[ARC] Add checking for LP_COUNT reg usage, improve error reporting.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
618f726f 3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
edfae063
AC
47#include "frame-unwind.h"
48#include "frame-base.h"
49#include "trad-frame.h"
7d9b040b 50#include "infcall.h"
fed7ba43 51#include "floatformat.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
325fac50 58#include <algorithm>
c906108c 59
8d5f9dcb
DJ
60static const struct objfile_data *mips_pdr_data;
61
5bbcb741 62static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 63
ab50adb6
MR
64static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
4cc0665f 76
1bab7383
YQ
77static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
24e05951 80/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
81/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82#define ST0_FR (1 << 26)
83
b0069a17
AC
84/* The sizes of floating point registers. */
85
86enum
87{
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90};
91
1a69e1e4
DJ
92enum
93{
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96};
0dadbba0 97
2e4ebe70
DJ
98static const char *mips_abi_string;
99
40478521 100static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
101 "auto",
102 "n32",
103 "o32",
28d169de 104 "n64",
2e4ebe70
DJ
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109};
110
44f1c4d7
YQ
111/* Enum describing the different kinds of breakpoints. */
112
113enum mips_breakpoint_kind
114{
115 /* 16-bit MIPS16 mode breakpoint. */
116 MIPS_BP_KIND_MIPS16 = 2,
117
118 /* 16-bit microMIPS mode breakpoint. */
119 MIPS_BP_KIND_MICROMIPS16 = 3,
120
121 /* 32-bit standard MIPS mode breakpoint. */
122 MIPS_BP_KIND_MIPS32 = 4,
123
124 /* 32-bit microMIPS mode breakpoint. */
125 MIPS_BP_KIND_MICROMIPS32 = 5,
126};
127
4cc0665f
MR
128/* For backwards compatibility we default to MIPS16. This flag is
129 overridden as soon as unambiguous ELF file flags tell us the
130 compressed ISA encoding used. */
131static const char mips_compression_mips16[] = "mips16";
132static const char mips_compression_micromips[] = "micromips";
133static const char *const mips_compression_strings[] =
134{
135 mips_compression_mips16,
136 mips_compression_micromips,
137 NULL
138};
139
140static const char *mips_compression_string = mips_compression_mips16;
141
f8b73d13
DJ
142/* The standard register names, and all the valid aliases for them. */
143struct register_alias
144{
145 const char *name;
146 int regnum;
147};
148
149/* Aliases for o32 and most other ABIs. */
150const struct register_alias mips_o32_aliases[] = {
151 { "ta0", 12 },
152 { "ta1", 13 },
153 { "ta2", 14 },
154 { "ta3", 15 }
155};
156
157/* Aliases for n32 and n64. */
158const struct register_alias mips_n32_n64_aliases[] = {
159 { "ta0", 8 },
160 { "ta1", 9 },
161 { "ta2", 10 },
162 { "ta3", 11 }
163};
164
165/* Aliases for ABI-independent registers. */
166const struct register_alias mips_register_aliases[] = {
167 /* The architecture manuals specify these ABI-independent names for
168 the GPRs. */
169#define R(n) { "r" #n, n }
170 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
171 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
172 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
173 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
174#undef R
175
176 /* k0 and k1 are sometimes called these instead (for "kernel
177 temp"). */
178 { "kt0", 26 },
179 { "kt1", 27 },
180
181 /* This is the traditional GDB name for the CP0 status register. */
182 { "sr", MIPS_PS_REGNUM },
183
184 /* This is the traditional GDB name for the CP0 BadVAddr register. */
185 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
186
187 /* This is the traditional GDB name for the FCSR. */
188 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
189};
190
865093a3
AR
191const struct register_alias mips_numeric_register_aliases[] = {
192#define R(n) { #n, n }
193 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
194 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
195 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
196 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
197#undef R
198};
199
c906108c
SS
200#ifndef MIPS_DEFAULT_FPU_TYPE
201#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
202#endif
203static int mips_fpu_type_auto = 1;
204static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 205
ccce17b0 206static unsigned int mips_debug = 0;
7a292a7a 207
29709017
DJ
208/* Properties (for struct target_desc) describing the g/G packet
209 layout. */
210#define PROPERTY_GP32 "internal: transfers-32bit-registers"
211#define PROPERTY_GP64 "internal: transfers-64bit-registers"
212
4eb0ad19
DJ
213struct target_desc *mips_tdesc_gp32;
214struct target_desc *mips_tdesc_gp64;
215
56cea623
AC
216const struct mips_regnum *
217mips_regnum (struct gdbarch *gdbarch)
218{
219 return gdbarch_tdep (gdbarch)->regnum;
220}
221
222static int
223mips_fpa0_regnum (struct gdbarch *gdbarch)
224{
225 return mips_regnum (gdbarch)->fp0 + 12;
226}
227
004159a2
MR
228/* Return 1 if REGNUM refers to a floating-point general register, raw
229 or cooked. Otherwise return 0. */
230
231static int
232mips_float_register_p (struct gdbarch *gdbarch, int regnum)
233{
234 int rawnum = regnum % gdbarch_num_regs (gdbarch);
235
236 return (rawnum >= mips_regnum (gdbarch)->fp0
237 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
238}
239
74ed0bb4
MD
240#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
241 == MIPS_ABI_EABI32 \
242 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 243
025bb325
MS
244#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
245 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 246
025bb325
MS
247#define MIPS_LAST_ARG_REGNUM(gdbarch) \
248 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 249
74ed0bb4 250#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 251
d1973055
KB
252/* Return the MIPS ABI associated with GDBARCH. */
253enum mips_abi
254mips_abi (struct gdbarch *gdbarch)
255{
256 return gdbarch_tdep (gdbarch)->mips_abi;
257}
258
4246e332 259int
1b13c4f6 260mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 261{
29709017
DJ
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
4246e332
AC
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271}
272
025bb325 273/* Return the currently configured (or set) saved register size. */
480d3dd2 274
e6bc2e8a 275unsigned int
13326b4e 276mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 277{
1a69e1e4
DJ
278 switch (mips_abi (gdbarch))
279 {
280 case MIPS_ABI_EABI32:
281 case MIPS_ABI_O32:
282 return 4;
283 case MIPS_ABI_N32:
284 case MIPS_ABI_N64:
285 case MIPS_ABI_O64:
286 case MIPS_ABI_EABI64:
287 return 8;
288 case MIPS_ABI_UNKNOWN:
289 case MIPS_ABI_LAST:
290 default:
291 internal_error (__FILE__, __LINE__, _("bad switch"));
292 }
d929b26f
AC
293}
294
4cc0665f
MR
295/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
296 are some functions to handle addresses associated with compressed
297 code including but not limited to testing, setting, or clearing
298 bit 0 of such addresses. */
742c84f6 299
4cc0665f
MR
300/* Return one iff compressed code is the MIPS16 instruction set. */
301
302static int
303is_mips16_isa (struct gdbarch *gdbarch)
304{
305 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
306}
307
308/* Return one iff compressed code is the microMIPS instruction set. */
309
310static int
311is_micromips_isa (struct gdbarch *gdbarch)
312{
313 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
314}
315
316/* Return one iff ADDR denotes compressed code. */
317
318static int
319is_compact_addr (CORE_ADDR addr)
742c84f6
MR
320{
321 return ((addr) & 1);
322}
323
4cc0665f
MR
324/* Return one iff ADDR denotes standard ISA code. */
325
326static int
327is_mips_addr (CORE_ADDR addr)
328{
329 return !is_compact_addr (addr);
330}
331
332/* Return one iff ADDR denotes MIPS16 code. */
333
334static int
335is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
336{
337 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
338}
339
340/* Return one iff ADDR denotes microMIPS code. */
341
342static int
343is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
344{
345 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
346}
347
348/* Strip the ISA (compression) bit off from ADDR. */
349
742c84f6 350static CORE_ADDR
4cc0665f 351unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
352{
353 return ((addr) & ~(CORE_ADDR) 1);
354}
355
4cc0665f
MR
356/* Add the ISA (compression) bit to ADDR. */
357
742c84f6 358static CORE_ADDR
4cc0665f 359make_compact_addr (CORE_ADDR addr)
742c84f6
MR
360{
361 return ((addr) | (CORE_ADDR) 1);
362}
363
3e29f34a
MR
364/* Extern version of unmake_compact_addr; we use a separate function
365 so that unmake_compact_addr can be inlined throughout this file. */
366
367CORE_ADDR
368mips_unmake_compact_addr (CORE_ADDR addr)
369{
370 return unmake_compact_addr (addr);
371}
372
71b8ef93 373/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
374 marks it as MIPS16 or microMIPS function. The MSB of the minimal
375 symbol's "info" field is used for this purpose.
5a89d8aa 376
4cc0665f
MR
377 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
378 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
379 one of the "special" bits in a minimal symbol to mark it accordingly.
380 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
381 symbols only; for synthetic symbols such as for PLT stubs that have
382 no ELF-private part at all the MIPS BFD backend arranges for this
383 information to be carried in the asymbol's udata field instead.
5a89d8aa 384
4cc0665f
MR
385 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
386 in a minimal symbol. */
5a89d8aa 387
5a89d8aa 388static void
6d82d43b
AC
389mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
390{
4cc0665f 391 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 392 unsigned char st_other;
4cc0665f 393
1bbce132
MR
394 if ((sym->flags & BSF_SYNTHETIC) == 0)
395 st_other = elfsym->internal_elf_sym.st_other;
396 else if ((sym->flags & BSF_FUNCTION) != 0)
397 st_other = sym->udata.i;
398 else
4cc0665f
MR
399 return;
400
1bbce132 401 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 402 {
f161c171 403 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
404 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
405 }
1bbce132 406 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 407 {
f161c171 408 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
409 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
410 }
4cc0665f
MR
411}
412
413/* Return one iff MSYM refers to standard ISA code. */
414
415static int
416msymbol_is_mips (struct minimal_symbol *msym)
417{
f161c171
MR
418 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
419 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
420}
421
4cc0665f
MR
422/* Return one iff MSYM refers to MIPS16 code. */
423
71b8ef93 424static int
4cc0665f 425msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 426{
f161c171 427 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
428}
429
4cc0665f
MR
430/* Return one iff MSYM refers to microMIPS code. */
431
432static int
433msymbol_is_micromips (struct minimal_symbol *msym)
434{
f161c171 435 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
436}
437
3e29f34a
MR
438/* Set the ISA bit in the main symbol too, complementing the corresponding
439 minimal symbol setting and reflecting the run-time value of the symbol.
440 The need for comes from the ISA bit having been cleared as code in
441 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
442 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
443 of symbols referring to compressed code different in GDB to the values
444 used by actual code. That in turn makes them evaluate incorrectly in
445 expressions, producing results different to what the same expressions
446 yield when compiled into the program being debugged. */
447
448static void
449mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
450{
451 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
452 {
453 /* We are in symbol reading so it is OK to cast away constness. */
454 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
455 CORE_ADDR compact_block_start;
456 struct bound_minimal_symbol msym;
457
458 compact_block_start = BLOCK_START (block) | 1;
459 msym = lookup_minimal_symbol_by_pc (compact_block_start);
460 if (msym.minsym && !msymbol_is_mips (msym.minsym))
461 {
462 BLOCK_START (block) = compact_block_start;
463 }
464 }
465}
466
88658117
AC
467/* XFER a value from the big/little/left end of the register.
468 Depending on the size of the value it might occupy the entire
469 register or just part of it. Make an allowance for this, aligning
470 things accordingly. */
471
472static void
ba32f989
DJ
473mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
474 int reg_num, int length,
870cd05e
MK
475 enum bfd_endian endian, gdb_byte *in,
476 const gdb_byte *out, int buf_offset)
88658117 477{
88658117 478 int reg_offset = 0;
72a155b4
UW
479
480 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
481 /* Need to transfer the left or right part of the register, based on
482 the targets byte order. */
88658117
AC
483 switch (endian)
484 {
485 case BFD_ENDIAN_BIG:
72a155b4 486 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
487 break;
488 case BFD_ENDIAN_LITTLE:
489 reg_offset = 0;
490 break;
6d82d43b 491 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
492 reg_offset = 0;
493 break;
494 default:
e2e0b3e5 495 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
496 }
497 if (mips_debug)
cb1d2653
AC
498 fprintf_unfiltered (gdb_stderr,
499 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
500 reg_num, reg_offset, buf_offset, length);
88658117
AC
501 if (mips_debug && out != NULL)
502 {
503 int i;
cb1d2653 504 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 505 for (i = 0; i < length; i++)
cb1d2653 506 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
507 }
508 if (in != NULL)
6d82d43b
AC
509 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
510 in + buf_offset);
88658117 511 if (out != NULL)
6d82d43b
AC
512 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
513 out + buf_offset);
88658117
AC
514 if (mips_debug && in != NULL)
515 {
516 int i;
cb1d2653 517 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 518 for (i = 0; i < length; i++)
cb1d2653 519 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
520 }
521 if (mips_debug)
522 fprintf_unfiltered (gdb_stdlog, "\n");
523}
524
dd824b04
DJ
525/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
526 compatiblity mode. A return value of 1 means that we have
527 physical 64-bit registers, but should treat them as 32-bit registers. */
528
529static int
9c9acae0 530mips2_fp_compat (struct frame_info *frame)
dd824b04 531{
72a155b4 532 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
533 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
534 meaningful. */
72a155b4 535 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
536 return 0;
537
538#if 0
539 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
540 in all the places we deal with FP registers. PR gdb/413. */
541 /* Otherwise check the FR bit in the status register - it controls
542 the FP compatiblity mode. If it is clear we are in compatibility
543 mode. */
9c9acae0 544 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
545 return 1;
546#endif
361d1df0 547
dd824b04
DJ
548 return 0;
549}
550
7a292a7a 551#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 552
74ed0bb4 553static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 554
a14ed312 555static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 556
025bb325 557/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
558
559static struct cmd_list_element *setmipscmdlist = NULL;
560static struct cmd_list_element *showmipscmdlist = NULL;
561
5e2e9765
KB
562/* Integer registers 0 thru 31 are handled explicitly by
563 mips_register_name(). Processor specific registers 32 and above
8a9fc081 564 are listed in the following tables. */
691c0433 565
6d82d43b
AC
566enum
567{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
568
569/* Generic MIPS. */
570
571static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
572 "sr", "lo", "hi", "bad", "cause", "pc",
573 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
574 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
575 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
576 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 577 "fsr", "fir",
691c0433
AC
578};
579
691c0433
AC
580/* Names of tx39 registers. */
581
582static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
583 "sr", "lo", "hi", "bad", "cause", "pc",
584 "", "", "", "", "", "", "", "",
585 "", "", "", "", "", "", "", "",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "",
589 "", "", "", "", "", "", "", "",
1faeff08 590 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
591};
592
44099a67 593/* Names of registers with Linux kernels. */
1faeff08
MR
594static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
597 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
598 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
599 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
600 "fsr", "fir"
601};
602
cce74817 603
5e2e9765 604/* Return the name of the register corresponding to REGNO. */
5a89d8aa 605static const char *
d93859e2 606mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 607{
d93859e2 608 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
609 /* GPR names for all ABIs other than n32/n64. */
610 static char *mips_gpr_names[] = {
6d82d43b
AC
611 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
612 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
613 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
614 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
615 };
616
617 /* GPR names for n32 and n64 ABIs. */
618 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
619 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
620 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
621 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
622 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
623 };
624
d93859e2 625 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 626
f57d151a 627 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
628 but then don't make the raw register names visible. This (upper)
629 range of user visible register numbers are the pseudo-registers.
630
631 This approach was adopted accommodate the following scenario:
632 It is possible to debug a 64-bit device using a 32-bit
633 programming model. In such instances, the raw registers are
634 configured to be 64-bits wide, while the pseudo registers are
635 configured to be 32-bits wide. The registers that the user
636 sees - the pseudo registers - match the users expectations
637 given the programming model being used. */
d93859e2
UW
638 int rawnum = regno % gdbarch_num_regs (gdbarch);
639 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
640 return "";
641
5e2e9765
KB
642 /* The MIPS integer registers are always mapped from 0 to 31. The
643 names of the registers (which reflects the conventions regarding
644 register use) vary depending on the ABI. */
a4b8ebc8 645 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
646 {
647 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 648 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 649 else
a4b8ebc8 650 return mips_gpr_names[rawnum];
5e2e9765 651 }
d93859e2
UW
652 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
653 return tdesc_register_name (gdbarch, rawnum);
654 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
655 {
656 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
657 if (tdep->mips_processor_reg_names[rawnum - 32])
658 return tdep->mips_processor_reg_names[rawnum - 32];
659 return "";
691c0433 660 }
5e2e9765
KB
661 else
662 internal_error (__FILE__, __LINE__,
e2e0b3e5 663 _("mips_register_name: bad register number %d"), rawnum);
cce74817 664}
5e2e9765 665
a4b8ebc8 666/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 667
a4b8ebc8
AC
668static int
669mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
670 struct reggroup *reggroup)
671{
672 int vector_p;
673 int float_p;
674 int raw_p;
72a155b4
UW
675 int rawnum = regnum % gdbarch_num_regs (gdbarch);
676 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
677 if (reggroup == all_reggroup)
678 return pseudo;
679 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
680 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
681 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
682 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
683 raw_p = rawnum < gdbarch_num_regs (gdbarch);
684 if (gdbarch_register_name (gdbarch, regnum) == NULL
685 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
686 return 0;
687 if (reggroup == float_reggroup)
688 return float_p && pseudo;
689 if (reggroup == vector_reggroup)
690 return vector_p && pseudo;
691 if (reggroup == general_reggroup)
692 return (!vector_p && !float_p) && pseudo;
693 /* Save the pseudo registers. Need to make certain that any code
694 extracting register values from a saved register cache also uses
695 pseudo registers. */
696 if (reggroup == save_reggroup)
697 return raw_p && pseudo;
698 /* Restore the same pseudo register. */
699 if (reggroup == restore_reggroup)
700 return raw_p && pseudo;
6d82d43b 701 return 0;
a4b8ebc8
AC
702}
703
f8b73d13
DJ
704/* Return the groups that a MIPS register can be categorised into.
705 This version is only used if we have a target description which
706 describes real registers (and their groups). */
707
708static int
709mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
710 struct reggroup *reggroup)
711{
712 int rawnum = regnum % gdbarch_num_regs (gdbarch);
713 int pseudo = regnum / gdbarch_num_regs (gdbarch);
714 int ret;
715
716 /* Only save, restore, and display the pseudo registers. Need to
717 make certain that any code extracting register values from a
718 saved register cache also uses pseudo registers.
719
720 Note: saving and restoring the pseudo registers is slightly
721 strange; if we have 64 bits, we should save and restore all
722 64 bits. But this is hard and has little benefit. */
723 if (!pseudo)
724 return 0;
725
726 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
727 if (ret != -1)
728 return ret;
729
730 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
731}
732
a4b8ebc8 733/* Map the symbol table registers which live in the range [1 *
f57d151a 734 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 735 registers. Take care of alignment and size problems. */
c5aa993b 736
05d1431c 737static enum register_status
a4b8ebc8 738mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 739 int cookednum, gdb_byte *buf)
a4b8ebc8 740{
72a155b4
UW
741 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
742 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
743 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 744 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
05d1431c 745 return regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
746 else if (register_size (gdbarch, rawnum) >
747 register_size (gdbarch, cookednum))
47ebcfbe 748 {
8bdf35dc 749 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
05d1431c 750 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
47ebcfbe 751 else
8bdf35dc
KB
752 {
753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
754 LONGEST regval;
05d1431c
PA
755 enum register_status status;
756
757 status = regcache_raw_read_signed (regcache, rawnum, &regval);
758 if (status == REG_VALID)
759 store_signed_integer (buf, 4, byte_order, regval);
760 return status;
8bdf35dc 761 }
47ebcfbe
AC
762 }
763 else
e2e0b3e5 764 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
765}
766
767static void
6d82d43b
AC
768mips_pseudo_register_write (struct gdbarch *gdbarch,
769 struct regcache *regcache, int cookednum,
47a35522 770 const gdb_byte *buf)
a4b8ebc8 771{
72a155b4
UW
772 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
773 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
774 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 775 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 776 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
777 else if (register_size (gdbarch, rawnum) >
778 register_size (gdbarch, cookednum))
47ebcfbe 779 {
8bdf35dc 780 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
781 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
782 else
8bdf35dc
KB
783 {
784 /* Sign extend the shortened version of the register prior
785 to placing it in the raw register. This is required for
786 some mips64 parts in order to avoid unpredictable behavior. */
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
789 regcache_raw_write_signed (regcache, rawnum, regval);
790 }
47ebcfbe
AC
791 }
792 else
e2e0b3e5 793 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 794}
c5aa993b 795
175ff332
HZ
796static int
797mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
798 struct agent_expr *ax, int reg)
799{
800 int rawnum = reg % gdbarch_num_regs (gdbarch);
801 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
802 && reg < 2 * gdbarch_num_regs (gdbarch));
803
804 ax_reg_mask (ax, rawnum);
805
806 return 0;
807}
808
809static int
810mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
811 struct agent_expr *ax, int reg)
812{
813 int rawnum = reg % gdbarch_num_regs (gdbarch);
814 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
815 && reg < 2 * gdbarch_num_regs (gdbarch));
816 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
817 {
818 ax_reg (ax, rawnum);
819
820 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
821 {
822 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
823 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
824 {
825 ax_const_l (ax, 32);
826 ax_simple (ax, aop_lsh);
827 }
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_rsh_signed);
830 }
831 }
832 else
833 internal_error (__FILE__, __LINE__, _("bad register size"));
834
835 return 0;
836}
837
4cc0665f 838/* Table to translate 3-bit register field to actual register number. */
d467df4e 839static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
840
841/* Heuristic_proc_start may hunt through the text section for a long
842 time across a 2400 baud serial line. Allows the user to limit this
843 search. */
844
44096aee 845static int heuristic_fence_post = 0;
c906108c 846
46cd78fb 847/* Number of bytes of storage in the actual machine representation for
719ec221
AC
848 register N. NOTE: This defines the pseudo register type so need to
849 rebuild the architecture vector. */
43e526b9
JM
850
851static int mips64_transfers_32bit_regs_p = 0;
852
719ec221
AC
853static void
854set_mips64_transfers_32bit_regs (char *args, int from_tty,
855 struct cmd_list_element *c)
43e526b9 856{
719ec221
AC
857 struct gdbarch_info info;
858 gdbarch_info_init (&info);
859 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
860 instead of relying on globals. Doing that would let generic code
861 handle the search for this specific architecture. */
862 if (!gdbarch_update_p (info))
a4b8ebc8 863 {
719ec221 864 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 865 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 866 }
a4b8ebc8
AC
867}
868
47ebcfbe 869/* Convert to/from a register and the corresponding memory value. */
43e526b9 870
ee51a8c7
KB
871/* This predicate tests for the case of an 8 byte floating point
872 value that is being transferred to or from a pair of floating point
873 registers each of which are (or are considered to be) only 4 bytes
874 wide. */
ff2e87ac 875static int
ee51a8c7
KB
876mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
877 struct type *type)
ff2e87ac 878{
0abe36f5
MD
879 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
880 && register_size (gdbarch, regnum) == 4
004159a2 881 && mips_float_register_p (gdbarch, regnum)
6d82d43b 882 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
883}
884
ee51a8c7
KB
885/* This predicate tests for the case of a value of less than 8
886 bytes in width that is being transfered to or from an 8 byte
887 general purpose register. */
888static int
889mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
890 struct type *type)
891{
892 int num_regs = gdbarch_num_regs (gdbarch);
893
894 return (register_size (gdbarch, regnum) == 8
895 && regnum % num_regs > 0 && regnum % num_regs < 32
896 && TYPE_LENGTH (type) < 8);
897}
898
899static int
025bb325
MS
900mips_convert_register_p (struct gdbarch *gdbarch,
901 int regnum, struct type *type)
ee51a8c7 902{
eaa05d59
MR
903 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
904 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
905}
906
8dccd430 907static int
ff2e87ac 908mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
909 struct type *type, gdb_byte *to,
910 int *optimizedp, int *unavailablep)
102182a9 911{
ee51a8c7
KB
912 struct gdbarch *gdbarch = get_frame_arch (frame);
913
914 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
915 {
916 get_frame_register (frame, regnum + 0, to + 4);
917 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
918
919 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
920 optimizedp, unavailablep))
921 return 0;
922
923 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
924 optimizedp, unavailablep))
925 return 0;
926 *optimizedp = *unavailablep = 0;
927 return 1;
ee51a8c7
KB
928 }
929 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
930 {
931 int len = TYPE_LENGTH (type);
8dccd430
PA
932 CORE_ADDR offset;
933
934 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
935 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
936 optimizedp, unavailablep))
937 return 0;
938
939 *optimizedp = *unavailablep = 0;
940 return 1;
ee51a8c7
KB
941 }
942 else
943 {
944 internal_error (__FILE__, __LINE__,
945 _("mips_register_to_value: unrecognized case"));
946 }
102182a9
MS
947}
948
42c466d7 949static void
ff2e87ac 950mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 951 struct type *type, const gdb_byte *from)
102182a9 952{
ee51a8c7
KB
953 struct gdbarch *gdbarch = get_frame_arch (frame);
954
955 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
956 {
957 put_frame_register (frame, regnum + 0, from + 4);
958 put_frame_register (frame, regnum + 1, from + 0);
959 }
960 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
961 {
962 gdb_byte fill[8];
963 int len = TYPE_LENGTH (type);
964
965 /* Sign extend values, irrespective of type, that are stored to
966 a 64-bit general purpose register. (32-bit unsigned values
967 are stored as signed quantities within a 64-bit register.
968 When performing an operation, in compiled code, that combines
969 a 32-bit unsigned value with a signed 64-bit value, a type
970 conversion is first performed that zeroes out the high 32 bits.) */
971 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
972 {
973 if (from[0] & 0x80)
974 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
975 else
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
977 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
978 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
979 }
980 else
981 {
982 if (from[len-1] & 0x80)
983 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
984 else
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
986 put_frame_register_bytes (frame, regnum, 0, len, from);
987 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
988 }
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 _("mips_value_to_register: unrecognized case"));
994 }
102182a9
MS
995}
996
a4b8ebc8
AC
997/* Return the GDB type object for the "standard" data type of data in
998 register REG. */
78fde5f8
KB
999
1000static struct type *
a4b8ebc8
AC
1001mips_register_type (struct gdbarch *gdbarch, int regnum)
1002{
72a155b4 1003 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1004 if (mips_float_register_p (gdbarch, regnum))
a6425924 1005 {
5ef80fb0 1006 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1007 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1008 if (mips_isa_regsize (gdbarch) == 4)
27067745 1009 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1010 else
27067745 1011 return builtin_type (gdbarch)->builtin_double;
a6425924 1012 }
72a155b4 1013 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1014 {
1015 /* The raw or ISA registers. These are all sized according to
1016 the ISA regsize. */
1017 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1018 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1019 else
df4df182 1020 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1021 }
78fde5f8 1022 else
d5ac5a39 1023 {
1faeff08
MR
1024 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1025
d5ac5a39
AC
1026 /* The cooked or ABI registers. These are sized according to
1027 the ABI (with a few complications). */
1faeff08
MR
1028 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1029 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1030 return builtin_type (gdbarch)->builtin_int32;
de4bfa86 1031 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1faeff08
MR
1032 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1033 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1034 /* The pseudo/cooked view of the embedded registers is always
1035 32-bit. The raw view is handled below. */
df4df182 1036 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1037 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1038 /* The target, while possibly using a 64-bit register buffer,
1039 is only transfering 32-bits of each integer register.
1040 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1041 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1042 else if (mips_abi_regsize (gdbarch) == 4)
1043 /* The ABI is restricted to 32-bit registers (the ISA could be
1044 32- or 64-bit). */
df4df182 1045 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1046 else
1047 /* 64-bit ABI. */
df4df182 1048 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1049 }
78fde5f8
KB
1050}
1051
f8b73d13
DJ
1052/* Return the GDB type for the pseudo register REGNUM, which is the
1053 ABI-level view. This function is only called if there is a target
1054 description which includes registers, so we know precisely the
1055 types of hardware registers. */
1056
1057static struct type *
1058mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1059{
1060 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1061 int rawnum = regnum % num_regs;
1062 struct type *rawtype;
1063
1064 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1065
1066 /* Absent registers are still absent. */
1067 rawtype = gdbarch_register_type (gdbarch, rawnum);
1068 if (TYPE_LENGTH (rawtype) == 0)
1069 return rawtype;
1070
a6912260
MR
1071 /* Present the floating point registers however the hardware did;
1072 do not try to convert between FPU layouts. */
de13fcf2 1073 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1074 return rawtype;
1075
78b86327
MR
1076 /* Floating-point control registers are always 32-bit even though for
1077 backwards compatibility reasons 64-bit targets will transfer them
1078 as 64-bit quantities even if using XML descriptions. */
1079 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1080 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1081 return builtin_type (gdbarch)->builtin_int32;
1082
f8b73d13
DJ
1083 /* Use pointer types for registers if we can. For n32 we can not,
1084 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1085 if (mips_abi_regsize (gdbarch)
1086 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1087 {
1faeff08
MR
1088 if (rawnum == MIPS_SP_REGNUM
1089 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1090 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1091 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1092 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1093 }
1094
1095 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1096 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1097 || rawnum == mips_regnum (gdbarch)->lo
1098 || rawnum == mips_regnum (gdbarch)->hi
1099 || rawnum == mips_regnum (gdbarch)->badvaddr
1100 || rawnum == mips_regnum (gdbarch)->cause
1101 || rawnum == mips_regnum (gdbarch)->pc
1102 || (mips_regnum (gdbarch)->dspacc != -1
1103 && rawnum >= mips_regnum (gdbarch)->dspacc
1104 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1105 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1106
a6912260
MR
1107 /* The pseudo/cooked view of embedded registers is always
1108 32-bit, even if the target transfers 64-bit values for them.
1109 New targets relying on XML descriptions should only transfer
1110 the necessary 32 bits, but older versions of GDB expected 64,
1111 so allow the target to provide 64 bits without interfering
1112 with the displayed type. */
de4bfa86 1113 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
78b86327 1114 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1faeff08 1115 && rawnum <= MIPS_LAST_EMBED_REGNUM)
a6912260 1116 return builtin_type (gdbarch)->builtin_int32;
1faeff08 1117
f8b73d13
DJ
1118 /* For all other registers, pass through the hardware type. */
1119 return rawtype;
1120}
bcb0cc15 1121
025bb325 1122/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1123enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1124
1125static int
480d3dd2 1126mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1127{
1128 switch (mask_address_var)
1129 {
7f19b9a2 1130 case AUTO_BOOLEAN_TRUE:
4014092b 1131 return 1;
7f19b9a2 1132 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1133 return 0;
1134 break;
7f19b9a2 1135 case AUTO_BOOLEAN_AUTO:
480d3dd2 1136 return tdep->default_mask_address_p;
4014092b 1137 default:
025bb325
MS
1138 internal_error (__FILE__, __LINE__,
1139 _("mips_mask_address_p: bad switch"));
4014092b 1140 return -1;
361d1df0 1141 }
4014092b
AC
1142}
1143
1144static void
08546159
AC
1145show_mask_address (struct ui_file *file, int from_tty,
1146 struct cmd_list_element *c, const char *value)
4014092b 1147{
f5656ead 1148 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1149
1150 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1151 switch (mask_address_var)
1152 {
7f19b9a2 1153 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1154 printf_filtered ("The 32 bit mips address mask is enabled\n");
1155 break;
7f19b9a2 1156 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1157 printf_filtered ("The 32 bit mips address mask is disabled\n");
1158 break;
7f19b9a2 1159 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1160 printf_filtered
1161 ("The 32 bit address mask is set automatically. Currently %s\n",
1162 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1163 break;
1164 default:
e2e0b3e5 1165 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1166 break;
361d1df0 1167 }
4014092b 1168}
c906108c 1169
4cc0665f
MR
1170/* Tell if the program counter value in MEMADDR is in a standard ISA
1171 function. */
1172
1173int
1174mips_pc_is_mips (CORE_ADDR memaddr)
1175{
7cbd4a93 1176 struct bound_minimal_symbol sym;
4cc0665f
MR
1177
1178 /* Flags indicating that this is a MIPS16 or microMIPS function is
1179 stored by elfread.c in the high bit of the info field. Use this
1180 to decide if the function is standard MIPS. Otherwise if bit 0
1181 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1182 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1183 if (sym.minsym)
1184 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1185 else
1186 return is_mips_addr (memaddr);
1187}
1188
c906108c
SS
1189/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1190
0fe7e7c8 1191int
4cc0665f 1192mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1193{
7cbd4a93 1194 struct bound_minimal_symbol sym;
c906108c 1195
91912e4d
MR
1196 /* A flag indicating that this is a MIPS16 function is stored by
1197 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1198 if the function is MIPS16. Otherwise if bit 0 of the address is
1199 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1200 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1201 if (sym.minsym)
1202 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1203 else
1204 return is_mips16_addr (gdbarch, memaddr);
1205}
1206
1207/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1208
1209int
1210mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1211{
7cbd4a93 1212 struct bound_minimal_symbol sym;
4cc0665f
MR
1213
1214 /* A flag indicating that this is a microMIPS function is stored by
1215 elfread.c in the high bit of the info field. Use this to decide
1216 if the function is microMIPS. Otherwise if bit 0 of the address
1217 is set, then ELF file flags will tell if this is a microMIPS
1218 function. */
3e29f34a 1219 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1220 if (sym.minsym)
1221 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1222 else
1223 return is_micromips_addr (gdbarch, memaddr);
1224}
1225
1226/* Tell the ISA type of the function the program counter value in MEMADDR
1227 is in. */
1228
1229static enum mips_isa
1230mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1231{
7cbd4a93 1232 struct bound_minimal_symbol sym;
4cc0665f
MR
1233
1234 /* A flag indicating that this is a MIPS16 or a microMIPS function
1235 is stored by elfread.c in the high bit of the info field. Use
1236 this to decide if the function is MIPS16 or microMIPS or normal
1237 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1238 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1239 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1240 if (sym.minsym)
4cc0665f 1241 {
7cbd4a93 1242 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1243 return ISA_MICROMIPS;
7cbd4a93 1244 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1245 return ISA_MIPS16;
1246 else
1247 return ISA_MIPS;
1248 }
c906108c 1249 else
4cc0665f
MR
1250 {
1251 if (is_mips_addr (memaddr))
1252 return ISA_MIPS;
1253 else if (is_micromips_addr (gdbarch, memaddr))
1254 return ISA_MICROMIPS;
1255 else
1256 return ISA_MIPS16;
1257 }
c906108c
SS
1258}
1259
3e29f34a
MR
1260/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1261 The need for comes from the ISA bit having been cleared, making
1262 addresses in FDE, range records, etc. referring to compressed code
1263 different to those in line information, the symbol table and finally
1264 the PC register. That in turn confuses many operations. */
1265
1266static CORE_ADDR
1267mips_adjust_dwarf2_addr (CORE_ADDR pc)
1268{
1269 pc = unmake_compact_addr (pc);
1270 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1271}
1272
1273/* Recalculate the line record requested so that the resulting PC has
1274 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1275 this adjustment comes from some records associated with compressed
1276 code having the ISA bit cleared, most notably at function prologue
1277 ends. The ISA bit is in this context retrieved from the minimal
1278 symbol covering the address requested, which in turn has been
1279 constructed from the binary's symbol table rather than DWARF-2
1280 information. The correct setting of the ISA bit is required for
1281 breakpoint addresses to correctly match against the stop PC.
1282
1283 As line entries can specify relative address adjustments we need to
1284 keep track of the absolute value of the last line address recorded
1285 in line information, so that we can calculate the actual address to
1286 apply the ISA bit adjustment to. We use PC for this tracking and
1287 keep the original address there.
1288
1289 As such relative address adjustments can be odd within compressed
1290 code we need to keep track of the last line address with the ISA
1291 bit adjustment applied too, as the original address may or may not
1292 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1293 the adjusted address there.
