Consistent use of (C) after "Copyright".
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
28e7fd62 3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
5e2e9765 25#include "gdb_assert.h"
c906108c
SS
26#include "frame.h"
27#include "inferior.h"
28#include "symtab.h"
29#include "value.h"
30#include "gdbcmd.h"
31#include "language.h"
32#include "gdbcore.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "gdbtypes.h"
36#include "target.h"
28d069e6 37#include "arch-utils.h"
4e052eda 38#include "regcache.h"
70f80edf 39#include "osabi.h"
d1973055 40#include "mips-tdep.h"
fe898f56 41#include "block.h"
a4b8ebc8 42#include "reggroups.h"
c906108c 43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
a4b8ebc8 47#include "sim-regno.h"
a89aa300 48#include "dis-asm.h"
edfae063
AC
49#include "frame-unwind.h"
50#include "frame-base.h"
51#include "trad-frame.h"
7d9b040b 52#include "infcall.h"
fed7ba43 53#include "floatformat.h"
29709017
DJ
54#include "remote.h"
55#include "target-descriptions.h"
2bd0c3d7 56#include "dwarf2-frame.h"
f8b73d13 57#include "user-regs.h"
79a45b7d 58#include "valprint.h"
175ff332 59#include "ax.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
4cc0665f
MR
65static int mips32_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR);
66static int micromips_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
67 int);
68static int mips16_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
69 int);
70
24e05951 71/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
72/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
73#define ST0_FR (1 << 26)
74
b0069a17
AC
75/* The sizes of floating point registers. */
76
77enum
78{
79 MIPS_FPU_SINGLE_REGSIZE = 4,
80 MIPS_FPU_DOUBLE_REGSIZE = 8
81};
82
1a69e1e4
DJ
83enum
84{
85 MIPS32_REGSIZE = 4,
86 MIPS64_REGSIZE = 8
87};
0dadbba0 88
2e4ebe70
DJ
89static const char *mips_abi_string;
90
40478521 91static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
92 "auto",
93 "n32",
94 "o32",
28d169de 95 "n64",
2e4ebe70
DJ
96 "o64",
97 "eabi32",
98 "eabi64",
99 NULL
100};
101
4cc0665f
MR
102/* For backwards compatibility we default to MIPS16. This flag is
103 overridden as soon as unambiguous ELF file flags tell us the
104 compressed ISA encoding used. */
105static const char mips_compression_mips16[] = "mips16";
106static const char mips_compression_micromips[] = "micromips";
107static const char *const mips_compression_strings[] =
108{
109 mips_compression_mips16,
110 mips_compression_micromips,
111 NULL
112};
113
114static const char *mips_compression_string = mips_compression_mips16;
115
f8b73d13
DJ
116/* The standard register names, and all the valid aliases for them. */
117struct register_alias
118{
119 const char *name;
120 int regnum;
121};
122
123/* Aliases for o32 and most other ABIs. */
124const struct register_alias mips_o32_aliases[] = {
125 { "ta0", 12 },
126 { "ta1", 13 },
127 { "ta2", 14 },
128 { "ta3", 15 }
129};
130
131/* Aliases for n32 and n64. */
132const struct register_alias mips_n32_n64_aliases[] = {
133 { "ta0", 8 },
134 { "ta1", 9 },
135 { "ta2", 10 },
136 { "ta3", 11 }
137};
138
139/* Aliases for ABI-independent registers. */
140const struct register_alias mips_register_aliases[] = {
141 /* The architecture manuals specify these ABI-independent names for
142 the GPRs. */
143#define R(n) { "r" #n, n }
144 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
145 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
146 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
147 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
148#undef R
149
150 /* k0 and k1 are sometimes called these instead (for "kernel
151 temp"). */
152 { "kt0", 26 },
153 { "kt1", 27 },
154
155 /* This is the traditional GDB name for the CP0 status register. */
156 { "sr", MIPS_PS_REGNUM },
157
158 /* This is the traditional GDB name for the CP0 BadVAddr register. */
159 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
160
161 /* This is the traditional GDB name for the FCSR. */
162 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
163};
164
865093a3
AR
165const struct register_alias mips_numeric_register_aliases[] = {
166#define R(n) { #n, n }
167 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
168 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
169 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
170 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
171#undef R
172};
173
c906108c
SS
174#ifndef MIPS_DEFAULT_FPU_TYPE
175#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
176#endif
177static int mips_fpu_type_auto = 1;
178static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 179
ccce17b0 180static unsigned int mips_debug = 0;
7a292a7a 181
29709017
DJ
182/* Properties (for struct target_desc) describing the g/G packet
183 layout. */
184#define PROPERTY_GP32 "internal: transfers-32bit-registers"
185#define PROPERTY_GP64 "internal: transfers-64bit-registers"
186
4eb0ad19
DJ
187struct target_desc *mips_tdesc_gp32;
188struct target_desc *mips_tdesc_gp64;
189
56cea623
AC
190const struct mips_regnum *
191mips_regnum (struct gdbarch *gdbarch)
192{
193 return gdbarch_tdep (gdbarch)->regnum;
194}
195
196static int
197mips_fpa0_regnum (struct gdbarch *gdbarch)
198{
199 return mips_regnum (gdbarch)->fp0 + 12;
200}
201
004159a2
MR
202/* Return 1 if REGNUM refers to a floating-point general register, raw
203 or cooked. Otherwise return 0. */
204
205static int
206mips_float_register_p (struct gdbarch *gdbarch, int regnum)
207{
208 int rawnum = regnum % gdbarch_num_regs (gdbarch);
209
210 return (rawnum >= mips_regnum (gdbarch)->fp0
211 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
212}
213
74ed0bb4
MD
214#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
215 == MIPS_ABI_EABI32 \
216 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 217
025bb325
MS
218#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
219 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 220
025bb325
MS
221#define MIPS_LAST_ARG_REGNUM(gdbarch) \
222 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 223
74ed0bb4 224#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 225
d1973055
KB
226/* Return the MIPS ABI associated with GDBARCH. */
227enum mips_abi
228mips_abi (struct gdbarch *gdbarch)
229{
230 return gdbarch_tdep (gdbarch)->mips_abi;
231}
232
4246e332 233int
1b13c4f6 234mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 235{
29709017
DJ
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* If we know how big the registers are, use that size. */
239 if (tdep->register_size_valid_p)
240 return tdep->register_size;
241
242 /* Fall back to the previous behavior. */
4246e332
AC
243 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
244 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
245}
246
025bb325 247/* Return the currently configured (or set) saved register size. */
480d3dd2 248
e6bc2e8a 249unsigned int
13326b4e 250mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 251{
1a69e1e4
DJ
252 switch (mips_abi (gdbarch))
253 {
254 case MIPS_ABI_EABI32:
255 case MIPS_ABI_O32:
256 return 4;
257 case MIPS_ABI_N32:
258 case MIPS_ABI_N64:
259 case MIPS_ABI_O64:
260 case MIPS_ABI_EABI64:
261 return 8;
262 case MIPS_ABI_UNKNOWN:
263 case MIPS_ABI_LAST:
264 default:
265 internal_error (__FILE__, __LINE__, _("bad switch"));
266 }
d929b26f
AC
267}
268
4cc0665f
MR
269/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
270 are some functions to handle addresses associated with compressed
271 code including but not limited to testing, setting, or clearing
272 bit 0 of such addresses. */
742c84f6 273
4cc0665f
MR
274/* Return one iff compressed code is the MIPS16 instruction set. */
275
276static int
277is_mips16_isa (struct gdbarch *gdbarch)
278{
279 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
280}
281
282/* Return one iff compressed code is the microMIPS instruction set. */
283
284static int
285is_micromips_isa (struct gdbarch *gdbarch)
286{
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
288}
289
290/* Return one iff ADDR denotes compressed code. */
291
292static int
293is_compact_addr (CORE_ADDR addr)
742c84f6
MR
294{
295 return ((addr) & 1);
296}
297
4cc0665f
MR
298/* Return one iff ADDR denotes standard ISA code. */
299
300static int
301is_mips_addr (CORE_ADDR addr)
302{
303 return !is_compact_addr (addr);
304}
305
306/* Return one iff ADDR denotes MIPS16 code. */
307
308static int
309is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
310{
311 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
312}
313
314/* Return one iff ADDR denotes microMIPS code. */
315
316static int
317is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318{
319 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
320}
321
322/* Strip the ISA (compression) bit off from ADDR. */
323
742c84f6 324static CORE_ADDR
4cc0665f 325unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
326{
327 return ((addr) & ~(CORE_ADDR) 1);
328}
329
4cc0665f
MR
330/* Add the ISA (compression) bit to ADDR. */
331
742c84f6 332static CORE_ADDR
4cc0665f 333make_compact_addr (CORE_ADDR addr)
742c84f6
MR
334{
335 return ((addr) | (CORE_ADDR) 1);
336}
337
71b8ef93 338/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
339 marks it as MIPS16 or microMIPS function. The MSB of the minimal
340 symbol's "info" field is used for this purpose.
5a89d8aa 341
4cc0665f
MR
342 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
343 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
344 one of the "special" bits in a minimal symbol to mark it accordingly.
345 The test checks an ELF-private flag that is valid for true function
346 symbols only; in particular synthetic symbols such as for PLT stubs
347 have no ELF-private part at all.
5a89d8aa 348
4cc0665f
MR
349 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
350 in a minimal symbol. */
5a89d8aa 351
5a89d8aa 352static void
6d82d43b
AC
353mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
354{
4cc0665f
MR
355 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
356
357 if ((sym->flags & BSF_SYNTHETIC) != 0)
358 return;
359
360 if (ELF_ST_IS_MICROMIPS (elfsym->internal_elf_sym.st_other))
361 MSYMBOL_TARGET_FLAG_2 (msym) = 1;
362 else if (ELF_ST_IS_MIPS16 (elfsym->internal_elf_sym.st_other))
363 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
364}
365
366/* Return one iff MSYM refers to standard ISA code. */
367
368static int
369msymbol_is_mips (struct minimal_symbol *msym)
370{
371 return !(MSYMBOL_TARGET_FLAG_1 (msym) | MSYMBOL_TARGET_FLAG_2 (msym));
5a89d8aa
MS
372}
373
4cc0665f
MR
374/* Return one iff MSYM refers to MIPS16 code. */
375
71b8ef93 376static int
4cc0665f 377msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 378{
b887350f 379 return MSYMBOL_TARGET_FLAG_1 (msym);
71b8ef93
MS
380}
381
4cc0665f
MR
382/* Return one iff MSYM refers to microMIPS code. */
383
384static int
385msymbol_is_micromips (struct minimal_symbol *msym)
386{
387 return MSYMBOL_TARGET_FLAG_2 (msym);
388}
389
88658117
AC
390/* XFER a value from the big/little/left end of the register.
391 Depending on the size of the value it might occupy the entire
392 register or just part of it. Make an allowance for this, aligning
393 things accordingly. */
394
395static void
ba32f989
DJ
396mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
397 int reg_num, int length,
870cd05e
MK
398 enum bfd_endian endian, gdb_byte *in,
399 const gdb_byte *out, int buf_offset)
88658117 400{
88658117 401 int reg_offset = 0;
72a155b4
UW
402
403 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
404 /* Need to transfer the left or right part of the register, based on
405 the targets byte order. */
88658117
AC
406 switch (endian)
407 {
408 case BFD_ENDIAN_BIG:
72a155b4 409 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
410 break;
411 case BFD_ENDIAN_LITTLE:
412 reg_offset = 0;
413 break;
6d82d43b 414 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
415 reg_offset = 0;
416 break;
417 default:
e2e0b3e5 418 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
419 }
420 if (mips_debug)
cb1d2653
AC
421 fprintf_unfiltered (gdb_stderr,
422 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
423 reg_num, reg_offset, buf_offset, length);
88658117
AC
424 if (mips_debug && out != NULL)
425 {
426 int i;
cb1d2653 427 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 428 for (i = 0; i < length; i++)
cb1d2653 429 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
430 }
431 if (in != NULL)
6d82d43b
AC
432 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
433 in + buf_offset);
88658117 434 if (out != NULL)
6d82d43b
AC
435 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
436 out + buf_offset);
88658117
AC
437 if (mips_debug && in != NULL)
438 {
439 int i;
cb1d2653 440 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 441 for (i = 0; i < length; i++)
cb1d2653 442 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
443 }
444 if (mips_debug)
445 fprintf_unfiltered (gdb_stdlog, "\n");
446}
447
dd824b04
DJ
448/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
449 compatiblity mode. A return value of 1 means that we have
450 physical 64-bit registers, but should treat them as 32-bit registers. */
451
452static int
9c9acae0 453mips2_fp_compat (struct frame_info *frame)
dd824b04 454{
72a155b4 455 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
456 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
457 meaningful. */
72a155b4 458 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
459 return 0;
460
461#if 0
462 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
463 in all the places we deal with FP registers. PR gdb/413. */
464 /* Otherwise check the FR bit in the status register - it controls
465 the FP compatiblity mode. If it is clear we are in compatibility
466 mode. */
9c9acae0 467 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
468 return 1;
469#endif
361d1df0 470
dd824b04
DJ
471 return 0;
472}
473
7a292a7a 474#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 475
74ed0bb4 476static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 477
a14ed312 478static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 479
025bb325 480/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
481
482static struct cmd_list_element *setmipscmdlist = NULL;
483static struct cmd_list_element *showmipscmdlist = NULL;
484
5e2e9765
KB
485/* Integer registers 0 thru 31 are handled explicitly by
486 mips_register_name(). Processor specific registers 32 and above
8a9fc081 487 are listed in the following tables. */
691c0433 488
6d82d43b
AC
489enum
490{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
491
492/* Generic MIPS. */
493
494static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
495 "sr", "lo", "hi", "bad", "cause", "pc",
496 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
497 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
498 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
499 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 500 "fsr", "fir",
691c0433
AC
501};
502
503/* Names of IDT R3041 registers. */
504
505static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
506 "sr", "lo", "hi", "bad", "cause", "pc",
507 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
508 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
509 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
510 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
511 "fsr", "fir", "", /*"fp" */ "",
512 "", "", "bus", "ccfg", "", "", "", "",
513 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
514};
515
516/* Names of tx39 registers. */
517
518static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
519 "sr", "lo", "hi", "bad", "cause", "pc",
520 "", "", "", "", "", "", "", "",
521 "", "", "", "", "", "", "", "",
522 "", "", "", "", "", "", "", "",
523 "", "", "", "", "", "", "", "",
524 "", "", "", "",
525 "", "", "", "", "", "", "", "",
1faeff08 526 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
527};
528
529/* Names of IRIX registers. */
530static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
531 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
532 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
533 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
534 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
535 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
536};
537
44099a67 538/* Names of registers with Linux kernels. */
1faeff08
MR
539static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
540 "sr", "lo", "hi", "bad", "cause", "pc",
541 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
542 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
543 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
544 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
545 "fsr", "fir"
546};
547
cce74817 548
5e2e9765 549/* Return the name of the register corresponding to REGNO. */
5a89d8aa 550static const char *
d93859e2 551mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 552{
d93859e2 553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
554 /* GPR names for all ABIs other than n32/n64. */
555 static char *mips_gpr_names[] = {
6d82d43b
AC
556 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
557 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
558 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
559 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
560 };
561
562 /* GPR names for n32 and n64 ABIs. */
563 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
564 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
565 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
566 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
567 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
568 };
569
d93859e2 570 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 571
f57d151a 572 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
573 but then don't make the raw register names visible. This (upper)
574 range of user visible register numbers are the pseudo-registers.
575
576 This approach was adopted accommodate the following scenario:
577 It is possible to debug a 64-bit device using a 32-bit
578 programming model. In such instances, the raw registers are
579 configured to be 64-bits wide, while the pseudo registers are
580 configured to be 32-bits wide. The registers that the user
581 sees - the pseudo registers - match the users expectations
582 given the programming model being used. */
d93859e2
UW
583 int rawnum = regno % gdbarch_num_regs (gdbarch);
584 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
585 return "";
586
5e2e9765
KB
587 /* The MIPS integer registers are always mapped from 0 to 31. The
588 names of the registers (which reflects the conventions regarding
589 register use) vary depending on the ABI. */
a4b8ebc8 590 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
591 {
592 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 593 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 594 else
a4b8ebc8 595 return mips_gpr_names[rawnum];
5e2e9765 596 }
d93859e2
UW
597 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
598 return tdesc_register_name (gdbarch, rawnum);
599 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
600 {
601 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
602 if (tdep->mips_processor_reg_names[rawnum - 32])
603 return tdep->mips_processor_reg_names[rawnum - 32];
604 return "";
691c0433 605 }
5e2e9765
KB
606 else
607 internal_error (__FILE__, __LINE__,
e2e0b3e5 608 _("mips_register_name: bad register number %d"), rawnum);
cce74817 609}
5e2e9765 610
a4b8ebc8 611/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 612
a4b8ebc8
AC
613static int
614mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
615 struct reggroup *reggroup)
616{
617 int vector_p;
618 int float_p;
619 int raw_p;
72a155b4
UW
620 int rawnum = regnum % gdbarch_num_regs (gdbarch);
621 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
622 if (reggroup == all_reggroup)
623 return pseudo;
624 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
625 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
626 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
627 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
628 raw_p = rawnum < gdbarch_num_regs (gdbarch);
629 if (gdbarch_register_name (gdbarch, regnum) == NULL
630 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
631 return 0;
632 if (reggroup == float_reggroup)
633 return float_p && pseudo;
634 if (reggroup == vector_reggroup)
635 return vector_p && pseudo;
636 if (reggroup == general_reggroup)
637 return (!vector_p && !float_p) && pseudo;
638 /* Save the pseudo registers. Need to make certain that any code
639 extracting register values from a saved register cache also uses
640 pseudo registers. */
641 if (reggroup == save_reggroup)
642 return raw_p && pseudo;
643 /* Restore the same pseudo register. */
644 if (reggroup == restore_reggroup)
645 return raw_p && pseudo;
6d82d43b 646 return 0;
a4b8ebc8
AC
647}
648
f8b73d13
DJ
649/* Return the groups that a MIPS register can be categorised into.
650 This version is only used if we have a target description which
651 describes real registers (and their groups). */
652
653static int
654mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
655 struct reggroup *reggroup)
656{
657 int rawnum = regnum % gdbarch_num_regs (gdbarch);
658 int pseudo = regnum / gdbarch_num_regs (gdbarch);
659 int ret;
660
661 /* Only save, restore, and display the pseudo registers. Need to
662 make certain that any code extracting register values from a
663 saved register cache also uses pseudo registers.
664
665 Note: saving and restoring the pseudo registers is slightly
666 strange; if we have 64 bits, we should save and restore all
667 64 bits. But this is hard and has little benefit. */
668 if (!pseudo)
669 return 0;
670
671 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
672 if (ret != -1)
673 return ret;
674
675 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
676}
677
a4b8ebc8 678/* Map the symbol table registers which live in the range [1 *
f57d151a 679 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 680 registers. Take care of alignment and size problems. */
c5aa993b 681
05d1431c 682static enum register_status
a4b8ebc8 683mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 684 int cookednum, gdb_byte *buf)
a4b8ebc8 685{
72a155b4
UW
686 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
687 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
688 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 689 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
05d1431c 690 return regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
691 else if (register_size (gdbarch, rawnum) >
692 register_size (gdbarch, cookednum))
47ebcfbe 693 {
8bdf35dc 694 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
05d1431c 695 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
47ebcfbe 696 else
8bdf35dc
KB
697 {
698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
699 LONGEST regval;
05d1431c
PA
700 enum register_status status;
701
702 status = regcache_raw_read_signed (regcache, rawnum, &regval);
703 if (status == REG_VALID)
704 store_signed_integer (buf, 4, byte_order, regval);
705 return status;
8bdf35dc 706 }
47ebcfbe
AC
707 }
708 else
e2e0b3e5 709 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
710}
711
712static void
6d82d43b
AC
713mips_pseudo_register_write (struct gdbarch *gdbarch,
714 struct regcache *regcache, int cookednum,
47a35522 715 const gdb_byte *buf)
a4b8ebc8 716{
72a155b4
UW
717 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
718 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
719 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 720 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 721 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
722 else if (register_size (gdbarch, rawnum) >
723 register_size (gdbarch, cookednum))
47ebcfbe 724 {
8bdf35dc 725 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
726 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
727 else
8bdf35dc
KB
728 {
729 /* Sign extend the shortened version of the register prior
730 to placing it in the raw register. This is required for
731 some mips64 parts in order to avoid unpredictable behavior. */
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
734 regcache_raw_write_signed (regcache, rawnum, regval);
735 }
47ebcfbe
AC
736 }
737 else
e2e0b3e5 738 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 739}
c5aa993b 740
175ff332
HZ
741static int
742mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
743 struct agent_expr *ax, int reg)
744{
745 int rawnum = reg % gdbarch_num_regs (gdbarch);
746 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
747 && reg < 2 * gdbarch_num_regs (gdbarch));
748
749 ax_reg_mask (ax, rawnum);
750
751 return 0;
752}
753
754static int
755mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
756 struct agent_expr *ax, int reg)
757{
758 int rawnum = reg % gdbarch_num_regs (gdbarch);
759 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
760 && reg < 2 * gdbarch_num_regs (gdbarch));
761 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
762 {
763 ax_reg (ax, rawnum);
764
765 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
766 {
767 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
768 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
769 {
770 ax_const_l (ax, 32);
771 ax_simple (ax, aop_lsh);
772 }
773 ax_const_l (ax, 32);
774 ax_simple (ax, aop_rsh_signed);
775 }
776 }
777 else
778 internal_error (__FILE__, __LINE__, _("bad register size"));
779
780 return 0;
781}
782
4cc0665f 783/* Table to translate 3-bit register field to actual register number. */
d467df4e 784static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
785
786/* Heuristic_proc_start may hunt through the text section for a long
787 time across a 2400 baud serial line. Allows the user to limit this
788 search. */
789
790static unsigned int heuristic_fence_post = 0;
791
46cd78fb 792/* Number of bytes of storage in the actual machine representation for
719ec221
AC
793 register N. NOTE: This defines the pseudo register type so need to
794 rebuild the architecture vector. */
43e526b9
JM
795
796static int mips64_transfers_32bit_regs_p = 0;
797
719ec221
AC
798static void
799set_mips64_transfers_32bit_regs (char *args, int from_tty,
800 struct cmd_list_element *c)
43e526b9 801{
719ec221
AC
802 struct gdbarch_info info;
803 gdbarch_info_init (&info);
804 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
805 instead of relying on globals. Doing that would let generic code
806 handle the search for this specific architecture. */
807 if (!gdbarch_update_p (info))
a4b8ebc8 808 {
719ec221 809 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 810 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 811 }
a4b8ebc8
AC
812}
813
47ebcfbe 814/* Convert to/from a register and the corresponding memory value. */
43e526b9 815
ee51a8c7
KB
816/* This predicate tests for the case of an 8 byte floating point
817 value that is being transferred to or from a pair of floating point
818 registers each of which are (or are considered to be) only 4 bytes
819 wide. */
ff2e87ac 820static int
ee51a8c7
KB
821mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
822 struct type *type)
ff2e87ac 823{
0abe36f5
MD
824 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
825 && register_size (gdbarch, regnum) == 4
004159a2 826 && mips_float_register_p (gdbarch, regnum)
6d82d43b 827 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
828}
829
ee51a8c7
KB
830/* This predicate tests for the case of a value of less than 8
831 bytes in width that is being transfered to or from an 8 byte
832 general purpose register. */
833static int
834mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
835 struct type *type)
836{
837 int num_regs = gdbarch_num_regs (gdbarch);
838
839 return (register_size (gdbarch, regnum) == 8
840 && regnum % num_regs > 0 && regnum % num_regs < 32
841 && TYPE_LENGTH (type) < 8);
842}
843
844static int
025bb325
MS
845mips_convert_register_p (struct gdbarch *gdbarch,
846 int regnum, struct type *type)
ee51a8c7 847{
eaa05d59
MR
848 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
849 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
850}
851
8dccd430 852static int
ff2e87ac 853mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
854 struct type *type, gdb_byte *to,
855 int *optimizedp, int *unavailablep)
102182a9 856{
ee51a8c7
KB
857 struct gdbarch *gdbarch = get_frame_arch (frame);
858
859 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
860 {
861 get_frame_register (frame, regnum + 0, to + 4);
862 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
863
864 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
865 optimizedp, unavailablep))
866 return 0;
867
868 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
869 optimizedp, unavailablep))
870 return 0;
871 *optimizedp = *unavailablep = 0;
872 return 1;
ee51a8c7
KB
873 }
874 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
875 {
876 int len = TYPE_LENGTH (type);
8dccd430
PA
877 CORE_ADDR offset;
878
879 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
880 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
881 optimizedp, unavailablep))
882 return 0;
883
884 *optimizedp = *unavailablep = 0;
885 return 1;
ee51a8c7
KB
886 }
887 else
888 {
889 internal_error (__FILE__, __LINE__,
890 _("mips_register_to_value: unrecognized case"));
891 }
102182a9
MS
892}
893
42c466d7 894static void
ff2e87ac 895mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 896 struct type *type, const gdb_byte *from)
102182a9 897{
ee51a8c7
KB
898 struct gdbarch *gdbarch = get_frame_arch (frame);
899
900 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
901 {
902 put_frame_register (frame, regnum + 0, from + 4);
903 put_frame_register (frame, regnum + 1, from + 0);
904 }
905 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
906 {
907 gdb_byte fill[8];
908 int len = TYPE_LENGTH (type);
909
910 /* Sign extend values, irrespective of type, that are stored to
911 a 64-bit general purpose register. (32-bit unsigned values
912 are stored as signed quantities within a 64-bit register.
913 When performing an operation, in compiled code, that combines
914 a 32-bit unsigned value with a signed 64-bit value, a type
915 conversion is first performed that zeroes out the high 32 bits.) */
916 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
917 {
918 if (from[0] & 0x80)
919 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
920 else
921 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
922 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
923 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
924 }
925 else
926 {
927 if (from[len-1] & 0x80)
928 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
929 else
930 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
931 put_frame_register_bytes (frame, regnum, 0, len, from);
932 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
933 }
934 }
935 else
936 {
937 internal_error (__FILE__, __LINE__,
938 _("mips_value_to_register: unrecognized case"));
939 }
102182a9
MS
940}
941
a4b8ebc8
AC
942/* Return the GDB type object for the "standard" data type of data in
943 register REG. */
78fde5f8
KB
944
945static struct type *
a4b8ebc8
AC
946mips_register_type (struct gdbarch *gdbarch, int regnum)
947{
72a155b4 948 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 949 if (mips_float_register_p (gdbarch, regnum))
a6425924 950 {
5ef80fb0 951 /* The floating-point registers raw, or cooked, always match
1b13c4f6 952 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 953 if (mips_isa_regsize (gdbarch) == 4)
27067745 954 return builtin_type (gdbarch)->builtin_float;
8da61cc4 955 else
27067745 956 return builtin_type (gdbarch)->builtin_double;
a6425924 957 }
72a155b4 958 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
959 {
960 /* The raw or ISA registers. These are all sized according to
961 the ISA regsize. */
962 if (mips_isa_regsize (gdbarch) == 4)
df4df182 963 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 964 else
df4df182 965 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 966 }
78fde5f8 967 else
d5ac5a39 968 {
1faeff08
MR
969 int rawnum = regnum - gdbarch_num_regs (gdbarch);
970
d5ac5a39
AC
971 /* The cooked or ABI registers. These are sized according to
972 the ABI (with a few complications). */
1faeff08
MR
973 if (rawnum == mips_regnum (gdbarch)->fp_control_status
974 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
975 return builtin_type (gdbarch)->builtin_int32;
976 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
977 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
978 && rawnum >= MIPS_FIRST_EMBED_REGNUM
979 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
980 /* The pseudo/cooked view of the embedded registers is always
981 32-bit. The raw view is handled below. */
df4df182 982 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
983 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
984 /* The target, while possibly using a 64-bit register buffer,
985 is only transfering 32-bits of each integer register.
986 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 987 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
988 else if (mips_abi_regsize (gdbarch) == 4)
989 /* The ABI is restricted to 32-bit registers (the ISA could be
990 32- or 64-bit). */
df4df182 991 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
992 else
993 /* 64-bit ABI. */
df4df182 994 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 995 }
78fde5f8
KB
996}
997
f8b73d13
DJ
998/* Return the GDB type for the pseudo register REGNUM, which is the
999 ABI-level view. This function is only called if there is a target
1000 description which includes registers, so we know precisely the
1001 types of hardware registers. */
1002
1003static struct type *
1004mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1005{
1006 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1007 int rawnum = regnum % num_regs;
1008 struct type *rawtype;
1009
1010 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1011
1012 /* Absent registers are still absent. */
1013 rawtype = gdbarch_register_type (gdbarch, rawnum);
1014 if (TYPE_LENGTH (rawtype) == 0)
1015 return rawtype;
1016
de13fcf2 1017 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1018 /* Present the floating point registers however the hardware did;
1019 do not try to convert between FPU layouts. */
1020 return rawtype;
1021
f8b73d13
DJ
1022 /* Use pointer types for registers if we can. For n32 we can not,
1023 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1024 if (mips_abi_regsize (gdbarch)
1025 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1026 {
1faeff08
MR
1027 if (rawnum == MIPS_SP_REGNUM
1028 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1029 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1030 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1031 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1032 }
1033
1034 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1035 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1036 || rawnum == mips_regnum (gdbarch)->lo
1037 || rawnum == mips_regnum (gdbarch)->hi
1038 || rawnum == mips_regnum (gdbarch)->badvaddr
1039 || rawnum == mips_regnum (gdbarch)->cause
1040 || rawnum == mips_regnum (gdbarch)->pc
1041 || (mips_regnum (gdbarch)->dspacc != -1
1042 && rawnum >= mips_regnum (gdbarch)->dspacc
1043 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1044 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1045
1faeff08
MR
1046 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1047 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1048 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1049 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1050 {
1051 /* The pseudo/cooked view of embedded registers is always
1052 32-bit, even if the target transfers 64-bit values for them.
