Regenerate tree using Autoconf 2.64 and Automake 1.11.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
0fb0cc75 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
5e2e9765 27#include "gdb_assert.h"
c906108c
SS
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
fe898f56 43#include "block.h"
a4b8ebc8 44#include "reggroups.h"
c906108c 45#include "opcode/mips.h"
c2d11a7d
JM
46#include "elf/mips.h"
47#include "elf-bfd.h"
2475bac3 48#include "symcat.h"
a4b8ebc8 49#include "sim-regno.h"
a89aa300 50#include "dis-asm.h"
edfae063
AC
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
7d9b040b 54#include "infcall.h"
fed7ba43 55#include "floatformat.h"
29709017
DJ
56#include "remote.h"
57#include "target-descriptions.h"
2bd0c3d7 58#include "dwarf2-frame.h"
f8b73d13 59#include "user-regs.h"
79a45b7d 60#include "valprint.h"
c906108c 61
8d5f9dcb
DJ
62static const struct objfile_data *mips_pdr_data;
63
5bbcb741 64static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 65
24e05951 66/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
67/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
68#define ST0_FR (1 << 26)
69
b0069a17
AC
70/* The sizes of floating point registers. */
71
72enum
73{
74 MIPS_FPU_SINGLE_REGSIZE = 4,
75 MIPS_FPU_DOUBLE_REGSIZE = 8
76};
77
1a69e1e4
DJ
78enum
79{
80 MIPS32_REGSIZE = 4,
81 MIPS64_REGSIZE = 8
82};
0dadbba0 83
2e4ebe70
DJ
84static const char *mips_abi_string;
85
86static const char *mips_abi_strings[] = {
87 "auto",
88 "n32",
89 "o32",
28d169de 90 "n64",
2e4ebe70
DJ
91 "o64",
92 "eabi32",
93 "eabi64",
94 NULL
95};
96
f8b73d13
DJ
97/* The standard register names, and all the valid aliases for them. */
98struct register_alias
99{
100 const char *name;
101 int regnum;
102};
103
104/* Aliases for o32 and most other ABIs. */
105const struct register_alias mips_o32_aliases[] = {
106 { "ta0", 12 },
107 { "ta1", 13 },
108 { "ta2", 14 },
109 { "ta3", 15 }
110};
111
112/* Aliases for n32 and n64. */
113const struct register_alias mips_n32_n64_aliases[] = {
114 { "ta0", 8 },
115 { "ta1", 9 },
116 { "ta2", 10 },
117 { "ta3", 11 }
118};
119
120/* Aliases for ABI-independent registers. */
121const struct register_alias mips_register_aliases[] = {
122 /* The architecture manuals specify these ABI-independent names for
123 the GPRs. */
124#define R(n) { "r" #n, n }
125 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
126 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
127 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
128 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
129#undef R
130
131 /* k0 and k1 are sometimes called these instead (for "kernel
132 temp"). */
133 { "kt0", 26 },
134 { "kt1", 27 },
135
136 /* This is the traditional GDB name for the CP0 status register. */
137 { "sr", MIPS_PS_REGNUM },
138
139 /* This is the traditional GDB name for the CP0 BadVAddr register. */
140 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
141
142 /* This is the traditional GDB name for the FCSR. */
143 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
144};
145
865093a3
AR
146const struct register_alias mips_numeric_register_aliases[] = {
147#define R(n) { #n, n }
148 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
149 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
150 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
151 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
152#undef R
153};
154
c906108c
SS
155#ifndef MIPS_DEFAULT_FPU_TYPE
156#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157#endif
158static int mips_fpu_type_auto = 1;
159static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 160
9ace0497 161static int mips_debug = 0;
7a292a7a 162
29709017
DJ
163/* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165#define PROPERTY_GP32 "internal: transfers-32bit-registers"
166#define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
4eb0ad19
DJ
168struct target_desc *mips_tdesc_gp32;
169struct target_desc *mips_tdesc_gp64;
170
56cea623
AC
171const struct mips_regnum *
172mips_regnum (struct gdbarch *gdbarch)
173{
174 return gdbarch_tdep (gdbarch)->regnum;
175}
176
177static int
178mips_fpa0_regnum (struct gdbarch *gdbarch)
179{
180 return mips_regnum (gdbarch)->fp0 + 12;
181}
182
74ed0bb4
MD
183#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
184 == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 186
74ed0bb4 187#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 188
74ed0bb4 189#define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 190
74ed0bb4 191#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 192
95404a3e
AC
193/* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196static CORE_ADDR
197is_mips16_addr (CORE_ADDR addr)
198{
199 return ((addr) & 1);
200}
201
95404a3e
AC
202static CORE_ADDR
203unmake_mips16_addr (CORE_ADDR addr)
204{
5b652102 205 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
206}
207
d1973055
KB
208/* Return the MIPS ABI associated with GDBARCH. */
209enum mips_abi
210mips_abi (struct gdbarch *gdbarch)
211{
212 return gdbarch_tdep (gdbarch)->mips_abi;
213}
214
4246e332 215int
1b13c4f6 216mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 217{
29709017
DJ
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219
220 /* If we know how big the registers are, use that size. */
221 if (tdep->register_size_valid_p)
222 return tdep->register_size;
223
224 /* Fall back to the previous behavior. */
4246e332
AC
225 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
226 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
227}
228
480d3dd2
AC
229/* Return the currently configured (or set) saved register size. */
230
e6bc2e8a 231unsigned int
13326b4e 232mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 233{
1a69e1e4
DJ
234 switch (mips_abi (gdbarch))
235 {
236 case MIPS_ABI_EABI32:
237 case MIPS_ABI_O32:
238 return 4;
239 case MIPS_ABI_N32:
240 case MIPS_ABI_N64:
241 case MIPS_ABI_O64:
242 case MIPS_ABI_EABI64:
243 return 8;
244 case MIPS_ABI_UNKNOWN:
245 case MIPS_ABI_LAST:
246 default:
247 internal_error (__FILE__, __LINE__, _("bad switch"));
248 }
d929b26f
AC
249}
250
71b8ef93 251/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 252 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 253 "info" field is used for this purpose.
5a89d8aa 254
95f1da47 255 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
256 i.e. refers to a 16-bit function, and sets a "special" bit in a
257 minimal symbol to mark it as a 16-bit function
258
f594e5e9 259 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 260
5a89d8aa 261static void
6d82d43b
AC
262mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
263{
264 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
265 {
b887350f 266 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
6d82d43b
AC
267 SYMBOL_VALUE_ADDRESS (msym) |= 1;
268 }
5a89d8aa
MS
269}
270
71b8ef93
MS
271static int
272msymbol_is_special (struct minimal_symbol *msym)
273{
b887350f 274 return MSYMBOL_TARGET_FLAG_1 (msym);
71b8ef93
MS
275}
276
88658117
AC
277/* XFER a value from the big/little/left end of the register.
278 Depending on the size of the value it might occupy the entire
279 register or just part of it. Make an allowance for this, aligning
280 things accordingly. */
281
282static void
ba32f989
DJ
283mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
284 int reg_num, int length,
870cd05e
MK
285 enum bfd_endian endian, gdb_byte *in,
286 const gdb_byte *out, int buf_offset)
88658117 287{
88658117 288 int reg_offset = 0;
72a155b4
UW
289
290 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
291 /* Need to transfer the left or right part of the register, based on
292 the targets byte order. */
88658117
AC
293 switch (endian)
294 {
295 case BFD_ENDIAN_BIG:
72a155b4 296 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
297 break;
298 case BFD_ENDIAN_LITTLE:
299 reg_offset = 0;
300 break;
6d82d43b 301 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
302 reg_offset = 0;
303 break;
304 default:
e2e0b3e5 305 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
306 }
307 if (mips_debug)
cb1d2653
AC
308 fprintf_unfiltered (gdb_stderr,
309 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
310 reg_num, reg_offset, buf_offset, length);
88658117
AC
311 if (mips_debug && out != NULL)
312 {
313 int i;
cb1d2653 314 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 315 for (i = 0; i < length; i++)
cb1d2653 316 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
317 }
318 if (in != NULL)
6d82d43b
AC
319 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
320 in + buf_offset);
88658117 321 if (out != NULL)
6d82d43b
AC
322 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
323 out + buf_offset);
88658117
AC
324 if (mips_debug && in != NULL)
325 {
326 int i;
cb1d2653 327 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 328 for (i = 0; i < length; i++)
cb1d2653 329 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
330 }
331 if (mips_debug)
332 fprintf_unfiltered (gdb_stdlog, "\n");
333}
334
dd824b04
DJ
335/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
336 compatiblity mode. A return value of 1 means that we have
337 physical 64-bit registers, but should treat them as 32-bit registers. */
338
339static int
9c9acae0 340mips2_fp_compat (struct frame_info *frame)
dd824b04 341{
72a155b4 342 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
72a155b4 345 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
346 return 0;
347
348#if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
9c9acae0 354 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
355 return 1;
356#endif
361d1df0 357
dd824b04
DJ
358 return 0;
359}
360
7a292a7a 361#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 362
74ed0bb4 363static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 364
a14ed312 365static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 366
acdb74a0
AC
367/* The list of available "set mips " and "show mips " commands */
368
369static struct cmd_list_element *setmipscmdlist = NULL;
370static struct cmd_list_element *showmipscmdlist = NULL;
371
5e2e9765
KB
372/* Integer registers 0 thru 31 are handled explicitly by
373 mips_register_name(). Processor specific registers 32 and above
8a9fc081 374 are listed in the following tables. */
691c0433 375
6d82d43b
AC
376enum
377{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
378
379/* Generic MIPS. */
380
381static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
382 "sr", "lo", "hi", "bad", "cause", "pc",
383 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
384 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
385 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
386 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
387 "fsr", "fir", "" /*"fp" */ , "",
388 "", "", "", "", "", "", "", "",
389 "", "", "", "", "", "", "", "",
691c0433
AC
390};
391
392/* Names of IDT R3041 registers. */
393
394static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
395 "sr", "lo", "hi", "bad", "cause", "pc",
396 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
397 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
398 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
399 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
400 "fsr", "fir", "", /*"fp" */ "",
401 "", "", "bus", "ccfg", "", "", "", "",
402 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
403};
404
405/* Names of tx39 registers. */
406
407static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
408 "sr", "lo", "hi", "bad", "cause", "pc",
409 "", "", "", "", "", "", "", "",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "",
414 "", "", "", "", "", "", "", "",
415 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
416};
417
418/* Names of IRIX registers. */
419static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
420 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
421 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
422 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
423 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
424 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
425};
426
cce74817 427
5e2e9765 428/* Return the name of the register corresponding to REGNO. */
5a89d8aa 429static const char *
d93859e2 430mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 431{
d93859e2 432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
433 /* GPR names for all ABIs other than n32/n64. */
434 static char *mips_gpr_names[] = {
6d82d43b
AC
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
439 };
440
441 /* GPR names for n32 and n64 ABIs. */
442 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
443 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
444 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
445 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
446 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
447 };
448
d93859e2 449 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 450
f57d151a
UW
451 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
452 but then don't make the raw register names visible. */
d93859e2
UW
453 int rawnum = regno % gdbarch_num_regs (gdbarch);
454 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
455 return "";
456
5e2e9765
KB
457 /* The MIPS integer registers are always mapped from 0 to 31. The
458 names of the registers (which reflects the conventions regarding
459 register use) vary depending on the ABI. */
a4b8ebc8 460 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
461 {
462 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 463 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 464 else
a4b8ebc8 465 return mips_gpr_names[rawnum];
5e2e9765 466 }
d93859e2
UW
467 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
468 return tdesc_register_name (gdbarch, rawnum);
469 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
470 {
471 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
472 return tdep->mips_processor_reg_names[rawnum - 32];
473 }
5e2e9765
KB
474 else
475 internal_error (__FILE__, __LINE__,
e2e0b3e5 476 _("mips_register_name: bad register number %d"), rawnum);
cce74817 477}
5e2e9765 478
a4b8ebc8 479/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 480
a4b8ebc8
AC
481static int
482mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
483 struct reggroup *reggroup)
484{
485 int vector_p;
486 int float_p;
487 int raw_p;
72a155b4
UW
488 int rawnum = regnum % gdbarch_num_regs (gdbarch);
489 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
490 if (reggroup == all_reggroup)
491 return pseudo;
492 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
493 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
494 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
495 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
496 raw_p = rawnum < gdbarch_num_regs (gdbarch);
497 if (gdbarch_register_name (gdbarch, regnum) == NULL
498 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
499 return 0;
500 if (reggroup == float_reggroup)
501 return float_p && pseudo;
502 if (reggroup == vector_reggroup)
503 return vector_p && pseudo;
504 if (reggroup == general_reggroup)
505 return (!vector_p && !float_p) && pseudo;
506 /* Save the pseudo registers. Need to make certain that any code
507 extracting register values from a saved register cache also uses
508 pseudo registers. */
509 if (reggroup == save_reggroup)
510 return raw_p && pseudo;
511 /* Restore the same pseudo register. */
512 if (reggroup == restore_reggroup)
513 return raw_p && pseudo;
6d82d43b 514 return 0;
a4b8ebc8
AC
515}
516
f8b73d13
DJ
517/* Return the groups that a MIPS register can be categorised into.
518 This version is only used if we have a target description which
519 describes real registers (and their groups). */
520
521static int
522mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524{
525 int rawnum = regnum % gdbarch_num_regs (gdbarch);
526 int pseudo = regnum / gdbarch_num_regs (gdbarch);
527 int ret;
528
529 /* Only save, restore, and display the pseudo registers. Need to
530 make certain that any code extracting register values from a
531 saved register cache also uses pseudo registers.
