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 382
5a89d8aa 383static int mips_set_processor_type (char *);
c906108c 384
a14ed312 385static void mips_show_processor_type_command (char *, int);
c906108c 386
a14ed312 387static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 388
570b8f7c
AC
389static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
390 struct frame_info *next_frame,
391 int cur_frame);
c906108c 392
a14ed312
KB
393static CORE_ADDR after_prologue (CORE_ADDR pc,
394 mips_extra_func_info_t proc_desc);
c906108c 395
67b2c998
DJ
396static struct type *mips_float_register_type (void);
397static struct type *mips_double_register_type (void);
398
c906108c
SS
399/* This value is the model of MIPS in use. It is derived from the value
400 of the PrID register. */
401
402char *mips_processor_type;
403
404char *tmp_mips_processor_type;
405
acdb74a0
AC
406/* The list of available "set mips " and "show mips " commands */
407
408static struct cmd_list_element *setmipscmdlist = NULL;
409static struct cmd_list_element *showmipscmdlist = NULL;
410
c906108c
SS
411/* A set of original names, to be used when restoring back to generic
412 registers from a specific set. */
5e2e9765 413static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 414
5e2e9765
KB
415/* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the sets of register names assigned to
418 mips_processor_reg_names. */
419static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 420
5e2e9765 421/* Return the name of the register corresponding to REGNO. */
5a89d8aa 422static const char *
5e2e9765 423mips_register_name (int regno)
cce74817 424{
5e2e9765
KB
425 /* GPR names for all ABIs other than n32/n64. */
426 static char *mips_gpr_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
431 };
432
433 /* GPR names for n32 and n64 ABIs. */
434 static char *mips_n32_n64_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
439 };
440
441 enum mips_abi abi = mips_abi (current_gdbarch);
442
443 /* The MIPS integer registers are always mapped from 0 to 31. The
444 names of the registers (which reflects the conventions regarding
445 register use) vary depending on the ABI. */
446 if (0 <= regno && regno < 32)
447 {
448 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
449 return mips_n32_n64_gpr_names[regno];
450 else
451 return mips_gpr_names[regno];
452 }
b006a9e9 453 else if (32 <= regno && regno < NUM_REGS)
5e2e9765
KB
454 return mips_processor_reg_names[regno - 32];
455 else
456 internal_error (__FILE__, __LINE__,
457 "mips_register_name: bad register number %d", regno);
cce74817 458}
5e2e9765 459
9846de1b 460/* *INDENT-OFF* */
c906108c
SS
461/* Names of IDT R3041 registers. */
462
463char *mips_r3041_reg_names[] = {
c906108c
SS
464 "sr", "lo", "hi", "bad", "cause","pc",
465 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
466 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
467 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
468 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 469 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
470 "", "", "bus", "ccfg", "", "", "", "",
471 "", "", "port", "cmp", "", "", "epc", "prid",
472};
473
474/* Names of IDT R3051 registers. */
475
476char *mips_r3051_reg_names[] = {
c906108c
SS
477 "sr", "lo", "hi", "bad", "cause","pc",
478 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
479 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
480 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
481 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 482 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
483 "inx", "rand", "elo", "", "ctxt", "", "", "",
484 "", "", "ehi", "", "", "", "epc", "prid",
485};
486
487/* Names of IDT R3081 registers. */
488
489char *mips_r3081_reg_names[] = {
c906108c
SS
490 "sr", "lo", "hi", "bad", "cause","pc",
491 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
492 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
493 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
494 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 495 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
496 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
497 "", "", "ehi", "", "", "", "epc", "prid",
498};
499
500/* Names of LSI 33k registers. */
501
502char *mips_lsi33k_reg_names[] = {
c906108c
SS
503 "epc", "hi", "lo", "sr", "cause","badvaddr",
504 "dcic", "bpc", "bda", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "", "", "", "", "",
507 "", "", "", "", "", "", "", "",
508 "", "", "", "",
509 "", "", "", "", "", "", "", "",
510 "", "", "", "", "", "", "", "",
511};
512
513struct {
514 char *name;
515 char **regnames;
516} mips_processor_type_table[] = {
517 { "generic", mips_generic_reg_names },
518 { "r3041", mips_r3041_reg_names },
519 { "r3051", mips_r3051_reg_names },
520 { "r3071", mips_r3081_reg_names },
521 { "r3081", mips_r3081_reg_names },
522 { "lsi33k", mips_lsi33k_reg_names },
523 { NULL, NULL }
524};
9846de1b 525/* *INDENT-ON* */
c906108c 526
c5aa993b
JM
527
528
529
c906108c 530/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
531static int mips16_to_32_reg[8] =
532{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
533
534/* Heuristic_proc_start may hunt through the text section for a long
535 time across a 2400 baud serial line. Allows the user to limit this
536 search. */
537
538static unsigned int heuristic_fence_post = 0;
539
c5aa993b
JM
540#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
541#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
542#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
543#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
544#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
545#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
546#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
547#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
548#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
549#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
550/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
551 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
552#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
553#define _PROC_MAGIC_ 0x0F0F0F0F
554#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
555#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
556
557struct linked_proc_info
c5aa993b
JM
558 {
559 struct mips_extra_func_info info;
560 struct linked_proc_info *next;
561 }
562 *linked_proc_desc_table = NULL;
c906108c 563
cce74817 564void
acdb74a0 565mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
566{
567 if (fi
da50a4b7
AC
568 && get_frame_extra_info (fi)
569 && get_frame_extra_info (fi)->proc_desc
570 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 571 printf_filtered (" frame pointer is at %s+%s\n",
da50a4b7
AC
572 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
573 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
cce74817 574}
c906108c 575
46cd78fb
AC
576/* Number of bytes of storage in the actual machine representation for
577 register N. NOTE: This indirectly defines the register size
578 transfered by the GDB protocol. */
43e526b9
JM
579
580static int mips64_transfers_32bit_regs_p = 0;
581
f7ab6ec6 582static int
acdb74a0 583mips_register_raw_size (int reg_nr)
43e526b9
JM
584{
585 if (mips64_transfers_32bit_regs_p)
586 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
587 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
588 && FP_REGISTER_DOUBLE)
589 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
590 registers. */
591 return 8;
43e526b9
JM
592 else
593 return MIPS_REGSIZE;
594}
595
46cd78fb
AC
596/* Convert between RAW and VIRTUAL registers. The RAW register size
597 defines the remote-gdb packet. */
598
d05285fa 599static int
acdb74a0 600mips_register_convertible (int reg_nr)
43e526b9
JM
601{
602 if (mips64_transfers_32bit_regs_p)
603 return 0;
604 else
605 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
606}
607
d05285fa 608static void
acdb74a0
AC
609mips_register_convert_to_virtual (int n, struct type *virtual_type,
610 char *raw_buf, char *virt_buf)
43e526b9 611{
d7449b42 612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
613 memcpy (virt_buf,
614 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
615 TYPE_LENGTH (virtual_type));
616 else
617 memcpy (virt_buf,
618 raw_buf,
619 TYPE_LENGTH (virtual_type));
620}
621
d05285fa 622static void
acdb74a0
AC
623mips_register_convert_to_raw (struct type *virtual_type, int n,
624 char *virt_buf, char *raw_buf)
43e526b9
JM
625{
626 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 627 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
628 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
629 virt_buf,
630 TYPE_LENGTH (virtual_type));
631 else
632 memcpy (raw_buf,
633 virt_buf,
634 TYPE_LENGTH (virtual_type));
635}
636
102182a9
MS
637void
638mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
639{
640 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
641 && REGISTER_RAW_SIZE (regnum) == 4
642 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
643 && TYPE_CODE(type) == TYPE_CODE_FLT
644 && TYPE_LENGTH(type) == 8)
645 {
646 char temp[4];
647 memcpy (temp, ((char *)(buffer))+4, 4);
648 memcpy (((char *)(buffer))+4, (buffer), 4);
649 memcpy (((char *)(buffer)), temp, 4);
650 }
651}
652
653void
654mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
655{
656if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
657 && REGISTER_RAW_SIZE (regnum) == 4
658 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
659 && TYPE_CODE(type) == TYPE_CODE_FLT
660 && TYPE_LENGTH(type) == 8)
661 {
662 char temp[4];
663 memcpy (temp, ((char *)(buffer))+4, 4);
664 memcpy (((char *)(buffer))+4, (buffer), 4);
665 memcpy (((char *)(buffer)), temp, 4);
666 }
667}
668
78fde5f8
KB
669/* Return the GDB type object for the "standard" data type
670 of data in register REG.
671
672 Note: kevinb/2002-08-01: The definition below should faithfully
673 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
0ba6dca9
AC
674 definitions found in config/mips/tm-*.h. I'm concerned about the
675 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
676 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
78fde5f8
KB
677 that this code is correct for the 64-bit case. */
678
679static struct type *
680mips_register_virtual_type (int reg)
681{
682 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
683 {
684 /* Floating point registers... */
685 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
686 return builtin_type_ieee_double_big;
687 else
688 return builtin_type_ieee_double_little;
689 }
78fde5f8
KB
690 else if (reg == PS_REGNUM /* CR */)
691 return builtin_type_uint32;
692 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
693 return builtin_type_uint32;
694 else
695 {
a6425924
KB
696 /* Everything else...
697 Return type appropriate for width of register. */
698 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
699 return builtin_type_uint64;
78fde5f8 700 else
a6425924 701 return builtin_type_uint32;
78fde5f8
KB
702 }
703}
704
bcb0cc15
MS
705/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
706
707static CORE_ADDR
708mips_read_sp (void)
709{
e227b13c 710 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
711}
712
c906108c 713/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 714enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
715
716static int
717mips_mask_address_p (void)
718{
719 switch (mask_address_var)
720 {
7f19b9a2 721 case AUTO_BOOLEAN_TRUE:
4014092b 722 return 1;
7f19b9a2 723 case AUTO_BOOLEAN_FALSE:
4014092b
AC
724 return 0;
725 break;
7f19b9a2 726 case AUTO_BOOLEAN_AUTO:
92e1c15c 727 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 728 default:
8e65ff28
AC
729 internal_error (__FILE__, __LINE__,
730 "mips_mask_address_p: bad switch");
4014092b 731 return -1;
361d1df0 732 }
4014092b
AC
733}
734
735static void
e9e68a56 736show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
737{
738 switch (mask_address_var)
739 {
7f19b9a2 740 case AUTO_BOOLEAN_TRUE:
4014092b
AC
741 printf_filtered ("The 32 bit mips address mask is enabled\n");
742 break;
7f19b9a2 743 case AUTO_BOOLEAN_FALSE:
4014092b
AC
744 printf_filtered ("The 32 bit mips address mask is disabled\n");
745 break;
7f19b9a2 746 case AUTO_BOOLEAN_AUTO:
4014092b
AC
747 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
748 mips_mask_address_p () ? "enabled" : "disabled");
749 break;
750 default:
8e65ff28
AC
751 internal_error (__FILE__, __LINE__,
752 "show_mask_address: bad switch");
4014092b 753 break;
361d1df0 754 }
4014092b 755}
c906108c
SS
756
757/* Should call_function allocate stack space for a struct return? */
cb811fe7 758
f7ab6ec6 759static int
cb811fe7 760mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 761{
cb811fe7
MS
762 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
763}
764
f7ab6ec6 765static int
cb811fe7
MS
766mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
767{
b78bcb18 768 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
769}
770
f7ab6ec6 771static int
cb811fe7
MS
772mips_o32_use_struct_convention (int gcc_p, struct type *type)
773{
774 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
775}
776
8b389c40
MS
777/* Should call_function pass struct by reference?
778 For each architecture, structs are passed either by
779 value or by reference, depending on their size. */
780
781static int
782mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
783{
784 enum type_code typecode = TYPE_CODE (check_typedef (type));
785 int len = TYPE_LENGTH (check_typedef (type));
786
787 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
788 return (len > MIPS_SAVED_REGSIZE);
789
790 return 0;
791}
792
793static int
794mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
795{
796 return 0; /* Assumption: N32/N64 never passes struct by ref. */
797}
798
f7ab6ec6 799static int
8b389c40
MS
800mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
801{
802 return 0; /* Assumption: O32/O64 never passes struct by ref. */
803}
804
c906108c
SS
805/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
806
807static int
808pc_is_mips16 (bfd_vma memaddr)
809{
810 struct minimal_symbol *sym;
811
812 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 813 if (is_mips16_addr (memaddr))
c906108c
SS
814 return 1;
815
816 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
817 the high bit of the info field. Use this to decide if the function is
818 MIPS16 or normal MIPS. */
819 sym = lookup_minimal_symbol_by_pc (memaddr);
820 if (sym)
71b8ef93 821 return msymbol_is_special (sym);
c906108c
SS
822 else
823 return 0;
824}
825
6c997a34
AC
826/* MIPS believes that the PC has a sign extended value. Perhaphs the
827 all registers should be sign extended for simplicity? */
828
829static CORE_ADDR
39f77062 830mips_read_pc (ptid_t ptid)
6c997a34 831{
39f77062 832 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 833}
c906108c
SS
834
835/* This returns the PC of the first inst after the prologue. If we can't
836 find the prologue, then return 0. */
837
838static CORE_ADDR
acdb74a0
AC
839after_prologue (CORE_ADDR pc,
840 mips_extra_func_info_t proc_desc)
c906108c
SS
841{
842 struct symtab_and_line sal;
843 CORE_ADDR func_addr, func_end;
844
479412cd
DJ
845 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
846 to read the stack pointer from the current machine state, because
847 the current machine state has nothing to do with the information
848 we need from the proc_desc; and the process may or may not exist
849 right now. */
c906108c 850 if (!proc_desc)
479412cd 851 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
852
853 if (proc_desc)
854 {
855 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 856 strongly suspect that frameless always means prologueless... */
c906108c
SS
857 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
858 && PROC_FRAME_OFFSET (proc_desc) == 0)
859 return 0;
860 }
861
862 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
863 return 0; /* Unknown */
864
865 sal = find_pc_line (func_addr, 0);
866
867 if (sal.end < func_end)
868 return sal.end;
869
870 /* The line after the prologue is after the end of the function. In this
871 case, tell the caller to find the prologue the hard way. */
872
873 return 0;
874}
875
876/* Decode a MIPS32 instruction that saves a register in the stack, and
877 set the appropriate bit in the general register mask or float register mask
878 to indicate which register is saved. This is a helper function
879 for mips_find_saved_regs. */
880
881static void
acdb74a0
AC
882mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
883 unsigned long *float_mask)
c906108c
SS
884{
885 int reg;
886
887 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
888 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
889 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
890 {
891 /* It might be possible to use the instruction to
c5aa993b
JM
892 find the offset, rather than the code below which
893 is based on things being in a certain order in the
894 frame, but figuring out what the instruction's offset
895 is relative to might be a little tricky. */
c906108c
SS
896 reg = (inst & 0x001f0000) >> 16;
897 *gen_mask |= (1 << reg);
898 }
899 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
900 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
901 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
902
903 {
904 reg = ((inst & 0x001f0000) >> 16);
905 *float_mask |= (1 << reg);
906 }
907}
908
909/* Decode a MIPS16 instruction that saves a register in the stack, and
910 set the appropriate bit in the general register or float register mask
911 to indicate which register is saved. This is a helper function
912 for mips_find_saved_regs. */
913
914static void
acdb74a0 915mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 916{
c5aa993b 917 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
918 {
919 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
920 *gen_mask |= (1 << reg);
921 }
c5aa993b 922 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
923 {
924 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
925 *gen_mask |= (1 << reg);
926 }
c5aa993b 927 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
928 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
929 *gen_mask |= (1 << RA_REGNUM);
930}
931
932
933/* Fetch and return instruction from the specified location. If the PC
934 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
935
936static t_inst
acdb74a0 937mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
938{
939 char buf[MIPS_INSTLEN];
940 int instlen;
941 int status;
942
943 if (pc_is_mips16 (addr))
944 {
945 instlen = MIPS16_INSTLEN;
95404a3e 946 addr = unmake_mips16_addr (addr);
c906108c
SS
947 }
948 else
c5aa993b 949 instlen = MIPS_INSTLEN;
c906108c
SS
950 status = read_memory_nobpt (addr, buf, instlen);
951 if (status)
952 memory_error (status, addr);
953 return extract_unsigned_integer (buf, instlen);
954}
955
956
957/* These the fields of 32 bit mips instructions */
e135b889
DJ
958#define mips32_op(x) (x >> 26)
959#define itype_op(x) (x >> 26)
960#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 961#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 962#define itype_immediate(x) (x & 0xffff)
c906108c 963
e135b889
DJ
964#define jtype_op(x) (x >> 26)
965#define jtype_target(x) (x & 0x03ffffff)
c906108c 966
e135b889
DJ
967#define rtype_op(x) (x >> 26)
968#define rtype_rs(x) ((x >> 21) & 0x1f)
969#define rtype_rt(x) ((x >> 16) & 0x1f)
970#define rtype_rd(x) ((x >> 11) & 0x1f)
971#define rtype_shamt(x) ((x >> 6) & 0x1f)
972#define rtype_funct(x) (x & 0x3f)
c906108c
SS
973
974static CORE_ADDR
c5aa993b
JM
975mips32_relative_offset (unsigned long inst)
976{
977 long x;
978 x = itype_immediate (inst);
979 if (x & 0x8000) /* sign bit set */
c906108c 980 {
c5aa993b 981 x |= 0xffff0000; /* sign extension */
c906108c 982 }
c5aa993b
JM
983 x = x << 2;
984 return x;
c906108c
SS
985}
986
987/* Determine whate to set a single step breakpoint while considering
988 branch prediction */
5a89d8aa 989static CORE_ADDR
c5aa993b
JM
990mips32_next_pc (CORE_ADDR pc)
991{
992 unsigned long inst;
993 int op;
994 inst = mips_fetch_instruction (pc);
e135b889 995 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 996 {
e135b889
DJ
997 if (itype_op (inst) >> 2 == 5)
998 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 999 {
e135b889 1000 op = (itype_op (inst) & 0x03);
c906108c
SS
1001 switch (op)
1002 {
e135b889
DJ
1003 case 0: /* BEQL */
1004 goto equal_branch;
1005 case 1: /* BNEL */
1006 goto neq_branch;
1007 case 2: /* BLEZL */
1008 goto less_branch;
1009 case 3: /* BGTZ */
1010 goto greater_branch;
c5aa993b
JM
1011 default:
1012 pc += 4;
c906108c
SS
1013 }
1014 }
e135b889
DJ
1015 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1016 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1017 {
1018 int tf = itype_rt (inst) & 0x01;
1019 int cnum = itype_rt (inst) >> 2;
1020 int fcrcs = read_signed_register (FCRCS_REGNUM);
1021 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1022
1023 if (((cond >> cnum) & 0x01) == tf)
1024 pc += mips32_relative_offset (inst) + 4;
1025 else
1026 pc += 8;
1027 }
c5aa993b
JM
1028 else
1029 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1030 }
1031 else
c5aa993b
JM
1032 { /* This gets way messy */
1033
c906108c 1034 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1035 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1036 {
c5aa993b
JM
1037 case 0: /* SPECIAL */
1038 op = rtype_funct (inst);
1039 switch (op)
1040 {
1041 case 8: /* JR */
1042 case 9: /* JALR */
6c997a34
AC
1043 /* Set PC to that address */
1044 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1045 break;
1046 default:
1047 pc += 4;
1048 }
1049
e135b889 1050 break; /* end SPECIAL */
c5aa993b 1051 case 1: /* REGIMM */
c906108c 1052 {
e135b889
DJ
1053 op = itype_rt (inst); /* branch condition */
1054 switch (op)
c906108c 1055 {
c5aa993b 1056 case 0: /* BLTZ */
e135b889
DJ
1057 case 2: /* BLTZL */
1058 case 16: /* BLTZAL */
c5aa993b 1059 case 18: /* BLTZALL */
c906108c 1060 less_branch:
6c997a34 1061 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1062 pc += mips32_relative_offset (inst) + 4;
1063 else
1064 pc += 8; /* after the delay slot */
1065 break;
e135b889 1066 case 1: /* BGEZ */
c5aa993b
JM
1067 case 3: /* BGEZL */
1068 case 17: /* BGEZAL */
1069 case 19: /* BGEZALL */
c906108c 1070 greater_equal_branch:
6c997a34 1071 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1072 pc += mips32_relative_offset (inst) + 4;
1073 else
1074 pc += 8; /* after the delay slot */
1075 break;
e135b889 1076 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1077 default:
1078 pc += 4;
c906108c
SS
1079 }
1080 }
e135b889 1081 break; /* end REGIMM */
c5aa993b
JM
1082 case 2: /* J */
1083 case 3: /* JAL */
1084 {
1085 unsigned long reg;
1086 reg = jtype_target (inst) << 2;
e135b889 1087 /* Upper four bits get never changed... */
c5aa993b 1088 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1089 }
c5aa993b
JM
1090 break;
1091 /* FIXME case JALX : */
1092 {
1093 unsigned long reg;
1094 reg = jtype_target (inst) << 2;
1095 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1096 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1097 }
c5aa993b 1098 break; /* The new PC will be alternate mode */
e135b889 1099 case 4: /* BEQ, BEQL */
c5aa993b 1100 equal_branch:
6c997a34
AC
1101 if (read_signed_register (itype_rs (inst)) ==
1102 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1103 pc += mips32_relative_offset (inst) + 4;
1104 else
1105 pc += 8;
1106 break;
e135b889 1107 case 5: /* BNE, BNEL */
c5aa993b 1108 neq_branch:
6c997a34 1109 if (read_signed_register (itype_rs (inst)) !=
e135b889 1110 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1111 pc += mips32_relative_offset (inst) + 4;
1112 else
1113 pc += 8;
1114 break;
e135b889 1115 case 6: /* BLEZ, BLEZL */
c906108c 1116 less_zero_branch:
6c997a34 1117 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1118 pc += mips32_relative_offset (inst) + 4;
1119 else
1120 pc += 8;
1121 break;
1122 case 7:
e135b889
DJ
1123 default:
1124 greater_branch: /* BGTZ, BGTZL */
6c997a34 1125 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1126 pc += mips32_relative_offset (inst) + 4;
1127 else
1128 pc += 8;
1129 break;
c5aa993b
JM
1130 } /* switch */
1131 } /* else */
1132 return pc;
1133} /* mips32_next_pc */
c906108c
SS
1134
1135/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1136 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1137 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1138 We dont want to set a single step instruction on the extend instruction
1139 either.
c5aa993b 1140 */
c906108c
SS
1141
1142/* Lots of mips16 instruction formats */
1143/* Predicting jumps requires itype,ritype,i8type
1144 and their extensions extItype,extritype,extI8type
c5aa993b 1145 */
c906108c
SS
1146enum mips16_inst_fmts
1147{
c5aa993b
JM
1148 itype, /* 0 immediate 5,10 */
1149 ritype, /* 1 5,3,8 */
1150 rrtype, /* 2 5,3,3,5 */
1151 rritype, /* 3 5,3,3,5 */
1152 rrrtype, /* 4 5,3,3,3,2 */
1153 rriatype, /* 5 5,3,3,1,4 */
1154 shifttype, /* 6 5,3,3,3,2 */
1155 i8type, /* 7 5,3,8 */
1156 i8movtype, /* 8 5,3,3,5 */
1157 i8mov32rtype, /* 9 5,3,5,3 */
1158 i64type, /* 10 5,3,8 */
1159 ri64type, /* 11 5,3,3,5 */
1160 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1161 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1162 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1163 extRRItype, /* 15 5,5,5,5,3,3,5 */
1164 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1165 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1166 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1167 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1168 extRi64type, /* 20 5,6,5,5,3,3,5 */
1169 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1170};
12f02c2a
AC
1171/* I am heaping all the fields of the formats into one structure and
1172 then, only the fields which are involved in instruction extension */
c906108c 1173struct upk_mips16
c5aa993b 1174 {
12f02c2a 1175 CORE_ADDR offset;
c5aa993b
JM
1176 unsigned int regx; /* Function in i8 type */
1177 unsigned int regy;
1178 };
c906108c
SS
1179
1180
12f02c2a
AC
1181/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1182 for the bits which make up the immediatate extension. */
c906108c 1183
12f02c2a
AC
1184static CORE_ADDR
1185extended_offset (unsigned int extension)
c906108c 1186{
12f02c2a 1187 CORE_ADDR value;
c5aa993b
JM
1188 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1189 value = value << 6;
1190 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1191 value = value << 5;
1192 value |= extension & 0x01f; /* extract 4:0 */
1193 return value;
c906108c
SS
1194}
1195
1196/* Only call this function if you know that this is an extendable
1197 instruction, It wont malfunction, but why make excess remote memory references?