1294
1295 For relative address adjustments we then use these variables to
1296 calculate the address intended by line information, which will be
1297 PC-relative, and return an updated adjustment carrying ISA bit
1298 information, which will be ADJ_PC-relative. For absolute address
1299 adjustments we just return the same address that we store in ADJ_PC
1300 too.
1301
1302 As the first line entry can be relative to an implied address value
1303 of 0 we need to have the initial address set up that we store in PC
1304 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1305 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1306
1307static CORE_ADDR
1308mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1309{
1310 static CORE_ADDR adj_pc;
1311 static CORE_ADDR pc;
1312 CORE_ADDR isa_pc;
1313
1314 pc = rel ? pc + addr : addr;
1315 isa_pc = mips_adjust_dwarf2_addr (pc);
1316 addr = rel ? isa_pc - adj_pc : isa_pc;
1317 adj_pc = isa_pc;
1318 return addr;
1319}
1320
14132e89
MR
1321/* Various MIPS16 thunk (aka stub or trampoline) names. */
1322
1323static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1324static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1325static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1326static const char mips_str_call_stub[] = "__call_stub_";
1327static const char mips_str_fn_stub[] = "__fn_stub_";
1328
1329/* This is used as a PIC thunk prefix. */
1330
1331static const char mips_str_pic[] = ".pic.";
1332
1333/* Return non-zero if the PC is inside a call thunk (aka stub or
1334 trampoline) that should be treated as a temporary frame. */
1335
1336static int
1337mips_in_frame_stub (CORE_ADDR pc)
1338{
1339 CORE_ADDR start_addr;
1340 const char *name;
1341
1342 /* Find the starting address of the function containing the PC. */
1343 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1344 return 0;
1345
1346 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
61012eef 1347 if (startswith (name, mips_str_mips16_call_stub))
14132e89
MR
1348 return 1;
1349 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
61012eef 1350 if (startswith (name, mips_str_call_stub))
14132e89
MR
1351 return 1;
1352 /* If the PC is in __fn_stub_*, this is a call stub. */
61012eef 1353 if (startswith (name, mips_str_fn_stub))
14132e89
MR
1354 return 1;
1355
1356 return 0; /* Not a stub. */
1357}
1358
b2fa5097 1359/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1360 all registers should be sign extended for simplicity? */
6c997a34
AC
1361
1362static CORE_ADDR
61a1198a 1363mips_read_pc (struct regcache *regcache)
6c997a34 1364{
8376de04 1365 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
70242eb1 1366 LONGEST pc;
8376de04 1367
61a1198a
UW
1368 regcache_cooked_read_signed (regcache, regnum, &pc);
1369 return pc;
b6cb9035
AC
1370}
1371
58dfe9ff
AC
1372static CORE_ADDR
1373mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1374{
14132e89 1375 CORE_ADDR pc;
930bd0e0 1376
8376de04 1377 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1378 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1379 intermediate frames. In this case we can get the caller's address
1380 from $ra, or if $ra contains an address within a thunk as well, then
1381 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1382 and thus the caller's address is in $s2. */
1383 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1384 {
1385 pc = frame_unwind_register_signed
1386 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1387 if (mips_in_frame_stub (pc))
3e29f34a
MR
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1390 }
930bd0e0 1391 return pc;
edfae063
AC
1392}
1393
30244cd8
UW
1394static CORE_ADDR
1395mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1396{
72a155b4
UW
1397 return frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1399}
1400
b8a22b94 1401/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1402 dummy frame. The frame ID's base needs to match the TOS value
1403 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1404 breakpoint. */
1405
1406static struct frame_id
b8a22b94 1407mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1408{
f57d151a 1409 return frame_id_build
b8a22b94
DJ
1410 (get_frame_register_signed (this_frame,
1411 gdbarch_num_regs (gdbarch)
1412 + MIPS_SP_REGNUM),
1413 get_frame_pc (this_frame));
58dfe9ff
AC
1414}
1415
5a439849
MR
1416/* Implement the "write_pc" gdbarch method. */
1417
1418void
61a1198a 1419mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1420{
8376de04
MR
1421 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1422
3e29f34a 1423 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1424}
c906108c 1425
4cc0665f
MR
1426/* Fetch and return instruction from the specified location. Handle
1427 MIPS16/microMIPS as appropriate. */
c906108c 1428
d37cca3d 1429static ULONGEST
4cc0665f 1430mips_fetch_instruction (struct gdbarch *gdbarch,
d09f2c3f 1431 enum mips_isa isa, CORE_ADDR addr, int *errp)
c906108c 1432{
e17a4113 1433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1434 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c 1435 int instlen;
d09f2c3f 1436 int err;
c906108c 1437
4cc0665f 1438 switch (isa)
c906108c 1439 {
4cc0665f
MR
1440 case ISA_MICROMIPS:
1441 case ISA_MIPS16:
95ac2dcf 1442 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1443 addr = unmake_compact_addr (addr);
1444 break;
1445 case ISA_MIPS:
1446 instlen = MIPS_INSN32_SIZE;
1447 break;
1448 default:
1449 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1450 break;
c906108c 1451 }
d09f2c3f
PA
1452 err = target_read_memory (addr, buf, instlen);
1453 if (errp != NULL)
1454 *errp = err;
1455 if (err != 0)
4cc0665f 1456 {
d09f2c3f
PA
1457 if (errp == NULL)
1458 memory_error (TARGET_XFER_E_IO, addr);
4cc0665f
MR
1459 return 0;
1460 }
e17a4113 1461 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1462}
1463
025bb325 1464/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1465#define mips32_op(x) (x >> 26)
1466#define itype_op(x) (x >> 26)
1467#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1468#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1469#define itype_immediate(x) (x & 0xffff)
c906108c 1470
e135b889
DJ
1471#define jtype_op(x) (x >> 26)
1472#define jtype_target(x) (x & 0x03ffffff)
c906108c 1473
e135b889
DJ
1474#define rtype_op(x) (x >> 26)
1475#define rtype_rs(x) ((x >> 21) & 0x1f)
1476#define rtype_rt(x) ((x >> 16) & 0x1f)
1477#define rtype_rd(x) ((x >> 11) & 0x1f)
1478#define rtype_shamt(x) ((x >> 6) & 0x1f)
1479#define rtype_funct(x) (x & 0x3f)
c906108c 1480
4cc0665f
MR
1481/* MicroMIPS instruction fields. */
1482#define micromips_op(x) ((x) >> 10)
1483
1484/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1485 bit and the size respectively of the field extracted. */
1486#define b0s4_imm(x) ((x) & 0xf)
1487#define b0s5_imm(x) ((x) & 0x1f)
1488#define b0s5_reg(x) ((x) & 0x1f)
1489#define b0s7_imm(x) ((x) & 0x7f)
1490#define b0s10_imm(x) ((x) & 0x3ff)
1491#define b1s4_imm(x) (((x) >> 1) & 0xf)
1492#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1493#define b2s3_cc(x) (((x) >> 2) & 0x7)
1494#define b4s2_regl(x) (((x) >> 4) & 0x3)
1495#define b5s5_op(x) (((x) >> 5) & 0x1f)
1496#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1497#define b6s4_op(x) (((x) >> 6) & 0xf)
1498#define b7s3_reg(x) (((x) >> 7) & 0x7)
1499
1500/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1501 respectively of the field extracted. */
1502#define b0s6_op(x) ((x) & 0x3f)
1503#define b0s11_op(x) ((x) & 0x7ff)
1504#define b0s12_imm(x) ((x) & 0xfff)
1505#define b0s16_imm(x) ((x) & 0xffff)
1506#define b0s26_imm(x) ((x) & 0x3ffffff)
1507#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1508#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1509#define b12s4_op(x) (((x) >> 12) & 0xf)
1510
1511/* Return the size in bytes of the instruction INSN encoded in the ISA
1512 instruction set. */
1513
1514static int
1515mips_insn_size (enum mips_isa isa, ULONGEST insn)
1516{
1517 switch (isa)
1518 {
1519 case ISA_MICROMIPS:
100b4f2e
MR
1520 if ((micromips_op (insn) & 0x4) == 0x4
1521 || (micromips_op (insn) & 0x7) == 0x0)
4cc0665f
MR
1522 return 2 * MIPS_INSN16_SIZE;
1523 else
1524 return MIPS_INSN16_SIZE;
1525 case ISA_MIPS16:
1526 if ((insn & 0xf800) == 0xf000)
1527 return 2 * MIPS_INSN16_SIZE;
1528 else
1529 return MIPS_INSN16_SIZE;
1530 case ISA_MIPS:
1531 return MIPS_INSN32_SIZE;
1532 }
1533 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1534}
1535
06987e64
MK
1536static LONGEST
1537mips32_relative_offset (ULONGEST inst)
c5aa993b 1538{
06987e64 1539 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1540}
1541
a385295e
MR
1542/* Determine the address of the next instruction executed after the INST
1543 floating condition branch instruction at PC. COUNT specifies the
1544 number of the floating condition bits tested by the branch. */
1545
1546static CORE_ADDR
7113a196 1547mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
a385295e
MR
1548 ULONGEST inst, CORE_ADDR pc, int count)
1549{
1550 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1551 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1552 int tf = itype_rt (inst) & 1;
1553 int mask = (1 << count) - 1;
1554 ULONGEST fcs;
1555 int cond;
1556
1557 if (fcsr == -1)
1558 /* No way to handle; it'll most likely trap anyway. */
1559 return pc;
1560
7113a196 1561 fcs = regcache_raw_get_unsigned (regcache, fcsr);
a385295e
MR
1562 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1563
1564 if (((cond >> cnum) & mask) != mask * !tf)
1565 pc += mips32_relative_offset (inst);
1566 else
1567 pc += 4;
1568
1569 return pc;
1570}
1571
f94363d7
AP
1572/* Return nonzero if the gdbarch is an Octeon series. */
1573
1574static int
1575is_octeon (struct gdbarch *gdbarch)
1576{
1577 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1578
1579 return (info->mach == bfd_mach_mips_octeon
1580 || info->mach == bfd_mach_mips_octeonp
1581 || info->mach == bfd_mach_mips_octeon2);
1582}
1583
1584/* Return true if the OP represents the Octeon's BBIT instruction. */
1585
1586static int
1587is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1588{
1589 if (!is_octeon (gdbarch))
1590 return 0;
1591 /* BBIT0 is encoded as LWC2: 110 010. */
1592 /* BBIT032 is encoded as LDC2: 110 110. */
1593 /* BBIT1 is encoded as SWC2: 111 010. */
1594 /* BBIT132 is encoded as SDC2: 111 110. */
1595 if (op == 50 || op == 54 || op == 58 || op == 62)
1596 return 1;
1597 return 0;
1598}
1599
1600
f49e4e6d
MS
1601/* Determine where to set a single step breakpoint while considering
1602 branch prediction. */
78a59c2f 1603
5a89d8aa 1604static CORE_ADDR
7113a196 1605mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
c5aa993b 1606{
7113a196 1607 struct gdbarch *gdbarch = get_regcache_arch (regcache);
c5aa993b
JM
1608 unsigned long inst;
1609 int op;
4cc0665f 1610 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1611 op = itype_op (inst);
025bb325
MS
1612 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1613 instruction. */
c5aa993b 1614 {
4f5bcb50 1615 if (op >> 2 == 5)
6d82d43b 1616 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1617 {
4f5bcb50 1618 switch (op & 0x03)
c906108c 1619 {
e135b889
DJ
1620 case 0: /* BEQL */
1621 goto equal_branch;
1622 case 1: /* BNEL */
1623 goto neq_branch;
1624 case 2: /* BLEZL */
1625 goto less_branch;
313628cc 1626 case 3: /* BGTZL */
e135b889 1627 goto greater_branch;
c5aa993b
JM
1628 default:
1629 pc += 4;
c906108c
SS
1630 }
1631 }
4f5bcb50 1632 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1633 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7113a196 1634 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
4f5bcb50 1635 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1636 && (itype_rt (inst) & 2) == 0)
1637 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
7113a196 1638 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
4f5bcb50 1639 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1640 && (itype_rt (inst) & 2) == 0)
1641 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
7113a196 1642 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
4f5bcb50 1643 else if (op == 29)
9e8da49c
MR
1644 /* JALX: 011101 */
1645 /* The new PC will be alternate mode. */
1646 {
1647 unsigned long reg;
1648
1649 reg = jtype_target (inst) << 2;
1650 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1651 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1652 }
f94363d7
AP
1653 else if (is_octeon_bbit_op (op, gdbarch))
1654 {
1655 int bit, branch_if;
1656
1657 branch_if = op == 58 || op == 62;
1658 bit = itype_rt (inst);
1659
1660 /* Take into account the *32 instructions. */
1661 if (op == 54 || op == 62)
1662 bit += 32;
1663
7113a196
YQ
1664 if (((regcache_raw_get_signed (regcache,
1665 itype_rs (inst)) >> bit) & 1)
f94363d7
AP
1666 == branch_if)
1667 pc += mips32_relative_offset (inst) + 4;
1668 else
1669 pc += 8; /* After the delay slot. */
1670 }
1671
c5aa993b 1672 else
025bb325 1673 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1674 }
1675 else
025bb325 1676 { /* This gets way messy. */
c5aa993b 1677
025bb325 1678 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1679 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1680 {
c5aa993b
JM
1681 case 0: /* SPECIAL */
1682 op = rtype_funct (inst);
1683 switch (op)
1684 {
1685 case 8: /* JR */
1686 case 9: /* JALR */
025bb325 1687 /* Set PC to that address. */
7113a196 1688 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
c5aa993b 1689 break;
e38d4e1a
DJ
1690 case 12: /* SYSCALL */
1691 {
1692 struct gdbarch_tdep *tdep;
1693
7113a196 1694 tdep = gdbarch_tdep (gdbarch);
e38d4e1a 1695 if (tdep->syscall_next_pc != NULL)
7113a196 1696 pc = tdep->syscall_next_pc (get_current_frame ());
e38d4e1a
DJ
1697 else
1698 pc += 4;
1699 }
1700 break;
c5aa993b
JM
1701 default:
1702 pc += 4;
1703 }
1704
6d82d43b 1705 break; /* end SPECIAL */
025bb325 1706 case 1: /* REGIMM */
c906108c 1707 {
e135b889
DJ
1708 op = itype_rt (inst); /* branch condition */
1709 switch (op)
c906108c 1710 {
c5aa993b 1711 case 0: /* BLTZ */
e135b889
DJ
1712 case 2: /* BLTZL */
1713 case 16: /* BLTZAL */
c5aa993b 1714 case 18: /* BLTZALL */
c906108c 1715 less_branch:
7113a196 1716 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
c5aa993b
JM
1717 pc += mips32_relative_offset (inst) + 4;
1718 else
1719 pc += 8; /* after the delay slot */
1720 break;
e135b889 1721 case 1: /* BGEZ */
c5aa993b
JM
1722 case 3: /* BGEZL */
1723 case 17: /* BGEZAL */
1724 case 19: /* BGEZALL */
7113a196 1725 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
c5aa993b
JM
1726 pc += mips32_relative_offset (inst) + 4;
1727 else
1728 pc += 8; /* after the delay slot */
1729 break;
a385295e
MR
1730 case 0x1c: /* BPOSGE32 */
1731 case 0x1e: /* BPOSGE64 */
1732 pc += 4;
1733 if (itype_rs (inst) == 0)
1734 {
1735 unsigned int pos = (op & 2) ? 64 : 32;
1736 int dspctl = mips_regnum (gdbarch)->dspctl;
1737
1738 if (dspctl == -1)
1739 /* No way to handle; it'll most likely trap anyway. */
1740 break;
1741
7113a196
YQ
1742 if ((regcache_raw_get_unsigned (regcache,
1743 dspctl) & 0x7f) >= pos)
a385295e
MR
1744 pc += mips32_relative_offset (inst);
1745 else
1746 pc += 4;
1747 }
1748 break;
e135b889 1749 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1750 default:
1751 pc += 4;
c906108c
SS
1752 }
1753 }
6d82d43b 1754 break; /* end REGIMM */
c5aa993b
JM
1755 case 2: /* J */
1756 case 3: /* JAL */
1757 {
1758 unsigned long reg;
1759 reg = jtype_target (inst) << 2;
025bb325 1760 /* Upper four bits get never changed... */
5b652102 1761 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1762 }
c5aa993b 1763 break;
e135b889 1764 case 4: /* BEQ, BEQL */
c5aa993b 1765 equal_branch:
7113a196
YQ
1766 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1767 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1768 pc += mips32_relative_offset (inst) + 4;
1769 else
1770 pc += 8;
1771 break;
e135b889 1772 case 5: /* BNE, BNEL */
c5aa993b 1773 neq_branch:
7113a196
YQ
1774 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1775 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1776 pc += mips32_relative_offset (inst) + 4;
1777 else
1778 pc += 8;
1779 break;
e135b889 1780 case 6: /* BLEZ, BLEZL */
7113a196 1781 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
c5aa993b
JM
1782 pc += mips32_relative_offset (inst) + 4;
1783 else
1784 pc += 8;
1785 break;
1786 case 7:
e135b889
DJ
1787 default:
1788 greater_branch: /* BGTZ, BGTZL */
7113a196 1789 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
c5aa993b
JM
1790 pc += mips32_relative_offset (inst) + 4;
1791 else
1792 pc += 8;
1793 break;
c5aa993b
JM
1794 } /* switch */
1795 } /* else */
1796 return pc;
1797} /* mips32_next_pc */
c906108c 1798
4cc0665f
MR
1799/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1800 INSN. */
1801
1802static LONGEST
1803micromips_relative_offset7 (ULONGEST insn)
1804{
1805 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1806}
1807
1808/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1809 INSN. */
1810
1811static LONGEST
1812micromips_relative_offset10 (ULONGEST insn)
1813{
1814 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1815}
1816
1817/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1818 INSN. */
1819
1820static LONGEST
1821micromips_relative_offset16 (ULONGEST insn)
1822{
1823 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1824}
1825
1826/* Return the size in bytes of the microMIPS instruction at the address PC. */
1827
1828static int
1829micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1830{
1831 ULONGEST insn;
1832
1833 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1834 return mips_insn_size (ISA_MICROMIPS, insn);
1835}
1836
1837/* Calculate the address of the next microMIPS instruction to execute
1838 after the INSN coprocessor 1 conditional branch instruction at the
1839 address PC. COUNT denotes the number of coprocessor condition bits
1840 examined by the branch. */
1841
1842static CORE_ADDR
7113a196 1843micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
4cc0665f
MR
1844 ULONGEST insn, CORE_ADDR pc, int count)
1845{
1846 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1847 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1848 int tf = b5s5_op (insn >> 16) & 1;
1849 int mask = (1 << count) - 1;
1850 ULONGEST fcs;
1851 int cond;
1852
1853 if (fcsr == -1)
1854 /* No way to handle; it'll most likely trap anyway. */
1855 return pc;
1856
7113a196 1857 fcs = regcache_raw_get_unsigned (regcache, fcsr);
4cc0665f
MR
1858 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1859
1860 if (((cond >> cnum) & mask) != mask * !tf)
1861 pc += micromips_relative_offset16 (insn);
1862 else
1863 pc += micromips_pc_insn_size (gdbarch, pc);
1864
1865 return pc;
1866}
1867
1868/* Calculate the address of the next microMIPS instruction to execute
1869 after the instruction at the address PC. */
1870
1871static CORE_ADDR
7113a196 1872micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
4cc0665f 1873{
7113a196 1874 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4cc0665f
MR
1875 ULONGEST insn;
1876
1877 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1878 pc += MIPS_INSN16_SIZE;
1879 switch (mips_insn_size (ISA_MICROMIPS, insn))
1880 {
4cc0665f
MR
1881 /* 32-bit instructions. */
1882 case 2 * MIPS_INSN16_SIZE:
1883 insn <<= 16;
1884 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1885 pc += MIPS_INSN16_SIZE;
1886 switch (micromips_op (insn >> 16))
1887 {
1888 case 0x00: /* POOL32A: bits 000000 */
1889 if (b0s6_op (insn) == 0x3c
1890 /* POOL32Axf: bits 000000 ... 111100 */
1891 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1892 /* JALR, JALR.HB: 000000 000x111100 111100 */
1893 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7113a196 1894 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
4cc0665f
MR
1895 break;
1896
1897 case 0x10: /* POOL32I: bits 010000 */
1898 switch (b5s5_op (insn >> 16))
1899 {
1900 case 0x00: /* BLTZ: bits 010000 00000 */
1901 case 0x01: /* BLTZAL: bits 010000 00001 */
1902 case 0x11: /* BLTZALS: bits 010000 10001 */
7113a196
YQ
1903 if (regcache_raw_get_signed (regcache,
1904 b0s5_reg (insn >> 16)) < 0)
4cc0665f
MR
1905 pc += micromips_relative_offset16 (insn);
1906 else
1907 pc += micromips_pc_insn_size (gdbarch, pc);
1908 break;
1909
1910 case 0x02: /* BGEZ: bits 010000 00010 */
1911 case 0x03: /* BGEZAL: bits 010000 00011 */
1912 case 0x13: /* BGEZALS: bits 010000 10011 */
7113a196
YQ
1913 if (regcache_raw_get_signed (regcache,
1914 b0s5_reg (insn >> 16)) >= 0)
4cc0665f
MR
1915 pc += micromips_relative_offset16 (insn);
1916 else
1917 pc += micromips_pc_insn_size (gdbarch, pc);
1918 break;
1919
1920 case 0x04: /* BLEZ: bits 010000 00100 */
7113a196
YQ
1921 if (regcache_raw_get_signed (regcache,
1922 b0s5_reg (insn >> 16)) <= 0)
4cc0665f
MR
1923 pc += micromips_relative_offset16 (insn);
1924 else
1925 pc += micromips_pc_insn_size (gdbarch, pc);
1926 break;
1927
1928 case 0x05: /* BNEZC: bits 010000 00101 */
7113a196
YQ
1929 if (regcache_raw_get_signed (regcache,
1930 b0s5_reg (insn >> 16)) != 0)
4cc0665f
MR
1931 pc += micromips_relative_offset16 (insn);
1932 break;
1933
1934 case 0x06: /* BGTZ: bits 010000 00110 */
7113a196
YQ
1935 if (regcache_raw_get_signed (regcache,
1936 b0s5_reg (insn >> 16)) > 0)
4cc0665f
MR
1937 pc += micromips_relative_offset16 (insn);
1938 else
1939 pc += micromips_pc_insn_size (gdbarch, pc);
1940 break;
1941
1942 case 0x07: /* BEQZC: bits 010000 00111 */
7113a196
YQ
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) == 0)
4cc0665f
MR
1945 pc += micromips_relative_offset16 (insn);
1946 break;
1947
1948 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1949 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1950 if (((insn >> 16) & 0x3) == 0x0)
1951 /* BC2F, BC2T: don't know how to handle these. */
1952 break;
1953 break;
1954
1955 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1956 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1957 {
1958 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1959 int dspctl = mips_regnum (gdbarch)->dspctl;
1960
1961 if (dspctl == -1)
1962 /* No way to handle; it'll most likely trap anyway. */
1963 break;
1964
7113a196
YQ
1965 if ((regcache_raw_get_unsigned (regcache,
1966 dspctl) & 0x7f) >= pos)
4cc0665f
MR
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 }
1971 break;
1972
1973 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1974 /* BC1ANY2F: bits 010000 11100 xxx01 */
1975 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1976 /* BC1ANY2T: bits 010000 11101 xxx01 */
1977 if (((insn >> 16) & 0x2) == 0x0)
7113a196 1978 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
4cc0665f
MR
1979 ((insn >> 16) & 0x1) + 1);
1980 break;
1981
1982 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1983 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1984 if (((insn >> 16) & 0x3) == 0x1)
7113a196 1985 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
4cc0665f
MR
1986 break;
1987 }
1988 break;
1989
1990 case 0x1d: /* JALS: bits 011101 */
1991 case 0x35: /* J: bits 110101 */
1992 case 0x3d: /* JAL: bits 111101 */
1993 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1994 break;
1995
1996 case 0x25: /* BEQ: bits 100101 */
7113a196
YQ
1997 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
1998 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
1999 pc += micromips_relative_offset16 (insn);
2000 else
2001 pc += micromips_pc_insn_size (gdbarch, pc);
2002 break;
2003
2004 case 0x2d: /* BNE: bits 101101 */
7113a196
YQ
2005 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2006 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2007 pc += micromips_relative_offset16 (insn);
2008 else
2009 pc += micromips_pc_insn_size (gdbarch, pc);
2010 break;
2011
2012 case 0x3c: /* JALX: bits 111100 */
2013 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2014 break;
2015 }
2016 break;
2017
2018 /* 16-bit instructions. */
2019 case MIPS_INSN16_SIZE:
2020 switch (micromips_op (insn))
2021 {
2022 case 0x11: /* POOL16C: bits 010001 */
2023 if ((b5s5_op (insn) & 0x1c) == 0xc)
2024 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
7113a196 2025 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
4cc0665f
MR
2026 else if (b5s5_op (insn) == 0x18)
2027 /* JRADDIUSP: bits 010001 11000 */
7113a196 2028 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
4cc0665f
MR
2029 break;
2030
2031 case 0x23: /* BEQZ16: bits 100011 */
2032 {
2033 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2034
7113a196 2035 if (regcache_raw_get_signed (regcache, rs) == 0)
4cc0665f
MR
2036 pc += micromips_relative_offset7 (insn);
2037 else
2038 pc += micromips_pc_insn_size (gdbarch, pc);
2039 }
2040 break;
2041
2042 case 0x2b: /* BNEZ16: bits 101011 */
2043 {
2044 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2045
7113a196 2046 if (regcache_raw_get_signed (regcache, rs) != 0)
4cc0665f
MR
2047 pc += micromips_relative_offset7 (insn);
2048 else
2049 pc += micromips_pc_insn_size (gdbarch, pc);
2050 }
2051 break;
2052
2053 case 0x33: /* B16: bits 110011 */
2054 pc += micromips_relative_offset10 (insn);
2055 break;
2056 }
2057 break;
2058 }
2059
2060 return pc;
2061}
2062
c906108c 2063/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2064 mips 16 variant, but fortunately, there fewer instructions. We have
2065 to cope ith extensions for 16 bit instructions and a pair of actual
2066 32 bit instructions. We dont want to set a single step instruction
2067 on the extend instruction either. */
c906108c
SS
2068
2069/* Lots of mips16 instruction formats */
2070/* Predicting jumps requires itype,ritype,i8type
025bb325 2071 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2072enum mips16_inst_fmts
2073{
c5aa993b
JM
2074 itype, /* 0 immediate 5,10 */
2075 ritype, /* 1 5,3,8 */
2076 rrtype, /* 2 5,3,3,5 */
2077 rritype, /* 3 5,3,3,5 */
2078 rrrtype, /* 4 5,3,3,3,2 */
2079 rriatype, /* 5 5,3,3,1,4 */
2080 shifttype, /* 6 5,3,3,3,2 */
2081 i8type, /* 7 5,3,8 */
2082 i8movtype, /* 8 5,3,3,5 */
2083 i8mov32rtype, /* 9 5,3,5,3 */
2084 i64type, /* 10 5,3,8 */
2085 ri64type, /* 11 5,3,3,5 */
2086 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2087 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2088 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2089 extRRItype, /* 15 5,5,5,5,3,3,5 */
2090 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2091 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2092 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2093 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2094 extRi64type, /* 20 5,6,5,5,3,3,5 */
2095 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2096};
12f02c2a 2097/* I am heaping all the fields of the formats into one structure and
025bb325 2098 then, only the fields which are involved in instruction extension. */
c906108c 2099struct upk_mips16
6d82d43b
AC
2100{
2101 CORE_ADDR offset;
025bb325 2102 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2103 unsigned int regy;
2104};
c906108c
SS
2105
2106
12f02c2a 2107/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2108 for the bits which make up the immediate extension. */
c906108c 2109
12f02c2a
AC
2110static CORE_ADDR
2111extended_offset (unsigned int extension)
c906108c 2112{
12f02c2a 2113 CORE_ADDR value;
130854df 2114
4c2051c6 2115 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2116 value = value << 6;
4c2051c6 2117 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2118 value = value << 5;
130854df
MR
2119 value |= extension & 0x1f; /* Extract 4:0. */
2120
c5aa993b 2121 return value;
c906108c
SS
2122}
2123
2124/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2125 instruction. It won't malfunction, but why make excess remote memory
2126 references? If the immediate operands get sign extended or something,
2127 do it after the extension is performed. */
c906108c 2128/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2129 when the offset is to be used in relative addressing. */
c906108c 2130
12f02c2a 2131static unsigned int
e17a4113 2132fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2133{
e17a4113 2134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2135 gdb_byte buf[8];
a2fb2cee
MR
2136
2137 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2138 target_read_memory (pc, buf, 2);
e17a4113 2139 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2140}
2141
2142static void
e17a4113 2143unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2144 unsigned int extension,
2145 unsigned int inst,
6d82d43b 2146 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2147{
12f02c2a
AC
2148 CORE_ADDR offset;
2149 int regx;
2150 int regy;
2151 switch (insn_format)
c906108c 2152 {
c5aa993b 2153 case itype:
c906108c 2154 {
12f02c2a
AC
2155 CORE_ADDR value;
2156 if (extension)
c5aa993b 2157 {
4c2051c6
MR
2158 value = extended_offset ((extension << 16) | inst);
2159 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2160 }
2161 else
c5aa993b 2162 {
12f02c2a 2163 value = inst & 0x7ff;
4c2051c6 2164 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2165 }
12f02c2a
AC
2166 offset = value;
2167 regx = -1;
2168 regy = -1;
c906108c 2169 }
c5aa993b
JM
2170 break;
2171 case ritype:
2172 case i8type:
025bb325 2173 { /* A register identifier and an offset. */
c906108c 2174 /* Most of the fields are the same as I type but the
025bb325 2175 immediate value is of a different length. */
12f02c2a
AC
2176 CORE_ADDR value;
2177 if (extension)
c906108c 2178 {
4c2051c6
MR
2179 value = extended_offset ((extension << 16) | inst);
2180 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2181 }
c5aa993b
JM
2182 else
2183 {
4c2051c6
MR
2184 value = inst & 0xff; /* 8 bits */
2185 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2186 }
12f02c2a 2187 offset = value;
4c2051c6 2188 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2189 regy = -1;
c5aa993b 2190 break;
c906108c 2191 }
c5aa993b 2192 case jalxtype:
c906108c 2193 {
c5aa993b 2194 unsigned long value;
12f02c2a
AC
2195 unsigned int nexthalf;
2196 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2197 value = value << 16;
4cc0665f
MR
2198 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2199 /* Low bit still set. */
c5aa993b 2200 value |= nexthalf;
12f02c2a
AC
2201 offset = value;
2202 regx = -1;
2203 regy = -1;
c5aa993b 2204 break;
c906108c
SS
2205 }
2206 default:
e2e0b3e5 2207 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2208 }
12f02c2a
AC
2209 upk->offset = offset;
2210 upk->regx = regx;
2211 upk->regy = regy;
c906108c
SS
2212}
2213
2214
484933d1
MR
2215/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2216 and having a signed 16-bit OFFSET. */
2217
c5aa993b
JM
2218static CORE_ADDR
2219add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2220{
484933d1 2221 return pc + (offset << 1) + 2;
c906108c
SS
2222}
2223
12f02c2a 2224static CORE_ADDR
7113a196 2225extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
6d82d43b 2226 unsigned int extension, unsigned int insn)
c906108c 2227{
7113a196 2228 struct gdbarch *gdbarch = get_regcache_arch (regcache);
12f02c2a
AC
2229 int op = (insn >> 11);
2230 switch (op)
c906108c 2231 {
6d82d43b 2232 case 2: /* Branch */
12f02c2a 2233 {
12f02c2a 2234 struct upk_mips16 upk;
e17a4113 2235 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2236 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2237 break;
2238 }
025bb325
MS
2239 case 3: /* JAL , JALX - Watch out, these are 32 bit
2240 instructions. */
12f02c2a
AC
2241 {
2242 struct upk_mips16 upk;
e17a4113 2243 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2244 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2245 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2246 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2247 else
2248 pc |= 0x01;
2249 break;
2250 }
6d82d43b 2251 case 4: /* beqz */
12f02c2a
AC
2252 {
2253 struct upk_mips16 upk;
2254 int reg;
e17a4113 2255 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2256 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2257 if (reg == 0)
484933d1 2258 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2259 else
2260 pc += 2;
2261 break;
2262 }
6d82d43b 2263 case 5: /* bnez */
12f02c2a
AC
2264 {
2265 struct upk_mips16 upk;
2266 int reg;
e17a4113 2267 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2268 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2269 if (reg != 0)
484933d1 2270 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2271 else
2272 pc += 2;
2273 break;
2274 }
6d82d43b 2275 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2276 {
2277 struct upk_mips16 upk;
2278 int reg;
e17a4113 2279 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2280 /* upk.regx contains the opcode */
7113a196
YQ
2281 /* Test register is 24 */
2282 reg = regcache_raw_get_signed (regcache, 24);
12f02c2a
AC
2283 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2284 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2285 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2286 else
2287 pc += 2;
2288 break;
2289 }
6d82d43b 2290 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2291 {
2292 struct upk_mips16 upk;
2293 /* upk.fmt = rrtype; */
2294 op = insn & 0x1f;
2295 if (op == 0)
c5aa993b 2296 {
12f02c2a
AC
2297 int reg;
2298 upk.regx = (insn >> 8) & 0x07;
2299 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2300 if ((upk.regy & 1) == 0)
4cc0665f 2301 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2302 else
2303 reg = 31; /* Function return instruction. */
7113a196 2304 pc = regcache_raw_get_signed (regcache, reg);
c906108c 2305 }
12f02c2a 2306 else
c5aa993b 2307 pc += 2;
12f02c2a
AC
2308 break;
2309 }
2310 case 30:
2311 /* This is an instruction extension. Fetch the real instruction
2312 (which follows the extension) and decode things based on
025bb325 2313 that. */
12f02c2a
AC
2314 {
2315 pc += 2;
7113a196 2316 pc = extended_mips16_next_pc (regcache, pc, insn,
e17a4113 2317 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2318 break;
2319 }
2320 default:
2321 {
2322 pc += 2;
2323 break;
2324 }
c906108c 2325 }
c5aa993b 2326 return pc;
12f02c2a 2327}
c906108c 2328
5a89d8aa 2329static CORE_ADDR
7113a196 2330mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
12f02c2a 2331{
7113a196 2332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 2333 unsigned int insn = fetch_mips_16 (gdbarch, pc);
7113a196 2334 return extended_mips16_next_pc (regcache, pc, 0, insn);
12f02c2a
AC
2335}
2336
2337/* The mips_next_pc function supports single_step when the remote
7e73cedf 2338 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2339 It works by decoding the current instruction and predicting where a
1aee363c 2340 branch will go. This isn't hard because all the data is available.