1053 New targets relying on XML descriptions should only transfer
1054 the necessary 32 bits, but older versions of GDB expected 64,
1055 so allow the target to provide 64 bits without interfering
1056 with the displayed type. */
1057 return builtin_type (gdbarch)->builtin_int32;
1058 }
1059
f8b73d13
DJ
1060 /* For all other registers, pass through the hardware type. */
1061 return rawtype;
1062}
bcb0cc15 1063
025bb325 1064/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1065enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1066
1067static int
480d3dd2 1068mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1069{
1070 switch (mask_address_var)
1071 {
7f19b9a2 1072 case AUTO_BOOLEAN_TRUE:
4014092b 1073 return 1;
7f19b9a2 1074 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1075 return 0;
1076 break;
7f19b9a2 1077 case AUTO_BOOLEAN_AUTO:
480d3dd2 1078 return tdep->default_mask_address_p;
4014092b 1079 default:
025bb325
MS
1080 internal_error (__FILE__, __LINE__,
1081 _("mips_mask_address_p: bad switch"));
4014092b 1082 return -1;
361d1df0 1083 }
4014092b
AC
1084}
1085
1086static void
08546159
AC
1087show_mask_address (struct ui_file *file, int from_tty,
1088 struct cmd_list_element *c, const char *value)
4014092b 1089{
f5656ead 1090 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1091
1092 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1093 switch (mask_address_var)
1094 {
7f19b9a2 1095 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1096 printf_filtered ("The 32 bit mips address mask is enabled\n");
1097 break;
7f19b9a2 1098 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1099 printf_filtered ("The 32 bit mips address mask is disabled\n");
1100 break;
7f19b9a2 1101 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1102 printf_filtered
1103 ("The 32 bit address mask is set automatically. Currently %s\n",
1104 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1105 break;
1106 default:
e2e0b3e5 1107 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1108 break;
361d1df0 1109 }
4014092b 1110}
c906108c 1111
4cc0665f
MR
1112/* Tell if the program counter value in MEMADDR is in a standard ISA
1113 function. */
1114
1115int
1116mips_pc_is_mips (CORE_ADDR memaddr)
1117{
1118 struct minimal_symbol *sym;
1119
1120 /* Flags indicating that this is a MIPS16 or microMIPS function is
1121 stored by elfread.c in the high bit of the info field. Use this
1122 to decide if the function is standard MIPS. Otherwise if bit 0
1123 of the address is clear, then this is a standard MIPS function. */
1124 sym = lookup_minimal_symbol_by_pc (memaddr);
1125 if (sym)
1126 return msymbol_is_mips (sym);
1127 else
1128 return is_mips_addr (memaddr);
1129}
1130
c906108c
SS
1131/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1132
0fe7e7c8 1133int
4cc0665f 1134mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c
SS
1135{
1136 struct minimal_symbol *sym;
1137
91912e4d
MR
1138 /* A flag indicating that this is a MIPS16 function is stored by
1139 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1140 if the function is MIPS16. Otherwise if bit 0 of the address is
1141 set, then ELF file flags will tell if this is a MIPS16 function. */
1142 sym = lookup_minimal_symbol_by_pc (memaddr);
1143 if (sym)
1144 return msymbol_is_mips16 (sym);
1145 else
1146 return is_mips16_addr (gdbarch, memaddr);
1147}
1148
1149/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1150
1151int
1152mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1153{
1154 struct minimal_symbol *sym;
1155
1156 /* A flag indicating that this is a microMIPS function is stored by
1157 elfread.c in the high bit of the info field. Use this to decide
1158 if the function is microMIPS. Otherwise if bit 0 of the address
1159 is set, then ELF file flags will tell if this is a microMIPS
1160 function. */
1161 sym = lookup_minimal_symbol_by_pc (memaddr);
1162 if (sym)
1163 return msymbol_is_micromips (sym);
1164 else
1165 return is_micromips_addr (gdbarch, memaddr);
1166}
1167
1168/* Tell the ISA type of the function the program counter value in MEMADDR
1169 is in. */
1170
1171static enum mips_isa
1172mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1173{
1174 struct minimal_symbol *sym;
1175
1176 /* A flag indicating that this is a MIPS16 or a microMIPS function
1177 is stored by elfread.c in the high bit of the info field. Use
1178 this to decide if the function is MIPS16 or microMIPS or normal
1179 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1180 flags will tell if this is a MIPS16 or a microMIPS function. */
c906108c
SS
1181 sym = lookup_minimal_symbol_by_pc (memaddr);
1182 if (sym)
4cc0665f
MR
1183 {
1184 if (msymbol_is_micromips (sym))
1185 return ISA_MICROMIPS;
1186 else if (msymbol_is_mips16 (sym))
1187 return ISA_MIPS16;
1188 else
1189 return ISA_MIPS;
1190 }
c906108c 1191 else
4cc0665f
MR
1192 {
1193 if (is_mips_addr (memaddr))
1194 return ISA_MIPS;
1195 else if (is_micromips_addr (gdbarch, memaddr))
1196 return ISA_MICROMIPS;
1197 else
1198 return ISA_MIPS16;
1199 }
c906108c
SS
1200}
1201
14132e89
MR
1202/* Various MIPS16 thunk (aka stub or trampoline) names. */
1203
1204static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1205static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1206static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1207static const char mips_str_call_stub[] = "__call_stub_";
1208static const char mips_str_fn_stub[] = "__fn_stub_";
1209
1210/* This is used as a PIC thunk prefix. */
1211
1212static const char mips_str_pic[] = ".pic.";
1213
1214/* Return non-zero if the PC is inside a call thunk (aka stub or
1215 trampoline) that should be treated as a temporary frame. */
1216
1217static int
1218mips_in_frame_stub (CORE_ADDR pc)
1219{
1220 CORE_ADDR start_addr;
1221 const char *name;
1222
1223 /* Find the starting address of the function containing the PC. */
1224 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1225 return 0;
1226
1227 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1228 if (strncmp (name, mips_str_mips16_call_stub,
1229 strlen (mips_str_mips16_call_stub)) == 0)
1230 return 1;
1231 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1232 if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
1233 return 1;
1234 /* If the PC is in __fn_stub_*, this is a call stub. */
1235 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
1236 return 1;
1237
1238 return 0; /* Not a stub. */
1239}
1240
b2fa5097 1241/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1242 all registers should be sign extended for simplicity? */
6c997a34
AC
1243
1244static CORE_ADDR
61a1198a 1245mips_read_pc (struct regcache *regcache)
6c997a34 1246{
8376de04 1247 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
61a1198a 1248 ULONGEST pc;
8376de04 1249
61a1198a 1250 regcache_cooked_read_signed (regcache, regnum, &pc);
4cc0665f
MR
1251 if (is_compact_addr (pc))
1252 pc = unmake_compact_addr (pc);
61a1198a 1253 return pc;
b6cb9035
AC
1254}
1255
58dfe9ff
AC
1256static CORE_ADDR
1257mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1258{
14132e89 1259 CORE_ADDR pc;
930bd0e0 1260
8376de04 1261 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
4cc0665f
MR
1262 if (is_compact_addr (pc))
1263 pc = unmake_compact_addr (pc);
14132e89
MR
1264 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1265 intermediate frames. In this case we can get the caller's address
1266 from $ra, or if $ra contains an address within a thunk as well, then
1267 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1268 and thus the caller's address is in $s2. */
1269 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1270 {
1271 pc = frame_unwind_register_signed
1272 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
4cc0665f
MR
1273 if (is_compact_addr (pc))
1274 pc = unmake_compact_addr (pc);
14132e89
MR
1275 if (mips_in_frame_stub (pc))
1276 {
1277 pc = frame_unwind_register_signed
1278 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
4cc0665f
MR
1279 if (is_compact_addr (pc))
1280 pc = unmake_compact_addr (pc);
14132e89
MR
1281 }
1282 }
930bd0e0 1283 return pc;
edfae063
AC
1284}
1285
30244cd8
UW
1286static CORE_ADDR
1287mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1288{
72a155b4
UW
1289 return frame_unwind_register_signed
1290 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1291}
1292
b8a22b94 1293/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1294 dummy frame. The frame ID's base needs to match the TOS value
1295 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1296 breakpoint. */
1297
1298static struct frame_id
b8a22b94 1299mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1300{
f57d151a 1301 return frame_id_build
b8a22b94
DJ
1302 (get_frame_register_signed (this_frame,
1303 gdbarch_num_regs (gdbarch)
1304 + MIPS_SP_REGNUM),
1305 get_frame_pc (this_frame));
58dfe9ff
AC
1306}
1307
5a439849
MR
1308/* Implement the "write_pc" gdbarch method. */
1309
1310void
61a1198a 1311mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1312{
8376de04
MR
1313 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1314
4cc0665f 1315 if (mips_pc_is_mips (pc))
930bd0e0 1316 regcache_cooked_write_unsigned (regcache, regnum, pc);
4cc0665f
MR
1317 else
1318 regcache_cooked_write_unsigned (regcache, regnum, make_compact_addr (pc));
6c997a34 1319}
c906108c 1320
4cc0665f
MR
1321/* Fetch and return instruction from the specified location. Handle
1322 MIPS16/microMIPS as appropriate. */
c906108c 1323
d37cca3d 1324static ULONGEST
4cc0665f
MR
1325mips_fetch_instruction (struct gdbarch *gdbarch,
1326 enum mips_isa isa, CORE_ADDR addr, int *statusp)
c906108c 1327{
e17a4113 1328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1329 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
1330 int instlen;
1331 int status;
1332
4cc0665f 1333 switch (isa)
c906108c 1334 {
4cc0665f
MR
1335 case ISA_MICROMIPS:
1336 case ISA_MIPS16:
95ac2dcf 1337 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1338 addr = unmake_compact_addr (addr);
1339 break;
1340 case ISA_MIPS:
1341 instlen = MIPS_INSN32_SIZE;
1342 break;
1343 default:
1344 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1345 break;
c906108c 1346 }
8defab1a 1347 status = target_read_memory (addr, buf, instlen);
4cc0665f
MR
1348 if (statusp != NULL)
1349 *statusp = status;
c906108c 1350 if (status)
4cc0665f
MR
1351 {
1352 if (statusp == NULL)
1353 memory_error (status, addr);
1354 return 0;
1355 }
e17a4113 1356 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1357}
1358
025bb325 1359/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1360#define mips32_op(x) (x >> 26)
1361#define itype_op(x) (x >> 26)
1362#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1363#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1364#define itype_immediate(x) (x & 0xffff)
c906108c 1365
e135b889
DJ
1366#define jtype_op(x) (x >> 26)
1367#define jtype_target(x) (x & 0x03ffffff)
c906108c 1368
e135b889
DJ
1369#define rtype_op(x) (x >> 26)
1370#define rtype_rs(x) ((x >> 21) & 0x1f)
1371#define rtype_rt(x) ((x >> 16) & 0x1f)
1372#define rtype_rd(x) ((x >> 11) & 0x1f)
1373#define rtype_shamt(x) ((x >> 6) & 0x1f)
1374#define rtype_funct(x) (x & 0x3f)
c906108c 1375
4cc0665f
MR
1376/* MicroMIPS instruction fields. */
1377#define micromips_op(x) ((x) >> 10)
1378
1379/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1380 bit and the size respectively of the field extracted. */
1381#define b0s4_imm(x) ((x) & 0xf)
1382#define b0s5_imm(x) ((x) & 0x1f)
1383#define b0s5_reg(x) ((x) & 0x1f)
1384#define b0s7_imm(x) ((x) & 0x7f)
1385#define b0s10_imm(x) ((x) & 0x3ff)
1386#define b1s4_imm(x) (((x) >> 1) & 0xf)
1387#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1388#define b2s3_cc(x) (((x) >> 2) & 0x7)
1389#define b4s2_regl(x) (((x) >> 4) & 0x3)
1390#define b5s5_op(x) (((x) >> 5) & 0x1f)
1391#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1392#define b6s4_op(x) (((x) >> 6) & 0xf)
1393#define b7s3_reg(x) (((x) >> 7) & 0x7)
1394
1395/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1396 respectively of the field extracted. */
1397#define b0s6_op(x) ((x) & 0x3f)
1398#define b0s11_op(x) ((x) & 0x7ff)
1399#define b0s12_imm(x) ((x) & 0xfff)
1400#define b0s16_imm(x) ((x) & 0xffff)
1401#define b0s26_imm(x) ((x) & 0x3ffffff)
1402#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1403#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1404#define b12s4_op(x) (((x) >> 12) & 0xf)
1405
1406/* Return the size in bytes of the instruction INSN encoded in the ISA
1407 instruction set. */
1408
1409static int
1410mips_insn_size (enum mips_isa isa, ULONGEST insn)
1411{
1412 switch (isa)
1413 {
1414 case ISA_MICROMIPS:
1415 if (micromips_op (insn) == 0x1f)
1416 return 3 * MIPS_INSN16_SIZE;
1417 else if (((micromips_op (insn) & 0x4) == 0x4)
1418 || ((micromips_op (insn) & 0x7) == 0x0))
1419 return 2 * MIPS_INSN16_SIZE;
1420 else
1421 return MIPS_INSN16_SIZE;
1422 case ISA_MIPS16:
1423 if ((insn & 0xf800) == 0xf000)
1424 return 2 * MIPS_INSN16_SIZE;
1425 else
1426 return MIPS_INSN16_SIZE;
1427 case ISA_MIPS:
1428 return MIPS_INSN32_SIZE;
1429 }
1430 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1431}
1432
06987e64
MK
1433static LONGEST
1434mips32_relative_offset (ULONGEST inst)
c5aa993b 1435{
06987e64 1436 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1437}
1438
a385295e
MR
1439/* Determine the address of the next instruction executed after the INST
1440 floating condition branch instruction at PC. COUNT specifies the
1441 number of the floating condition bits tested by the branch. */
1442
1443static CORE_ADDR
1444mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1445 ULONGEST inst, CORE_ADDR pc, int count)
1446{
1447 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1448 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1449 int tf = itype_rt (inst) & 1;
1450 int mask = (1 << count) - 1;
1451 ULONGEST fcs;
1452 int cond;
1453
1454 if (fcsr == -1)
1455 /* No way to handle; it'll most likely trap anyway. */
1456 return pc;
1457
1458 fcs = get_frame_register_unsigned (frame, fcsr);
1459 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1460
1461 if (((cond >> cnum) & mask) != mask * !tf)
1462 pc += mips32_relative_offset (inst);
1463 else
1464 pc += 4;
1465
1466 return pc;
1467}
1468
f94363d7
AP
1469/* Return nonzero if the gdbarch is an Octeon series. */
1470
1471static int
1472is_octeon (struct gdbarch *gdbarch)
1473{
1474 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1475
1476 return (info->mach == bfd_mach_mips_octeon
1477 || info->mach == bfd_mach_mips_octeonp
1478 || info->mach == bfd_mach_mips_octeon2);
1479}
1480
1481/* Return true if the OP represents the Octeon's BBIT instruction. */
1482
1483static int
1484is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1485{
1486 if (!is_octeon (gdbarch))
1487 return 0;
1488 /* BBIT0 is encoded as LWC2: 110 010. */
1489 /* BBIT032 is encoded as LDC2: 110 110. */
1490 /* BBIT1 is encoded as SWC2: 111 010. */
1491 /* BBIT132 is encoded as SDC2: 111 110. */
1492 if (op == 50 || op == 54 || op == 58 || op == 62)
1493 return 1;
1494 return 0;
1495}
1496
1497
f49e4e6d
MS
1498/* Determine where to set a single step breakpoint while considering
1499 branch prediction. */
78a59c2f 1500
5a89d8aa 1501static CORE_ADDR
0b1b3e42 1502mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b 1503{
e17a4113 1504 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b
JM
1505 unsigned long inst;
1506 int op;
4cc0665f 1507 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1508 op = itype_op (inst);
025bb325
MS
1509 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1510 instruction. */
c5aa993b 1511 {
4f5bcb50 1512 if (op >> 2 == 5)
6d82d43b 1513 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1514 {
4f5bcb50 1515 switch (op & 0x03)
c906108c 1516 {
e135b889
DJ
1517 case 0: /* BEQL */
1518 goto equal_branch;
1519 case 1: /* BNEL */
1520 goto neq_branch;
1521 case 2: /* BLEZL */
1522 goto less_branch;
313628cc 1523 case 3: /* BGTZL */
e135b889 1524 goto greater_branch;
c5aa993b
JM
1525 default:
1526 pc += 4;
c906108c
SS
1527 }
1528 }
4f5bcb50 1529 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1530 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e 1531 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
4f5bcb50 1532 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1533 && (itype_rt (inst) & 2) == 0)
1534 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1535 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
4f5bcb50 1536 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1537 && (itype_rt (inst) & 2) == 0)
1538 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1539 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
4f5bcb50 1540 else if (op == 29)
9e8da49c
MR
1541 /* JALX: 011101 */
1542 /* The new PC will be alternate mode. */
1543 {
1544 unsigned long reg;
1545
1546 reg = jtype_target (inst) << 2;
1547 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1548 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1549 }
f94363d7
AP
1550 else if (is_octeon_bbit_op (op, gdbarch))
1551 {
1552 int bit, branch_if;
1553
1554 branch_if = op == 58 || op == 62;
1555 bit = itype_rt (inst);
1556
1557 /* Take into account the *32 instructions. */
1558 if (op == 54 || op == 62)
1559 bit += 32;
1560
1561 if (((get_frame_register_signed (frame,
1562 itype_rs (inst)) >> bit) & 1)
1563 == branch_if)
1564 pc += mips32_relative_offset (inst) + 4;
1565 else
1566 pc += 8; /* After the delay slot. */
1567 }
1568
c5aa993b 1569 else
025bb325 1570 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1571 }
1572 else
025bb325 1573 { /* This gets way messy. */
c5aa993b 1574
025bb325 1575 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1576 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1577 {
c5aa993b
JM
1578 case 0: /* SPECIAL */
1579 op = rtype_funct (inst);
1580 switch (op)
1581 {
1582 case 8: /* JR */
1583 case 9: /* JALR */
025bb325 1584 /* Set PC to that address. */
0b1b3e42 1585 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b 1586 break;
e38d4e1a
DJ
1587 case 12: /* SYSCALL */
1588 {
1589 struct gdbarch_tdep *tdep;
1590
1591 tdep = gdbarch_tdep (get_frame_arch (frame));
1592 if (tdep->syscall_next_pc != NULL)
1593 pc = tdep->syscall_next_pc (frame);
1594 else
1595 pc += 4;
1596 }
1597 break;
c5aa993b
JM
1598 default:
1599 pc += 4;
1600 }
1601
6d82d43b 1602 break; /* end SPECIAL */
025bb325 1603 case 1: /* REGIMM */
c906108c 1604 {
e135b889
DJ
1605 op = itype_rt (inst); /* branch condition */
1606 switch (op)
c906108c 1607 {
c5aa993b 1608 case 0: /* BLTZ */
e135b889
DJ
1609 case 2: /* BLTZL */
1610 case 16: /* BLTZAL */
c5aa993b 1611 case 18: /* BLTZALL */
c906108c 1612 less_branch:
0b1b3e42 1613 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1614 pc += mips32_relative_offset (inst) + 4;
1615 else
1616 pc += 8; /* after the delay slot */
1617 break;
e135b889 1618 case 1: /* BGEZ */
c5aa993b
JM
1619 case 3: /* BGEZL */
1620 case 17: /* BGEZAL */
1621 case 19: /* BGEZALL */
0b1b3e42 1622 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1623 pc += mips32_relative_offset (inst) + 4;
1624 else
1625 pc += 8; /* after the delay slot */
1626 break;
a385295e
MR
1627 case 0x1c: /* BPOSGE32 */
1628 case 0x1e: /* BPOSGE64 */
1629 pc += 4;
1630 if (itype_rs (inst) == 0)
1631 {
1632 unsigned int pos = (op & 2) ? 64 : 32;
1633 int dspctl = mips_regnum (gdbarch)->dspctl;
1634
1635 if (dspctl == -1)
1636 /* No way to handle; it'll most likely trap anyway. */
1637 break;
1638
1639 if ((get_frame_register_unsigned (frame,
1640 dspctl) & 0x7f) >= pos)
1641 pc += mips32_relative_offset (inst);
1642 else
1643 pc += 4;
1644 }
1645 break;
e135b889 1646 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1647 default:
1648 pc += 4;
c906108c
SS
1649 }
1650 }
6d82d43b 1651 break; /* end REGIMM */
c5aa993b
JM
1652 case 2: /* J */
1653 case 3: /* JAL */
1654 {
1655 unsigned long reg;
1656 reg = jtype_target (inst) << 2;
025bb325 1657 /* Upper four bits get never changed... */
5b652102 1658 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1659 }
c5aa993b 1660 break;
e135b889 1661 case 4: /* BEQ, BEQL */
c5aa993b 1662 equal_branch:
0b1b3e42
UW
1663 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1664 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1665 pc += mips32_relative_offset (inst) + 4;
1666 else
1667 pc += 8;
1668 break;
e135b889 1669 case 5: /* BNE, BNEL */
c5aa993b 1670 neq_branch:
0b1b3e42
UW
1671 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1672 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1673 pc += mips32_relative_offset (inst) + 4;
1674 else
1675 pc += 8;
1676 break;
e135b889 1677 case 6: /* BLEZ, BLEZL */
0b1b3e42 1678 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8;
1682 break;
1683 case 7:
e135b889
DJ
1684 default:
1685 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1686 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1687 pc += mips32_relative_offset (inst) + 4;
1688 else
1689 pc += 8;
1690 break;
c5aa993b
JM
1691 } /* switch */
1692 } /* else */
1693 return pc;
1694} /* mips32_next_pc */
c906108c 1695
4cc0665f
MR
1696/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1697 INSN. */
1698
1699static LONGEST
1700micromips_relative_offset7 (ULONGEST insn)
1701{
1702 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1703}
1704
1705/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1706 INSN. */
1707
1708static LONGEST
1709micromips_relative_offset10 (ULONGEST insn)
1710{
1711 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1712}
1713
1714/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1715 INSN. */
1716
1717static LONGEST
1718micromips_relative_offset16 (ULONGEST insn)
1719{
1720 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1721}
1722
1723/* Return the size in bytes of the microMIPS instruction at the address PC. */
1724
1725static int
1726micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1727{
1728 ULONGEST insn;
1729
1730 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1731 return mips_insn_size (ISA_MICROMIPS, insn);
1732}
1733
1734/* Calculate the address of the next microMIPS instruction to execute
1735 after the INSN coprocessor 1 conditional branch instruction at the
1736 address PC. COUNT denotes the number of coprocessor condition bits
1737 examined by the branch. */
1738
1739static CORE_ADDR
1740micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1741 ULONGEST insn, CORE_ADDR pc, int count)
1742{
1743 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1744 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1745 int tf = b5s5_op (insn >> 16) & 1;
1746 int mask = (1 << count) - 1;
1747 ULONGEST fcs;
1748 int cond;
1749
1750 if (fcsr == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 return pc;
1753
1754 fcs = get_frame_register_unsigned (frame, fcsr);
1755 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1756
1757 if (((cond >> cnum) & mask) != mask * !tf)
1758 pc += micromips_relative_offset16 (insn);
1759 else
1760 pc += micromips_pc_insn_size (gdbarch, pc);
1761
1762 return pc;
1763}
1764
1765/* Calculate the address of the next microMIPS instruction to execute
1766 after the instruction at the address PC. */
1767
1768static CORE_ADDR
1769micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1770{
1771 struct gdbarch *gdbarch = get_frame_arch (frame);
1772 ULONGEST insn;
1773
1774 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1775 pc += MIPS_INSN16_SIZE;
1776 switch (mips_insn_size (ISA_MICROMIPS, insn))
1777 {
1778 /* 48-bit instructions. */
1779 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1780 /* No branch or jump instructions in this category. */
1781 pc += 2 * MIPS_INSN16_SIZE;
1782 break;
1783
1784 /* 32-bit instructions. */
1785 case 2 * MIPS_INSN16_SIZE:
1786 insn <<= 16;
1787 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1788 pc += MIPS_INSN16_SIZE;
1789 switch (micromips_op (insn >> 16))
1790 {
1791 case 0x00: /* POOL32A: bits 000000 */
1792 if (b0s6_op (insn) == 0x3c
1793 /* POOL32Axf: bits 000000 ... 111100 */
1794 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1795 /* JALR, JALR.HB: 000000 000x111100 111100 */
1796 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1797 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1798 break;
1799
1800 case 0x10: /* POOL32I: bits 010000 */
1801 switch (b5s5_op (insn >> 16))
1802 {
1803 case 0x00: /* BLTZ: bits 010000 00000 */
1804 case 0x01: /* BLTZAL: bits 010000 00001 */
1805 case 0x11: /* BLTZALS: bits 010000 10001 */
1806 if (get_frame_register_signed (frame,
1807 b0s5_reg (insn >> 16)) < 0)
1808 pc += micromips_relative_offset16 (insn);
1809 else
1810 pc += micromips_pc_insn_size (gdbarch, pc);
1811 break;
1812
1813 case 0x02: /* BGEZ: bits 010000 00010 */
1814 case 0x03: /* BGEZAL: bits 010000 00011 */
1815 case 0x13: /* BGEZALS: bits 010000 10011 */
1816 if (get_frame_register_signed (frame,
1817 b0s5_reg (insn >> 16)) >= 0)
1818 pc += micromips_relative_offset16 (insn);
1819 else
1820 pc += micromips_pc_insn_size (gdbarch, pc);
1821 break;
1822
1823 case 0x04: /* BLEZ: bits 010000 00100 */
1824 if (get_frame_register_signed (frame,
1825 b0s5_reg (insn >> 16)) <= 0)
1826 pc += micromips_relative_offset16 (insn);
1827 else
1828 pc += micromips_pc_insn_size (gdbarch, pc);
1829 break;
1830
1831 case 0x05: /* BNEZC: bits 010000 00101 */
1832 if (get_frame_register_signed (frame,
1833 b0s5_reg (insn >> 16)) != 0)
1834 pc += micromips_relative_offset16 (insn);
1835 break;
1836
1837 case 0x06: /* BGTZ: bits 010000 00110 */
1838 if (get_frame_register_signed (frame,
1839 b0s5_reg (insn >> 16)) > 0)
1840 pc += micromips_relative_offset16 (insn);
1841 else
1842 pc += micromips_pc_insn_size (gdbarch, pc);
1843 break;
1844
1845 case 0x07: /* BEQZC: bits 010000 00111 */
1846 if (get_frame_register_signed (frame,
1847 b0s5_reg (insn >> 16)) == 0)
1848 pc += micromips_relative_offset16 (insn);
1849 break;
1850
1851 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1852 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1853 if (((insn >> 16) & 0x3) == 0x0)
1854 /* BC2F, BC2T: don't know how to handle these. */
1855 break;
1856 break;
1857
1858 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1859 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1860 {
1861 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1862 int dspctl = mips_regnum (gdbarch)->dspctl;
1863
1864 if (dspctl == -1)
1865 /* No way to handle; it'll most likely trap anyway. */
1866 break;
1867
1868 if ((get_frame_register_unsigned (frame,
1869 dspctl) & 0x7f) >= pos)
1870 pc += micromips_relative_offset16 (insn);
1871 else
1872 pc += micromips_pc_insn_size (gdbarch, pc);
1873 }
1874 break;
1875
1876 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1877 /* BC1ANY2F: bits 010000 11100 xxx01 */
1878 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1879 /* BC1ANY2T: bits 010000 11101 xxx01 */
1880 if (((insn >> 16) & 0x2) == 0x0)
1881 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1882 ((insn >> 16) & 0x1) + 1);
1883 break;
1884
1885 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1886 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1887 if (((insn >> 16) & 0x3) == 0x1)
1888 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1889 break;
1890 }
1891 break;
1892
1893 case 0x1d: /* JALS: bits 011101 */
1894 case 0x35: /* J: bits 110101 */
1895 case 0x3d: /* JAL: bits 111101 */
1896 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1897 break;
1898
1899 case 0x25: /* BEQ: bits 100101 */
1900 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1901 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1902 pc += micromips_relative_offset16 (insn);
1903 else
1904 pc += micromips_pc_insn_size (gdbarch, pc);
1905 break;
1906
1907 case 0x2d: /* BNE: bits 101101 */
1908 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1909 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1910 pc += micromips_relative_offset16 (insn);
1911 else
1912 pc += micromips_pc_insn_size (gdbarch, pc);
1913 break;
1914
1915 case 0x3c: /* JALX: bits 111100 */
1916 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
1917 break;
1918 }
1919 break;
1920
1921 /* 16-bit instructions. */
1922 case MIPS_INSN16_SIZE:
1923 switch (micromips_op (insn))
1924 {
1925 case 0x11: /* POOL16C: bits 010001 */
1926 if ((b5s5_op (insn) & 0x1c) == 0xc)
1927 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
1928 pc = get_frame_register_signed (frame, b0s5_reg (insn));
1929 else if (b5s5_op (insn) == 0x18)
1930 /* JRADDIUSP: bits 010001 11000 */
1931 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
1932 break;
1933
1934 case 0x23: /* BEQZ16: bits 100011 */
1935 {
1936 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1937
1938 if (get_frame_register_signed (frame, rs) == 0)
1939 pc += micromips_relative_offset7 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 }
1943 break;
1944
1945 case 0x2b: /* BNEZ16: bits 101011 */
1946 {
1947 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1948
1949 if (get_frame_register_signed (frame, rs) != 0)
1950 pc += micromips_relative_offset7 (insn);
1951 else
1952 pc += micromips_pc_insn_size (gdbarch, pc);
1953 }
1954 break;
1955
1956 case 0x33: /* B16: bits 110011 */
1957 pc += micromips_relative_offset10 (insn);
1958 break;
1959 }
1960 break;
1961 }
1962
1963 return pc;
1964}
1965
c906108c 1966/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
1967 mips 16 variant, but fortunately, there fewer instructions. We have
1968 to cope ith extensions for 16 bit instructions and a pair of actual
1969 32 bit instructions. We dont want to set a single step instruction
1970 on the extend instruction either. */
c906108c
SS
1971
1972/* Lots of mips16 instruction formats */
1973/* Predicting jumps requires itype,ritype,i8type
025bb325 1974 and their extensions extItype,extritype,extI8type. */
c906108c
SS
1975enum mips16_inst_fmts
1976{
c5aa993b
JM
1977 itype, /* 0 immediate 5,10 */
1978 ritype, /* 1 5,3,8 */
1979 rrtype, /* 2 5,3,3,5 */
1980 rritype, /* 3 5,3,3,5 */
1981 rrrtype, /* 4 5,3,3,3,2 */
1982 rriatype, /* 5 5,3,3,1,4 */
1983 shifttype, /* 6 5,3,3,3,2 */
1984 i8type, /* 7 5,3,8 */
1985 i8movtype, /* 8 5,3,3,5 */
1986 i8mov32rtype, /* 9 5,3,5,3 */
1987 i64type, /* 10 5,3,8 */
1988 ri64type, /* 11 5,3,3,5 */
1989 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1990 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1991 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1992 extRRItype, /* 15 5,5,5,5,3,3,5 */
1993 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1994 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1995 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1996 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1997 extRi64type, /* 20 5,6,5,5,3,3,5 */
1998 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1999};
12f02c2a 2000/* I am heaping all the fields of the formats into one structure and
025bb325 2001 then, only the fields which are involved in instruction extension. */
c906108c 2002struct upk_mips16
6d82d43b
AC
2003{
2004 CORE_ADDR offset;
025bb325 2005 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2006 unsigned int regy;
2007};
c906108c
SS
2008
2009
12f02c2a 2010/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2011 for the bits which make up the immediate extension. */
c906108c 2012
12f02c2a
AC
2013static CORE_ADDR
2014extended_offset (unsigned int extension)
c906108c 2015{
12f02c2a 2016 CORE_ADDR value;
130854df 2017
4c2051c6 2018 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2019 value = value << 6;
4c2051c6 2020 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2021 value = value << 5;
130854df
MR
2022 value |= extension & 0x1f; /* Extract 4:0. */
2023
c5aa993b 2024 return value;
c906108c
SS
2025}
2026
2027/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2028 instruction. It won't malfunction, but why make excess remote memory
2029 references? If the immediate operands get sign extended or something,
2030 do it after the extension is performed. */
c906108c 2031/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2032 when the offset is to be used in relative addressing. */
c906108c 2033
12f02c2a 2034static unsigned int
e17a4113 2035fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2036{
e17a4113 2037 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2038 gdb_byte buf[8];
025bb325 2039 pc &= 0xfffffffe; /* Clear the low order bit. */
c5aa993b 2040 target_read_memory (pc, buf, 2);
e17a4113 2041 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2042}
2043
2044static void
e17a4113 2045unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2046 unsigned int extension,
2047 unsigned int inst,
6d82d43b 2048 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2049{
12f02c2a
AC
2050 CORE_ADDR offset;
2051 int regx;
2052 int regy;
2053 switch (insn_format)
c906108c 2054 {
c5aa993b 2055 case itype:
c906108c 2056 {
12f02c2a
AC
2057 CORE_ADDR value;
2058 if (extension)
c5aa993b 2059 {
4c2051c6
MR
2060 value = extended_offset ((extension << 16) | inst);
2061 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2062 }
2063 else
c5aa993b 2064 {
12f02c2a 2065 value = inst & 0x7ff;
4c2051c6 2066 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2067 }
12f02c2a
AC
2068 offset = value;
2069 regx = -1;
2070 regy = -1;
c906108c 2071 }
c5aa993b
JM
2072 break;
2073 case ritype:
2074 case i8type:
025bb325 2075 { /* A register identifier and an offset. */
c906108c 2076 /* Most of the fields are the same as I type but the
025bb325 2077 immediate value is of a different length. */
12f02c2a
AC
2078 CORE_ADDR value;
2079 if (extension)
c906108c 2080 {
4c2051c6
MR
2081 value = extended_offset ((extension << 16) | inst);
2082 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2083 }
c5aa993b
JM
2084 else
2085 {
4c2051c6
MR
2086 value = inst & 0xff; /* 8 bits */
2087 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2088 }
12f02c2a 2089 offset = value;
4c2051c6 2090 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2091 regy = -1;
c5aa993b 2092 break;
c906108c 2093 }
c5aa993b 2094 case jalxtype:
c906108c 2095 {
c5aa993b 2096 unsigned long value;
12f02c2a
AC
2097 unsigned int nexthalf;
2098 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2099 value = value << 16;
4cc0665f
MR
2100 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2101 /* Low bit still set. */
c5aa993b 2102 value |= nexthalf;
12f02c2a
AC
2103 offset = value;
2104 regx = -1;
2105 regy = -1;
c5aa993b 2106 break;
c906108c
SS
2107 }
2108 default:
e2e0b3e5 2109 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2110 }
12f02c2a
AC
2111 upk->offset = offset;
2112 upk->regx = regx;
2113 upk->regy = regy;
c906108c
SS
2114}
2115
2116
c5aa993b
JM
2117static CORE_ADDR
2118add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2119{
5b652102 2120 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
2121}
2122
12f02c2a 2123static CORE_ADDR
0b1b3e42 2124extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 2125 unsigned int extension, unsigned int insn)
c906108c 2126{
e17a4113 2127 struct gdbarch *gdbarch = get_frame_arch (frame);
12f02c2a
AC
2128 int op = (insn >> 11);
2129 switch (op)
c906108c 2130 {
6d82d43b 2131 case 2: /* Branch */
12f02c2a 2132 {
12f02c2a 2133 struct upk_mips16 upk;
e17a4113 2134 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
4c2051c6 2135 pc += (upk.offset << 1) + 2;
12f02c2a
AC
2136 break;
2137 }
025bb325
MS
2138 case 3: /* JAL , JALX - Watch out, these are 32 bit
2139 instructions. */
12f02c2a
AC
2140 {
2141 struct upk_mips16 upk;
e17a4113 2142 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
12f02c2a
AC
2143 pc = add_offset_16 (pc, upk.offset);
2144 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2145 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2146 else
2147 pc |= 0x01;
2148 break;
2149 }
6d82d43b 2150 case 4: /* beqz */
12f02c2a
AC
2151 {
2152 struct upk_mips16 upk;
2153 int reg;
e17a4113 2154 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2155 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a
AC
2156 if (reg == 0)
2157 pc += (upk.offset << 1) + 2;
2158 else
2159 pc += 2;
2160 break;
2161 }
6d82d43b 2162 case 5: /* bnez */
12f02c2a
AC
2163 {
2164 struct upk_mips16 upk;
2165 int reg;
e17a4113 2166 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2167 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a
AC
2168 if (reg != 0)
2169 pc += (upk.offset << 1) + 2;
2170 else
2171 pc += 2;
2172 break;
2173 }
6d82d43b 2174 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2175 {
2176 struct upk_mips16 upk;
2177 int reg;
e17a4113 2178 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2179 /* upk.regx contains the opcode */
0b1b3e42 2180 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
2181 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2182 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2183 /* pc = add_offset_16(pc,upk.offset) ; */
2184 pc += (upk.offset << 1) + 2;
2185 else
2186 pc += 2;
2187 break;
2188 }
6d82d43b 2189 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2190 {
2191 struct upk_mips16 upk;
2192 /* upk.fmt = rrtype; */
2193 op = insn & 0x1f;
2194 if (op == 0)
c5aa993b 2195 {
12f02c2a
AC
2196 int reg;
2197 upk.regx = (insn >> 8) & 0x07;
2198 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2199 if ((upk.regy & 1) == 0)
4cc0665f 2200 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2201 else
2202 reg = 31; /* Function return instruction. */
0b1b3e42 2203 pc = get_frame_register_signed (frame, reg);
c906108c 2204 }
12f02c2a 2205 else
c5aa993b 2206 pc += 2;
12f02c2a
AC
2207 break;
2208 }
2209 case 30:
2210 /* This is an instruction extension. Fetch the real instruction
2211 (which follows the extension) and decode things based on
025bb325 2212 that. */
12f02c2a
AC
2213 {
2214 pc += 2;
e17a4113
UW
2215 pc = extended_mips16_next_pc (frame, pc, insn,
2216 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2217 break;
2218 }
2219 default:
2220 {
2221 pc += 2;
2222 break;
2223 }
c906108c 2224 }
c5aa993b 2225 return pc;
12f02c2a 2226}
c906108c 2227
5a89d8aa 2228static CORE_ADDR
0b1b3e42 2229mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a 2230{
e17a4113
UW
2231 struct gdbarch *gdbarch = get_frame_arch (frame);
2232 unsigned int insn = fetch_mips_16 (gdbarch, pc);
0b1b3e42 2233 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
2234}
2235
2236/* The mips_next_pc function supports single_step when the remote
7e73cedf 2237 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2238 It works by decoding the current instruction and predicting where a
025bb325 2239 branch will go. This isnt hard because all the data is available.
4cc0665f 2240 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2241static CORE_ADDR
0b1b3e42 2242mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 2243{
4cc0665f
MR
2244 struct gdbarch *gdbarch = get_frame_arch (frame);
2245
2246 if (mips_pc_is_mips16 (gdbarch, pc))
0b1b3e42 2247 return mips16_next_pc (frame, pc);
4cc0665f
MR
2248 else if (mips_pc_is_micromips (gdbarch, pc))
2249 return micromips_next_pc (frame, pc);
c5aa993b 2250 else
0b1b3e42 2251 return mips32_next_pc (frame, pc);
12f02c2a 2252}
c906108c 2253
edfae063
AC
2254struct mips_frame_cache
2255{
2256 CORE_ADDR base;
2257 struct trad_frame_saved_reg *saved_regs;
2258};
2259
29639122
JB
2260/* Set a register's saved stack address in temp_saved_regs. If an
2261 address has already been set for this register, do nothing; this
2262 way we will only recognize the first save of a given register in a
2263 function prologue.
eec63939 2264
f57d151a
UW
2265 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2266 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2267 Strictly speaking, only the second range is used as it is only second
2268 range (the ABI instead of ISA registers) that comes into play when finding
2269 saved registers in a frame. */
eec63939
AC
2270
2271static void
74ed0bb4
MD
2272set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2273 int regnum, CORE_ADDR offset)
eec63939 2274{
29639122
JB
2275 if (this_cache != NULL
2276 && this_cache->saved_regs[regnum].addr == -1)
2277 {
74ed0bb4
MD
2278 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2279 = offset;
2280 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2281 = offset;
29639122 2282 }
eec63939
AC
2283}
2284
eec63939 2285
29639122
JB
2286/* Fetch the immediate value from a MIPS16 instruction.
2287 If the previous instruction was an EXTEND, use it to extend
2288 the upper bits of the immediate value. This is a helper function
2289 for mips16_scan_prologue. */
eec63939 2290
29639122
JB
2291static int
2292mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2293 unsigned short inst, /* current instruction */
2294 int nbits, /* number of bits in imm field */
2295 int scale, /* scale factor to be applied to imm */
025bb325 2296 int is_signed) /* is the imm field signed? */
eec63939 2297{
29639122 2298 int offset;
eec63939 2299
29639122
JB
2300 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2301 {
2302 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2303 if (offset & 0x8000) /* check for negative extend */
2304 offset = 0 - (0x10000 - (offset & 0xffff));
2305 return offset | (inst & 0x1f);
2306 }
eec63939 2307 else
29639122
JB
2308 {
2309 int max_imm = 1 << nbits;
2310 int mask = max_imm - 1;
2311 int sign_bit = max_imm >> 1;
45c9dd44 2312
29639122
JB
2313 offset = inst & mask;
2314 if (is_signed && (offset & sign_bit))
2315 offset = 0 - (max_imm - offset);
2316 return offset * scale;
2317 }
2318}
eec63939 2319
65596487 2320
29639122
JB
2321/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2322 the associated FRAME_CACHE if not null.