1198 If the immediate operands get sign extended or somthing, do it after
1199 the extension is performed.
c5aa993b 1200 */
c906108c
SS
1201/* FIXME: Every one of these cases needs to worry about sign extension
1202 when the offset is to be used in relative addressing */
1203
1204
12f02c2a 1205static unsigned int
c5aa993b 1206fetch_mips_16 (CORE_ADDR pc)
c906108c 1207{
c5aa993b
JM
1208 char buf[8];
1209 pc &= 0xfffffffe; /* clear the low order bit */
1210 target_read_memory (pc, buf, 2);
1211 return extract_unsigned_integer (buf, 2);
c906108c
SS
1212}
1213
1214static void
c5aa993b 1215unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1216 unsigned int extension,
1217 unsigned int inst,
1218 enum mips16_inst_fmts insn_format,
c5aa993b 1219 struct upk_mips16 *upk)
c906108c 1220{
12f02c2a
AC
1221 CORE_ADDR offset;
1222 int regx;
1223 int regy;
1224 switch (insn_format)
c906108c 1225 {
c5aa993b 1226 case itype:
c906108c 1227 {
12f02c2a
AC
1228 CORE_ADDR value;
1229 if (extension)
c5aa993b
JM
1230 {
1231 value = extended_offset (extension);
1232 value = value << 11; /* rom for the original value */
12f02c2a 1233 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1234 }
1235 else
c5aa993b 1236 {
12f02c2a 1237 value = inst & 0x7ff;
c5aa993b 1238 /* FIXME : Consider sign extension */
c906108c 1239 }
12f02c2a
AC
1240 offset = value;
1241 regx = -1;
1242 regy = -1;
c906108c 1243 }
c5aa993b
JM
1244 break;
1245 case ritype:
1246 case i8type:
1247 { /* A register identifier and an offset */
c906108c
SS
1248 /* Most of the fields are the same as I type but the
1249 immediate value is of a different length */
12f02c2a
AC
1250 CORE_ADDR value;
1251 if (extension)
c906108c 1252 {
c5aa993b
JM
1253 value = extended_offset (extension);
1254 value = value << 8; /* from the original instruction */
12f02c2a
AC
1255 value |= inst & 0xff; /* eleven bits from instruction */
1256 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1257 if (value & 0x4000) /* test the sign bit , bit 26 */
1258 {
1259 value &= ~0x3fff; /* remove the sign bit */
1260 value = -value;
c906108c
SS
1261 }
1262 }
c5aa993b
JM
1263 else
1264 {
12f02c2a
AC
1265 value = inst & 0xff; /* 8 bits */
1266 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1267 /* FIXME: Do sign extension , this format needs it */
1268 if (value & 0x80) /* THIS CONFUSES ME */
1269 {
1270 value &= 0xef; /* remove the sign bit */
1271 value = -value;
1272 }
c5aa993b 1273 }
12f02c2a
AC
1274 offset = value;
1275 regy = -1;
c5aa993b 1276 break;
c906108c 1277 }
c5aa993b 1278 case jalxtype:
c906108c 1279 {
c5aa993b 1280 unsigned long value;
12f02c2a
AC
1281 unsigned int nexthalf;
1282 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1283 value = value << 16;
1284 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1285 value |= nexthalf;
12f02c2a
AC
1286 offset = value;
1287 regx = -1;
1288 regy = -1;
c5aa993b 1289 break;
c906108c
SS
1290 }
1291 default:
8e65ff28
AC
1292 internal_error (__FILE__, __LINE__,
1293 "bad switch");
c906108c 1294 }
12f02c2a
AC
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
c906108c
SS
1298}
1299
1300
c5aa993b
JM
1301static CORE_ADDR
1302add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1303{
c5aa993b 1304 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1305}
1306
12f02c2a
AC
1307static CORE_ADDR
1308extended_mips16_next_pc (CORE_ADDR pc,
1309 unsigned int extension,
1310 unsigned int insn)
c906108c 1311{
12f02c2a
AC
1312 int op = (insn >> 11);
1313 switch (op)
c906108c 1314 {
12f02c2a
AC
1315 case 2: /* Branch */
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
1340 case 4: /* beqz */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = read_signed_register (upk.regx);
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 5: /* bnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
1357 reg = read_signed_register (upk.regx);
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
1364 case 12: /* I8 Formats btez btnez */
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
1370 reg = read_signed_register (24); /* Test register is 24 */
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
1379 case 29: /* RR Formats JR, JALR, JALR-RA */
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
c5aa993b 1385 {
12f02c2a
AC
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
c5aa993b 1390 {
12f02c2a
AC
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
1396 break; /* Function return instruction */
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
1402 break; /* BOGUS Guess */
c906108c 1403 }
12f02c2a 1404 pc = read_signed_register (reg);
c906108c 1405 }
12f02c2a 1406 else
c5aa993b 1407 pc += 2;
12f02c2a
AC
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
1416 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
c906108c 1424 }
c5aa993b 1425 return pc;
12f02c2a 1426}
c906108c 1427
5a89d8aa 1428static CORE_ADDR
12f02c2a
AC
1429mips16_next_pc (CORE_ADDR pc)
1430{
1431 unsigned int insn = fetch_mips_16 (pc);
1432 return extended_mips16_next_pc (pc, 0, insn);
1433}
1434
1435/* The mips_next_pc function supports single_step when the remote
7e73cedf 1436 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
1439 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1440CORE_ADDR
1441mips_next_pc (CORE_ADDR pc)
c906108c 1442{
c5aa993b
JM
1443 if (pc & 0x01)
1444 return mips16_next_pc (pc);
1445 else
1446 return mips32_next_pc (pc);
12f02c2a 1447}
c906108c 1448
e0f7ec59
AC
1449/* Set up the 'saved_regs' array. This is a data structure containing
1450 the addresses on the stack where each register has been saved, for
1451 each stack frame. Registers that have not been saved will have
1452 zero here. The stack pointer register is special: rather than the
1453 address where the stack register has been saved,
1454 saved_regs[SP_REGNUM] will have the actual value of the previous
1455 frame's stack register. */
c906108c 1456
d28e01f4 1457static void
acdb74a0 1458mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1459{
1460 int ireg;
c906108c
SS
1461 /* r0 bit means kernel trap */
1462 int kernel_trap;
1463 /* What registers have been saved? Bitmasks. */
1464 unsigned long gen_mask, float_mask;
1465 mips_extra_func_info_t proc_desc;
1466 t_inst inst;
e0f7ec59 1467 CORE_ADDR *saved_regs;
c906108c 1468
e0f7ec59
AC
1469 if (get_frame_saved_regs (fci) != NULL)
1470 return;
1471 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1472
1473 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1474 in a sigcontext structure somewhere on the stack. If the stack
1475 layout for sigtramp changes we might have to change these
1476 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1477#ifndef SIGFRAME_BASE
e0f7ec59
AC
1478 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1479 above the sigtramp frame. */
c906108c
SS
1480#define SIGFRAME_BASE MIPS_REGSIZE
1481/* FIXME! Are these correct?? */
1482#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1483#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1484#define SIGFRAME_FPREGSAVE_OFF \
1485 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1486#endif
1487#ifndef SIGFRAME_REG_SIZE
e0f7ec59 1488 /* FIXME! Is this correct?? */
c906108c
SS
1489#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1490#endif
5a203e44 1491 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1492 {
1493 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1494 {
e0f7ec59
AC
1495 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1496 + ireg * SIGFRAME_REG_SIZE);
1497 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1498 }
1499 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1500 {
e0f7ec59
AC
1501 CORE_ADDR reg_position = (get_frame_base (fci)
1502 + SIGFRAME_FPREGSAVE_OFF
1503 + ireg * SIGFRAME_REG_SIZE);
1504 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
c906108c 1505 }
e0f7ec59
AC
1506
1507 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1508 /* SP_REGNUM, contains the value and not the address. */
1509 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1510 return;
1511 }
1512
da50a4b7 1513 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1514 if (proc_desc == NULL)
e0f7ec59
AC
1515 /* I'm not sure how/whether this can happen. Normally when we
1516 can't find a proc_desc, we "synthesize" one using
1517 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1518 return;
1519
c5aa993b
JM
1520 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1521 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1522 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1523
e0f7ec59
AC
1524 if (/* In any frame other than the innermost or a frame interrupted
1525 by a signal, we assume that all registers have been saved.
1526 This assumes that all register saves in a function happen
1527 before the first function call. */
11c02a10
AC
1528 (get_next_frame (fci) == NULL
1529 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1530
e0f7ec59 1531 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1532 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1533
e0f7ec59
AC
1534 /* Don't bother unless we are inside a function prologue.
1535 Outside the prologue, we know where everything is. */
c906108c 1536
50abf9e5 1537 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1538
e0f7ec59
AC
1539 /* Not sure exactly what kernel_trap means, but if it means the
1540 kernel saves the registers without a prologue doing it, we
1541 better not examine the prologue to see whether registers
1542 have been saved yet. */
c5aa993b 1543 && !kernel_trap)
c906108c 1544 {
e0f7ec59
AC
1545 /* We need to figure out whether the registers that the
1546 proc_desc claims are saved have been saved yet. */
c906108c
SS
1547
1548 CORE_ADDR addr;
1549
1550 /* Bitmasks; set if we have found a save for the register. */
1551 unsigned long gen_save_found = 0;
1552 unsigned long float_save_found = 0;
1553 int instlen;
1554
1555 /* If the address is odd, assume this is MIPS16 code. */
1556 addr = PROC_LOW_ADDR (proc_desc);
1557 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1558
e0f7ec59
AC
1559 /* Scan through this function's instructions preceding the
1560 current PC, and look for those that save registers. */
50abf9e5 1561 while (addr < get_frame_pc (fci))
c906108c
SS
1562 {
1563 inst = mips_fetch_instruction (addr);
1564 if (pc_is_mips16 (addr))
1565 mips16_decode_reg_save (inst, &gen_save_found);
1566 else
1567 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1568 addr += instlen;
1569 }
1570 gen_mask = gen_save_found;
1571 float_mask = float_save_found;
1572 }
1573
e0f7ec59
AC
1574 /* Fill in the offsets for the registers which gen_mask says were
1575 saved. */
1576 {
1577 CORE_ADDR reg_position = (get_frame_base (fci)
1578 + PROC_REG_OFFSET (proc_desc));
1579 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1580 if (gen_mask & 0x80000000)
1581 {
1582 set_reg_offset (saved_regs, ireg, reg_position);
1583 reg_position -= MIPS_SAVED_REGSIZE;
1584 }
1585 }
c906108c 1586
e0f7ec59
AC
1587 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1588 order of that normally used by gcc. Therefore, we have to fetch
1589 the first instruction of the function, and if it's an entry
1590 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1591 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1592 {
1593 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1594 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1595 /* entry */
c906108c
SS
1596 {
1597 int reg;
1598 int sreg_count = (inst >> 6) & 3;
c5aa993b 1599
c906108c 1600 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1601 CORE_ADDR reg_position = (get_frame_base (fci)
1602 + PROC_REG_OFFSET (proc_desc));
c906108c 1603 if (inst & 0x20)
7a292a7a 1604 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1605
e0f7ec59
AC
1606 /* Check if the s0 and s1 registers were pushed on the
1607 stack. */
c5aa993b 1608 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1609 {
e0f7ec59 1610 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1611 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1612 }
1613 }
1614 }
1615
e0f7ec59
AC
1616 /* Fill in the offsets for the registers which float_mask says were
1617 saved. */
1618 {
1619 CORE_ADDR reg_position = (get_frame_base (fci)
1620 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1621
e0f7ec59
AC
1622 /* Apparently, the freg_offset gives the offset to the first 64
1623 bit saved.
6acdf5c7 1624
e0f7ec59
AC
1625 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1626 designates the first saved 64 bit register.
6acdf5c7 1627
e0f7ec59
AC
1628 When the ABI specifies 32 bit saved registers, the ``64 bit
1629 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1630 FREG_OFFSET, designates the address of the lower register of
1631 the register pair. Adjust the offset so that it designates the
1632 upper register of the pair -- i.e., the address of the first
1633 saved 32 bit register. */
c906108c 1634
e0f7ec59
AC
1635 if (MIPS_SAVED_REGSIZE == 4)
1636 reg_position += MIPS_SAVED_REGSIZE;
c906108c 1637
e0f7ec59
AC
1638 /* Fill in the offsets for the float registers which float_mask
1639 says were saved. */
1640 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1641 if (float_mask & 0x80000000)
1642 {
1643 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1644 reg_position -= MIPS_SAVED_REGSIZE;
1645 }
c906108c 1646
e0f7ec59
AC
1647 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1648 }
d28e01f4 1649
e0f7ec59
AC
1650 /* SP_REGNUM, contains the value and not the address. */
1651 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1652}
1653
c906108c 1654static CORE_ADDR
acdb74a0 1655read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1656{
64159455
AC
1657 int optimized;
1658 CORE_ADDR addr;
1659 int realnum;
1660 enum lval_type lval;
d9d9c31f 1661 char raw_buffer[MAX_REGISTER_SIZE];
f796e4be
KB
1662
1663 if (fi == NULL)
c906108c 1664 {
f796e4be
KB
1665 regcache_cooked_read (current_regcache, regno, raw_buffer);
1666 }
1667 else
1668 {
1669 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1670 raw_buffer);
1671 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1672 should have a pseudo register range that correspons to the ABI's,
1673 rather than the ISA's, view of registers. These registers would
1674 then implicitly describe their size and hence could be used
1675 without the below munging. */
1676 if (lval == lval_memory)
c906108c 1677 {
f796e4be
KB
1678 if (regno < 32)
1679 {
1680 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1681 saved. */
1682 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1683 }
c906108c
SS
1684 }
1685 }
64159455
AC
1686
1687 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1688}
1689
1690/* mips_addr_bits_remove - remove useless address bits */
1691
875e1767 1692static CORE_ADDR
acdb74a0 1693mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1694{
5213ab06
AC
1695 if (GDB_TARGET_IS_MIPS64)
1696 {
4014092b 1697 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1698 {
1699 /* This hack is a work-around for existing boards using
1700 PMON, the simulator, and any other 64-bit targets that
1701 doesn't have true 64-bit addressing. On these targets,
1702 the upper 32 bits of addresses are ignored by the
1703 hardware. Thus, the PC or SP are likely to have been
1704 sign extended to all 1s by instruction sequences that
1705 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1706 code that loads an address is this:
1707 lui $r2, <upper 16 bits>
1708 ori $r2, <lower 16 bits>
1709 But the lui sign-extends the value such that the upper 32
1710 bits may be all 1s. The workaround is simply to mask off
1711 these bits. In the future, gcc may be changed to support
1712 true 64-bit addressing, and this masking will have to be
1713 disabled. */
5213ab06
AC
1714 addr &= (CORE_ADDR) 0xffffffff;
1715 }
1716 }
4014092b 1717 else if (mips_mask_address_p ())
5213ab06 1718 {
4014092b
AC
1719 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1720 masking off bits, instead, the actual target should be asking
1721 for the address to be converted to a valid pointer. */
5213ab06
AC
1722 /* Even when GDB is configured for some 32-bit targets
1723 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1724 so CORE_ADDR is 64 bits. So we still have to mask off
1725 useless bits from addresses. */
c5aa993b 1726 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1727 }
c906108c
SS
1728 return addr;
1729}
1730
9022177c
DJ
1731/* mips_software_single_step() is called just before we want to resume
1732 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1733 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1734 the target of the coming instruction and breakpoint it.
1735
1736 single_step is also called just after the inferior stops. If we had
1737 set up a simulated single-step, we undo our damage. */
1738
1739void
1740mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1741{
1742 static CORE_ADDR next_pc;
1743 typedef char binsn_quantum[BREAKPOINT_MAX];
1744 static binsn_quantum break_mem;
1745 CORE_ADDR pc;
1746
1747 if (insert_breakpoints_p)
1748 {
1749 pc = read_register (PC_REGNUM);
1750 next_pc = mips_next_pc (pc);
1751
1752 target_insert_breakpoint (next_pc, break_mem);
1753 }
1754 else
1755 target_remove_breakpoint (next_pc, break_mem);
1756}
1757
97f46953 1758static CORE_ADDR
acdb74a0 1759mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1760{
1761 CORE_ADDR pc, tmp;
1762
11c02a10 1763 pc = ((fromleaf)
6913c89a 1764 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1765 : get_next_frame (prev)
8bedc050 1766 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1767 : read_pc ());
5a89d8aa 1768 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1769 return tmp ? tmp : pc;
c906108c
SS
1770}
1771
1772
f7ab6ec6 1773static CORE_ADDR
acdb74a0 1774mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1775{
1776 CORE_ADDR saved_pc;
da50a4b7 1777 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
c906108c
SS
1778 /* We have to get the saved pc from the sigcontext
1779 if it is a signal handler frame. */
5a203e44 1780 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
c5aa993b 1781 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1782
50abf9e5 1783 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1784 {
1785 LONGEST tmp;
1786 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1787 saved_pc = tmp;
1788 }
1789 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1e2330ba 1790 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1791 else
7a292a7a 1792 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1793
1794 return ADDR_BITS_REMOVE (saved_pc);
1795}
1796
1797static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1798
1799/* This hack will go away once the get_prev_frame() code has been
1800 modified to set the frame's type first. That is BEFORE init extra
1801 frame info et.al. is called. This is because it will become
1802 possible to skip the init extra info call for sigtramp and dummy
1803 frames. */
1804static CORE_ADDR *temp_saved_regs;
c906108c 1805
e0f7ec59
AC
1806/* Set a register's saved stack address in temp_saved_regs. If an
1807 address has already been set for this register, do nothing; this
1808 way we will only recognize the first save of a given register in a
1809 function prologue. */
c906108c
SS
1810
1811static void
e0f7ec59 1812set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1813{
e0f7ec59
AC
1814 if (saved_regs[regno] == 0)
1815 saved_regs[regno] = offset;
c906108c
SS
1816}
1817
1818
1819/* Test whether the PC points to the return instruction at the
1820 end of a function. */
1821
c5aa993b 1822static int
acdb74a0 1823mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1824{
1825 if (pc_is_mips16 (pc))
1826 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1827 generates a "jr $ra"; other times it generates code to load
1828 the return address from the stack to an accessible register (such
1829 as $a3), then a "jr" using that register. This second case
1830 is almost impossible to distinguish from an indirect jump
1831 used for switch statements, so we don't even try. */
1832 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1833 else
1834 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1835}
1836
1837
1838/* This fencepost looks highly suspicious to me. Removing it also
1839 seems suspicious as it could affect remote debugging across serial
1840 lines. */
1841
1842static CORE_ADDR
acdb74a0 1843heuristic_proc_start (CORE_ADDR pc)
c906108c 1844{
c5aa993b
JM
1845 CORE_ADDR start_pc;
1846 CORE_ADDR fence;
1847 int instlen;
1848 int seen_adjsp = 0;
c906108c 1849
c5aa993b
JM
1850 pc = ADDR_BITS_REMOVE (pc);
1851 start_pc = pc;
1852 fence = start_pc - heuristic_fence_post;
1853 if (start_pc == 0)
1854 return 0;
c906108c 1855
c5aa993b
JM
1856 if (heuristic_fence_post == UINT_MAX
1857 || fence < VM_MIN_ADDRESS)
1858 fence = VM_MIN_ADDRESS;
c906108c 1859
c5aa993b 1860 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1861
c5aa993b
JM
1862 /* search back for previous return */
1863 for (start_pc -= instlen;; start_pc -= instlen)
1864 if (start_pc < fence)
1865 {
1866 /* It's not clear to me why we reach this point when
c0236d92 1867 stop_soon, but with this test, at least we
c5aa993b
JM
1868 don't print out warnings for every child forked (eg, on
1869 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1870 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1871 {
c5aa993b
JM
1872 static int blurb_printed = 0;
1873
1874 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1875 paddr_nz (pc));
1876
1877 if (!blurb_printed)
c906108c 1878 {
c5aa993b
JM
1879 /* This actually happens frequently in embedded
1880 development, when you first connect to a board
1881 and your stack pointer and pc are nowhere in
1882 particular. This message needs to give people
1883 in that situation enough information to
1884 determine that it's no big deal. */
1885 printf_filtered ("\n\
cd0fc7c3
SS
1886 GDB is unable to find the start of the function at 0x%s\n\
1887and thus can't determine the size of that function's stack frame.\n\
1888This means that GDB may be unable to access that stack frame, or\n\
1889the frames below it.\n\
1890 This problem is most likely caused by an invalid program counter or\n\
1891stack pointer.\n\
1892 However, if you think GDB should simply search farther back\n\
1893from 0x%s for code which looks like the beginning of a\n\
1894function, you can increase the range of the search using the `set\n\
1895heuristic-fence-post' command.\n",
c5aa993b
JM
1896 paddr_nz (pc), paddr_nz (pc));
1897 blurb_printed = 1;
c906108c 1898 }
c906108c
SS
1899 }
1900
c5aa993b
JM
1901 return 0;
1902 }
1903 else if (pc_is_mips16 (start_pc))
1904 {
1905 unsigned short inst;
1906
1907 /* On MIPS16, any one of the following is likely to be the
1908 start of a function:
1909 entry
1910 addiu sp,-n
1911 daddiu sp,-n
1912 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1913 inst = mips_fetch_instruction (start_pc);
1914 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1915 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1916 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1917 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1918 break;
1919 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1920 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1921 seen_adjsp = 1;
1922 else
1923 seen_adjsp = 0;
1924 }
1925 else if (mips_about_to_return (start_pc))
1926 {
1927 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1928 break;
1929 }
1930
c5aa993b 1931 return start_pc;
c906108c
SS
1932}
1933
1934/* Fetch the immediate value from a MIPS16 instruction.