4cc0665f 2341 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2342static CORE_ADDR
7113a196 2343mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 2344{
7113a196 2345 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4cc0665f
MR
2346
2347 if (mips_pc_is_mips16 (gdbarch, pc))
7113a196 2348 return mips16_next_pc (regcache, pc);
4cc0665f 2349 else if (mips_pc_is_micromips (gdbarch, pc))
7113a196 2350 return micromips_next_pc (regcache, pc);
c5aa993b 2351 else
7113a196 2352 return mips32_next_pc (regcache, pc);
12f02c2a 2353}
c906108c 2354
ab50adb6
MR
2355/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2356 or jump. */
2357
2358static int
2359mips16_instruction_is_compact_branch (unsigned short insn)
2360{
2361 switch (insn & 0xf800)
2362 {
2363 case 0xe800:
2364 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2365 case 0x6000:
2366 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2367 case 0x2800: /* BNEZ */
2368 case 0x2000: /* BEQZ */
2369 case 0x1000: /* B */
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374}
2375
2376/* Return non-zero if the microMIPS instruction INSN is a compact branch
2377 or jump. */
2378
2379static int
2380micromips_instruction_is_compact_branch (unsigned short insn)
2381{
2382 switch (micromips_op (insn))
2383 {
2384 case 0x11: /* POOL16C: bits 010001 */
2385 return (b5s5_op (insn) == 0x18
2386 /* JRADDIUSP: bits 010001 11000 */
2387 || b5s5_op (insn) == 0xd);
2388 /* JRC: bits 010011 01101 */
2389 case 0x10: /* POOL32I: bits 010000 */
2390 return (b5s5_op (insn) & 0x1d) == 0x5;
2391 /* BEQZC/BNEZC: bits 010000 001x1 */
2392 default:
2393 return 0;
2394 }
2395}
2396
edfae063
AC
2397struct mips_frame_cache
2398{
2399 CORE_ADDR base;
2400 struct trad_frame_saved_reg *saved_regs;
2401};
2402
29639122
JB
2403/* Set a register's saved stack address in temp_saved_regs. If an
2404 address has already been set for this register, do nothing; this
2405 way we will only recognize the first save of a given register in a
2406 function prologue.
eec63939 2407
f57d151a
UW
2408 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2409 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2410 Strictly speaking, only the second range is used as it is only second
2411 range (the ABI instead of ISA registers) that comes into play when finding
2412 saved registers in a frame. */
eec63939
AC
2413
2414static void
74ed0bb4
MD
2415set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2416 int regnum, CORE_ADDR offset)
eec63939 2417{
29639122
JB
2418 if (this_cache != NULL
2419 && this_cache->saved_regs[regnum].addr == -1)
2420 {
74ed0bb4
MD
2421 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2422 = offset;
2423 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
29639122 2425 }
eec63939
AC
2426}
2427
eec63939 2428
29639122
JB
2429/* Fetch the immediate value from a MIPS16 instruction.
2430 If the previous instruction was an EXTEND, use it to extend
2431 the upper bits of the immediate value. This is a helper function
2432 for mips16_scan_prologue. */
eec63939 2433
29639122
JB
2434static int
2435mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2436 unsigned short inst, /* current instruction */
2437 int nbits, /* number of bits in imm field */
2438 int scale, /* scale factor to be applied to imm */
025bb325 2439 int is_signed) /* is the imm field signed? */
eec63939 2440{
29639122 2441 int offset;
eec63939 2442
29639122
JB
2443 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2444 {
2445 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2446 if (offset & 0x8000) /* check for negative extend */
2447 offset = 0 - (0x10000 - (offset & 0xffff));
2448 return offset | (inst & 0x1f);
2449 }
eec63939 2450 else
29639122
JB
2451 {
2452 int max_imm = 1 << nbits;
2453 int mask = max_imm - 1;
2454 int sign_bit = max_imm >> 1;
45c9dd44 2455
29639122
JB
2456 offset = inst & mask;
2457 if (is_signed && (offset & sign_bit))
2458 offset = 0 - (max_imm - offset);
2459 return offset * scale;
2460 }
2461}
eec63939 2462
65596487 2463
29639122
JB
2464/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2465 the associated FRAME_CACHE if not null.
2466 Return the address of the first instruction past the prologue. */
eec63939 2467
29639122 2468static CORE_ADDR
e17a4113
UW
2469mips16_scan_prologue (struct gdbarch *gdbarch,
2470 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2471 struct frame_info *this_frame,
29639122
JB
2472 struct mips_frame_cache *this_cache)
2473{
ab50adb6
MR
2474 int prev_non_prologue_insn = 0;
2475 int this_non_prologue_insn;
2476 int non_prologue_insns = 0;
2477 CORE_ADDR prev_pc;
29639122 2478 CORE_ADDR cur_pc;
025bb325 2479 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2480 CORE_ADDR sp;
2481 long frame_offset = 0; /* Size of stack frame. */
2482 long frame_adjust = 0; /* Offset of FP from SP. */
2483 int frame_reg = MIPS_SP_REGNUM;
025bb325 2484 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2485 unsigned inst = 0; /* current instruction */
2486 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2487 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2488 int prev_delay_slot = 0;
2489 int in_delay_slot;
29639122 2490 int reg, offset;
a343eb3c 2491
29639122 2492 int extend_bytes = 0;
ab50adb6
MR
2493 int prev_extend_bytes = 0;
2494 CORE_ADDR end_prologue_addr;
a343eb3c 2495
29639122 2496 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2497 THIS_FRAME. */
2498 if (this_frame != NULL)
2499 sp = get_frame_register_signed (this_frame,
2500 gdbarch_num_regs (gdbarch)
2501 + MIPS_SP_REGNUM);
29639122
JB
2502 else
2503 sp = 0;
eec63939 2504
29639122
JB
2505 if (limit_pc > start_pc + 200)
2506 limit_pc = start_pc + 200;
ab50adb6 2507 prev_pc = start_pc;
eec63939 2508
ab50adb6
MR
2509 /* Permit at most one non-prologue non-control-transfer instruction
2510 in the middle which may have been reordered by the compiler for
2511 optimisation. */
95ac2dcf 2512 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2513 {
ab50adb6
MR
2514 this_non_prologue_insn = 0;
2515 in_delay_slot = 0;
2516
29639122
JB
2517 /* Save the previous instruction. If it's an EXTEND, we'll extract
2518 the immediate offset extension from it in mips16_get_imm. */
2519 prev_inst = inst;
eec63939 2520
025bb325 2521 /* Fetch and decode the instruction. */
4cc0665f
MR
2522 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2523 cur_pc, NULL);
eec63939 2524
29639122
JB
2525 /* Normally we ignore extend instructions. However, if it is
2526 not followed by a valid prologue instruction, then this
2527 instruction is not part of the prologue either. We must
2528 remember in this case to adjust the end_prologue_addr back
2529 over the extend. */
2530 if ((inst & 0xf800) == 0xf000) /* extend */
2531 {
95ac2dcf 2532 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2533 continue;
2534 }
eec63939 2535
29639122
JB
2536 prev_extend_bytes = extend_bytes;
2537 extend_bytes = 0;
eec63939 2538
29639122
JB
2539 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2540 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2541 {
2542 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2543 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2544 frame_offset -= offset;
2545 else
2546 /* Exit loop if a positive stack adjustment is found, which
2547 usually means that the stack cleanup code in the function
2548 epilogue is reached. */
2549 break;
2550 }
2551 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2552 {
2553 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2554 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2556 }
2557 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2558 {
2559 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2560 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2561 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2562 }
2563 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2564 {
2565 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2566 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2567 }
2568 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2569 {
2570 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2571 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2572 }
2573 else if (inst == 0x673d) /* move $s1, $sp */
2574 {
2575 frame_addr = sp;
2576 frame_reg = 17;
2577 }
2578 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2579 {
2580 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2581 frame_addr = sp + offset;
2582 frame_reg = 17;
2583 frame_adjust = offset;
2584 }
2585 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2586 {
2587 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2588 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2589 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2590 }
2591 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2592 {
2593 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2594 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2595 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2596 }
2597 else if ((inst & 0xf81f) == 0xe809
2598 && (inst & 0x700) != 0x700) /* entry */
025bb325 2599 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2600 else if ((inst & 0xff80) == 0x6480) /* save */
2601 {
025bb325 2602 save_inst = inst; /* Save for later processing. */
2207132d
MR
2603 if (prev_extend_bytes) /* extend */
2604 save_inst |= prev_inst << 16;
2605 }
29639122
JB
2606 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2607 {
2608 /* This instruction is part of the prologue, but we don't
2609 need to do anything special to handle it. */
2610 }
ab50adb6
MR
2611 else if (mips16_instruction_has_delay_slot (inst, 0))
2612 /* JAL/JALR/JALX/JR */
2613 {
2614 /* The instruction in the delay slot can be a part
2615 of the prologue, so move forward once more. */
2616 in_delay_slot = 1;
2617 if (mips16_instruction_has_delay_slot (inst, 1))
2618 /* JAL/JALX */
2619 {
2620 prev_extend_bytes = MIPS_INSN16_SIZE;
2621 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2622 }
2623 }
29639122
JB
2624 else
2625 {
ab50adb6 2626 this_non_prologue_insn = 1;
29639122 2627 }
ab50adb6
MR
2628
2629 non_prologue_insns += this_non_prologue_insn;
2630
2631 /* A jump or branch, or enough non-prologue insns seen? If so,
2632 then we must have reached the end of the prologue by now. */
2633 if (prev_delay_slot || non_prologue_insns > 1
2634 || mips16_instruction_is_compact_branch (inst))
2635 break;
2636
2637 prev_non_prologue_insn = this_non_prologue_insn;
2638 prev_delay_slot = in_delay_slot;
2639 prev_pc = cur_pc - prev_extend_bytes;
29639122 2640 }
eec63939 2641
29639122
JB
2642 /* The entry instruction is typically the first instruction in a function,
2643 and it stores registers at offsets relative to the value of the old SP
2644 (before the prologue). But the value of the sp parameter to this
2645 function is the new SP (after the prologue has been executed). So we
2646 can't calculate those offsets until we've seen the entire prologue,
025bb325 2647 and can calculate what the old SP must have been. */
29639122
JB
2648 if (entry_inst != 0)
2649 {
2650 int areg_count = (entry_inst >> 8) & 7;
2651 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2652
29639122
JB
2653 /* The entry instruction always subtracts 32 from the SP. */
2654 frame_offset += 32;
2655
2656 /* Now we can calculate what the SP must have been at the
2657 start of the function prologue. */
2658 sp += frame_offset;
2659
2660 /* Check if a0-a3 were saved in the caller's argument save area. */
2661 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2662 {
74ed0bb4 2663 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2664 offset += mips_abi_regsize (gdbarch);
29639122
JB
2665 }
2666
2667 /* Check if the ra register was pushed on the stack. */
2668 offset = -4;
2669 if (entry_inst & 0x20)
2670 {
74ed0bb4 2671 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2672 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2673 }
2674
2675 /* Check if the s0 and s1 registers were pushed on the stack. */
2676 for (reg = 16; reg < sreg_count + 16; reg++)
2677 {
74ed0bb4 2678 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2679 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2680 }
2681 }
2682
2207132d
MR
2683 /* The SAVE instruction is similar to ENTRY, except that defined by the
2684 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2685 size of the frame is specified as an immediate field of instruction
2686 and an extended variation exists which lets additional registers and
2687 frame space to be specified. The instruction always treats registers
2688 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2689 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2690 {
2691 static int args_table[16] = {
2692 0, 0, 0, 0, 1, 1, 1, 1,
2693 2, 2, 2, 0, 3, 3, 4, -1,
2694 };
2695 static int astatic_table[16] = {
2696 0, 1, 2, 3, 0, 1, 2, 3,
2697 0, 1, 2, 4, 0, 1, 0, -1,
2698 };
2699 int aregs = (save_inst >> 16) & 0xf;
2700 int xsregs = (save_inst >> 24) & 0x7;
2701 int args = args_table[aregs];
2702 int astatic = astatic_table[aregs];
2703 long frame_size;
2704
2705 if (args < 0)
2706 {
2707 warning (_("Invalid number of argument registers encoded in SAVE."));
2708 args = 0;
2709 }
2710 if (astatic < 0)
2711 {
2712 warning (_("Invalid number of static registers encoded in SAVE."));
2713 astatic = 0;
2714 }
2715
2716 /* For standard SAVE the frame size of 0 means 128. */
2717 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2718 if (frame_size == 0 && (save_inst >> 16) == 0)
2719 frame_size = 16;
2720 frame_size *= 8;
2721 frame_offset += frame_size;
2722
2723 /* Now we can calculate what the SP must have been at the
2724 start of the function prologue. */
2725 sp += frame_offset;
2726
2727 /* Check if A0-A3 were saved in the caller's argument save area. */
2728 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2729 {
74ed0bb4 2730 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2731 offset += mips_abi_regsize (gdbarch);
2732 }
2733
2734 offset = -4;
2735
2736 /* Check if the RA register was pushed on the stack. */
2737 if (save_inst & 0x40)
2738 {
74ed0bb4 2739 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2740 offset -= mips_abi_regsize (gdbarch);
2741 }
2742
2743 /* Check if the S8 register was pushed on the stack. */
2744 if (xsregs > 6)
2745 {
74ed0bb4 2746 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2747 offset -= mips_abi_regsize (gdbarch);
2748 xsregs--;
2749 }
2750 /* Check if S2-S7 were pushed on the stack. */
2751 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2752 {
74ed0bb4 2753 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2754 offset -= mips_abi_regsize (gdbarch);
2755 }
2756
2757 /* Check if the S1 register was pushed on the stack. */
2758 if (save_inst & 0x10)
2759 {
74ed0bb4 2760 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2761 offset -= mips_abi_regsize (gdbarch);
2762 }
2763 /* Check if the S0 register was pushed on the stack. */
2764 if (save_inst & 0x20)
2765 {
74ed0bb4 2766 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2767 offset -= mips_abi_regsize (gdbarch);
2768 }
2769
4cc0665f
MR
2770 /* Check if A0-A3 were pushed on the stack. */
2771 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2772 {
2773 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2774 offset -= mips_abi_regsize (gdbarch);
2775 }
2776 }
2777
2778 if (this_cache != NULL)
2779 {
2780 this_cache->base =
2781 (get_frame_register_signed (this_frame,
2782 gdbarch_num_regs (gdbarch) + frame_reg)
2783 + frame_offset - frame_adjust);
2784 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2785 be able to get rid of the assignment below, evetually. But it's
2786 still needed for now. */
2787 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2788 + mips_regnum (gdbarch)->pc]
2789 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2790 }
2791
ab50adb6
MR
2792 /* Set end_prologue_addr to the address of the instruction immediately
2793 after the last one we scanned. Unless the last one looked like a
2794 non-prologue instruction (and we looked ahead), in which case use
2795 its address instead. */
2796 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2797 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2798
2799 return end_prologue_addr;
2800}
2801
2802/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2803 Procedures that use the 32-bit instruction set are handled by the
2804 mips_insn32 unwinder. */
2805
2806static struct mips_frame_cache *
2807mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2808{
2809 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2810 struct mips_frame_cache *cache;
2811
2812 if ((*this_cache) != NULL)
19ba03f4 2813 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2814 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2815 (*this_cache) = cache;
2816 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2817
2818 /* Analyze the function prologue. */
2819 {
2820 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2821 CORE_ADDR start_addr;
2822
2823 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2824 if (start_addr == 0)
2825 start_addr = heuristic_proc_start (gdbarch, pc);
2826 /* We can't analyze the prologue if we couldn't find the begining
2827 of the function. */
2828 if (start_addr == 0)
2829 return cache;
2830
19ba03f4
SM
2831 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2832 (struct mips_frame_cache *) *this_cache);
4cc0665f
MR
2833 }
2834
2835 /* gdbarch_sp_regnum contains the value and not the address. */
2836 trad_frame_set_value (cache->saved_regs,
2837 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2838 cache->base);
2839
19ba03f4 2840 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2841}
2842
2843static void
2844mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2845 struct frame_id *this_id)
2846{
2847 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2848 this_cache);
2849 /* This marks the outermost frame. */
2850 if (info->base == 0)
2851 return;
2852 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2853}
2854
2855static struct value *
2856mips_insn16_frame_prev_register (struct frame_info *this_frame,
2857 void **this_cache, int regnum)
2858{
2859 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2860 this_cache);
2861 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2862}
2863
2864static int
2865mips_insn16_frame_sniffer (const struct frame_unwind *self,
2866 struct frame_info *this_frame, void **this_cache)
2867{
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 CORE_ADDR pc = get_frame_pc (this_frame);
2870 if (mips_pc_is_mips16 (gdbarch, pc))
2871 return 1;
2872 return 0;
2873}
2874
2875static const struct frame_unwind mips_insn16_frame_unwind =
2876{
2877 NORMAL_FRAME,
2878 default_frame_unwind_stop_reason,
2879 mips_insn16_frame_this_id,
2880 mips_insn16_frame_prev_register,
2881 NULL,
2882 mips_insn16_frame_sniffer
2883};
2884
2885static CORE_ADDR
2886mips_insn16_frame_base_address (struct frame_info *this_frame,
2887 void **this_cache)
2888{
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return info->base;
2892}
2893
2894static const struct frame_base mips_insn16_frame_base =
2895{
2896 &mips_insn16_frame_unwind,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address
2900};
2901
2902static const struct frame_base *
2903mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2904{
2905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2906 CORE_ADDR pc = get_frame_pc (this_frame);
2907 if (mips_pc_is_mips16 (gdbarch, pc))
2908 return &mips_insn16_frame_base;
2909 else
2910 return NULL;
2911}
2912
2913/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2914 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2915 interpreted directly, and then multiplied by 4. */
2916
2917static int
2918micromips_decode_imm9 (int imm)
2919{
2920 imm = (imm ^ 0x100) - 0x100;
2921 if (imm > -3 && imm < 2)
2922 imm ^= 0x100;
2923 return imm << 2;
2924}
2925
2926/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2927 the address of the first instruction past the prologue. */
2928
2929static CORE_ADDR
2930micromips_scan_prologue (struct gdbarch *gdbarch,
2931 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2932 struct frame_info *this_frame,
2933 struct mips_frame_cache *this_cache)
2934{
ab50adb6 2935 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2936 int prev_non_prologue_insn = 0;
2937 int frame_reg = MIPS_SP_REGNUM;
2938 int this_non_prologue_insn;
2939 int non_prologue_insns = 0;
2940 long frame_offset = 0; /* Size of stack frame. */
2941 long frame_adjust = 0; /* Offset of FP from SP. */
ab50adb6
MR
2942 int prev_delay_slot = 0;
2943 int in_delay_slot;
4cc0665f
MR
2944 CORE_ADDR prev_pc;
2945 CORE_ADDR cur_pc;
2946 ULONGEST insn; /* current instruction */
2947 CORE_ADDR sp;
2948 long offset;
2949 long sp_adj;
2950 long v1_off = 0; /* The assumption is LUI will replace it. */
2951 int reglist;
2952 int breg;
2953 int dreg;
2954 int sreg;
2955 int treg;
2956 int loc;
2957 int op;
2958 int s;
2959 int i;
2960
2961 /* Can be called when there's no process, and hence when there's no
2962 THIS_FRAME. */
2963 if (this_frame != NULL)
2964 sp = get_frame_register_signed (this_frame,
2965 gdbarch_num_regs (gdbarch)
2966 + MIPS_SP_REGNUM);
2967 else
2968 sp = 0;
2969
2970 if (limit_pc > start_pc + 200)
2971 limit_pc = start_pc + 200;
2972 prev_pc = start_pc;
2973
2974 /* Permit at most one non-prologue non-control-transfer instruction
2975 in the middle which may have been reordered by the compiler for
2976 optimisation. */
2977 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2978 {
2979 this_non_prologue_insn = 0;
ab50adb6 2980 in_delay_slot = 0;
4cc0665f
MR
2981 sp_adj = 0;
2982 loc = 0;
2983 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2984 loc += MIPS_INSN16_SIZE;
2985 switch (mips_insn_size (ISA_MICROMIPS, insn))
2986 {
4cc0665f
MR
2987 /* 32-bit instructions. */
2988 case 2 * MIPS_INSN16_SIZE:
2989 insn <<= 16;
2990 insn |= mips_fetch_instruction (gdbarch,
2991 ISA_MICROMIPS, cur_pc + loc, NULL);
2992 loc += MIPS_INSN16_SIZE;
2993 switch (micromips_op (insn >> 16))
2994 {
2995 /* Record $sp/$fp adjustment. */
2996 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2997 case 0x0: /* POOL32A: bits 000000 */
2998 case 0x16: /* POOL32S: bits 010110 */
2999 op = b0s11_op (insn);
3000 sreg = b0s5_reg (insn >> 16);
3001 treg = b5s5_reg (insn >> 16);
3002 dreg = b11s5_reg (insn);
3003 if (op == 0x1d0
3004 /* SUBU: bits 000000 00111010000 */
3005 /* DSUBU: bits 010110 00111010000 */
3006 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3007 && treg == 3)
3008 /* (D)SUBU $sp, $v1 */
3009 sp_adj = v1_off;
3010 else if (op != 0x150
3011 /* ADDU: bits 000000 00101010000 */
3012 /* DADDU: bits 010110 00101010000 */
3013 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3014 this_non_prologue_insn = 1;
3015 break;
3016
3017 case 0x8: /* POOL32B: bits 001000 */
3018 op = b12s4_op (insn);
3019 breg = b0s5_reg (insn >> 16);
3020 reglist = sreg = b5s5_reg (insn >> 16);
3021 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3022 if ((op == 0x9 || op == 0xc)
3023 /* SWP: bits 001000 1001 */
3024 /* SDP: bits 001000 1100 */
3025 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3026 /* S[DW]P reg,offset($sp) */
3027 {
3028 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3029 set_reg_offset (gdbarch, this_cache,
3030 sreg, sp + offset);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg + 1, sp + offset + s);
3033 }
3034 else if ((op == 0xd || op == 0xf)
3035 /* SWM: bits 001000 1101 */
3036 /* SDM: bits 001000 1111 */
3037 && breg == MIPS_SP_REGNUM
3038 /* SWM reglist,offset($sp) */
3039 && ((reglist >= 1 && reglist <= 9)
3040 || (reglist >= 16 && reglist <= 25)))
3041 {
325fac50 3042 int sreglist = std::min(reglist & 0xf, 8);
4cc0665f
MR
3043
3044 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3045 for (i = 0; i < sreglist; i++)
3046 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3047 if ((reglist & 0xf) > 8)
3048 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3049 if ((reglist & 0x10) == 0x10)
3050 set_reg_offset (gdbarch, this_cache,
3051 MIPS_RA_REGNUM, sp + s * i++);
3052 }
3053 else
3054 this_non_prologue_insn = 1;
3055 break;
3056
3057 /* Record $sp/$fp adjustment. */
3058 /* Discard (D)ADDIU $gp used for PIC code. */
3059 case 0xc: /* ADDIU: bits 001100 */
3060 case 0x17: /* DADDIU: bits 010111 */
3061 sreg = b0s5_reg (insn >> 16);
3062 dreg = b5s5_reg (insn >> 16);
3063 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3064 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3065 /* (D)ADDIU $sp, imm */
3066 sp_adj = offset;
3067 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3068 /* (D)ADDIU $fp, $sp, imm */
3069 {
4cc0665f
MR
3070 frame_adjust = offset;
3071 frame_reg = 30;
3072 }
3073 else if (sreg != 28 || dreg != 28)
3074 /* (D)ADDIU $gp, imm */
3075 this_non_prologue_insn = 1;
3076 break;
3077
3078 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3079 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3080 case 0x10: /* POOL32I: bits 010000 */
3081 if (b5s5_op (insn >> 16) == 0xd
3082 /* LUI: bits 010000 001101 */
3083 && b0s5_reg (insn >> 16) == 3)
3084 /* LUI $v1, imm */
3085 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3086 else if (b5s5_op (insn >> 16) != 0xd
3087 /* LUI: bits 010000 001101 */
3088 || b0s5_reg (insn >> 16) != 28)
3089 /* LUI $gp, imm */
3090 this_non_prologue_insn = 1;
3091 break;
3092
3093 /* ORI $v1 is used for larger $sp adjustments. */
3094 case 0x14: /* ORI: bits 010100 */
3095 sreg = b0s5_reg (insn >> 16);
3096 dreg = b5s5_reg (insn >> 16);
3097 if (sreg == 3 && dreg == 3)
3098 /* ORI $v1, imm */
3099 v1_off |= b0s16_imm (insn);
3100 else
3101 this_non_prologue_insn = 1;
3102 break;
3103
3104 case 0x26: /* SWC1: bits 100110 */
3105 case 0x2e: /* SDC1: bits 101110 */
3106 breg = b0s5_reg (insn >> 16);
3107 if (breg != MIPS_SP_REGNUM)
3108 /* S[DW]C1 reg,offset($sp) */
3109 this_non_prologue_insn = 1;
3110 break;
3111
3112 case 0x36: /* SD: bits 110110 */
3113 case 0x3e: /* SW: bits 111110 */
3114 breg = b0s5_reg (insn >> 16);
3115 sreg = b5s5_reg (insn >> 16);
3116 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3117 if (breg == MIPS_SP_REGNUM)
3118 /* S[DW] reg,offset($sp) */
3119 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3120 else
3121 this_non_prologue_insn = 1;
3122 break;
3123
3124 default:
ab50adb6
MR
3125 /* The instruction in the delay slot can be a part
3126 of the prologue, so move forward once more. */
3127 if (micromips_instruction_has_delay_slot (insn, 0))
3128 in_delay_slot = 1;
3129 else
3130 this_non_prologue_insn = 1;
4cc0665f
MR
3131 break;
3132 }
ab50adb6 3133 insn >>= 16;
4cc0665f
MR
3134 break;
3135
3136 /* 16-bit instructions. */
3137 case MIPS_INSN16_SIZE:
3138 switch (micromips_op (insn))
3139 {
3140 case 0x3: /* MOVE: bits 000011 */
3141 sreg = b0s5_reg (insn);
3142 dreg = b5s5_reg (insn);
3143 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3144 /* MOVE $fp, $sp */
78cc6c2d 3145 frame_reg = 30;
4cc0665f
MR
3146 else if ((sreg & 0x1c) != 0x4)
3147 /* MOVE reg, $a0-$a3 */
3148 this_non_prologue_insn = 1;
3149 break;
3150
3151 case 0x11: /* POOL16C: bits 010001 */
3152 if (b6s4_op (insn) == 0x5)
3153 /* SWM: bits 010001 0101 */
3154 {
3155 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3156 reglist = b4s2_regl (insn);
3157 for (i = 0; i <= reglist; i++)
3158 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3159 set_reg_offset (gdbarch, this_cache,
3160 MIPS_RA_REGNUM, sp + 4 * i++);
3161 }
3162 else
3163 this_non_prologue_insn = 1;
3164 break;
3165
3166 case 0x13: /* POOL16D: bits 010011 */
3167 if ((insn & 0x1) == 0x1)
3168 /* ADDIUSP: bits 010011 1 */
3169 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3170 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3171 /* ADDIUS5: bits 010011 0 */
3172 /* ADDIUS5 $sp, imm */
3173 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3174 else
3175 this_non_prologue_insn = 1;
3176 break;
3177
3178 case 0x32: /* SWSP: bits 110010 */
3179 offset = b0s5_imm (insn) << 2;
3180 sreg = b5s5_reg (insn);
3181 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3182 break;
3183
3184 default:
ab50adb6
MR
3185 /* The instruction in the delay slot can be a part
3186 of the prologue, so move forward once more. */
3187 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3188 in_delay_slot = 1;
3189 else
3190 this_non_prologue_insn = 1;
4cc0665f
MR
3191 break;
3192 }
3193 break;
3194 }
3195 if (sp_adj < 0)
3196 frame_offset -= sp_adj;
3197
3198 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3199
3200 /* A jump or branch, enough non-prologue insns seen or positive
3201 stack adjustment? If so, then we must have reached the end
3202 of the prologue by now. */
3203 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3204 || micromips_instruction_is_compact_branch (insn))
3205 break;
3206
4cc0665f 3207 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3208 prev_delay_slot = in_delay_slot;
4cc0665f 3209 prev_pc = cur_pc;
2207132d
MR
3210 }
3211
29639122
JB
3212 if (this_cache != NULL)
3213 {
3214 this_cache->base =
4cc0665f 3215 (get_frame_register_signed (this_frame,
b8a22b94 3216 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3217 + frame_offset - frame_adjust);
29639122 3218 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3219 be able to get rid of the assignment below, evetually. But it's
3220 still needed for now. */
72a155b4
UW
3221 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3222 + mips_regnum (gdbarch)->pc]
4cc0665f 3223 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3224 }
3225
ab50adb6
MR
3226 /* Set end_prologue_addr to the address of the instruction immediately
3227 after the last one we scanned. Unless the last one looked like a
3228 non-prologue instruction (and we looked ahead), in which case use
3229 its address instead. */
3230 end_prologue_addr
3231 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3232
3233 return end_prologue_addr;
eec63939
AC
3234}
3235
4cc0665f 3236/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3237 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3238 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3239
3240static struct mips_frame_cache *
4cc0665f 3241mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3242{
e17a4113 3243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3244 struct mips_frame_cache *cache;
eec63939
AC
3245
3246 if ((*this_cache) != NULL)
19ba03f4 3247 return (struct mips_frame_cache *) (*this_cache);
4cc0665f 3248
29639122
JB
3249 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3250 (*this_cache) = cache;
b8a22b94 3251 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3252
29639122
JB
3253 /* Analyze the function prologue. */
3254 {
b8a22b94 3255 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3256 CORE_ADDR start_addr;
eec63939 3257
29639122
JB
3258 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3259 if (start_addr == 0)
4cc0665f 3260 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3261 /* We can't analyze the prologue if we couldn't find the begining
3262 of the function. */
3263 if (start_addr == 0)
3264 return cache;
eec63939 3265
19ba03f4
SM
3266 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3267 (struct mips_frame_cache *) *this_cache);
29639122 3268 }
4cc0665f 3269
3e8c568d 3270 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3271 trad_frame_set_value (cache->saved_regs,
e17a4113 3272 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3273 cache->base);
eec63939 3274
19ba03f4 3275 return (struct mips_frame_cache *) (*this_cache);
eec63939
AC
3276}
3277
3278static void
4cc0665f
MR
3279mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3280 struct frame_id *this_id)
eec63939 3281{
4cc0665f
MR
3282 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3283 this_cache);
21327321
DJ
3284 /* This marks the outermost frame. */
3285 if (info->base == 0)
3286 return;
b8a22b94 3287 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3288}
3289
b8a22b94 3290static struct value *
4cc0665f
MR
3291mips_micro_frame_prev_register (struct frame_info *this_frame,
3292 void **this_cache, int regnum)
eec63939 3293{
4cc0665f
MR
3294 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3295 this_cache);
b8a22b94
DJ
3296 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3297}
3298
3299static int
4cc0665f
MR
3300mips_micro_frame_sniffer (const struct frame_unwind *self,
3301 struct frame_info *this_frame, void **this_cache)
b8a22b94 3302{
4cc0665f 3303 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3304 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3305
3306 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3307 return 1;
3308 return 0;
eec63939
AC
3309}
3310
4cc0665f 3311static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3312{
3313 NORMAL_FRAME,
8fbca658 3314 default_frame_unwind_stop_reason,
4cc0665f
MR
3315 mips_micro_frame_this_id,
3316 mips_micro_frame_prev_register,
b8a22b94 3317 NULL,
4cc0665f 3318 mips_micro_frame_sniffer
eec63939
AC
3319};
3320
eec63939 3321static CORE_ADDR
4cc0665f
MR
3322mips_micro_frame_base_address (struct frame_info *this_frame,
3323 void **this_cache)
eec63939 3324{
4cc0665f
MR
3325 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3326 this_cache);
29639122 3327 return info->base;
eec63939
AC
3328}
3329
4cc0665f 3330static const struct frame_base mips_micro_frame_base =
eec63939 3331{
4cc0665f
MR
3332 &mips_micro_frame_unwind,
3333 mips_micro_frame_base_address,
3334 mips_micro_frame_base_address,
3335 mips_micro_frame_base_address
eec63939
AC
3336};
3337
3338static const struct frame_base *
4cc0665f 3339mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3340{
4cc0665f 3341 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3342 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3343
3344 if (mips_pc_is_micromips (gdbarch, pc))
3345 return &mips_micro_frame_base;
eec63939
AC
3346 else
3347 return NULL;
edfae063
AC
3348}
3349
29639122
JB
3350/* Mark all the registers as unset in the saved_regs array
3351 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3352
74ed0bb4
MD
3353static void
3354reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3355{
29639122
JB
3356 if (this_cache == NULL || this_cache->saved_regs == NULL)
3357 return;
3358
3359 {
74ed0bb4 3360 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3361 int i;
64159455 3362
29639122
JB
3363 for (i = 0; i < num_regs; i++)
3364 {
3365 this_cache->saved_regs[i].addr = -1;
3366 }
3367 }
c906108c
SS
3368}
3369
025bb325 3370/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3371 the associated FRAME_CACHE if not null.