532
533 Note: saving and restoring the pseudo registers is slightly
534 strange; if we have 64 bits, we should save and restore all
535 64 bits. But this is hard and has little benefit. */
536 if (!pseudo)
537 return 0;
538
539 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
540 if (ret != -1)
541 return ret;
542
543 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
544}
545
a4b8ebc8 546/* Map the symbol table registers which live in the range [1 *
f57d151a 547 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 548 registers. Take care of alignment and size problems. */
c5aa993b 549
a4b8ebc8
AC
550static void
551mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 552 int cookednum, gdb_byte *buf)
a4b8ebc8 553{
72a155b4
UW
554 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
555 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
556 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 557 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 558 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
559 else if (register_size (gdbarch, rawnum) >
560 register_size (gdbarch, cookednum))
47ebcfbe
AC
561 {
562 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 563 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
564 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
565 else
566 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
567 }
568 else
e2e0b3e5 569 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
570}
571
572static void
6d82d43b
AC
573mips_pseudo_register_write (struct gdbarch *gdbarch,
574 struct regcache *regcache, int cookednum,
47a35522 575 const gdb_byte *buf)
a4b8ebc8 576{
72a155b4
UW
577 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
578 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
579 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 580 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 581 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
582 else if (register_size (gdbarch, rawnum) >
583 register_size (gdbarch, cookednum))
47ebcfbe
AC
584 {
585 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 586 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
587 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
588 else
589 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
590 }
591 else
e2e0b3e5 592 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 593}
c5aa993b 594
c906108c 595/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 596static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
597
598/* Heuristic_proc_start may hunt through the text section for a long
599 time across a 2400 baud serial line. Allows the user to limit this
600 search. */
601
602static unsigned int heuristic_fence_post = 0;
603
46cd78fb 604/* Number of bytes of storage in the actual machine representation for
719ec221
AC
605 register N. NOTE: This defines the pseudo register type so need to
606 rebuild the architecture vector. */
43e526b9
JM
607
608static int mips64_transfers_32bit_regs_p = 0;
609
719ec221
AC
610static void
611set_mips64_transfers_32bit_regs (char *args, int from_tty,
612 struct cmd_list_element *c)
43e526b9 613{
719ec221
AC
614 struct gdbarch_info info;
615 gdbarch_info_init (&info);
616 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
617 instead of relying on globals. Doing that would let generic code
618 handle the search for this specific architecture. */
619 if (!gdbarch_update_p (info))
a4b8ebc8 620 {
719ec221 621 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 622 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 623 }
a4b8ebc8
AC
624}
625
47ebcfbe 626/* Convert to/from a register and the corresponding memory value. */
43e526b9 627
ff2e87ac 628static int
0abe36f5 629mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
ff2e87ac 630{
0abe36f5
MD
631 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
632 && register_size (gdbarch, regnum) == 4
633 && (regnum % gdbarch_num_regs (gdbarch))
634 >= mips_regnum (gdbarch)->fp0
635 && (regnum % gdbarch_num_regs (gdbarch))
636 < mips_regnum (gdbarch)->fp0 + 32
6d82d43b 637 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
638}
639
42c466d7 640static void
ff2e87ac 641mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 642 struct type *type, gdb_byte *to)
102182a9 643{
47a35522
MK
644 get_frame_register (frame, regnum + 0, to + 4);
645 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
646}
647
42c466d7 648static void
ff2e87ac 649mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 650 struct type *type, const gdb_byte *from)
102182a9 651{
47a35522
MK
652 put_frame_register (frame, regnum + 0, from + 4);
653 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
654}
655
a4b8ebc8
AC
656/* Return the GDB type object for the "standard" data type of data in
657 register REG. */
78fde5f8
KB
658
659static struct type *
a4b8ebc8
AC
660mips_register_type (struct gdbarch *gdbarch, int regnum)
661{
72a155b4
UW
662 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
663 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
664 && (regnum % gdbarch_num_regs (gdbarch))
665 < mips_regnum (gdbarch)->fp0 + 32)
a6425924 666 {
5ef80fb0 667 /* The floating-point registers raw, or cooked, always match
1b13c4f6 668 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 669 if (mips_isa_regsize (gdbarch) == 4)
27067745 670 return builtin_type (gdbarch)->builtin_float;
8da61cc4 671 else
27067745 672 return builtin_type (gdbarch)->builtin_double;
a6425924 673 }
72a155b4 674 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
675 {
676 /* The raw or ISA registers. These are all sized according to
677 the ISA regsize. */
678 if (mips_isa_regsize (gdbarch) == 4)
df4df182 679 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 680 else
df4df182 681 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 682 }
78fde5f8 683 else
d5ac5a39
AC
684 {
685 /* The cooked or ABI registers. These are sized according to
686 the ABI (with a few complications). */
72a155b4
UW
687 if (regnum >= (gdbarch_num_regs (gdbarch)
688 + mips_regnum (gdbarch)->fp_control_status)
689 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
690 /* The pseudo/cooked view of the embedded registers is always
691 32-bit. The raw view is handled below. */
df4df182 692 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
693 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
694 /* The target, while possibly using a 64-bit register buffer,
695 is only transfering 32-bits of each integer register.
696 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 697 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
698 else if (mips_abi_regsize (gdbarch) == 4)
699 /* The ABI is restricted to 32-bit registers (the ISA could be
700 32- or 64-bit). */
df4df182 701 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
702 else
703 /* 64-bit ABI. */
df4df182 704 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 705 }
78fde5f8
KB
706}
707
f8b73d13
DJ
708/* Return the GDB type for the pseudo register REGNUM, which is the
709 ABI-level view. This function is only called if there is a target
710 description which includes registers, so we know precisely the
711 types of hardware registers. */
712
713static struct type *
714mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
715{
716 const int num_regs = gdbarch_num_regs (gdbarch);
717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
718 int rawnum = regnum % num_regs;
719 struct type *rawtype;
720
721 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
722
723 /* Absent registers are still absent. */
724 rawtype = gdbarch_register_type (gdbarch, rawnum);
725 if (TYPE_LENGTH (rawtype) == 0)
726 return rawtype;
727
728 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
729 /* Present the floating point registers however the hardware did;
730 do not try to convert between FPU layouts. */
731 return rawtype;
732
733 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
734 {
735 /* The pseudo/cooked view of embedded registers is always
736 32-bit, even if the target transfers 64-bit values for them.
737 New targets relying on XML descriptions should only transfer
738 the necessary 32 bits, but older versions of GDB expected 64,
739 so allow the target to provide 64 bits without interfering
740 with the displayed type. */
df4df182 741 return builtin_type (gdbarch)->builtin_int32;
f8b73d13
DJ
742 }
743
744 /* Use pointer types for registers if we can. For n32 we can not,
745 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
746 if (mips_abi_regsize (gdbarch)
747 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13
DJ
748 {
749 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
0dfff4cb 750 return builtin_type (gdbarch)->builtin_data_ptr;
f8b73d13 751 else if (rawnum == MIPS_EMBED_PC_REGNUM)
0dfff4cb 752 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
753 }
754
755 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
756 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
df4df182 757 return builtin_type (gdbarch)->builtin_int32;
f8b73d13
DJ
758
759 /* For all other registers, pass through the hardware type. */
760 return rawtype;
761}
bcb0cc15 762
c906108c 763/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 764enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
765
766static int
480d3dd2 767mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
768{
769 switch (mask_address_var)
770 {
7f19b9a2 771 case AUTO_BOOLEAN_TRUE:
4014092b 772 return 1;
7f19b9a2 773 case AUTO_BOOLEAN_FALSE:
4014092b
AC
774 return 0;
775 break;
7f19b9a2 776 case AUTO_BOOLEAN_AUTO:
480d3dd2 777 return tdep->default_mask_address_p;
4014092b 778 default:
e2e0b3e5 779 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 780 return -1;
361d1df0 781 }
4014092b
AC
782}
783
784static void
08546159
AC
785show_mask_address (struct ui_file *file, int from_tty,
786 struct cmd_list_element *c, const char *value)
4014092b 787{
1cf3db46 788 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
08546159
AC
789
790 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
791 switch (mask_address_var)
792 {
7f19b9a2 793 case AUTO_BOOLEAN_TRUE:
4014092b
AC
794 printf_filtered ("The 32 bit mips address mask is enabled\n");
795 break;
7f19b9a2 796 case AUTO_BOOLEAN_FALSE:
4014092b
AC
797 printf_filtered ("The 32 bit mips address mask is disabled\n");
798 break;
7f19b9a2 799 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
800 printf_filtered
801 ("The 32 bit address mask is set automatically. Currently %s\n",
802 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
803 break;
804 default:
e2e0b3e5 805 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 806 break;
361d1df0 807 }
4014092b 808}
c906108c 809
c906108c
SS
810/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
811
0fe7e7c8
AC
812int
813mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
814{
815 struct minimal_symbol *sym;
816
817 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 818 if (is_mips16_addr (memaddr))
c906108c
SS
819 return 1;
820
821 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
822 the high bit of the info field. Use this to decide if the function is
823 MIPS16 or normal MIPS. */
824 sym = lookup_minimal_symbol_by_pc (memaddr);
825 if (sym)
71b8ef93 826 return msymbol_is_special (sym);
c906108c
SS
827 else
828 return 0;
829}
830
b2fa5097 831/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
832 all registers should be sign extended for simplicity? */
833
834static CORE_ADDR
61a1198a 835mips_read_pc (struct regcache *regcache)
6c997a34 836{
61a1198a
UW
837 ULONGEST pc;
838 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
839 regcache_cooked_read_signed (regcache, regnum, &pc);
840 return pc;
b6cb9035
AC
841}
842
58dfe9ff
AC
843static CORE_ADDR
844mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
845{
72a155b4
UW
846 return frame_unwind_register_signed
847 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
edfae063
AC
848}
849
30244cd8
UW
850static CORE_ADDR
851mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
852{
72a155b4
UW
853 return frame_unwind_register_signed
854 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
855}
856
b8a22b94 857/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
858 dummy frame. The frame ID's base needs to match the TOS value
859 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
860 breakpoint. */
861
862static struct frame_id
b8a22b94 863mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 864{
f57d151a 865 return frame_id_build
b8a22b94
DJ
866 (get_frame_register_signed (this_frame,
867 gdbarch_num_regs (gdbarch)
868 + MIPS_SP_REGNUM),
869 get_frame_pc (this_frame));
58dfe9ff
AC
870}
871
b6cb9035 872static void
61a1198a 873mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 874{
61a1198a
UW
875 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
876 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 877}
c906108c 878
c906108c
SS
879/* Fetch and return instruction from the specified location. If the PC
880 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
881
d37cca3d 882static ULONGEST
e17a4113 883mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
c906108c 884{
e17a4113 885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 886 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
887 int instlen;
888 int status;
889
0fe7e7c8 890 if (mips_pc_is_mips16 (addr))
c906108c 891 {
95ac2dcf 892 instlen = MIPS_INSN16_SIZE;
95404a3e 893 addr = unmake_mips16_addr (addr);
c906108c
SS
894 }
895 else
95ac2dcf 896 instlen = MIPS_INSN32_SIZE;
8defab1a 897 status = target_read_memory (addr, buf, instlen);
c906108c
SS
898 if (status)
899 memory_error (status, addr);
e17a4113 900 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
901}
902
c906108c 903/* These the fields of 32 bit mips instructions */
e135b889
DJ
904#define mips32_op(x) (x >> 26)
905#define itype_op(x) (x >> 26)
906#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 907#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 908#define itype_immediate(x) (x & 0xffff)
c906108c 909
e135b889
DJ
910#define jtype_op(x) (x >> 26)
911#define jtype_target(x) (x & 0x03ffffff)
c906108c 912
e135b889
DJ
913#define rtype_op(x) (x >> 26)
914#define rtype_rs(x) ((x >> 21) & 0x1f)
915#define rtype_rt(x) ((x >> 16) & 0x1f)
916#define rtype_rd(x) ((x >> 11) & 0x1f)
917#define rtype_shamt(x) ((x >> 6) & 0x1f)
918#define rtype_funct(x) (x & 0x3f)
c906108c 919
06987e64
MK
920static LONGEST
921mips32_relative_offset (ULONGEST inst)
c5aa993b 922{
06987e64 923 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
924}
925
f49e4e6d
MS
926/* Determine where to set a single step breakpoint while considering
927 branch prediction. */
5a89d8aa 928static CORE_ADDR
0b1b3e42 929mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b 930{
e17a4113 931 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b
JM
932 unsigned long inst;
933 int op;
e17a4113 934 inst = mips_fetch_instruction (gdbarch, pc);
e135b889 935 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 936 {
e135b889 937 if (itype_op (inst) >> 2 == 5)
6d82d43b 938 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 939 {
e135b889 940 op = (itype_op (inst) & 0x03);
c906108c
SS
941 switch (op)
942 {
e135b889
DJ
943 case 0: /* BEQL */
944 goto equal_branch;
945 case 1: /* BNEL */
946 goto neq_branch;
947 case 2: /* BLEZL */
948 goto less_branch;
313628cc 949 case 3: /* BGTZL */
e135b889 950 goto greater_branch;
c5aa993b
JM
951 default:
952 pc += 4;
c906108c
SS
953 }
954 }
e135b889 955 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 956 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
957 {
958 int tf = itype_rt (inst) & 0x01;
959 int cnum = itype_rt (inst) >> 2;
6d82d43b 960 int fcrcs =
72a155b4
UW
961 get_frame_register_signed (frame,
962 mips_regnum (get_frame_arch (frame))->
0b1b3e42 963 fp_control_status);
e135b889
DJ
964 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
965
966 if (((cond >> cnum) & 0x01) == tf)
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8;
970 }
c5aa993b
JM
971 else
972 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
973 }
974 else
c5aa993b
JM
975 { /* This gets way messy */
976
c906108c 977 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 978 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 979 {
c5aa993b
JM
980 case 0: /* SPECIAL */
981 op = rtype_funct (inst);
982 switch (op)
983 {
984 case 8: /* JR */
985 case 9: /* JALR */
6c997a34 986 /* Set PC to that address */
0b1b3e42 987 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b 988 break;
e38d4e1a
DJ
989 case 12: /* SYSCALL */
990 {
991 struct gdbarch_tdep *tdep;
992
993 tdep = gdbarch_tdep (get_frame_arch (frame));
994 if (tdep->syscall_next_pc != NULL)
995 pc = tdep->syscall_next_pc (frame);
996 else
997 pc += 4;
998 }
999 break;
c5aa993b
JM
1000 default:
1001 pc += 4;
1002 }
1003
6d82d43b 1004 break; /* end SPECIAL */
c5aa993b 1005 case 1: /* REGIMM */
c906108c 1006 {
e135b889
DJ
1007 op = itype_rt (inst); /* branch condition */
1008 switch (op)
c906108c 1009 {
c5aa993b 1010 case 0: /* BLTZ */
e135b889
DJ
1011 case 2: /* BLTZL */
1012 case 16: /* BLTZAL */
c5aa993b 1013 case 18: /* BLTZALL */
c906108c 1014 less_branch:
0b1b3e42 1015 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1016 pc += mips32_relative_offset (inst) + 4;
1017 else
1018 pc += 8; /* after the delay slot */
1019 break;
e135b889 1020 case 1: /* BGEZ */
c5aa993b
JM
1021 case 3: /* BGEZL */
1022 case 17: /* BGEZAL */
1023 case 19: /* BGEZALL */
0b1b3e42 1024 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1025 pc += mips32_relative_offset (inst) + 4;
1026 else
1027 pc += 8; /* after the delay slot */
1028 break;
e135b889 1029 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1030 default:
1031 pc += 4;
c906108c
SS
1032 }
1033 }
6d82d43b 1034 break; /* end REGIMM */
c5aa993b
JM
1035 case 2: /* J */
1036 case 3: /* JAL */
1037 {
1038 unsigned long reg;
1039 reg = jtype_target (inst) << 2;
e135b889 1040 /* Upper four bits get never changed... */
5b652102 1041 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1042 }
c5aa993b
JM
1043 break;
1044 /* FIXME case JALX : */
1045 {
1046 unsigned long reg;
1047 reg = jtype_target (inst) << 2;
5b652102 1048 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1049 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1050 }
c5aa993b 1051 break; /* The new PC will be alternate mode */
e135b889 1052 case 4: /* BEQ, BEQL */
c5aa993b 1053 equal_branch:
0b1b3e42
UW
1054 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1055 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1056 pc += mips32_relative_offset (inst) + 4;
1057 else
1058 pc += 8;
1059 break;
e135b889 1060 case 5: /* BNE, BNEL */
c5aa993b 1061 neq_branch:
0b1b3e42
UW
1062 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1063 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1064 pc += mips32_relative_offset (inst) + 4;
1065 else
1066 pc += 8;
1067 break;
e135b889 1068 case 6: /* BLEZ, BLEZL */
0b1b3e42 1069 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1070 pc += mips32_relative_offset (inst) + 4;
1071 else
1072 pc += 8;
1073 break;
1074 case 7:
e135b889
DJ
1075 default:
1076 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1077 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8;
1081 break;
c5aa993b
JM
1082 } /* switch */
1083 } /* else */
1084 return pc;
1085} /* mips32_next_pc */
c906108c
SS
1086
1087/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1088 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1089 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1090 We dont want to set a single step instruction on the extend instruction
1091 either.