2323 Return the address of the first instruction past the prologue. */
eec63939 2324
29639122 2325static CORE_ADDR
e17a4113
UW
2326mips16_scan_prologue (struct gdbarch *gdbarch,
2327 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2328 struct frame_info *this_frame,
29639122
JB
2329 struct mips_frame_cache *this_cache)
2330{
2331 CORE_ADDR cur_pc;
025bb325 2332 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2333 CORE_ADDR sp;
2334 long frame_offset = 0; /* Size of stack frame. */
2335 long frame_adjust = 0; /* Offset of FP from SP. */
2336 int frame_reg = MIPS_SP_REGNUM;
025bb325 2337 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2338 unsigned inst = 0; /* current instruction */
2339 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2340 unsigned save_inst = 0; /* the save instruction */
29639122 2341 int reg, offset;
a343eb3c 2342
29639122
JB
2343 int extend_bytes = 0;
2344 int prev_extend_bytes;
2345 CORE_ADDR end_prologue_addr = 0;
a343eb3c 2346
29639122 2347 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2348 THIS_FRAME. */
2349 if (this_frame != NULL)
2350 sp = get_frame_register_signed (this_frame,
2351 gdbarch_num_regs (gdbarch)
2352 + MIPS_SP_REGNUM);
29639122
JB
2353 else
2354 sp = 0;
eec63939 2355
29639122
JB
2356 if (limit_pc > start_pc + 200)
2357 limit_pc = start_pc + 200;
eec63939 2358
95ac2dcf 2359 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
2360 {
2361 /* Save the previous instruction. If it's an EXTEND, we'll extract
2362 the immediate offset extension from it in mips16_get_imm. */
2363 prev_inst = inst;
eec63939 2364
025bb325 2365 /* Fetch and decode the instruction. */
4cc0665f
MR
2366 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2367 cur_pc, NULL);
eec63939 2368
29639122
JB
2369 /* Normally we ignore extend instructions. However, if it is
2370 not followed by a valid prologue instruction, then this
2371 instruction is not part of the prologue either. We must
2372 remember in this case to adjust the end_prologue_addr back
2373 over the extend. */
2374 if ((inst & 0xf800) == 0xf000) /* extend */
2375 {
95ac2dcf 2376 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2377 continue;
2378 }
eec63939 2379
29639122
JB
2380 prev_extend_bytes = extend_bytes;
2381 extend_bytes = 0;
eec63939 2382
29639122
JB
2383 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2384 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2385 {
2386 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2387 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2388 frame_offset -= offset;
2389 else
2390 /* Exit loop if a positive stack adjustment is found, which
2391 usually means that the stack cleanup code in the function
2392 epilogue is reached. */
2393 break;
2394 }
2395 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2396 {
2397 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2398 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2399 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2400 }
2401 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2402 {
2403 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2404 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2405 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2406 }
2407 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2408 {
2409 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2410 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2411 }
2412 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2413 {
2414 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2415 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2416 }
2417 else if (inst == 0x673d) /* move $s1, $sp */
2418 {
2419 frame_addr = sp;
2420 frame_reg = 17;
2421 }
2422 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2423 {
2424 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2425 frame_addr = sp + offset;
2426 frame_reg = 17;
2427 frame_adjust = offset;
2428 }
2429 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2430 {
2431 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2432 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2433 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2434 }
2435 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2436 {
2437 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2438 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2439 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2440 }
2441 else if ((inst & 0xf81f) == 0xe809
2442 && (inst & 0x700) != 0x700) /* entry */
025bb325 2443 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2444 else if ((inst & 0xff80) == 0x6480) /* save */
2445 {
025bb325 2446 save_inst = inst; /* Save for later processing. */
2207132d
MR
2447 if (prev_extend_bytes) /* extend */
2448 save_inst |= prev_inst << 16;
2449 }
29639122 2450 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 2451 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
2452 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2453 {
2454 /* This instruction is part of the prologue, but we don't
2455 need to do anything special to handle it. */
2456 }
2457 else
2458 {
2459 /* This instruction is not an instruction typically found
2460 in a prologue, so we must have reached the end of the
2461 prologue. */
2462 if (end_prologue_addr == 0)
2463 end_prologue_addr = cur_pc - prev_extend_bytes;
2464 }
2465 }
eec63939 2466
29639122
JB
2467 /* The entry instruction is typically the first instruction in a function,
2468 and it stores registers at offsets relative to the value of the old SP
2469 (before the prologue). But the value of the sp parameter to this
2470 function is the new SP (after the prologue has been executed). So we
2471 can't calculate those offsets until we've seen the entire prologue,
025bb325 2472 and can calculate what the old SP must have been. */
29639122
JB
2473 if (entry_inst != 0)
2474 {
2475 int areg_count = (entry_inst >> 8) & 7;
2476 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2477
29639122
JB
2478 /* The entry instruction always subtracts 32 from the SP. */
2479 frame_offset += 32;
2480
2481 /* Now we can calculate what the SP must have been at the
2482 start of the function prologue. */
2483 sp += frame_offset;
2484
2485 /* Check if a0-a3 were saved in the caller's argument save area. */
2486 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2487 {
74ed0bb4 2488 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2489 offset += mips_abi_regsize (gdbarch);
29639122
JB
2490 }
2491
2492 /* Check if the ra register was pushed on the stack. */
2493 offset = -4;
2494 if (entry_inst & 0x20)
2495 {
74ed0bb4 2496 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2497 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2498 }
2499
2500 /* Check if the s0 and s1 registers were pushed on the stack. */
2501 for (reg = 16; reg < sreg_count + 16; reg++)
2502 {
74ed0bb4 2503 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2504 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2505 }
2506 }
2507
2207132d
MR
2508 /* The SAVE instruction is similar to ENTRY, except that defined by the
2509 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2510 size of the frame is specified as an immediate field of instruction
2511 and an extended variation exists which lets additional registers and
2512 frame space to be specified. The instruction always treats registers
2513 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2514 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2515 {
2516 static int args_table[16] = {
2517 0, 0, 0, 0, 1, 1, 1, 1,
2518 2, 2, 2, 0, 3, 3, 4, -1,
2519 };
2520 static int astatic_table[16] = {
2521 0, 1, 2, 3, 0, 1, 2, 3,
2522 0, 1, 2, 4, 0, 1, 0, -1,
2523 };
2524 int aregs = (save_inst >> 16) & 0xf;
2525 int xsregs = (save_inst >> 24) & 0x7;
2526 int args = args_table[aregs];
2527 int astatic = astatic_table[aregs];
2528 long frame_size;
2529
2530 if (args < 0)
2531 {
2532 warning (_("Invalid number of argument registers encoded in SAVE."));
2533 args = 0;
2534 }
2535 if (astatic < 0)
2536 {
2537 warning (_("Invalid number of static registers encoded in SAVE."));
2538 astatic = 0;
2539 }
2540
2541 /* For standard SAVE the frame size of 0 means 128. */
2542 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2543 if (frame_size == 0 && (save_inst >> 16) == 0)
2544 frame_size = 16;
2545 frame_size *= 8;
2546 frame_offset += frame_size;
2547
2548 /* Now we can calculate what the SP must have been at the
2549 start of the function prologue. */
2550 sp += frame_offset;
2551
2552 /* Check if A0-A3 were saved in the caller's argument save area. */
2553 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2554 {
74ed0bb4 2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2556 offset += mips_abi_regsize (gdbarch);
2557 }
2558
2559 offset = -4;
2560
2561 /* Check if the RA register was pushed on the stack. */
2562 if (save_inst & 0x40)
2563 {
74ed0bb4 2564 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2565 offset -= mips_abi_regsize (gdbarch);
2566 }
2567
2568 /* Check if the S8 register was pushed on the stack. */
2569 if (xsregs > 6)
2570 {
74ed0bb4 2571 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2572 offset -= mips_abi_regsize (gdbarch);
2573 xsregs--;
2574 }
2575 /* Check if S2-S7 were pushed on the stack. */
2576 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2577 {
74ed0bb4 2578 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2579 offset -= mips_abi_regsize (gdbarch);
2580 }
2581
2582 /* Check if the S1 register was pushed on the stack. */
2583 if (save_inst & 0x10)
2584 {
74ed0bb4 2585 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2586 offset -= mips_abi_regsize (gdbarch);
2587 }
2588 /* Check if the S0 register was pushed on the stack. */
2589 if (save_inst & 0x20)
2590 {
74ed0bb4 2591 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2592 offset -= mips_abi_regsize (gdbarch);
2593 }
2594
4cc0665f
MR
2595 /* Check if A0-A3 were pushed on the stack. */
2596 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2597 {
2598 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2599 offset -= mips_abi_regsize (gdbarch);
2600 }
2601 }
2602
2603 if (this_cache != NULL)
2604 {
2605 this_cache->base =
2606 (get_frame_register_signed (this_frame,
2607 gdbarch_num_regs (gdbarch) + frame_reg)
2608 + frame_offset - frame_adjust);
2609 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2610 be able to get rid of the assignment below, evetually. But it's
2611 still needed for now. */
2612 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2613 + mips_regnum (gdbarch)->pc]
2614 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2615 }
2616
2617 /* If we didn't reach the end of the prologue when scanning the function
2618 instructions, then set end_prologue_addr to the address of the
2619 instruction immediately after the last one we scanned. */
2620 if (end_prologue_addr == 0)
2621 end_prologue_addr = cur_pc;
2622
2623 return end_prologue_addr;
2624}
2625
2626/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2627 Procedures that use the 32-bit instruction set are handled by the
2628 mips_insn32 unwinder. */
2629
2630static struct mips_frame_cache *
2631mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2632{
2633 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2634 struct mips_frame_cache *cache;
2635
2636 if ((*this_cache) != NULL)
2637 return (*this_cache);
2638 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2639 (*this_cache) = cache;
2640 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2641
2642 /* Analyze the function prologue. */
2643 {
2644 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2645 CORE_ADDR start_addr;
2646
2647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2648 if (start_addr == 0)
2649 start_addr = heuristic_proc_start (gdbarch, pc);
2650 /* We can't analyze the prologue if we couldn't find the begining
2651 of the function. */
2652 if (start_addr == 0)
2653 return cache;
2654
2655 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2656 }
2657
2658 /* gdbarch_sp_regnum contains the value and not the address. */
2659 trad_frame_set_value (cache->saved_regs,
2660 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2661 cache->base);
2662
2663 return (*this_cache);
2664}
2665
2666static void
2667mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2668 struct frame_id *this_id)
2669{
2670 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2671 this_cache);
2672 /* This marks the outermost frame. */
2673 if (info->base == 0)
2674 return;
2675 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2676}
2677
2678static struct value *
2679mips_insn16_frame_prev_register (struct frame_info *this_frame,
2680 void **this_cache, int regnum)
2681{
2682 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2683 this_cache);
2684 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2685}
2686
2687static int
2688mips_insn16_frame_sniffer (const struct frame_unwind *self,
2689 struct frame_info *this_frame, void **this_cache)
2690{
2691 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2692 CORE_ADDR pc = get_frame_pc (this_frame);
2693 if (mips_pc_is_mips16 (gdbarch, pc))
2694 return 1;
2695 return 0;
2696}
2697
2698static const struct frame_unwind mips_insn16_frame_unwind =
2699{
2700 NORMAL_FRAME,
2701 default_frame_unwind_stop_reason,
2702 mips_insn16_frame_this_id,
2703 mips_insn16_frame_prev_register,
2704 NULL,
2705 mips_insn16_frame_sniffer
2706};
2707
2708static CORE_ADDR
2709mips_insn16_frame_base_address (struct frame_info *this_frame,
2710 void **this_cache)
2711{
2712 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2713 this_cache);
2714 return info->base;
2715}
2716
2717static const struct frame_base mips_insn16_frame_base =
2718{
2719 &mips_insn16_frame_unwind,
2720 mips_insn16_frame_base_address,
2721 mips_insn16_frame_base_address,
2722 mips_insn16_frame_base_address
2723};
2724
2725static const struct frame_base *
2726mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2727{
2728 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2729 CORE_ADDR pc = get_frame_pc (this_frame);
2730 if (mips_pc_is_mips16 (gdbarch, pc))
2731 return &mips_insn16_frame_base;
2732 else
2733 return NULL;
2734}
2735
2736/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2737 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2738 interpreted directly, and then multiplied by 4. */
2739
2740static int
2741micromips_decode_imm9 (int imm)
2742{
2743 imm = (imm ^ 0x100) - 0x100;
2744 if (imm > -3 && imm < 2)
2745 imm ^= 0x100;
2746 return imm << 2;
2747}
2748
2749/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2750 the address of the first instruction past the prologue. */
2751
2752static CORE_ADDR
2753micromips_scan_prologue (struct gdbarch *gdbarch,
2754 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2755 struct frame_info *this_frame,
2756 struct mips_frame_cache *this_cache)
2757{
2758 CORE_ADDR end_prologue_addr = 0;
2759 int prev_non_prologue_insn = 0;
2760 int frame_reg = MIPS_SP_REGNUM;
2761 int this_non_prologue_insn;
2762 int non_prologue_insns = 0;
2763 long frame_offset = 0; /* Size of stack frame. */
2764 long frame_adjust = 0; /* Offset of FP from SP. */
2765 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2766 CORE_ADDR prev_pc;
2767 CORE_ADDR cur_pc;
2768 ULONGEST insn; /* current instruction */
2769 CORE_ADDR sp;
2770 long offset;
2771 long sp_adj;
2772 long v1_off = 0; /* The assumption is LUI will replace it. */
2773 int reglist;
2774 int breg;
2775 int dreg;
2776 int sreg;
2777 int treg;
2778 int loc;
2779 int op;
2780 int s;
2781 int i;
2782
2783 /* Can be called when there's no process, and hence when there's no
2784 THIS_FRAME. */
2785 if (this_frame != NULL)
2786 sp = get_frame_register_signed (this_frame,
2787 gdbarch_num_regs (gdbarch)
2788 + MIPS_SP_REGNUM);
2789 else
2790 sp = 0;
2791
2792 if (limit_pc > start_pc + 200)
2793 limit_pc = start_pc + 200;
2794 prev_pc = start_pc;
2795
2796 /* Permit at most one non-prologue non-control-transfer instruction
2797 in the middle which may have been reordered by the compiler for
2798 optimisation. */
2799 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2800 {
2801 this_non_prologue_insn = 0;
2802 sp_adj = 0;
2803 loc = 0;
2804 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2805 loc += MIPS_INSN16_SIZE;
2806 switch (mips_insn_size (ISA_MICROMIPS, insn))
2807 {
2808 /* 48-bit instructions. */
2809 case 3 * MIPS_INSN16_SIZE:
2810 /* No prologue instructions in this category. */
2811 this_non_prologue_insn = 1;
2812 loc += 2 * MIPS_INSN16_SIZE;
2813 break;
2814
2815 /* 32-bit instructions. */
2816 case 2 * MIPS_INSN16_SIZE:
2817 insn <<= 16;
2818 insn |= mips_fetch_instruction (gdbarch,
2819 ISA_MICROMIPS, cur_pc + loc, NULL);
2820 loc += MIPS_INSN16_SIZE;
2821 switch (micromips_op (insn >> 16))
2822 {
2823 /* Record $sp/$fp adjustment. */
2824 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2825 case 0x0: /* POOL32A: bits 000000 */
2826 case 0x16: /* POOL32S: bits 010110 */
2827 op = b0s11_op (insn);
2828 sreg = b0s5_reg (insn >> 16);
2829 treg = b5s5_reg (insn >> 16);
2830 dreg = b11s5_reg (insn);
2831 if (op == 0x1d0
2832 /* SUBU: bits 000000 00111010000 */
2833 /* DSUBU: bits 010110 00111010000 */
2834 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
2835 && treg == 3)
2836 /* (D)SUBU $sp, $v1 */
2837 sp_adj = v1_off;
2838 else if (op != 0x150
2839 /* ADDU: bits 000000 00101010000 */
2840 /* DADDU: bits 010110 00101010000 */
2841 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
2842 this_non_prologue_insn = 1;
2843 break;
2844
2845 case 0x8: /* POOL32B: bits 001000 */
2846 op = b12s4_op (insn);
2847 breg = b0s5_reg (insn >> 16);
2848 reglist = sreg = b5s5_reg (insn >> 16);
2849 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
2850 if ((op == 0x9 || op == 0xc)
2851 /* SWP: bits 001000 1001 */
2852 /* SDP: bits 001000 1100 */
2853 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
2854 /* S[DW]P reg,offset($sp) */
2855 {
2856 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
2857 set_reg_offset (gdbarch, this_cache,
2858 sreg, sp + offset);
2859 set_reg_offset (gdbarch, this_cache,
2860 sreg + 1, sp + offset + s);
2861 }
2862 else if ((op == 0xd || op == 0xf)
2863 /* SWM: bits 001000 1101 */
2864 /* SDM: bits 001000 1111 */
2865 && breg == MIPS_SP_REGNUM
2866 /* SWM reglist,offset($sp) */
2867 && ((reglist >= 1 && reglist <= 9)
2868 || (reglist >= 16 && reglist <= 25)))
2869 {
2870 int sreglist = min(reglist & 0xf, 8);
2871
2872 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
2873 for (i = 0; i < sreglist; i++)
2874 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
2875 if ((reglist & 0xf) > 8)
2876 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
2877 if ((reglist & 0x10) == 0x10)
2878 set_reg_offset (gdbarch, this_cache,
2879 MIPS_RA_REGNUM, sp + s * i++);
2880 }
2881 else
2882 this_non_prologue_insn = 1;
2883 break;
2884
2885 /* Record $sp/$fp adjustment. */
2886 /* Discard (D)ADDIU $gp used for PIC code. */
2887 case 0xc: /* ADDIU: bits 001100 */
2888 case 0x17: /* DADDIU: bits 010111 */
2889 sreg = b0s5_reg (insn >> 16);
2890 dreg = b5s5_reg (insn >> 16);
2891 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2892 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
2893 /* (D)ADDIU $sp, imm */
2894 sp_adj = offset;
2895 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
2896 /* (D)ADDIU $fp, $sp, imm */
2897 {
2898 frame_addr = sp + offset;
2899 frame_adjust = offset;
2900 frame_reg = 30;
2901 }
2902 else if (sreg != 28 || dreg != 28)
2903 /* (D)ADDIU $gp, imm */
2904 this_non_prologue_insn = 1;
2905 break;
2906
2907 /* LUI $v1 is used for larger $sp adjustments. */
2908 /* Discard LUI $gp is used for PIC code. */
2909 case 0x10: /* POOL32I: bits 010000 */
2910 if (b5s5_op (insn >> 16) == 0xd
2911 /* LUI: bits 010000 001101 */
2912 && b0s5_reg (insn >> 16) == 3)
2913 /* LUI $v1, imm */
2914 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
2915 else if (b5s5_op (insn >> 16) != 0xd
2916 /* LUI: bits 010000 001101 */
2917 || b0s5_reg (insn >> 16) != 28)
2918 /* LUI $gp, imm */
2919 this_non_prologue_insn = 1;
2920 break;
2921
2922 /* ORI $v1 is used for larger $sp adjustments. */
2923 case 0x14: /* ORI: bits 010100 */
2924 sreg = b0s5_reg (insn >> 16);
2925 dreg = b5s5_reg (insn >> 16);
2926 if (sreg == 3 && dreg == 3)
2927 /* ORI $v1, imm */
2928 v1_off |= b0s16_imm (insn);
2929 else
2930 this_non_prologue_insn = 1;
2931 break;
2932
2933 case 0x26: /* SWC1: bits 100110 */
2934 case 0x2e: /* SDC1: bits 101110 */
2935 breg = b0s5_reg (insn >> 16);
2936 if (breg != MIPS_SP_REGNUM)
2937 /* S[DW]C1 reg,offset($sp) */
2938 this_non_prologue_insn = 1;
2939 break;
2940
2941 case 0x36: /* SD: bits 110110 */
2942 case 0x3e: /* SW: bits 111110 */
2943 breg = b0s5_reg (insn >> 16);
2944 sreg = b5s5_reg (insn >> 16);
2945 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2946 if (breg == MIPS_SP_REGNUM)
2947 /* S[DW] reg,offset($sp) */
2948 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
2949 else
2950 this_non_prologue_insn = 1;
2951 break;
2952
2953 default:
2954 this_non_prologue_insn = 1;
2955 break;
2956 }
2957 break;
2958
2959 /* 16-bit instructions. */
2960 case MIPS_INSN16_SIZE:
2961 switch (micromips_op (insn))
2962 {
2963 case 0x3: /* MOVE: bits 000011 */
2964 sreg = b0s5_reg (insn);
2965 dreg = b5s5_reg (insn);
2966 if (sreg == MIPS_SP_REGNUM && dreg == 30)
2967 /* MOVE $fp, $sp */
2968 {
2969 frame_addr = sp;
2970 frame_reg = 30;
2971 }
2972 else if ((sreg & 0x1c) != 0x4)
2973 /* MOVE reg, $a0-$a3 */
2974 this_non_prologue_insn = 1;
2975 break;
2976
2977 case 0x11: /* POOL16C: bits 010001 */
2978 if (b6s4_op (insn) == 0x5)
2979 /* SWM: bits 010001 0101 */
2980 {
2981 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
2982 reglist = b4s2_regl (insn);
2983 for (i = 0; i <= reglist; i++)
2984 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
2985 set_reg_offset (gdbarch, this_cache,
2986 MIPS_RA_REGNUM, sp + 4 * i++);
2987 }
2988 else
2989 this_non_prologue_insn = 1;
2990 break;
2991
2992 case 0x13: /* POOL16D: bits 010011 */
2993 if ((insn & 0x1) == 0x1)
2994 /* ADDIUSP: bits 010011 1 */
2995 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
2996 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
2997 /* ADDIUS5: bits 010011 0 */
2998 /* ADDIUS5 $sp, imm */
2999 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3000 else
3001 this_non_prologue_insn = 1;
3002 break;
3003
3004 case 0x32: /* SWSP: bits 110010 */
3005 offset = b0s5_imm (insn) << 2;
3006 sreg = b5s5_reg (insn);
3007 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3008 break;
3009
3010 default:
3011 this_non_prologue_insn = 1;
3012 break;
3013 }
3014 break;
3015 }
3016 if (sp_adj < 0)
3017 frame_offset -= sp_adj;
3018
3019 non_prologue_insns += this_non_prologue_insn;
3020 /* Enough non-prologue insns seen or positive stack adjustment? */
3021 if (end_prologue_addr == 0 && (non_prologue_insns > 1 || sp_adj > 0))
2207132d 3022 {
4cc0665f
MR
3023 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3024 break;
2207132d 3025 }
4cc0665f
MR
3026 prev_non_prologue_insn = this_non_prologue_insn;
3027 prev_pc = cur_pc;
2207132d
MR
3028 }
3029
29639122
JB
3030 if (this_cache != NULL)
3031 {
3032 this_cache->base =
4cc0665f 3033 (get_frame_register_signed (this_frame,
b8a22b94 3034 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3035 + frame_offset - frame_adjust);
29639122 3036 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3037 be able to get rid of the assignment below, evetually. But it's
3038 still needed for now. */
72a155b4
UW
3039 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3040 + mips_regnum (gdbarch)->pc]
4cc0665f 3041 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3042 }
3043
3044 /* If we didn't reach the end of the prologue when scanning the function
3045 instructions, then set end_prologue_addr to the address of the
4cc0665f
MR
3046 instruction immediately after the last one we scanned. Unless the
3047 last one looked like a non-prologue instruction (and we looked ahead),
3048 in which case use its address instead. */
29639122 3049 if (end_prologue_addr == 0)
4cc0665f 3050 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
29639122
JB
3051
3052 return end_prologue_addr;
eec63939
AC
3053}
3054
4cc0665f 3055/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3056 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3057 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3058
3059static struct mips_frame_cache *
4cc0665f 3060mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3061{
e17a4113 3062 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3063 struct mips_frame_cache *cache;
eec63939
AC
3064
3065 if ((*this_cache) != NULL)
3066 return (*this_cache);
4cc0665f 3067
29639122
JB
3068 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3069 (*this_cache) = cache;
b8a22b94 3070 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3071
29639122
JB
3072 /* Analyze the function prologue. */
3073 {
b8a22b94 3074 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3075 CORE_ADDR start_addr;
eec63939 3076
29639122
JB
3077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3078 if (start_addr == 0)
4cc0665f 3079 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3080 /* We can't analyze the prologue if we couldn't find the begining
3081 of the function. */
3082 if (start_addr == 0)
3083 return cache;
eec63939 3084
4cc0665f 3085 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122 3086 }
4cc0665f 3087
3e8c568d 3088 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3089 trad_frame_set_value (cache->saved_regs,
e17a4113 3090 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3091 cache->base);
eec63939 3092
29639122 3093 return (*this_cache);
eec63939
AC
3094}
3095
3096static void
4cc0665f
MR
3097mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3098 struct frame_id *this_id)
eec63939 3099{
4cc0665f
MR
3100 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3101 this_cache);
21327321
DJ
3102 /* This marks the outermost frame. */
3103 if (info->base == 0)
3104 return;
b8a22b94 3105 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3106}
3107
b8a22b94 3108static struct value *
4cc0665f
MR
3109mips_micro_frame_prev_register (struct frame_info *this_frame,
3110 void **this_cache, int regnum)
eec63939 3111{
4cc0665f
MR
3112 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3113 this_cache);
b8a22b94
DJ
3114 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3115}
3116
3117static int
4cc0665f
MR
3118mips_micro_frame_sniffer (const struct frame_unwind *self,
3119 struct frame_info *this_frame, void **this_cache)
b8a22b94 3120{
4cc0665f 3121 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3122 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3123
3124 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3125 return 1;
3126 return 0;
eec63939
AC
3127}
3128
4cc0665f 3129static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3130{
3131 NORMAL_FRAME,
8fbca658 3132 default_frame_unwind_stop_reason,
4cc0665f
MR
3133 mips_micro_frame_this_id,
3134 mips_micro_frame_prev_register,
b8a22b94 3135 NULL,
4cc0665f 3136 mips_micro_frame_sniffer
eec63939
AC
3137};
3138
eec63939 3139static CORE_ADDR
4cc0665f
MR
3140mips_micro_frame_base_address (struct frame_info *this_frame,
3141 void **this_cache)
eec63939 3142{
4cc0665f
MR
3143 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3144 this_cache);
29639122 3145 return info->base;
eec63939
AC
3146}
3147
4cc0665f 3148static const struct frame_base mips_micro_frame_base =
eec63939 3149{
4cc0665f
MR
3150 &mips_micro_frame_unwind,
3151 mips_micro_frame_base_address,
3152 mips_micro_frame_base_address,
3153 mips_micro_frame_base_address
eec63939
AC
3154};
3155
3156static const struct frame_base *
4cc0665f 3157mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3158{
4cc0665f 3159 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3160 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3161
3162 if (mips_pc_is_micromips (gdbarch, pc))
3163 return &mips_micro_frame_base;
eec63939
AC
3164 else
3165 return NULL;
edfae063
AC
3166}
3167
29639122
JB
3168/* Mark all the registers as unset in the saved_regs array
3169 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3170
74ed0bb4
MD
3171static void
3172reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3173{
29639122
JB
3174 if (this_cache == NULL || this_cache->saved_regs == NULL)
3175 return;
3176
3177 {
74ed0bb4 3178 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3179 int i;
64159455 3180
29639122
JB
3181 for (i = 0; i < num_regs; i++)
3182 {
3183 this_cache->saved_regs[i].addr = -1;
3184 }
3185 }
c906108c
SS
3186}
3187
025bb325 3188/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3189 the associated FRAME_CACHE if not null.