3372 Return the address of the first instruction past the prologue. */
c906108c 3373
875e1767 3374static CORE_ADDR
e17a4113
UW
3375mips32_scan_prologue (struct gdbarch *gdbarch,
3376 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3377 struct frame_info *this_frame,
29639122 3378 struct mips_frame_cache *this_cache)
c906108c 3379{
ab50adb6
MR
3380 int prev_non_prologue_insn;
3381 int this_non_prologue_insn;
3382 int non_prologue_insns;
025bb325
MS
3383 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3384 frame-pointer. */
ab50adb6
MR
3385 int prev_delay_slot;
3386 CORE_ADDR prev_pc;
3387 CORE_ADDR cur_pc;
29639122
JB
3388 CORE_ADDR sp;
3389 long frame_offset;
3390 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3391
ab50adb6 3392 CORE_ADDR end_prologue_addr;
29639122
JB
3393 int seen_sp_adjust = 0;
3394 int load_immediate_bytes = 0;
ab50adb6 3395 int in_delay_slot;
7d1e6fb8 3396 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3397
29639122 3398 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3399 THIS_FRAME. */
3400 if (this_frame != NULL)
3401 sp = get_frame_register_signed (this_frame,
3402 gdbarch_num_regs (gdbarch)
3403 + MIPS_SP_REGNUM);
8fa9cfa1 3404 else
29639122 3405 sp = 0;
9022177c 3406
29639122
JB
3407 if (limit_pc > start_pc + 200)
3408 limit_pc = start_pc + 200;
9022177c 3409
29639122 3410restart:
ab50adb6
MR
3411 prev_non_prologue_insn = 0;
3412 non_prologue_insns = 0;
3413 prev_delay_slot = 0;
3414 prev_pc = start_pc;
9022177c 3415
ab50adb6
MR
3416 /* Permit at most one non-prologue non-control-transfer instruction
3417 in the middle which may have been reordered by the compiler for
3418 optimisation. */
29639122 3419 frame_offset = 0;
95ac2dcf 3420 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3421 {
eaa6a9a4
MR
3422 unsigned long inst, high_word;
3423 long offset;
29639122 3424 int reg;
9022177c 3425
ab50adb6
MR
3426 this_non_prologue_insn = 0;
3427 in_delay_slot = 0;
3428
025bb325 3429 /* Fetch the instruction. */
4cc0665f
MR
3430 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3431 cur_pc, NULL);
9022177c 3432
29639122
JB
3433 /* Save some code by pre-extracting some useful fields. */
3434 high_word = (inst >> 16) & 0xffff;
eaa6a9a4 3435 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
29639122 3436 reg = high_word & 0x1f;
fe29b929 3437
025bb325 3438 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3439 || high_word == 0x23bd /* addi $sp,$sp,-i */
3440 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3441 {
eaa6a9a4
MR
3442 if (offset < 0) /* Negative stack adjustment? */
3443 frame_offset -= offset;
29639122
JB
3444 else
3445 /* Exit loop if a positive stack adjustment is found, which
3446 usually means that the stack cleanup code in the function
3447 epilogue is reached. */
3448 break;
3449 seen_sp_adjust = 1;
3450 }
7d1e6fb8
KB
3451 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3452 && !regsize_is_64_bits)
29639122 3453 {
eaa6a9a4 3454 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122 3455 }
7d1e6fb8
KB
3456 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3457 && regsize_is_64_bits)
29639122
JB
3458 {
3459 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
eaa6a9a4 3460 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
3461 }
3462 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3463 {
3464 /* Old gcc frame, r30 is virtual frame pointer. */
eaa6a9a4
MR
3465 if (offset != frame_offset)
3466 frame_addr = sp + offset;
b8a22b94 3467 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3468 {
3469 unsigned alloca_adjust;
a4b8ebc8 3470
29639122 3471 frame_reg = 30;
b8a22b94
DJ
3472 frame_addr = get_frame_register_signed
3473 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3474 frame_offset = 0;
d2ca4222 3475
eaa6a9a4 3476 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
29639122
JB
3477 if (alloca_adjust > 0)
3478 {
025bb325 3479 /* FP > SP + frame_size. This may be because of
29639122
JB
3480 an alloca or somethings similar. Fix sp to
3481 "pre-alloca" value, and try again. */
3482 sp += alloca_adjust;
3483 /* Need to reset the status of all registers. Otherwise,
3484 we will hit a guard that prevents the new address
3485 for each register to be recomputed during the second
3486 pass. */
74ed0bb4 3487 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3488 goto restart;
3489 }
3490 }
3491 }
3492 /* move $30,$sp. With different versions of gas this will be either
3493 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3494 Accept any one of these. */
3495 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3496 {
3497 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3498 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3499 {
3500 unsigned alloca_adjust;
c906108c 3501
29639122 3502 frame_reg = 30;
b8a22b94
DJ
3503 frame_addr = get_frame_register_signed
3504 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3505
29639122
JB
3506 alloca_adjust = (unsigned) (frame_addr - sp);
3507 if (alloca_adjust > 0)
3508 {
025bb325 3509 /* FP > SP + frame_size. This may be because of
29639122
JB
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp = frame_addr;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
74ed0bb4 3517 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3518 goto restart;
3519 }
3520 }
3521 }
7d1e6fb8
KB
3522 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3523 && !regsize_is_64_bits)
29639122 3524 {
eaa6a9a4 3525 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
3526 }
3527 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3528 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3529 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3530 || high_word == 0x3c1c /* lui $gp,n */
3531 || high_word == 0x279c /* addiu $gp,$gp,n */
3532 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3533 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3534 )
19080931
MR
3535 {
3536 /* These instructions are part of the prologue, but we don't
3537 need to do anything special to handle them. */
3538 }
29639122
JB
3539 /* The instructions below load $at or $t0 with an immediate
3540 value in preparation for a stack adjustment via
025bb325 3541 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3542 initialize a local variable, so we accept them only before
3543 a stack adjustment instruction was seen. */
3544 else if (!seen_sp_adjust
ab50adb6 3545 && !prev_delay_slot
19080931
MR
3546 && (high_word == 0x3c01 /* lui $at,n */
3547 || high_word == 0x3c08 /* lui $t0,n */
3548 || high_word == 0x3421 /* ori $at,$at,n */
3549 || high_word == 0x3508 /* ori $t0,$t0,n */
3550 || high_word == 0x3401 /* ori $at,$zero,n */
3551 || high_word == 0x3408 /* ori $t0,$zero,n */
3552 ))
3553 {
ab50adb6 3554 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3555 }
ab50adb6
MR
3556 /* Check for branches and jumps. The instruction in the delay
3557 slot can be a part of the prologue, so move forward once more. */
3558 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3559 {
3560 in_delay_slot = 1;
3561 }
3562 /* This instruction is not an instruction typically found
3563 in a prologue, so we must have reached the end of the
3564 prologue. */
29639122 3565 else
19080931 3566 {
ab50adb6 3567 this_non_prologue_insn = 1;
19080931 3568 }
db5f024e 3569
ab50adb6
MR
3570 non_prologue_insns += this_non_prologue_insn;
3571
3572 /* A jump or branch, or enough non-prologue insns seen? If so,
3573 then we must have reached the end of the prologue by now. */
3574 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3575 break;
ab50adb6
MR
3576
3577 prev_non_prologue_insn = this_non_prologue_insn;
3578 prev_delay_slot = in_delay_slot;
3579 prev_pc = cur_pc;
a4b8ebc8 3580 }
c906108c 3581
29639122
JB
3582 if (this_cache != NULL)
3583 {
3584 this_cache->base =
b8a22b94
DJ
3585 (get_frame_register_signed (this_frame,
3586 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3587 + frame_offset);
3588 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3589 this assignment below, eventually. But it's still needed
3590 for now. */
72a155b4
UW
3591 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3592 + mips_regnum (gdbarch)->pc]
3593 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3594 + MIPS_RA_REGNUM];
29639122 3595 }
c906108c 3596
ab50adb6
MR
3597 /* Set end_prologue_addr to the address of the instruction immediately
3598 after the last one we scanned. Unless the last one looked like a
3599 non-prologue instruction (and we looked ahead), in which case use
3600 its address instead. */
3601 end_prologue_addr
3602 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3603
3604 /* In a frameless function, we might have incorrectly
025bb325 3605 skipped some load immediate instructions. Undo the skipping
29639122
JB
3606 if the load immediate was not followed by a stack adjustment. */
3607 if (load_immediate_bytes && !seen_sp_adjust)
3608 end_prologue_addr -= load_immediate_bytes;
c906108c 3609
29639122 3610 return end_prologue_addr;
c906108c
SS
3611}
3612
29639122
JB
3613/* Heuristic unwinder for procedures using 32-bit instructions (covers
3614 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3615 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3616 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3617
29639122 3618static struct mips_frame_cache *
b8a22b94 3619mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3620{
e17a4113 3621 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3622 struct mips_frame_cache *cache;
c906108c 3623
29639122 3624 if ((*this_cache) != NULL)
19ba03f4 3625 return (struct mips_frame_cache *) (*this_cache);
c5aa993b 3626
29639122
JB
3627 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3628 (*this_cache) = cache;
b8a22b94 3629 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3630
29639122
JB
3631 /* Analyze the function prologue. */
3632 {
b8a22b94 3633 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3634 CORE_ADDR start_addr;
c906108c 3635
29639122
JB
3636 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3637 if (start_addr == 0)
e17a4113 3638 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3639 /* We can't analyze the prologue if we couldn't find the begining
3640 of the function. */
3641 if (start_addr == 0)
3642 return cache;
c5aa993b 3643
19ba03f4
SM
3644 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3645 (struct mips_frame_cache *) *this_cache);
29639122
JB
3646 }
3647
3e8c568d 3648 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3649 trad_frame_set_value (cache->saved_regs,
e17a4113 3650 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3651 cache->base);
c5aa993b 3652
19ba03f4 3653 return (struct mips_frame_cache *) (*this_cache);
c906108c
SS
3654}
3655
29639122 3656static void
b8a22b94 3657mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3658 struct frame_id *this_id)
c906108c 3659{
b8a22b94 3660 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3661 this_cache);
21327321
DJ
3662 /* This marks the outermost frame. */
3663 if (info->base == 0)
3664 return;
b8a22b94 3665 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3666}
c906108c 3667
b8a22b94
DJ
3668static struct value *
3669mips_insn32_frame_prev_register (struct frame_info *this_frame,
3670 void **this_cache, int regnum)
29639122 3671{
b8a22b94 3672 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3673 this_cache);
b8a22b94
DJ
3674 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3675}
3676
3677static int
3678mips_insn32_frame_sniffer (const struct frame_unwind *self,
3679 struct frame_info *this_frame, void **this_cache)
3680{
3681 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3682 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3683 return 1;
3684 return 0;
c906108c
SS
3685}
3686
29639122
JB
3687static const struct frame_unwind mips_insn32_frame_unwind =
3688{
3689 NORMAL_FRAME,
8fbca658 3690 default_frame_unwind_stop_reason,
29639122 3691 mips_insn32_frame_this_id,
b8a22b94
DJ
3692 mips_insn32_frame_prev_register,
3693 NULL,
3694 mips_insn32_frame_sniffer
29639122 3695};
c906108c 3696
1c645fec 3697static CORE_ADDR
b8a22b94 3698mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3699 void **this_cache)
c906108c 3700{
b8a22b94 3701 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3702 this_cache);
3703 return info->base;
3704}
c906108c 3705
29639122
JB
3706static const struct frame_base mips_insn32_frame_base =
3707{
3708 &mips_insn32_frame_unwind,
3709 mips_insn32_frame_base_address,
3710 mips_insn32_frame_base_address,
3711 mips_insn32_frame_base_address
3712};
1c645fec 3713
29639122 3714static const struct frame_base *
b8a22b94 3715mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3716{
b8a22b94 3717 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3718 if (mips_pc_is_mips (pc))
29639122 3719 return &mips_insn32_frame_base;
a65bbe44 3720 else
29639122
JB
3721 return NULL;
3722}
a65bbe44 3723
29639122 3724static struct trad_frame_cache *
b8a22b94 3725mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3726{
3727 CORE_ADDR pc;
3728 CORE_ADDR start_addr;
3729 CORE_ADDR stack_addr;
3730 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3731 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3732 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3733
29639122 3734 if ((*this_cache) != NULL)
19ba03f4 3735 return (struct trad_frame_cache *) (*this_cache);
b8a22b94 3736 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3737 (*this_cache) = this_trad_cache;
1c645fec 3738
29639122 3739 /* The return address is in the link register. */
3e8c568d 3740 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3741 gdbarch_pc_regnum (gdbarch),
b8a22b94 3742 num_regs + MIPS_RA_REGNUM);
1c645fec 3743
29639122
JB
3744 /* Frame ID, since it's a frameless / stackless function, no stack
3745 space is allocated and SP on entry is the current SP. */
b8a22b94 3746 pc = get_frame_pc (this_frame);
29639122 3747 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3748 stack_addr = get_frame_register_signed (this_frame,
3749 num_regs + MIPS_SP_REGNUM);
aa6c981f 3750 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3751
29639122
JB
3752 /* Assume that the frame's base is the same as the
3753 stack-pointer. */
3754 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3755
29639122
JB
3756 return this_trad_cache;
3757}
c906108c 3758
29639122 3759static void
b8a22b94 3760mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3761 struct frame_id *this_id)
3762{
3763 struct trad_frame_cache *this_trad_cache
b8a22b94 3764 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3765 trad_frame_get_id (this_trad_cache, this_id);
3766}
c906108c 3767
b8a22b94
DJ
3768static struct value *
3769mips_stub_frame_prev_register (struct frame_info *this_frame,
3770 void **this_cache, int regnum)
29639122
JB
3771{
3772 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3773 = mips_stub_frame_cache (this_frame, this_cache);
3774 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3775}
c906108c 3776
b8a22b94
DJ
3777static int
3778mips_stub_frame_sniffer (const struct frame_unwind *self,
3779 struct frame_info *this_frame, void **this_cache)
29639122 3780{
aa6c981f 3781 gdb_byte dummy[4];
979b38e0 3782 struct obj_section *s;
b8a22b94 3783 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3784 struct bound_minimal_symbol msym;
979b38e0 3785
aa6c981f 3786 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3787 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3788 return 1;
aa6c981f 3789
3e5d3a5a 3790 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3791 return 1;
979b38e0 3792
db5f024e
DJ
3793 /* Calling a PIC function from a non-PIC function passes through a
3794 stub. The stub for foo is named ".pic.foo". */
3795 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3796 if (msym.minsym != NULL
efd66ac6 3797 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
61012eef 3798 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
3799 return 1;
3800
b8a22b94 3801 return 0;
29639122 3802}
c906108c 3803
b8a22b94
DJ
3804static const struct frame_unwind mips_stub_frame_unwind =
3805{
3806 NORMAL_FRAME,
8fbca658 3807 default_frame_unwind_stop_reason,
b8a22b94
DJ
3808 mips_stub_frame_this_id,
3809 mips_stub_frame_prev_register,
3810 NULL,
3811 mips_stub_frame_sniffer
3812};
3813
29639122 3814static CORE_ADDR
b8a22b94 3815mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3816 void **this_cache)
3817{
3818 struct trad_frame_cache *this_trad_cache
b8a22b94 3819 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3820 return trad_frame_get_this_base (this_trad_cache);
3821}
0fce0821 3822
29639122
JB
3823static const struct frame_base mips_stub_frame_base =
3824{
3825 &mips_stub_frame_unwind,
3826 mips_stub_frame_base_address,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address
3829};
3830
3831static const struct frame_base *
b8a22b94 3832mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3833{
b8a22b94 3834 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3835 return &mips_stub_frame_base;
3836 else
3837 return NULL;
3838}
3839
29639122 3840/* mips_addr_bits_remove - remove useless address bits */
65596487 3841
29639122 3842static CORE_ADDR
24568a2c 3843mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3844{
24568a2c 3845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3846
29639122
JB
3847 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3848 /* This hack is a work-around for existing boards using PMON, the
3849 simulator, and any other 64-bit targets that doesn't have true
3850 64-bit addressing. On these targets, the upper 32 bits of
3851 addresses are ignored by the hardware. Thus, the PC or SP are
3852 likely to have been sign extended to all 1s by instruction
3853 sequences that load 32-bit addresses. For example, a typical
3854 piece of code that loads an address is this:
65596487 3855
29639122
JB
3856 lui $r2, <upper 16 bits>
3857 ori $r2, <lower 16 bits>
65596487 3858
29639122
JB
3859 But the lui sign-extends the value such that the upper 32 bits
3860 may be all 1s. The workaround is simply to mask off these
3861 bits. In the future, gcc may be changed to support true 64-bit
3862 addressing, and this masking will have to be disabled. */
3863 return addr &= 0xffffffffUL;
3864 else
3865 return addr;
65596487
JB
3866}
3867
3d5f6d12
DJ
3868
3869/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3870 instruction and ending with a SC/SCD instruction. If such a sequence
3871 is found, attempt to step through it. A breakpoint is placed at the end of
3872 the sequence. */
3873
4cc0665f
MR
3874/* Instructions used during single-stepping of atomic sequences, standard
3875 ISA version. */
3876#define LL_OPCODE 0x30
3877#define LLD_OPCODE 0x34
3878#define SC_OPCODE 0x38
3879#define SCD_OPCODE 0x3c
3880
93f9a11f
YQ
3881static VEC (CORE_ADDR) *
3882mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3d5f6d12
DJ
3883{
3884 CORE_ADDR breaks[2] = {-1, -1};
3885 CORE_ADDR loc = pc;
3886 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3887 ULONGEST insn;
3d5f6d12
DJ
3888 int insn_count;
3889 int index;
3890 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3891 const int atomic_sequence_length = 16; /* Instruction sequence length. */
93f9a11f 3892 VEC (CORE_ADDR) *next_pcs = NULL;
3d5f6d12 3893
4cc0665f 3894 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3895 /* Assume all atomic sequences start with a ll/lld instruction. */
3896 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
93f9a11f 3897 return NULL;
3d5f6d12
DJ
3898
3899 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3900 instructions. */
3901 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3902 {
3903 int is_branch = 0;
3904 loc += MIPS_INSN32_SIZE;
4cc0665f 3905 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3906
3907 /* Assume that there is at most one branch in the atomic
3908 sequence. If a branch is found, put a breakpoint in its
3909 destination address. */
3910 switch (itype_op (insn))
3911 {
3912 case 0: /* SPECIAL */
3913 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
025bb325 3914 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3915 break;
3916 case 1: /* REGIMM */
a385295e
MR
3917 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3918 || ((itype_rt (insn) & 0x1e) == 0
3919 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3920 break;
3921 case 2: /* J */
3922 case 3: /* JAL */
025bb325 3923 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3924 case 4: /* BEQ */
3925 case 5: /* BNE */
3926 case 6: /* BLEZ */
3927 case 7: /* BGTZ */
3928 case 20: /* BEQL */
3929 case 21: /* BNEL */
3930 case 22: /* BLEZL */
3931 case 23: /* BGTTL */
3932 is_branch = 1;
3933 break;
3934 case 17: /* COP1 */
a385295e
MR
3935 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3936 && (itype_rt (insn) & 0x2) == 0);
3937 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3938 break;
3939 /* Fall through. */
3d5f6d12
DJ
3940 case 18: /* COP2 */
3941 case 19: /* COP3 */
3942 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3943 break;
3944 }
3945 if (is_branch)
3946 {
3947 branch_bp = loc + mips32_relative_offset (insn) + 4;
3948 if (last_breakpoint >= 1)
3949 return 0; /* More than one branch found, fallback to the
3950 standard single-step code. */
3951 breaks[1] = branch_bp;
3952 last_breakpoint++;
3953 }
3954
3955 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3956 break;
3957 }
3958
3959 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3960 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
93f9a11f 3961 return NULL;
3d5f6d12
DJ
3962
3963 loc += MIPS_INSN32_SIZE;
3964
3965 /* Insert a breakpoint right after the end of the atomic sequence. */
3966 breaks[0] = loc;
3967
3968 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3969 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3970 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3971 last_breakpoint = 0;
3972
3973 /* Effectively inserts the breakpoints. */
3974 for (index = 0; index <= last_breakpoint; index++)
93f9a11f 3975 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
3d5f6d12 3976
93f9a11f 3977 return next_pcs;
3d5f6d12
DJ
3978}
3979
93f9a11f 3980static VEC (CORE_ADDR) *
4cc0665f 3981micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4cc0665f
MR
3982 CORE_ADDR pc)
3983{
3984 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3985 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3986 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
3987 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3988 destination. */
4cc0665f
MR
3989 CORE_ADDR loc = pc;
3990 int sc_found = 0;
3991 ULONGEST insn;
3992 int insn_count;
3993 int index;
93f9a11f 3994 VEC (CORE_ADDR) *next_pcs = NULL;
4cc0665f
MR
3995
3996 /* Assume all atomic sequences start with a ll/lld instruction. */
3997 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3998 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
93f9a11f 3999 return NULL;
4cc0665f
MR
4000 loc += MIPS_INSN16_SIZE;
4001 insn <<= 16;
4002 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4003 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
93f9a11f 4004 return NULL;
4cc0665f
MR
4005 loc += MIPS_INSN16_SIZE;
4006
4007 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4008 that no atomic sequence is longer than "atomic_sequence_length"
4009 instructions. */
4010 for (insn_count = 0;
4011 !sc_found && insn_count < atomic_sequence_length;
4012 ++insn_count)
4013 {
4014 int is_branch = 0;
4015
4016 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4017 loc += MIPS_INSN16_SIZE;
4018
4019 /* Assume that there is at most one conditional branch in the
4020 atomic sequence. If a branch is found, put a breakpoint in
4021 its destination address. */
4022 switch (mips_insn_size (ISA_MICROMIPS, insn))
4023 {
4cc0665f
MR
4024 /* 32-bit instructions. */
4025 case 2 * MIPS_INSN16_SIZE:
4026 switch (micromips_op (insn))
4027 {
4028 case 0x10: /* POOL32I: bits 010000 */
4029 if ((b5s5_op (insn) & 0x18) != 0x0
4030 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4031 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4032 && (b5s5_op (insn) & 0x1d) != 0x11
4033 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4034 && ((b5s5_op (insn) & 0x1e) != 0x14
4035 || (insn & 0x3) != 0x0)
4036 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4037 && (b5s5_op (insn) & 0x1e) != 0x1a
4038 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4039 && ((b5s5_op (insn) & 0x1e) != 0x1c
4040 || (insn & 0x3) != 0x0)
4041 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4042 && ((b5s5_op (insn) & 0x1c) != 0x1c
4043 || (insn & 0x3) != 0x1))
4044 /* BC1ANY*: bits 010000 111xx xxx01 */
4045 break;
4046 /* Fall through. */
4047
4048 case 0x25: /* BEQ: bits 100101 */
4049 case 0x2d: /* BNE: bits 101101 */
4050 insn <<= 16;
4051 insn |= mips_fetch_instruction (gdbarch,
4052 ISA_MICROMIPS, loc, NULL);
4053 branch_bp = (loc + MIPS_INSN16_SIZE
4054 + micromips_relative_offset16 (insn));
4055 is_branch = 1;
4056 break;
4057
4058 case 0x00: /* POOL32A: bits 000000 */
4059 insn <<= 16;
4060 insn |= mips_fetch_instruction (gdbarch,
4061 ISA_MICROMIPS, loc, NULL);
4062 if (b0s6_op (insn) != 0x3c
4063 /* POOL32Axf: bits 000000 ... 111100 */
4064 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4065 /* JALR, JALR.HB: 000000 000x111100 111100 */
4066 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4067 break;
4068 /* Fall through. */
4069
4070 case 0x1d: /* JALS: bits 011101 */
4071 case 0x35: /* J: bits 110101 */
4072 case 0x3d: /* JAL: bits 111101 */
4073 case 0x3c: /* JALX: bits 111100 */
4074 return 0; /* Fall back to the standard single-step code. */
4075
4076 case 0x18: /* POOL32C: bits 011000 */
4077 if ((b12s4_op (insn) & 0xb) == 0xb)
4078 /* SC, SCD: bits 011000 1x11 */
4079 sc_found = 1;
4080 break;
4081 }
4082 loc += MIPS_INSN16_SIZE;
4083 break;
4084
4085 /* 16-bit instructions. */
4086 case MIPS_INSN16_SIZE:
4087 switch (micromips_op (insn))
4088 {
4089 case 0x23: /* BEQZ16: bits 100011 */
4090 case 0x2b: /* BNEZ16: bits 101011 */
4091 branch_bp = loc + micromips_relative_offset7 (insn);
4092 is_branch = 1;
4093 break;
4094
4095 case 0x11: /* POOL16C: bits 010001 */
4096 if ((b5s5_op (insn) & 0x1c) != 0xc
4097 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4098 && b5s5_op (insn) != 0x18)
4099 /* JRADDIUSP: bits 010001 11000 */
4100 break;
93f9a11f 4101 return NULL; /* Fall back to the standard single-step code. */
4cc0665f
MR
4102
4103 case 0x33: /* B16: bits 110011 */
93f9a11f 4104 return NULL; /* Fall back to the standard single-step code. */
4cc0665f
MR
4105 }
4106 break;
4107 }
4108 if (is_branch)
4109 {
4110 if (last_breakpoint >= 1)
93f9a11f 4111 return NULL; /* More than one branch found, fallback to the
4cc0665f
MR
4112 standard single-step code. */
4113 breaks[1] = branch_bp;
4114 last_breakpoint++;
4115 }
4116 }
4117 if (!sc_found)
93f9a11f 4118 return NULL;
4cc0665f
MR
4119
4120 /* Insert a breakpoint right after the end of the atomic sequence. */
4121 breaks[0] = loc;
4122
4123 /* Check for duplicated breakpoints. Check also for a breakpoint
4124 placed (branch instruction's destination) in the atomic sequence */
4125 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4126 last_breakpoint = 0;
4127
4128 /* Effectively inserts the breakpoints. */
4129 for (index = 0; index <= last_breakpoint; index++)
93f9a11f 4130 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
4cc0665f 4131
93f9a11f 4132 return next_pcs;
4cc0665f
MR
4133}
4134
93f9a11f
YQ
4135static VEC (CORE_ADDR) *
4136deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
4137{
4138 if (mips_pc_is_mips (pc))
93f9a11f 4139 return mips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4140 else if (mips_pc_is_micromips (gdbarch, pc))
93f9a11f 4141 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4142 else
93f9a11f 4143 return NULL;
4cc0665f
MR
4144}
4145
29639122
JB
4146/* mips_software_single_step() is called just before we want to resume
4147 the inferior, if we want to single-step it but there is no hardware
4148 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4149 the target of the coming instruction and breakpoint it. */
29639122 4150
93f9a11f 4151VEC (CORE_ADDR) *
f5ea389a 4152mips_software_single_step (struct regcache *regcache)
c906108c 4153{
7113a196 4154 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8181d85f 4155 CORE_ADDR pc, next_pc;
93f9a11f 4156 VEC (CORE_ADDR) *next_pcs;
65596487 4157
7113a196 4158 pc = regcache_read_pc (regcache);
93f9a11f
YQ
4159 next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4160 if (next_pcs != NULL)
4161 return next_pcs;
3d5f6d12 4162
7113a196 4163 next_pc = mips_next_pc (regcache, pc);
e6590a1b 4164
93f9a11f
YQ
4165 VEC_safe_push (CORE_ADDR, next_pcs, next_pc);
4166 return next_pcs;
29639122 4167}
a65bbe44 4168
29639122 4169/* Test whether the PC points to the return instruction at the
025bb325 4170 end of a function. */
65596487 4171
29639122 4172static int
e17a4113 4173mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4174{
6321c22a
MR
4175 ULONGEST insn;
4176 ULONGEST hint;
4177
4178 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4179 called for MIPS16 functions. And likewise microMIPS ones. */
4180 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4181
4cc0665f 4182 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4183 hint = 0x7c0;
4184 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4185}
c906108c 4186
c906108c 4187
29639122
JB
4188/* This fencepost looks highly suspicious to me. Removing it also
4189 seems suspicious as it could affect remote debugging across serial
4190 lines. */
c906108c 4191
29639122 4192static CORE_ADDR
74ed0bb4 4193heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4194{
4195 CORE_ADDR start_pc;
4196 CORE_ADDR fence;
4197 int instlen;
4198 int seen_adjsp = 0;
d6b48e9c 4199 struct inferior *inf;
65596487 4200
74ed0bb4 4201 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4202 start_pc = pc;
4203 fence = start_pc - heuristic_fence_post;
4204 if (start_pc == 0)
4205 return 0;
65596487 4206
44096aee 4207 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4208 fence = VM_MIN_ADDRESS;
65596487 4209
4cc0665f 4210 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4211
d6b48e9c
PA
4212 inf = current_inferior ();
4213
025bb325 4214 /* Search back for previous return. */
29639122
JB
4215 for (start_pc -= instlen;; start_pc -= instlen)
4216 if (start_pc < fence)
4217 {
4218 /* It's not clear to me why we reach this point when
4219 stop_soon, but with this test, at least we
4220 don't print out warnings for every child forked (eg, on
4221 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4222 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4223 {
4224 static int blurb_printed = 0;
98b4dd94 4225
5af949e3
UW
4226 warning (_("GDB can't find the start of the function at %s."),
4227 paddress (gdbarch, pc));
29639122
JB
4228
4229 if (!blurb_printed)
4230 {
4231 /* This actually happens frequently in embedded
4232 development, when you first connect to a board
4233 and your stack pointer and pc are nowhere in
4234 particular. This message needs to give people
4235 in that situation enough information to
4236 determine that it's no big deal. */
4237 printf_filtered ("\n\
5af949e3 4238 GDB is unable to find the start of the function at %s\n\
29639122
JB
4239and thus can't determine the size of that function's stack frame.\n\
4240This means that GDB may be unable to access that stack frame, or\n\
4241the frames below it.\n\
4242 This problem is most likely caused by an invalid program counter or\n\
4243stack pointer.\n\
4244 However, if you think GDB should simply search farther back\n\
5af949e3 4245from %s for code which looks like the beginning of a\n\
29639122 4246function, you can increase the range of the search using the `set\n\
5af949e3
UW
4247heuristic-fence-post' command.\n",
4248 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4249 blurb_printed = 1;
4250 }
4251 }
4252
4253 return 0;
4254 }
4cc0665f 4255 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4256 {
4257 unsigned short inst;
4258
4259 /* On MIPS16, any one of the following is likely to be the
4260 start of a function:
193774b3
MR
4261 extend save
4262 save
29639122
JB
4263 entry
4264 addiu sp,-n
4265 daddiu sp,-n
025bb325 4266 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4267 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4268 if ((inst & 0xff80) == 0x6480) /* save */
4269 {
4270 if (start_pc - instlen >= fence)
4271 {
4cc0665f
MR
4272 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4273 start_pc - instlen, NULL);
193774b3
MR
4274 if ((inst & 0xf800) == 0xf000) /* extend */
4275 start_pc -= instlen;
4276 }
4277 break;
4278 }
4279 else if (((inst & 0xf81f) == 0xe809
4280 && (inst & 0x700) != 0x700) /* entry */
4281 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4282 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4283 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4284 break;
4285 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4286 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4287 seen_adjsp = 1;
4288 else
4289 seen_adjsp = 0;
4290 }
4cc0665f
MR
4291 else if (mips_pc_is_micromips (gdbarch, start_pc))
4292 {
4293 ULONGEST insn;
4294 int stop = 0;
4295 long offset;
4296 int dreg;
4297 int sreg;
4298
4299 /* On microMIPS, any one of the following is likely to be the
4300 start of a function:
4301 ADDIUSP -imm
4302 (D)ADDIU $sp, -imm
4303 LUI $gp, imm */
4304 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4305 switch (micromips_op (insn))
4306 {
4307 case 0xc: /* ADDIU: bits 001100 */
4308 case 0x17: /* DADDIU: bits 010111 */
4309 sreg = b0s5_reg (insn);
4310 dreg = b5s5_reg (insn);
4311 insn <<= 16;
4312 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4313 pc + MIPS_INSN16_SIZE, NULL);
4314 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4315 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4316 /* (D)ADDIU $sp, imm */
4317 && offset < 0)
4318 stop = 1;
4319 break;
4320
4321 case 0x10: /* POOL32I: bits 010000 */
4322 if (b5s5_op (insn) == 0xd
4323 /* LUI: bits 010000 001101 */
4324 && b0s5_reg (insn >> 16) == 28)
4325 /* LUI $gp, imm */
4326 stop = 1;
4327 break;
4328
4329 case 0x13: /* POOL16D: bits 010011 */
4330 if ((insn & 0x1) == 0x1)
4331 /* ADDIUSP: bits 010011 1 */
4332 {
4333 offset = micromips_decode_imm9 (b1s9_imm (insn));
4334 if (offset < 0)
4335 /* ADDIUSP -imm */
4336 stop = 1;
4337 }
4338 else
4339 /* ADDIUS5: bits 010011 0 */
4340 {
4341 dreg = b5s5_reg (insn);
4342 offset = (b1s4_imm (insn) ^ 8) - 8;
4343 if (dreg == MIPS_SP_REGNUM && offset < 0)
4344 /* ADDIUS5 $sp, -imm */
4345 stop = 1;
4346 }
4347 break;
4348 }
4349 if (stop)
4350 break;
4351 }
e17a4113 4352 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4353 {
4c7d22cb 4354 /* Skip return and its delay slot. */
95ac2dcf 4355 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4356 break;
4357 }
4358
4359 return start_pc;
c906108c
SS
4360}
4361
6c0d6680
DJ
4362struct mips_objfile_private
4363{
4364 bfd_size_type size;
4365 char *contents;
4366};
4367
f09ded24
AC
4368/* According to the current ABI, should the type be passed in a
4369 floating-point register (assuming that there is space)? When there
a1f5b845 4370 is no FPU, FP are not even considered as possible candidates for
f09ded24 4371 FP registers and, consequently this returns false - forces FP
025bb325 4372 arguments into integer registers. */
f09ded24
AC
4373
4374static int
74ed0bb4
MD
4375fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4376 struct type *arg_type)
f09ded24
AC
4377{
4378 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4379 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4380 && (typecode == TYPE_CODE_STRUCT
4381 || typecode == TYPE_CODE_UNION)
f09ded24 4382 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4383 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4384 == TYPE_CODE_FLT))
74ed0bb4 4385 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4386}
4387
49e790b0 4388/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4389 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4390
4391static int
4392mips_type_needs_double_align (struct type *type)
4393{
4394 enum type_code typecode = TYPE_CODE (type);
361d1df0 4395
49e790b0
DJ
4396 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4397 return 1;
4398 else if (typecode == TYPE_CODE_STRUCT)
4399 {
4400 if (TYPE_NFIELDS (type) < 1)
4401 return 0;
4402 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4403 }
4404 else if (typecode == TYPE_CODE_UNION)
4405 {
361d1df0 4406 int i, n;
49e790b0
DJ
4407
4408 n = TYPE_NFIELDS (type);
4409 for (i = 0; i < n; i++)
4410 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4411 return 1;
4412 return 0;
4413 }
4414 return 0;
4415}
4416
dc604539
AC
4417/* Adjust the address downward (direction of stack growth) so that it
4418 is correctly aligned for a new stack frame. */
4419static CORE_ADDR
4420mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4421{
5b03f266 4422 return align_down (addr, 16);
dc604539
AC
4423}
4424
8ae38c14 4425/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4426
4427static CORE_ADDR
4428mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4429 CORE_ADDR funaddr, struct value **args,
4430 int nargs, struct type *value_type,
4431 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4432 struct regcache *regcache)
4433{
2c76a0c7 4434 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4435 CORE_ADDR nop_addr;
4436 CORE_ADDR bp_slot;
2c76a0c7
JB
4437
4438 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4439 bp_slot = sp - sizeof (nop_insn);
4440
4441 /* Return to microMIPS mode if calling microMIPS code to avoid
4442 triggering an address error exception on processors that only
4443 support microMIPS execution. */
4444 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4445 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4446
4447 /* The breakpoint layer automatically adjusts the address of
4448 breakpoints inserted in a branch delay slot. With enough
4449 bad luck, the 4 bytes located just before our breakpoint
4450 instruction could look like a branch instruction, and thus
4451 trigger the adjustement, and break the function call entirely.
4452 So, we reserve those 4 bytes and write a nop instruction
4453 to prevent that from happening. */
2e81047f 4454 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4455 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4456 sp = mips_frame_align (gdbarch, nop_addr);
4457
4458 /* Inferior resumes at the function entry point. */
4459 *real_pc = funaddr;
4460
4461 return sp;
4462}
4463
f7ab6ec6 4464static CORE_ADDR
7d9b040b 4465mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4466 struct regcache *regcache, CORE_ADDR bp_addr,
4467 int nargs, struct value **args, CORE_ADDR sp,
4468 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4469{
4470 int argreg;
4471 int float_argreg;
4472 int argnum;
4473 int len = 0;
4474 int stack_offset = 0;
e17a4113 4475 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4476 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 4477 int regsize = mips_abi_regsize (gdbarch);
c906108c 4478
25ab4790
AC
4479 /* For shared libraries, "t9" needs to point at the function
4480 address. */
4c7d22cb 4481 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4482
4483 /* Set the return address register to point to the entry point of
4484 the program, where a breakpoint lies in wait. */
4c7d22cb 4485 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4486
c906108c 4487 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4488 are properly aligned. The stack has to be at least 64-bit
4489 aligned even on 32-bit machines, because doubles must be 64-bit
4490 aligned. For n32 and n64, stack frames need to be 128-bit
4491 aligned, so we round to this widest known alignment. */
4492
5b03f266
AC
4493 sp = align_down (sp, 16);
4494 struct_addr = align_down (struct_addr, 16);
c5aa993b 4495
46e0f506 4496 /* Now make space on the stack for the args. We allocate more
c906108c 4497 than necessary for EABI, because the first few arguments are
46e0f506 4498 passed in registers, but that's OK. */
c906108c 4499 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4500 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 4501 sp -= align_up (len, 16);
c906108c 4502
9ace0497 4503 if (mips_debug)
6d82d43b 4504 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4505 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4506 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4507
c906108c 4508 /* Initialize the integer and float register pointers. */
4c7d22cb 4509 argreg = MIPS_A0_REGNUM;
72a155b4 4510 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4511
46e0f506 4512 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4513 if (struct_return)
9ace0497
AC
4514 {
4515 if (mips_debug)
4516 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4517 "mips_eabi_push_dummy_call: "
4518 "struct_return reg=%d %s\n",
5af949e3 4519 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4520 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4521 }
c906108c
SS
4522
4523 /* Now load as many as possible of the first arguments into
4524 registers, and push the rest onto the stack. Loop thru args
4525 from first to last. */
4526 for (argnum = 0; argnum < nargs; argnum++)
4527 {
47a35522
MK
4528 const gdb_byte *val;
4529 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 4530 struct value *arg = args[argnum];
4991999e 4531 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4532 int len = TYPE_LENGTH (arg_type);
4533 enum type_code typecode = TYPE_CODE (arg_type);
4534
9ace0497
AC
4535 if (mips_debug)
4536 fprintf_unfiltered (gdb_stdlog,
25ab4790 4537 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4538 argnum + 1, len, (int) typecode);
9ace0497 4539
c906108c 4540 /* The EABI passes structures that do not fit in a register by
46e0f506 4541 reference. */
3e29f34a 4542 if (len > regsize
9ace0497 4543 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4544 {
e17a4113
UW
4545 store_unsigned_integer (valbuf, regsize, byte_order,
4546 value_address (arg));
c906108c 4547 typecode = TYPE_CODE_PTR;
1a69e1e4 4548 len = regsize;
c906108c 4549 val = valbuf;
9ace0497
AC
4550 if (mips_debug)
4551 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4552 }
4553 else
47a35522 4554 val = value_contents (arg);
c906108c
SS
4555
4556 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4557 even-numbered floating point register. Round the FP register
4558 up before the check to see if there are any FP registers
46e0f506
MS
4559 left. Non MIPS_EABI targets also pass the FP in the integer
4560 registers so also round up normal registers. */
74ed0bb4 4561 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4562 {
4563 if ((float_argreg & 1))
4564 float_argreg++;
4565 }
c906108c
SS
4566
4567 /* Floating point arguments passed in registers have to be
4568 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4569 are passed in register pairs; the even register gets
4570 the low word, and the odd register gets the high word.