1935 If the previous instruction was an EXTEND, use it to extend
1936 the upper bits of the immediate value. This is a helper function
1937 for mips16_heuristic_proc_desc. */
1938
1939static int
acdb74a0
AC
1940mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1941 unsigned short inst, /* current instruction */
1942 int nbits, /* number of bits in imm field */
1943 int scale, /* scale factor to be applied to imm */
1944 int is_signed) /* is the imm field signed? */
c906108c
SS
1945{
1946 int offset;
1947
1948 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1949 {
1950 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1951 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1952 offset = 0 - (0x10000 - (offset & 0xffff));
1953 return offset | (inst & 0x1f);
1954 }
1955 else
1956 {
1957 int max_imm = 1 << nbits;
1958 int mask = max_imm - 1;
1959 int sign_bit = max_imm >> 1;
1960
1961 offset = inst & mask;
1962 if (is_signed && (offset & sign_bit))
1963 offset = 0 - (max_imm - offset);
1964 return offset * scale;
1965 }
1966}
1967
1968
1969/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1970 stream from start_pc to limit_pc. */
1971
1972static void
acdb74a0
AC
1973mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1974 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1975{
1976 CORE_ADDR cur_pc;
1977 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1978 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1979 unsigned inst = 0; /* current instruction */
1980 unsigned entry_inst = 0; /* the entry instruction */
1981 int reg, offset;
1982
c5aa993b
JM
1983 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1984 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1985
1986 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1987 {
1988 /* Save the previous instruction. If it's an EXTEND, we'll extract
1989 the immediate offset extension from it in mips16_get_imm. */
1990 prev_inst = inst;
1991
1992 /* Fetch and decode the instruction. */
1993 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1994 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1995 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1996 {
1997 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1998 if (offset < 0) /* negative stack adjustment? */
1999 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
2000 else
2001 /* Exit loop if a positive stack adjustment is found, which
2002 usually means that the stack cleanup code in the function
2003 epilogue is reached. */
2004 break;
2005 }
2006 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2007 {
2008 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2009 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 2010 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2011 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2012 }
2013 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2014 {
2015 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2016 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2017 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2018 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2019 }
2020 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2021 {
2022 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2023 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2024 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2025 }
2026 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2027 {
2028 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2029 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2030 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2031 }
c5aa993b 2032 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2033 {
2034 frame_addr = sp;
2035 PROC_FRAME_REG (&temp_proc_desc) = 17;
2036 }
2037 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2038 {
2039 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2040 frame_addr = sp + offset;
2041 PROC_FRAME_REG (&temp_proc_desc) = 17;
2042 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2043 }
2044 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2045 {
2046 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2047 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2048 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2049 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2050 }
2051 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2052 {
2053 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2054 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2055 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2056 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2057 }
c5aa993b
JM
2058 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2059 entry_inst = inst; /* save for later processing */
c906108c 2060 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2061 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2062 }
2063
c5aa993b
JM
2064 /* The entry instruction is typically the first instruction in a function,
2065 and it stores registers at offsets relative to the value of the old SP
2066 (before the prologue). But the value of the sp parameter to this
2067 function is the new SP (after the prologue has been executed). So we
2068 can't calculate those offsets until we've seen the entire prologue,
2069 and can calculate what the old SP must have been. */
2070 if (entry_inst != 0)
2071 {
2072 int areg_count = (entry_inst >> 8) & 7;
2073 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2074
c5aa993b
JM
2075 /* The entry instruction always subtracts 32 from the SP. */
2076 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2077
c5aa993b
JM
2078 /* Now we can calculate what the SP must have been at the
2079 start of the function prologue. */
2080 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2081
c5aa993b
JM
2082 /* Check if a0-a3 were saved in the caller's argument save area. */
2083 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2084 {
2085 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2086 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2087 offset += MIPS_SAVED_REGSIZE;
2088 }
c906108c 2089
c5aa993b
JM
2090 /* Check if the ra register was pushed on the stack. */
2091 offset = -4;
2092 if (entry_inst & 0x20)
2093 {
2094 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2095 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2096 offset -= MIPS_SAVED_REGSIZE;
2097 }
c906108c 2098
c5aa993b
JM
2099 /* Check if the s0 and s1 registers were pushed on the stack. */
2100 for (reg = 16; reg < sreg_count + 16; reg++)
2101 {
2102 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2103 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2104 offset -= MIPS_SAVED_REGSIZE;
2105 }
2106 }
c906108c
SS
2107}
2108
2109static void
fba45db2
KB
2110mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2111 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2112{
2113 CORE_ADDR cur_pc;
c5aa993b 2114 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2115restart:
fe29b929 2116 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2117 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2118 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2119 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2120 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2121 {
2122 unsigned long inst, high_word, low_word;
2123 int reg;
2124
2125 /* Fetch the instruction. */
2126 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2127
2128 /* Save some code by pre-extracting some useful fields. */
2129 high_word = (inst >> 16) & 0xffff;
2130 low_word = inst & 0xffff;
2131 reg = high_word & 0x1f;
2132
c5aa993b 2133 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2134 || high_word == 0x23bd /* addi $sp,$sp,-i */
2135 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2136 {
2137 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2138 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2139 else
2140 /* Exit loop if a positive stack adjustment is found, which
2141 usually means that the stack cleanup code in the function
2142 epilogue is reached. */
2143 break;
2144 }
2145 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2146 {
c5aa993b 2147 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2148 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2149 }
2150 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2151 {
2152 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2153 but the register size used is only 32 bits. Make the address
2154 for the saved register point to the lower 32 bits. */
c5aa993b 2155 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2156 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
c906108c 2157 }
c5aa993b 2158 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2159 {
2160 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2161 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2162 frame_addr = sp + low_word;
c906108c
SS
2163 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2164 {
2165 unsigned alloca_adjust;
2166 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2167 frame_addr = read_next_frame_reg (next_frame, 30);
2168 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2169 if (alloca_adjust > 0)
2170 {
2171 /* FP > SP + frame_size. This may be because
2172 * of an alloca or somethings similar.
2173 * Fix sp to "pre-alloca" value, and try again.
2174 */
2175 sp += alloca_adjust;
2176 goto restart;
2177 }
2178 }
2179 }
c5aa993b
JM
2180 /* move $30,$sp. With different versions of gas this will be either
2181 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2182 Accept any one of these. */
c906108c
SS
2183 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2184 {
2185 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2186 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2187 {
2188 unsigned alloca_adjust;
2189 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2190 frame_addr = read_next_frame_reg (next_frame, 30);
2191 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2192 if (alloca_adjust > 0)
2193 {
2194 /* FP > SP + frame_size. This may be because
2195 * of an alloca or somethings similar.
2196 * Fix sp to "pre-alloca" value, and try again.
2197 */
2198 sp += alloca_adjust;
2199 goto restart;
2200 }
2201 }
2202 }
c5aa993b 2203 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2204 {
c5aa993b 2205 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2206 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2207 }
2208 }
2209}
2210
2211static mips_extra_func_info_t
acdb74a0 2212heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2213 struct frame_info *next_frame, int cur_frame)
c906108c 2214{
479412cd
DJ
2215 CORE_ADDR sp;
2216
2217 if (cur_frame)
2218 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2219 else
2220 sp = 0;
c906108c 2221
c5aa993b
JM
2222 if (start_pc == 0)
2223 return NULL;
2224 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2225 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2226 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2227 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2228 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2229 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2230
2231 if (start_pc + 200 < limit_pc)
2232 limit_pc = start_pc + 200;
2233 if (pc_is_mips16 (start_pc))
2234 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2235 else
2236 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2237 return &temp_proc_desc;
2238}
2239
6c0d6680
DJ
2240struct mips_objfile_private
2241{
2242 bfd_size_type size;
2243 char *contents;
2244};
2245
2246/* Global used to communicate between non_heuristic_proc_desc and
2247 compare_pdr_entries within qsort (). */
2248static bfd *the_bfd;
2249
2250static int
2251compare_pdr_entries (const void *a, const void *b)
2252{
2253 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2254 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2255
2256 if (lhs < rhs)
2257 return -1;
2258 else if (lhs == rhs)
2259 return 0;
2260 else
2261 return 1;
2262}
2263
c906108c 2264static mips_extra_func_info_t
acdb74a0 2265non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2266{
2267 CORE_ADDR startaddr;
2268 mips_extra_func_info_t proc_desc;
c5aa993b 2269 struct block *b = block_for_pc (pc);
c906108c 2270 struct symbol *sym;
6c0d6680
DJ
2271 struct obj_section *sec;
2272 struct mips_objfile_private *priv;
2273
ae45cd16 2274 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2275 return NULL;
c906108c
SS
2276
2277 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2278 if (addrptr)
2279 *addrptr = startaddr;
6c0d6680
DJ
2280
2281 priv = NULL;
2282
2283 sec = find_pc_section (pc);
2284 if (sec != NULL)
c906108c 2285 {
6c0d6680
DJ
2286 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2287
2288 /* Search the ".pdr" section generated by GAS. This includes most of
2289 the information normally found in ECOFF PDRs. */
2290
2291 the_bfd = sec->objfile->obfd;
2292 if (priv == NULL
2293 && (the_bfd->format == bfd_object
2294 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2295 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2296 {
2297 /* Right now GAS only outputs the address as a four-byte sequence.
2298 This means that we should not bother with this method on 64-bit
2299 targets (until that is fixed). */
2300
2301 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2302 sizeof (struct mips_objfile_private));
2303 priv->size = 0;
2304 sec->objfile->obj_private = priv;
2305 }
2306 else if (priv == NULL)
2307 {
2308 asection *bfdsec;
2309
2310 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2311 sizeof (struct mips_objfile_private));
2312
2313 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2314 if (bfdsec != NULL)
2315 {
2316 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2317 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2318 priv->size);
2319 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2320 priv->contents, 0, priv->size);
2321
2322 /* In general, the .pdr section is sorted. However, in the
2323 presence of multiple code sections (and other corner cases)
2324 it can become unsorted. Sort it so that we can use a faster
2325 binary search. */
2326 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2327 }
2328 else
2329 priv->size = 0;
2330
2331 sec->objfile->obj_private = priv;
2332 }
2333 the_bfd = NULL;
2334
2335 if (priv->size != 0)
2336 {
2337 int low, mid, high;
2338 char *ptr;
2339
2340 low = 0;
2341 high = priv->size / 32;
2342
2343 do
2344 {
2345 CORE_ADDR pdr_pc;
2346
2347 mid = (low + high) / 2;
2348
2349 ptr = priv->contents + mid * 32;
2350 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2351 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2352 SECT_OFF_TEXT (sec->objfile));
2353 if (pdr_pc == startaddr)
2354 break;
2355 if (pdr_pc > startaddr)
2356 high = mid;
2357 else
2358 low = mid + 1;
2359 }
2360 while (low != high);
2361
2362 if (low != high)
2363 {
2364 struct symbol *sym = find_pc_function (pc);
2365
2366 /* Fill in what we need of the proc_desc. */
2367 proc_desc = (mips_extra_func_info_t)
2368 obstack_alloc (&sec->objfile->psymbol_obstack,
2369 sizeof (struct mips_extra_func_info));
2370 PROC_LOW_ADDR (proc_desc) = startaddr;
2371
2372 /* Only used for dummy frames. */
2373 PROC_HIGH_ADDR (proc_desc) = 0;
2374
2375 PROC_FRAME_OFFSET (proc_desc)
2376 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2377 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2378 ptr + 24);
2379 PROC_FRAME_ADJUST (proc_desc) = 0;
2380 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2381 ptr + 4);
2382 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2383 ptr + 12);
2384 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2385 ptr + 8);
2386 PROC_FREG_OFFSET (proc_desc)
2387 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2388 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2389 ptr + 28);
2390 proc_desc->pdr.isym = (long) sym;
2391
2392 return proc_desc;
2393 }
2394 }
c906108c
SS
2395 }
2396
6c0d6680
DJ
2397 if (b == NULL)
2398 return NULL;
2399
2400 if (startaddr > BLOCK_START (b))
2401 {
2402 /* This is the "pathological" case referred to in a comment in
2403 print_frame_info. It might be better to move this check into
2404 symbol reading. */
2405 return NULL;
2406 }
2407
176620f1 2408 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2409
c906108c
SS
2410 /* If we never found a PDR for this function in symbol reading, then
2411 examine prologues to find the information. */
2412 if (sym)
2413 {
2414 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2415 if (PROC_FRAME_REG (proc_desc) == -1)
2416 return NULL;
2417 else
2418 return proc_desc;
2419 }
2420 else
2421 return NULL;
2422}
2423
2424
2425static mips_extra_func_info_t
479412cd 2426find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2427{
2428 mips_extra_func_info_t proc_desc;
4e0df2df 2429 CORE_ADDR startaddr = 0;
c906108c
SS
2430
2431 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2432
2433 if (proc_desc)
2434 {
2435 /* IF this is the topmost frame AND
2436 * (this proc does not have debugging information OR
2437 * the PC is in the procedure prologue)
2438 * THEN create a "heuristic" proc_desc (by analyzing
2439 * the actual code) to replace the "official" proc_desc.
2440 */
2441 if (next_frame == NULL)
2442 {
2443 struct symtab_and_line val;
2444 struct symbol *proc_symbol =
c86b5b38 2445 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2446
2447 if (proc_symbol)
2448 {
2449 val = find_pc_line (BLOCK_START
c5aa993b 2450 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2451 0);
2452 val.pc = val.end ? val.end : pc;
2453 }
2454 if (!proc_symbol || pc < val.pc)
2455 {
2456 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2457 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2458 pc, next_frame, cur_frame);
c906108c
SS
2459 if (found_heuristic)
2460 proc_desc = found_heuristic;
2461 }
2462 }
2463 }
2464 else
2465 {
2466 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2467 by procedure call dummys. However, the procedures being called ought
2468 to have their own proc_descs, and even if they don't,
2469 heuristic_proc_desc knows how to create them! */
c906108c
SS
2470
2471 register struct linked_proc_info *link;
2472
2473 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2474 if (PROC_LOW_ADDR (&link->info) <= pc
2475 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2476 return &link->info;
2477
2478 if (startaddr == 0)
2479 startaddr = heuristic_proc_start (pc);
2480
2481 proc_desc =
479412cd 2482 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2483 }
2484 return proc_desc;
2485}
2486
2487static CORE_ADDR
acdb74a0
AC
2488get_frame_pointer (struct frame_info *frame,
2489 mips_extra_func_info_t proc_desc)
c906108c 2490{
e227b13c
AC
2491 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2492 + PROC_FRAME_OFFSET (proc_desc)
2493 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2494}
2495
5a89d8aa 2496static mips_extra_func_info_t cached_proc_desc;
c906108c 2497
f7ab6ec6 2498static CORE_ADDR
acdb74a0 2499mips_frame_chain (struct frame_info *frame)
c906108c
SS
2500{
2501 mips_extra_func_info_t proc_desc;
2502 CORE_ADDR tmp;
8bedc050 2503 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
2504
2505 if (saved_pc == 0 || inside_entry_file (saved_pc))
2506 return 0;
2507
2508 /* Check if the PC is inside a call stub. If it is, fetch the
2509 PC of the caller of that stub. */
5a89d8aa 2510 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2511 saved_pc = tmp;
2512
ae45cd16 2513 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2514 {
2515 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2516 is well, frame->frame the bottom of the current frame will
2517 contain that value. */
1e2330ba 2518 return get_frame_base (frame);
cedea778
AC
2519 }
2520
c906108c 2521 /* Look up the procedure descriptor for this PC. */
479412cd 2522 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2523 if (!proc_desc)
2524 return 0;
2525
2526 cached_proc_desc = proc_desc;
2527
2528 /* If no frame pointer and frame size is zero, we must be at end
2529 of stack (or otherwise hosed). If we don't check frame size,
2530 we loop forever if we see a zero size frame. */
2531 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2532 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2533 /* The previous frame from a sigtramp frame might be frameless
2534 and have frame size zero. */
5a203e44 2535 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2536 /* For a generic dummy frame, let get_frame_pointer() unwind a
2537 register value saved as part of the dummy frame call. */
50abf9e5 2538 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2539 return 0;
2540 else
2541 return get_frame_pointer (frame, proc_desc);
2542}
2543
f7ab6ec6 2544static void
acdb74a0 2545mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2546{
2547 int regnum;
f2c16bd6
KB
2548 mips_extra_func_info_t proc_desc;
2549
2550 if (get_frame_type (fci) == DUMMY_FRAME)
2551 return;
c906108c 2552
f796e4be
KB
2553 /* Use proc_desc calculated in frame_chain. When there is no
2554 next frame, i.e, get_next_frame (fci) == NULL, we call
2555 find_proc_desc () to calculate it, passing an explicit
2556 NULL as the frame parameter. */
f2c16bd6 2557 proc_desc =
11c02a10
AC
2558 get_next_frame (fci)
2559 ? cached_proc_desc
f796e4be
KB
2560 : find_proc_desc (get_frame_pc (fci),
2561 NULL /* i.e, get_next_frame (fci) */,
2562 1);
c906108c 2563
a00a19e9 2564 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2565
7b5849cc 2566 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2567 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2568 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2569 if (proc_desc)
2570 {
2571 /* Fixup frame-pointer - only needed for top frame */
2572 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2573 Get the value of the frame relative sp, procedure might have been
2574 interrupted by a signal at it's very start. */
50abf9e5 2575 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2576 && !PROC_DESC_IS_DUMMY (proc_desc))
11c02a10 2577 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
50abf9e5 2578 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2579 /* Do not ``fix'' fci->frame. It will have the value of the
2580 generic dummy frame's top-of-stack (since the draft
2581 fci->frame is obtained by returning the unwound stack
2582 pointer) and that is what we want. That way the fci->frame
2583 value will match the top-of-stack value that was saved as
2584 part of the dummy frames data. */
2585 /* Do nothing. */;
c906108c 2586 else
11c02a10 2587 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2588
2589 if (proc_desc == &temp_proc_desc)
2590 {
2591 char *name;
2592
2593 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2594 mips_find_saved_registers will do that for us. We can't
2595 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2596 yet set. */
2597 /* FIXME: cagney/2002-11-18: This problem will go away once
2598 frame.c:get_prev_frame() is modified to set the frame's
2599 type before calling functions like this. */
50abf9e5 2600 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2601 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2602 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2603 {
c5aa993b 2604 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2605 /* Set value of previous frame's stack pointer.
2606 Remember that saved_regs[SP_REGNUM] is special in
2607 that it contains the value of the stack pointer
2608 register. The other saved_regs values are addresses
2609 (in the inferior) at which a given register's value
2610 may be found. */
2611 set_reg_offset (temp_saved_regs, SP_REGNUM,
2612 get_frame_base (fci));
2613 set_reg_offset (temp_saved_regs, PC_REGNUM,
2614 temp_saved_regs[RA_REGNUM]);
2615 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2616 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2617 }
2618 }
2619
2620 /* hack: if argument regs are saved, guess these contain args */
cce74817 2621 /* assume we can't tell how many args for now */
da50a4b7 2622 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2623 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2624 {
c5aa993b 2625 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2626 {
da50a4b7 2627 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2628 break;
2629 }
c5aa993b 2630 }
c906108c
SS
2631 }
2632}
2633
2634/* MIPS stack frames are almost impenetrable. When execution stops,
2635 we basically have to look at symbol information for the function
2636 that we stopped in, which tells us *which* register (if any) is
2637 the base of the frame pointer, and what offset from that register
361d1df0 2638 the frame itself is at.
c906108c
SS
2639
2640 This presents a problem when trying to examine a stack in memory
2641 (that isn't executing at the moment), using the "frame" command. We
2642 don't have a PC, nor do we have any registers except SP.
2643
2644 This routine takes two arguments, SP and PC, and tries to make the
2645 cached frames look as if these two arguments defined a frame on the
2646 cache. This allows the rest of info frame to extract the important
2647 arguments without difficulty. */
2648
2649struct frame_info *
acdb74a0 2650setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2651{
2652 if (argc != 2)
2653 error ("MIPS frame specifications require two arguments: sp and pc");
2654
2655 return create_new_frame (argv[0], argv[1]);
2656}
2657
f09ded24
AC
2658/* According to the current ABI, should the type be passed in a
2659 floating-point register (assuming that there is space)? When there
2660 is no FPU, FP are not even considered as possibile candidates for
2661 FP registers and, consequently this returns false - forces FP
2662 arguments into integer registers. */
2663
2664static int
2665fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2666{
2667 return ((typecode == TYPE_CODE_FLT
2668 || (MIPS_EABI
2669 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2670 && TYPE_NFIELDS (arg_type) == 1
2671 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2672 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2673}
2674
49e790b0
DJ
2675/* On o32, argument passing in GPRs depends on the alignment of the type being
2676 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2677
2678static int
2679mips_type_needs_double_align (struct type *type)
2680{
2681 enum type_code typecode = TYPE_CODE (type);
361d1df0 2682
49e790b0
DJ
2683 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2684 return 1;
2685 else if (typecode == TYPE_CODE_STRUCT)
2686 {
2687 if (TYPE_NFIELDS (type) < 1)
2688 return 0;
2689 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2690 }
2691 else if (typecode == TYPE_CODE_UNION)
2692 {
361d1df0 2693 int i, n;
49e790b0
DJ
2694
2695 n = TYPE_NFIELDS (type);
2696 for (i = 0; i < n; i++)
2697 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2698 return 1;
2699 return 0;
2700 }
2701 return 0;
2702}
2703
cb3d25d1
MS
2704/* Macros to round N up or down to the next A boundary;
2705 A must be a power of two. */
2706
2707#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2708#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2709
dc604539
AC
2710/* Adjust the address downward (direction of stack growth) so that it
2711 is correctly aligned for a new stack frame. */
2712static CORE_ADDR
2713mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2714{
2715 return ROUND_DOWN (addr, 16);
2716}
2717
f7ab6ec6 2718static CORE_ADDR
25ab4790
AC
2719mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2720 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2721 struct value **args, CORE_ADDR sp, int struct_return,
2722 CORE_ADDR struct_addr)
c906108c
SS
2723{
2724 int argreg;
2725 int float_argreg;
2726 int argnum;
2727 int len = 0;
2728 int stack_offset = 0;
2729
25ab4790
AC
2730 /* For shared libraries, "t9" needs to point at the function
2731 address. */
2732 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2733
2734 /* Set the return address register to point to the entry point of
2735 the program, where a breakpoint lies in wait. */
2736 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2737
c906108c 2738 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2739 are properly aligned. The stack has to be at least 64-bit
2740 aligned even on 32-bit machines, because doubles must be 64-bit
2741 aligned. For n32 and n64, stack frames need to be 128-bit
2742 aligned, so we round to this widest known alignment. */
2743
c906108c 2744 sp = ROUND_DOWN (sp, 16);
cce41527 2745 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2746
46e0f506 2747 /* Now make space on the stack for the args. We allocate more
c906108c 2748 than necessary for EABI, because the first few arguments are
46e0f506 2749 passed in registers, but that's OK. */
c906108c 2750 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2751 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2752 MIPS_STACK_ARGSIZE);
c906108c
SS
2753 sp -= ROUND_UP (len, 16);
2754
9ace0497 2755 if (mips_debug)
46e0f506 2756 fprintf_unfiltered (gdb_stdlog,
25ab4790 2757 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1 2758 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2759
c906108c
SS
2760 /* Initialize the integer and float register pointers. */
2761 argreg = A0_REGNUM;
2762 float_argreg = FPA0_REGNUM;
2763
46e0f506 2764 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2765 if (struct_return)
9ace0497
AC
2766 {
2767 if (mips_debug)
2768 fprintf_unfiltered (gdb_stdlog,
25ab4790 2769 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2770 argreg, paddr_nz (struct_addr));
9ace0497
AC
2771 write_register (argreg++, struct_addr);
2772 }
c906108c
SS
2773
2774 /* Now load as many as possible of the first arguments into
2775 registers, and push the rest onto the stack. Loop thru args
2776 from first to last. */
2777 for (argnum = 0; argnum < nargs; argnum++)
2778 {
2779 char *val;
d9d9c31f 2780 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2781 struct value *arg = args[argnum];
c906108c
SS
2782 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2783 int len = TYPE_LENGTH (arg_type);
2784 enum type_code typecode = TYPE_CODE (arg_type);
2785
9ace0497
AC
2786 if (mips_debug)
2787 fprintf_unfiltered (gdb_stdlog,
25ab4790 2788 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2789 argnum + 1, len, (int) typecode);
9ace0497 2790
c906108c 2791 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2792 reference. */
2793 if (len > MIPS_SAVED_REGSIZE
9ace0497 2794 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2795 {
fbd9dcd3 2796 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2797 typecode = TYPE_CODE_PTR;
7a292a7a 2798 len = MIPS_SAVED_REGSIZE;
c906108c 2799 val = valbuf;
9ace0497
AC
2800 if (mips_debug)
2801 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2802 }
2803 else
c5aa993b 2804 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2805
2806 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2807 even-numbered floating point register. Round the FP register
2808 up before the check to see if there are any FP registers
46e0f506
MS
2809 left. Non MIPS_EABI targets also pass the FP in the integer
2810 registers so also round up normal registers. */
acdb74a0
AC
2811 if (!FP_REGISTER_DOUBLE
2812 && fp_register_arg_p (typecode, arg_type))
2813 {
2814 if ((float_argreg & 1))
2815 float_argreg++;
2816 }
c906108c
SS
2817
2818 /* Floating point arguments passed in registers have to be
2819 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2820 are passed in register pairs; the even register gets
2821 the low word, and the odd register gets the high word.