c5aa993b 1092 */
c906108c
SS
1093
1094/* Lots of mips16 instruction formats */
1095/* Predicting jumps requires itype,ritype,i8type
1096 and their extensions extItype,extritype,extI8type
c5aa993b 1097 */
c906108c
SS
1098enum mips16_inst_fmts
1099{
c5aa993b
JM
1100 itype, /* 0 immediate 5,10 */
1101 ritype, /* 1 5,3,8 */
1102 rrtype, /* 2 5,3,3,5 */
1103 rritype, /* 3 5,3,3,5 */
1104 rrrtype, /* 4 5,3,3,3,2 */
1105 rriatype, /* 5 5,3,3,1,4 */
1106 shifttype, /* 6 5,3,3,3,2 */
1107 i8type, /* 7 5,3,8 */
1108 i8movtype, /* 8 5,3,3,5 */
1109 i8mov32rtype, /* 9 5,3,5,3 */
1110 i64type, /* 10 5,3,8 */
1111 ri64type, /* 11 5,3,3,5 */
1112 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1113 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1114 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1115 extRRItype, /* 15 5,5,5,5,3,3,5 */
1116 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1117 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1118 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1119 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1120 extRi64type, /* 20 5,6,5,5,3,3,5 */
1121 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1122};
12f02c2a
AC
1123/* I am heaping all the fields of the formats into one structure and
1124 then, only the fields which are involved in instruction extension */
c906108c 1125struct upk_mips16
6d82d43b
AC
1126{
1127 CORE_ADDR offset;
1128 unsigned int regx; /* Function in i8 type */
1129 unsigned int regy;
1130};
c906108c
SS
1131
1132
12f02c2a 1133/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 1134 for the bits which make up the immediate extension. */
c906108c 1135
12f02c2a
AC
1136static CORE_ADDR
1137extended_offset (unsigned int extension)
c906108c 1138{
12f02c2a 1139 CORE_ADDR value;
c5aa993b
JM
1140 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1141 value = value << 6;
1142 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1143 value = value << 5;
1144 value |= extension & 0x01f; /* extract 4:0 */
1145 return value;
c906108c
SS
1146}
1147
1148/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1149 instruction. It won't malfunction, but why make excess remote memory
1150 references? If the immediate operands get sign extended or something,
1151 do it after the extension is performed. */
c906108c 1152/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1153 when the offset is to be used in relative addressing. */
c906108c 1154
12f02c2a 1155static unsigned int
e17a4113 1156fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1157{
e17a4113 1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1159 gdb_byte buf[8];
c5aa993b
JM
1160 pc &= 0xfffffffe; /* clear the low order bit */
1161 target_read_memory (pc, buf, 2);
e17a4113 1162 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
1163}
1164
1165static void
e17a4113 1166unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
1167 unsigned int extension,
1168 unsigned int inst,
6d82d43b 1169 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1170{
12f02c2a
AC
1171 CORE_ADDR offset;
1172 int regx;
1173 int regy;
1174 switch (insn_format)
c906108c 1175 {
c5aa993b 1176 case itype:
c906108c 1177 {
12f02c2a
AC
1178 CORE_ADDR value;
1179 if (extension)
c5aa993b
JM
1180 {
1181 value = extended_offset (extension);
1182 value = value << 11; /* rom for the original value */
6d82d43b 1183 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1184 }
1185 else
c5aa993b 1186 {
12f02c2a 1187 value = inst & 0x7ff;
c5aa993b 1188 /* FIXME : Consider sign extension */
c906108c 1189 }
12f02c2a
AC
1190 offset = value;
1191 regx = -1;
1192 regy = -1;
c906108c 1193 }
c5aa993b
JM
1194 break;
1195 case ritype:
1196 case i8type:
1197 { /* A register identifier and an offset */
c906108c
SS
1198 /* Most of the fields are the same as I type but the
1199 immediate value is of a different length */
12f02c2a
AC
1200 CORE_ADDR value;
1201 if (extension)
c906108c 1202 {
c5aa993b
JM
1203 value = extended_offset (extension);
1204 value = value << 8; /* from the original instruction */
12f02c2a
AC
1205 value |= inst & 0xff; /* eleven bits from instruction */
1206 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1207 if (value & 0x4000) /* test the sign bit , bit 26 */
1208 {
1209 value &= ~0x3fff; /* remove the sign bit */
1210 value = -value;
c906108c
SS
1211 }
1212 }
c5aa993b
JM
1213 else
1214 {
12f02c2a
AC
1215 value = inst & 0xff; /* 8 bits */
1216 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1217 /* FIXME: Do sign extension , this format needs it */
1218 if (value & 0x80) /* THIS CONFUSES ME */
1219 {
1220 value &= 0xef; /* remove the sign bit */
1221 value = -value;
1222 }
c5aa993b 1223 }
12f02c2a
AC
1224 offset = value;
1225 regy = -1;
c5aa993b 1226 break;
c906108c 1227 }
c5aa993b 1228 case jalxtype:
c906108c 1229 {
c5aa993b 1230 unsigned long value;
12f02c2a
AC
1231 unsigned int nexthalf;
1232 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 1233 value = value << 16;
e17a4113 1234 nexthalf = mips_fetch_instruction (gdbarch, pc + 2); /* low bit still set */
c5aa993b 1235 value |= nexthalf;
12f02c2a
AC
1236 offset = value;
1237 regx = -1;
1238 regy = -1;
c5aa993b 1239 break;
c906108c
SS
1240 }
1241 default:
e2e0b3e5 1242 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1243 }
12f02c2a
AC
1244 upk->offset = offset;
1245 upk->regx = regx;
1246 upk->regy = regy;
c906108c
SS
1247}
1248
1249
c5aa993b
JM
1250static CORE_ADDR
1251add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1252{
5b652102 1253 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1254}
1255
12f02c2a 1256static CORE_ADDR
0b1b3e42 1257extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1258 unsigned int extension, unsigned int insn)
c906108c 1259{
e17a4113 1260 struct gdbarch *gdbarch = get_frame_arch (frame);
12f02c2a
AC
1261 int op = (insn >> 11);
1262 switch (op)
c906108c 1263 {
6d82d43b 1264 case 2: /* Branch */
12f02c2a
AC
1265 {
1266 CORE_ADDR offset;
1267 struct upk_mips16 upk;
e17a4113 1268 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
12f02c2a
AC
1269 offset = upk.offset;
1270 if (offset & 0x800)
1271 {
1272 offset &= 0xeff;
1273 offset = -offset;
1274 }
1275 pc += (offset << 1) + 2;
1276 break;
1277 }
6d82d43b 1278 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1279 {
1280 struct upk_mips16 upk;
e17a4113 1281 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
12f02c2a
AC
1282 pc = add_offset_16 (pc, upk.offset);
1283 if ((insn >> 10) & 0x01) /* Exchange mode */
1284 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1285 else
1286 pc |= 0x01;
1287 break;
1288 }
6d82d43b 1289 case 4: /* beqz */
12f02c2a
AC
1290 {
1291 struct upk_mips16 upk;
1292 int reg;
e17a4113 1293 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
0b1b3e42 1294 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1295 if (reg == 0)
1296 pc += (upk.offset << 1) + 2;
1297 else
1298 pc += 2;
1299 break;
1300 }
6d82d43b 1301 case 5: /* bnez */
12f02c2a
AC
1302 {
1303 struct upk_mips16 upk;
1304 int reg;
e17a4113 1305 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
0b1b3e42 1306 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1307 if (reg != 0)
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
6d82d43b 1313 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1314 {
1315 struct upk_mips16 upk;
1316 int reg;
e17a4113 1317 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 1318 /* upk.regx contains the opcode */
0b1b3e42 1319 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1320 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1321 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1322 /* pc = add_offset_16(pc,upk.offset) ; */
1323 pc += (upk.offset << 1) + 2;
1324 else
1325 pc += 2;
1326 break;
1327 }
6d82d43b 1328 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1329 {
1330 struct upk_mips16 upk;
1331 /* upk.fmt = rrtype; */
1332 op = insn & 0x1f;
1333 if (op == 0)
c5aa993b 1334 {
12f02c2a
AC
1335 int reg;
1336 upk.regx = (insn >> 8) & 0x07;
1337 upk.regy = (insn >> 5) & 0x07;
1338 switch (upk.regy)
c5aa993b 1339 {
12f02c2a
AC
1340 case 0:
1341 reg = upk.regx;
1342 break;
1343 case 1:
1344 reg = 31;
6d82d43b 1345 break; /* Function return instruction */
12f02c2a
AC
1346 case 2:
1347 reg = upk.regx;
1348 break;
1349 default:
1350 reg = 31;
6d82d43b 1351 break; /* BOGUS Guess */
c906108c 1352 }
0b1b3e42 1353 pc = get_frame_register_signed (frame, reg);
c906108c 1354 }
12f02c2a 1355 else
c5aa993b 1356 pc += 2;
12f02c2a
AC
1357 break;
1358 }
1359 case 30:
1360 /* This is an instruction extension. Fetch the real instruction
1361 (which follows the extension) and decode things based on
1362 that. */
1363 {
1364 pc += 2;
e17a4113
UW
1365 pc = extended_mips16_next_pc (frame, pc, insn,
1366 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
1367 break;
1368 }
1369 default:
1370 {
1371 pc += 2;
1372 break;
1373 }
c906108c 1374 }
c5aa993b 1375 return pc;
12f02c2a 1376}
c906108c 1377
5a89d8aa 1378static CORE_ADDR
0b1b3e42 1379mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a 1380{
e17a4113
UW
1381 struct gdbarch *gdbarch = get_frame_arch (frame);
1382 unsigned int insn = fetch_mips_16 (gdbarch, pc);
0b1b3e42 1383 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1384}
1385
1386/* The mips_next_pc function supports single_step when the remote
7e73cedf 1387 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1388 It works by decoding the current instruction and predicting where a
1389 branch will go. This isnt hard because all the data is available.
ce1f96de 1390 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1391static CORE_ADDR
0b1b3e42 1392mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1393{
ce1f96de 1394 if (is_mips16_addr (pc))
0b1b3e42 1395 return mips16_next_pc (frame, pc);
c5aa993b 1396 else
0b1b3e42 1397 return mips32_next_pc (frame, pc);
12f02c2a 1398}
c906108c 1399
edfae063
AC
1400struct mips_frame_cache
1401{
1402 CORE_ADDR base;
1403 struct trad_frame_saved_reg *saved_regs;
1404};
1405
29639122
JB
1406/* Set a register's saved stack address in temp_saved_regs. If an
1407 address has already been set for this register, do nothing; this
1408 way we will only recognize the first save of a given register in a
1409 function prologue.
eec63939 1410
f57d151a
UW
1411 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1412 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1413 Strictly speaking, only the second range is used as it is only second
1414 range (the ABI instead of ISA registers) that comes into play when finding
1415 saved registers in a frame. */
eec63939
AC
1416
1417static void
74ed0bb4
MD
1418set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
1419 int regnum, CORE_ADDR offset)
eec63939 1420{
29639122
JB
1421 if (this_cache != NULL
1422 && this_cache->saved_regs[regnum].addr == -1)
1423 {
74ed0bb4
MD
1424 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
1425 = offset;
1426 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
1427 = offset;
29639122 1428 }
eec63939
AC
1429}
1430
eec63939 1431
29639122
JB
1432/* Fetch the immediate value from a MIPS16 instruction.
1433 If the previous instruction was an EXTEND, use it to extend
1434 the upper bits of the immediate value. This is a helper function
1435 for mips16_scan_prologue. */
eec63939 1436
29639122
JB
1437static int
1438mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1439 unsigned short inst, /* current instruction */
1440 int nbits, /* number of bits in imm field */
1441 int scale, /* scale factor to be applied to imm */
1442 int is_signed) /* is the imm field signed? */
eec63939 1443{
29639122 1444 int offset;
eec63939 1445
29639122
JB
1446 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1447 {
1448 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1449 if (offset & 0x8000) /* check for negative extend */
1450 offset = 0 - (0x10000 - (offset & 0xffff));
1451 return offset | (inst & 0x1f);
1452 }
eec63939 1453 else
29639122
JB
1454 {
1455 int max_imm = 1 << nbits;
1456 int mask = max_imm - 1;
1457 int sign_bit = max_imm >> 1;
45c9dd44 1458
29639122
JB
1459 offset = inst & mask;
1460 if (is_signed && (offset & sign_bit))
1461 offset = 0 - (max_imm - offset);
1462 return offset * scale;
1463 }
1464}
eec63939 1465
65596487 1466
29639122
JB
1467/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1468 the associated FRAME_CACHE if not null.