4571 On non-EABI processors, the first two floating point arguments are
4572 also copied to general registers, because MIPS16 functions
4573 don't use float registers for arguments. This duplication of
4574 arguments in general registers can't hurt non-MIPS16 functions
4575 because those registers are normally skipped. */
1012bd0e
EZ
4576 /* MIPS_EABI squeezes a struct that contains a single floating
4577 point value into an FP register instead of pushing it onto the
46e0f506 4578 stack. */
74ed0bb4
MD
4579 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4580 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4581 {
6da397e0
KB
4582 /* EABI32 will pass doubles in consecutive registers, even on
4583 64-bit cores. At one time, we used to check the size of
4584 `float_argreg' to determine whether or not to pass doubles
4585 in consecutive registers, but this is not sufficient for
4586 making the ABI determination. */
4587 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4588 {
72a155b4 4589 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4590 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4591 long regval;
c906108c
SS
4592
4593 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4594 regval = extract_signed_integer (val + low_offset,
4595 4, byte_order);
9ace0497 4596 if (mips_debug)
acdb74a0 4597 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4598 float_argreg, phex (regval, 4));
a8852dc5 4599 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4600
4601 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4602 regval = extract_signed_integer (val + 4 - low_offset,
4603 4, byte_order);
9ace0497 4604 if (mips_debug)
acdb74a0 4605 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4606 float_argreg, phex (regval, 4));
a8852dc5 4607 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4608 }
4609 else
4610 {
4611 /* This is a floating point value that fits entirely
4612 in a single register. */
53a5351d 4613 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4614 above to ensure that it is even register aligned. */
a8852dc5 4615 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4616 if (mips_debug)
acdb74a0 4617 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4618 float_argreg, phex (regval, len));
a8852dc5 4619 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4620 }
4621 }
4622 else
4623 {
4624 /* Copy the argument to general registers or the stack in
4625 register-sized pieces. Large arguments are split between
4626 registers and stack. */
1a69e1e4
DJ
4627 /* Note: structs whose size is not a multiple of regsize
4628 are treated specially: Irix cc passes
d5ac5a39
AC
4629 them in registers where gcc sometimes puts them on the
4630 stack. For maximum compatibility, we will put them in
4631 both places. */
1a69e1e4 4632 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 4633
f09ded24 4634 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4635 register are only written to memory. */
c906108c
SS
4636 while (len > 0)
4637 {
ebafbe83 4638 /* Remember if the argument was written to the stack. */
566f0f7a 4639 int stack_used_p = 0;
1a69e1e4 4640 int partial_len = (len < regsize ? len : regsize);
c906108c 4641
acdb74a0
AC
4642 if (mips_debug)
4643 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4644 partial_len);
4645
566f0f7a 4646 /* Write this portion of the argument to the stack. */
74ed0bb4 4647 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4648 || odd_sized_struct
74ed0bb4 4649 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4650 {
c906108c 4651 /* Should shorter than int integer values be
025bb325 4652 promoted to int before being stored? */
c906108c 4653 int longword_offset = 0;
9ace0497 4654 CORE_ADDR addr;
566f0f7a 4655 stack_used_p = 1;
72a155b4 4656 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4657 {
1a69e1e4 4658 if (regsize == 8
480d3dd2
AC
4659 && (typecode == TYPE_CODE_INT
4660 || typecode == TYPE_CODE_PTR
6d82d43b 4661 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 4662 longword_offset = regsize - len;
480d3dd2
AC
4663 else if ((typecode == TYPE_CODE_STRUCT
4664 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
4665 && TYPE_LENGTH (arg_type) < regsize)
4666 longword_offset = regsize - len;
7a292a7a 4667 }
c5aa993b 4668
9ace0497
AC
4669 if (mips_debug)
4670 {
5af949e3
UW
4671 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4672 paddress (gdbarch, stack_offset));
4673 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4674 paddress (gdbarch, longword_offset));
9ace0497 4675 }
361d1df0 4676
9ace0497
AC
4677 addr = sp + stack_offset + longword_offset;
4678
4679 if (mips_debug)
4680 {
4681 int i;
5af949e3
UW
4682 fprintf_unfiltered (gdb_stdlog, " @%s ",
4683 paddress (gdbarch, addr));
9ace0497
AC
4684 for (i = 0; i < partial_len; i++)
4685 {
6d82d43b 4686 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4687 val[i] & 0xff);
9ace0497
AC
4688 }
4689 }
4690 write_memory (addr, val, partial_len);
c906108c
SS
4691 }
4692
f09ded24
AC
4693 /* Note!!! This is NOT an else clause. Odd sized
4694 structs may go thru BOTH paths. Floating point
46e0f506 4695 arguments will not. */
566f0f7a 4696 /* Write this portion of the argument to a general
6d82d43b 4697 purpose register. */
74ed0bb4
MD
4698 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4699 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4700 {
6d82d43b 4701 LONGEST regval =
a8852dc5 4702 extract_signed_integer (val, partial_len, byte_order);
c906108c 4703
9ace0497 4704 if (mips_debug)
acdb74a0 4705 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4706 argreg,
1a69e1e4 4707 phex (regval, regsize));
a8852dc5 4708 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4709 argreg++;
c906108c 4710 }
c5aa993b 4711
c906108c
SS
4712 len -= partial_len;
4713 val += partial_len;
4714
b021a221
MS
4715 /* Compute the offset into the stack at which we will
4716 copy the next parameter.
566f0f7a 4717
566f0f7a 4718 In the new EABI (and the NABI32), the stack_offset
46e0f506 4719 only needs to be adjusted when it has been used. */
c906108c 4720
46e0f506 4721 if (stack_used_p)
1a69e1e4 4722 stack_offset += align_up (partial_len, regsize);
c906108c
SS
4723 }
4724 }
9ace0497
AC
4725 if (mips_debug)
4726 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4727 }
4728
f10683bb 4729 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4730
0f71a2f6
JM
4731 /* Return adjusted stack pointer. */
4732 return sp;
4733}
4734
a1f5b845 4735/* Determine the return value convention being used. */
6d82d43b 4736
9c8fdbfa 4737static enum return_value_convention
6a3a010b 4738mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4739 struct type *type, struct regcache *regcache,
47a35522 4740 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4741{
609ba780
JM
4742 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4743 int fp_return_type = 0;
4744 int offset, regnum, xfer;
4745
9c8fdbfa
AC
4746 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4747 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4748
4749 /* Floating point type? */
4750 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4751 {
4752 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4753 fp_return_type = 1;
4754 /* Structs with a single field of float type
4755 are returned in a floating point register. */
4756 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4757 || TYPE_CODE (type) == TYPE_CODE_UNION)
4758 && TYPE_NFIELDS (type) == 1)
4759 {
4760 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4761
4762 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4763 fp_return_type = 1;
4764 }
4765 }
4766
4767 if (fp_return_type)
4768 {
4769 /* A floating-point value belongs in the least significant part
4770 of FP0/FP1. */
4771 if (mips_debug)
4772 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4773 regnum = mips_regnum (gdbarch)->fp0;
4774 }
4775 else
4776 {
4777 /* An integer value goes in V0/V1. */
4778 if (mips_debug)
4779 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4780 regnum = MIPS_V0_REGNUM;
4781 }
4782 for (offset = 0;
4783 offset < TYPE_LENGTH (type);
4784 offset += mips_abi_regsize (gdbarch), regnum++)
4785 {
4786 xfer = mips_abi_regsize (gdbarch);
4787 if (offset + xfer > TYPE_LENGTH (type))
4788 xfer = TYPE_LENGTH (type) - offset;
4789 mips_xfer_register (gdbarch, regcache,
4790 gdbarch_num_regs (gdbarch) + regnum, xfer,
4791 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4792 offset);
4793 }
4794
9c8fdbfa 4795 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4796}
4797
6d82d43b
AC
4798
4799/* N32/N64 ABI stuff. */
ebafbe83 4800
8d26208a
DJ
4801/* Search for a naturally aligned double at OFFSET inside a struct
4802 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4803 registers. */
4804
4805static int
74ed0bb4
MD
4806mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4807 int offset)
8d26208a
DJ
4808{
4809 int i;
4810
4811 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4812 return 0;
4813
74ed0bb4 4814 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4815 return 0;
4816
4817 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4818 return 0;
4819
4820 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4821 {
4822 int pos;
4823 struct type *field_type;
4824
4825 /* We're only looking at normal fields. */
5bc60cfb 4826 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4827 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4828 continue;
4829
4830 /* If we have gone past the offset, there is no double to pass. */
4831 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4832 if (pos > offset)
4833 return 0;
4834
4835 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4836
4837 /* If this field is entirely before the requested offset, go
4838 on to the next one. */
4839 if (pos + TYPE_LENGTH (field_type) <= offset)
4840 continue;
4841
4842 /* If this is our special aligned double, we can stop. */
4843 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4844 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4845 return 1;
4846
4847 /* This field starts at or before the requested offset, and
4848 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4849 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4850 }
4851
4852 return 0;
4853}
4854
f7ab6ec6 4855static CORE_ADDR
7d9b040b 4856mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4857 struct regcache *regcache, CORE_ADDR bp_addr,
4858 int nargs, struct value **args, CORE_ADDR sp,
4859 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4860{
4861 int argreg;
4862 int float_argreg;
4863 int argnum;
4864 int len = 0;
4865 int stack_offset = 0;
e17a4113 4866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4867 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4868
25ab4790
AC
4869 /* For shared libraries, "t9" needs to point at the function
4870 address. */
4c7d22cb 4871 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4872
4873 /* Set the return address register to point to the entry point of
4874 the program, where a breakpoint lies in wait. */
4c7d22cb 4875 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4876
cb3d25d1
MS
4877 /* First ensure that the stack and structure return address (if any)
4878 are properly aligned. The stack has to be at least 64-bit
4879 aligned even on 32-bit machines, because doubles must be 64-bit
4880 aligned. For n32 and n64, stack frames need to be 128-bit
4881 aligned, so we round to this widest known alignment. */
4882
5b03f266
AC
4883 sp = align_down (sp, 16);
4884 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4885
4886 /* Now make space on the stack for the args. */
4887 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4888 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4889 sp -= align_up (len, 16);
cb3d25d1
MS
4890
4891 if (mips_debug)
6d82d43b 4892 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4893 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4894 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4895
4896 /* Initialize the integer and float register pointers. */
4c7d22cb 4897 argreg = MIPS_A0_REGNUM;
72a155b4 4898 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4899
46e0f506 4900 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4901 if (struct_return)
4902 {
4903 if (mips_debug)
4904 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4905 "mips_n32n64_push_dummy_call: "
4906 "struct_return reg=%d %s\n",
5af949e3 4907 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4908 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4909 }
4910
4911 /* Now load as many as possible of the first arguments into
4912 registers, and push the rest onto the stack. Loop thru args
4913 from first to last. */
4914 for (argnum = 0; argnum < nargs; argnum++)
4915 {
47a35522 4916 const gdb_byte *val;
cb3d25d1 4917 struct value *arg = args[argnum];
4991999e 4918 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4919 int len = TYPE_LENGTH (arg_type);
4920 enum type_code typecode = TYPE_CODE (arg_type);
4921
4922 if (mips_debug)
4923 fprintf_unfiltered (gdb_stdlog,
25ab4790 4924 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4925 argnum + 1, len, (int) typecode);
4926
47a35522 4927 val = value_contents (arg);
cb3d25d1 4928
5b68030f
JM
4929 /* A 128-bit long double value requires an even-odd pair of
4930 floating-point registers. */
4931 if (len == 16
4932 && fp_register_arg_p (gdbarch, typecode, arg_type)
4933 && (float_argreg & 1))
4934 {
4935 float_argreg++;
4936 argreg++;
4937 }
4938
74ed0bb4
MD
4939 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4940 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4941 {
4942 /* This is a floating point value that fits entirely
5b68030f
JM
4943 in a single register or a pair of registers. */
4944 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4945 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4946 if (mips_debug)
4947 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4948 float_argreg, phex (regval, reglen));
8d26208a 4949 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4950
4951 if (mips_debug)
4952 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4953 argreg, phex (regval, reglen));
9c9acae0 4954 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4955 float_argreg++;
4956 argreg++;
5b68030f
JM
4957 if (len == 16)
4958 {
e17a4113
UW
4959 regval = extract_unsigned_integer (val + reglen,
4960 reglen, byte_order);
5b68030f
JM
4961 if (mips_debug)
4962 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4963 float_argreg, phex (regval, reglen));
4964 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4965
4966 if (mips_debug)
4967 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4968 argreg, phex (regval, reglen));
4969 regcache_cooked_write_unsigned (regcache, argreg, regval);
4970 float_argreg++;
4971 argreg++;
4972 }
cb3d25d1
MS
4973 }
4974 else
4975 {
4976 /* Copy the argument to general registers or the stack in
4977 register-sized pieces. Large arguments are split between
4978 registers and stack. */
ab2e1992
MR
4979 /* For N32/N64, structs, unions, or other composite types are
4980 treated as a sequence of doublewords, and are passed in integer
4981 or floating point registers as though they were simple scalar
4982 parameters to the extent that they fit, with any excess on the
4983 stack packed according to the normal memory layout of the
4984 object.
4985 The caller does not reserve space for the register arguments;
4986 the callee is responsible for reserving it if required. */
cb3d25d1 4987 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4988 register are only written to memory. */
cb3d25d1
MS
4989 while (len > 0)
4990 {
ad018eee 4991 /* Remember if the argument was written to the stack. */
cb3d25d1 4992 int stack_used_p = 0;
1a69e1e4 4993 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
4994
4995 if (mips_debug)
4996 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4997 partial_len);
4998
74ed0bb4
MD
4999 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5000 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5001
cb3d25d1 5002 /* Write this portion of the argument to the stack. */
74ed0bb4 5003 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5004 {
5005 /* Should shorter than int integer values be
025bb325 5006 promoted to int before being stored? */
cb3d25d1
MS
5007 int longword_offset = 0;
5008 CORE_ADDR addr;
5009 stack_used_p = 1;
72a155b4 5010 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5011 {
1a69e1e4 5012 if ((typecode == TYPE_CODE_INT
5b68030f 5013 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5014 && len <= 4)
5015 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5016 }
5017
5018 if (mips_debug)
5019 {
5af949e3
UW
5020 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5021 paddress (gdbarch, stack_offset));
5022 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5023 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5024 }
5025
5026 addr = sp + stack_offset + longword_offset;
5027
5028 if (mips_debug)
5029 {
5030 int i;
5af949e3
UW
5031 fprintf_unfiltered (gdb_stdlog, " @%s ",
5032 paddress (gdbarch, addr));
cb3d25d1
MS
5033 for (i = 0; i < partial_len; i++)
5034 {
6d82d43b 5035 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5036 val[i] & 0xff);
5037 }
5038 }
5039 write_memory (addr, val, partial_len);
5040 }
5041
5042 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5043 structs may go thru BOTH paths. */
cb3d25d1 5044 /* Write this portion of the argument to a general
6d82d43b 5045 purpose register. */
74ed0bb4 5046 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5047 {
5863b5d5
MR
5048 LONGEST regval;
5049
5050 /* Sign extend pointers, 32-bit integers and signed
5051 16-bit and 8-bit integers; everything else is taken
5052 as is. */
5053
5054 if ((partial_len == 4
5055 && (typecode == TYPE_CODE_PTR
5056 || typecode == TYPE_CODE_INT))
5057 || (partial_len < 4
5058 && typecode == TYPE_CODE_INT
5059 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5060 regval = extract_signed_integer (val, partial_len,
5061 byte_order);
5863b5d5 5062 else
e17a4113
UW
5063 regval = extract_unsigned_integer (val, partial_len,
5064 byte_order);
cb3d25d1
MS
5065
5066 /* A non-floating-point argument being passed in a
5067 general register. If a struct or union, and if
5068 the remaining length is smaller than the register
5069 size, we have to adjust the register value on
5070 big endian targets.
5071
5072 It does not seem to be necessary to do the
1a69e1e4 5073 same for integral types. */
cb3d25d1 5074
72a155b4 5075 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5076 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5077 && (typecode == TYPE_CODE_STRUCT
5078 || typecode == TYPE_CODE_UNION))
1a69e1e4 5079 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5080 * TARGET_CHAR_BIT);
cb3d25d1
MS
5081
5082 if (mips_debug)
5083 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5084 argreg,
1a69e1e4 5085 phex (regval, MIPS64_REGSIZE));
9c9acae0 5086 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5087
74ed0bb4 5088 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5089 TYPE_LENGTH (arg_type) - len))
5090 {
5091 if (mips_debug)
5092 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5093 float_argreg,
5094 phex (regval, MIPS64_REGSIZE));
5095 regcache_cooked_write_unsigned (regcache, float_argreg,
5096 regval);
5097 }
5098
5099 float_argreg++;
cb3d25d1
MS
5100 argreg++;
5101 }
5102
5103 len -= partial_len;
5104 val += partial_len;
5105
b021a221
MS
5106 /* Compute the offset into the stack at which we will
5107 copy the next parameter.
cb3d25d1
MS
5108
5109 In N32 (N64?), the stack_offset only needs to be
5110 adjusted when it has been used. */
5111
5112 if (stack_used_p)
1a69e1e4 5113 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5114 }
5115 }
5116 if (mips_debug)
5117 fprintf_unfiltered (gdb_stdlog, "\n");
5118 }
5119
f10683bb 5120 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5121
cb3d25d1
MS
5122 /* Return adjusted stack pointer. */
5123 return sp;
5124}
5125
6d82d43b 5126static enum return_value_convention
6a3a010b 5127mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5128 struct type *type, struct regcache *regcache,
47a35522 5129 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5130{
72a155b4 5131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5132
5133 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5134
5135 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5136 if needed), as appropriate for the type. Composite results (struct,
5137 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5138 following rules:
5139
5140 * A struct with only one or two floating point fields is returned in $f0
5141 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5142 case.
5143
f08877ba 5144 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5145 $2 (first 64 bits) and $3 (remainder, if necessary).
5146
5147 * Larger composite results are handled by converting the function to a
5148 procedure with an implicit first parameter, which is a pointer to an area
5149 reserved by the caller to receive the result. [The o32-bit ABI requires
5150 that all composite results be handled by conversion to implicit first
5151 parameters. The MIPS/SGI Fortran implementation has always made a
5152 specific exception to return COMPLEX results in the floating point
5153 registers.] */
5154
f08877ba 5155 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5156 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5157 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5158 && TYPE_LENGTH (type) == 16
5159 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5160 {
5161 /* A 128-bit floating-point value fills both $f0 and $f2. The
5162 two registers are used in the same as memory order, so the
5163 eight bytes with the lower memory address are in $f0. */
5164 if (mips_debug)
5165 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5166 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5167 (gdbarch_num_regs (gdbarch)
5168 + mips_regnum (gdbarch)->fp0),
72a155b4 5169 8, gdbarch_byte_order (gdbarch),
4c6b5505 5170 readbuf, writebuf, 0);
ba32f989 5171 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5172 (gdbarch_num_regs (gdbarch)
5173 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5174 8, gdbarch_byte_order (gdbarch),
4c6b5505 5175 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5176 writebuf ? writebuf + 8 : writebuf, 0);
5177 return RETURN_VALUE_REGISTER_CONVENTION;
5178 }
6d82d43b
AC
5179 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5180 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5181 {
59aa1faa 5182 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5183 if (mips_debug)
5184 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5185 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5186 (gdbarch_num_regs (gdbarch)
5187 + mips_regnum (gdbarch)->fp0),
6d82d43b 5188 TYPE_LENGTH (type),
72a155b4 5189 gdbarch_byte_order (gdbarch),
4c6b5505 5190 readbuf, writebuf, 0);
6d82d43b
AC
5191 return RETURN_VALUE_REGISTER_CONVENTION;
5192 }
5193 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5194 && TYPE_NFIELDS (type) <= 2
5195 && TYPE_NFIELDS (type) >= 1
5196 && ((TYPE_NFIELDS (type) == 1
b18bb924 5197 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5198 == TYPE_CODE_FLT))
5199 || (TYPE_NFIELDS (type) == 2
b18bb924 5200 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5201 == TYPE_CODE_FLT)
b18bb924 5202 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5203 == TYPE_CODE_FLT))))
6d82d43b
AC
5204 {
5205 /* A struct that contains one or two floats. Each value is part
5206 in the least significant part of their floating point
5b68030f 5207 register (or GPR, for soft float). */
6d82d43b
AC
5208 int regnum;
5209 int field;
5b68030f
JM
5210 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5211 ? mips_regnum (gdbarch)->fp0
5212 : MIPS_V0_REGNUM);
6d82d43b
AC
5213 field < TYPE_NFIELDS (type); field++, regnum += 2)
5214 {
5215 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5216 / TARGET_CHAR_BIT);
5217 if (mips_debug)
5218 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5219 offset);
5b68030f
JM
5220 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5221 {
5222 /* A 16-byte long double field goes in two consecutive
5223 registers. */
5224 mips_xfer_register (gdbarch, regcache,
5225 gdbarch_num_regs (gdbarch) + regnum,
5226 8,
5227 gdbarch_byte_order (gdbarch),
5228 readbuf, writebuf, offset);
5229 mips_xfer_register (gdbarch, regcache,
5230 gdbarch_num_regs (gdbarch) + regnum + 1,
5231 8,
5232 gdbarch_byte_order (gdbarch),
5233 readbuf, writebuf, offset + 8);
5234 }
5235 else
5236 mips_xfer_register (gdbarch, regcache,
5237 gdbarch_num_regs (gdbarch) + regnum,
5238 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5239 gdbarch_byte_order (gdbarch),
5240 readbuf, writebuf, offset);
6d82d43b
AC
5241 }
5242 return RETURN_VALUE_REGISTER_CONVENTION;
5243 }
5244 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5245 || TYPE_CODE (type) == TYPE_CODE_UNION
5246 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5247 {
f08877ba 5248 /* A composite type. Extract the left justified value,
6d82d43b
AC
5249 regardless of the byte order. I.e. DO NOT USE
5250 mips_xfer_lower. */
5251 int offset;
5252 int regnum;
4c7d22cb 5253 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5254 offset < TYPE_LENGTH (type);
72a155b4 5255 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5256 {
72a155b4 5257 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5258 if (offset + xfer > TYPE_LENGTH (type))
5259 xfer = TYPE_LENGTH (type) - offset;
5260 if (mips_debug)
5261 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5262 offset, xfer, regnum);
ba32f989
DJ
5263 mips_xfer_register (gdbarch, regcache,
5264 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5265 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5266 offset);
6d82d43b
AC
5267 }
5268 return RETURN_VALUE_REGISTER_CONVENTION;
5269 }
5270 else
5271 {
5272 /* A scalar extract each part but least-significant-byte
5273 justified. */
5274 int offset;
5275 int regnum;
4c7d22cb 5276 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5277 offset < TYPE_LENGTH (type);
72a155b4 5278 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5279 {
72a155b4 5280 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5281 if (offset + xfer > TYPE_LENGTH (type))
5282 xfer = TYPE_LENGTH (type) - offset;
5283 if (mips_debug)
5284 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5285 offset, xfer, regnum);
ba32f989
DJ
5286 mips_xfer_register (gdbarch, regcache,
5287 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5288 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5289 readbuf, writebuf, offset);
6d82d43b
AC
5290 }
5291 return RETURN_VALUE_REGISTER_CONVENTION;
5292 }
5293}
5294
6a3a010b
MR
5295/* Which registers to use for passing floating-point values between
5296 function calls, one of floating-point, general and both kinds of
5297 registers. O32 and O64 use different register kinds for standard
5298 MIPS and MIPS16 code; to make the handling of cases where we may
5299 not know what kind of code is being used (e.g. no debug information)
5300 easier we sometimes use both kinds. */
5301
5302enum mips_fval_reg
5303{
5304 mips_fval_fpr,
5305 mips_fval_gpr,
5306 mips_fval_both
5307};
5308
6d82d43b
AC
5309/* O32 ABI stuff. */
5310
5311static CORE_ADDR
7d9b040b 5312mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5313 struct regcache *regcache, CORE_ADDR bp_addr,
5314 int nargs, struct value **args, CORE_ADDR sp,
5315 int struct_return, CORE_ADDR struct_addr)
5316{
5317 int argreg;
5318 int float_argreg;
5319 int argnum;
5320 int len = 0;
5321 int stack_offset = 0;
e17a4113 5322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5323 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5324
5325 /* For shared libraries, "t9" needs to point at the function
5326 address. */
4c7d22cb 5327 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5328
5329 /* Set the return address register to point to the entry point of
5330 the program, where a breakpoint lies in wait. */
4c7d22cb 5331 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5332
5333 /* First ensure that the stack and structure return address (if any)
5334 are properly aligned. The stack has to be at least 64-bit
5335 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5336 aligned. For n32 and n64, stack frames need to be 128-bit
5337 aligned, so we round to this widest known alignment. */
5338
5b03f266
AC
5339 sp = align_down (sp, 16);
5340 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5341
5342 /* Now make space on the stack for the args. */
5343 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5344 {
5345 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5346
5347 /* Align to double-word if necessary. */
2afd3f0a 5348 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5349 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5350 /* Allocate space on the stack. */
354ecfd5 5351 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5352 }
5b03f266 5353 sp -= align_up (len, 16);
ebafbe83
MS
5354
5355 if (mips_debug)
6d82d43b 5356 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5357 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5358 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5359
5360 /* Initialize the integer and float register pointers. */
4c7d22cb 5361 argreg = MIPS_A0_REGNUM;
72a155b4 5362 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5363
bcb0cc15 5364 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5365 if (struct_return)
5366 {
5367 if (mips_debug)
5368 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5369 "mips_o32_push_dummy_call: "
5370 "struct_return reg=%d %s\n",
5af949e3 5371 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5372 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5373 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5374 }
5375
5376 /* Now load as many as possible of the first arguments into
5377 registers, and push the rest onto the stack. Loop thru args
5378 from first to last. */
5379 for (argnum = 0; argnum < nargs; argnum++)
5380 {
47a35522 5381 const gdb_byte *val;
ebafbe83 5382 struct value *arg = args[argnum];
4991999e 5383 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5384 int len = TYPE_LENGTH (arg_type);
5385 enum type_code typecode = TYPE_CODE (arg_type);
5386
5387 if (mips_debug)
5388 fprintf_unfiltered (gdb_stdlog,
25ab4790 5389 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5390 argnum + 1, len, (int) typecode);
5391
47a35522 5392 val = value_contents (arg);
46cac009
AC
5393
5394 /* 32-bit ABIs always start floating point arguments in an
5395 even-numbered floating point register. Round the FP register
5396 up before the check to see if there are any FP registers
6a3a010b
MR
5397 left. O32 targets also pass the FP in the integer registers
5398 so also round up normal registers. */
74ed0bb4 5399 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5400 {
5401 if ((float_argreg & 1))
5402 float_argreg++;
5403 }
5404
5405 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5406 treated specially. On 32-bit architectures, doubles are
5407 passed in register pairs; the even FP register gets the
5408 low word, and the odd FP register gets the high word.
5409 On O32, the first two floating point arguments are also
5410 copied to general registers, following their memory order,
5411 because MIPS16 functions don't use float registers for
5412 arguments. This duplication of arguments in general
5413 registers can't hurt non-MIPS16 functions, because those
5414 registers are normally skipped. */
46cac009 5415
74ed0bb4
MD
5416 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5417 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5418 {
8b07f6d8 5419 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5420 {
6a3a010b
MR
5421 int freg_offset = gdbarch_byte_order (gdbarch)
5422 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5423 unsigned long regval;
5424
6a3a010b
MR
5425 /* First word. */
5426 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5427 if (mips_debug)
5428 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5429 float_argreg + freg_offset,
5430 phex (regval, 4));
025bb325 5431 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5432 float_argreg++ + freg_offset,
5433 regval);
46cac009
AC
5434 if (mips_debug)
5435 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5436 argreg, phex (regval, 4));
9c9acae0 5437 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5438
6a3a010b
MR
5439 /* Second word. */
5440 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5441 if (mips_debug)
5442 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5443 float_argreg - freg_offset,
5444 phex (regval, 4));
025bb325 5445 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5446 float_argreg++ - freg_offset,
5447 regval);
46cac009
AC
5448 if (mips_debug)
5449 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5450 argreg, phex (regval, 4));
9c9acae0 5451 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5452 }
5453 else
5454 {
5455 /* This is a floating point value that fits entirely
5456 in a single register. */
5457 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5458 above to ensure that it is even register aligned. */
e17a4113 5459 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5460 if (mips_debug)
5461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5462 float_argreg, phex (regval, len));
025bb325
MS
5463 regcache_cooked_write_unsigned (regcache,
5464 float_argreg++, regval);
5b68030f
JM
5465 /* Although two FP registers are reserved for each
5466 argument, only one corresponding integer register is
5467 reserved. */
46cac009
AC
5468 if (mips_debug)
5469 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5470 argreg, phex (regval, len));
5b68030f 5471 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5472 }
5473 /* Reserve space for the FP register. */
1a69e1e4 5474 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5475 }
5476 else
5477 {
5478 /* Copy the argument to general registers or the stack in
5479 register-sized pieces. Large arguments are split between
5480 registers and stack. */
1a69e1e4
DJ
5481 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5482 are treated specially: Irix cc passes
d5ac5a39
AC
5483 them in registers where gcc sometimes puts them on the
5484 stack. For maximum compatibility, we will put them in
5485 both places. */
1a69e1e4
DJ
5486 int odd_sized_struct = (len > MIPS32_REGSIZE
5487 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5488 /* Structures should be aligned to eight bytes (even arg registers)
5489 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5490 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5491 {
5492 if ((argreg & 1))
968b5391
MR
5493 {
5494 argreg++;
1a69e1e4 5495 stack_offset += MIPS32_REGSIZE;
968b5391 5496 }
46cac009 5497 }
46cac009
AC
5498 while (len > 0)
5499 {
1a69e1e4 5500 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5501
5502 if (mips_debug)
5503 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5504 partial_len);
5505
5506 /* Write this portion of the argument to the stack. */
74ed0bb4 5507 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5508 || odd_sized_struct)
46cac009
AC
5509 {
5510 /* Should shorter than int integer values be
025bb325 5511 promoted to int before being stored? */
46cac009
AC
5512 int longword_offset = 0;
5513 CORE_ADDR addr;
46cac009
AC
5514
5515 if (mips_debug)
5516 {
5af949e3
UW
5517 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5518 paddress (gdbarch, stack_offset));
5519 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5520 paddress (gdbarch, longword_offset));
46cac009
AC
5521 }
5522
5523 addr = sp + stack_offset + longword_offset;
5524
5525 if (mips_debug)
5526 {
5527 int i;
5af949e3
UW
5528 fprintf_unfiltered (gdb_stdlog, " @%s ",
5529 paddress (gdbarch, addr));
46cac009
AC
5530 for (i = 0; i < partial_len; i++)
5531 {
6d82d43b 5532 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5533 val[i] & 0xff);
5534 }
5535 }
5536 write_memory (addr, val, partial_len);
5537 }
5538
5539 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5540 structs may go thru BOTH paths. */
46cac009 5541 /* Write this portion of the argument to a general
6d82d43b 5542 purpose register. */
74ed0bb4 5543 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5544 {
e17a4113
UW
5545 LONGEST regval = extract_signed_integer (val, partial_len,
5546 byte_order);
4246e332 5547 /* Value may need to be sign extended, because
1b13c4f6 5548 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5549
5550 /* A non-floating-point argument being passed in a
5551 general register. If a struct or union, and if
5552 the remaining length is smaller than the register
5553 size, we have to adjust the register value on
5554 big endian targets.
5555
5556 It does not seem to be necessary to do the
5557 same for integral types.
5558
5559 Also don't do this adjustment on O64 binaries.
5560
5561 cagney/2001-07-23: gdb/179: Also, GCC, when
5562 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5563 mips_abi_regsize(), generates a left shift
5564 as part of storing the argument in a register
5565 (the left shift isn't generated when
1b13c4f6 5566 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5567 it is quite possible that this is GCC
5568 contradicting the LE/O32 ABI, GDB has not been
5569 adjusted to accommodate this. Either someone
5570 needs to demonstrate that the LE/O32 ABI
5571 specifies such a left shift OR this new ABI gets
5572 identified as such and GDB gets tweaked
5573 accordingly. */
5574
72a155b4 5575 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5576 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5577 && (typecode == TYPE_CODE_STRUCT
5578 || typecode == TYPE_CODE_UNION))
1a69e1e4 5579 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5580 * TARGET_CHAR_BIT);
46cac009
AC
5581
5582 if (mips_debug)
5583 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5584 argreg,
1a69e1e4 5585 phex (regval, MIPS32_REGSIZE));
9c9acae0 5586 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5587 argreg++;
5588
5589 /* Prevent subsequent floating point arguments from
5590 being passed in floating point registers. */
74ed0bb4 5591 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5592 }
5593
5594 len -= partial_len;
5595 val += partial_len;
5596
b021a221
MS
5597 /* Compute the offset into the stack at which we will
5598 copy the next parameter.