2822 On non-EABI processors, the first two floating point arguments are
2823 also copied to general registers, because MIPS16 functions
2824 don't use float registers for arguments. This duplication of
2825 arguments in general registers can't hurt non-MIPS16 functions
2826 because those registers are normally skipped. */
1012bd0e
EZ
2827 /* MIPS_EABI squeezes a struct that contains a single floating
2828 point value into an FP register instead of pushing it onto the
46e0f506 2829 stack. */
f09ded24
AC
2830 if (fp_register_arg_p (typecode, arg_type)
2831 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2832 {
2833 if (!FP_REGISTER_DOUBLE && len == 8)
2834 {
d7449b42 2835 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2836 unsigned long regval;
2837
2838 /* Write the low word of the double to the even register(s). */
c5aa993b 2839 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2840 if (mips_debug)
acdb74a0 2841 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2842 float_argreg, phex (regval, 4));
c906108c 2843 write_register (float_argreg++, regval);
c906108c
SS
2844
2845 /* Write the high word of the double to the odd register(s). */
c5aa993b 2846 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2847 if (mips_debug)
acdb74a0 2848 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2849 float_argreg, phex (regval, 4));
c906108c 2850 write_register (float_argreg++, regval);
c906108c
SS
2851 }
2852 else
2853 {
2854 /* This is a floating point value that fits entirely
2855 in a single register. */
53a5351d 2856 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2857 above to ensure that it is even register aligned. */
9ace0497
AC
2858 LONGEST regval = extract_unsigned_integer (val, len);
2859 if (mips_debug)
acdb74a0 2860 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2861 float_argreg, phex (regval, len));
c906108c 2862 write_register (float_argreg++, regval);
c906108c
SS
2863 }
2864 }
2865 else
2866 {
2867 /* Copy the argument to general registers or the stack in
2868 register-sized pieces. Large arguments are split between
2869 registers and stack. */
2870 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2871 are treated specially: Irix cc passes them in registers
2872 where gcc sometimes puts them on the stack. For maximum
2873 compatibility, we will put them in both places. */
c5aa993b 2874 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2875 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2876
f09ded24 2877 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2878 register are only written to memory. */
c906108c
SS
2879 while (len > 0)
2880 {
ebafbe83 2881 /* Remember if the argument was written to the stack. */
566f0f7a 2882 int stack_used_p = 0;
46e0f506
MS
2883 int partial_len =
2884 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2885
acdb74a0
AC
2886 if (mips_debug)
2887 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2888 partial_len);
2889
566f0f7a 2890 /* Write this portion of the argument to the stack. */
f09ded24
AC
2891 if (argreg > MIPS_LAST_ARG_REGNUM
2892 || odd_sized_struct
2893 || fp_register_arg_p (typecode, arg_type))
c906108c 2894 {
c906108c
SS
2895 /* Should shorter than int integer values be
2896 promoted to int before being stored? */
c906108c 2897 int longword_offset = 0;
9ace0497 2898 CORE_ADDR addr;
566f0f7a 2899 stack_used_p = 1;
d7449b42 2900 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2901 {
d929b26f 2902 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2903 (typecode == TYPE_CODE_INT ||
2904 typecode == TYPE_CODE_PTR ||
2905 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2906 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2907 else if ((typecode == TYPE_CODE_STRUCT ||
2908 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2909 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2910 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2911 }
c5aa993b 2912
9ace0497
AC
2913 if (mips_debug)
2914 {
cb3d25d1
MS
2915 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2916 paddr_nz (stack_offset));
2917 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2918 paddr_nz (longword_offset));
9ace0497 2919 }
361d1df0 2920
9ace0497
AC
2921 addr = sp + stack_offset + longword_offset;
2922
2923 if (mips_debug)
2924 {
2925 int i;
cb3d25d1
MS
2926 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2927 paddr_nz (addr));
9ace0497
AC
2928 for (i = 0; i < partial_len; i++)
2929 {
cb3d25d1
MS
2930 fprintf_unfiltered (gdb_stdlog, "%02x",
2931 val[i] & 0xff);
9ace0497
AC
2932 }
2933 }
2934 write_memory (addr, val, partial_len);
c906108c
SS
2935 }
2936
f09ded24
AC
2937 /* Note!!! This is NOT an else clause. Odd sized
2938 structs may go thru BOTH paths. Floating point
46e0f506 2939 arguments will not. */
566f0f7a 2940 /* Write this portion of the argument to a general
46e0f506 2941 purpose register. */
f09ded24
AC
2942 if (argreg <= MIPS_LAST_ARG_REGNUM
2943 && !fp_register_arg_p (typecode, arg_type))
c906108c 2944 {
9ace0497 2945 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2946
9ace0497 2947 if (mips_debug)
acdb74a0 2948 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2949 argreg,
2950 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2951 write_register (argreg, regval);
2952 argreg++;
c906108c 2953 }
c5aa993b 2954
c906108c
SS
2955 len -= partial_len;
2956 val += partial_len;
2957
566f0f7a
AC
2958 /* Compute the the offset into the stack at which we
2959 will copy the next parameter.
2960
566f0f7a 2961 In the new EABI (and the NABI32), the stack_offset
46e0f506 2962 only needs to be adjusted when it has been used. */
c906108c 2963
46e0f506 2964 if (stack_used_p)
d929b26f 2965 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2966 }
2967 }
9ace0497
AC
2968 if (mips_debug)
2969 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2970 }
2971
310e9b6a
AC
2972 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2973
0f71a2f6
JM
2974 /* Return adjusted stack pointer. */
2975 return sp;
2976}
2977
25ab4790 2978/* N32/N64 version of push_dummy_call. */
ebafbe83 2979
f7ab6ec6 2980static CORE_ADDR
25ab4790
AC
2981mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2982 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2983 struct value **args, CORE_ADDR sp, int struct_return,
2984 CORE_ADDR struct_addr)
cb3d25d1
MS
2985{
2986 int argreg;
2987 int float_argreg;
2988 int argnum;
2989 int len = 0;
2990 int stack_offset = 0;
2991
25ab4790
AC
2992 /* For shared libraries, "t9" needs to point at the function
2993 address. */
2994 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2995
2996 /* Set the return address register to point to the entry point of
2997 the program, where a breakpoint lies in wait. */
2998 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2999
cb3d25d1
MS
3000 /* First ensure that the stack and structure return address (if any)
3001 are properly aligned. The stack has to be at least 64-bit
3002 aligned even on 32-bit machines, because doubles must be 64-bit
3003 aligned. For n32 and n64, stack frames need to be 128-bit
3004 aligned, so we round to this widest known alignment. */
3005
3006 sp = ROUND_DOWN (sp, 16);
3007 struct_addr = ROUND_DOWN (struct_addr, 16);
3008
3009 /* Now make space on the stack for the args. */
3010 for (argnum = 0; argnum < nargs; argnum++)
3011 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3012 MIPS_STACK_ARGSIZE);
3013 sp -= ROUND_UP (len, 16);
3014
3015 if (mips_debug)
3016 fprintf_unfiltered (gdb_stdlog,
25ab4790 3017 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1
MS
3018 paddr_nz (sp), ROUND_UP (len, 16));
3019
3020 /* Initialize the integer and float register pointers. */
3021 argreg = A0_REGNUM;
3022 float_argreg = FPA0_REGNUM;
3023
46e0f506 3024 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3025 if (struct_return)
3026 {
3027 if (mips_debug)
3028 fprintf_unfiltered (gdb_stdlog,
25ab4790 3029 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3030 argreg, paddr_nz (struct_addr));
3031 write_register (argreg++, struct_addr);
3032 }
3033
3034 /* Now load as many as possible of the first arguments into
3035 registers, and push the rest onto the stack. Loop thru args
3036 from first to last. */
3037 for (argnum = 0; argnum < nargs; argnum++)
3038 {
3039 char *val;
d9d9c31f 3040 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3041 struct value *arg = args[argnum];
3042 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3043 int len = TYPE_LENGTH (arg_type);
3044 enum type_code typecode = TYPE_CODE (arg_type);
3045
3046 if (mips_debug)
3047 fprintf_unfiltered (gdb_stdlog,
25ab4790 3048 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3049 argnum + 1, len, (int) typecode);
3050
3051 val = (char *) VALUE_CONTENTS (arg);
3052
3053 if (fp_register_arg_p (typecode, arg_type)
3054 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3055 {
3056 /* This is a floating point value that fits entirely
3057 in a single register. */
3058 /* On 32 bit ABI's the float_argreg is further adjusted
3059 above to ensure that it is even register aligned. */
3060 LONGEST regval = extract_unsigned_integer (val, len);
3061 if (mips_debug)
3062 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3063 float_argreg, phex (regval, len));
3064 write_register (float_argreg++, regval);
3065
3066 if (mips_debug)
3067 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3068 argreg, phex (regval, len));
3069 write_register (argreg, regval);
3070 argreg += 1;
3071 }
3072 else
3073 {
3074 /* Copy the argument to general registers or the stack in
3075 register-sized pieces. Large arguments are split between
3076 registers and stack. */
3077 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3078 are treated specially: Irix cc passes them in registers
3079 where gcc sometimes puts them on the stack. For maximum
3080 compatibility, we will put them in both places. */
3081 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3082 (len % MIPS_SAVED_REGSIZE != 0));
3083 /* Note: Floating-point values that didn't fit into an FP
3084 register are only written to memory. */
3085 while (len > 0)
3086 {
3087 /* Rememer if the argument was written to the stack. */
3088 int stack_used_p = 0;
3089 int partial_len = len < MIPS_SAVED_REGSIZE ?
3090 len : MIPS_SAVED_REGSIZE;
3091
3092 if (mips_debug)
3093 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3094 partial_len);
3095
3096 /* Write this portion of the argument to the stack. */
3097 if (argreg > MIPS_LAST_ARG_REGNUM
3098 || odd_sized_struct
3099 || fp_register_arg_p (typecode, arg_type))
3100 {
3101 /* Should shorter than int integer values be
3102 promoted to int before being stored? */
3103 int longword_offset = 0;
3104 CORE_ADDR addr;
3105 stack_used_p = 1;
3106 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3107 {
3108 if (MIPS_STACK_ARGSIZE == 8 &&
3109 (typecode == TYPE_CODE_INT ||
3110 typecode == TYPE_CODE_PTR ||
3111 typecode == TYPE_CODE_FLT) && len <= 4)
3112 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3113 }
3114
3115 if (mips_debug)
3116 {
3117 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3118 paddr_nz (stack_offset));
3119 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3120 paddr_nz (longword_offset));
3121 }
3122
3123 addr = sp + stack_offset + longword_offset;
3124
3125 if (mips_debug)
3126 {
3127 int i;
3128 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3129 paddr_nz (addr));
3130 for (i = 0; i < partial_len; i++)
3131 {
3132 fprintf_unfiltered (gdb_stdlog, "%02x",
3133 val[i] & 0xff);
3134 }
3135 }
3136 write_memory (addr, val, partial_len);
3137 }
3138
3139 /* Note!!! This is NOT an else clause. Odd sized
3140 structs may go thru BOTH paths. Floating point
3141 arguments will not. */
3142 /* Write this portion of the argument to a general
3143 purpose register. */
3144 if (argreg <= MIPS_LAST_ARG_REGNUM
3145 && !fp_register_arg_p (typecode, arg_type))
3146 {
3147 LONGEST regval = extract_unsigned_integer (val, partial_len);
3148
3149 /* A non-floating-point argument being passed in a
3150 general register. If a struct or union, and if
3151 the remaining length is smaller than the register
3152 size, we have to adjust the register value on
3153 big endian targets.
3154
3155 It does not seem to be necessary to do the
3156 same for integral types.
3157
3158 cagney/2001-07-23: gdb/179: Also, GCC, when
3159 outputting LE O32 with sizeof (struct) <
3160 MIPS_SAVED_REGSIZE, generates a left shift as
3161 part of storing the argument in a register a
3162 register (the left shift isn't generated when
3163 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3164 is quite possible that this is GCC contradicting
3165 the LE/O32 ABI, GDB has not been adjusted to
3166 accommodate this. Either someone needs to
3167 demonstrate that the LE/O32 ABI specifies such a
3168 left shift OR this new ABI gets identified as
3169 such and GDB gets tweaked accordingly. */
3170
3171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3172 && partial_len < MIPS_SAVED_REGSIZE
3173 && (typecode == TYPE_CODE_STRUCT ||
3174 typecode == TYPE_CODE_UNION))
3175 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3176 TARGET_CHAR_BIT);
3177
3178 if (mips_debug)
3179 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3180 argreg,
3181 phex (regval, MIPS_SAVED_REGSIZE));
3182 write_register (argreg, regval);
3183 argreg++;
3184 }
3185
3186 len -= partial_len;
3187 val += partial_len;
3188
3189 /* Compute the the offset into the stack at which we
3190 will copy the next parameter.
3191
3192 In N32 (N64?), the stack_offset only needs to be
3193 adjusted when it has been used. */
3194
3195 if (stack_used_p)
3196 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3197 }
3198 }
3199 if (mips_debug)
3200 fprintf_unfiltered (gdb_stdlog, "\n");
3201 }
3202
310e9b6a
AC
3203 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3204
cb3d25d1
MS
3205 /* Return adjusted stack pointer. */
3206 return sp;
3207}
3208
25ab4790 3209/* O32 version of push_dummy_call. */
ebafbe83 3210
46cac009 3211static CORE_ADDR
25ab4790
AC
3212mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3214 struct value **args, CORE_ADDR sp, int struct_return,
3215 CORE_ADDR struct_addr)
ebafbe83
MS
3216{
3217 int argreg;
3218 int float_argreg;
3219 int argnum;
3220 int len = 0;
3221 int stack_offset = 0;
ebafbe83 3222
25ab4790
AC
3223 /* For shared libraries, "t9" needs to point at the function
3224 address. */
3225 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3226
3227 /* Set the return address register to point to the entry point of
3228 the program, where a breakpoint lies in wait. */
3229 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3230
ebafbe83
MS
3231 /* First ensure that the stack and structure return address (if any)
3232 are properly aligned. The stack has to be at least 64-bit
3233 aligned even on 32-bit machines, because doubles must be 64-bit
3234 aligned. For n32 and n64, stack frames need to be 128-bit
3235 aligned, so we round to this widest known alignment. */
3236
3237 sp = ROUND_DOWN (sp, 16);
3238 struct_addr = ROUND_DOWN (struct_addr, 16);
3239
3240 /* Now make space on the stack for the args. */
3241 for (argnum = 0; argnum < nargs; argnum++)
3242 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3243 MIPS_STACK_ARGSIZE);
3244 sp -= ROUND_UP (len, 16);
3245
3246 if (mips_debug)
3247 fprintf_unfiltered (gdb_stdlog,
25ab4790 3248 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
ebafbe83
MS
3249 paddr_nz (sp), ROUND_UP (len, 16));
3250
3251 /* Initialize the integer and float register pointers. */
3252 argreg = A0_REGNUM;
3253 float_argreg = FPA0_REGNUM;
3254
bcb0cc15 3255 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3256 if (struct_return)
3257 {
3258 if (mips_debug)
3259 fprintf_unfiltered (gdb_stdlog,
25ab4790 3260 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3261 argreg, paddr_nz (struct_addr));
3262 write_register (argreg++, struct_addr);
3263 stack_offset += MIPS_STACK_ARGSIZE;
3264 }
3265
3266 /* Now load as many as possible of the first arguments into
3267 registers, and push the rest onto the stack. Loop thru args
3268 from first to last. */
3269 for (argnum = 0; argnum < nargs; argnum++)
3270 {
3271 char *val;
d9d9c31f 3272 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3273 struct value *arg = args[argnum];
3274 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3275 int len = TYPE_LENGTH (arg_type);
3276 enum type_code typecode = TYPE_CODE (arg_type);
3277
3278 if (mips_debug)
3279 fprintf_unfiltered (gdb_stdlog,
25ab4790 3280 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3281 argnum + 1, len, (int) typecode);
3282
3283 val = (char *) VALUE_CONTENTS (arg);
3284
3285 /* 32-bit ABIs always start floating point arguments in an
3286 even-numbered floating point register. Round the FP register
3287 up before the check to see if there are any FP registers
3288 left. O32/O64 targets also pass the FP in the integer
3289 registers so also round up normal registers. */
3290 if (!FP_REGISTER_DOUBLE
3291 && fp_register_arg_p (typecode, arg_type))
3292 {
3293 if ((float_argreg & 1))
3294 float_argreg++;
3295 }
3296
3297 /* Floating point arguments passed in registers have to be
3298 treated specially. On 32-bit architectures, doubles
3299 are passed in register pairs; the even register gets
3300 the low word, and the odd register gets the high word.
3301 On O32/O64, the first two floating point arguments are
3302 also copied to general registers, because MIPS16 functions
3303 don't use float registers for arguments. This duplication of
3304 arguments in general registers can't hurt non-MIPS16 functions
3305 because those registers are normally skipped. */
3306
3307 if (fp_register_arg_p (typecode, arg_type)
3308 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3309 {
3310 if (!FP_REGISTER_DOUBLE && len == 8)
3311 {
3312 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3313 unsigned long regval;
3314
3315 /* Write the low word of the double to the even register(s). */
3316 regval = extract_unsigned_integer (val + low_offset, 4);
3317 if (mips_debug)
3318 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3319 float_argreg, phex (regval, 4));
3320 write_register (float_argreg++, regval);
3321 if (mips_debug)
3322 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3323 argreg, phex (regval, 4));
3324 write_register (argreg++, regval);
3325
3326 /* Write the high word of the double to the odd register(s). */
3327 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3328 if (mips_debug)
3329 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3330 float_argreg, phex (regval, 4));
3331 write_register (float_argreg++, regval);
3332
3333 if (mips_debug)
3334 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3335 argreg, phex (regval, 4));
3336 write_register (argreg++, regval);
3337 }
3338 else
3339 {
3340 /* This is a floating point value that fits entirely
3341 in a single register. */
3342 /* On 32 bit ABI's the float_argreg is further adjusted
3343 above to ensure that it is even register aligned. */
3344 LONGEST regval = extract_unsigned_integer (val, len);
3345 if (mips_debug)
3346 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3347 float_argreg, phex (regval, len));
3348 write_register (float_argreg++, regval);
3349 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3350 registers for each argument. The below is (my
3351 guess) to ensure that the corresponding integer
3352 register has reserved the same space. */
3353 if (mips_debug)
3354 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3355 argreg, phex (regval, len));
3356 write_register (argreg, regval);
3357 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3358 }
3359 /* Reserve space for the FP register. */
3360 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3361 }
3362 else
3363 {
3364 /* Copy the argument to general registers or the stack in
3365 register-sized pieces. Large arguments are split between
3366 registers and stack. */
3367 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3368 are treated specially: Irix cc passes them in registers
3369 where gcc sometimes puts them on the stack. For maximum
3370 compatibility, we will put them in both places. */
3371 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3372 (len % MIPS_SAVED_REGSIZE != 0));
3373 /* Structures should be aligned to eight bytes (even arg registers)
3374 on MIPS_ABI_O32, if their first member has double precision. */
3375 if (MIPS_SAVED_REGSIZE < 8
3376 && mips_type_needs_double_align (arg_type))
3377 {
3378 if ((argreg & 1))
3379 argreg++;
3380 }
3381 /* Note: Floating-point values that didn't fit into an FP
3382 register are only written to memory. */
3383 while (len > 0)
3384 {
3385 /* Remember if the argument was written to the stack. */
3386 int stack_used_p = 0;
3387 int partial_len =
3388 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3389
3390 if (mips_debug)
3391 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3392 partial_len);
3393
3394 /* Write this portion of the argument to the stack. */
3395 if (argreg > MIPS_LAST_ARG_REGNUM
3396 || odd_sized_struct
3397 || fp_register_arg_p (typecode, arg_type))
3398 {
3399 /* Should shorter than int integer values be
3400 promoted to int before being stored? */
3401 int longword_offset = 0;
3402 CORE_ADDR addr;
3403 stack_used_p = 1;
3404 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3405 {
3406 if (MIPS_STACK_ARGSIZE == 8 &&
3407 (typecode == TYPE_CODE_INT ||
3408 typecode == TYPE_CODE_PTR ||
3409 typecode == TYPE_CODE_FLT) && len <= 4)
3410 longword_offset = MIPS_STACK_ARGSIZE - len;
3411 }
3412
3413 if (mips_debug)
3414 {
3415 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3416 paddr_nz (stack_offset));
3417 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3418 paddr_nz (longword_offset));
3419 }
3420
3421 addr = sp + stack_offset + longword_offset;
3422
3423 if (mips_debug)
3424 {
3425 int i;
3426 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3427 paddr_nz (addr));
3428 for (i = 0; i < partial_len; i++)
3429 {
3430 fprintf_unfiltered (gdb_stdlog, "%02x",
3431 val[i] & 0xff);
3432 }
3433 }
3434 write_memory (addr, val, partial_len);
3435 }
3436
3437 /* Note!!! This is NOT an else clause. Odd sized
3438 structs may go thru BOTH paths. Floating point
3439 arguments will not. */
3440 /* Write this portion of the argument to a general
3441 purpose register. */
3442 if (argreg <= MIPS_LAST_ARG_REGNUM
3443 && !fp_register_arg_p (typecode, arg_type))
3444 {
3445 LONGEST regval = extract_signed_integer (val, partial_len);
3446 /* Value may need to be sign extended, because
3447 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3448
3449 /* A non-floating-point argument being passed in a
3450 general register. If a struct or union, and if
3451 the remaining length is smaller than the register
3452 size, we have to adjust the register value on
3453 big endian targets.
3454
3455 It does not seem to be necessary to do the
3456 same for integral types.