3190 Return the address of the first instruction past the prologue. */
c906108c 3191
875e1767 3192static CORE_ADDR
e17a4113
UW
3193mips32_scan_prologue (struct gdbarch *gdbarch,
3194 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3195 struct frame_info *this_frame,
29639122 3196 struct mips_frame_cache *this_cache)
c906108c 3197{
29639122 3198 CORE_ADDR cur_pc;
025bb325
MS
3199 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3200 frame-pointer. */
29639122
JB
3201 CORE_ADDR sp;
3202 long frame_offset;
3203 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3204
29639122
JB
3205 CORE_ADDR end_prologue_addr = 0;
3206 int seen_sp_adjust = 0;
3207 int load_immediate_bytes = 0;
db5f024e 3208 int in_delay_slot = 0;
7d1e6fb8 3209 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3210
29639122 3211 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3212 THIS_FRAME. */
3213 if (this_frame != NULL)
3214 sp = get_frame_register_signed (this_frame,
3215 gdbarch_num_regs (gdbarch)
3216 + MIPS_SP_REGNUM);
8fa9cfa1 3217 else
29639122 3218 sp = 0;
9022177c 3219
29639122
JB
3220 if (limit_pc > start_pc + 200)
3221 limit_pc = start_pc + 200;
9022177c 3222
29639122 3223restart:
9022177c 3224
29639122 3225 frame_offset = 0;
95ac2dcf 3226 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3227 {
29639122
JB
3228 unsigned long inst, high_word, low_word;
3229 int reg;
9022177c 3230
025bb325 3231 /* Fetch the instruction. */
4cc0665f
MR
3232 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3233 cur_pc, NULL);
9022177c 3234
29639122
JB
3235 /* Save some code by pre-extracting some useful fields. */
3236 high_word = (inst >> 16) & 0xffff;
3237 low_word = inst & 0xffff;
3238 reg = high_word & 0x1f;
fe29b929 3239
025bb325 3240 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3241 || high_word == 0x23bd /* addi $sp,$sp,-i */
3242 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3243 {
025bb325 3244 if (low_word & 0x8000) /* Negative stack adjustment? */
29639122
JB
3245 frame_offset += 0x10000 - low_word;
3246 else
3247 /* Exit loop if a positive stack adjustment is found, which
3248 usually means that the stack cleanup code in the function
3249 epilogue is reached. */
3250 break;
3251 seen_sp_adjust = 1;
3252 }
7d1e6fb8
KB
3253 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3254 && !regsize_is_64_bits)
29639122 3255 {
74ed0bb4 3256 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122 3257 }
7d1e6fb8
KB
3258 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3259 && regsize_is_64_bits)
29639122
JB
3260 {
3261 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
74ed0bb4 3262 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122
JB
3263 }
3264 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3265 {
3266 /* Old gcc frame, r30 is virtual frame pointer. */
3267 if ((long) low_word != frame_offset)
3268 frame_addr = sp + low_word;
b8a22b94 3269 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3270 {
3271 unsigned alloca_adjust;
a4b8ebc8 3272
29639122 3273 frame_reg = 30;
b8a22b94
DJ
3274 frame_addr = get_frame_register_signed
3275 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3276
29639122
JB
3277 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
3278 if (alloca_adjust > 0)
3279 {
025bb325 3280 /* FP > SP + frame_size. This may be because of
29639122
JB
3281 an alloca or somethings similar. Fix sp to
3282 "pre-alloca" value, and try again. */
3283 sp += alloca_adjust;
3284 /* Need to reset the status of all registers. Otherwise,
3285 we will hit a guard that prevents the new address
3286 for each register to be recomputed during the second
3287 pass. */
74ed0bb4 3288 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3289 goto restart;
3290 }
3291 }
3292 }
3293 /* move $30,$sp. With different versions of gas this will be either
3294 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3295 Accept any one of these. */
3296 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3297 {
3298 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3299 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3300 {
3301 unsigned alloca_adjust;
c906108c 3302
29639122 3303 frame_reg = 30;
b8a22b94
DJ
3304 frame_addr = get_frame_register_signed
3305 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3306
29639122
JB
3307 alloca_adjust = (unsigned) (frame_addr - sp);
3308 if (alloca_adjust > 0)
3309 {
025bb325 3310 /* FP > SP + frame_size. This may be because of
29639122
JB
3311 an alloca or somethings similar. Fix sp to
3312 "pre-alloca" value, and try again. */
3313 sp = frame_addr;
3314 /* Need to reset the status of all registers. Otherwise,
3315 we will hit a guard that prevents the new address
3316 for each register to be recomputed during the second
3317 pass. */
74ed0bb4 3318 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3319 goto restart;
3320 }
3321 }
3322 }
7d1e6fb8
KB
3323 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3324 && !regsize_is_64_bits)
29639122 3325 {
74ed0bb4 3326 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
29639122
JB
3327 }
3328 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3329 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3330 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3331 || high_word == 0x3c1c /* lui $gp,n */
3332 || high_word == 0x279c /* addiu $gp,$gp,n */
3333 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3334 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3335 )
19080931
MR
3336 {
3337 /* These instructions are part of the prologue, but we don't
3338 need to do anything special to handle them. */
3339 }
29639122
JB
3340 /* The instructions below load $at or $t0 with an immediate
3341 value in preparation for a stack adjustment via
025bb325 3342 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3343 initialize a local variable, so we accept them only before
3344 a stack adjustment instruction was seen. */
3345 else if (!seen_sp_adjust
19080931
MR
3346 && (high_word == 0x3c01 /* lui $at,n */
3347 || high_word == 0x3c08 /* lui $t0,n */
3348 || high_word == 0x3421 /* ori $at,$at,n */
3349 || high_word == 0x3508 /* ori $t0,$t0,n */
3350 || high_word == 0x3401 /* ori $at,$zero,n */
3351 || high_word == 0x3408 /* ori $t0,$zero,n */
3352 ))
3353 {
3354 if (end_prologue_addr == 0)
3355 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3356 }
29639122 3357 else
19080931
MR
3358 {
3359 /* This instruction is not an instruction typically found
3360 in a prologue, so we must have reached the end of the
3361 prologue. */
3362 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
3363 loop now? Why would we need to continue scanning the function
3364 instructions? */
3365 if (end_prologue_addr == 0)
3366 end_prologue_addr = cur_pc;
3367
3368 /* Check for branches and jumps. For now, only jump to
3369 register are caught (i.e. returns). */
3370 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
3371 in_delay_slot = 1;
3372 }
db5f024e
DJ
3373
3374 /* If the previous instruction was a jump, we must have reached
3375 the end of the prologue by now. Stop scanning so that we do
3376 not go past the function return. */
3377 if (in_delay_slot)
3378 break;
a4b8ebc8 3379 }
c906108c 3380
29639122
JB
3381 if (this_cache != NULL)
3382 {
3383 this_cache->base =
b8a22b94
DJ
3384 (get_frame_register_signed (this_frame,
3385 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3386 + frame_offset);
3387 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3388 this assignment below, eventually. But it's still needed
3389 for now. */
72a155b4
UW
3390 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3391 + mips_regnum (gdbarch)->pc]
3392 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3393 + MIPS_RA_REGNUM];
29639122 3394 }
c906108c 3395
29639122
JB
3396 /* If we didn't reach the end of the prologue when scanning the function
3397 instructions, then set end_prologue_addr to the address of the
3398 instruction immediately after the last one we scanned. */
3399 /* brobecker/2004-10-10: I don't think this would ever happen, but
3400 we may as well be careful and do our best if we have a null
3401 end_prologue_addr. */
3402 if (end_prologue_addr == 0)
3403 end_prologue_addr = cur_pc;
3404
3405 /* In a frameless function, we might have incorrectly
025bb325 3406 skipped some load immediate instructions. Undo the skipping
29639122
JB
3407 if the load immediate was not followed by a stack adjustment. */
3408 if (load_immediate_bytes && !seen_sp_adjust)
3409 end_prologue_addr -= load_immediate_bytes;
c906108c 3410
29639122 3411 return end_prologue_addr;
c906108c
SS
3412}
3413
29639122
JB
3414/* Heuristic unwinder for procedures using 32-bit instructions (covers
3415 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3416 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3417 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3418
29639122 3419static struct mips_frame_cache *
b8a22b94 3420mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3421{
e17a4113 3422 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3423 struct mips_frame_cache *cache;
c906108c 3424
29639122
JB
3425 if ((*this_cache) != NULL)
3426 return (*this_cache);
c5aa993b 3427
29639122
JB
3428 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3429 (*this_cache) = cache;
b8a22b94 3430 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3431
29639122
JB
3432 /* Analyze the function prologue. */
3433 {
b8a22b94 3434 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3435 CORE_ADDR start_addr;
c906108c 3436
29639122
JB
3437 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3438 if (start_addr == 0)
e17a4113 3439 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3440 /* We can't analyze the prologue if we couldn't find the begining
3441 of the function. */
3442 if (start_addr == 0)
3443 return cache;
c5aa993b 3444
e17a4113 3445 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122
JB
3446 }
3447
3e8c568d 3448 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3449 trad_frame_set_value (cache->saved_regs,
e17a4113 3450 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3451 cache->base);
c5aa993b 3452
29639122 3453 return (*this_cache);
c906108c
SS
3454}
3455
29639122 3456static void
b8a22b94 3457mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3458 struct frame_id *this_id)
c906108c 3459{
b8a22b94 3460 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3461 this_cache);
21327321
DJ
3462 /* This marks the outermost frame. */
3463 if (info->base == 0)
3464 return;
b8a22b94 3465 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3466}
c906108c 3467
b8a22b94
DJ
3468static struct value *
3469mips_insn32_frame_prev_register (struct frame_info *this_frame,
3470 void **this_cache, int regnum)
29639122 3471{
b8a22b94 3472 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3473 this_cache);
b8a22b94
DJ
3474 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3475}
3476
3477static int
3478mips_insn32_frame_sniffer (const struct frame_unwind *self,
3479 struct frame_info *this_frame, void **this_cache)
3480{
3481 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3482 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3483 return 1;
3484 return 0;
c906108c
SS
3485}
3486
29639122
JB
3487static const struct frame_unwind mips_insn32_frame_unwind =
3488{
3489 NORMAL_FRAME,
8fbca658 3490 default_frame_unwind_stop_reason,
29639122 3491 mips_insn32_frame_this_id,
b8a22b94
DJ
3492 mips_insn32_frame_prev_register,
3493 NULL,
3494 mips_insn32_frame_sniffer
29639122 3495};
c906108c 3496
1c645fec 3497static CORE_ADDR
b8a22b94 3498mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3499 void **this_cache)
c906108c 3500{
b8a22b94 3501 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3502 this_cache);
3503 return info->base;
3504}
c906108c 3505
29639122
JB
3506static const struct frame_base mips_insn32_frame_base =
3507{
3508 &mips_insn32_frame_unwind,
3509 mips_insn32_frame_base_address,
3510 mips_insn32_frame_base_address,
3511 mips_insn32_frame_base_address
3512};
1c645fec 3513
29639122 3514static const struct frame_base *
b8a22b94 3515mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3516{
b8a22b94 3517 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3518 if (mips_pc_is_mips (pc))
29639122 3519 return &mips_insn32_frame_base;
a65bbe44 3520 else
29639122
JB
3521 return NULL;
3522}
a65bbe44 3523
29639122 3524static struct trad_frame_cache *
b8a22b94 3525mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3526{
3527 CORE_ADDR pc;
3528 CORE_ADDR start_addr;
3529 CORE_ADDR stack_addr;
3530 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3531 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3532 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3533
29639122
JB
3534 if ((*this_cache) != NULL)
3535 return (*this_cache);
b8a22b94 3536 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3537 (*this_cache) = this_trad_cache;
1c645fec 3538
29639122 3539 /* The return address is in the link register. */
3e8c568d 3540 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3541 gdbarch_pc_regnum (gdbarch),
b8a22b94 3542 num_regs + MIPS_RA_REGNUM);
1c645fec 3543
29639122
JB
3544 /* Frame ID, since it's a frameless / stackless function, no stack
3545 space is allocated and SP on entry is the current SP. */
b8a22b94 3546 pc = get_frame_pc (this_frame);
29639122 3547 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3548 stack_addr = get_frame_register_signed (this_frame,
3549 num_regs + MIPS_SP_REGNUM);
aa6c981f 3550 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3551
29639122
JB
3552 /* Assume that the frame's base is the same as the
3553 stack-pointer. */
3554 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3555
29639122
JB
3556 return this_trad_cache;
3557}
c906108c 3558
29639122 3559static void
b8a22b94 3560mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3561 struct frame_id *this_id)
3562{
3563 struct trad_frame_cache *this_trad_cache
b8a22b94 3564 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3565 trad_frame_get_id (this_trad_cache, this_id);
3566}
c906108c 3567
b8a22b94
DJ
3568static struct value *
3569mips_stub_frame_prev_register (struct frame_info *this_frame,
3570 void **this_cache, int regnum)
29639122
JB
3571{
3572 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3573 = mips_stub_frame_cache (this_frame, this_cache);
3574 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3575}
c906108c 3576
b8a22b94
DJ
3577static int
3578mips_stub_frame_sniffer (const struct frame_unwind *self,
3579 struct frame_info *this_frame, void **this_cache)
29639122 3580{
aa6c981f 3581 gdb_byte dummy[4];
979b38e0 3582 struct obj_section *s;
b8a22b94 3583 CORE_ADDR pc = get_frame_address_in_block (this_frame);
db5f024e 3584 struct minimal_symbol *msym;
979b38e0 3585
aa6c981f 3586 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3587 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3588 return 1;
aa6c981f 3589
29639122 3590 if (in_plt_section (pc, NULL))
b8a22b94 3591 return 1;
979b38e0
DJ
3592
3593 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
3594 s = find_pc_section (pc);
3595
3596 if (s != NULL
3597 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
3598 ".MIPS.stubs") == 0)
b8a22b94 3599 return 1;
979b38e0 3600
db5f024e
DJ
3601 /* Calling a PIC function from a non-PIC function passes through a
3602 stub. The stub for foo is named ".pic.foo". */
3603 msym = lookup_minimal_symbol_by_pc (pc);
3604 if (msym != NULL
3605 && SYMBOL_LINKAGE_NAME (msym) != NULL
3606 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
3607 return 1;
3608
b8a22b94 3609 return 0;
29639122 3610}
c906108c 3611
b8a22b94
DJ
3612static const struct frame_unwind mips_stub_frame_unwind =
3613{
3614 NORMAL_FRAME,
8fbca658 3615 default_frame_unwind_stop_reason,
b8a22b94
DJ
3616 mips_stub_frame_this_id,
3617 mips_stub_frame_prev_register,
3618 NULL,
3619 mips_stub_frame_sniffer
3620};
3621
29639122 3622static CORE_ADDR
b8a22b94 3623mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3624 void **this_cache)
3625{
3626 struct trad_frame_cache *this_trad_cache
b8a22b94 3627 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3628 return trad_frame_get_this_base (this_trad_cache);
3629}
0fce0821 3630
29639122
JB
3631static const struct frame_base mips_stub_frame_base =
3632{
3633 &mips_stub_frame_unwind,
3634 mips_stub_frame_base_address,
3635 mips_stub_frame_base_address,
3636 mips_stub_frame_base_address
3637};
3638
3639static const struct frame_base *
b8a22b94 3640mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3641{
b8a22b94 3642 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3643 return &mips_stub_frame_base;
3644 else
3645 return NULL;
3646}
3647
29639122 3648/* mips_addr_bits_remove - remove useless address bits */
65596487 3649
29639122 3650static CORE_ADDR
24568a2c 3651mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3652{
24568a2c 3653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3654
4cc0665f
MR
3655 if (is_compact_addr (addr))
3656 addr = unmake_compact_addr (addr);
930bd0e0 3657
29639122
JB
3658 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3659 /* This hack is a work-around for existing boards using PMON, the
3660 simulator, and any other 64-bit targets that doesn't have true
3661 64-bit addressing. On these targets, the upper 32 bits of
3662 addresses are ignored by the hardware. Thus, the PC or SP are
3663 likely to have been sign extended to all 1s by instruction
3664 sequences that load 32-bit addresses. For example, a typical
3665 piece of code that loads an address is this:
65596487 3666
29639122
JB
3667 lui $r2, <upper 16 bits>
3668 ori $r2, <lower 16 bits>
65596487 3669
29639122
JB
3670 But the lui sign-extends the value such that the upper 32 bits
3671 may be all 1s. The workaround is simply to mask off these
3672 bits. In the future, gcc may be changed to support true 64-bit
3673 addressing, and this masking will have to be disabled. */
3674 return addr &= 0xffffffffUL;
3675 else
3676 return addr;
65596487
JB
3677}
3678
3d5f6d12
DJ
3679
3680/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3681 instruction and ending with a SC/SCD instruction. If such a sequence
3682 is found, attempt to step through it. A breakpoint is placed at the end of
3683 the sequence. */
3684
4cc0665f
MR
3685/* Instructions used during single-stepping of atomic sequences, standard
3686 ISA version. */
3687#define LL_OPCODE 0x30
3688#define LLD_OPCODE 0x34
3689#define SC_OPCODE 0x38
3690#define SCD_OPCODE 0x3c
3691
3d5f6d12 3692static int
4cc0665f
MR
3693mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3694 struct address_space *aspace, CORE_ADDR pc)
3d5f6d12
DJ
3695{
3696 CORE_ADDR breaks[2] = {-1, -1};
3697 CORE_ADDR loc = pc;
3698 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3699 ULONGEST insn;
3d5f6d12
DJ
3700 int insn_count;
3701 int index;
3702 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3703 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3704
4cc0665f 3705 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3706 /* Assume all atomic sequences start with a ll/lld instruction. */
3707 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3708 return 0;
3709
3710 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3711 instructions. */
3712 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3713 {
3714 int is_branch = 0;
3715 loc += MIPS_INSN32_SIZE;
4cc0665f 3716 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3717
3718 /* Assume that there is at most one branch in the atomic
3719 sequence. If a branch is found, put a breakpoint in its
3720 destination address. */
3721 switch (itype_op (insn))
3722 {
3723 case 0: /* SPECIAL */
3724 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
025bb325 3725 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3726 break;
3727 case 1: /* REGIMM */
a385295e
MR
3728 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3729 || ((itype_rt (insn) & 0x1e) == 0
3730 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3731 break;
3732 case 2: /* J */
3733 case 3: /* JAL */
025bb325 3734 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3735 case 4: /* BEQ */
3736 case 5: /* BNE */
3737 case 6: /* BLEZ */
3738 case 7: /* BGTZ */
3739 case 20: /* BEQL */
3740 case 21: /* BNEL */
3741 case 22: /* BLEZL */
3742 case 23: /* BGTTL */
3743 is_branch = 1;
3744 break;
3745 case 17: /* COP1 */
a385295e
MR
3746 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3747 && (itype_rt (insn) & 0x2) == 0);
3748 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3749 break;
3750 /* Fall through. */
3d5f6d12
DJ
3751 case 18: /* COP2 */
3752 case 19: /* COP3 */
3753 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3754 break;
3755 }
3756 if (is_branch)
3757 {
3758 branch_bp = loc + mips32_relative_offset (insn) + 4;
3759 if (last_breakpoint >= 1)
3760 return 0; /* More than one branch found, fallback to the
3761 standard single-step code. */
3762 breaks[1] = branch_bp;
3763 last_breakpoint++;
3764 }
3765
3766 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3767 break;
3768 }
3769
3770 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3771 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3772 return 0;
3773
3774 loc += MIPS_INSN32_SIZE;
3775
3776 /* Insert a breakpoint right after the end of the atomic sequence. */
3777 breaks[0] = loc;
3778
3779 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3780 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3781 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3782 last_breakpoint = 0;
3783
3784 /* Effectively inserts the breakpoints. */
3785 for (index = 0; index <= last_breakpoint; index++)
6c95b8df 3786 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3d5f6d12
DJ
3787
3788 return 1;
3789}
3790
4cc0665f
MR
3791static int
3792micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3793 struct address_space *aspace,
3794 CORE_ADDR pc)
3795{
3796 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3797 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3798 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
3799 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3800 destination. */
4cc0665f
MR
3801 CORE_ADDR loc = pc;
3802 int sc_found = 0;
3803 ULONGEST insn;
3804 int insn_count;
3805 int index;
3806
3807 /* Assume all atomic sequences start with a ll/lld instruction. */
3808 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3809 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3810 return 0;
3811 loc += MIPS_INSN16_SIZE;
3812 insn <<= 16;
3813 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3814 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
3815 return 0;
3816 loc += MIPS_INSN16_SIZE;
3817
3818 /* Assume all atomic sequences end with an sc/scd instruction. Assume
3819 that no atomic sequence is longer than "atomic_sequence_length"
3820 instructions. */
3821 for (insn_count = 0;
3822 !sc_found && insn_count < atomic_sequence_length;
3823 ++insn_count)
3824 {
3825 int is_branch = 0;
3826
3827 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3828 loc += MIPS_INSN16_SIZE;
3829
3830 /* Assume that there is at most one conditional branch in the
3831 atomic sequence. If a branch is found, put a breakpoint in
3832 its destination address. */
3833 switch (mips_insn_size (ISA_MICROMIPS, insn))
3834 {
3835 /* 48-bit instructions. */
3836 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
3837 loc += 2 * MIPS_INSN16_SIZE;
3838 break;
3839
3840 /* 32-bit instructions. */
3841 case 2 * MIPS_INSN16_SIZE:
3842 switch (micromips_op (insn))
3843 {
3844 case 0x10: /* POOL32I: bits 010000 */
3845 if ((b5s5_op (insn) & 0x18) != 0x0
3846 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
3847 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
3848 && (b5s5_op (insn) & 0x1d) != 0x11
3849 /* BLTZALS, BGEZALS: bits 010000 100x1 */
3850 && ((b5s5_op (insn) & 0x1e) != 0x14
3851 || (insn & 0x3) != 0x0)
3852 /* BC2F, BC2T: bits 010000 1010x xxx00 */
3853 && (b5s5_op (insn) & 0x1e) != 0x1a
3854 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
3855 && ((b5s5_op (insn) & 0x1e) != 0x1c
3856 || (insn & 0x3) != 0x0)
3857 /* BC1F, BC1T: bits 010000 1110x xxx00 */
3858 && ((b5s5_op (insn) & 0x1c) != 0x1c
3859 || (insn & 0x3) != 0x1))
3860 /* BC1ANY*: bits 010000 111xx xxx01 */
3861 break;
3862 /* Fall through. */
3863
3864 case 0x25: /* BEQ: bits 100101 */
3865 case 0x2d: /* BNE: bits 101101 */
3866 insn <<= 16;
3867 insn |= mips_fetch_instruction (gdbarch,
3868 ISA_MICROMIPS, loc, NULL);
3869 branch_bp = (loc + MIPS_INSN16_SIZE
3870 + micromips_relative_offset16 (insn));
3871 is_branch = 1;
3872 break;
3873
3874 case 0x00: /* POOL32A: bits 000000 */
3875 insn <<= 16;
3876 insn |= mips_fetch_instruction (gdbarch,
3877 ISA_MICROMIPS, loc, NULL);
3878 if (b0s6_op (insn) != 0x3c
3879 /* POOL32Axf: bits 000000 ... 111100 */
3880 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
3881 /* JALR, JALR.HB: 000000 000x111100 111100 */
3882 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
3883 break;
3884 /* Fall through. */
3885
3886 case 0x1d: /* JALS: bits 011101 */
3887 case 0x35: /* J: bits 110101 */
3888 case 0x3d: /* JAL: bits 111101 */
3889 case 0x3c: /* JALX: bits 111100 */
3890 return 0; /* Fall back to the standard single-step code. */
3891
3892 case 0x18: /* POOL32C: bits 011000 */
3893 if ((b12s4_op (insn) & 0xb) == 0xb)
3894 /* SC, SCD: bits 011000 1x11 */
3895 sc_found = 1;
3896 break;
3897 }
3898 loc += MIPS_INSN16_SIZE;
3899 break;
3900
3901 /* 16-bit instructions. */
3902 case MIPS_INSN16_SIZE:
3903 switch (micromips_op (insn))
3904 {
3905 case 0x23: /* BEQZ16: bits 100011 */
3906 case 0x2b: /* BNEZ16: bits 101011 */
3907 branch_bp = loc + micromips_relative_offset7 (insn);
3908 is_branch = 1;
3909 break;
3910
3911 case 0x11: /* POOL16C: bits 010001 */
3912 if ((b5s5_op (insn) & 0x1c) != 0xc
3913 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
3914 && b5s5_op (insn) != 0x18)
3915 /* JRADDIUSP: bits 010001 11000 */
3916 break;
3917 return 0; /* Fall back to the standard single-step code. */
3918
3919 case 0x33: /* B16: bits 110011 */
3920 return 0; /* Fall back to the standard single-step code. */
3921 }
3922 break;
3923 }
3924 if (is_branch)
3925 {
3926 if (last_breakpoint >= 1)
3927 return 0; /* More than one branch found, fallback to the
3928 standard single-step code. */
3929 breaks[1] = branch_bp;
3930 last_breakpoint++;
3931 }
3932 }
3933 if (!sc_found)
3934 return 0;
3935
3936 /* Insert a breakpoint right after the end of the atomic sequence. */
3937 breaks[0] = loc;
3938
3939 /* Check for duplicated breakpoints. Check also for a breakpoint
3940 placed (branch instruction's destination) in the atomic sequence */
3941 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3942 last_breakpoint = 0;
3943
3944 /* Effectively inserts the breakpoints. */
3945 for (index = 0; index <= last_breakpoint; index++)
3946 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3947
3948 return 1;
3949}
3950
3951static int
3952deal_with_atomic_sequence (struct gdbarch *gdbarch,
3953 struct address_space *aspace, CORE_ADDR pc)
3954{
3955 if (mips_pc_is_mips (pc))
3956 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3957 else if (mips_pc_is_micromips (gdbarch, pc))
3958 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3959 else
3960 return 0;
3961}
3962
29639122
JB
3963/* mips_software_single_step() is called just before we want to resume
3964 the inferior, if we want to single-step it but there is no hardware
3965 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 3966 the target of the coming instruction and breakpoint it. */
29639122 3967
e6590a1b 3968int
0b1b3e42 3969mips_software_single_step (struct frame_info *frame)
c906108c 3970{
a6d9a66e 3971 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 3972 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 3973 CORE_ADDR pc, next_pc;
65596487 3974
0b1b3e42 3975 pc = get_frame_pc (frame);
6c95b8df 3976 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3d5f6d12
DJ
3977 return 1;
3978
0b1b3e42 3979 next_pc = mips_next_pc (frame, pc);
e6590a1b 3980
6c95b8df 3981 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 3982 return 1;
29639122 3983}
a65bbe44 3984
29639122 3985/* Test whether the PC points to the return instruction at the
025bb325 3986 end of a function. */
65596487 3987
29639122 3988static int
e17a4113 3989mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 3990{
6321c22a
MR
3991 ULONGEST insn;
3992 ULONGEST hint;
3993
3994 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
3995 called for MIPS16 functions. And likewise microMIPS ones. */
3996 gdb_assert (mips_pc_is_mips (pc));
6321c22a 3997
4cc0665f 3998 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
3999 hint = 0x7c0;
4000 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4001}
c906108c 4002
c906108c 4003
29639122
JB
4004/* This fencepost looks highly suspicious to me. Removing it also
4005 seems suspicious as it could affect remote debugging across serial
4006 lines. */
c906108c 4007
29639122 4008static CORE_ADDR
74ed0bb4 4009heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4010{
4011 CORE_ADDR start_pc;
4012 CORE_ADDR fence;
4013 int instlen;
4014 int seen_adjsp = 0;
d6b48e9c 4015 struct inferior *inf;
65596487 4016
74ed0bb4 4017 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4018 start_pc = pc;
4019 fence = start_pc - heuristic_fence_post;
4020 if (start_pc == 0)
4021 return 0;
65596487 4022
29639122
JB
4023 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
4024 fence = VM_MIN_ADDRESS;
65596487 4025
4cc0665f 4026 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4027
d6b48e9c
PA
4028 inf = current_inferior ();
4029
025bb325 4030 /* Search back for previous return. */
29639122
JB
4031 for (start_pc -= instlen;; start_pc -= instlen)
4032 if (start_pc < fence)
4033 {
4034 /* It's not clear to me why we reach this point when
4035 stop_soon, but with this test, at least we
4036 don't print out warnings for every child forked (eg, on
4037 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4038 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4039 {
4040 static int blurb_printed = 0;
98b4dd94 4041
5af949e3
UW
4042 warning (_("GDB can't find the start of the function at %s."),
4043 paddress (gdbarch, pc));
29639122
JB
4044
4045 if (!blurb_printed)
4046 {
4047 /* This actually happens frequently in embedded
4048 development, when you first connect to a board
4049 and your stack pointer and pc are nowhere in
4050 particular. This message needs to give people
4051 in that situation enough information to
4052 determine that it's no big deal. */
4053 printf_filtered ("\n\
5af949e3 4054 GDB is unable to find the start of the function at %s\n\
29639122
JB
4055and thus can't determine the size of that function's stack frame.\n\
4056This means that GDB may be unable to access that stack frame, or\n\
4057the frames below it.\n\
4058 This problem is most likely caused by an invalid program counter or\n\
4059stack pointer.\n\
4060 However, if you think GDB should simply search farther back\n\
5af949e3 4061from %s for code which looks like the beginning of a\n\
29639122 4062function, you can increase the range of the search using the `set\n\
5af949e3
UW
4063heuristic-fence-post' command.\n",
4064 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4065 blurb_printed = 1;
4066 }
4067 }
4068
4069 return 0;
4070 }
4cc0665f 4071 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4072 {
4073 unsigned short inst;
4074
4075 /* On MIPS16, any one of the following is likely to be the
4076 start of a function:
193774b3
MR
4077 extend save
4078 save
29639122
JB
4079 entry
4080 addiu sp,-n
4081 daddiu sp,-n
025bb325 4082 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4083 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4084 if ((inst & 0xff80) == 0x6480) /* save */
4085 {
4086 if (start_pc - instlen >= fence)
4087 {
4cc0665f
MR
4088 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4089 start_pc - instlen, NULL);
193774b3
MR
4090 if ((inst & 0xf800) == 0xf000) /* extend */
4091 start_pc -= instlen;
4092 }
4093 break;
4094 }
4095 else if (((inst & 0xf81f) == 0xe809
4096 && (inst & 0x700) != 0x700) /* entry */
4097 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4098 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4099 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4100 break;
4101 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4102 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4103 seen_adjsp = 1;
4104 else
4105 seen_adjsp = 0;
4106 }
4cc0665f
MR
4107 else if (mips_pc_is_micromips (gdbarch, start_pc))
4108 {
4109 ULONGEST insn;
4110 int stop = 0;
4111 long offset;
4112 int dreg;
4113 int sreg;
4114
4115 /* On microMIPS, any one of the following is likely to be the
4116 start of a function:
4117 ADDIUSP -imm
4118 (D)ADDIU $sp, -imm
4119 LUI $gp, imm */
4120 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4121 switch (micromips_op (insn))
4122 {
4123 case 0xc: /* ADDIU: bits 001100 */
4124 case 0x17: /* DADDIU: bits 010111 */
4125 sreg = b0s5_reg (insn);
4126 dreg = b5s5_reg (insn);
4127 insn <<= 16;
4128 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4129 pc + MIPS_INSN16_SIZE, NULL);
4130 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4131 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4132 /* (D)ADDIU $sp, imm */
4133 && offset < 0)
4134 stop = 1;
4135 break;
4136
4137 case 0x10: /* POOL32I: bits 010000 */
4138 if (b5s5_op (insn) == 0xd
4139 /* LUI: bits 010000 001101 */
4140 && b0s5_reg (insn >> 16) == 28)
4141 /* LUI $gp, imm */
4142 stop = 1;
4143 break;
4144
4145 case 0x13: /* POOL16D: bits 010011 */
4146 if ((insn & 0x1) == 0x1)
4147 /* ADDIUSP: bits 010011 1 */
4148 {
4149 offset = micromips_decode_imm9 (b1s9_imm (insn));
4150 if (offset < 0)
4151 /* ADDIUSP -imm */
4152 stop = 1;
4153 }
4154 else
4155 /* ADDIUS5: bits 010011 0 */
4156 {
4157 dreg = b5s5_reg (insn);
4158 offset = (b1s4_imm (insn) ^ 8) - 8;
4159 if (dreg == MIPS_SP_REGNUM && offset < 0)
4160 /* ADDIUS5 $sp, -imm */
4161 stop = 1;
4162 }
4163 break;
4164 }
4165 if (stop)
4166 break;
4167 }
e17a4113 4168 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4169 {
4c7d22cb 4170 /* Skip return and its delay slot. */
95ac2dcf 4171 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4172 break;
4173 }
4174
4175 return start_pc;
c906108c
SS
4176}
4177
6c0d6680
DJ
4178struct mips_objfile_private
4179{
4180 bfd_size_type size;
4181 char *contents;
4182};
4183
f09ded24
AC
4184/* According to the current ABI, should the type be passed in a
4185 floating-point register (assuming that there is space)? When there
a1f5b845 4186 is no FPU, FP are not even considered as possible candidates for
f09ded24 4187 FP registers and, consequently this returns false - forces FP
025bb325 4188 arguments into integer registers. */
f09ded24
AC
4189
4190static int
74ed0bb4
MD
4191fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4192 struct type *arg_type)
f09ded24
AC
4193{
4194 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4195 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4196 && (typecode == TYPE_CODE_STRUCT
4197 || typecode == TYPE_CODE_UNION)
f09ded24 4198 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4199 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4200 == TYPE_CODE_FLT))
74ed0bb4 4201 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4202}
4203
49e790b0 4204/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4205 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4206
4207static int
4208mips_type_needs_double_align (struct type *type)
4209{
4210 enum type_code typecode = TYPE_CODE (type);
361d1df0 4211
49e790b0
DJ
4212 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4213 return 1;
4214 else if (typecode == TYPE_CODE_STRUCT)
4215 {
4216 if (TYPE_NFIELDS (type) < 1)
4217 return 0;
4218 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4219 }
4220 else if (typecode == TYPE_CODE_UNION)
4221 {
361d1df0 4222 int i, n;
49e790b0
DJ
4223
4224 n = TYPE_NFIELDS (type);
4225 for (i = 0; i < n; i++)
4226 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4227 return 1;
4228 return 0;
4229 }
4230 return 0;
4231}
4232
dc604539
AC
4233/* Adjust the address downward (direction of stack growth) so that it
4234 is correctly aligned for a new stack frame. */
4235static CORE_ADDR
4236mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4237{
5b03f266 4238 return align_down (addr, 16);
dc604539
AC
4239}
4240
8ae38c14 4241/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4242
4243static CORE_ADDR
4244mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4245 CORE_ADDR funaddr, struct value **args,
4246 int nargs, struct type *value_type,
4247 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4248 struct regcache *regcache)
4249{
2c76a0c7 4250 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4251 CORE_ADDR nop_addr;
4252 CORE_ADDR bp_slot;
2c76a0c7
JB
4253
4254 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4255 bp_slot = sp - sizeof (nop_insn);
4256
4257 /* Return to microMIPS mode if calling microMIPS code to avoid
4258 triggering an address error exception on processors that only
4259 support microMIPS execution. */
4260 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4261 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4262
4263 /* The breakpoint layer automatically adjusts the address of
4264 breakpoints inserted in a branch delay slot. With enough
4265 bad luck, the 4 bytes located just before our breakpoint
4266 instruction could look like a branch instruction, and thus
4267 trigger the adjustement, and break the function call entirely.
4268 So, we reserve those 4 bytes and write a nop instruction
4269 to prevent that from happening. */
2e81047f 4270 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4271 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4272 sp = mips_frame_align (gdbarch, nop_addr);
4273
4274 /* Inferior resumes at the function entry point. */
4275 *real_pc = funaddr;
4276
4277 return sp;
4278}
4279
f7ab6ec6 4280static CORE_ADDR
7d9b040b 4281mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4282 struct regcache *regcache, CORE_ADDR bp_addr,
4283 int nargs, struct value **args, CORE_ADDR sp,
4284 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4285{
4286 int argreg;
4287 int float_argreg;
4288 int argnum;
4289 int len = 0;
4290 int stack_offset = 0;
e17a4113 4291 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4292 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 4293 int regsize = mips_abi_regsize (gdbarch);
c906108c 4294
25ab4790
AC
4295 /* For shared libraries, "t9" needs to point at the function
4296 address. */
4c7d22cb 4297 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4298
4299 /* Set the return address register to point to the entry point of
4300 the program, where a breakpoint lies in wait. */
4c7d22cb 4301 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4302
c906108c 4303 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4304 are properly aligned. The stack has to be at least 64-bit
4305 aligned even on 32-bit machines, because doubles must be 64-bit
4306 aligned. For n32 and n64, stack frames need to be 128-bit
4307 aligned, so we round to this widest known alignment. */
4308
5b03f266
AC
4309 sp = align_down (sp, 16);
4310 struct_addr = align_down (struct_addr, 16);
c5aa993b 4311
46e0f506 4312 /* Now make space on the stack for the args. We allocate more
c906108c 4313 than necessary for EABI, because the first few arguments are
46e0f506 4314 passed in registers, but that's OK. */
c906108c 4315 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4316 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 4317 sp -= align_up (len, 16);
c906108c 4318
9ace0497 4319 if (mips_debug)
6d82d43b 4320 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4321 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4322 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4323
c906108c 4324 /* Initialize the integer and float register pointers. */
4c7d22cb 4325 argreg = MIPS_A0_REGNUM;
72a155b4 4326 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4327
46e0f506 4328 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4329 if (struct_return)
9ace0497
AC
4330 {
4331 if (mips_debug)
4332 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4333 "mips_eabi_push_dummy_call: "
4334 "struct_return reg=%d %s\n",
5af949e3 4335 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4336 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4337 }
c906108c
SS
4338
4339 /* Now load as many as possible of the first arguments into
4340 registers, and push the rest onto the stack. Loop thru args
4341 from first to last. */
4342 for (argnum = 0; argnum < nargs; argnum++)
4343 {
47a35522
MK
4344 const gdb_byte *val;
4345 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 4346 struct value *arg = args[argnum];
4991999e 4347 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4348 int len = TYPE_LENGTH (arg_type);
4349 enum type_code typecode = TYPE_CODE (arg_type);
4350
9ace0497
AC
4351 if (mips_debug)
4352 fprintf_unfiltered (gdb_stdlog,
25ab4790 4353 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4354 argnum + 1, len, (int) typecode);
9ace0497 4355
930bd0e0
KB
4356 /* Function pointer arguments to mips16 code need to be made into
4357 mips16 pointers. */
4358 if (typecode == TYPE_CODE_PTR
4359 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4360 {
4361 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4362 len, byte_order);
4cc0665f
MR
4363 if (mips_pc_is_mips (addr))
4364 val = value_contents (arg);
4365 else
930bd0e0
KB
4366 {
4367 store_signed_integer (valbuf, len, byte_order,
4cc0665f 4368 make_compact_addr (addr));
930bd0e0
KB
4369 val = valbuf;
4370 }
930bd0e0 4371 }
c906108c 4372 /* The EABI passes structures that do not fit in a register by
46e0f506 4373 reference. */
930bd0e0 4374 else if (len > regsize
9ace0497 4375 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4376 {
e17a4113
UW
4377 store_unsigned_integer (valbuf, regsize, byte_order,
4378 value_address (arg));
c906108c 4379 typecode = TYPE_CODE_PTR;
1a69e1e4 4380 len = regsize;
c906108c 4381 val = valbuf;
9ace0497
AC
4382 if (mips_debug)
4383 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4384 }
4385 else
47a35522 4386 val = value_contents (arg);
c906108c
SS
4387
4388 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4389 even-numbered floating point register. Round the FP register
4390 up before the check to see if there are any FP registers
46e0f506
MS
4391 left. Non MIPS_EABI targets also pass the FP in the integer
4392 registers so also round up normal registers. */
74ed0bb4 4393 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4394 {
4395 if ((float_argreg & 1))
4396 float_argreg++;
4397 }
c906108c
SS
4398
4399 /* Floating point arguments passed in registers have to be
4400 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4401 are passed in register pairs; the even register gets
4402 the low word, and the odd register gets the high word.
4403 On non-EABI processors, the first two floating point arguments are
4404 also copied to general registers, because MIPS16 functions
4405 don't use float registers for arguments. This duplication of
4406 arguments in general registers can't hurt non-MIPS16 functions
4407 because those registers are normally skipped. */
1012bd0e
EZ
4408 /* MIPS_EABI squeezes a struct that contains a single floating
4409 point value into an FP register instead of pushing it onto the
46e0f506 4410 stack. */
74ed0bb4
MD
4411 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4412 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4413 {
6da397e0
KB
4414 /* EABI32 will pass doubles in consecutive registers, even on
4415 64-bit cores. At one time, we used to check the size of
4416 `float_argreg' to determine whether or not to pass doubles
4417 in consecutive registers, but this is not sufficient for
4418 making the ABI determination. */
4419 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4420 {
72a155b4 4421 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4422 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4423 long regval;
c906108c
SS
4424
4425 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4426 regval = extract_signed_integer (val + low_offset,
4427 4, byte_order);
9ace0497 4428 if (mips_debug)
acdb74a0 4429 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4430 float_argreg, phex (regval, 4));
a8852dc5 4431 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4432
4433 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4434 regval = extract_signed_integer (val + 4 - low_offset,
4435 4, byte_order);
9ace0497 4436 if (mips_debug)
acdb74a0 4437 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4438 float_argreg, phex (regval, 4));
a8852dc5 4439 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4440 }
4441 else
4442 {
4443 /* This is a floating point value that fits entirely
4444 in a single register. */
53a5351d 4445 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4446 above to ensure that it is even register aligned. */
a8852dc5 4447 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4448 if (mips_debug)
acdb74a0 4449 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4450 float_argreg, phex (regval, len));
a8852dc5 4451 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4452 }
4453 }
4454 else
4455 {
4456 /* Copy the argument to general registers or the stack in
4457 register-sized pieces. Large arguments are split between
4458 registers and stack. */
1a69e1e4
DJ
4459 /* Note: structs whose size is not a multiple of regsize
4460 are treated specially: Irix cc passes
d5ac5a39
AC
4461 them in registers where gcc sometimes puts them on the
4462 stack. For maximum compatibility, we will put them in
4463 both places. */
1a69e1e4 4464 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 4465
f09ded24 4466 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4467 register are only written to memory. */
c906108c
SS
4468 while (len > 0)
4469 {
ebafbe83 4470 /* Remember if the argument was written to the stack. */
566f0f7a 4471 int stack_used_p = 0;
1a69e1e4 4472 int partial_len = (len < regsize ? len : regsize);
c906108c 4473
acdb74a0
AC
4474 if (mips_debug)
4475 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4476 partial_len);
4477
566f0f7a 4478 /* Write this portion of the argument to the stack. */
74ed0bb4 4479 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4480 || odd_sized_struct
74ed0bb4 4481 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4482 {
c906108c 4483 /* Should shorter than int integer values be
025bb325 4484 promoted to int before being stored? */
c906108c 4485 int longword_offset = 0;
9ace0497 4486 CORE_ADDR addr;
566f0f7a 4487 stack_used_p = 1;
72a155b4 4488 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4489 {
1a69e1e4 4490 if (regsize == 8
480d3dd2
AC
4491 && (typecode == TYPE_CODE_INT
4492 || typecode == TYPE_CODE_PTR
6d82d43b 4493 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 4494 longword_offset = regsize - len;
480d3dd2
AC
4495 else if ((typecode == TYPE_CODE_STRUCT
4496 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
4497 && TYPE_LENGTH (arg_type) < regsize)
4498 longword_offset = regsize - len;
7a292a7a 4499 }
c5aa993b 4500
9ace0497
AC
4501 if (mips_debug)
4502 {
5af949e3
UW
4503 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4504 paddress (gdbarch, stack_offset));
4505 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4506 paddress (gdbarch, longword_offset));
9ace0497 4507 }
361d1df0 4508
9ace0497
AC
4509 addr = sp + stack_offset + longword_offset;
4510
4511 if (mips_debug)
4512 {
4513 int i;
5af949e3
UW
4514 fprintf_unfiltered (gdb_stdlog, " @%s ",
4515 paddress (gdbarch, addr));
9ace0497
AC
4516 for (i = 0; i < partial_len; i++)
4517 {
6d82d43b 4518 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4519 val[i] & 0xff);
9ace0497
AC
4520 }
4521 }
4522 write_memory (addr, val, partial_len);
c906108c
SS
4523 }
4524
f09ded24
AC
4525 /* Note!!! This is NOT an else clause. Odd sized
4526 structs may go thru BOTH paths. Floating point
46e0f506 4527 arguments will not. */
566f0f7a 4528 /* Write this portion of the argument to a general
6d82d43b 4529 purpose register. */
74ed0bb4
MD
4530 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4531 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4532 {
6d82d43b 4533 LONGEST regval =
a8852dc5 4534 extract_signed_integer (val, partial_len, byte_order);
c906108c 4535
9ace0497 4536 if (mips_debug)
acdb74a0 4537 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4538 argreg,
1a69e1e4 4539 phex (regval, regsize));
a8852dc5 4540 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4541 argreg++;
c906108c 4542 }
c5aa993b 4543
c906108c
SS
4544 len -= partial_len;
4545 val += partial_len;
4546
b021a221
MS
4547 /* Compute the offset into the stack at which we will
4548 copy the next parameter.