46cac009 5599
6d82d43b
AC
5600 In older ABIs, the caller reserved space for
5601 registers that contained arguments. This was loosely
5602 refered to as their "home". Consequently, space is
5603 always allocated. */
46cac009 5604
1a69e1e4 5605 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5606 }
5607 }
5608 if (mips_debug)
5609 fprintf_unfiltered (gdb_stdlog, "\n");
5610 }
5611
f10683bb 5612 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5613
46cac009
AC
5614 /* Return adjusted stack pointer. */
5615 return sp;
5616}
5617
6d82d43b 5618static enum return_value_convention
6a3a010b 5619mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5620 struct type *type, struct regcache *regcache,
47a35522 5621 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5622{
6a3a010b 5623 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5624 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5626 enum mips_fval_reg fval_reg;
6d82d43b 5627
6a3a010b 5628 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5630 || TYPE_CODE (type) == TYPE_CODE_UNION
5631 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5632 return RETURN_VALUE_STRUCT_CONVENTION;
5633 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5634 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5635 {
6a3a010b
MR
5636 /* A single-precision floating-point value. If reading in or copying,
5637 then we get it from/put it to FP0 for standard MIPS code or GPR2
5638 for MIPS16 code. If writing out only, then we put it to both FP0
5639 and GPR2. We do not support reading in with no function known, if
5640 this safety check ever triggers, then we'll have to try harder. */
5641 gdb_assert (function || !readbuf);
6d82d43b 5642 if (mips_debug)
6a3a010b
MR
5643 switch (fval_reg)
5644 {
5645 case mips_fval_fpr:
5646 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5647 break;
5648 case mips_fval_gpr:
5649 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5650 break;
5651 case mips_fval_both:
5652 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5653 break;
5654 }
5655 if (fval_reg != mips_fval_gpr)
5656 mips_xfer_register (gdbarch, regcache,
5657 (gdbarch_num_regs (gdbarch)
5658 + mips_regnum (gdbarch)->fp0),
5659 TYPE_LENGTH (type),
5660 gdbarch_byte_order (gdbarch),
5661 readbuf, writebuf, 0);
5662 if (fval_reg != mips_fval_fpr)
5663 mips_xfer_register (gdbarch, regcache,
5664 gdbarch_num_regs (gdbarch) + 2,
5665 TYPE_LENGTH (type),
5666 gdbarch_byte_order (gdbarch),
5667 readbuf, writebuf, 0);
6d82d43b
AC
5668 return RETURN_VALUE_REGISTER_CONVENTION;
5669 }
5670 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5671 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5672 {
6a3a010b
MR
5673 /* A double-precision floating-point value. If reading in or copying,
5674 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5675 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5676 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5677 no function known, if this safety check ever triggers, then we'll
5678 have to try harder. */
5679 gdb_assert (function || !readbuf);
6d82d43b 5680 if (mips_debug)
6a3a010b
MR
5681 switch (fval_reg)
5682 {
5683 case mips_fval_fpr:
5684 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5685 break;
5686 case mips_fval_gpr:
5687 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5688 break;
5689 case mips_fval_both:
5690 fprintf_unfiltered (gdb_stderr,
5691 "Return float in $fp1/$fp0 and $2/$3\n");
5692 break;
5693 }
5694 if (fval_reg != mips_fval_gpr)
6d82d43b 5695 {
6a3a010b
MR
5696 /* The most significant part goes in FP1, and the least significant
5697 in FP0. */
5698 switch (gdbarch_byte_order (gdbarch))
5699 {
5700 case BFD_ENDIAN_LITTLE:
5701 mips_xfer_register (gdbarch, regcache,
5702 (gdbarch_num_regs (gdbarch)
5703 + mips_regnum (gdbarch)->fp0 + 0),
5704 4, gdbarch_byte_order (gdbarch),
5705 readbuf, writebuf, 0);
5706 mips_xfer_register (gdbarch, regcache,
5707 (gdbarch_num_regs (gdbarch)
5708 + mips_regnum (gdbarch)->fp0 + 1),
5709 4, gdbarch_byte_order (gdbarch),
5710 readbuf, writebuf, 4);
5711 break;
5712 case BFD_ENDIAN_BIG:
5713 mips_xfer_register (gdbarch, regcache,
5714 (gdbarch_num_regs (gdbarch)
5715 + mips_regnum (gdbarch)->fp0 + 1),
5716 4, gdbarch_byte_order (gdbarch),
5717 readbuf, writebuf, 0);
5718 mips_xfer_register (gdbarch, regcache,
5719 (gdbarch_num_regs (gdbarch)
5720 + mips_regnum (gdbarch)->fp0 + 0),
5721 4, gdbarch_byte_order (gdbarch),
5722 readbuf, writebuf, 4);
5723 break;
5724 default:
5725 internal_error (__FILE__, __LINE__, _("bad switch"));
5726 }
5727 }
5728 if (fval_reg != mips_fval_fpr)
5729 {
5730 /* The two 32-bit parts are always placed in GPR2 and GPR3
5731 following these registers' memory order. */
ba32f989 5732 mips_xfer_register (gdbarch, regcache,
6a3a010b 5733 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5734 4, gdbarch_byte_order (gdbarch),
4c6b5505 5735 readbuf, writebuf, 0);
ba32f989 5736 mips_xfer_register (gdbarch, regcache,
6a3a010b 5737 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5738 4, gdbarch_byte_order (gdbarch),
4c6b5505 5739 readbuf, writebuf, 4);
6d82d43b
AC
5740 }
5741 return RETURN_VALUE_REGISTER_CONVENTION;
5742 }
5743#if 0
5744 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5745 && TYPE_NFIELDS (type) <= 2
5746 && TYPE_NFIELDS (type) >= 1
5747 && ((TYPE_NFIELDS (type) == 1
5748 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5749 == TYPE_CODE_FLT))
5750 || (TYPE_NFIELDS (type) == 2
5751 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5752 == TYPE_CODE_FLT)
5753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5754 == TYPE_CODE_FLT)))
5755 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5756 {
5757 /* A struct that contains one or two floats. Each value is part
5758 in the least significant part of their floating point
5759 register.. */
870cd05e 5760 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
5761 int regnum;
5762 int field;
72a155b4 5763 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5764 field < TYPE_NFIELDS (type); field++, regnum += 2)
5765 {
5766 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5767 / TARGET_CHAR_BIT);
5768 if (mips_debug)
5769 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5770 offset);
ba32f989
DJ
5771 mips_xfer_register (gdbarch, regcache,
5772 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5773 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5774 gdbarch_byte_order (gdbarch),
4c6b5505 5775 readbuf, writebuf, offset);
6d82d43b
AC
5776 }
5777 return RETURN_VALUE_REGISTER_CONVENTION;
5778 }
5779#endif
5780#if 0
5781 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5782 || TYPE_CODE (type) == TYPE_CODE_UNION)
5783 {
5784 /* A structure or union. Extract the left justified value,
5785 regardless of the byte order. I.e. DO NOT USE
5786 mips_xfer_lower. */
5787 int offset;
5788 int regnum;
4c7d22cb 5789 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5790 offset < TYPE_LENGTH (type);
72a155b4 5791 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5792 {
72a155b4 5793 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5794 if (offset + xfer > TYPE_LENGTH (type))
5795 xfer = TYPE_LENGTH (type) - offset;
5796 if (mips_debug)
5797 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5798 offset, xfer, regnum);
ba32f989
DJ
5799 mips_xfer_register (gdbarch, regcache,
5800 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5801 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5802 }
5803 return RETURN_VALUE_REGISTER_CONVENTION;
5804 }
5805#endif
5806 else
5807 {
5808 /* A scalar extract each part but least-significant-byte
5809 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5810 the ISA. */
6d82d43b
AC
5811 int offset;
5812 int regnum;
4c7d22cb 5813 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5814 offset < TYPE_LENGTH (type);
1a69e1e4 5815 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5816 {
1a69e1e4 5817 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5818 if (offset + xfer > TYPE_LENGTH (type))
5819 xfer = TYPE_LENGTH (type) - offset;
5820 if (mips_debug)
5821 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5822 offset, xfer, regnum);
ba32f989
DJ
5823 mips_xfer_register (gdbarch, regcache,
5824 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5825 gdbarch_byte_order (gdbarch),
4c6b5505 5826 readbuf, writebuf, offset);
6d82d43b
AC
5827 }
5828 return RETURN_VALUE_REGISTER_CONVENTION;
5829 }
5830}
5831
5832/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5833 ABI. */
46cac009
AC
5834
5835static CORE_ADDR
7d9b040b 5836mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5837 struct regcache *regcache, CORE_ADDR bp_addr,
5838 int nargs,
5839 struct value **args, CORE_ADDR sp,
5840 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5841{
5842 int argreg;
5843 int float_argreg;
5844 int argnum;
5845 int len = 0;
5846 int stack_offset = 0;
e17a4113 5847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5848 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5849
25ab4790
AC
5850 /* For shared libraries, "t9" needs to point at the function
5851 address. */
4c7d22cb 5852 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5853
5854 /* Set the return address register to point to the entry point of
5855 the program, where a breakpoint lies in wait. */
4c7d22cb 5856 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5857
46cac009
AC
5858 /* First ensure that the stack and structure return address (if any)
5859 are properly aligned. The stack has to be at least 64-bit
5860 aligned even on 32-bit machines, because doubles must be 64-bit
5861 aligned. For n32 and n64, stack frames need to be 128-bit
5862 aligned, so we round to this widest known alignment. */
5863
5b03f266
AC
5864 sp = align_down (sp, 16);
5865 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5866
5867 /* Now make space on the stack for the args. */
5868 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5869 {
5870 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5871
968b5391 5872 /* Allocate space on the stack. */
354ecfd5 5873 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5874 }
5b03f266 5875 sp -= align_up (len, 16);
46cac009
AC
5876
5877 if (mips_debug)
6d82d43b 5878 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5879 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5880 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5881
5882 /* Initialize the integer and float register pointers. */
4c7d22cb 5883 argreg = MIPS_A0_REGNUM;
72a155b4 5884 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5885
5886 /* The struct_return pointer occupies the first parameter-passing reg. */
5887 if (struct_return)
5888 {
5889 if (mips_debug)
5890 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5891 "mips_o64_push_dummy_call: "
5892 "struct_return reg=%d %s\n",
5af949e3 5893 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5894 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5895 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5896 }
5897
5898 /* Now load as many as possible of the first arguments into
5899 registers, and push the rest onto the stack. Loop thru args
5900 from first to last. */
5901 for (argnum = 0; argnum < nargs; argnum++)
5902 {
47a35522 5903 const gdb_byte *val;
46cac009 5904 struct value *arg = args[argnum];
4991999e 5905 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5906 int len = TYPE_LENGTH (arg_type);
5907 enum type_code typecode = TYPE_CODE (arg_type);
5908
5909 if (mips_debug)
5910 fprintf_unfiltered (gdb_stdlog,
25ab4790 5911 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5912 argnum + 1, len, (int) typecode);
5913
47a35522 5914 val = value_contents (arg);
ebafbe83 5915
ebafbe83 5916 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5917 treated specially. On 32-bit architectures, doubles are
5918 passed in register pairs; the even FP register gets the
5919 low word, and the odd FP register gets the high word.
5920 On O64, the first two floating point arguments are also
5921 copied to general registers, because MIPS16 functions
5922 don't use float registers for arguments. This duplication
5923 of arguments in general registers can't hurt non-MIPS16
5924 functions because those registers are normally skipped. */
ebafbe83 5925
74ed0bb4
MD
5926 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5927 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5928 {
e17a4113 5929 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5930 if (mips_debug)
5931 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5932 float_argreg, phex (regval, len));
9c9acae0 5933 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5934 if (mips_debug)
5935 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5936 argreg, phex (regval, len));
9c9acae0 5937 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5938 argreg++;
ebafbe83 5939 /* Reserve space for the FP register. */
1a69e1e4 5940 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5941 }
5942 else
5943 {
5944 /* Copy the argument to general registers or the stack in
5945 register-sized pieces. Large arguments are split between
5946 registers and stack. */
1a69e1e4 5947 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5948 are treated specially: Irix cc passes them in registers
5949 where gcc sometimes puts them on the stack. For maximum
5950 compatibility, we will put them in both places. */
1a69e1e4
DJ
5951 int odd_sized_struct = (len > MIPS64_REGSIZE
5952 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5953 while (len > 0)
5954 {
1a69e1e4 5955 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5956
5957 if (mips_debug)
5958 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5959 partial_len);
5960
5961 /* Write this portion of the argument to the stack. */
74ed0bb4 5962 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5963 || odd_sized_struct)
ebafbe83
MS
5964 {
5965 /* Should shorter than int integer values be
025bb325 5966 promoted to int before being stored? */
ebafbe83
MS
5967 int longword_offset = 0;
5968 CORE_ADDR addr;
72a155b4 5969 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5970 {
1a69e1e4
DJ
5971 if ((typecode == TYPE_CODE_INT
5972 || typecode == TYPE_CODE_PTR
5973 || typecode == TYPE_CODE_FLT)
5974 && len <= 4)
5975 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
5976 }
5977
5978 if (mips_debug)
5979 {
5af949e3
UW
5980 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5981 paddress (gdbarch, stack_offset));
5982 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5983 paddress (gdbarch, longword_offset));
ebafbe83
MS
5984 }
5985
5986 addr = sp + stack_offset + longword_offset;
5987
5988 if (mips_debug)
5989 {
5990 int i;
5af949e3
UW
5991 fprintf_unfiltered (gdb_stdlog, " @%s ",
5992 paddress (gdbarch, addr));
ebafbe83
MS
5993 for (i = 0; i < partial_len; i++)
5994 {
6d82d43b 5995 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
5996 val[i] & 0xff);
5997 }
5998 }
5999 write_memory (addr, val, partial_len);
6000 }
6001
6002 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6003 structs may go thru BOTH paths. */
ebafbe83 6004 /* Write this portion of the argument to a general
6d82d43b 6005 purpose register. */
74ed0bb4 6006 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6007 {
e17a4113
UW
6008 LONGEST regval = extract_signed_integer (val, partial_len,
6009 byte_order);
4246e332 6010 /* Value may need to be sign extended, because
1b13c4f6 6011 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6012
6013 /* A non-floating-point argument being passed in a
6014 general register. If a struct or union, and if
6015 the remaining length is smaller than the register
6016 size, we have to adjust the register value on
6017 big endian targets.
6018
6019 It does not seem to be necessary to do the
025bb325 6020 same for integral types. */
480d3dd2 6021
72a155b4 6022 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6023 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6024 && (typecode == TYPE_CODE_STRUCT
6025 || typecode == TYPE_CODE_UNION))
1a69e1e4 6026 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6027 * TARGET_CHAR_BIT);
ebafbe83
MS
6028
6029 if (mips_debug)
6030 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6031 argreg,
1a69e1e4 6032 phex (regval, MIPS64_REGSIZE));
9c9acae0 6033 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6034 argreg++;
6035
6036 /* Prevent subsequent floating point arguments from
6037 being passed in floating point registers. */
74ed0bb4 6038 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6039 }
6040
6041 len -= partial_len;
6042 val += partial_len;
6043
b021a221
MS
6044 /* Compute the offset into the stack at which we will
6045 copy the next parameter.
ebafbe83 6046
6d82d43b
AC
6047 In older ABIs, the caller reserved space for
6048 registers that contained arguments. This was loosely
6049 refered to as their "home". Consequently, space is
6050 always allocated. */
ebafbe83 6051
1a69e1e4 6052 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6053 }
6054 }
6055 if (mips_debug)
6056 fprintf_unfiltered (gdb_stdlog, "\n");
6057 }
6058
f10683bb 6059 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6060
ebafbe83
MS
6061 /* Return adjusted stack pointer. */
6062 return sp;
6063}
6064
9c8fdbfa 6065static enum return_value_convention
6a3a010b 6066mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6067 struct type *type, struct regcache *regcache,
47a35522 6068 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6069{
6a3a010b 6070 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6071 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 6072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 6073 enum mips_fval_reg fval_reg;
7a076fd2 6074
6a3a010b 6075 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6076 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6077 || TYPE_CODE (type) == TYPE_CODE_UNION
6078 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6079 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6080 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6081 {
6a3a010b
MR
6082 /* A floating-point value. If reading in or copying, then we get it
6083 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6084 If writing out only, then we put it to both FP0 and GPR2. We do
6085 not support reading in with no function known, if this safety
6086 check ever triggers, then we'll have to try harder. */
6087 gdb_assert (function || !readbuf);
7a076fd2 6088 if (mips_debug)
6a3a010b
MR
6089 switch (fval_reg)
6090 {
6091 case mips_fval_fpr:
6092 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6093 break;
6094 case mips_fval_gpr:
6095 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6096 break;
6097 case mips_fval_both:
6098 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6099 break;
6100 }
6101 if (fval_reg != mips_fval_gpr)
6102 mips_xfer_register (gdbarch, regcache,
6103 (gdbarch_num_regs (gdbarch)
6104 + mips_regnum (gdbarch)->fp0),
6105 TYPE_LENGTH (type),
6106 gdbarch_byte_order (gdbarch),
6107 readbuf, writebuf, 0);
6108 if (fval_reg != mips_fval_fpr)
6109 mips_xfer_register (gdbarch, regcache,
6110 gdbarch_num_regs (gdbarch) + 2,
6111 TYPE_LENGTH (type),
6112 gdbarch_byte_order (gdbarch),
6113 readbuf, writebuf, 0);
7a076fd2
FF
6114 return RETURN_VALUE_REGISTER_CONVENTION;
6115 }
6116 else
6117 {
6118 /* A scalar extract each part but least-significant-byte
025bb325 6119 justified. */
7a076fd2
FF
6120 int offset;
6121 int regnum;
6122 for (offset = 0, regnum = MIPS_V0_REGNUM;
6123 offset < TYPE_LENGTH (type);
1a69e1e4 6124 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6125 {
1a69e1e4 6126 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6127 if (offset + xfer > TYPE_LENGTH (type))
6128 xfer = TYPE_LENGTH (type) - offset;
6129 if (mips_debug)
6130 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6131 offset, xfer, regnum);
ba32f989
DJ
6132 mips_xfer_register (gdbarch, regcache,
6133 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6134 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6135 readbuf, writebuf, offset);
7a076fd2
FF
6136 }
6137 return RETURN_VALUE_REGISTER_CONVENTION;
6138 }
6d82d43b
AC
6139}
6140
dd824b04
DJ
6141/* Floating point register management.
6142
6143 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6144 64bit operations, these early MIPS cpus treat fp register pairs
6145 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6146 registers and offer a compatibility mode that emulates the MIPS2 fp
6147 model. When operating in MIPS2 fp compat mode, later cpu's split
6148 double precision floats into two 32-bit chunks and store them in
6149 consecutive fp regs. To display 64-bit floats stored in this
6150 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6151 Throw in user-configurable endianness and you have a real mess.
6152
6153 The way this works is:
6154 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6155 double-precision value will be split across two logical registers.
6156 The lower-numbered logical register will hold the low-order bits,
6157 regardless of the processor's endianness.
6158 - If we are on a 64-bit processor, and we are looking for a
6159 single-precision value, it will be in the low ordered bits
6160 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6161 save slot in memory.
6162 - If we are in 64-bit mode, everything is straightforward.
6163
6164 Note that this code only deals with "live" registers at the top of the
6165 stack. We will attempt to deal with saved registers later, when
025bb325 6166 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6167 interface that can deal with dynamic saved register sizes -- fp
6168 regs could be 32 bits wide in one frame and 64 on the frame above
6169 and below). */
6170
6171/* Copy a 32-bit single-precision value from the current frame
6172 into rare_buffer. */
6173
6174static void
e11c53d2 6175mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6176 gdb_byte *rare_buffer)
dd824b04 6177{
72a155b4
UW
6178 struct gdbarch *gdbarch = get_frame_arch (frame);
6179 int raw_size = register_size (gdbarch, regno);
224c3ddb 6180 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
dd824b04 6181
ca9d61b9 6182 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6183 error (_("can't read register %d (%s)"),
72a155b4 6184 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6185 if (raw_size == 8)
6186 {
6187 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6188 32 bits. */
dd824b04
DJ
6189 int offset;
6190
72a155b4 6191 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6192 offset = 4;
6193 else
6194 offset = 0;
6195
6196 memcpy (rare_buffer, raw_buffer + offset, 4);
6197 }
6198 else
6199 {
6200 memcpy (rare_buffer, raw_buffer, 4);
6201 }
6202}
6203
6204/* Copy a 64-bit double-precision value from the current frame into
6205 rare_buffer. This may include getting half of it from the next
6206 register. */
6207
6208static void
e11c53d2 6209mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6210 gdb_byte *rare_buffer)
dd824b04 6211{
72a155b4
UW
6212 struct gdbarch *gdbarch = get_frame_arch (frame);
6213 int raw_size = register_size (gdbarch, regno);
dd824b04 6214
9c9acae0 6215 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6216 {
6217 /* We have a 64-bit value for this register, and we should use
6d82d43b 6218 all 64 bits. */
ca9d61b9 6219 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6220 error (_("can't read register %d (%s)"),
72a155b4 6221 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6222 }
6223 else
6224 {
72a155b4 6225 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6226
72a155b4 6227 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6228 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6229 _("mips_read_fp_register_double: bad access to "
6230 "odd-numbered FP register"));
dd824b04
DJ
6231
6232 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6233 each register. */
72a155b4 6234 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6235 {
e11c53d2
AC
6236 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6237 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6238 }
361d1df0 6239 else
dd824b04 6240 {
e11c53d2
AC
6241 mips_read_fp_register_single (frame, regno, rare_buffer);
6242 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6243 }
6244 }
6245}
6246
c906108c 6247static void
e11c53d2
AC
6248mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6249 int regnum)
025bb325 6250{ /* Do values for FP (float) regs. */
72a155b4 6251 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6252 gdb_byte *raw_buffer;
025bb325 6253 double doub, flt1; /* Doubles extracted from raw hex data. */
3903d437 6254 int inv1, inv2;
c5aa993b 6255
224c3ddb
SM
6256 raw_buffer
6257 = ((gdb_byte *)
6258 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
c906108c 6259
72a155b4 6260 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6261 fprintf_filtered (file, "%*s",
72a155b4 6262 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6263 "");
f0ef6b29 6264
72a155b4 6265 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6266 {
79a45b7d
TT
6267 struct value_print_options opts;
6268
f0ef6b29
KB
6269 /* 4-byte registers: Print hex and floating. Also print even
6270 numbered registers as doubles. */
e11c53d2 6271 mips_read_fp_register_single (frame, regnum, raw_buffer);
025bb325
MS
6272 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6273 raw_buffer, &inv1);
c5aa993b 6274
79a45b7d 6275 get_formatted_print_options (&opts, 'x');
df4df182
UW
6276 print_scalar_formatted (raw_buffer,
6277 builtin_type (gdbarch)->builtin_uint32,
6278 &opts, 'w', file);
dd824b04 6279
e11c53d2 6280 fprintf_filtered (file, " flt: ");
1adad886 6281 if (inv1)
e11c53d2 6282 fprintf_filtered (file, " <invalid float> ");
1adad886 6283 else
e11c53d2 6284 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6285
72a155b4 6286 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6287 {
e11c53d2 6288 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6289 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6290 raw_buffer, &inv2);
1adad886 6291
e11c53d2 6292 fprintf_filtered (file, " dbl: ");
f0ef6b29 6293 if (inv2)
e11c53d2 6294 fprintf_filtered (file, "<invalid double>");
f0ef6b29 6295 else
e11c53d2 6296 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 6297 }
c906108c
SS
6298 }
6299 else
dd824b04 6300 {
79a45b7d
TT
6301 struct value_print_options opts;
6302
f0ef6b29 6303 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6304 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
6305 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6306 raw_buffer, &inv1);
c906108c 6307
e11c53d2 6308 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6309 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6310 raw_buffer, &inv2);
f0ef6b29 6311
79a45b7d 6312 get_formatted_print_options (&opts, 'x');
df4df182
UW
6313 print_scalar_formatted (raw_buffer,
6314 builtin_type (gdbarch)->builtin_uint64,
6315 &opts, 'g', file);
f0ef6b29 6316
e11c53d2 6317 fprintf_filtered (file, " flt: ");
1adad886 6318 if (inv1)
e11c53d2 6319 fprintf_filtered (file, "<invalid float>");
1adad886 6320 else
e11c53d2 6321 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6322
e11c53d2 6323 fprintf_filtered (file, " dbl: ");
f0ef6b29 6324 if (inv2)
e11c53d2 6325 fprintf_filtered (file, "<invalid double>");
1adad886 6326 else
e11c53d2 6327 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
6328 }
6329}
6330
6331static void
e11c53d2 6332mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6333 int regnum)
f0ef6b29 6334{
a4b8ebc8 6335 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6336 struct value_print_options opts;
de15c4ab 6337 struct value *val;
1adad886 6338
004159a2 6339 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6340 {
e11c53d2 6341 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6342 return;
6343 }
6344
de15c4ab 6345 val = get_frame_register_value (frame, regnum);
f0ef6b29 6346
72a155b4 6347 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6348
6349 /* The problem with printing numeric register names (r26, etc.) is that
6350 the user can't use them on input. Probably the best solution is to
6351 fix it so that either the numeric or the funky (a2, etc.) names
6352 are accepted on input. */
6353 if (regnum < MIPS_NUMREGS)
e11c53d2 6354 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6355 else
e11c53d2 6356 fprintf_filtered (file, ": ");
f0ef6b29 6357
79a45b7d 6358 get_formatted_print_options (&opts, 'x');
de15c4ab 6359 val_print_scalar_formatted (value_type (val),
de15c4ab
PA
6360 value_embedded_offset (val),
6361 val,
6362 &opts, 0, file);
c906108c
SS
6363}
6364
1bab7383
YQ
6365/* Print IEEE exception condition bits in FLAGS. */
6366
6367static void
6368print_fpu_flags (struct ui_file *file, int flags)
6369{
6370 if (flags & (1 << 0))
6371 fputs_filtered (" inexact", file);
6372 if (flags & (1 << 1))
6373 fputs_filtered (" uflow", file);
6374 if (flags & (1 << 2))
6375 fputs_filtered (" oflow", file);
6376 if (flags & (1 << 3))
6377 fputs_filtered (" div0", file);
6378 if (flags & (1 << 4))
6379 fputs_filtered (" inval", file);
6380 if (flags & (1 << 5))
6381 fputs_filtered (" unimp", file);
6382 fputc_filtered ('\n', file);
6383}
6384
6385/* Print interesting information about the floating point processor
6386 (if present) or emulator. */
6387
6388static void
6389mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6390 struct frame_info *frame, const char *args)
6391{
6392 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6393 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6394 ULONGEST fcs = 0;
6395 int i;
6396
6397 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6398 type = MIPS_FPU_NONE;
6399
6400 fprintf_filtered (file, "fpu type: %s\n",
6401 type == MIPS_FPU_DOUBLE ? "double-precision"
6402 : type == MIPS_FPU_SINGLE ? "single-precision"
6403 : "none / unused");
6404
6405 if (type == MIPS_FPU_NONE)
6406 return;
6407
6408 fprintf_filtered (file, "reg size: %d bits\n",
6409 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6410
6411 fputs_filtered ("cond :", file);
6412 if (fcs & (1 << 23))
6413 fputs_filtered (" 0", file);
6414 for (i = 1; i <= 7; i++)
6415 if (fcs & (1 << (24 + i)))
6416 fprintf_filtered (file, " %d", i);
6417 fputc_filtered ('\n', file);
6418
6419 fputs_filtered ("cause :", file);
6420 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6421 fputs ("mask :", stdout);
6422 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6423 fputs ("flags :", stdout);
6424 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6425
6426 fputs_filtered ("rounding: ", file);
6427 switch (fcs & 3)
6428 {
6429 case 0: fputs_filtered ("nearest\n", file); break;
6430 case 1: fputs_filtered ("zero\n", file); break;
6431 case 2: fputs_filtered ("+inf\n", file); break;
6432 case 3: fputs_filtered ("-inf\n", file); break;
6433 }
6434
6435 fputs_filtered ("flush :", file);
6436 if (fcs & (1 << 21))
6437 fputs_filtered (" nearest", file);
6438 if (fcs & (1 << 22))
6439 fputs_filtered (" override", file);
6440 if (fcs & (1 << 24))
6441 fputs_filtered (" zero", file);
6442 if ((fcs & (0xb << 21)) == 0)
6443 fputs_filtered (" no", file);
6444 fputc_filtered ('\n', file);
6445
6446 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6447 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6448 fputc_filtered ('\n', file);
6449
6450 default_print_float_info (gdbarch, file, frame, args);
6451}
6452
f0ef6b29
KB
6453/* Replacement for generic do_registers_info.
6454 Print regs in pretty columns. */
6455
6456static int
e11c53d2
AC
6457print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6458 int regnum)
f0ef6b29 6459{
e11c53d2
AC
6460 fprintf_filtered (file, " ");
6461 mips_print_fp_register (file, frame, regnum);
6462 fprintf_filtered (file, "\n");
f0ef6b29
KB
6463 return regnum + 1;
6464}
6465
6466
025bb325 6467/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6468
6469static int
e11c53d2 6470print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6471 int start_regnum)
c906108c 6472{
a4b8ebc8 6473 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6474 /* Do values for GP (int) regs. */
47a35522 6475 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
025bb325
MS
6476 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6477 per row. */
c906108c 6478 int col, byte;
a4b8ebc8 6479 int regnum;
c906108c 6480
025bb325 6481 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6482 for (col = 0, regnum = start_regnum;
72a155b4
UW
6483 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6484 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6485 regnum++)
c906108c 6486 {
72a155b4 6487 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6488 continue; /* unused register */
004159a2 6489 if (mips_float_register_p (gdbarch, regnum))
025bb325 6490 break; /* End the row: reached FP register. */
0cc93a06 6491 /* Large registers are handled separately. */
72a155b4 6492 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6493 {
6494 if (col > 0)
6495 break; /* End the row before this register. */
6496
6497 /* Print this register on a row by itself. */
6498 mips_print_register (file, frame, regnum);
6499 fprintf_filtered (file, "\n");
6500 return regnum + 1;
6501 }
d05f6826
DJ
6502 if (col == 0)
6503 fprintf_filtered (file, " ");
6d82d43b 6504 fprintf_filtered (file,
72a155b4
UW
6505 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6506 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6507 col++;
6508 }
d05f6826
DJ
6509
6510 if (col == 0)
6511 return regnum;
6512
025bb325 6513 /* Print the R0 to R31 names. */
72a155b4 6514 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6515 fprintf_filtered (file, "\n R%-4d",
72a155b4 6516 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6517 else
6518 fprintf_filtered (file, "\n ");
c906108c 6519
025bb325 6520 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6521 for (col = 0, regnum = start_regnum;
72a155b4
UW
6522 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6523 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6524 regnum++)
c906108c 6525 {
72a155b4 6526 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6527 continue; /* unused register */
004159a2 6528 if (mips_float_register_p (gdbarch, regnum))
025bb325 6529 break; /* End row: reached FP register. */
72a155b4 6530 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6531 break; /* End row: large register. */
6532
c906108c 6533 /* OK: get the data in raw format. */
ca9d61b9 6534 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
c9f4d572 6535 error (_("can't read register %d (%s)"),
72a155b4 6536 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 6537 /* pad small registers */
4246e332 6538 for (byte = 0;
72a155b4
UW
6539 byte < (mips_abi_regsize (gdbarch)
6540 - register_size (gdbarch, regnum)); byte++)
c906108c 6541 printf_filtered (" ");
025bb325 6542 /* Now print the register value in hex, endian order. */
72a155b4 6543 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6544 for (byte =
72a155b4
UW
6545 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6546 byte < register_size (gdbarch, regnum); byte++)
47a35522 6547 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6548 else
72a155b4 6549 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6550 byte >= 0; byte--)
47a35522 6551 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6552 fprintf_filtered (file, " ");
c906108c
SS
6553 col++;
6554 }
025bb325 6555 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6556 fprintf_filtered (file, "\n");
c906108c
SS
6557
6558 return regnum;
6559}
6560
025bb325 6561/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6562
bf1f5b4c 6563static void
e11c53d2
AC
6564mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6565 struct frame_info *frame, int regnum, int all)
c906108c 6566{
025bb325 6567 if (regnum != -1) /* Do one specified register. */
c906108c 6568 {
72a155b4
UW
6569 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6570 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6571 error (_("Not a valid register for the current processor type"));
c906108c 6572
0cc93a06 6573 mips_print_register (file, frame, regnum);
e11c53d2 6574 fprintf_filtered (file, "\n");
c906108c 6575 }
c5aa993b 6576 else
025bb325 6577 /* Do all (or most) registers. */
c906108c 6578 {
72a155b4
UW
6579 regnum = gdbarch_num_regs (gdbarch);
6580 while (regnum < gdbarch_num_regs (gdbarch)
6581 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6582 {
004159a2 6583 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6584 {
025bb325 6585 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6586 regnum = print_fp_register_row (file, frame, regnum);
6587 else
025bb325 6588 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6589 }
c906108c 6590 else
e11c53d2 6591 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6592 }
6593 }
6594}
6595
63807e1d 6596static int
3352ef37
AC
6597mips_single_step_through_delay (struct gdbarch *gdbarch,
6598 struct frame_info *frame)
c906108c 6599{
e17a4113 6600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 6601 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6602 struct address_space *aspace;
6603 enum mips_isa isa;
6604 ULONGEST insn;
6605 int status;
6606 int size;
6607
6608 if ((mips_pc_is_mips (pc)
ab50adb6 6609 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6610 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6611 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6612 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6613 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6614 return 0;
6615
4cc0665f
MR
6616 isa = mips_pc_isa (gdbarch, pc);
6617 /* _has_delay_slot above will have validated the read. */
6618 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6619 size = mips_insn_size (isa, insn);
6620 aspace = get_frame_address_space (frame);
6621 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6622}
6623
6d82d43b
AC
6624/* To skip prologues, I use this predicate. Returns either PC itself
6625 if the code at PC does not look like a function prologue; otherwise
6626 returns an address that (if we're lucky) follows the prologue. If
6627 LENIENT, then we must skip everything which is involved in setting
6628 up the frame (it's OK to skip more, just so long as we don't skip
6629 anything which might clobber the registers which are being saved.
6630 We must skip more in the case where part of the prologue is in the
6631 delay slot of a non-prologue instruction). */
6632
6633static CORE_ADDR
6093d2eb 6634mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6635{
8b622e6a
AC
6636 CORE_ADDR limit_pc;
6637 CORE_ADDR func_addr;
6638
6d82d43b
AC
6639 /* See if we can determine the end of the prologue via the symbol table.
6640 If so, then return either PC, or the PC after the prologue, whichever
6641 is greater. */
8b622e6a
AC
6642 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6643 {
d80b854b
UW
6644 CORE_ADDR post_prologue_pc
6645 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a 6646 if (post_prologue_pc != 0)
325fac50 6647 return std::max (pc, post_prologue_pc);
8b622e6a 6648 }
6d82d43b
AC
6649
6650 /* Can't determine prologue from the symbol table, need to examine
6651 instructions. */
6652
98b4dd94
JB
6653 /* Find an upper limit on the function prologue using the debug
6654 information. If the debug information could not be used to provide
6655 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6656 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6657 if (limit_pc == 0)
6658 limit_pc = pc + 100; /* Magic. */
6659
4cc0665f 6660 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6661 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6662 else if (mips_pc_is_micromips (gdbarch, pc))
6663 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6664 else
e17a4113 6665 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6666}
6667
c9cf6e20
MG
6668/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6669 This is a helper function for mips_stack_frame_destroyed_p. */
6670
97ab0fdd 6671static int
c9cf6e20 6672mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6673{
6674 CORE_ADDR func_addr = 0, func_end = 0;
6675
6676 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6677 {
6678 /* The MIPS epilogue is max. 12 bytes long. */
6679 CORE_ADDR addr = func_end - 12;
6680
6681 if (addr < func_addr + 4)
6682 addr = func_addr + 4;
6683 if (pc < addr)
6684 return 0;
6685
6686 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6687 {
6688 unsigned long high_word;
6689 unsigned long inst;
6690
4cc0665f 6691 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6692 high_word = (inst >> 16) & 0xffff;
6693
6694 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6695 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6696 && inst != 0x03e00008 /* jr $ra */
6697 && inst != 0x00000000) /* nop */
6698 return 0;
6699 }
6700
6701 return 1;
6702 }
6703
6704 return 0;
6705}
6706
c9cf6e20
MG
6707/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6708 This is a helper function for mips_stack_frame_destroyed_p. */
4cc0665f
MR
6709
6710static int
c9cf6e20 6711micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
6712{
6713 CORE_ADDR func_addr = 0;
6714 CORE_ADDR func_end = 0;
6715 CORE_ADDR addr;
6716 ULONGEST insn;
6717 long offset;
6718 int dreg;
6719 int sreg;
6720 int loc;
6721
6722 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6723 return 0;
6724
6725 /* The microMIPS epilogue is max. 12 bytes long. */
6726 addr = func_end - 12;
6727
6728 if (addr < func_addr + 2)
6729 addr = func_addr + 2;
6730 if (pc < addr)
6731 return 0;
6732
6733 for (; pc < func_end; pc += loc)
6734 {
6735 loc = 0;
6736 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6737 loc += MIPS_INSN16_SIZE;
6738 switch (mips_insn_size (ISA_MICROMIPS, insn))
6739 {
4cc0665f
MR
6740 /* 32-bit instructions. */
6741 case 2 * MIPS_INSN16_SIZE:
6742 insn <<= 16;
6743 insn |= mips_fetch_instruction (gdbarch,
6744 ISA_MICROMIPS, pc + loc, NULL);
6745 loc += MIPS_INSN16_SIZE;
6746 switch (micromips_op (insn >> 16))
6747 {
6748 case 0xc: /* ADDIU: bits 001100 */
6749 case 0x17: /* DADDIU: bits 010111 */
6750 sreg = b0s5_reg (insn >> 16);
6751 dreg = b5s5_reg (insn >> 16);
6752 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6753 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6754 /* (D)ADDIU $sp, imm */
6755 && offset >= 0)
6756 break;
6757 return 0;
6758
6759 default:
6760 return 0;
6761 }
6762 break;
6763
6764 /* 16-bit instructions. */
6765 case MIPS_INSN16_SIZE:
6766 switch (micromips_op (insn))
6767 {
6768 case 0x3: /* MOVE: bits 000011 */
6769 sreg = b0s5_reg (insn);
6770 dreg = b5s5_reg (insn);
6771 if (sreg == 0 && dreg == 0)
6772 /* MOVE $zero, $zero aka NOP */
6773 break;
6774 return 0;
6775
6776 case 0x11: /* POOL16C: bits 010001 */
6777 if (b5s5_op (insn) == 0x18
6778 /* JRADDIUSP: bits 010011 11000 */
6779 || (b5s5_op (insn) == 0xd
6780 /* JRC: bits 010011 01101 */
6781 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6782 /* JRC $ra */
6783 break;
6784 return 0;
6785
6786 case 0x13: /* POOL16D: bits 010011 */
6787 offset = micromips_decode_imm9 (b1s9_imm (insn));
6788 if ((insn & 0x1) == 0x1
6789 /* ADDIUSP: bits 010011 1 */
6790 && offset > 0)
6791 break;
6792 return 0;
6793
6794 default:
6795 return 0;
6796 }
6797 }
6798 }
6799
6800 return 1;
6801}
6802
c9cf6e20
MG
6803/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6804 This is a helper function for mips_stack_frame_destroyed_p. */
6805
97ab0fdd 6806static int
c9cf6e20 6807mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6808{
6809 CORE_ADDR func_addr = 0, func_end = 0;
6810
6811 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6812 {
6813 /* The MIPS epilogue is max. 12 bytes long. */
6814 CORE_ADDR addr = func_end - 12;
6815
6816 if (addr < func_addr + 4)
6817 addr = func_addr + 4;
6818 if (pc < addr)
6819 return 0;
6820
6821 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6822 {
6823 unsigned short inst;
6824
4cc0665f 6825 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6826
6827 if ((inst & 0xf800) == 0xf000) /* extend */
6828 continue;
6829
6830 if (inst != 0x6300 /* addiu $sp,offset */
6831 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6832 && inst != 0xe820 /* jr $ra */
6833 && inst != 0xe8a0 /* jrc $ra */
6834 && inst != 0x6500) /* nop */
6835 return 0;
6836 }
6837
6838 return 1;
6839 }
6840
6841 return 0;
6842}
6843
c9cf6e20
MG
6844/* Implement the stack_frame_destroyed_p gdbarch method.