1469 Return the address of the first instruction past the prologue. */
eec63939 1470
29639122 1471static CORE_ADDR
e17a4113
UW
1472mips16_scan_prologue (struct gdbarch *gdbarch,
1473 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 1474 struct frame_info *this_frame,
29639122
JB
1475 struct mips_frame_cache *this_cache)
1476{
1477 CORE_ADDR cur_pc;
1478 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1479 CORE_ADDR sp;
1480 long frame_offset = 0; /* Size of stack frame. */
1481 long frame_adjust = 0; /* Offset of FP from SP. */
1482 int frame_reg = MIPS_SP_REGNUM;
1483 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1484 unsigned inst = 0; /* current instruction */
1485 unsigned entry_inst = 0; /* the entry instruction */
2207132d 1486 unsigned save_inst = 0; /* the save instruction */
29639122 1487 int reg, offset;
a343eb3c 1488
29639122
JB
1489 int extend_bytes = 0;
1490 int prev_extend_bytes;
1491 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1492
29639122 1493 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
1494 THIS_FRAME. */
1495 if (this_frame != NULL)
1496 sp = get_frame_register_signed (this_frame,
1497 gdbarch_num_regs (gdbarch)
1498 + MIPS_SP_REGNUM);
29639122
JB
1499 else
1500 sp = 0;
eec63939 1501
29639122
JB
1502 if (limit_pc > start_pc + 200)
1503 limit_pc = start_pc + 200;
eec63939 1504
95ac2dcf 1505 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1506 {
1507 /* Save the previous instruction. If it's an EXTEND, we'll extract
1508 the immediate offset extension from it in mips16_get_imm. */
1509 prev_inst = inst;
eec63939 1510
29639122 1511 /* Fetch and decode the instruction. */
e17a4113 1512 inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
eec63939 1513
29639122
JB
1514 /* Normally we ignore extend instructions. However, if it is
1515 not followed by a valid prologue instruction, then this
1516 instruction is not part of the prologue either. We must
1517 remember in this case to adjust the end_prologue_addr back
1518 over the extend. */
1519 if ((inst & 0xf800) == 0xf000) /* extend */
1520 {
95ac2dcf 1521 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1522 continue;
1523 }
eec63939 1524
29639122
JB
1525 prev_extend_bytes = extend_bytes;
1526 extend_bytes = 0;
eec63939 1527
29639122
JB
1528 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1529 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1530 {
1531 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1532 if (offset < 0) /* negative stack adjustment? */
1533 frame_offset -= offset;
1534 else
1535 /* Exit loop if a positive stack adjustment is found, which
1536 usually means that the stack cleanup code in the function
1537 epilogue is reached. */
1538 break;
1539 }
1540 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1541 {
1542 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1543 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
74ed0bb4 1544 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
1545 }
1546 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1547 {
1548 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1549 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
74ed0bb4 1550 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
1551 }
1552 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1553 {
1554 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 1555 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1556 }
1557 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1558 {
1559 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 1560 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1561 }
1562 else if (inst == 0x673d) /* move $s1, $sp */
1563 {
1564 frame_addr = sp;
1565 frame_reg = 17;
1566 }
1567 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1568 {
1569 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1570 frame_addr = sp + offset;
1571 frame_reg = 17;
1572 frame_adjust = offset;
1573 }
1574 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1575 {
1576 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1577 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
74ed0bb4 1578 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
1579 }
1580 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1581 {
1582 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1583 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
74ed0bb4 1584 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
1585 }
1586 else if ((inst & 0xf81f) == 0xe809
1587 && (inst & 0x700) != 0x700) /* entry */
1588 entry_inst = inst; /* save for later processing */
2207132d
MR
1589 else if ((inst & 0xff80) == 0x6480) /* save */
1590 {
1591 save_inst = inst; /* save for later processing */
1592 if (prev_extend_bytes) /* extend */
1593 save_inst |= prev_inst << 16;
1594 }
29639122 1595 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1596 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1597 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1598 {
1599 /* This instruction is part of the prologue, but we don't
1600 need to do anything special to handle it. */
1601 }
1602 else
1603 {
1604 /* This instruction is not an instruction typically found
1605 in a prologue, so we must have reached the end of the
1606 prologue. */
1607 if (end_prologue_addr == 0)
1608 end_prologue_addr = cur_pc - prev_extend_bytes;
1609 }
1610 }
eec63939 1611
29639122
JB
1612 /* The entry instruction is typically the first instruction in a function,
1613 and it stores registers at offsets relative to the value of the old SP
1614 (before the prologue). But the value of the sp parameter to this
1615 function is the new SP (after the prologue has been executed). So we
1616 can't calculate those offsets until we've seen the entire prologue,
1617 and can calculate what the old SP must have been. */
1618 if (entry_inst != 0)
1619 {
1620 int areg_count = (entry_inst >> 8) & 7;
1621 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1622
29639122
JB
1623 /* The entry instruction always subtracts 32 from the SP. */
1624 frame_offset += 32;
1625
1626 /* Now we can calculate what the SP must have been at the
1627 start of the function prologue. */
1628 sp += frame_offset;
1629
1630 /* Check if a0-a3 were saved in the caller's argument save area. */
1631 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1632 {
74ed0bb4 1633 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 1634 offset += mips_abi_regsize (gdbarch);
29639122
JB
1635 }
1636
1637 /* Check if the ra register was pushed on the stack. */
1638 offset = -4;
1639 if (entry_inst & 0x20)
1640 {
74ed0bb4 1641 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 1642 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1643 }
1644
1645 /* Check if the s0 and s1 registers were pushed on the stack. */
1646 for (reg = 16; reg < sreg_count + 16; reg++)
1647 {
74ed0bb4 1648 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 1649 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1650 }
1651 }
1652
2207132d
MR
1653 /* The SAVE instruction is similar to ENTRY, except that defined by the
1654 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
1655 size of the frame is specified as an immediate field of instruction
1656 and an extended variation exists which lets additional registers and
1657 frame space to be specified. The instruction always treats registers
1658 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
1659 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
1660 {
1661 static int args_table[16] = {
1662 0, 0, 0, 0, 1, 1, 1, 1,
1663 2, 2, 2, 0, 3, 3, 4, -1,
1664 };
1665 static int astatic_table[16] = {
1666 0, 1, 2, 3, 0, 1, 2, 3,
1667 0, 1, 2, 4, 0, 1, 0, -1,
1668 };
1669 int aregs = (save_inst >> 16) & 0xf;
1670 int xsregs = (save_inst >> 24) & 0x7;
1671 int args = args_table[aregs];
1672 int astatic = astatic_table[aregs];
1673 long frame_size;
1674
1675 if (args < 0)
1676 {
1677 warning (_("Invalid number of argument registers encoded in SAVE."));
1678 args = 0;
1679 }
1680 if (astatic < 0)
1681 {
1682 warning (_("Invalid number of static registers encoded in SAVE."));
1683 astatic = 0;
1684 }
1685
1686 /* For standard SAVE the frame size of 0 means 128. */
1687 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
1688 if (frame_size == 0 && (save_inst >> 16) == 0)
1689 frame_size = 16;
1690 frame_size *= 8;
1691 frame_offset += frame_size;
1692
1693 /* Now we can calculate what the SP must have been at the
1694 start of the function prologue. */
1695 sp += frame_offset;
1696
1697 /* Check if A0-A3 were saved in the caller's argument save area. */
1698 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
1699 {
74ed0bb4 1700 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
1701 offset += mips_abi_regsize (gdbarch);
1702 }
1703
1704 offset = -4;
1705
1706 /* Check if the RA register was pushed on the stack. */
1707 if (save_inst & 0x40)
1708 {
74ed0bb4 1709 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
1710 offset -= mips_abi_regsize (gdbarch);
1711 }
1712
1713 /* Check if the S8 register was pushed on the stack. */
1714 if (xsregs > 6)
1715 {
74ed0bb4 1716 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
1717 offset -= mips_abi_regsize (gdbarch);
1718 xsregs--;
1719 }
1720 /* Check if S2-S7 were pushed on the stack. */
1721 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
1722 {
74ed0bb4 1723 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
1724 offset -= mips_abi_regsize (gdbarch);
1725 }
1726
1727 /* Check if the S1 register was pushed on the stack. */
1728 if (save_inst & 0x10)
1729 {
74ed0bb4 1730 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
1731 offset -= mips_abi_regsize (gdbarch);
1732 }
1733 /* Check if the S0 register was pushed on the stack. */
1734 if (save_inst & 0x20)
1735 {
74ed0bb4 1736 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
1737 offset -= mips_abi_regsize (gdbarch);
1738 }
1739
1740 /* Check if A0-A3 were pushed on the stack. */
1741 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
1742 {
74ed0bb4 1743 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
1744 offset -= mips_abi_regsize (gdbarch);
1745 }
1746 }
1747
29639122
JB
1748 if (this_cache != NULL)
1749 {
1750 this_cache->base =
b8a22b94
DJ
1751 (get_frame_register_signed (this_frame,
1752 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
1753 + frame_offset - frame_adjust);
1754 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1755 be able to get rid of the assignment below, evetually. But it's
1756 still needed for now. */
72a155b4
UW
1757 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1758 + mips_regnum (gdbarch)->pc]
1759 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
1760 }
1761
1762 /* If we didn't reach the end of the prologue when scanning the function
1763 instructions, then set end_prologue_addr to the address of the
1764 instruction immediately after the last one we scanned. */
1765 if (end_prologue_addr == 0)
1766 end_prologue_addr = cur_pc;
1767
1768 return end_prologue_addr;
eec63939
AC
1769}
1770
29639122
JB
1771/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1772 Procedures that use the 32-bit instruction set are handled by the
1773 mips_insn32 unwinder. */
1774
1775static struct mips_frame_cache *
b8a22b94 1776mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 1777{
e17a4113 1778 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 1779 struct mips_frame_cache *cache;
eec63939
AC
1780
1781 if ((*this_cache) != NULL)
1782 return (*this_cache);
29639122
JB
1783 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1784 (*this_cache) = cache;
b8a22b94 1785 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 1786
29639122
JB
1787 /* Analyze the function prologue. */
1788 {
b8a22b94 1789 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 1790 CORE_ADDR start_addr;
eec63939 1791
29639122
JB
1792 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1793 if (start_addr == 0)
e17a4113 1794 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
1795 /* We can't analyze the prologue if we couldn't find the begining
1796 of the function. */
1797 if (start_addr == 0)
1798 return cache;
eec63939 1799
e17a4113 1800 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122
JB
1801 }
1802
3e8c568d 1803 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 1804 trad_frame_set_value (cache->saved_regs,
e17a4113 1805 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 1806 cache->base);
eec63939 1807
29639122 1808 return (*this_cache);
eec63939
AC
1809}
1810
1811static void
b8a22b94 1812mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 1813 struct frame_id *this_id)
eec63939 1814{
b8a22b94 1815 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
29639122 1816 this_cache);
b8a22b94 1817 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
1818}
1819
b8a22b94
DJ
1820static struct value *
1821mips_insn16_frame_prev_register (struct frame_info *this_frame,
1822 void **this_cache, int regnum)
eec63939 1823{
b8a22b94 1824 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
29639122 1825 this_cache);
b8a22b94
DJ
1826 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1827}
1828
1829static int
1830mips_insn16_frame_sniffer (const struct frame_unwind *self,
1831 struct frame_info *this_frame, void **this_cache)
1832{
1833 CORE_ADDR pc = get_frame_pc (this_frame);
1834 if (mips_pc_is_mips16 (pc))
1835 return 1;
1836 return 0;
eec63939
AC
1837}
1838
29639122 1839static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1840{
1841 NORMAL_FRAME,
29639122 1842 mips_insn16_frame_this_id,
b8a22b94
DJ
1843 mips_insn16_frame_prev_register,
1844 NULL,
1845 mips_insn16_frame_sniffer
eec63939
AC
1846};
1847
eec63939 1848static CORE_ADDR
b8a22b94 1849mips_insn16_frame_base_address (struct frame_info *this_frame,
29639122 1850 void **this_cache)
eec63939 1851{
b8a22b94 1852 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
29639122
JB
1853 this_cache);
1854 return info->base;
eec63939
AC
1855}
1856
29639122 1857static const struct frame_base mips_insn16_frame_base =
eec63939 1858{
29639122
JB
1859 &mips_insn16_frame_unwind,
1860 mips_insn16_frame_base_address,
1861 mips_insn16_frame_base_address,
1862 mips_insn16_frame_base_address
eec63939
AC
1863};
1864
1865static const struct frame_base *
b8a22b94 1866mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
eec63939 1867{
b8a22b94
DJ
1868 CORE_ADDR pc = get_frame_pc (this_frame);
1869 if (mips_pc_is_mips16 (pc))
29639122 1870 return &mips_insn16_frame_base;
eec63939
AC
1871 else
1872 return NULL;
edfae063
AC
1873}
1874
29639122
JB
1875/* Mark all the registers as unset in the saved_regs array
1876 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1877
74ed0bb4
MD
1878static void
1879reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 1880{
29639122
JB
1881 if (this_cache == NULL || this_cache->saved_regs == NULL)
1882 return;
1883
1884 {
74ed0bb4 1885 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 1886 int i;
64159455 1887
29639122
JB
1888 for (i = 0; i < num_regs; i++)
1889 {
1890 this_cache->saved_regs[i].addr = -1;
1891 }
1892 }
c906108c
SS
1893}
1894
29639122
JB
1895/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1896 the associated FRAME_CACHE if not null.
1897 Return the address of the first instruction past the prologue. */
c906108c 1898
875e1767 1899static CORE_ADDR
e17a4113
UW
1900mips32_scan_prologue (struct gdbarch *gdbarch,
1901 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 1902 struct frame_info *this_frame,
29639122 1903 struct mips_frame_cache *this_cache)
c906108c 1904{
29639122
JB
1905 CORE_ADDR cur_pc;
1906 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1907 CORE_ADDR sp;
1908 long frame_offset;
1909 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1910
29639122
JB
1911 CORE_ADDR end_prologue_addr = 0;
1912 int seen_sp_adjust = 0;
1913 int load_immediate_bytes = 0;
db5f024e 1914 int in_delay_slot = 0;
7d1e6fb8 1915 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 1916
29639122 1917 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
1918 THIS_FRAME. */
1919 if (this_frame != NULL)
1920 sp = get_frame_register_signed (this_frame,
1921 gdbarch_num_regs (gdbarch)
1922 + MIPS_SP_REGNUM);
8fa9cfa1 1923 else
29639122 1924 sp = 0;
9022177c 1925
29639122
JB
1926 if (limit_pc > start_pc + 200)
1927 limit_pc = start_pc + 200;
9022177c 1928
29639122 1929restart:
9022177c 1930
29639122 1931 frame_offset = 0;
95ac2dcf 1932 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1933 {
29639122
JB
1934 unsigned long inst, high_word, low_word;
1935 int reg;
9022177c 1936
29639122 1937 /* Fetch the instruction. */
e17a4113 1938 inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
9022177c 1939
29639122
JB
1940 /* Save some code by pre-extracting some useful fields. */
1941 high_word = (inst >> 16) & 0xffff;
1942 low_word = inst & 0xffff;
1943 reg = high_word & 0x1f;
fe29b929 1944
29639122
JB
1945 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1946 || high_word == 0x23bd /* addi $sp,$sp,-i */
1947 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1948 {
1949 if (low_word & 0x8000) /* negative stack adjustment? */
1950 frame_offset += 0x10000 - low_word;
1951 else
1952 /* Exit loop if a positive stack adjustment is found, which
1953 usually means that the stack cleanup code in the function
1954 epilogue is reached. */
1955 break;
1956 seen_sp_adjust = 1;
1957 }
7d1e6fb8
KB
1958 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1959 && !regsize_is_64_bits)
29639122 1960 {
74ed0bb4 1961 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122 1962 }
7d1e6fb8
KB
1963 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1964 && regsize_is_64_bits)
29639122
JB
1965 {
1966 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
74ed0bb4 1967 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
29639122
JB
1968 }
1969 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1970 {
1971 /* Old gcc frame, r30 is virtual frame pointer. */
1972 if ((long) low_word != frame_offset)
1973 frame_addr = sp + low_word;
b8a22b94 1974 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1975 {