566f0f7a 4549
566f0f7a 4550 In the new EABI (and the NABI32), the stack_offset
46e0f506 4551 only needs to be adjusted when it has been used. */
c906108c 4552
46e0f506 4553 if (stack_used_p)
1a69e1e4 4554 stack_offset += align_up (partial_len, regsize);
c906108c
SS
4555 }
4556 }
9ace0497
AC
4557 if (mips_debug)
4558 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4559 }
4560
f10683bb 4561 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4562
0f71a2f6
JM
4563 /* Return adjusted stack pointer. */
4564 return sp;
4565}
4566
a1f5b845 4567/* Determine the return value convention being used. */
6d82d43b 4568
9c8fdbfa 4569static enum return_value_convention
6a3a010b 4570mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4571 struct type *type, struct regcache *regcache,
47a35522 4572 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4573{
609ba780
JM
4574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4575 int fp_return_type = 0;
4576 int offset, regnum, xfer;
4577
9c8fdbfa
AC
4578 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4579 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4580
4581 /* Floating point type? */
4582 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4583 {
4584 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4585 fp_return_type = 1;
4586 /* Structs with a single field of float type
4587 are returned in a floating point register. */
4588 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4589 || TYPE_CODE (type) == TYPE_CODE_UNION)
4590 && TYPE_NFIELDS (type) == 1)
4591 {
4592 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4593
4594 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4595 fp_return_type = 1;
4596 }
4597 }
4598
4599 if (fp_return_type)
4600 {
4601 /* A floating-point value belongs in the least significant part
4602 of FP0/FP1. */
4603 if (mips_debug)
4604 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4605 regnum = mips_regnum (gdbarch)->fp0;
4606 }
4607 else
4608 {
4609 /* An integer value goes in V0/V1. */
4610 if (mips_debug)
4611 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4612 regnum = MIPS_V0_REGNUM;
4613 }
4614 for (offset = 0;
4615 offset < TYPE_LENGTH (type);
4616 offset += mips_abi_regsize (gdbarch), regnum++)
4617 {
4618 xfer = mips_abi_regsize (gdbarch);
4619 if (offset + xfer > TYPE_LENGTH (type))
4620 xfer = TYPE_LENGTH (type) - offset;
4621 mips_xfer_register (gdbarch, regcache,
4622 gdbarch_num_regs (gdbarch) + regnum, xfer,
4623 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4624 offset);
4625 }
4626
9c8fdbfa 4627 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4628}
4629
6d82d43b
AC
4630
4631/* N32/N64 ABI stuff. */
ebafbe83 4632
8d26208a
DJ
4633/* Search for a naturally aligned double at OFFSET inside a struct
4634 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4635 registers. */
4636
4637static int
74ed0bb4
MD
4638mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4639 int offset)
8d26208a
DJ
4640{
4641 int i;
4642
4643 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4644 return 0;
4645
74ed0bb4 4646 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4647 return 0;
4648
4649 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4650 return 0;
4651
4652 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4653 {
4654 int pos;
4655 struct type *field_type;
4656
4657 /* We're only looking at normal fields. */
5bc60cfb 4658 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4659 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4660 continue;
4661
4662 /* If we have gone past the offset, there is no double to pass. */
4663 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4664 if (pos > offset)
4665 return 0;
4666
4667 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4668
4669 /* If this field is entirely before the requested offset, go
4670 on to the next one. */
4671 if (pos + TYPE_LENGTH (field_type) <= offset)
4672 continue;
4673
4674 /* If this is our special aligned double, we can stop. */
4675 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4676 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4677 return 1;
4678
4679 /* This field starts at or before the requested offset, and
4680 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4681 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4682 }
4683
4684 return 0;
4685}
4686
f7ab6ec6 4687static CORE_ADDR
7d9b040b 4688mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4689 struct regcache *regcache, CORE_ADDR bp_addr,
4690 int nargs, struct value **args, CORE_ADDR sp,
4691 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4692{
4693 int argreg;
4694 int float_argreg;
4695 int argnum;
4696 int len = 0;
4697 int stack_offset = 0;
e17a4113 4698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4699 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4700
25ab4790
AC
4701 /* For shared libraries, "t9" needs to point at the function
4702 address. */
4c7d22cb 4703 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4704
4705 /* Set the return address register to point to the entry point of
4706 the program, where a breakpoint lies in wait. */
4c7d22cb 4707 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4708
cb3d25d1
MS
4709 /* First ensure that the stack and structure return address (if any)
4710 are properly aligned. The stack has to be at least 64-bit
4711 aligned even on 32-bit machines, because doubles must be 64-bit
4712 aligned. For n32 and n64, stack frames need to be 128-bit
4713 aligned, so we round to this widest known alignment. */
4714
5b03f266
AC
4715 sp = align_down (sp, 16);
4716 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4717
4718 /* Now make space on the stack for the args. */
4719 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4720 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4721 sp -= align_up (len, 16);
cb3d25d1
MS
4722
4723 if (mips_debug)
6d82d43b 4724 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4725 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4726 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4727
4728 /* Initialize the integer and float register pointers. */
4c7d22cb 4729 argreg = MIPS_A0_REGNUM;
72a155b4 4730 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4731
46e0f506 4732 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4733 if (struct_return)
4734 {
4735 if (mips_debug)
4736 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4737 "mips_n32n64_push_dummy_call: "
4738 "struct_return reg=%d %s\n",
5af949e3 4739 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4740 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4741 }
4742
4743 /* Now load as many as possible of the first arguments into
4744 registers, and push the rest onto the stack. Loop thru args
4745 from first to last. */
4746 for (argnum = 0; argnum < nargs; argnum++)
4747 {
47a35522 4748 const gdb_byte *val;
cb3d25d1 4749 struct value *arg = args[argnum];
4991999e 4750 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4751 int len = TYPE_LENGTH (arg_type);
4752 enum type_code typecode = TYPE_CODE (arg_type);
4753
4754 if (mips_debug)
4755 fprintf_unfiltered (gdb_stdlog,
25ab4790 4756 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4757 argnum + 1, len, (int) typecode);
4758
47a35522 4759 val = value_contents (arg);
cb3d25d1 4760
5b68030f
JM
4761 /* A 128-bit long double value requires an even-odd pair of
4762 floating-point registers. */
4763 if (len == 16
4764 && fp_register_arg_p (gdbarch, typecode, arg_type)
4765 && (float_argreg & 1))
4766 {
4767 float_argreg++;
4768 argreg++;
4769 }
4770
74ed0bb4
MD
4771 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4772 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4773 {
4774 /* This is a floating point value that fits entirely
5b68030f
JM
4775 in a single register or a pair of registers. */
4776 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4777 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4778 if (mips_debug)
4779 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4780 float_argreg, phex (regval, reglen));
8d26208a 4781 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4782
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4785 argreg, phex (regval, reglen));
9c9acae0 4786 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4787 float_argreg++;
4788 argreg++;
5b68030f
JM
4789 if (len == 16)
4790 {
e17a4113
UW
4791 regval = extract_unsigned_integer (val + reglen,
4792 reglen, byte_order);
5b68030f
JM
4793 if (mips_debug)
4794 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4795 float_argreg, phex (regval, reglen));
4796 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4797
4798 if (mips_debug)
4799 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4800 argreg, phex (regval, reglen));
4801 regcache_cooked_write_unsigned (regcache, argreg, regval);
4802 float_argreg++;
4803 argreg++;
4804 }
cb3d25d1
MS
4805 }
4806 else
4807 {
4808 /* Copy the argument to general registers or the stack in
4809 register-sized pieces. Large arguments are split between
4810 registers and stack. */
ab2e1992
MR
4811 /* For N32/N64, structs, unions, or other composite types are
4812 treated as a sequence of doublewords, and are passed in integer
4813 or floating point registers as though they were simple scalar
4814 parameters to the extent that they fit, with any excess on the
4815 stack packed according to the normal memory layout of the
4816 object.
4817 The caller does not reserve space for the register arguments;
4818 the callee is responsible for reserving it if required. */
cb3d25d1 4819 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4820 register are only written to memory. */
cb3d25d1
MS
4821 while (len > 0)
4822 {
ad018eee 4823 /* Remember if the argument was written to the stack. */
cb3d25d1 4824 int stack_used_p = 0;
1a69e1e4 4825 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
4826
4827 if (mips_debug)
4828 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4829 partial_len);
4830
74ed0bb4
MD
4831 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4832 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 4833
cb3d25d1 4834 /* Write this portion of the argument to the stack. */
74ed0bb4 4835 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4836 {
4837 /* Should shorter than int integer values be
025bb325 4838 promoted to int before being stored? */
cb3d25d1
MS
4839 int longword_offset = 0;
4840 CORE_ADDR addr;
4841 stack_used_p = 1;
72a155b4 4842 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 4843 {
1a69e1e4 4844 if ((typecode == TYPE_CODE_INT
5b68030f 4845 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
4846 && len <= 4)
4847 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
4848 }
4849
4850 if (mips_debug)
4851 {
5af949e3
UW
4852 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4853 paddress (gdbarch, stack_offset));
4854 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4855 paddress (gdbarch, longword_offset));
cb3d25d1
MS
4856 }
4857
4858 addr = sp + stack_offset + longword_offset;
4859
4860 if (mips_debug)
4861 {
4862 int i;
5af949e3
UW
4863 fprintf_unfiltered (gdb_stdlog, " @%s ",
4864 paddress (gdbarch, addr));
cb3d25d1
MS
4865 for (i = 0; i < partial_len; i++)
4866 {
6d82d43b 4867 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
4868 val[i] & 0xff);
4869 }
4870 }
4871 write_memory (addr, val, partial_len);
4872 }
4873
4874 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 4875 structs may go thru BOTH paths. */
cb3d25d1 4876 /* Write this portion of the argument to a general
6d82d43b 4877 purpose register. */
74ed0bb4 4878 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 4879 {
5863b5d5
MR
4880 LONGEST regval;
4881
4882 /* Sign extend pointers, 32-bit integers and signed
4883 16-bit and 8-bit integers; everything else is taken
4884 as is. */
4885
4886 if ((partial_len == 4
4887 && (typecode == TYPE_CODE_PTR
4888 || typecode == TYPE_CODE_INT))
4889 || (partial_len < 4
4890 && typecode == TYPE_CODE_INT
4891 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
4892 regval = extract_signed_integer (val, partial_len,
4893 byte_order);
5863b5d5 4894 else
e17a4113
UW
4895 regval = extract_unsigned_integer (val, partial_len,
4896 byte_order);
cb3d25d1
MS
4897
4898 /* A non-floating-point argument being passed in a
4899 general register. If a struct or union, and if
4900 the remaining length is smaller than the register
4901 size, we have to adjust the register value on
4902 big endian targets.
4903
4904 It does not seem to be necessary to do the
1a69e1e4 4905 same for integral types. */
cb3d25d1 4906
72a155b4 4907 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 4908 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
4909 && (typecode == TYPE_CODE_STRUCT
4910 || typecode == TYPE_CODE_UNION))
1a69e1e4 4911 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 4912 * TARGET_CHAR_BIT);
cb3d25d1
MS
4913
4914 if (mips_debug)
4915 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4916 argreg,
1a69e1e4 4917 phex (regval, MIPS64_REGSIZE));
9c9acae0 4918 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 4919
74ed0bb4 4920 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
4921 TYPE_LENGTH (arg_type) - len))
4922 {
4923 if (mips_debug)
4924 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
4925 float_argreg,
4926 phex (regval, MIPS64_REGSIZE));
4927 regcache_cooked_write_unsigned (regcache, float_argreg,
4928 regval);
4929 }
4930
4931 float_argreg++;
cb3d25d1
MS
4932 argreg++;
4933 }
4934
4935 len -= partial_len;
4936 val += partial_len;
4937
b021a221
MS
4938 /* Compute the offset into the stack at which we will
4939 copy the next parameter.
cb3d25d1
MS
4940
4941 In N32 (N64?), the stack_offset only needs to be
4942 adjusted when it has been used. */
4943
4944 if (stack_used_p)
1a69e1e4 4945 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
4946 }
4947 }
4948 if (mips_debug)
4949 fprintf_unfiltered (gdb_stdlog, "\n");
4950 }
4951
f10683bb 4952 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4953
cb3d25d1
MS
4954 /* Return adjusted stack pointer. */
4955 return sp;
4956}
4957
6d82d43b 4958static enum return_value_convention
6a3a010b 4959mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 4960 struct type *type, struct regcache *regcache,
47a35522 4961 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 4962{
72a155b4 4963 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
4964
4965 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
4966
4967 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
4968 if needed), as appropriate for the type. Composite results (struct,
4969 union, or array) are returned in $2/$f0 and $3/$f2 according to the
4970 following rules:
4971
4972 * A struct with only one or two floating point fields is returned in $f0
4973 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
4974 case.
4975
f08877ba 4976 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
4977 $2 (first 64 bits) and $3 (remainder, if necessary).
4978
4979 * Larger composite results are handled by converting the function to a
4980 procedure with an implicit first parameter, which is a pointer to an area
4981 reserved by the caller to receive the result. [The o32-bit ABI requires
4982 that all composite results be handled by conversion to implicit first
4983 parameters. The MIPS/SGI Fortran implementation has always made a
4984 specific exception to return COMPLEX results in the floating point
4985 registers.] */
4986
f08877ba 4987 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 4988 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
4989 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4990 && TYPE_LENGTH (type) == 16
4991 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4992 {
4993 /* A 128-bit floating-point value fills both $f0 and $f2. The
4994 two registers are used in the same as memory order, so the
4995 eight bytes with the lower memory address are in $f0. */
4996 if (mips_debug)
4997 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 4998 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
4999 (gdbarch_num_regs (gdbarch)
5000 + mips_regnum (gdbarch)->fp0),
72a155b4 5001 8, gdbarch_byte_order (gdbarch),
4c6b5505 5002 readbuf, writebuf, 0);
ba32f989 5003 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5004 (gdbarch_num_regs (gdbarch)
5005 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5006 8, gdbarch_byte_order (gdbarch),
4c6b5505 5007 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5008 writebuf ? writebuf + 8 : writebuf, 0);
5009 return RETURN_VALUE_REGISTER_CONVENTION;
5010 }
6d82d43b
AC
5011 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5012 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5013 {
59aa1faa 5014 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5015 if (mips_debug)
5016 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5017 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5018 (gdbarch_num_regs (gdbarch)
5019 + mips_regnum (gdbarch)->fp0),
6d82d43b 5020 TYPE_LENGTH (type),
72a155b4 5021 gdbarch_byte_order (gdbarch),
4c6b5505 5022 readbuf, writebuf, 0);
6d82d43b
AC
5023 return RETURN_VALUE_REGISTER_CONVENTION;
5024 }
5025 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5026 && TYPE_NFIELDS (type) <= 2
5027 && TYPE_NFIELDS (type) >= 1
5028 && ((TYPE_NFIELDS (type) == 1
b18bb924 5029 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5030 == TYPE_CODE_FLT))
5031 || (TYPE_NFIELDS (type) == 2
b18bb924 5032 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5033 == TYPE_CODE_FLT)
b18bb924 5034 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5035 == TYPE_CODE_FLT))))
6d82d43b
AC
5036 {
5037 /* A struct that contains one or two floats. Each value is part
5038 in the least significant part of their floating point
5b68030f 5039 register (or GPR, for soft float). */
6d82d43b
AC
5040 int regnum;
5041 int field;
5b68030f
JM
5042 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5043 ? mips_regnum (gdbarch)->fp0
5044 : MIPS_V0_REGNUM);
6d82d43b
AC
5045 field < TYPE_NFIELDS (type); field++, regnum += 2)
5046 {
5047 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5048 / TARGET_CHAR_BIT);
5049 if (mips_debug)
5050 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5051 offset);
5b68030f
JM
5052 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5053 {
5054 /* A 16-byte long double field goes in two consecutive
5055 registers. */
5056 mips_xfer_register (gdbarch, regcache,
5057 gdbarch_num_regs (gdbarch) + regnum,
5058 8,
5059 gdbarch_byte_order (gdbarch),
5060 readbuf, writebuf, offset);
5061 mips_xfer_register (gdbarch, regcache,
5062 gdbarch_num_regs (gdbarch) + regnum + 1,
5063 8,
5064 gdbarch_byte_order (gdbarch),
5065 readbuf, writebuf, offset + 8);
5066 }
5067 else
5068 mips_xfer_register (gdbarch, regcache,
5069 gdbarch_num_regs (gdbarch) + regnum,
5070 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5071 gdbarch_byte_order (gdbarch),
5072 readbuf, writebuf, offset);
6d82d43b
AC
5073 }
5074 return RETURN_VALUE_REGISTER_CONVENTION;
5075 }
5076 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5077 || TYPE_CODE (type) == TYPE_CODE_UNION
5078 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5079 {
f08877ba 5080 /* A composite type. Extract the left justified value,
6d82d43b
AC
5081 regardless of the byte order. I.e. DO NOT USE
5082 mips_xfer_lower. */
5083 int offset;
5084 int regnum;
4c7d22cb 5085 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5086 offset < TYPE_LENGTH (type);
72a155b4 5087 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5088 {
72a155b4 5089 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5090 if (offset + xfer > TYPE_LENGTH (type))
5091 xfer = TYPE_LENGTH (type) - offset;
5092 if (mips_debug)
5093 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5094 offset, xfer, regnum);
ba32f989
DJ
5095 mips_xfer_register (gdbarch, regcache,
5096 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5097 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5098 offset);
6d82d43b
AC
5099 }
5100 return RETURN_VALUE_REGISTER_CONVENTION;
5101 }
5102 else
5103 {
5104 /* A scalar extract each part but least-significant-byte
5105 justified. */
5106 int offset;
5107 int regnum;
4c7d22cb 5108 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5109 offset < TYPE_LENGTH (type);
72a155b4 5110 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5111 {
72a155b4 5112 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5113 if (offset + xfer > TYPE_LENGTH (type))
5114 xfer = TYPE_LENGTH (type) - offset;
5115 if (mips_debug)
5116 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5117 offset, xfer, regnum);
ba32f989
DJ
5118 mips_xfer_register (gdbarch, regcache,
5119 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5120 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5121 readbuf, writebuf, offset);
6d82d43b
AC
5122 }
5123 return RETURN_VALUE_REGISTER_CONVENTION;
5124 }
5125}
5126
6a3a010b
MR
5127/* Which registers to use for passing floating-point values between
5128 function calls, one of floating-point, general and both kinds of
5129 registers. O32 and O64 use different register kinds for standard
5130 MIPS and MIPS16 code; to make the handling of cases where we may
5131 not know what kind of code is being used (e.g. no debug information)
5132 easier we sometimes use both kinds. */
5133
5134enum mips_fval_reg
5135{
5136 mips_fval_fpr,
5137 mips_fval_gpr,
5138 mips_fval_both
5139};
5140
6d82d43b
AC
5141/* O32 ABI stuff. */
5142
5143static CORE_ADDR
7d9b040b 5144mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5145 struct regcache *regcache, CORE_ADDR bp_addr,
5146 int nargs, struct value **args, CORE_ADDR sp,
5147 int struct_return, CORE_ADDR struct_addr)
5148{
5149 int argreg;
5150 int float_argreg;
5151 int argnum;
5152 int len = 0;
5153 int stack_offset = 0;
e17a4113 5154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5155 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5156
5157 /* For shared libraries, "t9" needs to point at the function
5158 address. */
4c7d22cb 5159 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5160
5161 /* Set the return address register to point to the entry point of
5162 the program, where a breakpoint lies in wait. */
4c7d22cb 5163 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5164
5165 /* First ensure that the stack and structure return address (if any)
5166 are properly aligned. The stack has to be at least 64-bit
5167 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5168 aligned. For n32 and n64, stack frames need to be 128-bit
5169 aligned, so we round to this widest known alignment. */
5170
5b03f266
AC
5171 sp = align_down (sp, 16);
5172 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5173
5174 /* Now make space on the stack for the args. */
5175 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5176 {
5177 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5178
5179 /* Align to double-word if necessary. */
2afd3f0a 5180 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5181 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5182 /* Allocate space on the stack. */
354ecfd5 5183 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5184 }
5b03f266 5185 sp -= align_up (len, 16);
ebafbe83
MS
5186
5187 if (mips_debug)
6d82d43b 5188 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5189 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5190 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5191
5192 /* Initialize the integer and float register pointers. */
4c7d22cb 5193 argreg = MIPS_A0_REGNUM;
72a155b4 5194 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5195
bcb0cc15 5196 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5197 if (struct_return)
5198 {
5199 if (mips_debug)
5200 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5201 "mips_o32_push_dummy_call: "
5202 "struct_return reg=%d %s\n",
5af949e3 5203 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5204 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5205 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5206 }
5207
5208 /* Now load as many as possible of the first arguments into
5209 registers, and push the rest onto the stack. Loop thru args
5210 from first to last. */
5211 for (argnum = 0; argnum < nargs; argnum++)
5212 {
47a35522 5213 const gdb_byte *val;
ebafbe83 5214 struct value *arg = args[argnum];
4991999e 5215 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5216 int len = TYPE_LENGTH (arg_type);
5217 enum type_code typecode = TYPE_CODE (arg_type);
5218
5219 if (mips_debug)
5220 fprintf_unfiltered (gdb_stdlog,
25ab4790 5221 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5222 argnum + 1, len, (int) typecode);
5223
47a35522 5224 val = value_contents (arg);
46cac009
AC
5225
5226 /* 32-bit ABIs always start floating point arguments in an
5227 even-numbered floating point register. Round the FP register
5228 up before the check to see if there are any FP registers
6a3a010b
MR
5229 left. O32 targets also pass the FP in the integer registers
5230 so also round up normal registers. */
74ed0bb4 5231 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5232 {
5233 if ((float_argreg & 1))
5234 float_argreg++;
5235 }
5236
5237 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5238 treated specially. On 32-bit architectures, doubles are
5239 passed in register pairs; the even FP register gets the
5240 low word, and the odd FP register gets the high word.
5241 On O32, the first two floating point arguments are also
5242 copied to general registers, following their memory order,
5243 because MIPS16 functions don't use float registers for
5244 arguments. This duplication of arguments in general
5245 registers can't hurt non-MIPS16 functions, because those
5246 registers are normally skipped. */
46cac009 5247
74ed0bb4
MD
5248 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5249 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5250 {
8b07f6d8 5251 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5252 {
6a3a010b
MR
5253 int freg_offset = gdbarch_byte_order (gdbarch)
5254 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5255 unsigned long regval;
5256
6a3a010b
MR
5257 /* First word. */
5258 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5259 if (mips_debug)
5260 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5261 float_argreg + freg_offset,
5262 phex (regval, 4));
025bb325 5263 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5264 float_argreg++ + freg_offset,
5265 regval);
46cac009
AC
5266 if (mips_debug)
5267 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5268 argreg, phex (regval, 4));
9c9acae0 5269 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5270
6a3a010b
MR
5271 /* Second word. */
5272 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5273 if (mips_debug)
5274 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5275 float_argreg - freg_offset,
5276 phex (regval, 4));
025bb325 5277 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5278 float_argreg++ - freg_offset,
5279 regval);
46cac009
AC
5280 if (mips_debug)
5281 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5282 argreg, phex (regval, 4));
9c9acae0 5283 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5284 }
5285 else
5286 {
5287 /* This is a floating point value that fits entirely
5288 in a single register. */
5289 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5290 above to ensure that it is even register aligned. */
e17a4113 5291 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5292 if (mips_debug)
5293 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5294 float_argreg, phex (regval, len));
025bb325
MS
5295 regcache_cooked_write_unsigned (regcache,
5296 float_argreg++, regval);
5b68030f
JM
5297 /* Although two FP registers are reserved for each
5298 argument, only one corresponding integer register is
5299 reserved. */
46cac009
AC
5300 if (mips_debug)
5301 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5302 argreg, phex (regval, len));
5b68030f 5303 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5304 }
5305 /* Reserve space for the FP register. */
1a69e1e4 5306 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5307 }
5308 else
5309 {
5310 /* Copy the argument to general registers or the stack in
5311 register-sized pieces. Large arguments are split between
5312 registers and stack. */
1a69e1e4
DJ
5313 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5314 are treated specially: Irix cc passes
d5ac5a39
AC
5315 them in registers where gcc sometimes puts them on the
5316 stack. For maximum compatibility, we will put them in
5317 both places. */
1a69e1e4
DJ
5318 int odd_sized_struct = (len > MIPS32_REGSIZE
5319 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5320 /* Structures should be aligned to eight bytes (even arg registers)
5321 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5322 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5323 {
5324 if ((argreg & 1))
968b5391
MR
5325 {
5326 argreg++;
1a69e1e4 5327 stack_offset += MIPS32_REGSIZE;
968b5391 5328 }
46cac009 5329 }
46cac009
AC
5330 while (len > 0)
5331 {
5332 /* Remember if the argument was written to the stack. */
5333 int stack_used_p = 0;
1a69e1e4 5334 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5335
5336 if (mips_debug)
5337 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5338 partial_len);
5339
5340 /* Write this portion of the argument to the stack. */
74ed0bb4 5341 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5342 || odd_sized_struct)
46cac009
AC
5343 {
5344 /* Should shorter than int integer values be
025bb325 5345 promoted to int before being stored? */
46cac009
AC
5346 int longword_offset = 0;
5347 CORE_ADDR addr;
5348 stack_used_p = 1;
46cac009
AC
5349
5350 if (mips_debug)
5351 {
5af949e3
UW
5352 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5353 paddress (gdbarch, stack_offset));
5354 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5355 paddress (gdbarch, longword_offset));
46cac009
AC
5356 }
5357
5358 addr = sp + stack_offset + longword_offset;
5359
5360 if (mips_debug)
5361 {
5362 int i;
5af949e3
UW
5363 fprintf_unfiltered (gdb_stdlog, " @%s ",
5364 paddress (gdbarch, addr));
46cac009
AC
5365 for (i = 0; i < partial_len; i++)
5366 {
6d82d43b 5367 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5368 val[i] & 0xff);
5369 }
5370 }
5371 write_memory (addr, val, partial_len);
5372 }
5373
5374 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5375 structs may go thru BOTH paths. */
46cac009 5376 /* Write this portion of the argument to a general
6d82d43b 5377 purpose register. */
74ed0bb4 5378 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5379 {
e17a4113
UW
5380 LONGEST regval = extract_signed_integer (val, partial_len,
5381 byte_order);
4246e332 5382 /* Value may need to be sign extended, because
1b13c4f6 5383 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5384
5385 /* A non-floating-point argument being passed in a
5386 general register. If a struct or union, and if
5387 the remaining length is smaller than the register
5388 size, we have to adjust the register value on
5389 big endian targets.
5390
5391 It does not seem to be necessary to do the
5392 same for integral types.
5393
5394 Also don't do this adjustment on O64 binaries.
5395
5396 cagney/2001-07-23: gdb/179: Also, GCC, when
5397 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5398 mips_abi_regsize(), generates a left shift
5399 as part of storing the argument in a register
5400 (the left shift isn't generated when
1b13c4f6 5401 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5402 it is quite possible that this is GCC
5403 contradicting the LE/O32 ABI, GDB has not been
5404 adjusted to accommodate this. Either someone
5405 needs to demonstrate that the LE/O32 ABI
5406 specifies such a left shift OR this new ABI gets
5407 identified as such and GDB gets tweaked
5408 accordingly. */
5409
72a155b4 5410 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5411 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5412 && (typecode == TYPE_CODE_STRUCT
5413 || typecode == TYPE_CODE_UNION))
1a69e1e4 5414 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5415 * TARGET_CHAR_BIT);
46cac009
AC
5416
5417 if (mips_debug)
5418 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5419 argreg,
1a69e1e4 5420 phex (regval, MIPS32_REGSIZE));
9c9acae0 5421 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5422 argreg++;
5423
5424 /* Prevent subsequent floating point arguments from
5425 being passed in floating point registers. */
74ed0bb4 5426 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5427 }
5428
5429 len -= partial_len;
5430 val += partial_len;
5431
b021a221
MS
5432 /* Compute the offset into the stack at which we will
5433 copy the next parameter.
46cac009 5434
6d82d43b
AC
5435 In older ABIs, the caller reserved space for
5436 registers that contained arguments. This was loosely
5437 refered to as their "home". Consequently, space is
5438 always allocated. */
46cac009 5439
1a69e1e4 5440 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5441 }
5442 }
5443 if (mips_debug)
5444 fprintf_unfiltered (gdb_stdlog, "\n");
5445 }
5446
f10683bb 5447 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5448
46cac009
AC
5449 /* Return adjusted stack pointer. */
5450 return sp;
5451}
5452
6d82d43b 5453static enum return_value_convention
6a3a010b 5454mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5455 struct type *type, struct regcache *regcache,
47a35522 5456 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5457{
6a3a010b 5458 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5459 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5461 enum mips_fval_reg fval_reg;
6d82d43b 5462
6a3a010b 5463 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5464 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5465 || TYPE_CODE (type) == TYPE_CODE_UNION
5466 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5467 return RETURN_VALUE_STRUCT_CONVENTION;
5468 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5469 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5470 {
6a3a010b
MR
5471 /* A single-precision floating-point value. If reading in or copying,
5472 then we get it from/put it to FP0 for standard MIPS code or GPR2
5473 for MIPS16 code. If writing out only, then we put it to both FP0
5474 and GPR2. We do not support reading in with no function known, if
5475 this safety check ever triggers, then we'll have to try harder. */
5476 gdb_assert (function || !readbuf);
6d82d43b 5477 if (mips_debug)
6a3a010b
MR
5478 switch (fval_reg)
5479 {
5480 case mips_fval_fpr:
5481 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5482 break;
5483 case mips_fval_gpr:
5484 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5485 break;
5486 case mips_fval_both:
5487 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5488 break;
5489 }
5490 if (fval_reg != mips_fval_gpr)
5491 mips_xfer_register (gdbarch, regcache,
5492 (gdbarch_num_regs (gdbarch)
5493 + mips_regnum (gdbarch)->fp0),
5494 TYPE_LENGTH (type),
5495 gdbarch_byte_order (gdbarch),
5496 readbuf, writebuf, 0);
5497 if (fval_reg != mips_fval_fpr)
5498 mips_xfer_register (gdbarch, regcache,
5499 gdbarch_num_regs (gdbarch) + 2,
5500 TYPE_LENGTH (type),
5501 gdbarch_byte_order (gdbarch),
5502 readbuf, writebuf, 0);
6d82d43b
AC
5503 return RETURN_VALUE_REGISTER_CONVENTION;
5504 }
5505 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5506 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5507 {
6a3a010b
MR
5508 /* A double-precision floating-point value. If reading in or copying,
5509 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5510 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5511 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5512 no function known, if this safety check ever triggers, then we'll
5513 have to try harder. */
5514 gdb_assert (function || !readbuf);
6d82d43b 5515 if (mips_debug)
6a3a010b
MR
5516 switch (fval_reg)
5517 {
5518 case mips_fval_fpr:
5519 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5520 break;
5521 case mips_fval_gpr:
5522 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5523 break;
5524 case mips_fval_both:
5525 fprintf_unfiltered (gdb_stderr,
5526 "Return float in $fp1/$fp0 and $2/$3\n");
5527 break;
5528 }
5529 if (fval_reg != mips_fval_gpr)
6d82d43b 5530 {
6a3a010b
MR
5531 /* The most significant part goes in FP1, and the least significant
5532 in FP0. */
5533 switch (gdbarch_byte_order (gdbarch))
5534 {
5535 case BFD_ENDIAN_LITTLE:
5536 mips_xfer_register (gdbarch, regcache,
5537 (gdbarch_num_regs (gdbarch)
5538 + mips_regnum (gdbarch)->fp0 + 0),
5539 4, gdbarch_byte_order (gdbarch),
5540 readbuf, writebuf, 0);
5541 mips_xfer_register (gdbarch, regcache,
5542 (gdbarch_num_regs (gdbarch)
5543 + mips_regnum (gdbarch)->fp0 + 1),
5544 4, gdbarch_byte_order (gdbarch),
5545 readbuf, writebuf, 4);
5546 break;
5547 case BFD_ENDIAN_BIG:
5548 mips_xfer_register (gdbarch, regcache,
5549 (gdbarch_num_regs (gdbarch)
5550 + mips_regnum (gdbarch)->fp0 + 1),
5551 4, gdbarch_byte_order (gdbarch),
5552 readbuf, writebuf, 0);
5553 mips_xfer_register (gdbarch, regcache,
5554 (gdbarch_num_regs (gdbarch)
5555 + mips_regnum (gdbarch)->fp0 + 0),
5556 4, gdbarch_byte_order (gdbarch),
5557 readbuf, writebuf, 4);
5558 break;
5559 default:
5560 internal_error (__FILE__, __LINE__, _("bad switch"));
5561 }
5562 }
5563 if (fval_reg != mips_fval_fpr)
5564 {
5565 /* The two 32-bit parts are always placed in GPR2 and GPR3
5566 following these registers' memory order. */
ba32f989 5567 mips_xfer_register (gdbarch, regcache,
6a3a010b 5568 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5569 4, gdbarch_byte_order (gdbarch),
4c6b5505 5570 readbuf, writebuf, 0);
ba32f989 5571 mips_xfer_register (gdbarch, regcache,
6a3a010b 5572 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5573 4, gdbarch_byte_order (gdbarch),
4c6b5505 5574 readbuf, writebuf, 4);
6d82d43b
AC
5575 }
5576 return RETURN_VALUE_REGISTER_CONVENTION;
5577 }
5578#if 0
5579 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5580 && TYPE_NFIELDS (type) <= 2
5581 && TYPE_NFIELDS (type) >= 1
5582 && ((TYPE_NFIELDS (type) == 1
5583 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5584 == TYPE_CODE_FLT))
5585 || (TYPE_NFIELDS (type) == 2
5586 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5587 == TYPE_CODE_FLT)
5588 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5589 == TYPE_CODE_FLT)))
5590 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5591 {
5592 /* A struct that contains one or two floats. Each value is part
5593 in the least significant part of their floating point
5594 register.. */
870cd05e 5595 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
5596 int regnum;
5597 int field;
72a155b4 5598 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5599 field < TYPE_NFIELDS (type); field++, regnum += 2)
5600 {
5601 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5602 / TARGET_CHAR_BIT);
5603 if (mips_debug)
5604 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5605 offset);
ba32f989
DJ
5606 mips_xfer_register (gdbarch, regcache,
5607 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5608 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5609 gdbarch_byte_order (gdbarch),
4c6b5505 5610 readbuf, writebuf, offset);
6d82d43b
AC
5611 }
5612 return RETURN_VALUE_REGISTER_CONVENTION;
5613 }
5614#endif
5615#if 0
5616 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5617 || TYPE_CODE (type) == TYPE_CODE_UNION)
5618 {
5619 /* A structure or union. Extract the left justified value,
5620 regardless of the byte order. I.e. DO NOT USE
5621 mips_xfer_lower. */
5622 int offset;
5623 int regnum;
4c7d22cb 5624 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5625 offset < TYPE_LENGTH (type);
72a155b4 5626 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5627 {
72a155b4 5628 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5629 if (offset + xfer > TYPE_LENGTH (type))
5630 xfer = TYPE_LENGTH (type) - offset;
5631 if (mips_debug)
5632 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5633 offset, xfer, regnum);
ba32f989
DJ
5634 mips_xfer_register (gdbarch, regcache,
5635 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5636 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5637 }
5638 return RETURN_VALUE_REGISTER_CONVENTION;
5639 }
5640#endif
5641 else
5642 {
5643 /* A scalar extract each part but least-significant-byte
5644 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5645 the ISA. */
6d82d43b
AC
5646 int offset;
5647 int regnum;
4c7d22cb 5648 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5649 offset < TYPE_LENGTH (type);
1a69e1e4 5650 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5651 {
1a69e1e4 5652 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5653 if (offset + xfer > TYPE_LENGTH (type))
5654 xfer = TYPE_LENGTH (type) - offset;
5655 if (mips_debug)
5656 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5657 offset, xfer, regnum);
ba32f989
DJ
5658 mips_xfer_register (gdbarch, regcache,
5659 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5660 gdbarch_byte_order (gdbarch),
4c6b5505 5661 readbuf, writebuf, offset);
6d82d43b
AC
5662 }
5663 return RETURN_VALUE_REGISTER_CONVENTION;
5664 }
5665}
5666
5667/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5668 ABI. */
46cac009
AC
5669
5670static CORE_ADDR
7d9b040b 5671mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5672 struct regcache *regcache, CORE_ADDR bp_addr,
5673 int nargs,
5674 struct value **args, CORE_ADDR sp,
5675 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5676{
5677 int argreg;
5678 int float_argreg;
5679 int argnum;
5680 int len = 0;
5681 int stack_offset = 0;
e17a4113 5682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5683 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5684
25ab4790
AC
5685 /* For shared libraries, "t9" needs to point at the function
5686 address. */
4c7d22cb 5687 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5688
5689 /* Set the return address register to point to the entry point of
5690 the program, where a breakpoint lies in wait. */
4c7d22cb 5691 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5692
46cac009
AC
5693 /* First ensure that the stack and structure return address (if any)
5694 are properly aligned. The stack has to be at least 64-bit
5695 aligned even on 32-bit machines, because doubles must be 64-bit
5696 aligned. For n32 and n64, stack frames need to be 128-bit
5697 aligned, so we round to this widest known alignment. */
5698
5b03f266
AC
5699 sp = align_down (sp, 16);
5700 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5701
5702 /* Now make space on the stack for the args. */
5703 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5704 {
5705 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5706
968b5391 5707 /* Allocate space on the stack. */
354ecfd5 5708 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5709 }
5b03f266 5710 sp -= align_up (len, 16);
46cac009
AC
5711
5712 if (mips_debug)
6d82d43b 5713 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5714 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5715 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5716
5717 /* Initialize the integer and float register pointers. */
4c7d22cb 5718 argreg = MIPS_A0_REGNUM;
72a155b4 5719 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5720
5721 /* The struct_return pointer occupies the first parameter-passing reg. */
5722 if (struct_return)
5723 {
5724 if (mips_debug)
5725 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5726 "mips_o64_push_dummy_call: "
5727 "struct_return reg=%d %s\n",
5af949e3 5728 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5729 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5730 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5731 }
5732
5733 /* Now load as many as possible of the first arguments into
5734 registers, and push the rest onto the stack. Loop thru args
5735 from first to last. */
5736 for (argnum = 0; argnum < nargs; argnum++)
5737 {
47a35522 5738 const gdb_byte *val;
930bd0e0 5739 gdb_byte valbuf[MAX_REGISTER_SIZE];
46cac009 5740 struct value *arg = args[argnum];
4991999e 5741 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5742 int len = TYPE_LENGTH (arg_type);
5743 enum type_code typecode = TYPE_CODE (arg_type);
5744
5745 if (mips_debug)
5746 fprintf_unfiltered (gdb_stdlog,
25ab4790 5747 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5748 argnum + 1, len, (int) typecode);
5749
47a35522 5750 val = value_contents (arg);
ebafbe83 5751
930bd0e0
KB
5752 /* Function pointer arguments to mips16 code need to be made into
5753 mips16 pointers. */
5754 if (typecode == TYPE_CODE_PTR
5755 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
5756 {
5757 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
5758 len, byte_order);
4cc0665f 5759 if (!mips_pc_is_mips (addr))
930bd0e0
KB
5760 {
5761 store_signed_integer (valbuf, len, byte_order,
4cc0665f 5762 make_compact_addr (addr));
930bd0e0
KB
5763 val = valbuf;
5764 }
5765 }
5766
ebafbe83 5767 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5768 treated specially. On 32-bit architectures, doubles are
5769 passed in register pairs; the even FP register gets the
5770 low word, and the odd FP register gets the high word.