6845
6846 The epilogue is defined here as the area at the end of a function,
97ab0fdd 6847 after an instruction which destroys the function's stack frame. */
c9cf6e20 6848
97ab0fdd 6849static int
c9cf6e20 6850mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd 6851{
4cc0665f 6852 if (mips_pc_is_mips16 (gdbarch, pc))
c9cf6e20 6853 return mips16_stack_frame_destroyed_p (gdbarch, pc);
4cc0665f 6854 else if (mips_pc_is_micromips (gdbarch, pc))
c9cf6e20 6855 return micromips_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd 6856 else
c9cf6e20 6857 return mips32_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd
MR
6858}
6859
025bb325 6860/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6861 used for all MIPS-specific commands. */
6862
a5ea2558 6863static void
acdb74a0 6864show_mips_command (char *args, int from_tty)
a5ea2558
AC
6865{
6866 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6867}
6868
a5ea2558 6869static void
acdb74a0 6870set_mips_command (char *args, int from_tty)
a5ea2558 6871{
6d82d43b
AC
6872 printf_unfiltered
6873 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6874 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6875}
6876
c906108c
SS
6877/* Commands to show/set the MIPS FPU type. */
6878
c906108c 6879static void
acdb74a0 6880show_mipsfpu_command (char *args, int from_tty)
c906108c 6881{
c906108c 6882 char *fpu;
6ca0852e 6883
f5656ead 6884 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6885 {
6886 printf_unfiltered
6887 ("The MIPS floating-point coprocessor is unknown "
6888 "because the current architecture is not MIPS.\n");
6889 return;
6890 }
6891
f5656ead 6892 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6893 {
6894 case MIPS_FPU_SINGLE:
6895 fpu = "single-precision";
6896 break;
6897 case MIPS_FPU_DOUBLE:
6898 fpu = "double-precision";
6899 break;
6900 case MIPS_FPU_NONE:
6901 fpu = "absent (none)";
6902 break;
93d56215 6903 default:
e2e0b3e5 6904 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6905 }
6906 if (mips_fpu_type_auto)
025bb325
MS
6907 printf_unfiltered ("The MIPS floating-point coprocessor "
6908 "is set automatically (currently %s)\n",
6909 fpu);
c906108c 6910 else
6d82d43b
AC
6911 printf_unfiltered
6912 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6913}
6914
6915
c906108c 6916static void
acdb74a0 6917set_mipsfpu_command (char *args, int from_tty)
c906108c 6918{
025bb325
MS
6919 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6920 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6921 show_mipsfpu_command (args, from_tty);
6922}
6923
c906108c 6924static void
acdb74a0 6925set_mipsfpu_single_command (char *args, int from_tty)
c906108c 6926{
8d5838b5
AC
6927 struct gdbarch_info info;
6928 gdbarch_info_init (&info);
c906108c
SS
6929 mips_fpu_type = MIPS_FPU_SINGLE;
6930 mips_fpu_type_auto = 0;
8d5838b5
AC
6931 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6932 instead of relying on globals. Doing that would let generic code
6933 handle the search for this specific architecture. */
6934 if (!gdbarch_update_p (info))
e2e0b3e5 6935 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6936}
6937
c906108c 6938static void
acdb74a0 6939set_mipsfpu_double_command (char *args, int from_tty)
c906108c 6940{
8d5838b5
AC
6941 struct gdbarch_info info;
6942 gdbarch_info_init (&info);
c906108c
SS
6943 mips_fpu_type = MIPS_FPU_DOUBLE;
6944 mips_fpu_type_auto = 0;
8d5838b5
AC
6945 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6946 instead of relying on globals. Doing that would let generic code
6947 handle the search for this specific architecture. */
6948 if (!gdbarch_update_p (info))
e2e0b3e5 6949 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6950}
6951
c906108c 6952static void
acdb74a0 6953set_mipsfpu_none_command (char *args, int from_tty)
c906108c 6954{
8d5838b5
AC
6955 struct gdbarch_info info;
6956 gdbarch_info_init (&info);
c906108c
SS
6957 mips_fpu_type = MIPS_FPU_NONE;
6958 mips_fpu_type_auto = 0;
8d5838b5
AC
6959 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6960 instead of relying on globals. Doing that would let generic code
6961 handle the search for this specific architecture. */
6962 if (!gdbarch_update_p (info))
e2e0b3e5 6963 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6964}
6965
c906108c 6966static void
acdb74a0 6967set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
6968{
6969 mips_fpu_type_auto = 1;
6970}
6971
c906108c
SS
6972/* Just like reinit_frame_cache, but with the right arguments to be
6973 callable as an sfunc. */
6974
6975static void
acdb74a0
AC
6976reinit_frame_cache_sfunc (char *args, int from_tty,
6977 struct cmd_list_element *c)
c906108c
SS
6978{
6979 reinit_frame_cache ();
6980}
6981
a89aa300
AC
6982static int
6983gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 6984{
19ba03f4 6985 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
4cc0665f 6986
d31431ed
AC
6987 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6988 disassembler needs to be able to locally determine the ISA, and
6989 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6990 work. */
4cc0665f 6991 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 6992 info->mach = bfd_mach_mips16;
4cc0665f
MR
6993 else if (mips_pc_is_micromips (gdbarch, memaddr))
6994 info->mach = bfd_mach_mips_micromips;
c906108c
SS
6995
6996 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
6997 memaddr &= (info->mach == bfd_mach_mips16
6998 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 6999
e5ab0dce 7000 /* Set the disassembler options. */
9dae60cc 7001 if (!info->disassembler_options)
e5ab0dce
AC
7002 /* This string is not recognized explicitly by the disassembler,
7003 but it tells the disassembler to not try to guess the ABI from
7004 the bfd elf headers, such that, if the user overrides the ABI
7005 of a program linked as NewABI, the disassembly will follow the
7006 register naming conventions specified by the user. */
7007 info->disassembler_options = "gpr-names=32";
7008
c906108c 7009 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 7010 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
7011 return print_insn_big_mips (memaddr, info);
7012 else
7013 return print_insn_little_mips (memaddr, info);
7014}
7015
9dae60cc
UW
7016static int
7017gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7018{
7019 /* Set up the disassembler info, so that we get the right
7020 register names from libopcodes. */
7021 info->disassembler_options = "gpr-names=n32";
7022 info->flavour = bfd_target_elf_flavour;
7023
7024 return gdb_print_insn_mips (memaddr, info);
7025}
7026
7027static int
7028gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7029{
7030 /* Set up the disassembler info, so that we get the right
7031 register names from libopcodes. */
7032 info->disassembler_options = "gpr-names=64";
7033 info->flavour = bfd_target_elf_flavour;
7034
7035 return gdb_print_insn_mips (memaddr, info);
7036}
7037
cd6c3b4f
YQ
7038/* Implement the breakpoint_kind_from_pc gdbarch method. */
7039
d19280ad
YQ
7040static int
7041mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
c906108c 7042{
4cc0665f
MR
7043 CORE_ADDR pc = *pcptr;
7044
d19280ad 7045 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7046 {
d19280ad
YQ
7047 *pcptr = unmake_compact_addr (pc);
7048 return MIPS_BP_KIND_MIPS16;
7049 }
7050 else if (mips_pc_is_micromips (gdbarch, pc))
7051 {
7052 ULONGEST insn;
7053 int status;
c906108c 7054
d19280ad
YQ
7055 *pcptr = unmake_compact_addr (pc);
7056 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7057 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7058 return MIPS_BP_KIND_MICROMIPS16;
7059 else
7060 return MIPS_BP_KIND_MICROMIPS32;
c906108c
SS
7061 }
7062 else
d19280ad
YQ
7063 return MIPS_BP_KIND_MIPS32;
7064}
7065
cd6c3b4f
YQ
7066/* Implement the sw_breakpoint_from_kind gdbarch method. */
7067
d19280ad
YQ
7068static const gdb_byte *
7069mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7070{
7071 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7072
7073 switch (kind)
c906108c 7074 {
d19280ad
YQ
7075 case MIPS_BP_KIND_MIPS16:
7076 {
7077 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7078 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7079
7080 *size = 2;
7081 if (byte_order_for_code == BFD_ENDIAN_BIG)
7082 return mips16_big_breakpoint;
7083 else
c906108c 7084 return mips16_little_breakpoint;
d19280ad
YQ
7085 }
7086 case MIPS_BP_KIND_MICROMIPS16:
7087 {
7088 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7089 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7090
7091 *size = 2;
7092
7093 if (byte_order_for_code == BFD_ENDIAN_BIG)
7094 return micromips16_big_breakpoint;
7095 else
7096 return micromips16_little_breakpoint;
7097 }
7098 case MIPS_BP_KIND_MICROMIPS32:
7099 {
7100 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7101 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7102
7103 *size = 4;
7104 if (byte_order_for_code == BFD_ENDIAN_BIG)
7105 return micromips32_big_breakpoint;
7106 else
7107 return micromips32_little_breakpoint;
7108 }
7109 case MIPS_BP_KIND_MIPS32:
7110 {
7111 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7112 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
c906108c 7113
d19280ad
YQ
7114 *size = 4;
7115 if (byte_order_for_code == BFD_ENDIAN_BIG)
7116 return big_breakpoint;
7117 else
7e3d947d 7118 return little_breakpoint;
d19280ad
YQ
7119 }
7120 default:
7121 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7122 };
c906108c
SS
7123}
7124
ab50adb6
MR
7125/* Return non-zero if the standard MIPS instruction INST has a branch
7126 delay slot (i.e. it is a jump or branch instruction). This function
7127 is based on mips32_next_pc. */
c8cef75f
MR
7128
7129static int
ab50adb6 7130mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7131{
c8cef75f 7132 int op;
a385295e
MR
7133 int rs;
7134 int rt;
c8cef75f 7135
c8cef75f
MR
7136 op = itype_op (inst);
7137 if ((inst & 0xe0000000) != 0)
a385295e
MR
7138 {
7139 rs = itype_rs (inst);
7140 rt = itype_rt (inst);
f94363d7
AP
7141 return (is_octeon_bbit_op (op, gdbarch)
7142 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7143 || op == 29 /* JALX: bits 011101 */
7144 || (op == 17
7145 && (rs == 8
c8cef75f 7146 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7147 || (rs == 9 && (rt & 0x2) == 0)
7148 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7149 || (rs == 10 && (rt & 0x2) == 0))));
7150 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7151 }
c8cef75f
MR
7152 else
7153 switch (op & 0x07) /* extract bits 28,27,26 */
7154 {
7155 case 0: /* SPECIAL */
7156 op = rtype_funct (inst);
7157 return (op == 8 /* JR */
7158 || op == 9); /* JALR */
7159 break; /* end SPECIAL */
7160 case 1: /* REGIMM */
a385295e
MR
7161 rs = itype_rs (inst);
7162 rt = itype_rt (inst); /* branch condition */
7163 return ((rt & 0xc) == 0
c8cef75f
MR
7164 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7165 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7166 || ((rt & 0x1e) == 0x1c && rs == 0));
7167 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7168 break; /* end REGIMM */
7169 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7170 return 1;
7171 break;
7172 }
7173}
7174
ab50adb6
MR
7175/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7176 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7177
4cc0665f 7178static int
ab50adb6 7179mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7180{
7181 ULONGEST insn;
7182 int status;
7183
ab50adb6 7184 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7185 if (status)
7186 return 0;
7187
ab50adb6
MR
7188 return mips32_instruction_has_delay_slot (gdbarch, insn);
7189}
4cc0665f 7190
ab50adb6
MR
7191/* Return non-zero if the microMIPS instruction INSN, comprising the
7192 16-bit major opcode word in the high 16 bits and any second word
7193 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7194 jump or branch instruction). The instruction must be 32-bit if
7195 MUSTBE32 is set or can be any instruction otherwise. */
7196
7197static int
7198micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7199{
7200 ULONGEST major = insn >> 16;
4cc0665f 7201
ab50adb6
MR
7202 switch (micromips_op (major))
7203 {
7204 /* 16-bit instructions. */
7205 case 0x33: /* B16: bits 110011 */
7206 case 0x2b: /* BNEZ16: bits 101011 */
7207 case 0x23: /* BEQZ16: bits 100011 */
7208 return !mustbe32;
7209 case 0x11: /* POOL16C: bits 010001 */
7210 return (!mustbe32
7211 && ((b5s5_op (major) == 0xc
7212 /* JR16: bits 010001 01100 */
7213 || (b5s5_op (major) & 0x1e) == 0xe)));
7214 /* JALR16, JALRS16: bits 010001 0111x */
7215 /* 32-bit instructions. */
7216 case 0x3d: /* JAL: bits 111101 */
7217 case 0x3c: /* JALX: bits 111100 */
7218 case 0x35: /* J: bits 110101 */
7219 case 0x2d: /* BNE: bits 101101 */
7220 case 0x25: /* BEQ: bits 100101 */
7221 case 0x1d: /* JALS: bits 011101 */
7222 return 1;
7223 case 0x10: /* POOL32I: bits 010000 */
7224 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7225 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7226 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7227 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7228 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7229 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7230 || ((b5s5_op (major) & 0x1e) == 0x14
7231 && (major & 0x3) == 0x0)
4cc0665f 7232 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7233 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7234 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7235 || ((b5s5_op (major) & 0x1e) == 0x1c
7236 && (major & 0x3) == 0x0)
4cc0665f 7237 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7238 || ((b5s5_op (major) & 0x1c) == 0x1c
7239 && (major & 0x3) == 0x1));
4cc0665f 7240 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7241 case 0x0: /* POOL32A: bits 000000 */
7242 return (b0s6_op (insn) == 0x3c
7243 /* POOL32Axf: bits 000000 ... 111100 */
7244 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7245 /* JALR, JALR.HB: 000000 000x111100 111100 */
7246 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7247 default:
7248 return 0;
7249 }
4cc0665f
MR
7250}
7251
ab50adb6 7252/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7253 slot (i.e. it is a non-compact jump instruction). The instruction
7254 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7255
c8cef75f 7256static int
ab50adb6
MR
7257micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7258 CORE_ADDR addr, int mustbe32)
c8cef75f 7259{
ab50adb6 7260 ULONGEST insn;
c8cef75f 7261 int status;
3f7f3650 7262 int size;
c8cef75f 7263
ab50adb6 7264 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7265 if (status)
7266 return 0;
3f7f3650 7267 size = mips_insn_size (ISA_MICROMIPS, insn);
ab50adb6 7268 insn <<= 16;
3f7f3650 7269 if (size == 2 * MIPS_INSN16_SIZE)
ab50adb6
MR
7270 {
7271 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7272 if (status)
7273 return 0;
7274 }
7275
7276 return micromips_instruction_has_delay_slot (insn, mustbe32);
7277}
c8cef75f 7278
ab50adb6
MR
7279/* Return non-zero if the MIPS16 instruction INST, which must be
7280 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7281 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7282 instruction). This function is based on mips16_next_pc. */
7283
7284static int
7285mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7286{
ae790652
MR
7287 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7288 return !mustbe32;
c8cef75f
MR
7289 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7290}
7291
ab50adb6
MR
7292/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7293 slot (i.e. it is a non-compact jump instruction). The instruction
7294 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7295
7296static int
7297mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7298 CORE_ADDR addr, int mustbe32)
7299{
7300 unsigned short insn;
7301 int status;
7302
7303 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7304 if (status)
7305 return 0;
7306
7307 return mips16_instruction_has_delay_slot (insn, mustbe32);
7308}
7309
c8cef75f
MR
7310/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7311 This assumes KSSEG exists. */
7312
7313static CORE_ADDR
7314mips_segment_boundary (CORE_ADDR bpaddr)
7315{
7316 CORE_ADDR mask = CORE_ADDR_MAX;
7317 int segsize;
7318
7319 if (sizeof (CORE_ADDR) == 8)
7320 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7321 a compiler warning produced where CORE_ADDR is a 32-bit type even
7322 though in that case this is dead code). */
7323 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7324 {
7325 case 3:
7326 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7327 segsize = 29; /* 32-bit compatibility segment */
7328 else
7329 segsize = 62; /* xkseg */
7330 break;
7331 case 2: /* xkphys */
7332 segsize = 59;
7333 break;
7334 default: /* xksseg (1), xkuseg/kuseg (0) */
7335 segsize = 62;
7336 break;
7337 }
7338 else if (bpaddr & 0x80000000) /* kernel segment */
7339 segsize = 29;
7340 else
7341 segsize = 31; /* user segment */
7342 mask <<= segsize;
7343 return bpaddr & mask;
7344}
7345
7346/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7347 it backwards if necessary. Return the address of the new location. */
7348
7349static CORE_ADDR
7350mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7351{
22e048c9 7352 CORE_ADDR prev_addr;
c8cef75f
MR
7353 CORE_ADDR boundary;
7354 CORE_ADDR func_addr;
7355
7356 /* If a breakpoint is set on the instruction in a branch delay slot,
7357 GDB gets confused. When the breakpoint is hit, the PC isn't on
7358 the instruction in the branch delay slot, the PC will point to
7359 the branch instruction. Since the PC doesn't match any known
7360 breakpoints, GDB reports a trap exception.
7361
7362 There are two possible fixes for this problem.
7363
7364 1) When the breakpoint gets hit, see if the BD bit is set in the
7365 Cause register (which indicates the last exception occurred in a
7366 branch delay slot). If the BD bit is set, fix the PC to point to
7367 the instruction in the branch delay slot.
7368
7369 2) When the user sets the breakpoint, don't allow him to set the
7370 breakpoint on the instruction in the branch delay slot. Instead
7371 move the breakpoint to the branch instruction (which will have
7372 the same result).
7373
7374 The problem with the first solution is that if the user then
7375 single-steps the processor, the branch instruction will get
7376 skipped (since GDB thinks the PC is on the instruction in the
7377 branch delay slot).
7378
7379 So, we'll use the second solution. To do this we need to know if
7380 the instruction we're trying to set the breakpoint on is in the
7381 branch delay slot. */
7382
7383 boundary = mips_segment_boundary (bpaddr);
7384
7385 /* Make sure we don't scan back before the beginning of the current
7386 function, since we may fetch constant data or insns that look like
7387 a jump. Of course we might do that anyway if the compiler has
7388 moved constants inline. :-( */
7389 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7390 && func_addr > boundary && func_addr <= bpaddr)
7391 boundary = func_addr;
7392
4cc0665f 7393 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7394 {
7395 if (bpaddr == boundary)
7396 return bpaddr;
7397
7398 /* If the previous instruction has a branch delay slot, we have
7399 to move the breakpoint to the branch instruction. */
7400 prev_addr = bpaddr - 4;
ab50adb6 7401 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7402 bpaddr = prev_addr;
7403 }
7404 else
7405 {
ab50adb6 7406 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7407 CORE_ADDR addr, jmpaddr;
7408 int i;
7409
4cc0665f 7410 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7411
7412 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7413 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7414 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7415 The microMIPS ASE has a whole range of jumps and branches
7416 with delay slots, some of which take 4 bytes and some take
7417 2 bytes, so the idea is the same.
c8cef75f
MR
7418 FIXME: We have to assume that bpaddr is not the second half
7419 of an extended instruction. */
ab50adb6
MR
7420 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7421 ? micromips_insn_at_pc_has_delay_slot
7422 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7423
7424 jmpaddr = 0;
7425 addr = bpaddr;
7426 for (i = 1; i < 4; i++)
7427 {
4cc0665f 7428 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7429 break;
4cc0665f 7430 addr -= MIPS_INSN16_SIZE;
ab50adb6 7431 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7432 /* Looks like a JR/JALR at [target-1], but it could be
7433 the second word of a previous JAL/JALX, so record it
7434 and check back one more. */
7435 jmpaddr = addr;
ab50adb6 7436 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7437 {
7438 if (i == 2)
7439 /* Looks like a JAL/JALX at [target-2], but it could also
7440 be the second word of a previous JAL/JALX, record it,
7441 and check back one more. */
7442 jmpaddr = addr;
7443 else
7444 /* Looks like a JAL/JALX at [target-3], so any previously
7445 recorded JAL/JALX or JR/JALR must be wrong, because:
7446
7447 >-3: JAL
7448 -2: JAL-ext (can't be JAL/JALX)
7449 -1: bdslot (can't be JR/JALR)
7450 0: target insn
7451
7452 Of course it could be another JAL-ext which looks
7453 like a JAL, but in that case we'd have broken out
7454 of this loop at [target-2]:
7455
7456 -4: JAL
7457 >-3: JAL-ext
7458 -2: bdslot (can't be jmp)
7459 -1: JR/JALR
7460 0: target insn */
7461 jmpaddr = 0;
7462 }
7463 else
7464 {
7465 /* Not a jump instruction: if we're at [target-1] this
7466 could be the second word of a JAL/JALX, so continue;
7467 otherwise we're done. */
7468 if (i > 1)
7469 break;
7470 }
7471 }
7472
7473 if (jmpaddr)
7474 bpaddr = jmpaddr;
7475 }
7476
7477 return bpaddr;
7478}
7479
14132e89
MR
7480/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7481 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7482
7483static int
7484mips_is_stub_suffix (const char *suffix, int zero)
7485{
7486 switch (suffix[0])
7487 {
7488 case '0':
7489 return zero && suffix[1] == '\0';
7490 case '1':
7491 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7492 case '2':
7493 case '5':
7494 case '6':
7495 case '9':
7496 return suffix[1] == '\0';
7497 default:
7498 return 0;
7499 }
7500}
7501
7502/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7503 call stubs, one of sf, df, sc, or dc. */
7504
7505static int
7506mips_is_stub_mode (const char *mode)
7507{
7508 return ((mode[0] == 's' || mode[0] == 'd')
7509 && (mode[1] == 'f' || mode[1] == 'c'));
7510}
7511
7512/* Code at PC is a compiler-generated stub. Such a stub for a function
7513 bar might have a name like __fn_stub_bar, and might look like this:
7514
7515 mfc1 $4, $f13
7516 mfc1 $5, $f12
7517 mfc1 $6, $f15
7518 mfc1 $7, $f14
7519
7520 followed by (or interspersed with):
7521
7522 j bar
7523
7524 or:
7525
7526 lui $25, %hi(bar)
7527 addiu $25, $25, %lo(bar)
7528 jr $25
7529
7530 ($1 may be used in old code; for robustness we accept any register)
7531 or, in PIC code:
7532
7533 lui $28, %hi(_gp_disp)
7534 addiu $28, $28, %lo(_gp_disp)
7535 addu $28, $28, $25
7536 lw $25, %got(bar)
7537 addiu $25, $25, %lo(bar)
7538 jr $25
7539
7540 In the case of a __call_stub_bar stub, the sequence to set up
7541 arguments might look like this:
7542
7543 mtc1 $4, $f13
7544 mtc1 $5, $f12
7545 mtc1 $6, $f15
7546 mtc1 $7, $f14
7547
7548 followed by (or interspersed with) one of the jump sequences above.
7549
7550 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7551 of J or JR, respectively, followed by:
7552
7553 mfc1 $2, $f0
7554 mfc1 $3, $f1
7555 jr $18
7556
7557 We are at the beginning of the stub here, and scan down and extract
7558 the target address from the jump immediate instruction or, if a jump
7559 register instruction is used, from the register referred. Return
7560 the value of PC calculated or 0 if inconclusive.
7561
7562 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7563
7564static CORE_ADDR
7565mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7566{
7567 struct gdbarch *gdbarch = get_frame_arch (frame);
7568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7569 int addrreg = MIPS_ZERO_REGNUM;
7570 CORE_ADDR start_pc = pc;
7571 CORE_ADDR target_pc = 0;
7572 CORE_ADDR addr = 0;
7573 CORE_ADDR gp = 0;
7574 int status = 0;
7575 int i;
7576
7577 for (i = 0;
7578 status == 0 && target_pc == 0 && i < 20;
7579 i++, pc += MIPS_INSN32_SIZE)
7580 {
4cc0665f 7581 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7582 CORE_ADDR imm;
7583 int rt;
7584 int rs;
7585 int rd;
7586
7587 switch (itype_op (inst))
7588 {
7589 case 0: /* SPECIAL */
7590 switch (rtype_funct (inst))
7591 {
7592 case 8: /* JR */
7593 case 9: /* JALR */
7594 rs = rtype_rs (inst);
7595 if (rs == MIPS_GP_REGNUM)
7596 target_pc = gp; /* Hmm... */
7597 else if (rs == addrreg)
7598 target_pc = addr;
7599 break;
7600
7601 case 0x21: /* ADDU */
7602 rt = rtype_rt (inst);
7603 rs = rtype_rs (inst);
7604 rd = rtype_rd (inst);
7605 if (rd == MIPS_GP_REGNUM
7606 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7607 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7608 gp += start_pc;
7609 break;
7610 }
7611 break;
7612
7613 case 2: /* J */
7614 case 3: /* JAL */
7615 target_pc = jtype_target (inst) << 2;
7616 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7617 break;
7618
7619 case 9: /* ADDIU */
7620 rt = itype_rt (inst);
7621 rs = itype_rs (inst);
7622 if (rt == rs)
7623 {
7624 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7625 if (rt == MIPS_GP_REGNUM)
7626 gp += imm;
7627 else if (rt == addrreg)
7628 addr += imm;
7629 }
7630 break;
7631
7632 case 0xf: /* LUI */
7633 rt = itype_rt (inst);
7634 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7635 if (rt == MIPS_GP_REGNUM)
7636 gp = imm;
7637 else if (rt != MIPS_ZERO_REGNUM)
7638 {
7639 addrreg = rt;
7640 addr = imm;
7641 }
7642 break;
7643
7644 case 0x23: /* LW */
7645 rt = itype_rt (inst);
7646 rs = itype_rs (inst);
7647 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7648 if (gp != 0 && rs == MIPS_GP_REGNUM)
7649 {
7650 gdb_byte buf[4];
7651
7652 memset (buf, 0, sizeof (buf));
7653 status = target_read_memory (gp + imm, buf, sizeof (buf));
7654 addrreg = rt;
7655 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7656 }
7657 break;
7658 }
7659 }
7660
7661 return target_pc;
7662}
7663
7664/* If PC is in a MIPS16 call or return stub, return the address of the
7665 target PC, which is either the callee or the caller. There are several
c906108c
SS
7666 cases which must be handled:
7667
14132e89
MR
7668 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7669 and the target PC is in $31 ($ra).
c906108c 7670 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7671 and the target PC is in $2.
7672 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7673 i.e. before the JALR instruction, this is effectively a call stub
7674 and the target PC is in $2. Otherwise this is effectively
7675 a return stub and the target PC is in $18.
7676 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7677 JAL or JALR instruction, this is effectively a call stub and the
7678 target PC is buried in the instruction stream. Otherwise this
7679 is effectively a return stub and the target PC is in $18.
7680 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7681 stub and the target PC is buried in the instruction stream.
7682
7683 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7684 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7685 gory details. */
c906108c 7686
757a7cc6 7687static CORE_ADDR
db5f024e 7688mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7689{
e17a4113 7690 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7691 CORE_ADDR start_addr;
14132e89
MR
7692 const char *name;
7693 size_t prefixlen;
c906108c
SS
7694
7695 /* Find the starting address and name of the function containing the PC. */
7696 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7697 return 0;
7698
14132e89
MR
7699 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7700 and the target PC is in $31 ($ra). */
7701 prefixlen = strlen (mips_str_mips16_ret_stub);
7702 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7703 && mips_is_stub_mode (name + prefixlen)
7704 && name[prefixlen + 2] == '\0')
7705 return get_frame_register_signed
7706 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7707
7708 /* If the PC is in __mips16_call_stub_*, this is one of the call
7709 call/return stubs. */
7710 prefixlen = strlen (mips_str_mips16_call_stub);
7711 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7712 {
7713 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7714 and the target PC is in $2. */
14132e89
MR
7715 if (mips_is_stub_suffix (name + prefixlen, 0))
7716 return get_frame_register_signed
7717 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7718
14132e89
MR
7719 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7720 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7721 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7722 a return stub and the target PC is in $18. */
14132e89
MR
7723 else if (mips_is_stub_mode (name + prefixlen)
7724 && name[prefixlen + 2] == '_'
7725 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7726 {
7727 if (pc == start_addr)
14132e89
MR
7728 /* This is the 'call' part of a call stub. The return
7729 address is in $2. */
7730 return get_frame_register_signed
7731 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7732 else
7733 /* This is the 'return' part of a call stub. The return
14132e89
MR
7734 address is in $18. */
7735 return get_frame_register_signed
7736 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7737 }
14132e89
MR
7738 else
7739 return 0; /* Not a stub. */
7740 }
7741
7742 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7743 compiler-generated call or call/return stubs. */
61012eef
GB
7744 if (startswith (name, mips_str_fn_stub)
7745 || startswith (name, mips_str_call_stub))
14132e89
MR
7746 {
7747 if (pc == start_addr)
7748 /* This is the 'call' part of a call stub. Call this helper
7749 to scan through this code for interesting instructions
7750 and determine the final PC. */
7751 return mips_get_mips16_fn_stub_pc (frame, pc);
7752 else
7753 /* This is the 'return' part of a call stub. The return address
7754 is in $18. */
7755 return get_frame_register_signed
7756 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7757 }
14132e89
MR
7758
7759 return 0; /* Not a stub. */
7760}
7761
7762/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7763 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7764
7765static int
7766mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7767{
7768 CORE_ADDR start_addr;
7769 size_t prefixlen;
7770
7771 /* Find the starting address of the function containing the PC. */
7772 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7773 return 0;
7774
7775 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7776 the start, i.e. after the JALR instruction, this is effectively
7777 a return stub. */
7778 prefixlen = strlen (mips_str_mips16_call_stub);
7779 if (pc != start_addr
7780 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7781 && mips_is_stub_mode (name + prefixlen)
7782 && name[prefixlen + 2] == '_'
7783 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7784 return 1;
7785
7786 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7787 the JAL or JALR instruction, this is effectively a return stub. */
7788 prefixlen = strlen (mips_str_call_fp_stub);
7789 if (pc != start_addr
7790 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7791 return 1;
7792
7793 /* Consume the .pic. prefix of any PIC stub, this function must return
7794 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7795 or the call stub path will trigger in handle_inferior_event causing
7796 it to go astray. */
7797 prefixlen = strlen (mips_str_pic);
7798 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7799 name += prefixlen;
7800
7801 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7802 prefixlen = strlen (mips_str_mips16_ret_stub);
7803 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7804 && mips_is_stub_mode (name + prefixlen)
7805 && name[prefixlen + 2] == '\0')
7806 return 1;
7807
7808 return 0; /* Not a stub. */
c906108c
SS
7809}
7810
db5f024e
DJ
7811/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7812 PC of the stub target. The stub just loads $t9 and jumps to it,
7813 so that $t9 has the correct value at function entry. */
7814
7815static CORE_ADDR
7816mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7817{
e17a4113
UW
7818 struct gdbarch *gdbarch = get_frame_arch (frame);
7819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7820 struct bound_minimal_symbol msym;
db5f024e
DJ
7821 int i;
7822 gdb_byte stub_code[16];
7823 int32_t stub_words[4];
7824
7825 /* The stub for foo is named ".pic.foo", and is either two
7826 instructions inserted before foo or a three instruction sequence
7827 which jumps to foo. */
7828 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7829 if (msym.minsym == NULL
77e371c0 7830 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6 7831 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
61012eef 7832 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
7833 return 0;
7834
7835 /* A two-instruction header. */
7cbd4a93 7836 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7837 return pc + 8;
7838
7839 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7840 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7841 {
7842 if (target_read_memory (pc, stub_code, 16) != 0)
7843 return 0;
7844 for (i = 0; i < 4; i++)
e17a4113
UW
7845 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7846 4, byte_order);
db5f024e
DJ
7847
7848 /* A stub contains these instructions:
7849 lui t9, %hi(target)
7850 j target
7851 addiu t9, t9, %lo(target)
7852 nop
7853
7854 This works even for N64, since stubs are only generated with
7855 -msym32. */
7856 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7857 && (stub_words[1] & 0xfc000000U) == 0x08000000
7858 && (stub_words[2] & 0xffff0000U) == 0x27390000
7859 && stub_words[3] == 0x00000000)
34b192ce
MR
7860 return ((((stub_words[0] & 0x0000ffff) << 16)
7861 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7862 }
7863
7864 /* Not a recognized stub. */
7865 return 0;
7866}
7867
7868static CORE_ADDR
7869mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7870{
14132e89 7871 CORE_ADDR requested_pc = pc;
db5f024e 7872 CORE_ADDR target_pc;
14132e89
MR
7873 CORE_ADDR new_pc;
7874
7875 do
7876 {
7877 target_pc = pc;
db5f024e 7878
14132e89
MR
7879 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7880 if (new_pc)
3e29f34a 7881 pc = new_pc;
db5f024e 7882
14132e89
MR
7883 new_pc = find_solib_trampoline_target (frame, pc);
7884 if (new_pc)
3e29f34a 7885 pc = new_pc;
db5f024e 7886
14132e89
MR
7887 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7888 if (new_pc)
3e29f34a 7889 pc = new_pc;
14132e89
MR
7890 }
7891 while (pc != target_pc);
db5f024e 7892
14132e89 7893 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7894}
7895
a4b8ebc8 7896/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7897 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7898
7899static int
d3f73121 7900mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7901{
a4b8ebc8 7902 int regnum;
2f38ef89 7903 if (num >= 0 && num < 32)
a4b8ebc8 7904 regnum = num;
2f38ef89 7905 else if (num >= 38 && num < 70)
d3f73121 7906 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7907 else if (num == 70)
d3f73121 7908 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7909 else if (num == 71)
d3f73121 7910 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7911 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7912 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7913 else
0fde2c53 7914 return -1;
d3f73121 7915 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7916}
7917
2f38ef89 7918
a4b8ebc8 7919/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7920 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7921
7922static int
d3f73121 7923mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7924{
a4b8ebc8 7925 int regnum;
2f38ef89 7926 if (num >= 0 && num < 32)
a4b8ebc8 7927 regnum = num;
2f38ef89 7928 else if (num >= 32 && num < 64)
d3f73121 7929 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7930 else if (num == 64)
d3f73121 7931 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7932 else if (num == 65)
d3f73121 7933 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7934 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7935 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7936 else
0fde2c53 7937 return -1;
d3f73121 7938 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7939}
7940
7941static int
e7faf938 7942mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7943{
7944 /* Only makes sense to supply raw registers. */
e7faf938 7945 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7946 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7947 decide if it is valid. Should instead define a standard sim/gdb
7948 register numbering scheme. */
e7faf938
MD
7949 if (gdbarch_register_name (gdbarch,
7950 gdbarch_num_regs (gdbarch) + regnum) != NULL
7951 && gdbarch_register_name (gdbarch,
025bb325
MS
7952 gdbarch_num_regs (gdbarch)
7953 + regnum)[0] != '\0')
a4b8ebc8
AC
7954 return regnum;
7955 else
6d82d43b 7956 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7957}
7958
2f38ef89 7959
4844f454
CV
7960/* Convert an integer into an address. Extracting the value signed
7961 guarantees a correctly sign extended address. */
fc0c74b1
AC
7962
7963static CORE_ADDR
79dd2d24 7964mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7965 struct type *type, const gdb_byte *buf)
fc0c74b1 7966{
e17a4113
UW
7967 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7968 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7969}
7970
82e91389
DJ
7971/* Dummy virtual frame pointer method. This is no more or less accurate
7972 than most other architectures; we just need to be explicit about it,
7973 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7974 an assertion failure. */
7975
7976static void
a54fba4c
MD
7977mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7978 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7979{
7980 *reg = MIPS_SP_REGNUM;
7981 *offset = 0;
7982}
7983
caaa3122
DJ
7984static void
7985mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7986{
7987 enum mips_abi *abip = (enum mips_abi *) obj;
7988 const char *name = bfd_get_section_name (abfd, sect);
7989
7990 if (*abip != MIPS_ABI_UNKNOWN)
7991 return;
7992
61012eef 7993 if (!startswith (name, ".mdebug."))