3457
3458 Also don't do this adjustment on O64 binaries.
3459
3460 cagney/2001-07-23: gdb/179: Also, GCC, when
3461 outputting LE O32 with sizeof (struct) <
3462 MIPS_SAVED_REGSIZE, generates a left shift as
3463 part of storing the argument in a register a
3464 register (the left shift isn't generated when
3465 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3466 is quite possible that this is GCC contradicting
3467 the LE/O32 ABI, GDB has not been adjusted to
3468 accommodate this. Either someone needs to
3469 demonstrate that the LE/O32 ABI specifies such a
3470 left shift OR this new ABI gets identified as
3471 such and GDB gets tweaked accordingly. */
3472
3473 if (MIPS_SAVED_REGSIZE < 8
3474 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3475 && partial_len < MIPS_SAVED_REGSIZE
3476 && (typecode == TYPE_CODE_STRUCT ||
3477 typecode == TYPE_CODE_UNION))
3478 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3479 TARGET_CHAR_BIT);
3480
3481 if (mips_debug)
3482 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3483 argreg,
3484 phex (regval, MIPS_SAVED_REGSIZE));
3485 write_register (argreg, regval);
3486 argreg++;
3487
3488 /* Prevent subsequent floating point arguments from
3489 being passed in floating point registers. */
3490 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3491 }
3492
3493 len -= partial_len;
3494 val += partial_len;
3495
3496 /* Compute the the offset into the stack at which we
3497 will copy the next parameter.
3498
3499 In older ABIs, the caller reserved space for
3500 registers that contained arguments. This was loosely
3501 refered to as their "home". Consequently, space is
3502 always allocated. */
3503
3504 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3505 }
3506 }
3507 if (mips_debug)
3508 fprintf_unfiltered (gdb_stdlog, "\n");
3509 }
3510
310e9b6a
AC
3511 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3512
46cac009
AC
3513 /* Return adjusted stack pointer. */
3514 return sp;
3515}
3516
25ab4790 3517/* O64 version of push_dummy_call. */
46cac009
AC
3518
3519static CORE_ADDR
25ab4790
AC
3520mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3521 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3522 struct value **args, CORE_ADDR sp, int struct_return,
3523 CORE_ADDR struct_addr)
46cac009
AC
3524{
3525 int argreg;
3526 int float_argreg;
3527 int argnum;
3528 int len = 0;
3529 int stack_offset = 0;
3530
25ab4790
AC
3531 /* For shared libraries, "t9" needs to point at the function
3532 address. */
3533 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3534
3535 /* Set the return address register to point to the entry point of
3536 the program, where a breakpoint lies in wait. */
3537 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3538
46cac009
AC
3539 /* First ensure that the stack and structure return address (if any)
3540 are properly aligned. The stack has to be at least 64-bit
3541 aligned even on 32-bit machines, because doubles must be 64-bit
3542 aligned. For n32 and n64, stack frames need to be 128-bit
3543 aligned, so we round to this widest known alignment. */
3544
3545 sp = ROUND_DOWN (sp, 16);
3546 struct_addr = ROUND_DOWN (struct_addr, 16);
3547
3548 /* Now make space on the stack for the args. */
3549 for (argnum = 0; argnum < nargs; argnum++)
3550 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3551 MIPS_STACK_ARGSIZE);
3552 sp -= ROUND_UP (len, 16);
3553
3554 if (mips_debug)
3555 fprintf_unfiltered (gdb_stdlog,
25ab4790 3556 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
46cac009
AC
3557 paddr_nz (sp), ROUND_UP (len, 16));
3558
3559 /* Initialize the integer and float register pointers. */
3560 argreg = A0_REGNUM;
3561 float_argreg = FPA0_REGNUM;
3562
3563 /* The struct_return pointer occupies the first parameter-passing reg. */
3564 if (struct_return)
3565 {
3566 if (mips_debug)
3567 fprintf_unfiltered (gdb_stdlog,
25ab4790 3568 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3569 argreg, paddr_nz (struct_addr));
3570 write_register (argreg++, struct_addr);
3571 stack_offset += MIPS_STACK_ARGSIZE;
3572 }
3573
3574 /* Now load as many as possible of the first arguments into
3575 registers, and push the rest onto the stack. Loop thru args
3576 from first to last. */
3577 for (argnum = 0; argnum < nargs; argnum++)
3578 {
3579 char *val;
d9d9c31f 3580 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3581 struct value *arg = args[argnum];
3582 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3583 int len = TYPE_LENGTH (arg_type);
3584 enum type_code typecode = TYPE_CODE (arg_type);
3585
3586 if (mips_debug)
3587 fprintf_unfiltered (gdb_stdlog,
25ab4790 3588 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3589 argnum + 1, len, (int) typecode);
3590
3591 val = (char *) VALUE_CONTENTS (arg);
3592
3593 /* 32-bit ABIs always start floating point arguments in an
3594 even-numbered floating point register. Round the FP register
3595 up before the check to see if there are any FP registers
3596 left. O32/O64 targets also pass the FP in the integer
3597 registers so also round up normal registers. */
3598 if (!FP_REGISTER_DOUBLE
3599 && fp_register_arg_p (typecode, arg_type))
3600 {
3601 if ((float_argreg & 1))
3602 float_argreg++;
3603 }
3604
3605 /* Floating point arguments passed in registers have to be
3606 treated specially. On 32-bit architectures, doubles
3607 are passed in register pairs; the even register gets
3608 the low word, and the odd register gets the high word.
3609 On O32/O64, the first two floating point arguments are
3610 also copied to general registers, because MIPS16 functions
3611 don't use float registers for arguments. This duplication of
3612 arguments in general registers can't hurt non-MIPS16 functions
3613 because those registers are normally skipped. */
3614
3615 if (fp_register_arg_p (typecode, arg_type)
3616 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3617 {
3618 if (!FP_REGISTER_DOUBLE && len == 8)
3619 {
3620 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3621 unsigned long regval;
3622
3623 /* Write the low word of the double to the even register(s). */
3624 regval = extract_unsigned_integer (val + low_offset, 4);
3625 if (mips_debug)
3626 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3627 float_argreg, phex (regval, 4));
3628 write_register (float_argreg++, regval);
3629 if (mips_debug)
3630 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3631 argreg, phex (regval, 4));
3632 write_register (argreg++, regval);
3633
3634 /* Write the high word of the double to the odd register(s). */
3635 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3636 if (mips_debug)
3637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3638 float_argreg, phex (regval, 4));
3639 write_register (float_argreg++, regval);
3640
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3643 argreg, phex (regval, 4));
3644 write_register (argreg++, regval);
3645 }
3646 else
3647 {
3648 /* This is a floating point value that fits entirely
3649 in a single register. */
3650 /* On 32 bit ABI's the float_argreg is further adjusted
3651 above to ensure that it is even register aligned. */
3652 LONGEST regval = extract_unsigned_integer (val, len);
3653 if (mips_debug)
3654 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3655 float_argreg, phex (regval, len));
3656 write_register (float_argreg++, regval);
3657 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3658 registers for each argument. The below is (my
3659 guess) to ensure that the corresponding integer
3660 register has reserved the same space. */
3661 if (mips_debug)
3662 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3663 argreg, phex (regval, len));
3664 write_register (argreg, regval);
3665 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3666 }
3667 /* Reserve space for the FP register. */
3668 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3669 }
3670 else
3671 {
3672 /* Copy the argument to general registers or the stack in
3673 register-sized pieces. Large arguments are split between
3674 registers and stack. */
3675 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3676 are treated specially: Irix cc passes them in registers
3677 where gcc sometimes puts them on the stack. For maximum
3678 compatibility, we will put them in both places. */
3679 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3680 (len % MIPS_SAVED_REGSIZE != 0));
3681 /* Structures should be aligned to eight bytes (even arg registers)
3682 on MIPS_ABI_O32, if their first member has double precision. */
3683 if (MIPS_SAVED_REGSIZE < 8
3684 && mips_type_needs_double_align (arg_type))
3685 {
3686 if ((argreg & 1))
3687 argreg++;
3688 }
3689 /* Note: Floating-point values that didn't fit into an FP
3690 register are only written to memory. */
3691 while (len > 0)
3692 {
3693 /* Remember if the argument was written to the stack. */
3694 int stack_used_p = 0;
3695 int partial_len =
3696 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3697
3698 if (mips_debug)
3699 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3700 partial_len);
3701
3702 /* Write this portion of the argument to the stack. */
3703 if (argreg > MIPS_LAST_ARG_REGNUM
3704 || odd_sized_struct
3705 || fp_register_arg_p (typecode, arg_type))
3706 {
3707 /* Should shorter than int integer values be
3708 promoted to int before being stored? */
3709 int longword_offset = 0;
3710 CORE_ADDR addr;
3711 stack_used_p = 1;
3712 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3713 {
3714 if (MIPS_STACK_ARGSIZE == 8 &&
3715 (typecode == TYPE_CODE_INT ||
3716 typecode == TYPE_CODE_PTR ||
3717 typecode == TYPE_CODE_FLT) && len <= 4)
3718 longword_offset = MIPS_STACK_ARGSIZE - len;
3719 }
3720
3721 if (mips_debug)
3722 {
3723 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3724 paddr_nz (stack_offset));
3725 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3726 paddr_nz (longword_offset));
3727 }
3728
3729 addr = sp + stack_offset + longword_offset;
3730
3731 if (mips_debug)
3732 {
3733 int i;
3734 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3735 paddr_nz (addr));
3736 for (i = 0; i < partial_len; i++)
3737 {
3738 fprintf_unfiltered (gdb_stdlog, "%02x",
3739 val[i] & 0xff);
3740 }
3741 }
3742 write_memory (addr, val, partial_len);
3743 }
3744
3745 /* Note!!! This is NOT an else clause. Odd sized
3746 structs may go thru BOTH paths. Floating point
3747 arguments will not. */
3748 /* Write this portion of the argument to a general
3749 purpose register. */
3750 if (argreg <= MIPS_LAST_ARG_REGNUM
3751 && !fp_register_arg_p (typecode, arg_type))
3752 {
3753 LONGEST regval = extract_signed_integer (val, partial_len);
3754 /* Value may need to be sign extended, because
3755 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3756
3757 /* A non-floating-point argument being passed in a
3758 general register. If a struct or union, and if
3759 the remaining length is smaller than the register
3760 size, we have to adjust the register value on
3761 big endian targets.
3762
3763 It does not seem to be necessary to do the
3764 same for integral types.
3765
3766 Also don't do this adjustment on O64 binaries.
3767
3768 cagney/2001-07-23: gdb/179: Also, GCC, when
3769 outputting LE O32 with sizeof (struct) <
3770 MIPS_SAVED_REGSIZE, generates a left shift as
3771 part of storing the argument in a register a
3772 register (the left shift isn't generated when
3773 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3774 is quite possible that this is GCC contradicting
3775 the LE/O32 ABI, GDB has not been adjusted to
3776 accommodate this. Either someone needs to
3777 demonstrate that the LE/O32 ABI specifies such a
3778 left shift OR this new ABI gets identified as
3779 such and GDB gets tweaked accordingly. */
3780
3781 if (MIPS_SAVED_REGSIZE < 8
3782 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3783 && partial_len < MIPS_SAVED_REGSIZE
3784 && (typecode == TYPE_CODE_STRUCT ||
3785 typecode == TYPE_CODE_UNION))
3786 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3787 TARGET_CHAR_BIT);
3788
3789 if (mips_debug)
3790 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3791 argreg,
3792 phex (regval, MIPS_SAVED_REGSIZE));
3793 write_register (argreg, regval);
3794 argreg++;
3795
3796 /* Prevent subsequent floating point arguments from
3797 being passed in floating point registers. */
3798 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3799 }
3800
3801 len -= partial_len;
3802 val += partial_len;
3803
3804 /* Compute the the offset into the stack at which we
3805 will copy the next parameter.
3806
3807 In older ABIs, the caller reserved space for
3808 registers that contained arguments. This was loosely
3809 refered to as their "home". Consequently, space is
3810 always allocated. */
3811
3812 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3813 }
3814 }
3815 if (mips_debug)
3816 fprintf_unfiltered (gdb_stdlog, "\n");
3817 }
3818
310e9b6a
AC
3819 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3820
ebafbe83
MS
3821 /* Return adjusted stack pointer. */
3822 return sp;
3823}
3824
f7ab6ec6 3825static void
acdb74a0 3826mips_pop_frame (void)
c906108c
SS
3827{
3828 register int regnum;
3829 struct frame_info *frame = get_current_frame ();
c193f6ac 3830 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3831 mips_extra_func_info_t proc_desc;
c906108c 3832
50abf9e5 3833 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3834 {
3835 generic_pop_dummy_frame ();
3836 flush_cached_frames ();
3837 return;
3838 }
3839
e227b13c 3840 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3841 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3842 mips_find_saved_regs (frame);
c906108c 3843 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3844 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3845 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3846 {
3847 /* Floating point registers must not be sign extended,
3848 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3849
3850 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3851 write_register (regnum,
b2fb4676 3852 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3853 MIPS_SAVED_REGSIZE));
3854 else
3855 write_register (regnum,
b2fb4676 3856 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3857 MIPS_SAVED_REGSIZE));
3858 }
757a7cc6 3859
c906108c
SS
3860 write_register (SP_REGNUM, new_sp);
3861 flush_cached_frames ();
3862
c5aa993b 3863 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3864 {
3865 struct linked_proc_info *pi_ptr, *prev_ptr;
3866
3867 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3868 pi_ptr != NULL;
3869 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3870 {
3871 if (&pi_ptr->info == proc_desc)
3872 break;
3873 }
3874
3875 if (pi_ptr == NULL)
3876 error ("Can't locate dummy extra frame info\n");
3877
3878 if (prev_ptr != NULL)
3879 prev_ptr->next = pi_ptr->next;
3880 else
3881 linked_proc_desc_table = pi_ptr->next;
3882
b8c9b27d 3883 xfree (pi_ptr);
c906108c
SS
3884
3885 write_register (HI_REGNUM,
c5aa993b 3886 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3887 MIPS_SAVED_REGSIZE));
c906108c 3888 write_register (LO_REGNUM,
c5aa993b 3889 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3890 MIPS_SAVED_REGSIZE));
c906108c
SS
3891 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3892 write_register (FCRCS_REGNUM,
c5aa993b 3893 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3894 MIPS_SAVED_REGSIZE));
c906108c
SS
3895 }
3896}
3897
dd824b04
DJ
3898/* Floating point register management.
3899
3900 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3901 64bit operations, these early MIPS cpus treat fp register pairs
3902 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3903 registers and offer a compatibility mode that emulates the MIPS2 fp
3904 model. When operating in MIPS2 fp compat mode, later cpu's split
3905 double precision floats into two 32-bit chunks and store them in
3906 consecutive fp regs. To display 64-bit floats stored in this
3907 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3908 Throw in user-configurable endianness and you have a real mess.
3909
3910 The way this works is:
3911 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3912 double-precision value will be split across two logical registers.
3913 The lower-numbered logical register will hold the low-order bits,
3914 regardless of the processor's endianness.
3915 - If we are on a 64-bit processor, and we are looking for a
3916 single-precision value, it will be in the low ordered bits
3917 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3918 save slot in memory.
3919 - If we are in 64-bit mode, everything is straightforward.
3920
3921 Note that this code only deals with "live" registers at the top of the
3922 stack. We will attempt to deal with saved registers later, when
3923 the raw/cooked register interface is in place. (We need a general
3924 interface that can deal with dynamic saved register sizes -- fp
3925 regs could be 32 bits wide in one frame and 64 on the frame above
3926 and below). */
3927
67b2c998
DJ
3928static struct type *
3929mips_float_register_type (void)
3930{
361d1df0 3931 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3932 return builtin_type_ieee_single_big;
3933 else
3934 return builtin_type_ieee_single_little;
3935}
3936
3937static struct type *
3938mips_double_register_type (void)
3939{
361d1df0 3940 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3941 return builtin_type_ieee_double_big;
3942 else
3943 return builtin_type_ieee_double_little;
3944}
3945
dd824b04
DJ
3946/* Copy a 32-bit single-precision value from the current frame
3947 into rare_buffer. */
3948
3949static void
e11c53d2
AC
3950mips_read_fp_register_single (struct frame_info *frame, int regno,
3951 char *rare_buffer)
dd824b04
DJ
3952{
3953 int raw_size = REGISTER_RAW_SIZE (regno);
3954 char *raw_buffer = alloca (raw_size);
3955
e11c53d2 3956 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3957 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3958 if (raw_size == 8)
3959 {
3960 /* We have a 64-bit value for this register. Find the low-order
3961 32 bits. */
3962 int offset;
3963
3964 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3965 offset = 4;
3966 else
3967 offset = 0;
3968
3969 memcpy (rare_buffer, raw_buffer + offset, 4);
3970 }
3971 else
3972 {
3973 memcpy (rare_buffer, raw_buffer, 4);
3974 }
3975}
3976
3977/* Copy a 64-bit double-precision value from the current frame into
3978 rare_buffer. This may include getting half of it from the next
3979 register. */
3980
3981static void
e11c53d2
AC
3982mips_read_fp_register_double (struct frame_info *frame, int regno,
3983 char *rare_buffer)
dd824b04
DJ
3984{
3985 int raw_size = REGISTER_RAW_SIZE (regno);
3986
3987 if (raw_size == 8 && !mips2_fp_compat ())
3988 {
3989 /* We have a 64-bit value for this register, and we should use
3990 all 64 bits. */
e11c53d2 3991 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
3992 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3993 }
3994 else
3995 {
3996 if ((regno - FP0_REGNUM) & 1)
3997 internal_error (__FILE__, __LINE__,
3998 "mips_read_fp_register_double: bad access to "
3999 "odd-numbered FP register");
4000
4001 /* mips_read_fp_register_single will find the correct 32 bits from
4002 each register. */
4003 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4004 {
e11c53d2
AC
4005 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4006 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4007 }
361d1df0 4008 else
dd824b04 4009 {
e11c53d2
AC
4010 mips_read_fp_register_single (frame, regno, rare_buffer);
4011 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4012 }
4013 }
4014}
4015
c906108c 4016static void
e11c53d2
AC
4017mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4018 int regnum)
c5aa993b 4019{ /* do values for FP (float) regs */
dd824b04 4020 char *raw_buffer;
c906108c 4021 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4022 int inv1, inv2, namelen;
c5aa993b 4023
dd824b04 4024 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4025
e11c53d2
AC
4026 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4027 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4028 "");
f0ef6b29 4029
dd824b04 4030 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4031 {
f0ef6b29
KB
4032 /* 4-byte registers: Print hex and floating. Also print even
4033 numbered registers as doubles. */
e11c53d2 4034 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4035 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4036
e11c53d2 4037 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4038
e11c53d2 4039 fprintf_filtered (file, " flt: ");
1adad886 4040 if (inv1)
e11c53d2 4041 fprintf_filtered (file, " <invalid float> ");
1adad886 4042 else
e11c53d2 4043 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4044
f0ef6b29
KB
4045 if (regnum % 2 == 0)
4046 {
e11c53d2 4047 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4048 doub = unpack_double (mips_double_register_type (), raw_buffer,
4049 &inv2);
1adad886 4050
e11c53d2 4051 fprintf_filtered (file, " dbl: ");
f0ef6b29 4052 if (inv2)
e11c53d2 4053 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4054 else
e11c53d2 4055 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4056 }
c906108c
SS
4057 }
4058 else
dd824b04 4059 {
f0ef6b29 4060 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4061 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4062 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4063
e11c53d2 4064 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4065 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4066
361d1df0 4067
e11c53d2 4068 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4069
e11c53d2 4070 fprintf_filtered (file, " flt: ");
1adad886 4071 if (inv1)
e11c53d2 4072 fprintf_filtered (file, "<invalid float>");
1adad886 4073 else
e11c53d2 4074 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4075
e11c53d2 4076 fprintf_filtered (file, " dbl: ");
f0ef6b29 4077 if (inv2)
e11c53d2 4078 fprintf_filtered (file, "<invalid double>");
1adad886 4079 else
e11c53d2 4080 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4081 }
4082}
4083
4084static void
e11c53d2
AC
4085mips_print_register (struct ui_file *file, struct frame_info *frame,
4086 int regnum, int all)
f0ef6b29 4087{
d9d9c31f 4088 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4089 int offset;
1adad886 4090
f0ef6b29
KB
4091 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4092 {
e11c53d2 4093 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4094 return;
4095 }
4096
4097 /* Get the data in raw format. */
e11c53d2 4098 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4099 {
e11c53d2 4100 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4101 return;
c906108c 4102 }
f0ef6b29 4103
e11c53d2 4104 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4105
4106 /* The problem with printing numeric register names (r26, etc.) is that
4107 the user can't use them on input. Probably the best solution is to
4108 fix it so that either the numeric or the funky (a2, etc.) names
4109 are accepted on input. */
4110 if (regnum < MIPS_NUMREGS)
e11c53d2 4111 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4112 else
e11c53d2 4113 fprintf_filtered (file, ": ");
f0ef6b29
KB
4114
4115 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4116 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4117 else
4118 offset = 0;
4119
4120 print_scalar_formatted (raw_buffer + offset,
4121 REGISTER_VIRTUAL_TYPE (regnum),
e11c53d2 4122 'x', 0, file);
c906108c
SS
4123}
4124
f0ef6b29
KB
4125/* Replacement for generic do_registers_info.