5771 On O64, the first two floating point arguments are also
5772 copied to general registers, because MIPS16 functions
5773 don't use float registers for arguments. This duplication
5774 of arguments in general registers can't hurt non-MIPS16
5775 functions because those registers are normally skipped. */
ebafbe83 5776
74ed0bb4
MD
5777 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5778 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5779 {
e17a4113 5780 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5781 if (mips_debug)
5782 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5783 float_argreg, phex (regval, len));
9c9acae0 5784 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5785 if (mips_debug)
5786 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5787 argreg, phex (regval, len));
9c9acae0 5788 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5789 argreg++;
ebafbe83 5790 /* Reserve space for the FP register. */
1a69e1e4 5791 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5792 }
5793 else
5794 {
5795 /* Copy the argument to general registers or the stack in
5796 register-sized pieces. Large arguments are split between
5797 registers and stack. */
1a69e1e4 5798 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5799 are treated specially: Irix cc passes them in registers
5800 where gcc sometimes puts them on the stack. For maximum
5801 compatibility, we will put them in both places. */
1a69e1e4
DJ
5802 int odd_sized_struct = (len > MIPS64_REGSIZE
5803 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5804 while (len > 0)
5805 {
5806 /* Remember if the argument was written to the stack. */
5807 int stack_used_p = 0;
1a69e1e4 5808 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5809
5810 if (mips_debug)
5811 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5812 partial_len);
5813
5814 /* Write this portion of the argument to the stack. */
74ed0bb4 5815 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5816 || odd_sized_struct)
ebafbe83
MS
5817 {
5818 /* Should shorter than int integer values be
025bb325 5819 promoted to int before being stored? */
ebafbe83
MS
5820 int longword_offset = 0;
5821 CORE_ADDR addr;
5822 stack_used_p = 1;
72a155b4 5823 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5824 {
1a69e1e4
DJ
5825 if ((typecode == TYPE_CODE_INT
5826 || typecode == TYPE_CODE_PTR
5827 || typecode == TYPE_CODE_FLT)
5828 && len <= 4)
5829 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
5830 }
5831
5832 if (mips_debug)
5833 {
5af949e3
UW
5834 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5835 paddress (gdbarch, stack_offset));
5836 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5837 paddress (gdbarch, longword_offset));
ebafbe83
MS
5838 }
5839
5840 addr = sp + stack_offset + longword_offset;
5841
5842 if (mips_debug)
5843 {
5844 int i;
5af949e3
UW
5845 fprintf_unfiltered (gdb_stdlog, " @%s ",
5846 paddress (gdbarch, addr));
ebafbe83
MS
5847 for (i = 0; i < partial_len; i++)
5848 {
6d82d43b 5849 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
5850 val[i] & 0xff);
5851 }
5852 }
5853 write_memory (addr, val, partial_len);
5854 }
5855
5856 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5857 structs may go thru BOTH paths. */
ebafbe83 5858 /* Write this portion of the argument to a general
6d82d43b 5859 purpose register. */
74ed0bb4 5860 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 5861 {
e17a4113
UW
5862 LONGEST regval = extract_signed_integer (val, partial_len,
5863 byte_order);
4246e332 5864 /* Value may need to be sign extended, because
1b13c4f6 5865 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
5866
5867 /* A non-floating-point argument being passed in a
5868 general register. If a struct or union, and if
5869 the remaining length is smaller than the register
5870 size, we have to adjust the register value on
5871 big endian targets.
5872
5873 It does not seem to be necessary to do the
025bb325 5874 same for integral types. */
480d3dd2 5875
72a155b4 5876 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5877 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5878 && (typecode == TYPE_CODE_STRUCT
5879 || typecode == TYPE_CODE_UNION))
1a69e1e4 5880 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5881 * TARGET_CHAR_BIT);
ebafbe83
MS
5882
5883 if (mips_debug)
5884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5885 argreg,
1a69e1e4 5886 phex (regval, MIPS64_REGSIZE));
9c9acae0 5887 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
5888 argreg++;
5889
5890 /* Prevent subsequent floating point arguments from
5891 being passed in floating point registers. */
74ed0bb4 5892 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
5893 }
5894
5895 len -= partial_len;
5896 val += partial_len;
5897
b021a221
MS
5898 /* Compute the offset into the stack at which we will
5899 copy the next parameter.
ebafbe83 5900
6d82d43b
AC
5901 In older ABIs, the caller reserved space for
5902 registers that contained arguments. This was loosely
5903 refered to as their "home". Consequently, space is
5904 always allocated. */
ebafbe83 5905
1a69e1e4 5906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
5907 }
5908 }
5909 if (mips_debug)
5910 fprintf_unfiltered (gdb_stdlog, "\n");
5911 }
5912
f10683bb 5913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5914
ebafbe83
MS
5915 /* Return adjusted stack pointer. */
5916 return sp;
5917}
5918
9c8fdbfa 5919static enum return_value_convention
6a3a010b 5920mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 5921 struct type *type, struct regcache *regcache,
47a35522 5922 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5923{
6a3a010b 5924 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5925 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5927 enum mips_fval_reg fval_reg;
7a076fd2 5928
6a3a010b 5929 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
5930 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5931 || TYPE_CODE (type) == TYPE_CODE_UNION
5932 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5933 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 5934 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 5935 {
6a3a010b
MR
5936 /* A floating-point value. If reading in or copying, then we get it
5937 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
5938 If writing out only, then we put it to both FP0 and GPR2. We do
5939 not support reading in with no function known, if this safety
5940 check ever triggers, then we'll have to try harder. */
5941 gdb_assert (function || !readbuf);
7a076fd2 5942 if (mips_debug)
6a3a010b
MR
5943 switch (fval_reg)
5944 {
5945 case mips_fval_fpr:
5946 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5947 break;
5948 case mips_fval_gpr:
5949 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5950 break;
5951 case mips_fval_both:
5952 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5953 break;
5954 }
5955 if (fval_reg != mips_fval_gpr)
5956 mips_xfer_register (gdbarch, regcache,
5957 (gdbarch_num_regs (gdbarch)
5958 + mips_regnum (gdbarch)->fp0),
5959 TYPE_LENGTH (type),
5960 gdbarch_byte_order (gdbarch),
5961 readbuf, writebuf, 0);
5962 if (fval_reg != mips_fval_fpr)
5963 mips_xfer_register (gdbarch, regcache,
5964 gdbarch_num_regs (gdbarch) + 2,
5965 TYPE_LENGTH (type),
5966 gdbarch_byte_order (gdbarch),
5967 readbuf, writebuf, 0);
7a076fd2
FF
5968 return RETURN_VALUE_REGISTER_CONVENTION;
5969 }
5970 else
5971 {
5972 /* A scalar extract each part but least-significant-byte
025bb325 5973 justified. */
7a076fd2
FF
5974 int offset;
5975 int regnum;
5976 for (offset = 0, regnum = MIPS_V0_REGNUM;
5977 offset < TYPE_LENGTH (type);
1a69e1e4 5978 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 5979 {
1a69e1e4 5980 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
5981 if (offset + xfer > TYPE_LENGTH (type))
5982 xfer = TYPE_LENGTH (type) - offset;
5983 if (mips_debug)
5984 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5985 offset, xfer, regnum);
ba32f989
DJ
5986 mips_xfer_register (gdbarch, regcache,
5987 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5988 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5989 readbuf, writebuf, offset);
7a076fd2
FF
5990 }
5991 return RETURN_VALUE_REGISTER_CONVENTION;
5992 }
6d82d43b
AC
5993}
5994
dd824b04
DJ
5995/* Floating point register management.
5996
5997 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
5998 64bit operations, these early MIPS cpus treat fp register pairs
5999 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6000 registers and offer a compatibility mode that emulates the MIPS2 fp
6001 model. When operating in MIPS2 fp compat mode, later cpu's split
6002 double precision floats into two 32-bit chunks and store them in
6003 consecutive fp regs. To display 64-bit floats stored in this
6004 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6005 Throw in user-configurable endianness and you have a real mess.
6006
6007 The way this works is:
6008 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6009 double-precision value will be split across two logical registers.
6010 The lower-numbered logical register will hold the low-order bits,
6011 regardless of the processor's endianness.
6012 - If we are on a 64-bit processor, and we are looking for a
6013 single-precision value, it will be in the low ordered bits
6014 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6015 save slot in memory.
6016 - If we are in 64-bit mode, everything is straightforward.
6017
6018 Note that this code only deals with "live" registers at the top of the
6019 stack. We will attempt to deal with saved registers later, when
025bb325 6020 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6021 interface that can deal with dynamic saved register sizes -- fp
6022 regs could be 32 bits wide in one frame and 64 on the frame above
6023 and below). */
6024
6025/* Copy a 32-bit single-precision value from the current frame
6026 into rare_buffer. */
6027
6028static void
e11c53d2 6029mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6030 gdb_byte *rare_buffer)
dd824b04 6031{
72a155b4
UW
6032 struct gdbarch *gdbarch = get_frame_arch (frame);
6033 int raw_size = register_size (gdbarch, regno);
47a35522 6034 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 6035
ca9d61b9 6036 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6037 error (_("can't read register %d (%s)"),
72a155b4 6038 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6039 if (raw_size == 8)
6040 {
6041 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6042 32 bits. */
dd824b04
DJ
6043 int offset;
6044
72a155b4 6045 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6046 offset = 4;
6047 else
6048 offset = 0;
6049
6050 memcpy (rare_buffer, raw_buffer + offset, 4);
6051 }
6052 else
6053 {
6054 memcpy (rare_buffer, raw_buffer, 4);
6055 }
6056}
6057
6058/* Copy a 64-bit double-precision value from the current frame into
6059 rare_buffer. This may include getting half of it from the next
6060 register. */
6061
6062static void
e11c53d2 6063mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6064 gdb_byte *rare_buffer)
dd824b04 6065{
72a155b4
UW
6066 struct gdbarch *gdbarch = get_frame_arch (frame);
6067 int raw_size = register_size (gdbarch, regno);
dd824b04 6068
9c9acae0 6069 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6070 {
6071 /* We have a 64-bit value for this register, and we should use
6d82d43b 6072 all 64 bits. */
ca9d61b9 6073 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6074 error (_("can't read register %d (%s)"),
72a155b4 6075 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6076 }
6077 else
6078 {
72a155b4 6079 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6080
72a155b4 6081 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6082 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6083 _("mips_read_fp_register_double: bad access to "
6084 "odd-numbered FP register"));
dd824b04
DJ
6085
6086 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6087 each register. */
72a155b4 6088 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6089 {
e11c53d2
AC
6090 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6091 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6092 }
361d1df0 6093 else
dd824b04 6094 {
e11c53d2
AC
6095 mips_read_fp_register_single (frame, regno, rare_buffer);
6096 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6097 }
6098 }
6099}
6100
c906108c 6101static void
e11c53d2
AC
6102mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6103 int regnum)
025bb325 6104{ /* Do values for FP (float) regs. */
72a155b4 6105 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6106 gdb_byte *raw_buffer;
025bb325 6107 double doub, flt1; /* Doubles extracted from raw hex data. */
3903d437 6108 int inv1, inv2;
c5aa993b 6109
025bb325
MS
6110 raw_buffer = alloca (2 * register_size (gdbarch,
6111 mips_regnum (gdbarch)->fp0));
c906108c 6112
72a155b4 6113 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6114 fprintf_filtered (file, "%*s",
72a155b4 6115 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6116 "");
f0ef6b29 6117
72a155b4 6118 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6119 {
79a45b7d
TT
6120 struct value_print_options opts;
6121
f0ef6b29
KB
6122 /* 4-byte registers: Print hex and floating. Also print even
6123 numbered registers as doubles. */
e11c53d2 6124 mips_read_fp_register_single (frame, regnum, raw_buffer);
025bb325
MS
6125 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6126 raw_buffer, &inv1);
c5aa993b 6127
79a45b7d 6128 get_formatted_print_options (&opts, 'x');
df4df182
UW
6129 print_scalar_formatted (raw_buffer,
6130 builtin_type (gdbarch)->builtin_uint32,
6131 &opts, 'w', file);
dd824b04 6132
e11c53d2 6133 fprintf_filtered (file, " flt: ");
1adad886 6134 if (inv1)
e11c53d2 6135 fprintf_filtered (file, " <invalid float> ");
1adad886 6136 else
e11c53d2 6137 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6138
72a155b4 6139 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6140 {
e11c53d2 6141 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6142 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6143 raw_buffer, &inv2);
1adad886 6144
e11c53d2 6145 fprintf_filtered (file, " dbl: ");
f0ef6b29 6146 if (inv2)
e11c53d2 6147 fprintf_filtered (file, "<invalid double>");
f0ef6b29 6148 else
e11c53d2 6149 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 6150 }
c906108c
SS
6151 }
6152 else
dd824b04 6153 {
79a45b7d
TT
6154 struct value_print_options opts;
6155
f0ef6b29 6156 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6157 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
6158 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6159 raw_buffer, &inv1);
c906108c 6160
e11c53d2 6161 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6162 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6163 raw_buffer, &inv2);
f0ef6b29 6164
79a45b7d 6165 get_formatted_print_options (&opts, 'x');
df4df182
UW
6166 print_scalar_formatted (raw_buffer,
6167 builtin_type (gdbarch)->builtin_uint64,
6168 &opts, 'g', file);
f0ef6b29 6169
e11c53d2 6170 fprintf_filtered (file, " flt: ");
1adad886 6171 if (inv1)
e11c53d2 6172 fprintf_filtered (file, "<invalid float>");
1adad886 6173 else
e11c53d2 6174 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6175
e11c53d2 6176 fprintf_filtered (file, " dbl: ");
f0ef6b29 6177 if (inv2)
e11c53d2 6178 fprintf_filtered (file, "<invalid double>");
1adad886 6179 else
e11c53d2 6180 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
6181 }
6182}
6183
6184static void
e11c53d2 6185mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6186 int regnum)
f0ef6b29 6187{
a4b8ebc8 6188 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6189 struct value_print_options opts;
de15c4ab 6190 struct value *val;
1adad886 6191
004159a2 6192 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6193 {
e11c53d2 6194 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6195 return;
6196 }
6197
de15c4ab
PA
6198 val = get_frame_register_value (frame, regnum);
6199 if (value_optimized_out (val))
f0ef6b29 6200 {
c9f4d572 6201 fprintf_filtered (file, "%s: [Invalid]",
72a155b4 6202 gdbarch_register_name (gdbarch, regnum));
f0ef6b29 6203 return;
c906108c 6204 }
f0ef6b29 6205
72a155b4 6206 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6207
6208 /* The problem with printing numeric register names (r26, etc.) is that
6209 the user can't use them on input. Probably the best solution is to
6210 fix it so that either the numeric or the funky (a2, etc.) names
6211 are accepted on input. */
6212 if (regnum < MIPS_NUMREGS)
e11c53d2 6213 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6214 else
e11c53d2 6215 fprintf_filtered (file, ": ");
f0ef6b29 6216
79a45b7d 6217 get_formatted_print_options (&opts, 'x');
de15c4ab
PA
6218 val_print_scalar_formatted (value_type (val),
6219 value_contents_for_printing (val),
6220 value_embedded_offset (val),
6221 val,
6222 &opts, 0, file);
c906108c
SS
6223}
6224
f0ef6b29
KB
6225/* Replacement for generic do_registers_info.
6226 Print regs in pretty columns. */
6227
6228static int
e11c53d2
AC
6229print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6230 int regnum)
f0ef6b29 6231{
e11c53d2
AC
6232 fprintf_filtered (file, " ");
6233 mips_print_fp_register (file, frame, regnum);
6234 fprintf_filtered (file, "\n");
f0ef6b29
KB
6235 return regnum + 1;
6236}
6237
6238
025bb325 6239/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6240
6241static int
e11c53d2 6242print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6243 int start_regnum)
c906108c 6244{
a4b8ebc8 6245 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6246 /* Do values for GP (int) regs. */
47a35522 6247 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
025bb325
MS
6248 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6249 per row. */
c906108c 6250 int col, byte;
a4b8ebc8 6251 int regnum;
c906108c 6252
025bb325 6253 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6254 for (col = 0, regnum = start_regnum;
72a155b4
UW
6255 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6256 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6257 regnum++)
c906108c 6258 {
72a155b4 6259 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6260 continue; /* unused register */
004159a2 6261 if (mips_float_register_p (gdbarch, regnum))
025bb325 6262 break; /* End the row: reached FP register. */
0cc93a06 6263 /* Large registers are handled separately. */
72a155b4 6264 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6265 {
6266 if (col > 0)
6267 break; /* End the row before this register. */
6268
6269 /* Print this register on a row by itself. */
6270 mips_print_register (file, frame, regnum);
6271 fprintf_filtered (file, "\n");
6272 return regnum + 1;
6273 }
d05f6826
DJ
6274 if (col == 0)
6275 fprintf_filtered (file, " ");
6d82d43b 6276 fprintf_filtered (file,
72a155b4
UW
6277 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6278 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6279 col++;
6280 }
d05f6826
DJ
6281
6282 if (col == 0)
6283 return regnum;
6284
025bb325 6285 /* Print the R0 to R31 names. */
72a155b4 6286 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6287 fprintf_filtered (file, "\n R%-4d",
72a155b4 6288 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6289 else
6290 fprintf_filtered (file, "\n ");
c906108c 6291
025bb325 6292 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6293 for (col = 0, regnum = start_regnum;
72a155b4
UW
6294 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6295 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6296 regnum++)
c906108c 6297 {
72a155b4 6298 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6299 continue; /* unused register */
004159a2 6300 if (mips_float_register_p (gdbarch, regnum))
025bb325 6301 break; /* End row: reached FP register. */
72a155b4 6302 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6303 break; /* End row: large register. */
6304
c906108c 6305 /* OK: get the data in raw format. */
ca9d61b9 6306 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
c9f4d572 6307 error (_("can't read register %d (%s)"),
72a155b4 6308 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 6309 /* pad small registers */
4246e332 6310 for (byte = 0;
72a155b4
UW
6311 byte < (mips_abi_regsize (gdbarch)
6312 - register_size (gdbarch, regnum)); byte++)
c906108c 6313 printf_filtered (" ");
025bb325 6314 /* Now print the register value in hex, endian order. */
72a155b4 6315 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6316 for (byte =
72a155b4
UW
6317 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6318 byte < register_size (gdbarch, regnum); byte++)
47a35522 6319 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6320 else
72a155b4 6321 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6322 byte >= 0; byte--)
47a35522 6323 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6324 fprintf_filtered (file, " ");
c906108c
SS
6325 col++;
6326 }
025bb325 6327 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6328 fprintf_filtered (file, "\n");
c906108c
SS
6329
6330 return regnum;
6331}
6332
025bb325 6333/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6334
bf1f5b4c 6335static void
e11c53d2
AC
6336mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6337 struct frame_info *frame, int regnum, int all)
c906108c 6338{
025bb325 6339 if (regnum != -1) /* Do one specified register. */
c906108c 6340 {
72a155b4
UW
6341 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6342 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6343 error (_("Not a valid register for the current processor type"));
c906108c 6344
0cc93a06 6345 mips_print_register (file, frame, regnum);
e11c53d2 6346 fprintf_filtered (file, "\n");
c906108c 6347 }
c5aa993b 6348 else
025bb325 6349 /* Do all (or most) registers. */
c906108c 6350 {
72a155b4
UW
6351 regnum = gdbarch_num_regs (gdbarch);
6352 while (regnum < gdbarch_num_regs (gdbarch)
6353 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6354 {
004159a2 6355 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6356 {
025bb325 6357 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6358 regnum = print_fp_register_row (file, frame, regnum);
6359 else
025bb325 6360 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6361 }
c906108c 6362 else
e11c53d2 6363 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6364 }
6365 }
6366}
6367
63807e1d 6368static int
3352ef37
AC
6369mips_single_step_through_delay (struct gdbarch *gdbarch,
6370 struct frame_info *frame)
c906108c 6371{
e17a4113 6372 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 6373 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6374 struct address_space *aspace;
6375 enum mips_isa isa;
6376 ULONGEST insn;
6377 int status;
6378 int size;
6379
6380 if ((mips_pc_is_mips (pc)
6381 && !mips32_instruction_has_delay_slot (gdbarch, pc))
6382 || (mips_pc_is_micromips (gdbarch, pc)
6383 && !micromips_instruction_has_delay_slot (gdbarch, pc, 0))
6384 || (mips_pc_is_mips16 (gdbarch, pc)
6385 && !mips16_instruction_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6386 return 0;
6387
4cc0665f
MR
6388 isa = mips_pc_isa (gdbarch, pc);
6389 /* _has_delay_slot above will have validated the read. */
6390 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6391 size = mips_insn_size (isa, insn);
6392 aspace = get_frame_address_space (frame);
6393 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6394}
6395
6d82d43b
AC
6396/* To skip prologues, I use this predicate. Returns either PC itself
6397 if the code at PC does not look like a function prologue; otherwise
6398 returns an address that (if we're lucky) follows the prologue. If
6399 LENIENT, then we must skip everything which is involved in setting
6400 up the frame (it's OK to skip more, just so long as we don't skip
6401 anything which might clobber the registers which are being saved.
6402 We must skip more in the case where part of the prologue is in the
6403 delay slot of a non-prologue instruction). */
6404
6405static CORE_ADDR
6093d2eb 6406mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6407{
8b622e6a
AC
6408 CORE_ADDR limit_pc;
6409 CORE_ADDR func_addr;
6410
6d82d43b
AC
6411 /* See if we can determine the end of the prologue via the symbol table.
6412 If so, then return either PC, or the PC after the prologue, whichever
6413 is greater. */
8b622e6a
AC
6414 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6415 {
d80b854b
UW
6416 CORE_ADDR post_prologue_pc
6417 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a
AC
6418 if (post_prologue_pc != 0)
6419 return max (pc, post_prologue_pc);
6420 }
6d82d43b
AC
6421
6422 /* Can't determine prologue from the symbol table, need to examine
6423 instructions. */
6424
98b4dd94
JB
6425 /* Find an upper limit on the function prologue using the debug
6426 information. If the debug information could not be used to provide
6427 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6428 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6429 if (limit_pc == 0)
6430 limit_pc = pc + 100; /* Magic. */
6431
4cc0665f 6432 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6433 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6434 else if (mips_pc_is_micromips (gdbarch, pc))
6435 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6436 else
e17a4113 6437 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6438}
6439
97ab0fdd
MR
6440/* Check whether the PC is in a function epilogue (32-bit version).
6441 This is a helper function for mips_in_function_epilogue_p. */
6442static int
e17a4113 6443mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6444{
6445 CORE_ADDR func_addr = 0, func_end = 0;
6446
6447 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6448 {
6449 /* The MIPS epilogue is max. 12 bytes long. */
6450 CORE_ADDR addr = func_end - 12;
6451
6452 if (addr < func_addr + 4)
6453 addr = func_addr + 4;
6454 if (pc < addr)
6455 return 0;
6456
6457 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6458 {
6459 unsigned long high_word;
6460 unsigned long inst;
6461
4cc0665f 6462 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6463 high_word = (inst >> 16) & 0xffff;
6464
6465 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6466 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6467 && inst != 0x03e00008 /* jr $ra */
6468 && inst != 0x00000000) /* nop */
6469 return 0;
6470 }
6471
6472 return 1;
6473 }
6474
6475 return 0;
6476}
6477
4cc0665f
MR
6478/* Check whether the PC is in a function epilogue (microMIPS version).
6479 This is a helper function for mips_in_function_epilogue_p. */
6480
6481static int
6482micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6483{
6484 CORE_ADDR func_addr = 0;
6485 CORE_ADDR func_end = 0;
6486 CORE_ADDR addr;
6487 ULONGEST insn;
6488 long offset;
6489 int dreg;
6490 int sreg;
6491 int loc;
6492
6493 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6494 return 0;
6495
6496 /* The microMIPS epilogue is max. 12 bytes long. */
6497 addr = func_end - 12;
6498
6499 if (addr < func_addr + 2)
6500 addr = func_addr + 2;
6501 if (pc < addr)
6502 return 0;
6503
6504 for (; pc < func_end; pc += loc)
6505 {
6506 loc = 0;
6507 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6508 loc += MIPS_INSN16_SIZE;
6509 switch (mips_insn_size (ISA_MICROMIPS, insn))
6510 {
6511 /* 48-bit instructions. */
6512 case 3 * MIPS_INSN16_SIZE:
6513 /* No epilogue instructions in this category. */
6514 return 0;
6515
6516 /* 32-bit instructions. */
6517 case 2 * MIPS_INSN16_SIZE:
6518 insn <<= 16;
6519 insn |= mips_fetch_instruction (gdbarch,
6520 ISA_MICROMIPS, pc + loc, NULL);
6521 loc += MIPS_INSN16_SIZE;
6522 switch (micromips_op (insn >> 16))
6523 {
6524 case 0xc: /* ADDIU: bits 001100 */
6525 case 0x17: /* DADDIU: bits 010111 */
6526 sreg = b0s5_reg (insn >> 16);
6527 dreg = b5s5_reg (insn >> 16);
6528 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6529 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6530 /* (D)ADDIU $sp, imm */
6531 && offset >= 0)
6532 break;
6533 return 0;
6534
6535 default:
6536 return 0;
6537 }
6538 break;
6539
6540 /* 16-bit instructions. */
6541 case MIPS_INSN16_SIZE:
6542 switch (micromips_op (insn))
6543 {
6544 case 0x3: /* MOVE: bits 000011 */
6545 sreg = b0s5_reg (insn);
6546 dreg = b5s5_reg (insn);
6547 if (sreg == 0 && dreg == 0)
6548 /* MOVE $zero, $zero aka NOP */
6549 break;
6550 return 0;
6551
6552 case 0x11: /* POOL16C: bits 010001 */
6553 if (b5s5_op (insn) == 0x18
6554 /* JRADDIUSP: bits 010011 11000 */
6555 || (b5s5_op (insn) == 0xd
6556 /* JRC: bits 010011 01101 */
6557 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6558 /* JRC $ra */
6559 break;
6560 return 0;
6561
6562 case 0x13: /* POOL16D: bits 010011 */
6563 offset = micromips_decode_imm9 (b1s9_imm (insn));
6564 if ((insn & 0x1) == 0x1
6565 /* ADDIUSP: bits 010011 1 */
6566 && offset > 0)
6567 break;
6568 return 0;
6569
6570 default:
6571 return 0;
6572 }
6573 }
6574 }
6575
6576 return 1;
6577}
6578
97ab0fdd
MR
6579/* Check whether the PC is in a function epilogue (16-bit version).