1976 unsigned alloca_adjust;
a4b8ebc8 1977
29639122 1978 frame_reg = 30;
b8a22b94
DJ
1979 frame_addr = get_frame_register_signed
1980 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1981
29639122
JB
1982 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1983 if (alloca_adjust > 0)
1984 {
1985 /* FP > SP + frame_size. This may be because of
1986 an alloca or somethings similar. Fix sp to
1987 "pre-alloca" value, and try again. */
1988 sp += alloca_adjust;
1989 /* Need to reset the status of all registers. Otherwise,
1990 we will hit a guard that prevents the new address
1991 for each register to be recomputed during the second
1992 pass. */
74ed0bb4 1993 reset_saved_regs (gdbarch, this_cache);
29639122
JB
1994 goto restart;
1995 }
1996 }
1997 }
1998 /* move $30,$sp. With different versions of gas this will be either
1999 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2000 Accept any one of these. */
2001 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2002 {
2003 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 2004 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
2005 {
2006 unsigned alloca_adjust;
c906108c 2007
29639122 2008 frame_reg = 30;
b8a22b94
DJ
2009 frame_addr = get_frame_register_signed
2010 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 2011
29639122
JB
2012 alloca_adjust = (unsigned) (frame_addr - sp);
2013 if (alloca_adjust > 0)
2014 {
2015 /* FP > SP + frame_size. This may be because of
2016 an alloca or somethings similar. Fix sp to
2017 "pre-alloca" value, and try again. */
2018 sp = frame_addr;
2019 /* Need to reset the status of all registers. Otherwise,
2020 we will hit a guard that prevents the new address
2021 for each register to be recomputed during the second
2022 pass. */
74ed0bb4 2023 reset_saved_regs (gdbarch, this_cache);
29639122
JB
2024 goto restart;
2025 }
2026 }
2027 }
7d1e6fb8
KB
2028 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
2029 && !regsize_is_64_bits)
29639122 2030 {
74ed0bb4 2031 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
29639122
JB
2032 }
2033 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
2034 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
2035 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
2036 || high_word == 0x3c1c /* lui $gp,n */
2037 || high_word == 0x279c /* addiu $gp,$gp,n */
2038 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2039 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
2040 )
2041 {
2042 /* These instructions are part of the prologue, but we don't
2043 need to do anything special to handle them. */
2044 }
2045 /* The instructions below load $at or $t0 with an immediate
2046 value in preparation for a stack adjustment via
2047 subu $sp,$sp,[$at,$t0]. These instructions could also
2048 initialize a local variable, so we accept them only before
2049 a stack adjustment instruction was seen. */
2050 else if (!seen_sp_adjust
2051 && (high_word == 0x3c01 /* lui $at,n */
2052 || high_word == 0x3c08 /* lui $t0,n */
2053 || high_word == 0x3421 /* ori $at,$at,n */
2054 || high_word == 0x3508 /* ori $t0,$t0,n */
2055 || high_word == 0x3401 /* ori $at,$zero,n */
2056 || high_word == 0x3408 /* ori $t0,$zero,n */
2057 ))
2058 {
95ac2dcf 2059 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2060 }
2061 else
2062 {
2063 /* This instruction is not an instruction typically found
2064 in a prologue, so we must have reached the end of the
2065 prologue. */
2066 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2067 loop now? Why would we need to continue scanning the function
2068 instructions? */
2069 if (end_prologue_addr == 0)
2070 end_prologue_addr = cur_pc;
db5f024e
DJ
2071
2072 /* Check for branches and jumps. For now, only jump to
2073 register are caught (i.e. returns). */
2074 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
2075 in_delay_slot = 1;
29639122 2076 }
db5f024e
DJ
2077
2078 /* If the previous instruction was a jump, we must have reached
2079 the end of the prologue by now. Stop scanning so that we do
2080 not go past the function return. */
2081 if (in_delay_slot)
2082 break;
a4b8ebc8 2083 }
c906108c 2084
29639122
JB
2085 if (this_cache != NULL)
2086 {
2087 this_cache->base =
b8a22b94
DJ
2088 (get_frame_register_signed (this_frame,
2089 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
2090 + frame_offset);
2091 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2092 this assignment below, eventually. But it's still needed
2093 for now. */
72a155b4
UW
2094 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2095 + mips_regnum (gdbarch)->pc]
2096 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 2097 + MIPS_RA_REGNUM];
29639122 2098 }
c906108c 2099
29639122
JB
2100 /* If we didn't reach the end of the prologue when scanning the function
2101 instructions, then set end_prologue_addr to the address of the
2102 instruction immediately after the last one we scanned. */
2103 /* brobecker/2004-10-10: I don't think this would ever happen, but
2104 we may as well be careful and do our best if we have a null
2105 end_prologue_addr. */
2106 if (end_prologue_addr == 0)
2107 end_prologue_addr = cur_pc;
2108
2109 /* In a frameless function, we might have incorrectly
2110 skipped some load immediate instructions. Undo the skipping
2111 if the load immediate was not followed by a stack adjustment. */
2112 if (load_immediate_bytes && !seen_sp_adjust)
2113 end_prologue_addr -= load_immediate_bytes;
c906108c 2114
29639122 2115 return end_prologue_addr;
c906108c
SS
2116}
2117
29639122
JB
2118/* Heuristic unwinder for procedures using 32-bit instructions (covers
2119 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2120 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2121 unwinder. */
c906108c 2122
29639122 2123static struct mips_frame_cache *
b8a22b94 2124mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 2125{
e17a4113 2126 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 2127 struct mips_frame_cache *cache;
c906108c 2128
29639122
JB
2129 if ((*this_cache) != NULL)
2130 return (*this_cache);
c5aa993b 2131
29639122
JB
2132 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2133 (*this_cache) = cache;
b8a22b94 2134 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 2135
29639122
JB
2136 /* Analyze the function prologue. */
2137 {
b8a22b94 2138 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 2139 CORE_ADDR start_addr;
c906108c 2140
29639122
JB
2141 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2142 if (start_addr == 0)
e17a4113 2143 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
2144 /* We can't analyze the prologue if we couldn't find the begining
2145 of the function. */
2146 if (start_addr == 0)
2147 return cache;
c5aa993b 2148
e17a4113 2149 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
29639122
JB
2150 }
2151
3e8c568d 2152 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 2153 trad_frame_set_value (cache->saved_regs,
e17a4113 2154 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 2155 cache->base);
c5aa993b 2156
29639122 2157 return (*this_cache);
c906108c
SS
2158}
2159
29639122 2160static void
b8a22b94 2161mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 2162 struct frame_id *this_id)
c906108c 2163{
b8a22b94 2164 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 2165 this_cache);
b8a22b94 2166 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 2167}
c906108c 2168
b8a22b94
DJ
2169static struct value *
2170mips_insn32_frame_prev_register (struct frame_info *this_frame,
2171 void **this_cache, int regnum)
29639122 2172{
b8a22b94 2173 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 2174 this_cache);
b8a22b94
DJ
2175 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2176}
2177
2178static int
2179mips_insn32_frame_sniffer (const struct frame_unwind *self,
2180 struct frame_info *this_frame, void **this_cache)
2181{
2182 CORE_ADDR pc = get_frame_pc (this_frame);
2183 if (! mips_pc_is_mips16 (pc))
2184 return 1;
2185 return 0;
c906108c
SS
2186}
2187
29639122
JB
2188static const struct frame_unwind mips_insn32_frame_unwind =
2189{
2190 NORMAL_FRAME,
2191 mips_insn32_frame_this_id,
b8a22b94
DJ
2192 mips_insn32_frame_prev_register,
2193 NULL,
2194 mips_insn32_frame_sniffer
29639122 2195};
c906108c 2196
1c645fec 2197static CORE_ADDR
b8a22b94 2198mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 2199 void **this_cache)
c906108c 2200{
b8a22b94 2201 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
2202 this_cache);
2203 return info->base;
2204}
c906108c 2205
29639122
JB
2206static const struct frame_base mips_insn32_frame_base =
2207{
2208 &mips_insn32_frame_unwind,
2209 mips_insn32_frame_base_address,
2210 mips_insn32_frame_base_address,
2211 mips_insn32_frame_base_address
2212};
1c645fec 2213
29639122 2214static const struct frame_base *
b8a22b94 2215mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 2216{
b8a22b94
DJ
2217 CORE_ADDR pc = get_frame_pc (this_frame);
2218 if (! mips_pc_is_mips16 (pc))
29639122 2219 return &mips_insn32_frame_base;
a65bbe44 2220 else
29639122
JB
2221 return NULL;
2222}
a65bbe44 2223
29639122 2224static struct trad_frame_cache *
b8a22b94 2225mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
2226{
2227 CORE_ADDR pc;
2228 CORE_ADDR start_addr;
2229 CORE_ADDR stack_addr;
2230 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
2231 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2232 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 2233
29639122
JB
2234 if ((*this_cache) != NULL)
2235 return (*this_cache);
b8a22b94 2236 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 2237 (*this_cache) = this_trad_cache;
1c645fec 2238
29639122 2239 /* The return address is in the link register. */
3e8c568d 2240 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 2241 gdbarch_pc_regnum (gdbarch),
b8a22b94 2242 num_regs + MIPS_RA_REGNUM);
1c645fec 2243
29639122
JB
2244 /* Frame ID, since it's a frameless / stackless function, no stack
2245 space is allocated and SP on entry is the current SP. */
b8a22b94 2246 pc = get_frame_pc (this_frame);
29639122 2247 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
2248 stack_addr = get_frame_register_signed (this_frame,
2249 num_regs + MIPS_SP_REGNUM);
aa6c981f 2250 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 2251
29639122
JB
2252 /* Assume that the frame's base is the same as the
2253 stack-pointer. */
2254 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2255
29639122
JB
2256 return this_trad_cache;
2257}
c906108c 2258
29639122 2259static void
b8a22b94 2260mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
2261 struct frame_id *this_id)
2262{
2263 struct trad_frame_cache *this_trad_cache
b8a22b94 2264 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
2265 trad_frame_get_id (this_trad_cache, this_id);
2266}
c906108c 2267
b8a22b94
DJ
2268static struct value *
2269mips_stub_frame_prev_register (struct frame_info *this_frame,
2270 void **this_cache, int regnum)
29639122
JB
2271{
2272 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
2273 = mips_stub_frame_cache (this_frame, this_cache);
2274 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 2275}
c906108c 2276
b8a22b94
DJ
2277static int
2278mips_stub_frame_sniffer (const struct frame_unwind *self,
2279 struct frame_info *this_frame, void **this_cache)
29639122 2280{
aa6c981f 2281 gdb_byte dummy[4];
979b38e0 2282 struct obj_section *s;
b8a22b94 2283 CORE_ADDR pc = get_frame_address_in_block (this_frame);
db5f024e 2284 struct minimal_symbol *msym;
979b38e0 2285
aa6c981f 2286 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
2287 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2288 return 1;
aa6c981f 2289
29639122 2290 if (in_plt_section (pc, NULL))
b8a22b94 2291 return 1;
979b38e0
DJ
2292
2293 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2294 s = find_pc_section (pc);
2295
2296 if (s != NULL
2297 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2298 ".MIPS.stubs") == 0)
b8a22b94 2299 return 1;
979b38e0 2300
db5f024e
DJ
2301 /* Calling a PIC function from a non-PIC function passes through a
2302 stub. The stub for foo is named ".pic.foo". */
2303 msym = lookup_minimal_symbol_by_pc (pc);
2304 if (msym != NULL
2305 && SYMBOL_LINKAGE_NAME (msym) != NULL
2306 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
2307 return 1;
2308
b8a22b94 2309 return 0;
29639122 2310}
c906108c 2311
b8a22b94
DJ
2312static const struct frame_unwind mips_stub_frame_unwind =
2313{
2314 NORMAL_FRAME,
2315 mips_stub_frame_this_id,
2316 mips_stub_frame_prev_register,
2317 NULL,
2318 mips_stub_frame_sniffer
2319};
2320
29639122 2321static CORE_ADDR
b8a22b94 2322mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
2323 void **this_cache)
2324{
2325 struct trad_frame_cache *this_trad_cache
b8a22b94 2326 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
2327 return trad_frame_get_this_base (this_trad_cache);
2328}
0fce0821 2329
29639122
JB
2330static const struct frame_base mips_stub_frame_base =
2331{
2332 &mips_stub_frame_unwind,
2333 mips_stub_frame_base_address,
2334 mips_stub_frame_base_address,
2335 mips_stub_frame_base_address
2336};
2337
2338static const struct frame_base *
b8a22b94 2339mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 2340{
b8a22b94 2341 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
2342 return &mips_stub_frame_base;
2343 else
2344 return NULL;
2345}
2346
29639122 2347/* mips_addr_bits_remove - remove useless address bits */
65596487 2348
29639122 2349static CORE_ADDR
24568a2c 2350mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 2351{
24568a2c 2352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
29639122
JB
2353 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2354 /* This hack is a work-around for existing boards using PMON, the
2355 simulator, and any other 64-bit targets that doesn't have true
2356 64-bit addressing. On these targets, the upper 32 bits of
2357 addresses are ignored by the hardware. Thus, the PC or SP are
2358 likely to have been sign extended to all 1s by instruction
2359 sequences that load 32-bit addresses. For example, a typical
2360 piece of code that loads an address is this:
65596487 2361
29639122
JB
2362 lui $r2, <upper 16 bits>
2363 ori $r2, <lower 16 bits>
65596487 2364
29639122
JB
2365 But the lui sign-extends the value such that the upper 32 bits
2366 may be all 1s. The workaround is simply to mask off these
2367 bits. In the future, gcc may be changed to support true 64-bit
2368 addressing, and this masking will have to be disabled. */
2369 return addr &= 0xffffffffUL;
2370 else
2371 return addr;
65596487
JB
2372}
2373
3d5f6d12
DJ
2374/* Instructions used during single-stepping of atomic sequences. */
2375#define LL_OPCODE 0x30
2376#define LLD_OPCODE 0x34
2377#define SC_OPCODE 0x38
2378#define SCD_OPCODE 0x3c
2379
2380/* Checks for an atomic sequence of instructions beginning with a LL/LLD
2381 instruction and ending with a SC/SCD instruction. If such a sequence
2382 is found, attempt to step through it. A breakpoint is placed at the end of
2383 the sequence. */
2384
2385static int
a6d9a66e 2386deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3d5f6d12
DJ
2387{
2388 CORE_ADDR breaks[2] = {-1, -1};
2389 CORE_ADDR loc = pc;
2390 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2391 unsigned long insn;
2392 int insn_count;
2393 int index;
2394 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2395 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2396
2397 if (pc & 0x01)
2398 return 0;
2399
e17a4113 2400 insn = mips_fetch_instruction (gdbarch, loc);
3d5f6d12
DJ
2401 /* Assume all atomic sequences start with a ll/lld instruction. */
2402 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2403 return 0;
2404
2405 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2406 instructions. */
2407 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2408 {
2409 int is_branch = 0;
2410 loc += MIPS_INSN32_SIZE;
e17a4113 2411 insn = mips_fetch_instruction (gdbarch, loc);
3d5f6d12
DJ
2412
2413 /* Assume that there is at most one branch in the atomic
2414 sequence. If a branch is found, put a breakpoint in its
2415 destination address. */
2416 switch (itype_op (insn))
2417 {
2418 case 0: /* SPECIAL */
2419 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2420 return 0; /* fallback to the standard single-step code. */
2421 break;
2422 case 1: /* REGIMM */
2423 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2424 break;
2425 case 2: /* J */
2426 case 3: /* JAL */
2427 return 0; /* fallback to the standard single-step code. */
2428 case 4: /* BEQ */
2429 case 5: /* BNE */
2430 case 6: /* BLEZ */
2431 case 7: /* BGTZ */
2432 case 20: /* BEQL */
2433 case 21: /* BNEL */
2434 case 22: /* BLEZL */
2435 case 23: /* BGTTL */
2436 is_branch = 1;
2437 break;
2438 case 17: /* COP1 */
2439 case 18: /* COP2 */
2440 case 19: /* COP3 */
2441 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2442 break;
2443 }
2444 if (is_branch)
2445 {
2446 branch_bp = loc + mips32_relative_offset (insn) + 4;
2447 if (last_breakpoint >= 1)
2448 return 0; /* More than one branch found, fallback to the
2449 standard single-step code. */
2450 breaks[1] = branch_bp;
2451 last_breakpoint++;
2452 }
2453
2454 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2455 break;
2456 }
2457
2458 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2459 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2460 return 0;
2461
2462 loc += MIPS_INSN32_SIZE;
2463
2464 /* Insert a breakpoint right after the end of the atomic sequence. */
2465 breaks[0] = loc;
2466
2467 /* Check for duplicated breakpoints. Check also for a breakpoint
2468 placed (branch instruction's destination) in the atomic sequence */
2469 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2470 last_breakpoint = 0;
2471
2472 /* Effectively inserts the breakpoints. */
2473 for (index = 0; index <= last_breakpoint; index++)
a6d9a66e 2474 insert_single_step_breakpoint (gdbarch, breaks[index]);
3d5f6d12
DJ
2475
2476 return 1;
2477}
2478
29639122
JB
2479/* mips_software_single_step() is called just before we want to resume