4126 Print regs in pretty columns. */
4127
4128static int
e11c53d2
AC
4129print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4130 int regnum)
f0ef6b29 4131{
e11c53d2
AC
4132 fprintf_filtered (file, " ");
4133 mips_print_fp_register (file, frame, regnum);
4134 fprintf_filtered (file, "\n");
f0ef6b29
KB
4135 return regnum + 1;
4136}
4137
4138
c906108c
SS
4139/* Print a row's worth of GP (int) registers, with name labels above */
4140
4141static int
e11c53d2
AC
4142print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4143 int regnum)
c906108c
SS
4144{
4145 /* do values for GP (int) regs */
d9d9c31f 4146 char raw_buffer[MAX_REGISTER_SIZE];
c906108c
SS
4147 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4148 int col, byte;
4149 int start_regnum = regnum;
4150 int numregs = NUM_REGS;
4151
4152
4153 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4154 fprintf_filtered (file, " ");
c906108c
SS
4155 for (col = 0; col < ncols && regnum < numregs; regnum++)
4156 {
4157 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4158 continue; /* unused register */
c906108c 4159 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4160 break; /* end the row: reached FP register */
e11c53d2
AC
4161 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4162 REGISTER_NAME (regnum));
c906108c
SS
4163 col++;
4164 }
e11c53d2
AC
4165 fprintf_filtered (file,
4166 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4167 start_regnum); /* print the R0 to R31 names */
c906108c
SS
4168
4169 regnum = start_regnum; /* go back to start of row */
4170 /* now print the values in hex, 4 or 8 to the row */
4171 for (col = 0; col < ncols && regnum < numregs; regnum++)
4172 {
4173 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4174 continue; /* unused register */
c906108c 4175 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4176 break; /* end row: reached FP register */
c906108c 4177 /* OK: get the data in raw format. */
e11c53d2 4178 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4179 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4180 /* pad small registers */
43e526b9 4181 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4182 printf_filtered (" ");
4183 /* Now print the register value in hex, endian order. */
d7449b42 4184 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4185 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4186 byte < REGISTER_RAW_SIZE (regnum);
4187 byte++)
e11c53d2 4188 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4189 else
43e526b9
JM
4190 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4191 byte >= 0;
4192 byte--)
e11c53d2
AC
4193 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4194 fprintf_filtered (file, " ");
c906108c
SS
4195 col++;
4196 }
c5aa993b 4197 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4198 fprintf_filtered (file, "\n");
c906108c
SS
4199
4200 return regnum;
4201}
4202
4203/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4204
bf1f5b4c 4205static void
e11c53d2
AC
4206mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4207 struct frame_info *frame, int regnum, int all)
c906108c 4208{
c5aa993b 4209 if (regnum != -1) /* do one specified register */
c906108c
SS
4210 {
4211 if (*(REGISTER_NAME (regnum)) == '\0')
4212 error ("Not a valid register for the current processor type");
4213
e11c53d2
AC
4214 mips_print_register (file, frame, regnum, 0);
4215 fprintf_filtered (file, "\n");
c906108c 4216 }
c5aa993b
JM
4217 else
4218 /* do all (or most) registers */
c906108c
SS
4219 {
4220 regnum = 0;
4221 while (regnum < NUM_REGS)
4222 {
c5aa993b 4223 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4224 {
4225 if (all) /* true for "INFO ALL-REGISTERS" command */
4226 regnum = print_fp_register_row (file, frame, regnum);
4227 else
4228 regnum += MIPS_NUMREGS; /* skip floating point regs */
4229 }
c906108c 4230 else
e11c53d2 4231 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4232 }
4233 }
4234}
4235
c906108c
SS
4236/* Is this a branch with a delay slot? */
4237
a14ed312 4238static int is_delayed (unsigned long);
c906108c
SS
4239
4240static int
acdb74a0 4241is_delayed (unsigned long insn)
c906108c
SS
4242{
4243 int i;
4244 for (i = 0; i < NUMOPCODES; ++i)
4245 if (mips_opcodes[i].pinfo != INSN_MACRO
4246 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4247 break;
4248 return (i < NUMOPCODES
4249 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4250 | INSN_COND_BRANCH_DELAY
4251 | INSN_COND_BRANCH_LIKELY)));
4252}
4253
4254int
acdb74a0 4255mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4256{
4257 char buf[MIPS_INSTLEN];
4258
4259 /* There is no branch delay slot on MIPS16. */
4260 if (pc_is_mips16 (pc))
4261 return 0;
4262
4263 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4264 /* If error reading memory, guess that it is not a delayed branch. */
4265 return 0;
c5aa993b 4266 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4267}
4268
4269
4270/* Skip the PC past function prologue instructions (32-bit version).
4271 This is a helper function for mips_skip_prologue. */
4272
4273static CORE_ADDR
f7b9e9fc 4274mips32_skip_prologue (CORE_ADDR pc)
c906108c 4275{
c5aa993b
JM
4276 t_inst inst;
4277 CORE_ADDR end_pc;
4278 int seen_sp_adjust = 0;
4279 int load_immediate_bytes = 0;
4280
4281 /* Skip the typical prologue instructions. These are the stack adjustment
4282 instruction and the instructions that save registers on the stack
4283 or in the gcc frame. */
4284 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4285 {
4286 unsigned long high_word;
c906108c 4287
c5aa993b
JM
4288 inst = mips_fetch_instruction (pc);
4289 high_word = (inst >> 16) & 0xffff;
c906108c 4290
c5aa993b
JM
4291 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4292 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4293 seen_sp_adjust = 1;
4294 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4295 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4296 seen_sp_adjust = 1;
4297 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4298 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4299 && (inst & 0x001F0000)) /* reg != $zero */
4300 continue;
4301
4302 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4303 continue;
4304 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4305 /* sx reg,n($s8) */
4306 continue; /* reg != $zero */
4307
4308 /* move $s8,$sp. With different versions of gas this will be either
4309 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4310 Accept any one of these. */
4311 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4312 continue;
4313
4314 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4315 continue;
4316 else if (high_word == 0x3c1c) /* lui $gp,n */
4317 continue;
4318 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4319 continue;
4320 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4321 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4322 continue;
4323 /* The following instructions load $at or $t0 with an immediate
4324 value in preparation for a stack adjustment via
4325 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4326 a local variable, so we accept them only before a stack adjustment
4327 instruction was seen. */
4328 else if (!seen_sp_adjust)
4329 {
4330 if (high_word == 0x3c01 || /* lui $at,n */
4331 high_word == 0x3c08) /* lui $t0,n */
4332 {
4333 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4334 continue;
4335 }
4336 else if (high_word == 0x3421 || /* ori $at,$at,n */
4337 high_word == 0x3508 || /* ori $t0,$t0,n */
4338 high_word == 0x3401 || /* ori $at,$zero,n */
4339 high_word == 0x3408) /* ori $t0,$zero,n */
4340 {
4341 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4342 continue;
4343 }
4344 else
4345 break;
4346 }
4347 else
4348 break;
c906108c
SS
4349 }
4350
c5aa993b
JM
4351 /* In a frameless function, we might have incorrectly
4352 skipped some load immediate instructions. Undo the skipping
4353 if the load immediate was not followed by a stack adjustment. */
4354 if (load_immediate_bytes && !seen_sp_adjust)
4355 pc -= load_immediate_bytes;
4356 return pc;
c906108c
SS
4357}
4358
4359/* Skip the PC past function prologue instructions (16-bit version).
4360 This is a helper function for mips_skip_prologue. */
4361
4362static CORE_ADDR
f7b9e9fc 4363mips16_skip_prologue (CORE_ADDR pc)
c906108c 4364{
c5aa993b
JM
4365 CORE_ADDR end_pc;
4366 int extend_bytes = 0;
4367 int prev_extend_bytes;
c906108c 4368
c5aa993b
JM
4369 /* Table of instructions likely to be found in a function prologue. */
4370 static struct
c906108c
SS
4371 {
4372 unsigned short inst;
4373 unsigned short mask;
c5aa993b
JM
4374 }
4375 table[] =
4376 {
c906108c 4377 {
c5aa993b
JM
4378 0x6300, 0xff00
4379 }
4380 , /* addiu $sp,offset */
4381 {
4382 0xfb00, 0xff00
4383 }
4384 , /* daddiu $sp,offset */
4385 {
4386 0xd000, 0xf800
4387 }
4388 , /* sw reg,n($sp) */
4389 {
4390 0xf900, 0xff00
4391 }
4392 , /* sd reg,n($sp) */
4393 {
4394 0x6200, 0xff00
4395 }
4396 , /* sw $ra,n($sp) */
4397 {
4398 0xfa00, 0xff00
4399 }
4400 , /* sd $ra,n($sp) */
4401 {
4402 0x673d, 0xffff
4403 }
4404 , /* move $s1,sp */
4405 {
4406 0xd980, 0xff80
4407 }
4408 , /* sw $a0-$a3,n($s1) */
4409 {
4410 0x6704, 0xff1c
4411 }
4412 , /* move reg,$a0-$a3 */
4413 {
4414 0xe809, 0xf81f
4415 }
4416 , /* entry pseudo-op */
4417 {
4418 0x0100, 0xff00
4419 }
4420 , /* addiu $s1,$sp,n */
4421 {
4422 0, 0
4423 } /* end of table marker */
4424 };
4425
4426 /* Skip the typical prologue instructions. These are the stack adjustment
4427 instruction and the instructions that save registers on the stack
4428 or in the gcc frame. */
4429 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4430 {
4431 unsigned short inst;
4432 int i;
c906108c 4433
c5aa993b 4434 inst = mips_fetch_instruction (pc);
c906108c 4435
c5aa993b
JM
4436 /* Normally we ignore an extend instruction. However, if it is
4437 not followed by a valid prologue instruction, we must adjust
4438 the pc back over the extend so that it won't be considered
4439 part of the prologue. */
4440 if ((inst & 0xf800) == 0xf000) /* extend */
4441 {
4442 extend_bytes = MIPS16_INSTLEN;
4443 continue;
4444 }
4445 prev_extend_bytes = extend_bytes;
4446 extend_bytes = 0;
c906108c 4447
c5aa993b
JM
4448 /* Check for other valid prologue instructions besides extend. */
4449 for (i = 0; table[i].mask != 0; i++)
4450 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4451 break;
4452 if (table[i].mask != 0) /* it was in table? */
4453 continue; /* ignore it */
4454 else
4455 /* non-prologue */
4456 {
4457 /* Return the current pc, adjusted backwards by 2 if
4458 the previous instruction was an extend. */
4459 return pc - prev_extend_bytes;
4460 }
c906108c
SS
4461 }
4462 return pc;
4463}
4464
4465/* To skip prologues, I use this predicate. Returns either PC itself
4466 if the code at PC does not look like a function prologue; otherwise
4467 returns an address that (if we're lucky) follows the prologue. If
4468 LENIENT, then we must skip everything which is involved in setting
4469 up the frame (it's OK to skip more, just so long as we don't skip
4470 anything which might clobber the registers which are being saved.
4471 We must skip more in the case where part of the prologue is in the
4472 delay slot of a non-prologue instruction). */
4473
f7ab6ec6 4474static CORE_ADDR
f7b9e9fc 4475mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4476{
4477 /* See if we can determine the end of the prologue via the symbol table.
4478 If so, then return either PC, or the PC after the prologue, whichever
4479 is greater. */
4480
4481 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4482
4483 if (post_prologue_pc != 0)
4484 return max (pc, post_prologue_pc);
4485
4486 /* Can't determine prologue from the symbol table, need to examine
4487 instructions. */
4488
4489 if (pc_is_mips16 (pc))
f7b9e9fc 4490 return mips16_skip_prologue (pc);
c906108c 4491 else
f7b9e9fc 4492 return mips32_skip_prologue (pc);
c906108c 4493}
c906108c 4494
7a292a7a
SS
4495/* Determine how a return value is stored within the MIPS register
4496 file, given the return type `valtype'. */
4497
4498struct return_value_word
4499{
4500 int len;
4501 int reg;
4502 int reg_offset;
4503 int buf_offset;
4504};
4505
7a292a7a 4506static void
acdb74a0
AC
4507return_value_location (struct type *valtype,
4508 struct return_value_word *hi,
4509 struct return_value_word *lo)
7a292a7a
SS
4510{
4511 int len = TYPE_LENGTH (valtype);
c5aa993b 4512
7a292a7a
SS
4513 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4514 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4515 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4516 {
4517 if (!FP_REGISTER_DOUBLE && len == 8)
4518 {
4519 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4520 spread them across a floating-point register pair. */
d7449b42
AC
4521 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4522 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4523 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4524 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4525 ? 4 : 0);
4526 hi->reg_offset = lo->reg_offset;
4527 lo->reg = FP0_REGNUM + 0;
4528 hi->reg = FP0_REGNUM + 1;
4529 lo->len = 4;
4530 hi->len = 4;
4531 }
4532 else
4533 {
4534 /* The floating point value fits in a single floating-point
c5aa993b 4535 register. */
d7449b42 4536 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4537 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4538 && len == 4)
4539 ? 4 : 0);
4540 lo->reg = FP0_REGNUM;
4541 lo->len = len;
4542 lo->buf_offset = 0;
4543 hi->len = 0;
4544 hi->reg_offset = 0;
4545 hi->buf_offset = 0;
4546 hi->reg = 0;
4547 }
4548 }
4549 else
4550 {
4551 /* Locate a result possibly spread across two registers. */
4552 int regnum = 2;
4553 lo->reg = regnum + 0;
4554 hi->reg = regnum + 1;
d7449b42 4555 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4556 && len < MIPS_SAVED_REGSIZE)
4557 {
bf1f5b4c
MS
4558 /* "un-left-justify" the value in the low register */
4559 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4560 lo->len = len;
bf1f5b4c 4561 hi->reg_offset = 0;
7a292a7a
SS
4562 hi->len = 0;
4563 }
d7449b42 4564 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4565 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4566 && len < MIPS_SAVED_REGSIZE * 2
4567 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4568 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4569 {
4570 /* "un-left-justify" the value spread across two registers. */
4571 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4572 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4573 hi->reg_offset = 0;
4574 hi->len = len - lo->len;
4575 }
4576 else
4577 {
4578 /* Only perform a partial copy of the second register. */
4579 lo->reg_offset = 0;
4580 hi->reg_offset = 0;
4581 if (len > MIPS_SAVED_REGSIZE)
4582 {
4583 lo->len = MIPS_SAVED_REGSIZE;
4584 hi->len = len - MIPS_SAVED_REGSIZE;
4585 }
4586 else
4587 {
4588 lo->len = len;
4589 hi->len = 0;
4590 }
4591 }
d7449b42 4592 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4593 && REGISTER_RAW_SIZE (regnum) == 8
4594 && MIPS_SAVED_REGSIZE == 4)
4595 {
4596 /* Account for the fact that only the least-signficant part
c5aa993b 4597 of the register is being used */
7a292a7a
SS
4598 lo->reg_offset += 4;
4599 hi->reg_offset += 4;
4600 }
4601 lo->buf_offset = 0;
4602 hi->buf_offset = lo->len;
4603 }
4604}
4605
4606/* Given a return value in `regbuf' with a type `valtype', extract and
4607 copy its value into `valbuf'. */
4608
46cac009
AC
4609static void
4610mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4611 char regbuf[],
46cac009
AC
4612 char *valbuf)
4613{
4614 struct return_value_word lo;
4615 struct return_value_word hi;
4616 return_value_location (valtype, &hi, &lo);
4617
4618 memcpy (valbuf + lo.buf_offset,
4619 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4620 lo.len);
4621
4622 if (hi.len > 0)
4623 memcpy (valbuf + hi.buf_offset,
4624 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4625 hi.len);
4626}
4627
46cac009
AC
4628static void
4629mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4630 char regbuf[],
46cac009
AC
4631 char *valbuf)
4632{
4633 struct return_value_word lo;
4634 struct return_value_word hi;
4635 return_value_location (valtype, &hi, &lo);
4636
4637 memcpy (valbuf + lo.buf_offset,
4638 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4639 lo.len);
4640
4641 if (hi.len > 0)
4642 memcpy (valbuf + hi.buf_offset,
4643 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4644 hi.len);
4645}
4646
7a292a7a
SS
4647/* Given a return value in `valbuf' with a type `valtype', write it's
4648 value into the appropriate register. */
4649
46cac009
AC
4650static void
4651mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4652{
d9d9c31f 4653 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4654 struct return_value_word lo;
4655 struct return_value_word hi;
4656 return_value_location (valtype, &hi, &lo);
4657
4658 memset (raw_buffer, 0, sizeof (raw_buffer));
4659 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4660 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4661 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4662
4663 if (hi.len > 0)
4664 {
4665 memset (raw_buffer, 0, sizeof (raw_buffer));
4666 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4667 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4668 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4669 }
4670}
4671
4672static void
cb1d2653 4673mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4674{
d9d9c31f 4675 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4676 struct return_value_word lo;
4677 struct return_value_word hi;
4678 return_value_location (valtype, &hi, &lo);
4679
4680 memset (raw_buffer, 0, sizeof (raw_buffer));
4681 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4682 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4683 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4684
4685 if (hi.len > 0)
4686 {
4687 memset (raw_buffer, 0, sizeof (raw_buffer));
4688 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4689 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4690 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4691 }
4692}
4693
cb1d2653
AC
4694/* O32 ABI stuff. */
4695
46cac009 4696static void
cb1d2653
AC
4697mips_o32_xfer_return_value (struct type *type,
4698 struct regcache *regcache,
4699 bfd_byte *in, const bfd_byte *out)
46cac009 4700{
cb1d2653
AC
4701 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4702 if (TYPE_CODE (type) == TYPE_CODE_FLT
4703 && TYPE_LENGTH (type) == 4
4704 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4705 {
cb1d2653
AC
4706 /* A single-precision floating-point value. It fits in the
4707 least significant part of FP0. */
4708 if (mips_debug)
4709 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4710 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4711 TARGET_BYTE_ORDER, in, out, 0);
4712 }
4713 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4714 && TYPE_LENGTH (type) == 8
4715 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4716 {
4717 /* A double-precision floating-point value. It fits in the
4718 least significant part of FP0/FP1 but with byte ordering
4719 based on the target (???). */
4720 if (mips_debug)
4721 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4722 switch (TARGET_BYTE_ORDER)
4723 {
4724 case BFD_ENDIAN_LITTLE:
4725 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4726 TARGET_BYTE_ORDER, in, out, 0);
4727 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4728 TARGET_BYTE_ORDER, in, out, 4);
4729 break;
4730 case BFD_ENDIAN_BIG:
4731 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4732 TARGET_BYTE_ORDER, in, out, 0);
4733 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4734 TARGET_BYTE_ORDER, in, out, 4);
4735 break;
4736 default:
4737 internal_error (__FILE__, __LINE__, "bad switch");
4738 }
4739 }
4740#if 0
4741 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4742 && TYPE_NFIELDS (type) <= 2
4743 && TYPE_NFIELDS (type) >= 1
4744 && ((TYPE_NFIELDS (type) == 1
4745 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4746 == TYPE_CODE_FLT))
4747 || (TYPE_NFIELDS (type) == 2
4748 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4749 == TYPE_CODE_FLT)
4750 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4751 == TYPE_CODE_FLT)))
4752 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4753 {
4754 /* A struct that contains one or two floats. Each value is part
4755 in the least significant part of their floating point
4756 register.. */
d9d9c31f 4757 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4758 int regnum;
4759 int field;
4760 for (field = 0, regnum = FP0_REGNUM;
4761 field < TYPE_NFIELDS (type);
4762 field++, regnum += 2)
4763 {
4764 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4765 / TARGET_CHAR_BIT);
4766 if (mips_debug)
4767 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4768 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4769 TARGET_BYTE_ORDER, in, out, offset);
4770 }
4771 }
4772#endif
4773#if 0
4774 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4775 || TYPE_CODE (type) == TYPE_CODE_UNION)
4776 {
4777 /* A structure or union. Extract the left justified value,
4778 regardless of the byte order. I.e. DO NOT USE
4779 mips_xfer_lower. */
4780 int offset;
4781 int regnum;
4782 for (offset = 0, regnum = V0_REGNUM;
4783 offset < TYPE_LENGTH (type);
4784 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4785 {
4786 int xfer = REGISTER_RAW_SIZE (regnum);
4787 if (offset + xfer > TYPE_LENGTH (type))
4788 xfer = TYPE_LENGTH (type) - offset;
4789 if (mips_debug)
4790 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4791 offset, xfer, regnum);
4792 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4793 in, out, offset);
4794 }
4795 }
4796#endif
4797 else
4798 {
4799 /* A scalar extract each part but least-significant-byte
4800 justified. o32 thinks registers are 4 byte, regardless of
4801 the ISA. mips_stack_argsize controls this. */
4802 int offset;
4803 int regnum;
4804 for (offset = 0, regnum = V0_REGNUM;
4805 offset < TYPE_LENGTH (type);
4806 offset += mips_stack_argsize (), regnum++)
4807 {
4808 int xfer = mips_stack_argsize ();
4809 int pos = 0;
4810 if (offset + xfer > TYPE_LENGTH (type))
4811 xfer = TYPE_LENGTH (type) - offset;
4812 if (mips_debug)
4813 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4814 offset, xfer, regnum);
4815 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4816 in, out, offset);
4817 }
46cac009
AC
4818 }
4819}
4820
cb1d2653
AC
4821static void
4822mips_o32_extract_return_value (struct type *type,
4823 struct regcache *regcache,
ebba8386 4824 void *valbuf)
cb1d2653
AC
4825{
4826 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4827}
4828
4829static void
4830mips_o32_store_return_value (struct type *type, char *valbuf)
4831{
4832 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4833}
4834
4835/* N32/N44 ABI stuff. */
4836
46cac009 4837static void
88658117
AC
4838mips_n32n64_xfer_return_value (struct type *type,
4839 struct regcache *regcache,
4840 bfd_byte *in, const bfd_byte *out)
c906108c 4841{
88658117
AC
4842 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4843 if (TYPE_CODE (type) == TYPE_CODE_FLT
4844 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4845 {
88658117
AC
4846 /* A floating-point value belongs in the least significant part
4847 of FP0. */
4848 if (mips_debug)
4849 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4850 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4851 TARGET_BYTE_ORDER, in, out, 0);
4852 }
4853 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4854 && TYPE_NFIELDS (type) <= 2
4855 && TYPE_NFIELDS (type) >= 1
4856 && ((TYPE_NFIELDS (type) == 1
4857 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4858 == TYPE_CODE_FLT))
4859 || (TYPE_NFIELDS (type) == 2
4860 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4861 == TYPE_CODE_FLT)
4862 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4863 == TYPE_CODE_FLT)))
4864 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4865 {
4866 /* A struct that contains one or two floats. Each value is part
4867 in the least significant part of their floating point
4868 register.. */
d9d9c31f 4869 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4870 int regnum;
4871 int field;
4872 for (field = 0, regnum = FP0_REGNUM;
4873 field < TYPE_NFIELDS (type);
4874 field++, regnum += 2)
4875 {
4876 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4877 / TARGET_CHAR_BIT);
4878 if (mips_debug)
4879 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4880 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4881 TARGET_BYTE_ORDER, in, out, offset);
4882 }
7a292a7a 4883 }
88658117
AC
4884 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4885 || TYPE_CODE (type) == TYPE_CODE_UNION)
4886 {
4887 /* A structure or union. Extract the left justified value,
4888 regardless of the byte order. I.e. DO NOT USE
4889 mips_xfer_lower. */
4890 int offset;
4891 int regnum;
4892 for (offset = 0, regnum = V0_REGNUM;
4893 offset < TYPE_LENGTH (type);
4894 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4895 {
4896 int xfer = REGISTER_RAW_SIZE (regnum);
4897 if (offset + xfer > TYPE_LENGTH (type))
4898 xfer = TYPE_LENGTH (type) - offset;
4899 if (mips_debug)
4900 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4901 offset, xfer, regnum);
4902 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4903 in, out, offset);
4904 }
4905 }
4906 else
4907 {
4908 /* A scalar extract each part but least-significant-byte
4909 justified. */
4910 int offset;
4911 int regnum;
4912 for (offset = 0, regnum = V0_REGNUM;
4913 offset < TYPE_LENGTH (type);
4914 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4915 {
4916 int xfer = REGISTER_RAW_SIZE (regnum);
4917 int pos = 0;
4918 if (offset + xfer > TYPE_LENGTH (type))
4919 xfer = TYPE_LENGTH (type) - offset;
4920 if (mips_debug)
4921 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4922 offset, xfer, regnum);
4923 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4924 in, out, offset);
4925 }
4926 }
4927}
4928
4929static void
4930mips_n32n64_extract_return_value (struct type *type,
4931 struct regcache *regcache,
ebba8386 4932 void *valbuf)
88658117
AC
4933{
4934 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4935}
4936
4937static void
4938mips_n32n64_store_return_value (struct type *type, char *valbuf)
4939{
4940 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4941}
4942
2f1488ce 4943static CORE_ADDR
6672060b 4944mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4945{
4946 /* FIXME: This will only work at random. The caller passes the
4947 struct_return address in V0, but it is not preserved. It may
4948 still be there, or this may be a random value. */
77d8f2b4
MS
4949 LONGEST val;
4950
4951 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4952 return val;
2f1488ce
MS
4953}
4954
c906108c
SS
4955/* Exported procedure: Is PC in the signal trampoline code */
4956
102182a9
MS
4957static int
4958mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4959{
4960 if (sigtramp_address == 0)
4961 fixup_sigtramp ();
4962 return (pc >= sigtramp_address && pc < sigtramp_end);
4963}
4964
a5ea2558
AC
4965/* Root of all "set mips "/"show mips " commands. This will eventually be
4966 used for all MIPS-specific commands. */
4967
a5ea2558 4968static void
acdb74a0 4969show_mips_command (char *args, int from_tty)
a5ea2558
AC
4970{
4971 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4972}
4973
a5ea2558 4974static void
acdb74a0 4975set_mips_command (char *args, int from_tty)
a5ea2558
AC
4976{
4977 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4978 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4979}
4980
c906108c
SS
4981/* Commands to show/set the MIPS FPU type. */
4982
c906108c 4983static void
acdb74a0 4984show_mipsfpu_command (char *args, int from_tty)
c906108c 4985{
c906108c
SS
4986 char *fpu;
4987 switch (MIPS_FPU_TYPE)
4988 {
4989 case MIPS_FPU_SINGLE:
4990 fpu = "single-precision";
4991 break;
4992 case MIPS_FPU_DOUBLE:
4993 fpu = "double-precision";
4994 break;
4995 case MIPS_FPU_NONE:
4996 fpu = "absent (none)";
4997 break;
93d56215
AC
4998 default:
4999 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
5000 }
5001 if (mips_fpu_type_auto)
5002 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5003 fpu);
5004 else
5005 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5006 fpu);
5007}
5008
5009
c906108c 5010static void
acdb74a0 5011set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5012{
5013 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5014 show_mipsfpu_command (args, from_tty);
5015}
5016
c906108c 5017static void
acdb74a0 5018set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5019{
5020 mips_fpu_type = MIPS_FPU_SINGLE;
5021 mips_fpu_type_auto = 0;
9e364162 5022 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5023}
5024
c906108c 5025static void
acdb74a0 5026set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5027{
5028 mips_fpu_type = MIPS_FPU_DOUBLE;
5029 mips_fpu_type_auto = 0;
9e364162 5030 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5031}
5032
c906108c 5033static void
acdb74a0 5034set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5035{
5036 mips_fpu_type = MIPS_FPU_NONE;
5037 mips_fpu_type_auto = 0;
9e364162 5038 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5039}
5040
c906108c 5041static void
acdb74a0 5042set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5043{
5044 mips_fpu_type_auto = 1;
5045}
5046
5047/* Command to set the processor type. */
5048
5049void
acdb74a0 5050mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5051{
5052 int i;
5053
5054 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5055 {
5056 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5057 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5058 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5059
5060 /* Restore the value. */
4fcf66da 5061 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5062
5063 return;
5064 }
c5aa993b 5065
c906108c
SS
5066 if (!mips_set_processor_type (tmp_mips_processor_type))
5067 {
5068 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5069 /* Restore its value. */
4fcf66da 5070 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5071 }
5072}
5073
5074static void
acdb74a0 5075mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5076{
5077}
5078
5079/* Modify the actual processor type. */
5080
5a89d8aa 5081static int
acdb74a0 5082mips_set_processor_type (char *str)
c906108c 5083{
1012bd0e 5084 int i;
c906108c
SS
5085
5086 if (str == NULL)
5087 return 0;
5088
5089 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5090 {
5091 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5092 {
5093 mips_processor_type = str;
cce74817 5094 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5095 return 1;
c906108c
SS
5096 /* FIXME tweak fpu flag too */
5097 }
5098 }
5099
5100 return 0;
5101}
5102
5103/* Attempt to identify the particular processor model by reading the
5104 processor id. */
5105
5106char *
acdb74a0 5107mips_read_processor_type (void)
c906108c
SS
5108{
5109 CORE_ADDR prid;
5110
5111 prid = read_register (PRID_REGNUM);
5112
5113 if ((prid & ~0xf) == 0x700)
c5aa993b 5114 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5115
5116 return NULL;
5117}
5118
5119/* Just like reinit_frame_cache, but with the right arguments to be
5120 callable as an sfunc. */
5121
5122static void
acdb74a0
AC
5123reinit_frame_cache_sfunc (char *args, int from_tty,
5124 struct cmd_list_element *c)
c906108c
SS
5125{
5126 reinit_frame_cache ();
5127}
5128
5129int
acdb74a0 5130gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5131{
5132 mips_extra_func_info_t proc_desc;
5133
5134 /* Search for the function containing this address. Set the low bit
5135 of the address when searching, in case we were given an even address
5136 that is the start of a 16-bit function. If we didn't do this,
5137 the search would fail because the symbol table says the function
5138 starts at an odd address, i.e. 1 byte past the given address. */
5139 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5140 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5141
5142 /* Make an attempt to determine if this is a 16-bit function. If
5143 the procedure descriptor exists and the address therein is odd,
5144 it's definitely a 16-bit function. Otherwise, we have to just
5145 guess that if the address passed in is odd, it's 16-bits. */
5146 if (proc_desc)
361d1df0 5147 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
95404a3e 5148 bfd_mach_mips16 : 0;
c906108c 5149 else
361d1df0 5150 info->mach = pc_is_mips16 (memaddr) ?