6580 This is a helper function for mips_in_function_epilogue_p. */
6581static int
e17a4113 6582mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6583{
6584 CORE_ADDR func_addr = 0, func_end = 0;
6585
6586 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6587 {
6588 /* The MIPS epilogue is max. 12 bytes long. */
6589 CORE_ADDR addr = func_end - 12;
6590
6591 if (addr < func_addr + 4)
6592 addr = func_addr + 4;
6593 if (pc < addr)
6594 return 0;
6595
6596 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6597 {
6598 unsigned short inst;
6599
4cc0665f 6600 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6601
6602 if ((inst & 0xf800) == 0xf000) /* extend */
6603 continue;
6604
6605 if (inst != 0x6300 /* addiu $sp,offset */
6606 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6607 && inst != 0xe820 /* jr $ra */
6608 && inst != 0xe8a0 /* jrc $ra */
6609 && inst != 0x6500) /* nop */
6610 return 0;
6611 }
6612
6613 return 1;
6614 }
6615
6616 return 0;
6617}
6618
6619/* The epilogue is defined here as the area at the end of a function,
6620 after an instruction which destroys the function's stack frame. */
6621static int
6622mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6623{
4cc0665f 6624 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6625 return mips16_in_function_epilogue_p (gdbarch, pc);
4cc0665f
MR
6626 else if (mips_pc_is_micromips (gdbarch, pc))
6627 return micromips_in_function_epilogue_p (gdbarch, pc);
97ab0fdd 6628 else
e17a4113 6629 return mips32_in_function_epilogue_p (gdbarch, pc);
97ab0fdd
MR
6630}
6631
025bb325 6632/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6633 used for all MIPS-specific commands. */
6634
a5ea2558 6635static void
acdb74a0 6636show_mips_command (char *args, int from_tty)
a5ea2558
AC
6637{
6638 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6639}
6640
a5ea2558 6641static void
acdb74a0 6642set_mips_command (char *args, int from_tty)
a5ea2558 6643{
6d82d43b
AC
6644 printf_unfiltered
6645 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6646 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6647}
6648
c906108c
SS
6649/* Commands to show/set the MIPS FPU type. */
6650
c906108c 6651static void
acdb74a0 6652show_mipsfpu_command (char *args, int from_tty)
c906108c 6653{
c906108c 6654 char *fpu;
6ca0852e 6655
f5656ead 6656 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6657 {
6658 printf_unfiltered
6659 ("The MIPS floating-point coprocessor is unknown "
6660 "because the current architecture is not MIPS.\n");
6661 return;
6662 }
6663
f5656ead 6664 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6665 {
6666 case MIPS_FPU_SINGLE:
6667 fpu = "single-precision";
6668 break;
6669 case MIPS_FPU_DOUBLE:
6670 fpu = "double-precision";
6671 break;
6672 case MIPS_FPU_NONE:
6673 fpu = "absent (none)";
6674 break;
93d56215 6675 default:
e2e0b3e5 6676 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6677 }
6678 if (mips_fpu_type_auto)
025bb325
MS
6679 printf_unfiltered ("The MIPS floating-point coprocessor "
6680 "is set automatically (currently %s)\n",
6681 fpu);
c906108c 6682 else
6d82d43b
AC
6683 printf_unfiltered
6684 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6685}
6686
6687
c906108c 6688static void
acdb74a0 6689set_mipsfpu_command (char *args, int from_tty)
c906108c 6690{
025bb325
MS
6691 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6692 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6693 show_mipsfpu_command (args, from_tty);
6694}
6695
c906108c 6696static void
acdb74a0 6697set_mipsfpu_single_command (char *args, int from_tty)
c906108c 6698{
8d5838b5
AC
6699 struct gdbarch_info info;
6700 gdbarch_info_init (&info);
c906108c
SS
6701 mips_fpu_type = MIPS_FPU_SINGLE;
6702 mips_fpu_type_auto = 0;
8d5838b5
AC
6703 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6704 instead of relying on globals. Doing that would let generic code
6705 handle the search for this specific architecture. */
6706 if (!gdbarch_update_p (info))
e2e0b3e5 6707 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6708}
6709
c906108c 6710static void
acdb74a0 6711set_mipsfpu_double_command (char *args, int from_tty)
c906108c 6712{
8d5838b5
AC
6713 struct gdbarch_info info;
6714 gdbarch_info_init (&info);
c906108c
SS
6715 mips_fpu_type = MIPS_FPU_DOUBLE;
6716 mips_fpu_type_auto = 0;
8d5838b5
AC
6717 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6718 instead of relying on globals. Doing that would let generic code
6719 handle the search for this specific architecture. */
6720 if (!gdbarch_update_p (info))
e2e0b3e5 6721 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6722}
6723
c906108c 6724static void
acdb74a0 6725set_mipsfpu_none_command (char *args, int from_tty)
c906108c 6726{
8d5838b5
AC
6727 struct gdbarch_info info;
6728 gdbarch_info_init (&info);
c906108c
SS
6729 mips_fpu_type = MIPS_FPU_NONE;
6730 mips_fpu_type_auto = 0;
8d5838b5
AC
6731 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6732 instead of relying on globals. Doing that would let generic code
6733 handle the search for this specific architecture. */
6734 if (!gdbarch_update_p (info))
e2e0b3e5 6735 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6736}
6737
c906108c 6738static void
acdb74a0 6739set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
6740{
6741 mips_fpu_type_auto = 1;
6742}
6743
c906108c 6744/* Attempt to identify the particular processor model by reading the
691c0433
AC
6745 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
6746 the relevant processor still exists (it dates back to '94) and
6747 secondly this is not the way to do this. The processor type should
6748 be set by forcing an architecture change. */
c906108c 6749
691c0433
AC
6750void
6751deprecated_mips_set_processor_regs_hack (void)
c906108c 6752{
bb486190
UW
6753 struct regcache *regcache = get_current_regcache ();
6754 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a9614958 6756 ULONGEST prid;
c906108c 6757
bb486190 6758 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
c906108c 6759 if ((prid & ~0xf) == 0x700)
691c0433 6760 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
6761}
6762
6763/* Just like reinit_frame_cache, but with the right arguments to be
6764 callable as an sfunc. */
6765
6766static void
acdb74a0
AC
6767reinit_frame_cache_sfunc (char *args, int from_tty,
6768 struct cmd_list_element *c)
c906108c
SS
6769{
6770 reinit_frame_cache ();
6771}
6772
a89aa300
AC
6773static int
6774gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 6775{
4cc0665f
MR
6776 struct gdbarch *gdbarch = info->application_data;
6777
d31431ed
AC
6778 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6779 disassembler needs to be able to locally determine the ISA, and
6780 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6781 work. */
4cc0665f 6782 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 6783 info->mach = bfd_mach_mips16;
4cc0665f
MR
6784 else if (mips_pc_is_micromips (gdbarch, memaddr))
6785 info->mach = bfd_mach_mips_micromips;
c906108c
SS
6786
6787 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
6788 memaddr &= (info->mach == bfd_mach_mips16
6789 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 6790
e5ab0dce 6791 /* Set the disassembler options. */
9dae60cc 6792 if (!info->disassembler_options)
e5ab0dce
AC
6793 /* This string is not recognized explicitly by the disassembler,
6794 but it tells the disassembler to not try to guess the ABI from
6795 the bfd elf headers, such that, if the user overrides the ABI
6796 of a program linked as NewABI, the disassembly will follow the
6797 register naming conventions specified by the user. */
6798 info->disassembler_options = "gpr-names=32";
6799
c906108c 6800 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 6801 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
6802 return print_insn_big_mips (memaddr, info);
6803 else
6804 return print_insn_little_mips (memaddr, info);
6805}
6806
9dae60cc
UW
6807static int
6808gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
6809{
6810 /* Set up the disassembler info, so that we get the right
6811 register names from libopcodes. */
6812 info->disassembler_options = "gpr-names=n32";
6813 info->flavour = bfd_target_elf_flavour;
6814
6815 return gdb_print_insn_mips (memaddr, info);
6816}
6817
6818static int
6819gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
6820{
6821 /* Set up the disassembler info, so that we get the right
6822 register names from libopcodes. */
6823 info->disassembler_options = "gpr-names=64";
6824 info->flavour = bfd_target_elf_flavour;
6825
6826 return gdb_print_insn_mips (memaddr, info);
6827}
6828
025bb325
MS
6829/* This function implements gdbarch_breakpoint_from_pc. It uses the
6830 program counter value to determine whether a 16- or 32-bit breakpoint
6831 should be used. It returns a pointer to a string of bytes that encode a
6832 breakpoint instruction, stores the length of the string to *lenptr, and
6833 adjusts pc (if necessary) to point to the actual memory location where
6834 the breakpoint should be inserted. */
c906108c 6835
47a35522 6836static const gdb_byte *
025bb325
MS
6837mips_breakpoint_from_pc (struct gdbarch *gdbarch,
6838 CORE_ADDR *pcptr, int *lenptr)
c906108c 6839{
4cc0665f
MR
6840 CORE_ADDR pc = *pcptr;
6841
67d57894 6842 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c 6843 {
4cc0665f 6844 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 6845 {
47a35522 6846 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4cc0665f 6847 *pcptr = unmake_compact_addr (pc);
c5aa993b 6848 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
6849 return mips16_big_breakpoint;
6850 }
4cc0665f
MR
6851 else if (mips_pc_is_micromips (gdbarch, pc))
6852 {
6853 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
6854 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
6855 ULONGEST insn;
6856 int status;
6857 int size;
6858
6859 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6860 size = status ? 2
6861 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6862 *pcptr = unmake_compact_addr (pc);
6863 *lenptr = size;
6864 return (size == 2) ? micromips16_big_breakpoint
6865 : micromips32_big_breakpoint;
6866 }
c906108c
SS
6867 else
6868 {
aaab4dba
AC
6869 /* The IDT board uses an unusual breakpoint value, and
6870 sometimes gets confused when it sees the usual MIPS
6871 breakpoint instruction. */
47a35522
MK
6872 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
6873 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
6874 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
f2ec0ecf 6875 /* Likewise, IRIX appears to expect a different breakpoint,
025bb325 6876 although this is not apparent until you try to use pthreads. */
f2ec0ecf 6877 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
c906108c 6878
c5aa993b 6879 *lenptr = sizeof (big_breakpoint);
c906108c
SS
6880
6881 if (strcmp (target_shortname, "mips") == 0)
6882 return idt_big_breakpoint;
6883 else if (strcmp (target_shortname, "ddb") == 0
6884 || strcmp (target_shortname, "pmon") == 0
6885 || strcmp (target_shortname, "lsi") == 0)
6886 return pmon_big_breakpoint;
f2ec0ecf
JB
6887 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
6888 return irix_big_breakpoint;
c906108c
SS
6889 else
6890 return big_breakpoint;
6891 }
6892 }
6893 else
6894 {
4cc0665f 6895 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 6896 {
47a35522 6897 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4cc0665f 6898 *pcptr = unmake_compact_addr (pc);
c5aa993b 6899 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
6900 return mips16_little_breakpoint;
6901 }
4cc0665f
MR
6902 else if (mips_pc_is_micromips (gdbarch, pc))
6903 {
6904 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
6905 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
6906 ULONGEST insn;
6907 int status;
6908 int size;
6909
6910 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6911 size = status ? 2
6912 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6913 *pcptr = unmake_compact_addr (pc);
6914 *lenptr = size;
6915 return (size == 2) ? micromips16_little_breakpoint
6916 : micromips32_little_breakpoint;
6917 }
c906108c
SS
6918 else
6919 {
47a35522
MK
6920 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
6921 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
6922 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 6923
c5aa993b 6924 *lenptr = sizeof (little_breakpoint);
c906108c
SS
6925
6926 if (strcmp (target_shortname, "mips") == 0)
6927 return idt_little_breakpoint;
6928 else if (strcmp (target_shortname, "ddb") == 0
6929 || strcmp (target_shortname, "pmon") == 0
6930 || strcmp (target_shortname, "lsi") == 0)
6931 return pmon_little_breakpoint;
6932 else
6933 return little_breakpoint;
6934 }
6935 }
6936}
6937
4cc0665f
MR
6938/* Determine the remote breakpoint kind suitable for the PC. The following
6939 kinds are used:
6940
6941 * 2 -- 16-bit MIPS16 mode breakpoint,
6942
6943 * 3 -- 16-bit microMIPS mode breakpoint,
6944
6945 * 4 -- 32-bit standard MIPS mode breakpoint,
6946
6947 * 5 -- 32-bit microMIPS mode breakpoint. */
6948
6949static void
6950mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
6951 int *kindptr)
6952{
6953 CORE_ADDR pc = *pcptr;
6954
6955 if (mips_pc_is_mips16 (gdbarch, pc))
6956 {
6957 *pcptr = unmake_compact_addr (pc);
6958 *kindptr = 2;
6959 }
6960 else if (mips_pc_is_micromips (gdbarch, pc))
6961 {
6962 ULONGEST insn;
6963 int status;
6964 int size;
6965
6966 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6967 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6968 *pcptr = unmake_compact_addr (pc);
6969 *kindptr = size | 1;
6970 }
6971 else
6972 *kindptr = 4;
6973}
6974
c8cef75f
MR
6975/* Return non-zero if the ADDR instruction has a branch delay slot
6976 (i.e. it is a jump or branch instruction). This function is based
6977 on mips32_next_pc. */
6978
6979static int
6980mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
6981{
c8cef75f
MR
6982 unsigned long inst;
6983 int status;
6984 int op;
a385295e
MR
6985 int rs;
6986 int rt;
c8cef75f 6987
4cc0665f 6988 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
c8cef75f
MR
6989 if (status)
6990 return 0;
6991
c8cef75f
MR
6992 op = itype_op (inst);
6993 if ((inst & 0xe0000000) != 0)
a385295e
MR
6994 {
6995 rs = itype_rs (inst);
6996 rt = itype_rt (inst);
f94363d7
AP
6997 return (is_octeon_bbit_op (op, gdbarch)
6998 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
6999 || op == 29 /* JALX: bits 011101 */
7000 || (op == 17
7001 && (rs == 8
c8cef75f 7002 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7003 || (rs == 9 && (rt & 0x2) == 0)
7004 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7005 || (rs == 10 && (rt & 0x2) == 0))));
7006 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7007 }
c8cef75f
MR
7008 else
7009 switch (op & 0x07) /* extract bits 28,27,26 */
7010 {
7011 case 0: /* SPECIAL */
7012 op = rtype_funct (inst);
7013 return (op == 8 /* JR */
7014 || op == 9); /* JALR */
7015 break; /* end SPECIAL */
7016 case 1: /* REGIMM */
a385295e
MR
7017 rs = itype_rs (inst);
7018 rt = itype_rt (inst); /* branch condition */
7019 return ((rt & 0xc) == 0
c8cef75f
MR
7020 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7021 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7022 || ((rt & 0x1e) == 0x1c && rs == 0));
7023 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7024 break; /* end REGIMM */
7025 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7026 return 1;
7027 break;
7028 }
7029}
7030
7031/* Return non-zero if the ADDR instruction, which must be a 32-bit
7032 instruction if MUSTBE32 is set or can be any instruction otherwise,
7033 has a branch delay slot (i.e. it is a non-compact jump instruction). */
7034
4cc0665f
MR
7035static int
7036micromips_instruction_has_delay_slot (struct gdbarch *gdbarch,
7037 CORE_ADDR addr, int mustbe32)
7038{
7039 ULONGEST insn;
7040 int status;
7041
7042 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7043 if (status)
7044 return 0;
7045
7046 if (!mustbe32) /* 16-bit instructions. */
7047 return (micromips_op (insn) == 0x11
7048 /* POOL16C: bits 010001 */
7049 && (b5s5_op (insn) == 0xc
7050 /* JR16: bits 010001 01100 */
7051 || (b5s5_op (insn) & 0x1e) == 0xe))
7052 /* JALR16, JALRS16: bits 010001 0111x */
7053 || (micromips_op (insn) & 0x37) == 0x23
7054 /* BEQZ16, BNEZ16: bits 10x011 */
7055 || micromips_op (insn) == 0x33;
7056 /* B16: bits 110011 */
7057
7058 /* 32-bit instructions. */
7059 if (micromips_op (insn) == 0x0)
7060 /* POOL32A: bits 000000 */
7061 {
7062 insn <<= 16;
7063 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7064 if (status)
7065 return 0;
7066 return b0s6_op (insn) == 0x3c
7067 /* POOL32Axf: bits 000000 ... 111100 */
7068 && (b6s10_ext (insn) & 0x2bf) == 0x3c;
7069 /* JALR, JALR.HB: 000000 000x111100 111100 */
7070 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7071 }
7072
7073 return (micromips_op (insn) == 0x10
7074 /* POOL32I: bits 010000 */
7075 && ((b5s5_op (insn) & 0x1c) == 0x0
7076 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7077 || (b5s5_op (insn) & 0x1d) == 0x4
7078 /* BLEZ, BGTZ: bits 010000 001x0 */
7079 || (b5s5_op (insn) & 0x1d) == 0x11
7080 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7081 || ((b5s5_op (insn) & 0x1e) == 0x14
7082 && (insn & 0x3) == 0x0)
7083 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7084 || (b5s5_op (insn) & 0x1e) == 0x1a
7085 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7086 || ((b5s5_op (insn) & 0x1e) == 0x1c
7087 && (insn & 0x3) == 0x0)
7088 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7089 || ((b5s5_op (insn) & 0x1c) == 0x1c
7090 && (insn & 0x3) == 0x1)))
7091 /* BC1ANY*: bits 010000 111xx xxx01 */
7092 || (micromips_op (insn) & 0x1f) == 0x1d
7093 /* JALS, JAL: bits x11101 */
7094 || (micromips_op (insn) & 0x37) == 0x25
7095 /* BEQ, BNE: bits 10x101 */
7096 || micromips_op (insn) == 0x35
7097 /* J: bits 110101 */
7098 || micromips_op (insn) == 0x3c;
7099 /* JALX: bits 111100 */
7100}
7101
c8cef75f
MR
7102static int
7103mips16_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr,
7104 int mustbe32)
7105{
c8cef75f
MR
7106 unsigned short inst;
7107 int status;
7108
4cc0665f 7109 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
c8cef75f
MR
7110 if (status)
7111 return 0;
7112
c8cef75f
MR
7113 if (!mustbe32)
7114 return (inst & 0xf89f) == 0xe800; /* JR/JALR (16-bit instruction) */
7115 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7116}
7117
7118/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7119 This assumes KSSEG exists. */
7120
7121static CORE_ADDR
7122mips_segment_boundary (CORE_ADDR bpaddr)
7123{
7124 CORE_ADDR mask = CORE_ADDR_MAX;
7125 int segsize;
7126
7127 if (sizeof (CORE_ADDR) == 8)
7128 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7129 a compiler warning produced where CORE_ADDR is a 32-bit type even
7130 though in that case this is dead code). */
7131 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7132 {
7133 case 3:
7134 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7135 segsize = 29; /* 32-bit compatibility segment */
7136 else
7137 segsize = 62; /* xkseg */
7138 break;
7139 case 2: /* xkphys */
7140 segsize = 59;
7141 break;
7142 default: /* xksseg (1), xkuseg/kuseg (0) */
7143 segsize = 62;
7144 break;
7145 }
7146 else if (bpaddr & 0x80000000) /* kernel segment */
7147 segsize = 29;
7148 else
7149 segsize = 31; /* user segment */
7150 mask <<= segsize;
7151 return bpaddr & mask;
7152}
7153
7154/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7155 it backwards if necessary. Return the address of the new location. */
7156
7157static CORE_ADDR
7158mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7159{
22e048c9 7160 CORE_ADDR prev_addr;
c8cef75f
MR
7161 CORE_ADDR boundary;
7162 CORE_ADDR func_addr;
7163
7164 /* If a breakpoint is set on the instruction in a branch delay slot,
7165 GDB gets confused. When the breakpoint is hit, the PC isn't on
7166 the instruction in the branch delay slot, the PC will point to
7167 the branch instruction. Since the PC doesn't match any known
7168 breakpoints, GDB reports a trap exception.
7169
7170 There are two possible fixes for this problem.
7171
7172 1) When the breakpoint gets hit, see if the BD bit is set in the
7173 Cause register (which indicates the last exception occurred in a
7174 branch delay slot). If the BD bit is set, fix the PC to point to
7175 the instruction in the branch delay slot.
7176
7177 2) When the user sets the breakpoint, don't allow him to set the
7178 breakpoint on the instruction in the branch delay slot. Instead
7179 move the breakpoint to the branch instruction (which will have
7180 the same result).
7181
7182 The problem with the first solution is that if the user then
7183 single-steps the processor, the branch instruction will get
7184 skipped (since GDB thinks the PC is on the instruction in the
7185 branch delay slot).
7186
7187 So, we'll use the second solution. To do this we need to know if
7188 the instruction we're trying to set the breakpoint on is in the
7189 branch delay slot. */
7190
7191 boundary = mips_segment_boundary (bpaddr);
7192
7193 /* Make sure we don't scan back before the beginning of the current
7194 function, since we may fetch constant data or insns that look like
7195 a jump. Of course we might do that anyway if the compiler has
7196 moved constants inline. :-( */
7197 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7198 && func_addr > boundary && func_addr <= bpaddr)
7199 boundary = func_addr;
7200
4cc0665f 7201 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7202 {
7203 if (bpaddr == boundary)
7204 return bpaddr;
7205
7206 /* If the previous instruction has a branch delay slot, we have
7207 to move the breakpoint to the branch instruction. */
7208 prev_addr = bpaddr - 4;
7209 if (mips32_instruction_has_delay_slot (gdbarch, prev_addr))
7210 bpaddr = prev_addr;
7211 }
7212 else
7213 {
4cc0665f 7214 int (*instruction_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7215 CORE_ADDR addr, jmpaddr;
7216 int i;
7217
4cc0665f 7218 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7219
7220 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7221 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7222 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7223 The microMIPS ASE has a whole range of jumps and branches
7224 with delay slots, some of which take 4 bytes and some take
7225 2 bytes, so the idea is the same.
c8cef75f
MR
7226 FIXME: We have to assume that bpaddr is not the second half
7227 of an extended instruction. */
4cc0665f
MR
7228 instruction_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7229 ? micromips_instruction_has_delay_slot
7230 : mips16_instruction_has_delay_slot);
c8cef75f
MR
7231
7232 jmpaddr = 0;
7233 addr = bpaddr;
7234 for (i = 1; i < 4; i++)
7235 {
4cc0665f 7236 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7237 break;
4cc0665f
MR
7238 addr -= MIPS_INSN16_SIZE;
7239 if (i == 1 && instruction_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7240 /* Looks like a JR/JALR at [target-1], but it could be
7241 the second word of a previous JAL/JALX, so record it
7242 and check back one more. */
7243 jmpaddr = addr;
4cc0665f 7244 else if (i > 1 && instruction_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7245 {
7246 if (i == 2)
7247 /* Looks like a JAL/JALX at [target-2], but it could also
7248 be the second word of a previous JAL/JALX, record it,
7249 and check back one more. */
7250 jmpaddr = addr;
7251 else
7252 /* Looks like a JAL/JALX at [target-3], so any previously
7253 recorded JAL/JALX or JR/JALR must be wrong, because:
7254
7255 >-3: JAL
7256 -2: JAL-ext (can't be JAL/JALX)
7257 -1: bdslot (can't be JR/JALR)
7258 0: target insn
7259
7260 Of course it could be another JAL-ext which looks
7261 like a JAL, but in that case we'd have broken out
7262 of this loop at [target-2]:
7263
7264 -4: JAL
7265 >-3: JAL-ext
7266 -2: bdslot (can't be jmp)
7267 -1: JR/JALR
7268 0: target insn */
7269 jmpaddr = 0;
7270 }
7271 else
7272 {
7273 /* Not a jump instruction: if we're at [target-1] this
7274 could be the second word of a JAL/JALX, so continue;
7275 otherwise we're done. */
7276 if (i > 1)
7277 break;
7278 }
7279 }
7280
7281 if (jmpaddr)
7282 bpaddr = jmpaddr;
7283 }
7284
7285 return bpaddr;
7286}
7287
14132e89
MR
7288/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7289 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7290
7291static int
7292mips_is_stub_suffix (const char *suffix, int zero)
7293{
7294 switch (suffix[0])
7295 {
7296 case '0':
7297 return zero && suffix[1] == '\0';
7298 case '1':
7299 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7300 case '2':
7301 case '5':
7302 case '6':
7303 case '9':
7304 return suffix[1] == '\0';
7305 default:
7306 return 0;
7307 }
7308}
7309
7310/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7311 call stubs, one of sf, df, sc, or dc. */
7312
7313static int
7314mips_is_stub_mode (const char *mode)
7315{
7316 return ((mode[0] == 's' || mode[0] == 'd')
7317 && (mode[1] == 'f' || mode[1] == 'c'));
7318}
7319
7320/* Code at PC is a compiler-generated stub. Such a stub for a function
7321 bar might have a name like __fn_stub_bar, and might look like this:
7322
7323 mfc1 $4, $f13
7324 mfc1 $5, $f12
7325 mfc1 $6, $f15
7326 mfc1 $7, $f14
7327
7328 followed by (or interspersed with):
7329
7330 j bar
7331
7332 or:
7333
7334 lui $25, %hi(bar)
7335 addiu $25, $25, %lo(bar)
7336 jr $25
7337
7338 ($1 may be used in old code; for robustness we accept any register)
7339 or, in PIC code:
7340
7341 lui $28, %hi(_gp_disp)
7342 addiu $28, $28, %lo(_gp_disp)
7343 addu $28, $28, $25
7344 lw $25, %got(bar)
7345 addiu $25, $25, %lo(bar)
7346 jr $25
7347
7348 In the case of a __call_stub_bar stub, the sequence to set up
7349 arguments might look like this:
7350
7351 mtc1 $4, $f13
7352 mtc1 $5, $f12
7353 mtc1 $6, $f15
7354 mtc1 $7, $f14
7355
7356 followed by (or interspersed with) one of the jump sequences above.
7357
7358 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7359 of J or JR, respectively, followed by:
7360
7361 mfc1 $2, $f0
7362 mfc1 $3, $f1
7363 jr $18
7364
7365 We are at the beginning of the stub here, and scan down and extract
7366 the target address from the jump immediate instruction or, if a jump
7367 register instruction is used, from the register referred. Return
7368 the value of PC calculated or 0 if inconclusive.
7369
7370 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7371
7372static CORE_ADDR
7373mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7374{
7375 struct gdbarch *gdbarch = get_frame_arch (frame);
7376 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7377 int addrreg = MIPS_ZERO_REGNUM;
7378 CORE_ADDR start_pc = pc;
7379 CORE_ADDR target_pc = 0;
7380 CORE_ADDR addr = 0;
7381 CORE_ADDR gp = 0;
7382 int status = 0;
7383 int i;
7384
7385 for (i = 0;
7386 status == 0 && target_pc == 0 && i < 20;
7387 i++, pc += MIPS_INSN32_SIZE)
7388 {
4cc0665f 7389 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7390 CORE_ADDR imm;
7391 int rt;
7392 int rs;
7393 int rd;
7394
7395 switch (itype_op (inst))
7396 {
7397 case 0: /* SPECIAL */
7398 switch (rtype_funct (inst))
7399 {
7400 case 8: /* JR */
7401 case 9: /* JALR */
7402 rs = rtype_rs (inst);
7403 if (rs == MIPS_GP_REGNUM)
7404 target_pc = gp; /* Hmm... */
7405 else if (rs == addrreg)
7406 target_pc = addr;
7407 break;
7408
7409 case 0x21: /* ADDU */
7410 rt = rtype_rt (inst);
7411 rs = rtype_rs (inst);
7412 rd = rtype_rd (inst);
7413 if (rd == MIPS_GP_REGNUM
7414 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7415 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7416 gp += start_pc;
7417 break;
7418 }
7419 break;
7420
7421 case 2: /* J */
7422 case 3: /* JAL */
7423 target_pc = jtype_target (inst) << 2;
7424 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7425 break;
7426
7427 case 9: /* ADDIU */
7428 rt = itype_rt (inst);
7429 rs = itype_rs (inst);
7430 if (rt == rs)
7431 {
7432 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7433 if (rt == MIPS_GP_REGNUM)
7434 gp += imm;
7435 else if (rt == addrreg)
7436 addr += imm;
7437 }
7438 break;
7439
7440 case 0xf: /* LUI */
7441 rt = itype_rt (inst);
7442 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7443 if (rt == MIPS_GP_REGNUM)
7444 gp = imm;
7445 else if (rt != MIPS_ZERO_REGNUM)
7446 {
7447 addrreg = rt;
7448 addr = imm;
7449 }
7450 break;
7451
7452 case 0x23: /* LW */
7453 rt = itype_rt (inst);
7454 rs = itype_rs (inst);
7455 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7456 if (gp != 0 && rs == MIPS_GP_REGNUM)
7457 {
7458 gdb_byte buf[4];
7459
7460 memset (buf, 0, sizeof (buf));
7461 status = target_read_memory (gp + imm, buf, sizeof (buf));
7462 addrreg = rt;
7463 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7464 }
7465 break;
7466 }
7467 }
7468
7469 return target_pc;
7470}
7471
7472/* If PC is in a MIPS16 call or return stub, return the address of the
7473 target PC, which is either the callee or the caller. There are several
c906108c
SS
7474 cases which must be handled:
7475
14132e89
MR
7476 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7477 and the target PC is in $31 ($ra).
c906108c 7478 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7479 and the target PC is in $2.
7480 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7481 i.e. before the JALR instruction, this is effectively a call stub
7482 and the target PC is in $2. Otherwise this is effectively
7483 a return stub and the target PC is in $18.
7484 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7485 JAL or JALR instruction, this is effectively a call stub and the
7486 target PC is buried in the instruction stream. Otherwise this
7487 is effectively a return stub and the target PC is in $18.
7488 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7489 stub and the target PC is buried in the instruction stream.