2480 the inferior, if we want to single-step it but there is no hardware
2481 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2482 the target of the coming instruction and breakpoint it. */
29639122 2483
e6590a1b 2484int
0b1b3e42 2485mips_software_single_step (struct frame_info *frame)
c906108c 2486{
a6d9a66e 2487 struct gdbarch *gdbarch = get_frame_arch (frame);
8181d85f 2488 CORE_ADDR pc, next_pc;
65596487 2489
0b1b3e42 2490 pc = get_frame_pc (frame);
a6d9a66e 2491 if (deal_with_atomic_sequence (gdbarch, pc))
3d5f6d12
DJ
2492 return 1;
2493
0b1b3e42 2494 next_pc = mips_next_pc (frame, pc);
e6590a1b 2495
a6d9a66e 2496 insert_single_step_breakpoint (gdbarch, next_pc);
e6590a1b 2497 return 1;
29639122 2498}
a65bbe44 2499
29639122
JB
2500/* Test whether the PC points to the return instruction at the
2501 end of a function. */
65596487 2502
29639122 2503static int
e17a4113 2504mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 2505{
0fe7e7c8 2506 if (mips_pc_is_mips16 (pc))
29639122
JB
2507 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2508 generates a "jr $ra"; other times it generates code to load
2509 the return address from the stack to an accessible register (such
2510 as $a3), then a "jr" using that register. This second case
2511 is almost impossible to distinguish from an indirect jump
2512 used for switch statements, so we don't even try. */
e17a4113 2513 return mips_fetch_instruction (gdbarch, pc) == 0xe820; /* jr $ra */
29639122 2514 else
e17a4113 2515 return mips_fetch_instruction (gdbarch, pc) == 0x3e00008; /* jr $ra */
29639122 2516}
c906108c 2517
c906108c 2518
29639122
JB
2519/* This fencepost looks highly suspicious to me. Removing it also
2520 seems suspicious as it could affect remote debugging across serial
2521 lines. */
c906108c 2522
29639122 2523static CORE_ADDR
74ed0bb4 2524heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
2525{
2526 CORE_ADDR start_pc;
2527 CORE_ADDR fence;
2528 int instlen;
2529 int seen_adjsp = 0;
d6b48e9c 2530 struct inferior *inf;
65596487 2531
74ed0bb4 2532 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
2533 start_pc = pc;
2534 fence = start_pc - heuristic_fence_post;
2535 if (start_pc == 0)
2536 return 0;
65596487 2537
29639122
JB
2538 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2539 fence = VM_MIN_ADDRESS;
65596487 2540
95ac2dcf 2541 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2542
d6b48e9c
PA
2543 inf = current_inferior ();
2544
29639122
JB
2545 /* search back for previous return */
2546 for (start_pc -= instlen;; start_pc -= instlen)
2547 if (start_pc < fence)
2548 {
2549 /* It's not clear to me why we reach this point when
2550 stop_soon, but with this test, at least we
2551 don't print out warnings for every child forked (eg, on
2552 decstation). 22apr93 rich@cygnus.com. */
d6b48e9c 2553 if (inf->stop_soon == NO_STOP_QUIETLY)
29639122
JB
2554 {
2555 static int blurb_printed = 0;
98b4dd94 2556
5af949e3
UW
2557 warning (_("GDB can't find the start of the function at %s."),
2558 paddress (gdbarch, pc));
29639122
JB
2559
2560 if (!blurb_printed)
2561 {
2562 /* This actually happens frequently in embedded
2563 development, when you first connect to a board
2564 and your stack pointer and pc are nowhere in
2565 particular. This message needs to give people
2566 in that situation enough information to
2567 determine that it's no big deal. */
2568 printf_filtered ("\n\
5af949e3 2569 GDB is unable to find the start of the function at %s\n\
29639122
JB
2570and thus can't determine the size of that function's stack frame.\n\
2571This means that GDB may be unable to access that stack frame, or\n\
2572the frames below it.\n\
2573 This problem is most likely caused by an invalid program counter or\n\
2574stack pointer.\n\
2575 However, if you think GDB should simply search farther back\n\
5af949e3 2576from %s for code which looks like the beginning of a\n\
29639122 2577function, you can increase the range of the search using the `set\n\
5af949e3
UW
2578heuristic-fence-post' command.\n",
2579 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
2580 blurb_printed = 1;
2581 }
2582 }
2583
2584 return 0;
2585 }
0fe7e7c8 2586 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2587 {
2588 unsigned short inst;
2589
2590 /* On MIPS16, any one of the following is likely to be the
2591 start of a function:
193774b3
MR
2592 extend save
2593 save
29639122
JB
2594 entry
2595 addiu sp,-n
2596 daddiu sp,-n
2597 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
e17a4113 2598 inst = mips_fetch_instruction (gdbarch, start_pc);
193774b3
MR
2599 if ((inst & 0xff80) == 0x6480) /* save */
2600 {
2601 if (start_pc - instlen >= fence)
2602 {
e17a4113 2603 inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
193774b3
MR
2604 if ((inst & 0xf800) == 0xf000) /* extend */
2605 start_pc -= instlen;
2606 }
2607 break;
2608 }
2609 else if (((inst & 0xf81f) == 0xe809
2610 && (inst & 0x700) != 0x700) /* entry */
2611 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2612 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2613 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
2614 break;
2615 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2616 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2617 seen_adjsp = 1;
2618 else
2619 seen_adjsp = 0;
2620 }
e17a4113 2621 else if (mips_about_to_return (gdbarch, start_pc))
29639122 2622 {
4c7d22cb 2623 /* Skip return and its delay slot. */
95ac2dcf 2624 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2625 break;
2626 }
2627
2628 return start_pc;
c906108c
SS
2629}
2630
6c0d6680
DJ
2631struct mips_objfile_private
2632{
2633 bfd_size_type size;
2634 char *contents;
2635};
2636
f09ded24
AC
2637/* According to the current ABI, should the type be passed in a
2638 floating-point register (assuming that there is space)? When there
a1f5b845 2639 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2640 FP registers and, consequently this returns false - forces FP
2641 arguments into integer registers. */
2642
2643static int
74ed0bb4
MD
2644fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
2645 struct type *arg_type)
f09ded24
AC
2646{
2647 return ((typecode == TYPE_CODE_FLT
74ed0bb4 2648 || (MIPS_EABI (gdbarch)
6d82d43b
AC
2649 && (typecode == TYPE_CODE_STRUCT
2650 || typecode == TYPE_CODE_UNION)
f09ded24 2651 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2652 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2653 == TYPE_CODE_FLT))
74ed0bb4 2654 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
2655}
2656
49e790b0
DJ
2657/* On o32, argument passing in GPRs depends on the alignment of the type being
2658 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2659
2660static int
2661mips_type_needs_double_align (struct type *type)
2662{
2663 enum type_code typecode = TYPE_CODE (type);
361d1df0 2664
49e790b0
DJ
2665 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2666 return 1;
2667 else if (typecode == TYPE_CODE_STRUCT)
2668 {
2669 if (TYPE_NFIELDS (type) < 1)
2670 return 0;
2671 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2672 }
2673 else if (typecode == TYPE_CODE_UNION)
2674 {
361d1df0 2675 int i, n;
49e790b0
DJ
2676
2677 n = TYPE_NFIELDS (type);
2678 for (i = 0; i < n; i++)
2679 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2680 return 1;
2681 return 0;
2682 }
2683 return 0;
2684}
2685
dc604539
AC
2686/* Adjust the address downward (direction of stack growth) so that it
2687 is correctly aligned for a new stack frame. */
2688static CORE_ADDR
2689mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2690{
5b03f266 2691 return align_down (addr, 16);
dc604539
AC
2692}
2693
f7ab6ec6 2694static CORE_ADDR
7d9b040b 2695mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2696 struct regcache *regcache, CORE_ADDR bp_addr,
2697 int nargs, struct value **args, CORE_ADDR sp,
2698 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2699{
2700 int argreg;
2701 int float_argreg;
2702 int argnum;
2703 int len = 0;
2704 int stack_offset = 0;
480d3dd2 2705 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 2706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 2707 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2708 int regsize = mips_abi_regsize (gdbarch);
c906108c 2709
25ab4790
AC
2710 /* For shared libraries, "t9" needs to point at the function
2711 address. */
4c7d22cb 2712 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2713
2714 /* Set the return address register to point to the entry point of
2715 the program, where a breakpoint lies in wait. */
4c7d22cb 2716 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2717
c906108c 2718 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2719 are properly aligned. The stack has to be at least 64-bit
2720 aligned even on 32-bit machines, because doubles must be 64-bit
2721 aligned. For n32 and n64, stack frames need to be 128-bit
2722 aligned, so we round to this widest known alignment. */
2723
5b03f266
AC
2724 sp = align_down (sp, 16);
2725 struct_addr = align_down (struct_addr, 16);
c5aa993b 2726
46e0f506 2727 /* Now make space on the stack for the args. We allocate more
c906108c 2728 than necessary for EABI, because the first few arguments are
46e0f506 2729 passed in registers, but that's OK. */
c906108c 2730 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2731 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2732 sp -= align_up (len, 16);
c906108c 2733
9ace0497 2734 if (mips_debug)
6d82d43b 2735 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2736 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
2737 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 2738
c906108c 2739 /* Initialize the integer and float register pointers. */
4c7d22cb 2740 argreg = MIPS_A0_REGNUM;
72a155b4 2741 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 2742
46e0f506 2743 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2744 if (struct_return)
9ace0497
AC
2745 {
2746 if (mips_debug)
2747 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2748 "mips_eabi_push_dummy_call: struct_return reg=%d %s\n",
2749 argreg, paddress (gdbarch, struct_addr));
9c9acae0 2750 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2751 }
c906108c
SS
2752
2753 /* Now load as many as possible of the first arguments into
2754 registers, and push the rest onto the stack. Loop thru args
2755 from first to last. */
2756 for (argnum = 0; argnum < nargs; argnum++)
2757 {
47a35522
MK
2758 const gdb_byte *val;
2759 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2760 struct value *arg = args[argnum];
4991999e 2761 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2762 int len = TYPE_LENGTH (arg_type);
2763 enum type_code typecode = TYPE_CODE (arg_type);
2764
9ace0497
AC
2765 if (mips_debug)
2766 fprintf_unfiltered (gdb_stdlog,
25ab4790 2767 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2768 argnum + 1, len, (int) typecode);
9ace0497 2769
c906108c 2770 /* The EABI passes structures that do not fit in a register by
46e0f506 2771 reference. */
1a69e1e4 2772 if (len > regsize
9ace0497 2773 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2774 {
e17a4113
UW
2775 store_unsigned_integer (valbuf, regsize, byte_order,
2776 value_address (arg));
c906108c 2777 typecode = TYPE_CODE_PTR;
1a69e1e4 2778 len = regsize;
c906108c 2779 val = valbuf;
9ace0497
AC
2780 if (mips_debug)
2781 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2782 }
2783 else
47a35522 2784 val = value_contents (arg);
c906108c
SS
2785
2786 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2787 even-numbered floating point register. Round the FP register
2788 up before the check to see if there are any FP registers
46e0f506
MS
2789 left. Non MIPS_EABI targets also pass the FP in the integer
2790 registers so also round up normal registers. */
74ed0bb4 2791 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
2792 {
2793 if ((float_argreg & 1))
2794 float_argreg++;
2795 }
c906108c
SS
2796
2797 /* Floating point arguments passed in registers have to be
2798 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2799 are passed in register pairs; the even register gets
2800 the low word, and the odd register gets the high word.
2801 On non-EABI processors, the first two floating point arguments are
2802 also copied to general registers, because MIPS16 functions
2803 don't use float registers for arguments. This duplication of
2804 arguments in general registers can't hurt non-MIPS16 functions
2805 because those registers are normally skipped. */
1012bd0e
EZ
2806 /* MIPS_EABI squeezes a struct that contains a single floating
2807 point value into an FP register instead of pushing it onto the
46e0f506 2808 stack. */
74ed0bb4
MD
2809 if (fp_register_arg_p (gdbarch, typecode, arg_type)
2810 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 2811 {
6da397e0
KB
2812 /* EABI32 will pass doubles in consecutive registers, even on
2813 64-bit cores. At one time, we used to check the size of
2814 `float_argreg' to determine whether or not to pass doubles
2815 in consecutive registers, but this is not sufficient for
2816 making the ABI determination. */
2817 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2818 {
72a155b4 2819 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 2820 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2821 unsigned long regval;
2822
2823 /* Write the low word of the double to the even register(s). */
e17a4113
UW
2824 regval = extract_unsigned_integer (val + low_offset,
2825 4, byte_order);
9ace0497 2826 if (mips_debug)
acdb74a0 2827 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2828 float_argreg, phex (regval, 4));
9c9acae0 2829 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2830
2831 /* Write the high word of the double to the odd register(s). */
e17a4113
UW
2832 regval = extract_unsigned_integer (val + 4 - low_offset,
2833 4, byte_order);
9ace0497 2834 if (mips_debug)
acdb74a0 2835 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2836 float_argreg, phex (regval, 4));
9c9acae0 2837 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2838 }
2839 else
2840 {
2841 /* This is a floating point value that fits entirely
2842 in a single register. */
53a5351d 2843 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2844 above to ensure that it is even register aligned. */
e17a4113 2845 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
9ace0497 2846 if (mips_debug)
acdb74a0 2847 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2848 float_argreg, phex (regval, len));
9c9acae0 2849 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2850 }
2851 }
2852 else
2853 {
2854 /* Copy the argument to general registers or the stack in
2855 register-sized pieces. Large arguments are split between
2856 registers and stack. */
1a69e1e4
DJ
2857 /* Note: structs whose size is not a multiple of regsize
2858 are treated specially: Irix cc passes
d5ac5a39
AC
2859 them in registers where gcc sometimes puts them on the
2860 stack. For maximum compatibility, we will put them in
2861 both places. */
1a69e1e4 2862 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2863
f09ded24 2864 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2865 register are only written to memory. */
c906108c
SS
2866 while (len > 0)
2867 {
ebafbe83 2868 /* Remember if the argument was written to the stack. */
566f0f7a 2869 int stack_used_p = 0;
1a69e1e4 2870 int partial_len = (len < regsize ? len : regsize);
c906108c 2871
acdb74a0
AC
2872 if (mips_debug)
2873 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2874 partial_len);
2875
566f0f7a 2876 /* Write this portion of the argument to the stack. */
74ed0bb4 2877 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 2878 || odd_sized_struct
74ed0bb4 2879 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 2880 {
c906108c
SS
2881 /* Should shorter than int integer values be
2882 promoted to int before being stored? */
c906108c 2883 int longword_offset = 0;
9ace0497 2884 CORE_ADDR addr;
566f0f7a 2885 stack_used_p = 1;
72a155b4 2886 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2887 {
1a69e1e4 2888 if (regsize == 8
480d3dd2
AC
2889 && (typecode == TYPE_CODE_INT
2890 || typecode == TYPE_CODE_PTR
6d82d43b 2891 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2892 longword_offset = regsize - len;
480d3dd2
AC
2893 else if ((typecode == TYPE_CODE_STRUCT
2894 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2895 && TYPE_LENGTH (arg_type) < regsize)
2896 longword_offset = regsize - len;
7a292a7a 2897 }
c5aa993b 2898
9ace0497
AC
2899 if (mips_debug)
2900 {
5af949e3
UW
2901 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
2902 paddress (gdbarch, stack_offset));
2903 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
2904 paddress (gdbarch, longword_offset));
9ace0497 2905 }
361d1df0 2906
9ace0497
AC
2907 addr = sp + stack_offset + longword_offset;
2908
2909 if (mips_debug)
2910 {
2911 int i;
5af949e3
UW
2912 fprintf_unfiltered (gdb_stdlog, " @%s ",
2913 paddress (gdbarch, addr));
9ace0497
AC
2914 for (i = 0; i < partial_len; i++)
2915 {
6d82d43b 2916 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2917 val[i] & 0xff);
9ace0497
AC
2918 }
2919 }
2920 write_memory (addr, val, partial_len);
c906108c
SS
2921 }
2922
f09ded24
AC
2923 /* Note!!! This is NOT an else clause. Odd sized
2924 structs may go thru BOTH paths. Floating point
46e0f506 2925 arguments will not. */
566f0f7a 2926 /* Write this portion of the argument to a general
6d82d43b 2927 purpose register. */
74ed0bb4
MD
2928 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
2929 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 2930 {
6d82d43b 2931 LONGEST regval =
e17a4113 2932 extract_unsigned_integer (val, partial_len, byte_order);
c906108c 2933
9ace0497 2934 if (mips_debug)
acdb74a0 2935 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2936 argreg,
1a69e1e4 2937 phex (regval, regsize));
9c9acae0 2938 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2939 argreg++;
c906108c 2940 }
c5aa993b 2941
c906108c
SS
2942 len -= partial_len;
2943 val += partial_len;
2944
566f0f7a 2945 /* Compute the the offset into the stack at which we
6d82d43b 2946 will copy the next parameter.