95404a3e 5151 bfd_mach_mips16 : 0;
c906108c
SS
5152
5153 /* Round down the instruction address to the appropriate boundary. */
65c11066 5154 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5155
c906108c 5156 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5157 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5158 return print_insn_big_mips (memaddr, info);
5159 else
5160 return print_insn_little_mips (memaddr, info);
5161}
5162
c906108c
SS
5163/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5164 counter value to determine whether a 16- or 32-bit breakpoint should be
5165 used. It returns a pointer to a string of bytes that encode a breakpoint
5166 instruction, stores the length of the string to *lenptr, and adjusts pc
5167 (if necessary) to point to the actual memory location where the
5168 breakpoint should be inserted. */
5169
f7ab6ec6 5170static const unsigned char *
acdb74a0 5171mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5172{
d7449b42 5173 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5174 {
5175 if (pc_is_mips16 (*pcptr))
5176 {
aaab4dba 5177 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5178 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5179 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5180 return mips16_big_breakpoint;
5181 }
5182 else
5183 {
aaab4dba
AC
5184 /* The IDT board uses an unusual breakpoint value, and
5185 sometimes gets confused when it sees the usual MIPS
5186 breakpoint instruction. */
5187 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5188 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5189 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5190
c5aa993b 5191 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5192
5193 if (strcmp (target_shortname, "mips") == 0)
5194 return idt_big_breakpoint;
5195 else if (strcmp (target_shortname, "ddb") == 0
5196 || strcmp (target_shortname, "pmon") == 0
5197 || strcmp (target_shortname, "lsi") == 0)
5198 return pmon_big_breakpoint;
5199 else
5200 return big_breakpoint;
5201 }
5202 }
5203 else
5204 {
5205 if (pc_is_mips16 (*pcptr))
5206 {
aaab4dba 5207 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5208 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5209 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5210 return mips16_little_breakpoint;
5211 }
5212 else
5213 {
aaab4dba
AC
5214 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5215 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5216 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5217
c5aa993b 5218 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5219
5220 if (strcmp (target_shortname, "mips") == 0)
5221 return idt_little_breakpoint;
5222 else if (strcmp (target_shortname, "ddb") == 0
5223 || strcmp (target_shortname, "pmon") == 0
5224 || strcmp (target_shortname, "lsi") == 0)
5225 return pmon_little_breakpoint;
5226 else
5227 return little_breakpoint;
5228 }
5229 }
5230}
5231
5232/* If PC is in a mips16 call or return stub, return the address of the target
5233 PC, which is either the callee or the caller. There are several
5234 cases which must be handled:
5235
5236 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5237 target PC is in $31 ($ra).
c906108c 5238 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5239 and the target PC is in $2.
c906108c 5240 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5241 before the jal instruction, this is effectively a call stub
5242 and the the target PC is in $2. Otherwise this is effectively
5243 a return stub and the target PC is in $18.
c906108c
SS
5244
5245 See the source code for the stubs in gcc/config/mips/mips16.S for
5246 gory details.
5247
5248 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5249 */
c906108c 5250
757a7cc6 5251static CORE_ADDR
acdb74a0 5252mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5253{
5254 char *name;
5255 CORE_ADDR start_addr;
5256
5257 /* Find the starting address and name of the function containing the PC. */
5258 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5259 return 0;
5260
5261 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5262 target PC is in $31 ($ra). */
5263 if (strcmp (name, "__mips16_ret_sf") == 0
5264 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5265 return read_signed_register (RA_REGNUM);
c906108c
SS
5266
5267 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5268 {
5269 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5270 and the target PC is in $2. */
5271 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5272 return read_signed_register (2);
c906108c
SS
5273
5274 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5275 before the jal instruction, this is effectively a call stub
5276 and the the target PC is in $2. Otherwise this is effectively
5277 a return stub and the target PC is in $18. */
c906108c
SS
5278 else if (name[19] == 's' || name[19] == 'd')
5279 {
5280 if (pc == start_addr)
5281 {
5282 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5283 stub. Such a stub for a function bar might have a name
5284 like __fn_stub_bar, and might look like this:
5285 mfc1 $4,$f13
5286 mfc1 $5,$f12
5287 mfc1 $6,$f15
5288 mfc1 $7,$f14
5289 la $1,bar (becomes a lui/addiu pair)
5290 jr $1
5291 So scan down to the lui/addi and extract the target
5292 address from those two instructions. */
c906108c 5293
6c997a34 5294 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5295 t_inst inst;
5296 int i;
5297
5298 /* See if the name of the target function is __fn_stub_*. */
5299 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5300 return target_pc;
5301 if (strncmp (name, "__fn_stub_", 10) != 0
5302 && strcmp (name, "etext") != 0
5303 && strcmp (name, "_etext") != 0)
5304 return target_pc;
5305
5306 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5307 The limit on the search is arbitrarily set to 20
5308 instructions. FIXME. */
c906108c
SS
5309 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5310 {
c5aa993b
JM
5311 inst = mips_fetch_instruction (target_pc);
5312 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5313 pc = (inst << 16) & 0xffff0000; /* high word */
5314 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5315 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5316 }
5317
5318 /* Couldn't find the lui/addui pair, so return stub address. */
5319 return target_pc;
5320 }
5321 else
5322 /* This is the 'return' part of a call stub. The return
5323 address is in $r18. */
6c997a34 5324 return read_signed_register (18);
c906108c
SS
5325 }
5326 }
c5aa993b 5327 return 0; /* not a stub */
c906108c
SS
5328}
5329
5330
5331/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5332 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5333
757a7cc6 5334static int
acdb74a0 5335mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5336{
5337 CORE_ADDR start_addr;
5338
5339 /* Find the starting address of the function containing the PC. If the
5340 caller didn't give us a name, look it up at the same time. */
5341 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5342 return 0;
5343
5344 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5345 {
5346 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5347 if (name[19] >= '0' && name[19] <= '9')
5348 return 1;
5349 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5350 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5351 else if (name[19] == 's' || name[19] == 'd')
5352 return pc == start_addr;
5353 }
5354
c5aa993b 5355 return 0; /* not a stub */
c906108c
SS
5356}
5357
5358
5359/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5360 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5361
e41b17f0 5362static int
acdb74a0 5363mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5364{
5365 CORE_ADDR start_addr;
5366
5367 /* Find the starting address of the function containing the PC. */
5368 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5369 return 0;
5370
5371 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5372 if (strcmp (name, "__mips16_ret_sf") == 0
5373 || strcmp (name, "__mips16_ret_df") == 0)
5374 return 1;
5375
5376 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5377 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5378 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5379 && (name[19] == 's' || name[19] == 'd')
5380 && pc != start_addr)
5381 return 1;
5382
c5aa993b 5383 return 0; /* not a stub */
c906108c
SS
5384}
5385
5386
5387/* Return non-zero if the PC is in a library helper function that should
5388 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5389
5390int
acdb74a0 5391mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5392{
5393 char *name;
5394
5395 /* Find the starting address and name of the function containing the PC. */
5396 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5397 return 0;
5398
5399 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5400 that we want to ignore. */
5401 return (strcmp (name, "__mips16_ret_sf") == 0
5402 || strcmp (name, "__mips16_ret_df") == 0);
5403}
5404
5405
5406/* Return a location where we can set a breakpoint that will be hit
5407 when an inferior function call returns. This is normally the
5408 program's entry point. Executables that don't have an entry
5409 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5410 whose address is the location where the breakpoint should be placed. */
5411
f7ab6ec6 5412static CORE_ADDR
acdb74a0 5413mips_call_dummy_address (void)
c906108c
SS
5414{
5415 struct minimal_symbol *sym;
5416
5417 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5418 if (sym)
5419 return SYMBOL_VALUE_ADDRESS (sym);
5420 else
5421 return entry_point_address ();
5422}
5423
5424
47a8d4ba
AC
5425/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5426 the register stored on the stack (32) is different to its real raw
5427 size (64). The below ensures that registers are fetched from the
5428 stack using their ABI size and then stored into the RAW_BUFFER
5429 using their raw size.
5430
5431 The alternative to adding this function would be to add an ABI
5432 macro - REGISTER_STACK_SIZE(). */
5433
5434static void
acdb74a0 5435mips_get_saved_register (char *raw_buffer,
795e1e11 5436 int *optimizedp,
acdb74a0
AC
5437 CORE_ADDR *addrp,
5438 struct frame_info *frame,
5439 int regnum,
795e1e11 5440 enum lval_type *lvalp)
47a8d4ba 5441{
795e1e11
AC
5442 CORE_ADDR addrx;
5443 enum lval_type lvalx;
5444 int optimizedx;
47a8d4ba
AC
5445
5446 if (!target_has_registers)
5447 error ("No registers.");
5448
795e1e11
AC
5449 /* Make certain that all needed parameters are present. */
5450 if (addrp == NULL)
5451 addrp = &addrx;
5452 if (lvalp == NULL)
5453 lvalp = &lvalx;
5454 if (optimizedp == NULL)
5455 optimizedp = &optimizedx;
f796e4be
KB
5456 generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5457 regnum, lvalp);
795e1e11
AC
5458 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5459 have a pseudo register range that correspons to the ABI's, rather
5460 than the ISA's, view of registers. These registers would then
5461 implicitly describe their size and hence could be used without
5462 the below munging. */
5463 if ((*lvalp) == lval_memory)
47a8d4ba 5464 {
47a8d4ba
AC
5465 if (raw_buffer != NULL)
5466 {
47a8d4ba 5467 if (regnum < 32)
795e1e11
AC
5468 {
5469 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5470 saved. */
5471 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
fbd9dcd3 5472 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
795e1e11 5473 }
47a8d4ba
AC
5474 }
5475 }
47a8d4ba 5476}
2acceee2 5477
f7b9e9fc
AC
5478/* Immediately after a function call, return the saved pc.
5479 Can't always go through the frames for this because on some machines
5480 the new frame is not set up until the new function executes
5481 some instructions. */
5482
5483static CORE_ADDR
5484mips_saved_pc_after_call (struct frame_info *frame)
5485{
6c997a34 5486 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5487}
5488
5489
88c72b7d
AC
5490/* Convert a dbx stab register number (from `r' declaration) to a gdb
5491 REGNUM */
5492
5493static int
5494mips_stab_reg_to_regnum (int num)
5495{
2f38ef89 5496 if (num >= 0 && num < 32)
88c72b7d 5497 return num;
2f38ef89 5498 else if (num >= 38 && num < 70)
88c72b7d 5499 return num + FP0_REGNUM - 38;
040b99fd
KB
5500 else if (num == 70)
5501 return HI_REGNUM;
5502 else if (num == 71)
5503 return LO_REGNUM;
2f38ef89
KB
5504 else
5505 {
5506 /* This will hopefully (eventually) provoke a warning. Should
5507 we be calling complaint() here? */
5508 return NUM_REGS + NUM_PSEUDO_REGS;
5509 }
88c72b7d
AC
5510}
5511
2f38ef89
KB
5512
5513/* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
88c72b7d
AC
5514
5515static int
2f38ef89 5516mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5517{
2f38ef89 5518 if (num >= 0 && num < 32)
88c72b7d 5519 return num;
2f38ef89 5520 else if (num >= 32 && num < 64)
88c72b7d 5521 return num + FP0_REGNUM - 32;
040b99fd
KB
5522 else if (num == 64)
5523 return HI_REGNUM;
5524 else if (num == 65)
5525 return LO_REGNUM;
2f38ef89
KB
5526 else
5527 {
5528 /* This will hopefully (eventually) provoke a warning. Should
5529 we be calling complaint() here? */
5530 return NUM_REGS + NUM_PSEUDO_REGS;
5531 }
88c72b7d
AC
5532}
5533
2f38ef89 5534
fc0c74b1
AC
5535/* Convert an integer into an address. By first converting the value
5536 into a pointer and then extracting it signed, the address is
5537 guarenteed to be correctly sign extended. */
5538
5539static CORE_ADDR
5540mips_integer_to_address (struct type *type, void *buf)
5541{
5542 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5543 LONGEST val = unpack_long (type, buf);
5544 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5545 return extract_signed_integer (tmp,
5546 TYPE_LENGTH (builtin_type_void_data_ptr));
5547}
5548
caaa3122
DJ
5549static void
5550mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5551{
5552 enum mips_abi *abip = (enum mips_abi *) obj;
5553 const char *name = bfd_get_section_name (abfd, sect);
5554
5555 if (*abip != MIPS_ABI_UNKNOWN)
5556 return;
5557
5558 if (strncmp (name, ".mdebug.", 8) != 0)
5559 return;
5560
5561 if (strcmp (name, ".mdebug.abi32") == 0)
5562 *abip = MIPS_ABI_O32;
5563 else if (strcmp (name, ".mdebug.abiN32") == 0)
5564 *abip = MIPS_ABI_N32;
62a49b2c 5565 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5566 *abip = MIPS_ABI_N64;
caaa3122
DJ
5567 else if (strcmp (name, ".mdebug.abiO64") == 0)
5568 *abip = MIPS_ABI_O64;
5569 else if (strcmp (name, ".mdebug.eabi32") == 0)
5570 *abip = MIPS_ABI_EABI32;
5571 else if (strcmp (name, ".mdebug.eabi64") == 0)
5572 *abip = MIPS_ABI_EABI64;
5573 else
5574 warning ("unsupported ABI %s.", name + 8);
5575}
5576
2e4ebe70
DJ
5577static enum mips_abi
5578global_mips_abi (void)
5579{
5580 int i;
5581
5582 for (i = 0; mips_abi_strings[i] != NULL; i++)
5583 if (mips_abi_strings[i] == mips_abi_string)
5584 return (enum mips_abi) i;
5585
5586 internal_error (__FILE__, __LINE__,
5587 "unknown ABI string");
5588}
5589
c2d11a7d 5590static struct gdbarch *
acdb74a0
AC
5591mips_gdbarch_init (struct gdbarch_info info,
5592 struct gdbarch_list *arches)
c2d11a7d 5593{
c2d11a7d
JM
5594 struct gdbarch *gdbarch;
5595 struct gdbarch_tdep *tdep;
5596 int elf_flags;
2e4ebe70 5597 enum mips_abi mips_abi, found_abi, wanted_abi;
c2d11a7d 5598
1d06468c
EZ
5599 /* Reset the disassembly info, in case it was set to something
5600 non-default. */
810ecf9f
AC
5601 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5602 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5603 deprecated_tm_print_insn_info.mach = 0;
1d06468c 5604
70f80edf
JT
5605 elf_flags = 0;
5606
5607 if (info.abfd)
5608 {
5609 /* First of all, extract the elf_flags, if available. */
5610 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5611 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5612 }
c2d11a7d 5613
102182a9 5614 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5615 switch ((elf_flags & EF_MIPS_ABI))
5616 {
5617 case E_MIPS_ABI_O32:
5618 mips_abi = MIPS_ABI_O32;
5619 break;
5620 case E_MIPS_ABI_O64:
5621 mips_abi = MIPS_ABI_O64;
5622 break;
5623 case E_MIPS_ABI_EABI32:
5624 mips_abi = MIPS_ABI_EABI32;
5625 break;
5626 case E_MIPS_ABI_EABI64:
4a7f7ba8 5627 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5628 break;
5629 default:
acdb74a0
AC
5630 if ((elf_flags & EF_MIPS_ABI2))
5631 mips_abi = MIPS_ABI_N32;
5632 else
5633 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5634 break;
5635 }
acdb74a0 5636
caaa3122
DJ
5637 /* GCC creates a pseudo-section whose name describes the ABI. */
5638 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5639 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5640
2e4ebe70
DJ
5641 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5642 Use the ABI from the last architecture if there is one. */
5643 if (info.abfd == NULL && arches != NULL)
5644 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5645
32a6503c 5646 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5647 if (mips_abi == MIPS_ABI_UNKNOWN
5648 && info.bfd_arch_info != NULL
5649 && info.bfd_arch_info->arch == bfd_arch_mips)
5650 {
5651 switch (info.bfd_arch_info->mach)
5652 {
5653 case bfd_mach_mips3900:
5654 mips_abi = MIPS_ABI_EABI32;
5655 break;
5656 case bfd_mach_mips4100:
5657 case bfd_mach_mips5000:
5658 mips_abi = MIPS_ABI_EABI64;
5659 break;
1d06468c
EZ
5660 case bfd_mach_mips8000:
5661 case bfd_mach_mips10000:
32a6503c
KB
5662 /* On Irix, ELF64 executables use the N64 ABI. The
5663 pseudo-sections which describe the ABI aren't present
5664 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5665 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5666 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5667 mips_abi = MIPS_ABI_N64;
5668 else
5669 mips_abi = MIPS_ABI_N32;
1d06468c 5670 break;
bf64bfd6
AC
5671 }
5672 }
2e4ebe70 5673
2e4ebe70
DJ
5674 if (mips_abi == MIPS_ABI_UNKNOWN)
5675 mips_abi = MIPS_ABI_O32;
5676
5677 /* Now that we have found what the ABI for this binary would be,
5678 check whether the user is overriding it. */
5679 found_abi = mips_abi;
5680 wanted_abi = global_mips_abi ();
5681 if (wanted_abi != MIPS_ABI_UNKNOWN)
5682 mips_abi = wanted_abi;
5683
810ecf9f 5684 /* We have to set deprecated_tm_print_insn_info before looking for a
2252e863
AO
5685 pre-existing architecture, otherwise we may return before we get
5686 a chance to set it up. */
5687 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5688 {
5689 /* Set up the disassembler info, so that we get the right
5690 register names from libopcodes. */
5691 if (mips_abi == MIPS_ABI_N32)
810ecf9f 5692 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
2252e863 5693 else
810ecf9f
AC
5694 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5695 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5696 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
2252e863
AO
5697 if (info.bfd_arch_info != NULL
5698 && info.bfd_arch_info->arch == bfd_arch_mips
5699 && info.bfd_arch_info->mach)
810ecf9f 5700 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
2252e863 5701 else
810ecf9f 5702 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
2252e863
AO
5703 }
5704 else
5705 /* This string is not recognized explicitly by the disassembler,
5706 but it tells the disassembler to not try to guess the ABI from
5707 the bfd elf headers, such that, if the user overrides the ABI
5708 of a program linked as NewABI, the disassembly will follow the
5709 register naming conventions specified by the user. */
810ecf9f 5710 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
2252e863 5711
4b9b3959
AC
5712 if (gdbarch_debug)
5713 {
5714 fprintf_unfiltered (gdb_stdlog,
9ace0497 5715 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5716 elf_flags);
4b9b3959
AC
5717 fprintf_unfiltered (gdb_stdlog,
5718 "mips_gdbarch_init: mips_abi = %d\n",
5719 mips_abi);
2e4ebe70
DJ
5720 fprintf_unfiltered (gdb_stdlog,
5721 "mips_gdbarch_init: found_mips_abi = %d\n",
5722 found_abi);
4b9b3959 5723 }
0dadbba0 5724
c2d11a7d
JM
5725 /* try to find a pre-existing architecture */
5726 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5727 arches != NULL;
5728 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5729 {
5730 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5731 using. */
9103eae0 5732 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5733 continue;
9103eae0 5734 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5735 continue;
4be87837 5736 return arches->gdbarch;
c2d11a7d
JM
5737 }
5738
102182a9 5739 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5740 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5741 gdbarch = gdbarch_alloc (&info, tdep);
5742 tdep->elf_flags = elf_flags;
5743
102182a9 5744 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5745 set_gdbarch_short_bit (gdbarch, 16);
5746 set_gdbarch_int_bit (gdbarch, 32);
5747 set_gdbarch_float_bit (gdbarch, 32);
5748 set_gdbarch_double_bit (gdbarch, 64);
5749 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5750 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
2e4ebe70 5751 tdep->found_abi = found_abi;
0dadbba0 5752 tdep->mips_abi = mips_abi;
1d06468c 5753
f7ab6ec6
MS
5754 set_gdbarch_elf_make_msymbol_special (gdbarch,
5755 mips_elf_make_msymbol_special);
5756
4be87837 5757 if (info.osabi == GDB_OSABI_IRIX)
fe29b929
KB
5758 set_gdbarch_num_regs (gdbarch, 71);
5759 else
5760 set_gdbarch_num_regs (gdbarch, 90);
5761
0dadbba0 5762 switch (mips_abi)
c2d11a7d 5763 {
0dadbba0 5764 case MIPS_ABI_O32:
25ab4790 5765 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
ebba8386 5766 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5767 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5768 tdep->mips_default_saved_regsize = 4;
0dadbba0 5769 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5770 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5771 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5772 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5773 tdep->gdb_target_is_mips64 = 0;
4014092b 5774 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5775 set_gdbarch_long_bit (gdbarch, 32);
5776 set_gdbarch_ptr_bit (gdbarch, 32);
5777 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5778 set_gdbarch_reg_struct_has_addr (gdbarch,
5779 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5780 set_gdbarch_use_struct_convention (gdbarch,
5781 mips_o32_use_struct_convention);
c2d11a7d 5782 break;
0dadbba0 5783 case MIPS_ABI_O64:
25ab4790 5784 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5785 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5786 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5787 tdep->mips_default_saved_regsize = 8;
0dadbba0 5788 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5789 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5790 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5791 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5792 tdep->gdb_target_is_mips64 = 1;
361d1df0 5793 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5794 set_gdbarch_long_bit (gdbarch, 32);
5795 set_gdbarch_ptr_bit (gdbarch, 32);
5796 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5797 set_gdbarch_reg_struct_has_addr (gdbarch,
5798 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5799 set_gdbarch_use_struct_convention (gdbarch,
5800 mips_o32_use_struct_convention);
c2d11a7d 5801 break;
0dadbba0 5802 case MIPS_ABI_EABI32:
25ab4790 5803 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5804 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5805 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5806 tdep->mips_default_saved_regsize = 4;
0dadbba0 5807 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5808 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5809 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5810 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5811 tdep->gdb_target_is_mips64 = 0;
4014092b 5812 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5813 set_gdbarch_long_bit (gdbarch, 32);
5814 set_gdbarch_ptr_bit (gdbarch, 32);
5815 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5816 set_gdbarch_reg_struct_has_addr (gdbarch,
5817 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5818 set_gdbarch_use_struct_convention (gdbarch,
5819 mips_eabi_use_struct_convention);
c2d11a7d 5820 break;
0dadbba0 5821 case MIPS_ABI_EABI64:
25ab4790 5822 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5823 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5824 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5825 tdep->mips_default_saved_regsize = 8;
0dadbba0 5826 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5827 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5828 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5829 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5830 tdep->gdb_target_is_mips64 = 1;
4014092b 5831 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5832 set_gdbarch_long_bit (gdbarch, 64);
5833 set_gdbarch_ptr_bit (gdbarch, 64);
5834 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5835 set_gdbarch_reg_struct_has_addr (gdbarch,
5836 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5837 set_gdbarch_use_struct_convention (gdbarch,
5838 mips_eabi_use_struct_convention);
c2d11a7d 5839 break;
0dadbba0 5840 case MIPS_ABI_N32:
25ab4790 5841 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5842 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5843 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5844 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5845 tdep->mips_default_stack_argsize = 8;
5846 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5847 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5848 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5849 tdep->gdb_target_is_mips64 = 1;
4014092b 5850 tdep->default_mask_address_p = 0;
0dadbba0
AC
5851 set_gdbarch_long_bit (gdbarch, 32);
5852 set_gdbarch_ptr_bit (gdbarch, 32);
5853 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5854 set_gdbarch_use_struct_convention (gdbarch,
5855 mips_n32n64_use_struct_convention);
8b389c40
MS
5856 set_gdbarch_reg_struct_has_addr (gdbarch,
5857 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5858 break;
5859 case MIPS_ABI_N64:
25ab4790 5860 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5861 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5862 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5863 tdep->mips_default_saved_regsize = 8;
5864 tdep->mips_default_stack_argsize = 8;
5865 tdep->mips_fp_register_double = 1;
5866 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5867 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5868 tdep->gdb_target_is_mips64 = 1;
5869 tdep->default_mask_address_p = 0;
5870 set_gdbarch_long_bit (gdbarch, 64);
5871 set_gdbarch_ptr_bit (gdbarch, 64);
5872 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5873 set_gdbarch_use_struct_convention (gdbarch,
5874 mips_n32n64_use_struct_convention);
8b389c40
MS
5875 set_gdbarch_reg_struct_has_addr (gdbarch,
5876 mips_n32n64_reg_struct_has_addr);
0dadbba0 5877 break;
c2d11a7d 5878 default:
2e4ebe70
DJ
5879 internal_error (__FILE__, __LINE__,
5880 "unknown ABI in switch");
c2d11a7d
JM
5881 }
5882
a5ea2558
AC
5883 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5884 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5885 comment:
5886
5887 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5888 flag in object files because to do so would make it impossible to
102182a9 5889 link with libraries compiled without "-gp32". This is
a5ea2558 5890 unnecessarily restrictive.