caaa3122
DJ
7994 return;
7995
7996 if (strcmp (name, ".mdebug.abi32") == 0)
7997 *abip = MIPS_ABI_O32;
7998 else if (strcmp (name, ".mdebug.abiN32") == 0)
7999 *abip = MIPS_ABI_N32;
62a49b2c 8000 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 8001 *abip = MIPS_ABI_N64;
caaa3122
DJ
8002 else if (strcmp (name, ".mdebug.abiO64") == 0)
8003 *abip = MIPS_ABI_O64;
8004 else if (strcmp (name, ".mdebug.eabi32") == 0)
8005 *abip = MIPS_ABI_EABI32;
8006 else if (strcmp (name, ".mdebug.eabi64") == 0)
8007 *abip = MIPS_ABI_EABI64;
8008 else
8a3fe4f8 8009 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
8010}
8011
22e47e37
FF
8012static void
8013mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8014{
8015 int *lbp = (int *) obj;
8016 const char *name = bfd_get_section_name (abfd, sect);
8017
61012eef 8018 if (startswith (name, ".gcc_compiled_long32"))
22e47e37 8019 *lbp = 32;
61012eef 8020 else if (startswith (name, ".gcc_compiled_long64"))
22e47e37 8021 *lbp = 64;
61012eef 8022 else if (startswith (name, ".gcc_compiled_long"))
22e47e37
FF
8023 warning (_("unrecognized .gcc_compiled_longXX"));
8024}
8025
2e4ebe70
DJ
8026static enum mips_abi
8027global_mips_abi (void)
8028{
8029 int i;
8030
8031 for (i = 0; mips_abi_strings[i] != NULL; i++)
8032 if (mips_abi_strings[i] == mips_abi_string)
8033 return (enum mips_abi) i;
8034
e2e0b3e5 8035 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8036}
8037
4cc0665f
MR
8038/* Return the default compressed instruction set, either of MIPS16
8039 or microMIPS, selected when none could have been determined from
8040 the ELF header of the binary being executed (or no binary has been
8041 selected. */
8042
8043static enum mips_isa
8044global_mips_compression (void)
8045{
8046 int i;
8047
8048 for (i = 0; mips_compression_strings[i] != NULL; i++)
8049 if (mips_compression_strings[i] == mips_compression_string)
8050 return (enum mips_isa) i;
8051
8052 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8053}
8054
29709017
DJ
8055static void
8056mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8057{
29709017
DJ
8058 /* If the size matches the set of 32-bit or 64-bit integer registers,
8059 assume that's what we've got. */
4eb0ad19
DJ
8060 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8061 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8062
8063 /* If the size matches the full set of registers GDB traditionally
8064 knows about, including floating point, for either 32-bit or
8065 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8066 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8067 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8068
8069 /* Otherwise we don't have a useful guess. */
8070}
8071
f8b73d13
DJ
8072static struct value *
8073value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8074{
19ba03f4 8075 const int *reg_p = (const int *) baton;
f8b73d13
DJ
8076 return value_of_register (*reg_p, frame);
8077}
8078
c2d11a7d 8079static struct gdbarch *
6d82d43b 8080mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8081{
c2d11a7d
JM
8082 struct gdbarch *gdbarch;
8083 struct gdbarch_tdep *tdep;
8084 int elf_flags;
2e4ebe70 8085 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8086 int i, num_regs;
8d5838b5 8087 enum mips_fpu_type fpu_type;
f8b73d13 8088 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8089 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8090 const char **reg_names;
8091 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8092 enum mips_isa mips_isa;
1faeff08
MR
8093 int dspacc;
8094 int dspctl;
8095
8096 /* Fill in the OS dependent register numbers and names. */
de4bfa86 8097 if (info.osabi == GDB_OSABI_LINUX)
1faeff08
MR
8098 {
8099 mips_regnum.fp0 = 38;
8100 mips_regnum.pc = 37;
8101 mips_regnum.cause = 36;
8102 mips_regnum.badvaddr = 35;
8103 mips_regnum.hi = 34;
8104 mips_regnum.lo = 33;
8105 mips_regnum.fp_control_status = 70;
8106 mips_regnum.fp_implementation_revision = 71;
8107 mips_regnum.dspacc = -1;
8108 mips_regnum.dspctl = -1;
8109 dspacc = 72;
8110 dspctl = 78;
3877922e 8111 num_regs = 90;
1faeff08
MR
8112 reg_names = mips_linux_reg_names;
8113 }
8114 else
8115 {
8116 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8117 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8118 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8119 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8120 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8121 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8122 mips_regnum.fp_control_status = 70;
8123 mips_regnum.fp_implementation_revision = 71;
8124 mips_regnum.dspacc = dspacc = -1;
8125 mips_regnum.dspctl = dspctl = -1;
8126 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8127 if (info.bfd_arch_info != NULL
8128 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8129 reg_names = mips_tx39_reg_names;
8130 else
8131 reg_names = mips_generic_reg_names;
8132 }
f8b73d13
DJ
8133
8134 /* Check any target description for validity. */
8135 if (tdesc_has_registers (info.target_desc))
8136 {
8137 static const char *const mips_gprs[] = {
8138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8140 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8141 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8142 };
8143 static const char *const mips_fprs[] = {
8144 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8145 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8146 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8147 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8148 };
8149
8150 const struct tdesc_feature *feature;
8151 int valid_p;
8152
8153 feature = tdesc_find_feature (info.target_desc,
8154 "org.gnu.gdb.mips.cpu");
8155 if (feature == NULL)
8156 return NULL;
8157
8158 tdesc_data = tdesc_data_alloc ();
8159
8160 valid_p = 1;
8161 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8162 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8163 mips_gprs[i]);
8164
8165
8166 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8167 mips_regnum.lo, "lo");
f8b73d13 8168 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8169 mips_regnum.hi, "hi");
f8b73d13 8170 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8171 mips_regnum.pc, "pc");
f8b73d13
DJ
8172
8173 if (!valid_p)
8174 {
8175 tdesc_data_cleanup (tdesc_data);
8176 return NULL;
8177 }
8178
8179 feature = tdesc_find_feature (info.target_desc,
8180 "org.gnu.gdb.mips.cp0");
8181 if (feature == NULL)
8182 {
8183 tdesc_data_cleanup (tdesc_data);
8184 return NULL;
8185 }
8186
8187 valid_p = 1;
8188 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8189 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
8190 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8191 MIPS_PS_REGNUM, "status");
8192 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8193 mips_regnum.cause, "cause");
f8b73d13
DJ
8194
8195 if (!valid_p)
8196 {
8197 tdesc_data_cleanup (tdesc_data);
8198 return NULL;
8199 }
8200
8201 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8202 backend is not prepared for that, though. */
8203 feature = tdesc_find_feature (info.target_desc,
8204 "org.gnu.gdb.mips.fpu");
8205 if (feature == NULL)
8206 {
8207 tdesc_data_cleanup (tdesc_data);
8208 return NULL;
8209 }
8210
8211 valid_p = 1;
8212 for (i = 0; i < 32; i++)
8213 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8214 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8215
8216 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8217 mips_regnum.fp_control_status,
8218 "fcsr");
8219 valid_p
8220 &= tdesc_numbered_register (feature, tdesc_data,
8221 mips_regnum.fp_implementation_revision,
8222 "fir");
f8b73d13
DJ
8223
8224 if (!valid_p)
8225 {
8226 tdesc_data_cleanup (tdesc_data);
8227 return NULL;
8228 }
8229
3877922e
MR
8230 num_regs = mips_regnum.fp_implementation_revision + 1;
8231
1faeff08
MR
8232 if (dspacc >= 0)
8233 {
8234 feature = tdesc_find_feature (info.target_desc,
8235 "org.gnu.gdb.mips.dsp");
8236 /* The DSP registers are optional; it's OK if they are absent. */
8237 if (feature != NULL)
8238 {
8239 i = 0;
8240 valid_p = 1;
8241 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8242 dspacc + i++, "hi1");
8243 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8244 dspacc + i++, "lo1");
8245 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8246 dspacc + i++, "hi2");
8247 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8248 dspacc + i++, "lo2");
8249 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8250 dspacc + i++, "hi3");
8251 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8252 dspacc + i++, "lo3");
8253
8254 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8255 dspctl, "dspctl");
8256
8257 if (!valid_p)
8258 {
8259 tdesc_data_cleanup (tdesc_data);
8260 return NULL;
8261 }
8262
8263 mips_regnum.dspacc = dspacc;
8264 mips_regnum.dspctl = dspctl;
3877922e
MR
8265
8266 num_regs = mips_regnum.dspctl + 1;
1faeff08
MR
8267 }
8268 }
8269
f8b73d13
DJ
8270 /* It would be nice to detect an attempt to use a 64-bit ABI
8271 when only 32-bit registers are provided. */
1faeff08 8272 reg_names = NULL;
f8b73d13 8273 }
c2d11a7d 8274
ec03c1ac
AC
8275 /* First of all, extract the elf_flags, if available. */
8276 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8277 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8278 else if (arches != NULL)
8279 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8280 else
8281 elf_flags = 0;
8282 if (gdbarch_debug)
8283 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8284 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8285
102182a9 8286 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8287 switch ((elf_flags & EF_MIPS_ABI))
8288 {
8289 case E_MIPS_ABI_O32:
ec03c1ac 8290 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8291 break;
8292 case E_MIPS_ABI_O64:
ec03c1ac 8293 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8294 break;
8295 case E_MIPS_ABI_EABI32:
ec03c1ac 8296 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8297 break;
8298 case E_MIPS_ABI_EABI64:
ec03c1ac 8299 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8300 break;
8301 default:
acdb74a0 8302 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8303 found_abi = MIPS_ABI_N32;
acdb74a0 8304 else
ec03c1ac 8305 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8306 break;
8307 }
acdb74a0 8308
caaa3122 8309 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8310 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8311 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8312
dc305454 8313 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8314 MIPS architecture (if there is one). */
8315 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8316 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8317
32a6503c 8318 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8319 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8320 && info.bfd_arch_info != NULL
8321 && info.bfd_arch_info->arch == bfd_arch_mips)
8322 {
8323 switch (info.bfd_arch_info->mach)
8324 {
8325 case bfd_mach_mips3900:
ec03c1ac 8326 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8327 break;
8328 case bfd_mach_mips4100:
8329 case bfd_mach_mips5000:
ec03c1ac 8330 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8331 break;
1d06468c
EZ
8332 case bfd_mach_mips8000:
8333 case bfd_mach_mips10000:
32a6503c
KB
8334 /* On Irix, ELF64 executables use the N64 ABI. The
8335 pseudo-sections which describe the ABI aren't present
8336 on IRIX. (Even for executables created by gcc.) */
e6c2f47b
PA
8337 if (info.abfd != NULL
8338 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
28d169de 8339 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8340 found_abi = MIPS_ABI_N64;
28d169de 8341 else
ec03c1ac 8342 found_abi = MIPS_ABI_N32;
1d06468c 8343 break;
bf64bfd6
AC
8344 }
8345 }
2e4ebe70 8346
26c53e50
DJ
8347 /* Default 64-bit objects to N64 instead of O32. */
8348 if (found_abi == MIPS_ABI_UNKNOWN
8349 && info.abfd != NULL
8350 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8351 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8352 found_abi = MIPS_ABI_N64;
8353
ec03c1ac
AC
8354 if (gdbarch_debug)
8355 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8356 found_abi);
8357
8358 /* What has the user specified from the command line? */
8359 wanted_abi = global_mips_abi ();
8360 if (gdbarch_debug)
8361 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8362 wanted_abi);
2e4ebe70
DJ
8363
8364 /* Now that we have found what the ABI for this binary would be,
8365 check whether the user is overriding it. */
2e4ebe70
DJ
8366 if (wanted_abi != MIPS_ABI_UNKNOWN)
8367 mips_abi = wanted_abi;
ec03c1ac
AC
8368 else if (found_abi != MIPS_ABI_UNKNOWN)
8369 mips_abi = found_abi;
8370 else
8371 mips_abi = MIPS_ABI_O32;
8372 if (gdbarch_debug)
8373 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8374 mips_abi);
2e4ebe70 8375
4cc0665f
MR
8376 /* Determine the default compressed ISA. */
8377 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8378 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8379 mips_isa = ISA_MICROMIPS;
8380 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8381 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8382 mips_isa = ISA_MIPS16;
8383 else
8384 mips_isa = global_mips_compression ();
8385 mips_compression_string = mips_compression_strings[mips_isa];
8386
ec03c1ac 8387 /* Also used when doing an architecture lookup. */
4b9b3959 8388 if (gdbarch_debug)
ec03c1ac 8389 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8390 "mips_gdbarch_init: "
8391 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8392 mips64_transfers_32bit_regs_p);
0dadbba0 8393
8d5838b5 8394 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8395#ifdef HAVE_ELF
8396 if (info.abfd
8397 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8398 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8399 Tag_GNU_MIPS_ABI_FP);
8400#endif /* HAVE_ELF */
8401
8d5838b5
AC
8402 if (!mips_fpu_type_auto)
8403 fpu_type = mips_fpu_type;
d929bc19 8404 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8405 {
8406 switch (elf_fpu_type)
8407 {
d929bc19 8408 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8409 fpu_type = MIPS_FPU_DOUBLE;
8410 break;
d929bc19 8411 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8412 fpu_type = MIPS_FPU_SINGLE;
8413 break;
d929bc19 8414 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8415 default:
8416 /* Soft float or unknown. */
8417 fpu_type = MIPS_FPU_NONE;
8418 break;
8419 }
8420 }
8d5838b5
AC
8421 else if (info.bfd_arch_info != NULL
8422 && info.bfd_arch_info->arch == bfd_arch_mips)
8423 switch (info.bfd_arch_info->mach)
8424 {
8425 case bfd_mach_mips3900:
8426 case bfd_mach_mips4100:
8427 case bfd_mach_mips4111:
a9d61c86 8428 case bfd_mach_mips4120:
8d5838b5
AC
8429 fpu_type = MIPS_FPU_NONE;
8430 break;
8431 case bfd_mach_mips4650:
8432 fpu_type = MIPS_FPU_SINGLE;
8433 break;
8434 default:
8435 fpu_type = MIPS_FPU_DOUBLE;
8436 break;
8437 }
8438 else if (arches != NULL)
8439 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8440 else
8441 fpu_type = MIPS_FPU_DOUBLE;
8442 if (gdbarch_debug)
8443 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8444 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8445
29709017
DJ
8446 /* Check for blatant incompatibilities. */
8447
8448 /* If we have only 32-bit registers, then we can't debug a 64-bit
8449 ABI. */
8450 if (info.target_desc
8451 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8452 && mips_abi != MIPS_ABI_EABI32
8453 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8454 {
8455 if (tdesc_data != NULL)
8456 tdesc_data_cleanup (tdesc_data);
8457 return NULL;
8458 }
29709017 8459
025bb325 8460 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8461 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8462 arches != NULL;
8463 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8464 {
d54398a7
MR
8465 /* MIPS needs to be pedantic about which ABI and the compressed
8466 ISA variation the object is using. */
9103eae0 8467 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8468 continue;
9103eae0 8469 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8470 continue;
d54398a7
MR
8471 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8472 continue;
719ec221
AC
8473 /* Need to be pedantic about which register virtual size is
8474 used. */
8475 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8476 != mips64_transfers_32bit_regs_p)
8477 continue;
8d5838b5
AC
8478 /* Be pedantic about which FPU is selected. */
8479 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8480 continue;
f8b73d13
DJ
8481
8482 if (tdesc_data != NULL)
8483 tdesc_data_cleanup (tdesc_data);
4be87837 8484 return arches->gdbarch;
c2d11a7d
JM
8485 }
8486
102182a9 8487 /* Need a new architecture. Fill in a target specific vector. */
8d749320 8488 tdep = XNEW (struct gdbarch_tdep);
c2d11a7d
JM
8489 gdbarch = gdbarch_alloc (&info, tdep);
8490 tdep->elf_flags = elf_flags;
719ec221 8491 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8492 tdep->found_abi = found_abi;
8493 tdep->mips_abi = mips_abi;
4cc0665f 8494 tdep->mips_isa = mips_isa;
8d5838b5 8495 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8496 tdep->register_size_valid_p = 0;
8497 tdep->register_size = 0;
8498
8499 if (info.target_desc)
8500 {
8501 /* Some useful properties can be inferred from the target. */
8502 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8503 {
8504 tdep->register_size_valid_p = 1;
8505 tdep->register_size = 4;
8506 }
8507 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8508 {
8509 tdep->register_size_valid_p = 1;
8510 tdep->register_size = 8;
8511 }
8512 }
c2d11a7d 8513
102182a9 8514 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8515 set_gdbarch_short_bit (gdbarch, 16);
8516 set_gdbarch_int_bit (gdbarch, 32);
8517 set_gdbarch_float_bit (gdbarch, 32);
8518 set_gdbarch_double_bit (gdbarch, 64);
8519 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8520 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8521 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8522 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8523
175ff332
HZ
8524 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8525 mips_ax_pseudo_register_collect);
8526 set_gdbarch_ax_pseudo_register_push_stack
8527 (gdbarch, mips_ax_pseudo_register_push_stack);
8528
6d82d43b 8529 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8530 mips_elf_make_msymbol_special);
3e29f34a
MR
8531 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8532 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8533 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8534
1faeff08
MR
8535 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8536 *regnum = mips_regnum;
1faeff08
MR
8537 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8538 set_gdbarch_num_regs (gdbarch, num_regs);
8539 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8540 set_gdbarch_register_name (gdbarch, mips_register_name);
8541 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8542 tdep->mips_processor_reg_names = reg_names;
8543 tdep->regnum = regnum;
fe29b929 8544
0dadbba0 8545 switch (mips_abi)
c2d11a7d 8546 {
0dadbba0 8547 case MIPS_ABI_O32:
25ab4790 8548 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8549 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8550 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8551 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8552 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8553 set_gdbarch_long_bit (gdbarch, 32);
8554 set_gdbarch_ptr_bit (gdbarch, 32);
8555 set_gdbarch_long_long_bit (gdbarch, 64);
8556 break;
0dadbba0 8557 case MIPS_ABI_O64:
25ab4790 8558 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8559 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8560 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8561 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8562 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8563 set_gdbarch_long_bit (gdbarch, 32);
8564 set_gdbarch_ptr_bit (gdbarch, 32);
8565 set_gdbarch_long_long_bit (gdbarch, 64);
8566 break;
0dadbba0 8567 case MIPS_ABI_EABI32:
25ab4790 8568 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8569 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8570 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8571 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8572 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8573 set_gdbarch_long_bit (gdbarch, 32);
8574 set_gdbarch_ptr_bit (gdbarch, 32);
8575 set_gdbarch_long_long_bit (gdbarch, 64);
8576 break;
0dadbba0 8577 case MIPS_ABI_EABI64:
25ab4790 8578 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8579 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8580 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8581 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8582 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8583 set_gdbarch_long_bit (gdbarch, 64);
8584 set_gdbarch_ptr_bit (gdbarch, 64);
8585 set_gdbarch_long_long_bit (gdbarch, 64);
8586 break;
0dadbba0 8587 case MIPS_ABI_N32:
25ab4790 8588 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8589 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8590 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8591 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8592 tdep->default_mask_address_p = 0;
0dadbba0
AC
8593 set_gdbarch_long_bit (gdbarch, 32);
8594 set_gdbarch_ptr_bit (gdbarch, 32);
8595 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8596 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8597 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8598 break;
8599 case MIPS_ABI_N64:
25ab4790 8600 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8601 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8602 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8603 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8604 tdep->default_mask_address_p = 0;
8605 set_gdbarch_long_bit (gdbarch, 64);
8606 set_gdbarch_ptr_bit (gdbarch, 64);
8607 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8608 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8609 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8610 break;
c2d11a7d 8611 default:
e2e0b3e5 8612 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8613 }
8614
22e47e37
FF
8615 /* GCC creates a pseudo-section whose name specifies the size of
8616 longs, since -mlong32 or -mlong64 may be used independent of
8617 other options. How those options affect pointer sizes is ABI and
8618 architecture dependent, so use them to override the default sizes
8619 set by the ABI. This table shows the relationship between ABI,
8620 -mlongXX, and size of pointers:
8621
8622 ABI -mlongXX ptr bits
8623 --- -------- --------
8624 o32 32 32
8625 o32 64 32
8626 n32 32 32
8627 n32 64 64
8628 o64 32 32
8629 o64 64 64
8630 n64 32 32
8631 n64 64 64
8632 eabi32 32 32
8633 eabi32 64 32
8634 eabi64 32 32
8635 eabi64 64 64
8636
8637 Note that for o32 and eabi32, pointers are always 32 bits
8638 regardless of any -mlongXX option. For all others, pointers and
025bb325 8639 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8640
8641 if (info.abfd != NULL)
8642 {
8643 int long_bit = 0;
8644
8645 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8646 if (long_bit)
8647 {
8648 set_gdbarch_long_bit (gdbarch, long_bit);
8649 switch (mips_abi)
8650 {
8651 case MIPS_ABI_O32:
8652 case MIPS_ABI_EABI32:
8653 break;
8654 case MIPS_ABI_N32:
8655 case MIPS_ABI_O64:
8656 case MIPS_ABI_N64:
8657 case MIPS_ABI_EABI64:
8658 set_gdbarch_ptr_bit (gdbarch, long_bit);
8659 break;
8660 default:
8661 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8662 }
8663 }
8664 }
8665
a5ea2558
AC
8666 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8667 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8668 comment:
8669
8670 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8671 flag in object files because to do so would make it impossible to
102182a9 8672 link with libraries compiled without "-gp32". This is
a5ea2558 8673 unnecessarily restrictive.
361d1df0 8674
a5ea2558
AC
8675 We could solve this problem by adding "-gp32" multilibs to gcc,
8676 but to set this flag before gcc is built with such multilibs will
8677 break too many systems.''
8678
8679 But even more unhelpfully, the default linker output target for
8680 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8681 for 64-bit programs - you need to change the ABI to change this,
102182a9 8682 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8683 this flag to detect 32-bit mode would do the wrong thing given
8684 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8685 as 32-bit programs by default. */
a5ea2558 8686
6c997a34 8687 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8688 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8689
102182a9
MS
8690 /* Add/remove bits from an address. The MIPS needs be careful to
8691 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8692 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8693
58dfe9ff
AC
8694 /* Unwind the frame. */
8695 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8696 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8697 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8698
102182a9 8699 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8700 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8701 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8702 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8703 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8704 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8705 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8706
025bb325 8707 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8708
2c76a0c7
JB
8709 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8710 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8711 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8712
1bab7383
YQ
8713 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8714
87783b8b
AC
8715 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8716 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8717 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8718
f7b9e9fc 8719 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
8720 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8721 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
c8cef75f
MR
8722 set_gdbarch_adjust_breakpoint_address (gdbarch,
8723 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8724
8725 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8726
c9cf6e20 8727 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
97ab0fdd 8728
fc0c74b1
AC
8729 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8730 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8731 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8732
a4b8ebc8 8733 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8734
e11c53d2 8735 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8736
9dae60cc
UW
8737 if (mips_abi == MIPS_ABI_N32)
8738 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8739 else if (mips_abi == MIPS_ABI_N64)
8740 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8741 else
8742 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8743
d92524f1
PM
8744 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8745 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8746 need to all be folded into the target vector. Since they are
d92524f1
PM
8747 being used as guards for target_stopped_by_watchpoint, why not have
8748 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8749 is sitting on? */
8750 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8751
e7d6a6d2 8752 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8753
14132e89
MR
8754 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8755 to support MIPS16. This is a bad thing. Make sure not to do it
8756 if we have an OS ABI that actually supports shared libraries, since
8757 shared library support is more important. If we have an OS someday
8758 that supports both shared libraries and MIPS16, we'll have to find
8759 a better place for these.
8760 macro/2012-04-25: But that applies to return trampolines only and
8761 currently no MIPS OS ABI uses shared libraries that have them. */
8762 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8763
025bb325
MS
8764 set_gdbarch_single_step_through_delay (gdbarch,
8765 mips_single_step_through_delay);
3352ef37 8766
0d5de010
DJ
8767 /* Virtual tables. */
8768 set_gdbarch_vbit_in_delta (gdbarch, 1);
8769
29709017
DJ
8770 mips_register_g_packet_guesses (gdbarch);
8771
6de918a6 8772 /* Hook in OS ABI-specific overrides, if they have been registered. */
ede5f151 8773 info.tdep_info = tdesc_data;
6de918a6 8774 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8775
9aac7884
MR
8776 /* The hook may have adjusted num_regs, fetch the final value and
8777 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8778 num_regs = gdbarch_num_regs (gdbarch);
8779 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8780 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8781
5792a79b 8782 /* Unwind the frame. */
b8a22b94
DJ
8783 dwarf2_append_unwinders (gdbarch);
8784 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8785 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8786 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8787 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8788 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8789 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8790 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8791 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8792 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8793
f8b73d13
DJ
8794 if (tdesc_data)
8795 {
8796 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8797 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8798
8799 /* Override the normal target description methods to handle our
8800 dual real and pseudo registers. */
8801 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8802 set_gdbarch_register_reggroup_p (gdbarch,
8803 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8804
8805 num_regs = gdbarch_num_regs (gdbarch);
8806 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8807 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8808 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8809 }
8810
8811 /* Add ABI-specific aliases for the registers. */
8812 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8813 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8814 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8815 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8816 else
8817 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8818 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8819 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8820
8821 /* Add some other standard aliases. */
8822 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8823 user_reg_add (gdbarch, mips_register_aliases[i].name,
8824 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8825
865093a3
AR
8826 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8827 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8828 value_of_mips_user_reg,
8829 &mips_numeric_register_aliases[i].regnum);
8830
4b9b3959
AC
8831 return gdbarch;
8832}
8833
2e4ebe70 8834static void
6d82d43b 8835mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8836{
8837 struct gdbarch_info info;
8838
8839 /* Force the architecture to update, and (if it's a MIPS architecture)
8840 mips_gdbarch_init will take care of the rest. */
8841 gdbarch_info_init (&info);
8842 gdbarch_update_p (info);
8843}
8844
ad188201
KB
8845/* Print out which MIPS ABI is in use. */
8846
8847static void
1f8ca57c
JB
8848show_mips_abi (struct ui_file *file,
8849 int from_tty,
8850 struct cmd_list_element *ignored_cmd,
8851 const char *ignored_value)
ad188201 8852{
f5656ead 8853 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8854 fprintf_filtered
8855 (file,
8856 "The MIPS ABI is unknown because the current architecture "
8857 "is not MIPS.\n");
ad188201
KB
8858 else
8859 {
8860 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8861 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8862 const char *actual_abi_str = mips_abi_strings[actual_abi];
8863
8864 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8865 fprintf_filtered
8866 (file,
8867 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8868 actual_abi_str);
ad188201 8869 else if (global_abi == actual_abi)
1f8ca57c
JB
8870 fprintf_filtered
8871 (file,
8872 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8873 actual_abi_str);
ad188201
KB
8874 else
8875 {
8876 /* Probably shouldn't happen... */
025bb325
MS
8877 fprintf_filtered (file,
8878 "The (auto detected) MIPS ABI \"%s\" is in use "
8879 "even though the user setting was \"%s\".\n",
6d82d43b 8880 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8881 }
8882 }
8883}
8884
4cc0665f
MR
8885/* Print out which MIPS compressed ISA encoding is used. */
8886
8887static void
8888show_mips_compression (struct ui_file *file, int from_tty,
8889 struct cmd_list_element *c, const char *value)
8890{
8891 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8892 value);
8893}
8894
4b9b3959 8895static void
72a155b4 8896mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8897{
72a155b4 8898 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8899 if (tdep != NULL)
c2d11a7d 8900 {
acdb74a0
AC
8901 int ef_mips_arch;
8902 int ef_mips_32bitmode;
f49e4e6d 8903 /* Determine the ISA. */
acdb74a0
AC
8904 switch (tdep->elf_flags & EF_MIPS_ARCH)
8905 {
8906 case E_MIPS_ARCH_1:
8907 ef_mips_arch = 1;
8908 break;
8909 case E_MIPS_ARCH_2:
8910 ef_mips_arch = 2;
8911 break;
8912 case E_MIPS_ARCH_3:
8913 ef_mips_arch = 3;
8914 break;
8915 case E_MIPS_ARCH_4:
93d56215 8916 ef_mips_arch = 4;
acdb74a0
AC
8917 break;
8918 default:
93d56215 8919 ef_mips_arch = 0;
acdb74a0
AC
8920 break;
8921 }
f49e4e6d 8922 /* Determine the size of a pointer. */
acdb74a0 8923 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8924 fprintf_unfiltered (file,
8925 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8926 tdep->elf_flags);
4b9b3959 8927 fprintf_unfiltered (file,
acdb74a0
AC
8928 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8929 ef_mips_32bitmode);
8930 fprintf_unfiltered (file,
8931 "mips_dump_tdep: ef_mips_arch = %d\n",
8932 ef_mips_arch);
8933 fprintf_unfiltered (file,
8934 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8935 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8936 fprintf_unfiltered (file,
025bb325
MS
8937 "mips_dump_tdep: "
8938 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8939 mips_mask_address_p (tdep),
4014092b 8940 tdep->default_mask_address_p);
c2d11a7d 8941 }
4b9b3959
AC
8942 fprintf_unfiltered (file,
8943 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8944 MIPS_DEFAULT_FPU_TYPE,
8945 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8946 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8947 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8948 : "???"));
74ed0bb4
MD
8949 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8950 MIPS_EABI (gdbarch));
4b9b3959
AC
8951 fprintf_unfiltered (file,
8952 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
8953 MIPS_FPU_TYPE (gdbarch),
8954 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8955 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8956 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 8957 : "???"));
c2d11a7d
JM
8958}
8959
025bb325 8960extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 8961
c906108c 8962void
acdb74a0 8963_initialize_mips_tdep (void)
c906108c
SS
8964{
8965 static struct cmd_list_element *mipsfpulist = NULL;
8966 struct cmd_list_element *c;
8967
6d82d43b 8968 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8969 if (MIPS_ABI_LAST + 1
8970 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8971 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8972
4b9b3959 8973 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8974
8d5f9dcb
DJ
8975 mips_pdr_data = register_objfile_data ();
8976
4eb0ad19
DJ
8977 /* Create feature sets with the appropriate properties. The values
8978 are not important. */
8979 mips_tdesc_gp32 = allocate_target_description ();
8980 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8981
8982 mips_tdesc_gp64 = allocate_target_description ();
8983 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8984
025bb325 8985 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8986 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8987 _("Various MIPS specific commands."),
a5ea2558
AC
8988 &setmipscmdlist, "set mips ", 0, &setlist);
8989
8990 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 8991 _("Various MIPS specific commands."),
a5ea2558
AC
8992 &showmipscmdlist, "show mips ", 0, &showlist);
8993
025bb325 8994 /* Allow the user to override the ABI. */
7ab04401
AC
8995 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8996 &mips_abi_string, _("\
8997Set the MIPS ABI used by this program."), _("\
8998Show the MIPS ABI used by this program."), _("\
8999This option can be set to one of:\n\
9000 auto - the default ABI associated with the current binary\n\
9001 o32\n\
9002 o64\n\
9003 n32\n\
9004 n64\n\
9005 eabi32\n\
9006 eabi64"),
9007 mips_abi_update,
9008 show_mips_abi,
9009 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9010
4cc0665f
MR
9011 /* Allow the user to set the ISA to assume for compressed code if ELF
9012 file flags don't tell or there is no program file selected. This
9013 setting is updated whenever unambiguous ELF file flags are interpreted,
9014 and carried over to subsequent sessions. */
9015 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9016 &mips_compression_string, _("\
9017Set the compressed ISA encoding used by MIPS code."), _("\
9018Show the compressed ISA encoding used by MIPS code."), _("\
9019Select the compressed ISA encoding used in functions that have no symbol\n\
9020information available. The encoding can be set to either of:\n\
9021 mips16\n\
9022 micromips\n\
9023and is updated automatically from ELF file flags if available."),
9024 mips_abi_update,
9025 show_mips_compression,
9026 &setmipscmdlist, &showmipscmdlist);
9027
c906108c
SS
9028 /* Let the user turn off floating point and set the fence post for
9029 heuristic_proc_start. */
9030
9031 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9032 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9033 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9034 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9035 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9036 &mipsfpulist);
9037 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9038 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9039 &mipsfpulist);
9040 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9041 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9042 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9043 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9044 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9045 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9046 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9047 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9048 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9049 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9050 &mipsfpulist);
9051 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9052 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9053 &showlist);
9054
c906108c
SS
9055 /* We really would like to have both "0" and "unlimited" work, but
9056 command.c doesn't deal with that. So make it a var_zinteger
9057 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9058 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9059 &heuristic_fence_post, _("\
9060Set the distance searched for the start of a function."), _("\
9061Show the distance searched for the start of a function."), _("\
c906108c
SS
9062If you are debugging a stripped executable, GDB needs to search through the\n\
9063program for the start of a function. This command sets the distance of the\n\
7915a72c 9064search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9065 reinit_frame_cache_sfunc,
025bb325
MS
9066 NULL, /* FIXME: i18n: The distance searched for
9067 the start of a function is %s. */
6bcadd06 9068 &setlist, &showlist);
c906108c
SS
9069
9070 /* Allow the user to control whether the upper bits of 64-bit
9071 addresses should be zeroed. */
7915a72c
AC
9072 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9073 &mask_address_var, _("\
9074Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9075Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9076Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9077allow GDB to determine the correct value."),
08546159
AC
9078 NULL, show_mask_address,
9079 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9080
9081 /* Allow the user to control the size of 32 bit registers within the
9082 raw remote packet. */
b3f42336 9083 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9084 &mips64_transfers_32bit_regs_p, _("\
9085Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9086 _("\
9087Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9088 _("\
719ec221
AC
9089Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9090that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 909164 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9092 set_mips64_transfers_32bit_regs,
025bb325
MS
9093 NULL, /* FIXME: i18n: Compatibility with 64-bit
9094 MIPS target that transfers 32-bit
9095 quantities is %s. */
7915a72c 9096 &setlist, &showlist);
9ace0497 9097
025bb325 9098 /* Debug this files internals. */
ccce17b0
YQ
9099 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9100 &mips_debug, _("\
7915a72c
AC
9101Set mips debugging."), _("\
9102Show mips debugging."), _("\
9103When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9104 NULL,
9105 NULL, /* FIXME: i18n: Mips debugging is
9106 currently %s. */
9107 &setdebuglist, &showdebuglist);
c906108c 9108}
This page took 2.621149 seconds and 4 git commands to generate.