566f0f7a 2947
566f0f7a 2948 In the new EABI (and the NABI32), the stack_offset
46e0f506 2949 only needs to be adjusted when it has been used. */
c906108c 2950
46e0f506 2951 if (stack_used_p)
1a69e1e4 2952 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2953 }
2954 }
9ace0497
AC
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2957 }
2958
f10683bb 2959 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2960
0f71a2f6
JM
2961 /* Return adjusted stack pointer. */
2962 return sp;
2963}
2964
a1f5b845 2965/* Determine the return value convention being used. */
6d82d43b 2966
9c8fdbfa 2967static enum return_value_convention
c055b101 2968mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
9c8fdbfa 2969 struct type *type, struct regcache *regcache,
47a35522 2970 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2971{
609ba780
JM
2972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2973 int fp_return_type = 0;
2974 int offset, regnum, xfer;
2975
9c8fdbfa
AC
2976 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2977 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
2978
2979 /* Floating point type? */
2980 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
2981 {
2982 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2983 fp_return_type = 1;
2984 /* Structs with a single field of float type
2985 are returned in a floating point register. */
2986 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
2987 || TYPE_CODE (type) == TYPE_CODE_UNION)
2988 && TYPE_NFIELDS (type) == 1)
2989 {
2990 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
2991
2992 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
2993 fp_return_type = 1;
2994 }
2995 }
2996
2997 if (fp_return_type)
2998 {
2999 /* A floating-point value belongs in the least significant part
3000 of FP0/FP1. */
3001 if (mips_debug)
3002 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3003 regnum = mips_regnum (gdbarch)->fp0;
3004 }
3005 else
3006 {
3007 /* An integer value goes in V0/V1. */
3008 if (mips_debug)
3009 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
3010 regnum = MIPS_V0_REGNUM;
3011 }
3012 for (offset = 0;
3013 offset < TYPE_LENGTH (type);
3014 offset += mips_abi_regsize (gdbarch), regnum++)
3015 {
3016 xfer = mips_abi_regsize (gdbarch);
3017 if (offset + xfer > TYPE_LENGTH (type))
3018 xfer = TYPE_LENGTH (type) - offset;
3019 mips_xfer_register (gdbarch, regcache,
3020 gdbarch_num_regs (gdbarch) + regnum, xfer,
3021 gdbarch_byte_order (gdbarch), readbuf, writebuf,
3022 offset);
3023 }
3024
9c8fdbfa 3025 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
3026}
3027
6d82d43b
AC
3028
3029/* N32/N64 ABI stuff. */
ebafbe83 3030
8d26208a
DJ
3031/* Search for a naturally aligned double at OFFSET inside a struct
3032 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
3033 registers. */
3034
3035static int
74ed0bb4
MD
3036mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
3037 int offset)
8d26208a
DJ
3038{
3039 int i;
3040
3041 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
3042 return 0;
3043
74ed0bb4 3044 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
3045 return 0;
3046
3047 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
3048 return 0;
3049
3050 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
3051 {
3052 int pos;
3053 struct type *field_type;
3054
3055 /* We're only looking at normal fields. */
5bc60cfb 3056 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
3057 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
3058 continue;
3059
3060 /* If we have gone past the offset, there is no double to pass. */
3061 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
3062 if (pos > offset)
3063 return 0;
3064
3065 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
3066
3067 /* If this field is entirely before the requested offset, go
3068 on to the next one. */
3069 if (pos + TYPE_LENGTH (field_type) <= offset)
3070 continue;
3071
3072 /* If this is our special aligned double, we can stop. */
3073 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
3074 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
3075 return 1;
3076
3077 /* This field starts at or before the requested offset, and
3078 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 3079 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
3080 }
3081
3082 return 0;
3083}
3084
f7ab6ec6 3085static CORE_ADDR
7d9b040b 3086mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3087 struct regcache *regcache, CORE_ADDR bp_addr,
3088 int nargs, struct value **args, CORE_ADDR sp,
3089 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
3090{
3091 int argreg;
3092 int float_argreg;
3093 int argnum;
3094 int len = 0;
3095 int stack_offset = 0;
480d3dd2 3096 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3097 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 3098 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 3099
25ab4790
AC
3100 /* For shared libraries, "t9" needs to point at the function
3101 address. */
4c7d22cb 3102 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3103
3104 /* Set the return address register to point to the entry point of
3105 the program, where a breakpoint lies in wait. */
4c7d22cb 3106 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3107
cb3d25d1
MS
3108 /* First ensure that the stack and structure return address (if any)
3109 are properly aligned. The stack has to be at least 64-bit
3110 aligned even on 32-bit machines, because doubles must be 64-bit
3111 aligned. For n32 and n64, stack frames need to be 128-bit
3112 aligned, so we round to this widest known alignment. */
3113
5b03f266
AC
3114 sp = align_down (sp, 16);
3115 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
3116
3117 /* Now make space on the stack for the args. */
3118 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 3119 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 3120 sp -= align_up (len, 16);
cb3d25d1
MS
3121
3122 if (mips_debug)
6d82d43b 3123 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3124 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
3125 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
3126
3127 /* Initialize the integer and float register pointers. */
4c7d22cb 3128 argreg = MIPS_A0_REGNUM;
72a155b4 3129 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 3130
46e0f506 3131 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3132 if (struct_return)
3133 {
3134 if (mips_debug)
3135 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3136 "mips_n32n64_push_dummy_call: struct_return reg=%d %s\n",
3137 argreg, paddress (gdbarch, struct_addr));
9c9acae0 3138 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
3139 }
3140
3141 /* Now load as many as possible of the first arguments into
3142 registers, and push the rest onto the stack. Loop thru args
3143 from first to last. */
3144 for (argnum = 0; argnum < nargs; argnum++)
3145 {
47a35522 3146 const gdb_byte *val;
cb3d25d1 3147 struct value *arg = args[argnum];
4991999e 3148 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
3149 int len = TYPE_LENGTH (arg_type);
3150 enum type_code typecode = TYPE_CODE (arg_type);
3151
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog,
25ab4790 3154 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3155 argnum + 1, len, (int) typecode);
3156
47a35522 3157 val = value_contents (arg);
cb3d25d1 3158
5b68030f
JM
3159 /* A 128-bit long double value requires an even-odd pair of
3160 floating-point registers. */
3161 if (len == 16
3162 && fp_register_arg_p (gdbarch, typecode, arg_type)
3163 && (float_argreg & 1))
3164 {
3165 float_argreg++;
3166 argreg++;
3167 }
3168
74ed0bb4
MD
3169 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3170 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
3171 {
3172 /* This is a floating point value that fits entirely
5b68030f
JM
3173 in a single register or a pair of registers. */
3174 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 3175 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
3176 if (mips_debug)
3177 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 3178 float_argreg, phex (regval, reglen));
8d26208a 3179 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
3180
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 3183 argreg, phex (regval, reglen));
9c9acae0 3184 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3185 float_argreg++;
3186 argreg++;
5b68030f
JM
3187 if (len == 16)
3188 {
e17a4113
UW
3189 regval = extract_unsigned_integer (val + reglen,
3190 reglen, byte_order);
5b68030f
JM
3191 if (mips_debug)
3192 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3193 float_argreg, phex (regval, reglen));
3194 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3195
3196 if (mips_debug)
3197 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3198 argreg, phex (regval, reglen));
3199 regcache_cooked_write_unsigned (regcache, argreg, regval);
3200 float_argreg++;
3201 argreg++;
3202 }
cb3d25d1
MS
3203 }
3204 else
3205 {
3206 /* Copy the argument to general registers or the stack in
3207 register-sized pieces. Large arguments are split between
3208 registers and stack. */
ab2e1992
MR
3209 /* For N32/N64, structs, unions, or other composite types are
3210 treated as a sequence of doublewords, and are passed in integer
3211 or floating point registers as though they were simple scalar
3212 parameters to the extent that they fit, with any excess on the
3213 stack packed according to the normal memory layout of the
3214 object.
3215 The caller does not reserve space for the register arguments;
3216 the callee is responsible for reserving it if required. */
cb3d25d1 3217 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3218 register are only written to memory. */
cb3d25d1
MS
3219 while (len > 0)
3220 {
ad018eee 3221 /* Remember if the argument was written to the stack. */
cb3d25d1 3222 int stack_used_p = 0;
1a69e1e4 3223 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
3224
3225 if (mips_debug)
3226 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3227 partial_len);
3228
74ed0bb4
MD
3229 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3230 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 3231
cb3d25d1 3232 /* Write this portion of the argument to the stack. */
74ed0bb4 3233 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
3234 {
3235 /* Should shorter than int integer values be
3236 promoted to int before being stored? */
3237 int longword_offset = 0;
3238 CORE_ADDR addr;
3239 stack_used_p = 1;
72a155b4 3240 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 3241 {
1a69e1e4 3242 if ((typecode == TYPE_CODE_INT
5b68030f 3243 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
3244 && len <= 4)
3245 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
3246 }
3247
3248 if (mips_debug)
3249 {
5af949e3
UW
3250 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3251 paddress (gdbarch, stack_offset));
3252 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3253 paddress (gdbarch, longword_offset));
cb3d25d1
MS
3254 }
3255
3256 addr = sp + stack_offset + longword_offset;
3257
3258 if (mips_debug)
3259 {
3260 int i;
5af949e3
UW
3261 fprintf_unfiltered (gdb_stdlog, " @%s ",
3262 paddress (gdbarch, addr));
cb3d25d1
MS
3263 for (i = 0; i < partial_len; i++)
3264 {
6d82d43b 3265 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
3266 val[i] & 0xff);
3267 }
3268 }
3269 write_memory (addr, val, partial_len);
3270 }
3271
3272 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 3273 structs may go thru BOTH paths. */
cb3d25d1 3274 /* Write this portion of the argument to a general
6d82d43b 3275 purpose register. */
74ed0bb4 3276 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 3277 {
5863b5d5
MR
3278 LONGEST regval;
3279
3280 /* Sign extend pointers, 32-bit integers and signed
3281 16-bit and 8-bit integers; everything else is taken
3282 as is. */
3283
3284 if ((partial_len == 4
3285 && (typecode == TYPE_CODE_PTR
3286 || typecode == TYPE_CODE_INT))
3287 || (partial_len < 4
3288 && typecode == TYPE_CODE_INT
3289 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
3290 regval = extract_signed_integer (val, partial_len,
3291 byte_order);
5863b5d5 3292 else
e17a4113
UW
3293 regval = extract_unsigned_integer (val, partial_len,
3294 byte_order);
cb3d25d1
MS
3295
3296 /* A non-floating-point argument being passed in a
3297 general register. If a struct or union, and if
3298 the remaining length is smaller than the register
3299 size, we have to adjust the register value on
3300 big endian targets.
3301
3302 It does not seem to be necessary to do the
1a69e1e4 3303 same for integral types. */
cb3d25d1 3304
72a155b4 3305 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3306 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3307 && (typecode == TYPE_CODE_STRUCT
3308 || typecode == TYPE_CODE_UNION))
1a69e1e4 3309 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3310 * TARGET_CHAR_BIT);
cb3d25d1
MS
3311
3312 if (mips_debug)
3313 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3314 argreg,
1a69e1e4 3315 phex (regval, MIPS64_REGSIZE));
9c9acae0 3316 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 3317
74ed0bb4 3318 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
3319 TYPE_LENGTH (arg_type) - len))
3320 {
3321 if (mips_debug)
3322 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3323 float_argreg,
3324 phex (regval, MIPS64_REGSIZE));
3325 regcache_cooked_write_unsigned (regcache, float_argreg,
3326 regval);
3327 }
3328
3329 float_argreg++;
cb3d25d1
MS
3330 argreg++;
3331 }
3332
3333 len -= partial_len;
3334 val += partial_len;
3335
3336 /* Compute the the offset into the stack at which we
6d82d43b 3337 will copy the next parameter.
cb3d25d1
MS
3338
3339 In N32 (N64?), the stack_offset only needs to be
3340 adjusted when it has been used. */
3341
3342 if (stack_used_p)
1a69e1e4 3343 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
3344 }
3345 }
3346 if (mips_debug)
3347 fprintf_unfiltered (gdb_stdlog, "\n");
3348 }
3349
f10683bb 3350 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3351
cb3d25d1
MS
3352 /* Return adjusted stack pointer. */
3353 return sp;
3354}
3355
6d82d43b 3356static enum return_value_convention
c055b101 3357mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
6d82d43b 3358 struct type *type, struct regcache *regcache,
47a35522 3359 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 3360{
72a155b4 3361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
3362
3363 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3364
3365 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3366 if needed), as appropriate for the type. Composite results (struct,
3367 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3368 following rules:
3369
3370 * A struct with only one or two floating point fields is returned in $f0
3371 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3372 case.
3373
3374 * Any other struct or union results of at most 128 bits are returned in
3375 $2 (first 64 bits) and $3 (remainder, if necessary).