361d1df0 5891
a5ea2558
AC
5892 We could solve this problem by adding "-gp32" multilibs to gcc,
5893 but to set this flag before gcc is built with such multilibs will
5894 break too many systems.''
5895
5896 But even more unhelpfully, the default linker output target for
5897 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5898 for 64-bit programs - you need to change the ABI to change this,
102182a9 5899 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5900 this flag to detect 32-bit mode would do the wrong thing given
5901 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5902 as 32-bit programs by default. */
a5ea2558 5903
c2d11a7d
JM
5904 /* enable/disable the MIPS FPU */
5905 if (!mips_fpu_type_auto)
5906 tdep->mips_fpu_type = mips_fpu_type;
5907 else if (info.bfd_arch_info != NULL
5908 && info.bfd_arch_info->arch == bfd_arch_mips)
5909 switch (info.bfd_arch_info->mach)
5910 {
b0069a17 5911 case bfd_mach_mips3900:
c2d11a7d 5912 case bfd_mach_mips4100:
ed9a39eb 5913 case bfd_mach_mips4111:
c2d11a7d
JM
5914 tdep->mips_fpu_type = MIPS_FPU_NONE;
5915 break;
bf64bfd6
AC
5916 case bfd_mach_mips4650:
5917 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5918 break;
c2d11a7d
JM
5919 default:
5920 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5921 break;
5922 }
5923 else
5924 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5925
5926 /* MIPS version of register names. NOTE: At present the MIPS
5927 register name management is part way between the old -
5928 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5929 Further work on it is required. */
18f81521
MS
5930 /* NOTE: many targets (esp. embedded) do not go thru the
5931 gdbarch_register_name vector at all, instead bypassing it
5932 by defining REGISTER_NAMES. */
c2d11a7d 5933 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5934 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5935 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5936 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5937 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5938
102182a9
MS
5939 /* Add/remove bits from an address. The MIPS needs be careful to
5940 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5941 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5942
10312cc4 5943 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5944 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5945 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 5946 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5947
102182a9 5948 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5949 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
5950 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5951 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5952 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
88c72b7d 5953
c2d11a7d 5954 /* Initialize a frame */
e0f7ec59 5955 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 5956 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
5957
5958 /* MIPS version of CALL_DUMMY */
5959
c2d11a7d 5960 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
749b82f6 5961 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 5962 set_gdbarch_frame_align (gdbarch, mips_frame_align);
cedea778 5963 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
bf1f5b4c 5964 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5965 set_gdbarch_register_convert_to_virtual (gdbarch,
5966 mips_register_convert_to_virtual);
5967 set_gdbarch_register_convert_to_raw (gdbarch,
5968 mips_register_convert_to_raw);
5969
618ce49f 5970 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
5971 set_gdbarch_frameless_function_invocation (gdbarch,
5972 generic_frameless_function_invocation_not);
8bedc050 5973 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
5974 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5975 set_gdbarch_frame_args_skip (gdbarch, 0);
5976
129c1cd6 5977 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5978
f7b9e9fc
AC
5979 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5980 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5981 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5982
5983 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 5984 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 5985
fc0c74b1
AC
5986 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5987 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5988 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5989
102182a9
MS
5990 set_gdbarch_function_start_offset (gdbarch, 0);
5991
32a6503c
KB
5992 /* There are MIPS targets which do not yet use this since they still
5993 define REGISTER_VIRTUAL_TYPE. */
78fde5f8
KB
5994 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5995
e11c53d2 5996 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 5997 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 5998
70f80edf 5999 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 6000 gdbarch_init_osabi (info, gdbarch);
70f80edf 6001
2f1488ce
MS
6002 set_gdbarch_extract_struct_value_address (gdbarch,
6003 mips_extract_struct_value_address);
757a7cc6
MS
6004
6005 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6006
6007 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6008 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6009
4b9b3959
AC
6010 return gdbarch;
6011}
6012
2e4ebe70
DJ
6013static void
6014mips_abi_update (char *ignore_args, int from_tty,
6015 struct cmd_list_element *c)
6016{
6017 struct gdbarch_info info;
6018
6019 /* Force the architecture to update, and (if it's a MIPS architecture)
6020 mips_gdbarch_init will take care of the rest. */
6021 gdbarch_info_init (&info);
6022 gdbarch_update_p (info);
6023}
6024
ad188201
KB
6025/* Print out which MIPS ABI is in use. */
6026
6027static void
6028show_mips_abi (char *ignore_args, int from_tty)
6029{
6030 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6031 printf_filtered (
6032 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6033 else
6034 {
6035 enum mips_abi global_abi = global_mips_abi ();
6036 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6037 const char *actual_abi_str = mips_abi_strings[actual_abi];
6038
6039 if (global_abi == MIPS_ABI_UNKNOWN)
6040 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6041 actual_abi_str);
6042 else if (global_abi == actual_abi)
6043 printf_filtered (
6044 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6045 actual_abi_str);
6046 else
6047 {
6048 /* Probably shouldn't happen... */
6049 printf_filtered (
6050 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6051 actual_abi_str,
6052 mips_abi_strings[global_abi]);
6053 }
6054 }
6055}
6056
4b9b3959
AC
6057static void
6058mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6059{
6060 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6061 if (tdep != NULL)
c2d11a7d 6062 {
acdb74a0
AC
6063 int ef_mips_arch;
6064 int ef_mips_32bitmode;
6065 /* determine the ISA */
6066 switch (tdep->elf_flags & EF_MIPS_ARCH)
6067 {
6068 case E_MIPS_ARCH_1:
6069 ef_mips_arch = 1;
6070 break;
6071 case E_MIPS_ARCH_2:
6072 ef_mips_arch = 2;
6073 break;
6074 case E_MIPS_ARCH_3:
6075 ef_mips_arch = 3;
6076 break;
6077 case E_MIPS_ARCH_4:
93d56215 6078 ef_mips_arch = 4;
acdb74a0
AC
6079 break;
6080 default:
93d56215 6081 ef_mips_arch = 0;
acdb74a0
AC
6082 break;
6083 }
6084 /* determine the size of a pointer */
6085 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6086 fprintf_unfiltered (file,
6087 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6088 tdep->elf_flags);
4b9b3959 6089 fprintf_unfiltered (file,
acdb74a0
AC
6090 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6091 ef_mips_32bitmode);
6092 fprintf_unfiltered (file,
6093 "mips_dump_tdep: ef_mips_arch = %d\n",
6094 ef_mips_arch);
6095 fprintf_unfiltered (file,
6096 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6097 tdep->mips_abi,
2e4ebe70 6098 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6099 fprintf_unfiltered (file,
6100 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6101 mips_mask_address_p (),
6102 tdep->default_mask_address_p);
c2d11a7d 6103 }
4b9b3959
AC
6104 fprintf_unfiltered (file,
6105 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6106 FP_REGISTER_DOUBLE);
6107 fprintf_unfiltered (file,
6108 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6109 MIPS_DEFAULT_FPU_TYPE,
6110 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6111 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6112 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6113 : "???"));
6114 fprintf_unfiltered (file,
6115 "mips_dump_tdep: MIPS_EABI = %d\n",
6116 MIPS_EABI);
6117 fprintf_unfiltered (file,
acdb74a0
AC
6118 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6119 MIPS_LAST_FP_ARG_REGNUM,
6120 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6123 MIPS_FPU_TYPE,
6124 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6125 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6126 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6127 : "???"));
6128 fprintf_unfiltered (file,
6129 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6130 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6133 FP_REGISTER_DOUBLE);
4b9b3959
AC
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6136 MIPS_DEFAULT_STACK_ARGSIZE);
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6139 MIPS_STACK_ARGSIZE);
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6142 MIPS_REGSIZE);
2475bac3
AC
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: A0_REGNUM = %d\n",
6145 A0_REGNUM);
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6148 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6151 XSTRING (ATTACH_DETACH));
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6154 BADVADDR_REGNUM);
2475bac3
AC
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6157 CAUSE_REGNUM);
2475bac3
AC
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6160 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6163 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6166 FCRCS_REGNUM);
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6169 FCRIR_REGNUM);
6170 fprintf_unfiltered (file,
6171 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6172 FIRST_EMBED_REGNUM);
6173 fprintf_unfiltered (file,
6174 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6175 FPA0_REGNUM);
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6178 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6181 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: HI_REGNUM = %d\n",
6184 HI_REGNUM);
2475bac3
AC
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6187 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6190 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6193 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6196 LAST_EMBED_REGNUM);
2475bac3
AC
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: LO_REGNUM = %d\n",
6199 LO_REGNUM);
6200#ifdef MACHINE_CPROC_FP_OFFSET
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6203 MACHINE_CPROC_FP_OFFSET);
6204#endif
6205#ifdef MACHINE_CPROC_PC_OFFSET
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6208 MACHINE_CPROC_PC_OFFSET);
6209#endif
6210#ifdef MACHINE_CPROC_SP_OFFSET
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6213 MACHINE_CPROC_SP_OFFSET);
6214#endif
2475bac3
AC
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6217 MIPS16_INSTLEN);
2475bac3
AC
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6224 MIPS_INSTLEN);
6225 fprintf_unfiltered (file,
acdb74a0
AC
6226 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6227 MIPS_LAST_ARG_REGNUM,
6228 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6231 MIPS_NUMREGS);
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6236 MIPS_SAVED_REGSIZE);
2475bac3
AC
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: OP_LDFPR = used?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: OP_LDGPR = used?\n");
2475bac3
AC
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PRID_REGNUM = %d\n",
6243 PRID_REGNUM);
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6246 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: PROC_PC_REG = function?\n");
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: PS_REGNUM = %d\n",
6273 PS_REGNUM);
2475bac3
AC
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: RA_REGNUM = %d\n",
6276 RA_REGNUM);
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6279 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6282 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: ROUND_DOWN = function?\n");
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: ROUND_UP = function?\n");
6289#ifdef SAVED_BYTES
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: SAVED_BYTES = %d\n",
6292 SAVED_BYTES);
6293#endif
6294#ifdef SAVED_FP
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: SAVED_FP = %d\n",
6297 SAVED_FP);
6298#endif
6299#ifdef SAVED_PC
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SAVED_PC = %d\n",
6302 SAVED_PC);
6303#endif
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6306 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6311 SIGFRAME_BASE);
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6314 SIGFRAME_FPREGSAVE_OFF);
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6317 SIGFRAME_PC_OFF);
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6320 SIGFRAME_REGSAVE_OFF);
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6323 SIGFRAME_REG_SIZE);
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6326 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6329 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6330 fprintf_unfiltered (file,
b0ed3589
AC
6331 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6332 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6335 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6336#ifdef STACK_END_ADDR
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6339 STACK_END_ADDR);
6340#endif
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6343 XSTRING (STEP_SKIPS_DELAY (PC)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6346 STEP_SKIPS_DELAY_P);
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6349 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: T9_REGNUM = %d\n",
6352 T9_REGNUM);
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6357 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6360 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6361#ifdef TRACE_CLEAR
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6364 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6365#endif
6366#ifdef TRACE_FLAVOR
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6369 TRACE_FLAVOR);
6370#endif
6371#ifdef TRACE_FLAVOR_SIZE
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6374 TRACE_FLAVOR_SIZE);
6375#endif
6376#ifdef TRACE_SET
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: TRACE_SET # %s\n",
6379 XSTRING (TRACE_SET (X,STATE)));
6380#endif
2475bac3
AC
6381#ifdef UNUSED_REGNUM
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6384 UNUSED_REGNUM);
6385#endif
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: V0_REGNUM = %d\n",
6388 V0_REGNUM);
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6391 (long) VM_MIN_ADDRESS);
6392#ifdef VX_NUM_REGS
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6395 VX_NUM_REGS);
6396#endif
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6399 ZERO_REGNUM);
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6402 _PROC_MAGIC_);
c2d11a7d
JM
6403}
6404
c906108c 6405void
acdb74a0 6406_initialize_mips_tdep (void)
c906108c
SS
6407{
6408 static struct cmd_list_element *mipsfpulist = NULL;
6409 struct cmd_list_element *c;
6410
2e4ebe70
DJ
6411 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6412 if (MIPS_ABI_LAST + 1
6413 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6414 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6415
4b9b3959 6416 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
d7a27068
AC
6417 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6418 deprecated_tm_print_insn = gdb_print_insn_mips;
c906108c 6419
a5ea2558
AC
6420 /* Add root prefix command for all "set mips"/"show mips" commands */
6421 add_prefix_cmd ("mips", no_class, set_mips_command,
6422 "Various MIPS specific commands.",
6423 &setmipscmdlist, "set mips ", 0, &setlist);
6424
6425 add_prefix_cmd ("mips", no_class, show_mips_command,
6426 "Various MIPS specific commands.",
6427 &showmipscmdlist, "show mips ", 0, &showlist);
6428
6429 /* Allow the user to override the saved register size. */
6430 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6431 class_obscure,
6432 size_enums,
6433 &mips_saved_regsize_string, "\
a5ea2558
AC
6434Set size of general purpose registers saved on the stack.\n\
6435This option can be set to one of:\n\
6436 32 - Force GDB to treat saved GP registers as 32-bit\n\
6437 64 - Force GDB to treat saved GP registers as 64-bit\n\
6438 auto - Allow GDB to use the target's default setting or autodetect the\n\
6439 saved GP register size from information contained in the executable.\n\
6440 (default: auto)",
1ed2a135 6441 &setmipscmdlist),
a5ea2558
AC
6442 &showmipscmdlist);
6443
d929b26f
AC
6444 /* Allow the user to override the argument stack size. */
6445 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6446 class_obscure,
6447 size_enums,
1ed2a135 6448 &mips_stack_argsize_string, "\
d929b26f
AC
6449Set the amount of stack space reserved for each argument.\n\
6450This option can be set to one of:\n\
6451 32 - Force GDB to allocate 32-bit chunks per argument\n\
6452 64 - Force GDB to allocate 64-bit chunks per argument\n\
6453 auto - Allow GDB to determine the correct setting from the current\n\
6454 target and executable (default)",
6455 &setmipscmdlist),
6456 &showmipscmdlist);
6457
2e4ebe70
DJ
6458 /* Allow the user to override the ABI. */
6459 c = add_set_enum_cmd
6460 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6461 "Set the ABI used by this program.\n"
6462 "This option can be set to one of:\n"
6463 " auto - the default ABI associated with the current binary\n"
6464 " o32\n"
6465 " o64\n"
6466 " n32\n"
f3a7b3a5 6467 " n64\n"
2e4ebe70
DJ
6468 " eabi32\n"
6469 " eabi64",
6470 &setmipscmdlist);
2e4ebe70 6471 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6472 add_cmd ("abi", class_obscure, show_mips_abi,
6473 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6474
c906108c
SS
6475 /* Let the user turn off floating point and set the fence post for
6476 heuristic_proc_start. */
6477
6478 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6479 "Set use of MIPS floating-point coprocessor.",
6480 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6481 add_cmd ("single", class_support, set_mipsfpu_single_command,
6482 "Select single-precision MIPS floating-point coprocessor.",
6483 &mipsfpulist);
6484 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6485 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6486 &mipsfpulist);
6487 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6488 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6489 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6490 add_cmd ("none", class_support, set_mipsfpu_none_command,
6491 "Select no MIPS floating-point coprocessor.",
6492 &mipsfpulist);
6493 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6494 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6495 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6496 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6497 "Select MIPS floating-point coprocessor automatically.",
6498 &mipsfpulist);
6499 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6500 "Show current use of MIPS floating-point coprocessor target.",
6501 &showlist);
6502
c906108c
SS
6503 /* We really would like to have both "0" and "unlimited" work, but
6504 command.c doesn't deal with that. So make it a var_zinteger
6505 because the user can always use "999999" or some such for unlimited. */
6506 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6507 (char *) &heuristic_fence_post,
6508 "\
6509Set the distance searched for the start of a function.\n\
6510If you are debugging a stripped executable, GDB needs to search through the\n\
6511program for the start of a function. This command sets the distance of the\n\
6512search. The only need to set it is when debugging a stripped executable.",
6513 &setlist);
6514 /* We need to throw away the frame cache when we set this, since it
6515 might change our ability to get backtraces. */
9f60d481 6516 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6517 add_show_from_set (c, &showlist);
6518
6519 /* Allow the user to control whether the upper bits of 64-bit
6520 addresses should be zeroed. */
e9e68a56
AC
6521 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6522Set zeroing of upper 32 bits of 64-bit addresses.\n\
6523Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6524allow GDB to determine the correct value.\n", "\
6525Show zeroing of upper 32 bits of 64-bit addresses.",
6526 NULL, show_mask_address,
6527 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6528
6529 /* Allow the user to control the size of 32 bit registers within the
6530 raw remote packet. */
6531 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6532 class_obscure,
6533 var_boolean,
6534 (char *)&mips64_transfers_32bit_regs_p, "\
6535Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6536Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6537that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
653864 bits for others. Use \"off\" to disable compatibility mode",
6539 &setlist),
6540 &showlist);
9ace0497
AC
6541
6542 /* Debug this files internals. */
6543 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6544 &mips_debug, "Set mips debugging.\n\
6545When non-zero, mips specific debugging is enabled.", &setdebuglist),
6546 &showdebuglist);
c906108c 6547}
This page took 0.87046 seconds and 4 git commands to generate.