7490
7491 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7492 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7493 gory details. */
c906108c 7494
757a7cc6 7495static CORE_ADDR
db5f024e 7496mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7497{
e17a4113 7498 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7499 CORE_ADDR start_addr;
14132e89
MR
7500 const char *name;
7501 size_t prefixlen;
c906108c
SS
7502
7503 /* Find the starting address and name of the function containing the PC. */
7504 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7505 return 0;
7506
14132e89
MR
7507 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7508 and the target PC is in $31 ($ra). */
7509 prefixlen = strlen (mips_str_mips16_ret_stub);
7510 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7511 && mips_is_stub_mode (name + prefixlen)
7512 && name[prefixlen + 2] == '\0')
7513 return get_frame_register_signed
7514 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7515
7516 /* If the PC is in __mips16_call_stub_*, this is one of the call
7517 call/return stubs. */
7518 prefixlen = strlen (mips_str_mips16_call_stub);
7519 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7520 {
7521 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7522 and the target PC is in $2. */
14132e89
MR
7523 if (mips_is_stub_suffix (name + prefixlen, 0))
7524 return get_frame_register_signed
7525 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7526
14132e89
MR
7527 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7528 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7529 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7530 a return stub and the target PC is in $18. */
14132e89
MR
7531 else if (mips_is_stub_mode (name + prefixlen)
7532 && name[prefixlen + 2] == '_'
7533 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7534 {
7535 if (pc == start_addr)
14132e89
MR
7536 /* This is the 'call' part of a call stub. The return
7537 address is in $2. */
7538 return get_frame_register_signed
7539 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7540 else
7541 /* This is the 'return' part of a call stub. The return
14132e89
MR
7542 address is in $18. */
7543 return get_frame_register_signed
7544 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7545 }
14132e89
MR
7546 else
7547 return 0; /* Not a stub. */
7548 }
7549
7550 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7551 compiler-generated call or call/return stubs. */
7552 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
7553 || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
7554 {
7555 if (pc == start_addr)
7556 /* This is the 'call' part of a call stub. Call this helper
7557 to scan through this code for interesting instructions
7558 and determine the final PC. */
7559 return mips_get_mips16_fn_stub_pc (frame, pc);
7560 else
7561 /* This is the 'return' part of a call stub. The return address
7562 is in $18. */
7563 return get_frame_register_signed
7564 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7565 }
14132e89
MR
7566
7567 return 0; /* Not a stub. */
7568}
7569
7570/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7571 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7572
7573static int
7574mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7575{
7576 CORE_ADDR start_addr;
7577 size_t prefixlen;
7578
7579 /* Find the starting address of the function containing the PC. */
7580 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7581 return 0;
7582
7583 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7584 the start, i.e. after the JALR instruction, this is effectively
7585 a return stub. */
7586 prefixlen = strlen (mips_str_mips16_call_stub);
7587 if (pc != start_addr
7588 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7589 && mips_is_stub_mode (name + prefixlen)
7590 && name[prefixlen + 2] == '_'
7591 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7592 return 1;
7593
7594 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7595 the JAL or JALR instruction, this is effectively a return stub. */
7596 prefixlen = strlen (mips_str_call_fp_stub);
7597 if (pc != start_addr
7598 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7599 return 1;
7600
7601 /* Consume the .pic. prefix of any PIC stub, this function must return
7602 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7603 or the call stub path will trigger in handle_inferior_event causing
7604 it to go astray. */
7605 prefixlen = strlen (mips_str_pic);
7606 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7607 name += prefixlen;
7608
7609 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7610 prefixlen = strlen (mips_str_mips16_ret_stub);
7611 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7612 && mips_is_stub_mode (name + prefixlen)
7613 && name[prefixlen + 2] == '\0')
7614 return 1;
7615
7616 return 0; /* Not a stub. */
c906108c
SS
7617}
7618
db5f024e
DJ
7619/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7620 PC of the stub target. The stub just loads $t9 and jumps to it,
7621 so that $t9 has the correct value at function entry. */
7622
7623static CORE_ADDR
7624mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7625{
e17a4113
UW
7626 struct gdbarch *gdbarch = get_frame_arch (frame);
7627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
db5f024e
DJ
7628 struct minimal_symbol *msym;
7629 int i;
7630 gdb_byte stub_code[16];
7631 int32_t stub_words[4];
7632
7633 /* The stub for foo is named ".pic.foo", and is either two
7634 instructions inserted before foo or a three instruction sequence
7635 which jumps to foo. */
7636 msym = lookup_minimal_symbol_by_pc (pc);
7637 if (msym == NULL
7638 || SYMBOL_VALUE_ADDRESS (msym) != pc
7639 || SYMBOL_LINKAGE_NAME (msym) == NULL
7640 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
7641 return 0;
7642
7643 /* A two-instruction header. */
7644 if (MSYMBOL_SIZE (msym) == 8)
7645 return pc + 8;
7646
7647 /* A three-instruction (plus delay slot) trampoline. */
7648 if (MSYMBOL_SIZE (msym) == 16)
7649 {
7650 if (target_read_memory (pc, stub_code, 16) != 0)
7651 return 0;
7652 for (i = 0; i < 4; i++)
e17a4113
UW
7653 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7654 4, byte_order);
db5f024e
DJ
7655
7656 /* A stub contains these instructions:
7657 lui t9, %hi(target)
7658 j target
7659 addiu t9, t9, %lo(target)
7660 nop
7661
7662 This works even for N64, since stubs are only generated with
7663 -msym32. */
7664 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7665 && (stub_words[1] & 0xfc000000U) == 0x08000000
7666 && (stub_words[2] & 0xffff0000U) == 0x27390000
7667 && stub_words[3] == 0x00000000)
34b192ce
MR
7668 return ((((stub_words[0] & 0x0000ffff) << 16)
7669 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7670 }
7671
7672 /* Not a recognized stub. */
7673 return 0;
7674}
7675
7676static CORE_ADDR
7677mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7678{
14132e89 7679 CORE_ADDR requested_pc = pc;
db5f024e 7680 CORE_ADDR target_pc;
14132e89
MR
7681 CORE_ADDR new_pc;
7682
7683 do
7684 {
7685 target_pc = pc;
db5f024e 7686
14132e89
MR
7687 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7688 if (new_pc)
7689 {
7690 pc = new_pc;
4cc0665f
MR
7691 if (is_compact_addr (pc))
7692 pc = unmake_compact_addr (pc);
14132e89 7693 }
db5f024e 7694
14132e89
MR
7695 new_pc = find_solib_trampoline_target (frame, pc);
7696 if (new_pc)
7697 {
7698 pc = new_pc;
4cc0665f
MR
7699 if (is_compact_addr (pc))
7700 pc = unmake_compact_addr (pc);
14132e89 7701 }
db5f024e 7702
14132e89
MR
7703 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7704 if (new_pc)
7705 {
7706 pc = new_pc;
4cc0665f
MR
7707 if (is_compact_addr (pc))
7708 pc = unmake_compact_addr (pc);
14132e89
MR
7709 }
7710 }
7711 while (pc != target_pc);
db5f024e 7712
14132e89 7713 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7714}
7715
a4b8ebc8 7716/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7717 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7718
7719static int
d3f73121 7720mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7721{
a4b8ebc8 7722 int regnum;
2f38ef89 7723 if (num >= 0 && num < 32)
a4b8ebc8 7724 regnum = num;
2f38ef89 7725 else if (num >= 38 && num < 70)
d3f73121 7726 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7727 else if (num == 70)
d3f73121 7728 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7729 else if (num == 71)
d3f73121 7730 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7731 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7732 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7733 else
a4b8ebc8
AC
7734 /* This will hopefully (eventually) provoke a warning. Should
7735 we be calling complaint() here? */
d3f73121
MD
7736 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7737 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7738}
7739
2f38ef89 7740
a4b8ebc8 7741/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7742 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7743
7744static int
d3f73121 7745mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7746{
a4b8ebc8 7747 int regnum;
2f38ef89 7748 if (num >= 0 && num < 32)
a4b8ebc8 7749 regnum = num;
2f38ef89 7750 else if (num >= 32 && num < 64)
d3f73121 7751 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7752 else if (num == 64)
d3f73121 7753 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7754 else if (num == 65)
d3f73121 7755 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7756 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7757 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7758 else
a4b8ebc8
AC
7759 /* This will hopefully (eventually) provoke a warning. Should we
7760 be calling complaint() here? */
d3f73121
MD
7761 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7762 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7763}
7764
7765static int
e7faf938 7766mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7767{
7768 /* Only makes sense to supply raw registers. */
e7faf938 7769 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7770 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7771 decide if it is valid. Should instead define a standard sim/gdb
7772 register numbering scheme. */
e7faf938
MD
7773 if (gdbarch_register_name (gdbarch,
7774 gdbarch_num_regs (gdbarch) + regnum) != NULL
7775 && gdbarch_register_name (gdbarch,
025bb325
MS
7776 gdbarch_num_regs (gdbarch)
7777 + regnum)[0] != '\0')
a4b8ebc8
AC
7778 return regnum;
7779 else
6d82d43b 7780 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7781}
7782
2f38ef89 7783
4844f454
CV
7784/* Convert an integer into an address. Extracting the value signed
7785 guarantees a correctly sign extended address. */
fc0c74b1
AC
7786
7787static CORE_ADDR
79dd2d24 7788mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7789 struct type *type, const gdb_byte *buf)
fc0c74b1 7790{
e17a4113
UW
7791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7792 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7793}
7794
82e91389
DJ
7795/* Dummy virtual frame pointer method. This is no more or less accurate
7796 than most other architectures; we just need to be explicit about it,
7797 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7798 an assertion failure. */
7799
7800static void
a54fba4c
MD
7801mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7802 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7803{
7804 *reg = MIPS_SP_REGNUM;
7805 *offset = 0;
7806}
7807
caaa3122
DJ
7808static void
7809mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7810{
7811 enum mips_abi *abip = (enum mips_abi *) obj;
7812 const char *name = bfd_get_section_name (abfd, sect);
7813
7814 if (*abip != MIPS_ABI_UNKNOWN)
7815 return;
7816
7817 if (strncmp (name, ".mdebug.", 8) != 0)
7818 return;
7819
7820 if (strcmp (name, ".mdebug.abi32") == 0)
7821 *abip = MIPS_ABI_O32;
7822 else if (strcmp (name, ".mdebug.abiN32") == 0)
7823 *abip = MIPS_ABI_N32;
62a49b2c 7824 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 7825 *abip = MIPS_ABI_N64;
caaa3122
DJ
7826 else if (strcmp (name, ".mdebug.abiO64") == 0)
7827 *abip = MIPS_ABI_O64;
7828 else if (strcmp (name, ".mdebug.eabi32") == 0)
7829 *abip = MIPS_ABI_EABI32;
7830 else if (strcmp (name, ".mdebug.eabi64") == 0)
7831 *abip = MIPS_ABI_EABI64;
7832 else
8a3fe4f8 7833 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
7834}
7835
22e47e37
FF
7836static void
7837mips_find_long_section (bfd *abfd, asection *sect, void *obj)
7838{
7839 int *lbp = (int *) obj;
7840 const char *name = bfd_get_section_name (abfd, sect);
7841
7842 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
7843 *lbp = 32;
7844 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
7845 *lbp = 64;
7846 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
7847 warning (_("unrecognized .gcc_compiled_longXX"));
7848}
7849
2e4ebe70
DJ
7850static enum mips_abi
7851global_mips_abi (void)
7852{
7853 int i;
7854
7855 for (i = 0; mips_abi_strings[i] != NULL; i++)
7856 if (mips_abi_strings[i] == mips_abi_string)
7857 return (enum mips_abi) i;
7858
e2e0b3e5 7859 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
7860}
7861
4cc0665f
MR
7862/* Return the default compressed instruction set, either of MIPS16
7863 or microMIPS, selected when none could have been determined from
7864 the ELF header of the binary being executed (or no binary has been
7865 selected. */
7866
7867static enum mips_isa
7868global_mips_compression (void)
7869{
7870 int i;
7871
7872 for (i = 0; mips_compression_strings[i] != NULL; i++)
7873 if (mips_compression_strings[i] == mips_compression_string)
7874 return (enum mips_isa) i;
7875
7876 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
7877}
7878
29709017
DJ
7879static void
7880mips_register_g_packet_guesses (struct gdbarch *gdbarch)
7881{
29709017
DJ
7882 /* If the size matches the set of 32-bit or 64-bit integer registers,
7883 assume that's what we've got. */
4eb0ad19
DJ
7884 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
7885 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
7886
7887 /* If the size matches the full set of registers GDB traditionally
7888 knows about, including floating point, for either 32-bit or
7889 64-bit, assume that's what we've got. */
4eb0ad19
DJ
7890 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
7891 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
7892
7893 /* Otherwise we don't have a useful guess. */
7894}
7895
f8b73d13
DJ
7896static struct value *
7897value_of_mips_user_reg (struct frame_info *frame, const void *baton)
7898{
7899 const int *reg_p = baton;
7900 return value_of_register (*reg_p, frame);
7901}
7902
c2d11a7d 7903static struct gdbarch *
6d82d43b 7904mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 7905{
c2d11a7d
JM
7906 struct gdbarch *gdbarch;
7907 struct gdbarch_tdep *tdep;
7908 int elf_flags;
2e4ebe70 7909 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 7910 int i, num_regs;
8d5838b5 7911 enum mips_fpu_type fpu_type;
f8b73d13 7912 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 7913 int elf_fpu_type = 0;
1faeff08
MR
7914 const char **reg_names;
7915 struct mips_regnum mips_regnum, *regnum;
4cc0665f 7916 enum mips_isa mips_isa;
1faeff08
MR
7917 int dspacc;
7918 int dspctl;
7919
7920 /* Fill in the OS dependent register numbers and names. */
7921 if (info.osabi == GDB_OSABI_IRIX)
7922 {
7923 mips_regnum.fp0 = 32;
7924 mips_regnum.pc = 64;
7925 mips_regnum.cause = 65;
7926 mips_regnum.badvaddr = 66;
7927 mips_regnum.hi = 67;
7928 mips_regnum.lo = 68;
7929 mips_regnum.fp_control_status = 69;
7930 mips_regnum.fp_implementation_revision = 70;
7931 mips_regnum.dspacc = dspacc = -1;
7932 mips_regnum.dspctl = dspctl = -1;
7933 num_regs = 71;
7934 reg_names = mips_irix_reg_names;
7935 }
7936 else if (info.osabi == GDB_OSABI_LINUX)
7937 {
7938 mips_regnum.fp0 = 38;
7939 mips_regnum.pc = 37;
7940 mips_regnum.cause = 36;
7941 mips_regnum.badvaddr = 35;
7942 mips_regnum.hi = 34;
7943 mips_regnum.lo = 33;
7944 mips_regnum.fp_control_status = 70;
7945 mips_regnum.fp_implementation_revision = 71;
7946 mips_regnum.dspacc = -1;
7947 mips_regnum.dspctl = -1;
7948 dspacc = 72;
7949 dspctl = 78;
7950 num_regs = 79;
7951 reg_names = mips_linux_reg_names;
7952 }
7953 else
7954 {
7955 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
7956 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
7957 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
7958 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
7959 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
7960 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
7961 mips_regnum.fp_control_status = 70;
7962 mips_regnum.fp_implementation_revision = 71;
7963 mips_regnum.dspacc = dspacc = -1;
7964 mips_regnum.dspctl = dspctl = -1;
7965 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
7966 if (info.bfd_arch_info != NULL
7967 && info.bfd_arch_info->mach == bfd_mach_mips3900)
7968 reg_names = mips_tx39_reg_names;
7969 else
7970 reg_names = mips_generic_reg_names;
7971 }
f8b73d13
DJ
7972
7973 /* Check any target description for validity. */
7974 if (tdesc_has_registers (info.target_desc))
7975 {
7976 static const char *const mips_gprs[] = {
7977 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7978 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7979 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7980 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7981 };
7982 static const char *const mips_fprs[] = {
7983 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7984 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7985 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7986 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
7987 };
7988
7989 const struct tdesc_feature *feature;
7990 int valid_p;
7991
7992 feature = tdesc_find_feature (info.target_desc,
7993 "org.gnu.gdb.mips.cpu");
7994 if (feature == NULL)
7995 return NULL;
7996
7997 tdesc_data = tdesc_data_alloc ();
7998
7999 valid_p = 1;
8000 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8001 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8002 mips_gprs[i]);
8003
8004
8005 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8006 mips_regnum.lo, "lo");
f8b73d13 8007 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8008 mips_regnum.hi, "hi");
f8b73d13 8009 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8010 mips_regnum.pc, "pc");
f8b73d13
DJ
8011
8012 if (!valid_p)
8013 {
8014 tdesc_data_cleanup (tdesc_data);
8015 return NULL;
8016 }
8017
8018 feature = tdesc_find_feature (info.target_desc,
8019 "org.gnu.gdb.mips.cp0");
8020 if (feature == NULL)
8021 {
8022 tdesc_data_cleanup (tdesc_data);
8023 return NULL;
8024 }
8025
8026 valid_p = 1;
8027 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8028 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
8029 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8030 MIPS_PS_REGNUM, "status");
8031 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8032 mips_regnum.cause, "cause");
f8b73d13
DJ
8033
8034 if (!valid_p)
8035 {
8036 tdesc_data_cleanup (tdesc_data);
8037 return NULL;
8038 }
8039
8040 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8041 backend is not prepared for that, though. */
8042 feature = tdesc_find_feature (info.target_desc,
8043 "org.gnu.gdb.mips.fpu");
8044 if (feature == NULL)
8045 {
8046 tdesc_data_cleanup (tdesc_data);
8047 return NULL;
8048 }
8049
8050 valid_p = 1;
8051 for (i = 0; i < 32; i++)
8052 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8053 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8054
8055 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8056 mips_regnum.fp_control_status,
8057 "fcsr");
8058 valid_p
8059 &= tdesc_numbered_register (feature, tdesc_data,
8060 mips_regnum.fp_implementation_revision,
8061 "fir");
f8b73d13
DJ
8062
8063 if (!valid_p)
8064 {
8065 tdesc_data_cleanup (tdesc_data);
8066 return NULL;
8067 }
8068
1faeff08
MR
8069 if (dspacc >= 0)
8070 {
8071 feature = tdesc_find_feature (info.target_desc,
8072 "org.gnu.gdb.mips.dsp");
8073 /* The DSP registers are optional; it's OK if they are absent. */
8074 if (feature != NULL)
8075 {
8076 i = 0;
8077 valid_p = 1;
8078 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8079 dspacc + i++, "hi1");
8080 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8081 dspacc + i++, "lo1");
8082 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8083 dspacc + i++, "hi2");
8084 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8085 dspacc + i++, "lo2");
8086 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8087 dspacc + i++, "hi3");
8088 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8089 dspacc + i++, "lo3");
8090
8091 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8092 dspctl, "dspctl");
8093
8094 if (!valid_p)
8095 {
8096 tdesc_data_cleanup (tdesc_data);
8097 return NULL;
8098 }
8099
8100 mips_regnum.dspacc = dspacc;
8101 mips_regnum.dspctl = dspctl;
8102 }
8103 }
8104
f8b73d13
DJ
8105 /* It would be nice to detect an attempt to use a 64-bit ABI
8106 when only 32-bit registers are provided. */
1faeff08 8107 reg_names = NULL;
f8b73d13 8108 }
c2d11a7d 8109
ec03c1ac
AC
8110 /* First of all, extract the elf_flags, if available. */
8111 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8112 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8113 else if (arches != NULL)
8114 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8115 else
8116 elf_flags = 0;
8117 if (gdbarch_debug)
8118 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8119 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8120
102182a9 8121 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8122 switch ((elf_flags & EF_MIPS_ABI))
8123 {
8124 case E_MIPS_ABI_O32:
ec03c1ac 8125 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8126 break;
8127 case E_MIPS_ABI_O64:
ec03c1ac 8128 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8129 break;
8130 case E_MIPS_ABI_EABI32:
ec03c1ac 8131 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8132 break;
8133 case E_MIPS_ABI_EABI64:
ec03c1ac 8134 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8135 break;
8136 default:
acdb74a0 8137 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8138 found_abi = MIPS_ABI_N32;
acdb74a0 8139 else
ec03c1ac 8140 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8141 break;
8142 }
acdb74a0 8143
caaa3122 8144 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8145 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8146 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8147
dc305454 8148 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8149 MIPS architecture (if there is one). */
8150 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8151 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8152
32a6503c 8153 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8154 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8155 && info.bfd_arch_info != NULL
8156 && info.bfd_arch_info->arch == bfd_arch_mips)
8157 {
8158 switch (info.bfd_arch_info->mach)
8159 {
8160 case bfd_mach_mips3900:
ec03c1ac 8161 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8162 break;
8163 case bfd_mach_mips4100:
8164 case bfd_mach_mips5000:
ec03c1ac 8165 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8166 break;
1d06468c
EZ
8167 case bfd_mach_mips8000:
8168 case bfd_mach_mips10000:
32a6503c
KB
8169 /* On Irix, ELF64 executables use the N64 ABI. The
8170 pseudo-sections which describe the ABI aren't present
8171 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
8172 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8173 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8174 found_abi = MIPS_ABI_N64;
28d169de 8175 else
ec03c1ac 8176 found_abi = MIPS_ABI_N32;
1d06468c 8177 break;
bf64bfd6
AC
8178 }
8179 }
2e4ebe70 8180
26c53e50
DJ
8181 /* Default 64-bit objects to N64 instead of O32. */
8182 if (found_abi == MIPS_ABI_UNKNOWN
8183 && info.abfd != NULL
8184 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8185 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8186 found_abi = MIPS_ABI_N64;
8187
ec03c1ac
AC
8188 if (gdbarch_debug)
8189 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8190 found_abi);
8191
8192 /* What has the user specified from the command line? */
8193 wanted_abi = global_mips_abi ();
8194 if (gdbarch_debug)
8195 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8196 wanted_abi);
2e4ebe70
DJ
8197
8198 /* Now that we have found what the ABI for this binary would be,
8199 check whether the user is overriding it. */
2e4ebe70
DJ
8200 if (wanted_abi != MIPS_ABI_UNKNOWN)
8201 mips_abi = wanted_abi;
ec03c1ac
AC
8202 else if (found_abi != MIPS_ABI_UNKNOWN)
8203 mips_abi = found_abi;
8204 else
8205 mips_abi = MIPS_ABI_O32;
8206 if (gdbarch_debug)
8207 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8208 mips_abi);
2e4ebe70 8209
4cc0665f
MR
8210 /* Determine the default compressed ISA. */
8211 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8212 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8213 mips_isa = ISA_MICROMIPS;
8214 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8215 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8216 mips_isa = ISA_MIPS16;
8217 else
8218 mips_isa = global_mips_compression ();
8219 mips_compression_string = mips_compression_strings[mips_isa];
8220
ec03c1ac 8221 /* Also used when doing an architecture lookup. */
4b9b3959 8222 if (gdbarch_debug)
ec03c1ac 8223 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8224 "mips_gdbarch_init: "
8225 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8226 mips64_transfers_32bit_regs_p);
0dadbba0 8227
8d5838b5 8228 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8229#ifdef HAVE_ELF
8230 if (info.abfd
8231 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8232 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8233 Tag_GNU_MIPS_ABI_FP);
8234#endif /* HAVE_ELF */
8235
8d5838b5
AC
8236 if (!mips_fpu_type_auto)
8237 fpu_type = mips_fpu_type;
609ca2b9
DJ
8238 else if (elf_fpu_type != 0)
8239 {
8240 switch (elf_fpu_type)
8241 {
8242 case 1:
8243 fpu_type = MIPS_FPU_DOUBLE;
8244 break;
8245 case 2:
8246 fpu_type = MIPS_FPU_SINGLE;
8247 break;
8248 case 3:
8249 default:
8250 /* Soft float or unknown. */
8251 fpu_type = MIPS_FPU_NONE;
8252 break;
8253 }
8254 }
8d5838b5
AC
8255 else if (info.bfd_arch_info != NULL
8256 && info.bfd_arch_info->arch == bfd_arch_mips)
8257 switch (info.bfd_arch_info->mach)
8258 {
8259 case bfd_mach_mips3900:
8260 case bfd_mach_mips4100:
8261 case bfd_mach_mips4111:
a9d61c86 8262 case bfd_mach_mips4120:
8d5838b5
AC
8263 fpu_type = MIPS_FPU_NONE;
8264 break;
8265 case bfd_mach_mips4650:
8266 fpu_type = MIPS_FPU_SINGLE;
8267 break;
8268 default:
8269 fpu_type = MIPS_FPU_DOUBLE;
8270 break;
8271 }
8272 else if (arches != NULL)
8273 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8274 else
8275 fpu_type = MIPS_FPU_DOUBLE;
8276 if (gdbarch_debug)
8277 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8278 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8279
29709017
DJ
8280 /* Check for blatant incompatibilities. */
8281
8282 /* If we have only 32-bit registers, then we can't debug a 64-bit
8283 ABI. */
8284 if (info.target_desc
8285 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8286 && mips_abi != MIPS_ABI_EABI32
8287 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8288 {
8289 if (tdesc_data != NULL)
8290 tdesc_data_cleanup (tdesc_data);
8291 return NULL;
8292 }
29709017 8293
025bb325 8294 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8295 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8296 arches != NULL;
8297 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8298 {
8299 /* MIPS needs to be pedantic about which ABI the object is
102182a9 8300 using. */
9103eae0 8301 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8302 continue;
9103eae0 8303 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8304 continue;
719ec221
AC
8305 /* Need to be pedantic about which register virtual size is
8306 used. */
8307 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8308 != mips64_transfers_32bit_regs_p)
8309 continue;
8d5838b5
AC
8310 /* Be pedantic about which FPU is selected. */
8311 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8312 continue;
f8b73d13
DJ
8313
8314 if (tdesc_data != NULL)
8315 tdesc_data_cleanup (tdesc_data);
4be87837 8316 return arches->gdbarch;
c2d11a7d
JM
8317 }
8318
102182a9 8319 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
8320 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
8321 gdbarch = gdbarch_alloc (&info, tdep);
8322 tdep->elf_flags = elf_flags;
719ec221 8323 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8324 tdep->found_abi = found_abi;
8325 tdep->mips_abi = mips_abi;
4cc0665f 8326 tdep->mips_isa = mips_isa;
8d5838b5 8327 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8328 tdep->register_size_valid_p = 0;
8329 tdep->register_size = 0;
50e8a0d5
HZ
8330 tdep->gregset = NULL;
8331 tdep->gregset64 = NULL;
8332 tdep->fpregset = NULL;
8333 tdep->fpregset64 = NULL;
29709017
DJ
8334
8335 if (info.target_desc)
8336 {
8337 /* Some useful properties can be inferred from the target. */
8338 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8339 {
8340 tdep->register_size_valid_p = 1;
8341 tdep->register_size = 4;
8342 }
8343 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8344 {
8345 tdep->register_size_valid_p = 1;
8346 tdep->register_size = 8;
8347 }
8348 }
c2d11a7d 8349
102182a9 8350 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8351 set_gdbarch_short_bit (gdbarch, 16);
8352 set_gdbarch_int_bit (gdbarch, 32);
8353 set_gdbarch_float_bit (gdbarch, 32);
8354 set_gdbarch_double_bit (gdbarch, 64);
8355 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8356 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8357 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8358 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8359
175ff332
HZ
8360 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8361 mips_ax_pseudo_register_collect);
8362 set_gdbarch_ax_pseudo_register_push_stack
8363 (gdbarch, mips_ax_pseudo_register_push_stack);
8364
6d82d43b 8365 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
8366 mips_elf_make_msymbol_special);
8367
1faeff08
MR
8368 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8369 *regnum = mips_regnum;
1faeff08
MR
8370 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8371 set_gdbarch_num_regs (gdbarch, num_regs);
8372 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8373 set_gdbarch_register_name (gdbarch, mips_register_name);
8374 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8375 tdep->mips_processor_reg_names = reg_names;
8376 tdep->regnum = regnum;
fe29b929 8377
0dadbba0 8378 switch (mips_abi)
c2d11a7d 8379 {
0dadbba0 8380 case MIPS_ABI_O32:
25ab4790 8381 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8382 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8383 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8384 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8385 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8386 set_gdbarch_long_bit (gdbarch, 32);
8387 set_gdbarch_ptr_bit (gdbarch, 32);
8388 set_gdbarch_long_long_bit (gdbarch, 64);
8389 break;
0dadbba0 8390 case MIPS_ABI_O64:
25ab4790 8391 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8392 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8393 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8394 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8395 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8396 set_gdbarch_long_bit (gdbarch, 32);
8397 set_gdbarch_ptr_bit (gdbarch, 32);
8398 set_gdbarch_long_long_bit (gdbarch, 64);
8399 break;
0dadbba0 8400 case MIPS_ABI_EABI32:
25ab4790 8401 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8402 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8403 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8404 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8405 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8406 set_gdbarch_long_bit (gdbarch, 32);
8407 set_gdbarch_ptr_bit (gdbarch, 32);
8408 set_gdbarch_long_long_bit (gdbarch, 64);
8409 break;
0dadbba0 8410 case MIPS_ABI_EABI64:
25ab4790 8411 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8412 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8413 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8414 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8415 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8416 set_gdbarch_long_bit (gdbarch, 64);
8417 set_gdbarch_ptr_bit (gdbarch, 64);
8418 set_gdbarch_long_long_bit (gdbarch, 64);
8419 break;
0dadbba0 8420 case MIPS_ABI_N32:
25ab4790 8421 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8422 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8423 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8424 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8425 tdep->default_mask_address_p = 0;
0dadbba0
AC
8426 set_gdbarch_long_bit (gdbarch, 32);
8427 set_gdbarch_ptr_bit (gdbarch, 32);
8428 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8429 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8430 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8431 break;
8432 case MIPS_ABI_N64:
25ab4790 8433 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8434 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8435 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8436 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8437 tdep->default_mask_address_p = 0;
8438 set_gdbarch_long_bit (gdbarch, 64);
8439 set_gdbarch_ptr_bit (gdbarch, 64);
8440 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8441 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8442 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8443 break;
c2d11a7d 8444 default:
e2e0b3e5 8445 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8446 }
8447
22e47e37
FF
8448 /* GCC creates a pseudo-section whose name specifies the size of
8449 longs, since -mlong32 or -mlong64 may be used independent of
8450 other options. How those options affect pointer sizes is ABI and
8451 architecture dependent, so use them to override the default sizes
8452 set by the ABI. This table shows the relationship between ABI,
8453 -mlongXX, and size of pointers:
8454
8455 ABI -mlongXX ptr bits
8456 --- -------- --------
8457 o32 32 32
8458 o32 64 32
8459 n32 32 32
8460 n32 64 64
8461 o64 32 32
8462 o64 64 64
8463 n64 32 32
8464 n64 64 64
8465 eabi32 32 32
8466 eabi32 64 32
8467 eabi64 32 32
8468 eabi64 64 64
8469
8470 Note that for o32 and eabi32, pointers are always 32 bits
8471 regardless of any -mlongXX option. For all others, pointers and
025bb325 8472 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8473
8474 if (info.abfd != NULL)
8475 {
8476 int long_bit = 0;
8477
8478 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8479 if (long_bit)
8480 {
8481 set_gdbarch_long_bit (gdbarch, long_bit);
8482 switch (mips_abi)
8483 {
8484 case MIPS_ABI_O32:
8485 case MIPS_ABI_EABI32:
8486 break;
8487 case MIPS_ABI_N32:
8488 case MIPS_ABI_O64:
8489 case MIPS_ABI_N64:
8490 case MIPS_ABI_EABI64:
8491 set_gdbarch_ptr_bit (gdbarch, long_bit);
8492 break;
8493 default:
8494 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8495 }
8496 }
8497 }
8498
a5ea2558
AC
8499 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8500 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8501 comment:
8502
8503 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8504 flag in object files because to do so would make it impossible to
102182a9 8505 link with libraries compiled without "-gp32". This is
a5ea2558 8506 unnecessarily restrictive.
361d1df0 8507
a5ea2558
AC
8508 We could solve this problem by adding "-gp32" multilibs to gcc,
8509 but to set this flag before gcc is built with such multilibs will
8510 break too many systems.''
8511
8512 But even more unhelpfully, the default linker output target for
8513 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8514 for 64-bit programs - you need to change the ABI to change this,
102182a9 8515 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8516 this flag to detect 32-bit mode would do the wrong thing given
8517 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8518 as 32-bit programs by default. */
a5ea2558 8519
6c997a34 8520 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8521 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8522
102182a9
MS
8523 /* Add/remove bits from an address. The MIPS needs be careful to
8524 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8525 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8526
58dfe9ff
AC
8527 /* Unwind the frame. */
8528 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8529 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8530 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8531
102182a9 8532 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8533 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8534 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8535 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8536 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8537 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8538 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8539
025bb325 8540 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8541
2c76a0c7
JB
8542 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8543 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8544 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8545
87783b8b
AC
8546 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8547 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8548 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8549
f7b9e9fc
AC
8550 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8551 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4cc0665f
MR
8552 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8553 mips_remote_breakpoint_from_pc);
c8cef75f
MR
8554 set_gdbarch_adjust_breakpoint_address (gdbarch,
8555 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8556
8557 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8558
97ab0fdd
MR
8559 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
8560
fc0c74b1
AC
8561 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8562 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8563 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8564
a4b8ebc8 8565 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8566
e11c53d2 8567 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8568
9dae60cc
UW
8569 if (mips_abi == MIPS_ABI_N32)
8570 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8571 else if (mips_abi == MIPS_ABI_N64)
8572 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8573 else
8574 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8575
d92524f1
PM
8576 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8577 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8578 need to all be folded into the target vector. Since they are
d92524f1
PM
8579 being used as guards for target_stopped_by_watchpoint, why not have
8580 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8581 is sitting on? */
8582 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8583
e7d6a6d2 8584 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8585
14132e89
MR
8586 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8587 to support MIPS16. This is a bad thing. Make sure not to do it
8588 if we have an OS ABI that actually supports shared libraries, since
8589 shared library support is more important. If we have an OS someday
8590 that supports both shared libraries and MIPS16, we'll have to find
8591 a better place for these.
8592 macro/2012-04-25: But that applies to return trampolines only and
8593 currently no MIPS OS ABI uses shared libraries that have them. */
8594 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8595
025bb325
MS
8596 set_gdbarch_single_step_through_delay (gdbarch,
8597 mips_single_step_through_delay);
3352ef37 8598
0d5de010
DJ
8599 /* Virtual tables. */
8600 set_gdbarch_vbit_in_delta (gdbarch, 1);
8601
29709017
DJ
8602 mips_register_g_packet_guesses (gdbarch);
8603
6de918a6 8604 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 8605 info.tdep_info = (void *) tdesc_data;
6de918a6 8606 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8607
9aac7884
MR
8608 /* The hook may have adjusted num_regs, fetch the final value and
8609 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8610 num_regs = gdbarch_num_regs (gdbarch);
8611 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8612 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8613
5792a79b 8614 /* Unwind the frame. */
b8a22b94
DJ
8615 dwarf2_append_unwinders (gdbarch);
8616 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8617 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8618 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8619 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8620 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8621 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8622 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8623 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8624 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8625
f8b73d13
DJ
8626 if (tdesc_data)
8627 {
8628 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8629 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8630
8631 /* Override the normal target description methods to handle our
8632 dual real and pseudo registers. */
8633 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8634 set_gdbarch_register_reggroup_p (gdbarch,
8635 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8636
8637 num_regs = gdbarch_num_regs (gdbarch);
8638 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8639 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8640 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8641 }
8642
8643 /* Add ABI-specific aliases for the registers. */
8644 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8645 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8646 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8647 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8648 else
8649 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8650 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8651 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8652
8653 /* Add some other standard aliases. */
8654 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8655 user_reg_add (gdbarch, mips_register_aliases[i].name,
8656 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8657
865093a3
AR
8658 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8659 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8660 value_of_mips_user_reg,
8661 &mips_numeric_register_aliases[i].regnum);
8662
4b9b3959
AC
8663 return gdbarch;
8664}
8665
2e4ebe70 8666static void
6d82d43b 8667mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8668{
8669 struct gdbarch_info info;
8670
8671 /* Force the architecture to update, and (if it's a MIPS architecture)
8672 mips_gdbarch_init will take care of the rest. */
8673 gdbarch_info_init (&info);
8674 gdbarch_update_p (info);
8675}
8676
ad188201
KB
8677/* Print out which MIPS ABI is in use. */
8678
8679static void
1f8ca57c
JB
8680show_mips_abi (struct ui_file *file,
8681 int from_tty,
8682 struct cmd_list_element *ignored_cmd,
8683 const char *ignored_value)
ad188201 8684{
f5656ead 8685 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8686 fprintf_filtered
8687 (file,
8688 "The MIPS ABI is unknown because the current architecture "
8689 "is not MIPS.\n");
ad188201
KB
8690 else
8691 {
8692 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8693 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8694 const char *actual_abi_str = mips_abi_strings[actual_abi];
8695
8696 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8697 fprintf_filtered
8698 (file,
8699 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8700 actual_abi_str);
ad188201 8701 else if (global_abi == actual_abi)
1f8ca57c
JB
8702 fprintf_filtered
8703 (file,
8704 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8705 actual_abi_str);
ad188201
KB
8706 else
8707 {
8708 /* Probably shouldn't happen... */
025bb325
MS
8709 fprintf_filtered (file,
8710 "The (auto detected) MIPS ABI \"%s\" is in use "
8711 "even though the user setting was \"%s\".\n",
6d82d43b 8712 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8713 }
8714 }
8715}
8716
4cc0665f
MR
8717/* Print out which MIPS compressed ISA encoding is used. */
8718
8719static void
8720show_mips_compression (struct ui_file *file, int from_tty,
8721 struct cmd_list_element *c, const char *value)
8722{
8723 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8724 value);
8725}
8726
4b9b3959 8727static void
72a155b4 8728mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8729{
72a155b4 8730 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8731 if (tdep != NULL)
c2d11a7d 8732 {
acdb74a0
AC
8733 int ef_mips_arch;
8734 int ef_mips_32bitmode;
f49e4e6d 8735 /* Determine the ISA. */
acdb74a0
AC
8736 switch (tdep->elf_flags & EF_MIPS_ARCH)
8737 {
8738 case E_MIPS_ARCH_1:
8739 ef_mips_arch = 1;
8740 break;
8741 case E_MIPS_ARCH_2:
8742 ef_mips_arch = 2;
8743 break;
8744 case E_MIPS_ARCH_3:
8745 ef_mips_arch = 3;
8746 break;
8747 case E_MIPS_ARCH_4:
93d56215 8748 ef_mips_arch = 4;
acdb74a0
AC
8749 break;
8750 default:
93d56215 8751 ef_mips_arch = 0;
acdb74a0
AC
8752 break;
8753 }
f49e4e6d 8754 /* Determine the size of a pointer. */
acdb74a0 8755 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8756 fprintf_unfiltered (file,
8757 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8758 tdep->elf_flags);
4b9b3959 8759 fprintf_unfiltered (file,
acdb74a0
AC
8760 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8761 ef_mips_32bitmode);
8762 fprintf_unfiltered (file,
8763 "mips_dump_tdep: ef_mips_arch = %d\n",
8764 ef_mips_arch);
8765 fprintf_unfiltered (file,
8766 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8767 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8768 fprintf_unfiltered (file,
025bb325
MS
8769 "mips_dump_tdep: "
8770 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8771 mips_mask_address_p (tdep),
4014092b 8772 tdep->default_mask_address_p);
c2d11a7d 8773 }
4b9b3959
AC
8774 fprintf_unfiltered (file,
8775 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8776 MIPS_DEFAULT_FPU_TYPE,
8777 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8778 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8779 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8780 : "???"));
74ed0bb4
MD
8781 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8782 MIPS_EABI (gdbarch));
4b9b3959
AC
8783 fprintf_unfiltered (file,
8784 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
8785 MIPS_FPU_TYPE (gdbarch),
8786 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8787 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8788 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 8789 : "???"));
c2d11a7d
JM
8790}
8791
025bb325 8792extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 8793
c906108c 8794void
acdb74a0 8795_initialize_mips_tdep (void)
c906108c
SS
8796{
8797 static struct cmd_list_element *mipsfpulist = NULL;
8798 struct cmd_list_element *c;
8799
6d82d43b 8800 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8801 if (MIPS_ABI_LAST + 1
8802 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8803 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8804
4b9b3959 8805 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8806
8d5f9dcb
DJ
8807 mips_pdr_data = register_objfile_data ();
8808
4eb0ad19
DJ
8809 /* Create feature sets with the appropriate properties. The values
8810 are not important. */
8811 mips_tdesc_gp32 = allocate_target_description ();
8812 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8813
8814 mips_tdesc_gp64 = allocate_target_description ();
8815 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8816
025bb325 8817 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8818 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8819 _("Various MIPS specific commands."),
a5ea2558
AC
8820 &setmipscmdlist, "set mips ", 0, &setlist);
8821
8822 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 8823 _("Various MIPS specific commands."),
a5ea2558
AC
8824 &showmipscmdlist, "show mips ", 0, &showlist);
8825
025bb325 8826 /* Allow the user to override the ABI. */
7ab04401
AC
8827 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8828 &mips_abi_string, _("\
8829Set the MIPS ABI used by this program."), _("\
8830Show the MIPS ABI used by this program."), _("\
8831This option can be set to one of:\n\
8832 auto - the default ABI associated with the current binary\n\
8833 o32\n\
8834 o64\n\
8835 n32\n\
8836 n64\n\
8837 eabi32\n\
8838 eabi64"),
8839 mips_abi_update,
8840 show_mips_abi,
8841 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 8842
4cc0665f
MR
8843 /* Allow the user to set the ISA to assume for compressed code if ELF
8844 file flags don't tell or there is no program file selected. This
8845 setting is updated whenever unambiguous ELF file flags are interpreted,
8846 and carried over to subsequent sessions. */
8847 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
8848 &mips_compression_string, _("\
8849Set the compressed ISA encoding used by MIPS code."), _("\
8850Show the compressed ISA encoding used by MIPS code."), _("\
8851Select the compressed ISA encoding used in functions that have no symbol\n\
8852information available. The encoding can be set to either of:\n\
8853 mips16\n\
8854 micromips\n\
8855and is updated automatically from ELF file flags if available."),
8856 mips_abi_update,
8857 show_mips_compression,
8858 &setmipscmdlist, &showmipscmdlist);
8859
c906108c
SS
8860 /* Let the user turn off floating point and set the fence post for
8861 heuristic_proc_start. */
8862
8863 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 8864 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
8865 &mipsfpulist, "set mipsfpu ", 0, &setlist);
8866 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 8867 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
8868 &mipsfpulist);
8869 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 8870 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
8871 &mipsfpulist);
8872 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
8873 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
8874 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
8875 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 8876 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
8877 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
8878 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
8879 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
8880 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 8881 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
8882 &mipsfpulist);
8883 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 8884 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
8885 &showlist);
8886
c906108c
SS
8887 /* We really would like to have both "0" and "unlimited" work, but
8888 command.c doesn't deal with that. So make it a var_zinteger
8889 because the user can always use "999999" or some such for unlimited. */
6bcadd06 8890 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
8891 &heuristic_fence_post, _("\
8892Set the distance searched for the start of a function."), _("\
8893Show the distance searched for the start of a function."), _("\
c906108c
SS
8894If you are debugging a stripped executable, GDB needs to search through the\n\
8895program for the start of a function. This command sets the distance of the\n\
7915a72c 8896search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 8897 reinit_frame_cache_sfunc,
025bb325
MS
8898 NULL, /* FIXME: i18n: The distance searched for
8899 the start of a function is %s. */
6bcadd06 8900 &setlist, &showlist);
c906108c
SS
8901
8902 /* Allow the user to control whether the upper bits of 64-bit
8903 addresses should be zeroed. */
7915a72c
AC
8904 add_setshow_auto_boolean_cmd ("mask-address", no_class,
8905 &mask_address_var, _("\
8906Set zeroing of upper 32 bits of 64-bit addresses."), _("\
8907Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 8908Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 8909allow GDB to determine the correct value."),
08546159
AC
8910 NULL, show_mask_address,
8911 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
8912
8913 /* Allow the user to control the size of 32 bit registers within the
8914 raw remote packet. */
b3f42336 8915 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
8916 &mips64_transfers_32bit_regs_p, _("\
8917Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8918 _("\
8919Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8920 _("\
719ec221
AC
8921Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
8922that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 892364 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 8924 set_mips64_transfers_32bit_regs,
025bb325
MS
8925 NULL, /* FIXME: i18n: Compatibility with 64-bit
8926 MIPS target that transfers 32-bit
8927 quantities is %s. */
7915a72c 8928 &setlist, &showlist);
9ace0497 8929
025bb325 8930 /* Debug this files internals. */
ccce17b0
YQ
8931 add_setshow_zuinteger_cmd ("mips", class_maintenance,
8932 &mips_debug, _("\
7915a72c
AC
8933Set mips debugging."), _("\
8934Show mips debugging."), _("\
8935When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
8936 NULL,
8937 NULL, /* FIXME: i18n: Mips debugging is
8938 currently %s. */
8939 &setdebuglist, &showdebuglist);
c906108c 8940}
This page took 5.06639 seconds and 4 git commands to generate.