3376
3377 * Larger composite results are handled by converting the function to a
3378 procedure with an implicit first parameter, which is a pointer to an area
3379 reserved by the caller to receive the result. [The o32-bit ABI requires
3380 that all composite results be handled by conversion to implicit first
3381 parameters. The MIPS/SGI Fortran implementation has always made a
3382 specific exception to return COMPLEX results in the floating point
3383 registers.] */
3384
3385 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 3386 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 3387 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
3388 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3389 && TYPE_LENGTH (type) == 16
3390 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3391 {
3392 /* A 128-bit floating-point value fills both $f0 and $f2. The
3393 two registers are used in the same as memory order, so the
3394 eight bytes with the lower memory address are in $f0. */
3395 if (mips_debug)
3396 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 3397 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3398 gdbarch_num_regs (gdbarch)
3399 + mips_regnum (gdbarch)->fp0,
3400 8, gdbarch_byte_order (gdbarch),
4c6b5505 3401 readbuf, writebuf, 0);
ba32f989 3402 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3403 gdbarch_num_regs (gdbarch)
3404 + mips_regnum (gdbarch)->fp0 + 2,
3405 8, gdbarch_byte_order (gdbarch),
4c6b5505 3406 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3407 writebuf ? writebuf + 8 : writebuf, 0);
3408 return RETURN_VALUE_REGISTER_CONVENTION;
3409 }
6d82d43b
AC
3410 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3411 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3412 {
59aa1faa 3413 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3416 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3417 gdbarch_num_regs (gdbarch)
3418 + mips_regnum (gdbarch)->fp0,
6d82d43b 3419 TYPE_LENGTH (type),
72a155b4 3420 gdbarch_byte_order (gdbarch),
4c6b5505 3421 readbuf, writebuf, 0);
6d82d43b
AC
3422 return RETURN_VALUE_REGISTER_CONVENTION;
3423 }
3424 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3425 && TYPE_NFIELDS (type) <= 2
3426 && TYPE_NFIELDS (type) >= 1
3427 && ((TYPE_NFIELDS (type) == 1
b18bb924 3428 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
3429 == TYPE_CODE_FLT))
3430 || (TYPE_NFIELDS (type) == 2
b18bb924 3431 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 3432 == TYPE_CODE_FLT)
b18bb924 3433 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 3434 == TYPE_CODE_FLT))))
6d82d43b
AC
3435 {
3436 /* A struct that contains one or two floats. Each value is part
3437 in the least significant part of their floating point
5b68030f 3438 register (or GPR, for soft float). */
6d82d43b
AC
3439 int regnum;
3440 int field;
5b68030f
JM
3441 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
3442 ? mips_regnum (gdbarch)->fp0
3443 : MIPS_V0_REGNUM);
6d82d43b
AC
3444 field < TYPE_NFIELDS (type); field++, regnum += 2)
3445 {
3446 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3447 / TARGET_CHAR_BIT);
3448 if (mips_debug)
3449 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3450 offset);
5b68030f
JM
3451 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
3452 {
3453 /* A 16-byte long double field goes in two consecutive
3454 registers. */
3455 mips_xfer_register (gdbarch, regcache,
3456 gdbarch_num_regs (gdbarch) + regnum,
3457 8,
3458 gdbarch_byte_order (gdbarch),
3459 readbuf, writebuf, offset);
3460 mips_xfer_register (gdbarch, regcache,
3461 gdbarch_num_regs (gdbarch) + regnum + 1,
3462 8,
3463 gdbarch_byte_order (gdbarch),
3464 readbuf, writebuf, offset + 8);
3465 }
3466 else
3467 mips_xfer_register (gdbarch, regcache,
3468 gdbarch_num_regs (gdbarch) + regnum,
3469 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3470 gdbarch_byte_order (gdbarch),
3471 readbuf, writebuf, offset);
6d82d43b
AC
3472 }
3473 return RETURN_VALUE_REGISTER_CONVENTION;
3474 }
3475 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3476 || TYPE_CODE (type) == TYPE_CODE_UNION)
3477 {
3478 /* A structure or union. Extract the left justified value,
3479 regardless of the byte order. I.e. DO NOT USE
3480 mips_xfer_lower. */
3481 int offset;
3482 int regnum;
4c7d22cb 3483 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3484 offset < TYPE_LENGTH (type);
72a155b4 3485 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3486 {
72a155b4 3487 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3488 if (offset + xfer > TYPE_LENGTH (type))
3489 xfer = TYPE_LENGTH (type) - offset;
3490 if (mips_debug)
3491 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3492 offset, xfer, regnum);
ba32f989
DJ
3493 mips_xfer_register (gdbarch, regcache,
3494 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
3495 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3496 offset);
6d82d43b
AC
3497 }
3498 return RETURN_VALUE_REGISTER_CONVENTION;
3499 }
3500 else
3501 {
3502 /* A scalar extract each part but least-significant-byte
3503 justified. */
3504 int offset;
3505 int regnum;
4c7d22cb 3506 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3507 offset < TYPE_LENGTH (type);
72a155b4 3508 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3509 {
72a155b4 3510 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3511 if (offset + xfer > TYPE_LENGTH (type))
3512 xfer = TYPE_LENGTH (type) - offset;
3513 if (mips_debug)
3514 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3515 offset, xfer, regnum);
ba32f989
DJ
3516 mips_xfer_register (gdbarch, regcache,
3517 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 3518 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 3519 readbuf, writebuf, offset);
6d82d43b
AC
3520 }
3521 return RETURN_VALUE_REGISTER_CONVENTION;
3522 }
3523}
3524
3525/* O32 ABI stuff. */
3526
3527static CORE_ADDR
7d9b040b 3528mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3529 struct regcache *regcache, CORE_ADDR bp_addr,
3530 int nargs, struct value **args, CORE_ADDR sp,
3531 int struct_return, CORE_ADDR struct_addr)
3532{
3533 int argreg;
3534 int float_argreg;
3535 int argnum;
3536 int len = 0;
3537 int stack_offset = 0;
3538 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 3540 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3541
3542 /* For shared libraries, "t9" needs to point at the function
3543 address. */
4c7d22cb 3544 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3545
3546 /* Set the return address register to point to the entry point of
3547 the program, where a breakpoint lies in wait. */
4c7d22cb 3548 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3549
3550 /* First ensure that the stack and structure return address (if any)
3551 are properly aligned. The stack has to be at least 64-bit
3552 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3553 aligned. For n32 and n64, stack frames need to be 128-bit
3554 aligned, so we round to this widest known alignment. */
3555
5b03f266
AC
3556 sp = align_down (sp, 16);
3557 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3558
3559 /* Now make space on the stack for the args. */
3560 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3561 {
3562 struct type *arg_type = check_typedef (value_type (args[argnum]));
3563 int arglen = TYPE_LENGTH (arg_type);
3564
3565 /* Align to double-word if necessary. */
2afd3f0a 3566 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3567 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3568 /* Allocate space on the stack. */
1a69e1e4 3569 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3570 }
5b03f266 3571 sp -= align_up (len, 16);
ebafbe83
MS
3572
3573 if (mips_debug)
6d82d43b 3574 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3575 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
3576 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
3577
3578 /* Initialize the integer and float register pointers. */
4c7d22cb 3579 argreg = MIPS_A0_REGNUM;
72a155b4 3580 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 3581
bcb0cc15 3582 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3583 if (struct_return)
3584 {
3585 if (mips_debug)
3586 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3587 "mips_o32_push_dummy_call: struct_return reg=%d %s\n",
3588 argreg, paddress (gdbarch, struct_addr));
9c9acae0 3589 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3590 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3591 }
3592
3593 /* Now load as many as possible of the first arguments into
3594 registers, and push the rest onto the stack. Loop thru args
3595 from first to last. */
3596 for (argnum = 0; argnum < nargs; argnum++)
3597 {
47a35522 3598 const gdb_byte *val;
ebafbe83 3599 struct value *arg = args[argnum];
4991999e 3600 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3601 int len = TYPE_LENGTH (arg_type);
3602 enum type_code typecode = TYPE_CODE (arg_type);
3603
3604 if (mips_debug)
3605 fprintf_unfiltered (gdb_stdlog,
25ab4790 3606 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3607 argnum + 1, len, (int) typecode);
3608
47a35522 3609 val = value_contents (arg);
46cac009
AC
3610
3611 /* 32-bit ABIs always start floating point arguments in an
3612 even-numbered floating point register. Round the FP register
3613 up before the check to see if there are any FP registers
3614 left. O32/O64 targets also pass the FP in the integer
3615 registers so also round up normal registers. */
74ed0bb4 3616 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
3617 {
3618 if ((float_argreg & 1))
3619 float_argreg++;
3620 }
3621
3622 /* Floating point arguments passed in registers have to be
3623 treated specially. On 32-bit architectures, doubles
3624 are passed in register pairs; the even register gets
3625 the low word, and the odd register gets the high word.
3626 On O32/O64, the first two floating point arguments are
3627 also copied to general registers, because MIPS16 functions
3628 don't use float registers for arguments. This duplication of
3629 arguments in general registers can't hurt non-MIPS16 functions
3630 because those registers are normally skipped. */
3631
74ed0bb4
MD
3632 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3633 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 3634 {
8b07f6d8 3635 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3636 {
72a155b4 3637 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 3638 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3639 unsigned long regval;
3640
3641 /* Write the low word of the double to the even register(s). */
e17a4113
UW
3642 regval = extract_unsigned_integer (val + low_offset,
3643 4, byte_order);
46cac009
AC
3644 if (mips_debug)
3645 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3646 float_argreg, phex (regval, 4));
9c9acae0 3647 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3650 argreg, phex (regval, 4));
9c9acae0 3651 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3652
3653 /* Write the high word of the double to the odd register(s). */
e17a4113
UW
3654 regval = extract_unsigned_integer (val + 4 - low_offset,
3655 4, byte_order);
46cac009
AC
3656 if (mips_debug)
3657 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3658 float_argreg, phex (regval, 4));
9c9acae0 3659 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3660
3661 if (mips_debug)
3662 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3663 argreg, phex (regval, 4));
9c9acae0 3664 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3665 }
3666 else
3667 {
3668 /* This is a floating point value that fits entirely
3669 in a single register. */
3670 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3671 above to ensure that it is even register aligned. */
e17a4113 3672 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
3673 if (mips_debug)
3674 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3675 float_argreg, phex (regval, len));
9c9acae0 3676 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5b68030f
JM
3677 /* Although two FP registers are reserved for each
3678 argument, only one corresponding integer register is
3679 reserved. */
46cac009
AC
3680 if (mips_debug)
3681 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3682 argreg, phex (regval, len));
5b68030f 3683 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3684 }
3685 /* Reserve space for the FP register. */
1a69e1e4 3686 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3687 }
3688 else
3689 {
3690 /* Copy the argument to general registers or the stack in
3691 register-sized pieces. Large arguments are split between
3692 registers and stack. */
1a69e1e4
DJ
3693 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3694 are treated specially: Irix cc passes
d5ac5a39
AC
3695 them in registers where gcc sometimes puts them on the
3696 stack. For maximum compatibility, we will put them in
3697 both places. */
1a69e1e4
DJ
3698 int odd_sized_struct = (len > MIPS32_REGSIZE
3699 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3700 /* Structures should be aligned to eight bytes (even arg registers)
3701 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3702 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3703 {
3704 if ((argreg & 1))
968b5391
MR
3705 {
3706 argreg++;
1a69e1e4 3707 stack_offset += MIPS32_REGSIZE;
968b5391 3708 }
46cac009 3709 }
46cac009
AC
3710 while (len > 0)
3711 {
3712 /* Remember if the argument was written to the stack. */
3713 int stack_used_p = 0;
1a69e1e4 3714 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3715
3716 if (mips_debug)
3717 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3718 partial_len);
3719
3720 /* Write this portion of the argument to the stack. */
74ed0bb4 3721 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 3722 || odd_sized_struct)
46cac009
AC
3723 {
3724 /* Should shorter than int integer values be
3725 promoted to int before being stored? */
3726 int longword_offset = 0;
3727 CORE_ADDR addr;
3728 stack_used_p = 1;
46cac009
AC
3729
3730 if (mips_debug)
3731 {
5af949e3
UW
3732 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3733 paddress (gdbarch, stack_offset));
3734 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3735 paddress (gdbarch, longword_offset));
46cac009
AC
3736 }
3737
3738 addr = sp + stack_offset + longword_offset;
3739
3740 if (mips_debug)
3741 {
3742 int i;
5af949e3
UW
3743 fprintf_unfiltered (gdb_stdlog, " @%s ",
3744 paddress (gdbarch, addr));
46cac009
AC
3745 for (i = 0; i < partial_len; i++)
3746 {
6d82d43b 3747 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3748 val[i] & 0xff);
3749 }
3750 }
3751 write_memory (addr, val, partial_len);
3752 }
3753
3754 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3755 structs may go thru BOTH paths. */
46cac009 3756 /* Write this portion of the argument to a general
6d82d43b 3757 purpose register. */
74ed0bb4 3758 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 3759 {
e17a4113
UW
3760 LONGEST regval = extract_signed_integer (val, partial_len,
3761 byte_order);
4246e332 3762 /* Value may need to be sign extended, because
1b13c4f6 3763 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3764
3765 /* A non-floating-point argument being passed in a
3766 general register. If a struct or union, and if
3767 the remaining length is smaller than the register
3768 size, we have to adjust the register value on
3769 big endian targets.
3770
3771 It does not seem to be necessary to do the
3772 same for integral types.
3773
3774 Also don't do this adjustment on O64 binaries.
3775
3776 cagney/2001-07-23: gdb/179: Also, GCC, when
3777 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3778 mips_abi_regsize(), generates a left shift
3779 as part of storing the argument in a register
3780 (the left shift isn't generated when
1b13c4f6 3781 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3782 it is quite possible that this is GCC
3783 contradicting the LE/O32 ABI, GDB has not been
3784 adjusted to accommodate this. Either someone
3785 needs to demonstrate that the LE/O32 ABI
3786 specifies such a left shift OR this new ABI gets
3787 identified as such and GDB gets tweaked
3788 accordingly. */
3789
72a155b4 3790 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3791 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3792 && (typecode == TYPE_CODE_STRUCT
3793 || typecode == TYPE_CODE_UNION))
1a69e1e4 3794 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3795 * TARGET_CHAR_BIT);
46cac009
AC
3796
3797 if (mips_debug)
3798 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3799 argreg,
1a69e1e4 3800 phex (regval, MIPS32_REGSIZE));
9c9acae0 3801 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3802 argreg++;
3803
3804 /* Prevent subsequent floating point arguments from
3805 being passed in floating point registers. */
74ed0bb4 3806 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
3807 }
3808
3809 len -= partial_len;
3810 val += partial_len;
3811
3812 /* Compute the the offset into the stack at which we
6d82d43b 3813 will copy the next parameter.
46cac009 3814
6d82d43b
AC
3815 In older ABIs, the caller reserved space for
3816 registers that contained arguments. This was loosely
3817 refered to as their "home". Consequently, space is
3818 always allocated. */
46cac009 3819
1a69e1e4 3820 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3821 }
3822 }
3823 if (mips_debug)
3824 fprintf_unfiltered (gdb_stdlog, "\n");
3825 }
3826
f10683bb 3827 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3828
46cac009
AC
3829 /* Return adjusted stack pointer. */
3830 return sp;
3831}
3832
6d82d43b 3833static enum return_value_convention
c055b101
CV
3834mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
3835 struct type *type, struct regcache *regcache,
47a35522 3836 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3837{
72a155b4 3838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6d82d43b
AC
3839
3840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3841 || TYPE_CODE (type) == TYPE_CODE_UNION
3842 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3843 return RETURN_VALUE_STRUCT_CONVENTION;
3844 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3845 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3846 {
3847 /* A single-precision floating-point value. It fits in the
3848 least significant part of FP0. */
3849 if (mips_debug)
3850 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3851 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3852 gdbarch_num_regs (gdbarch)
3853 + mips_regnum (gdbarch)->fp0,
6d82d43b 3854 TYPE_LENGTH (type),
72a155b4 3855 gdbarch_byte_order (gdbarch),
4c6b5505 3856 readbuf, writebuf, 0);
6d82d43b
AC
3857 return RETURN_VALUE_REGISTER_CONVENTION;
3858 }
3859 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3860 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3861 {
3862 /* A double-precision floating-point value. The most
3863 significant part goes in FP1, and the least significant in
3864 FP0. */
3865 if (mips_debug)
3866 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
72a155b4 3867 switch (gdbarch_byte_order (gdbarch))
6d82d43b
AC
3868 {
3869 case BFD_ENDIAN_LITTLE:
ba32f989 3870 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3871 gdbarch_num_regs (gdbarch)
3872 + mips_regnum (gdbarch)->fp0 +
3873 0, 4, gdbarch_byte_order (gdbarch),
4c6b5505 3874 readbuf, writebuf, 0);
ba32f989 3875 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3876 gdbarch_num_regs (gdbarch)
3877 + mips_regnum (gdbarch)->fp0 + 1,
3878 4, gdbarch_byte_order (gdbarch),
4c6b5505 3879 readbuf, writebuf, 4);
6d82d43b
AC
3880 break;
3881 case BFD_ENDIAN_BIG:
ba32f989 3882 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3883 gdbarch_num_regs (gdbarch)
3884 + mips_regnum (gdbarch)->fp0 + 1,
3885 4, gdbarch_byte_order (gdbarch),
4c6b5505 3886 readbuf, writebuf, 0);
ba32f989 3887 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3888 gdbarch_num_regs (gdbarch)
3889 + mips_regnum (gdbarch)->fp0 + 0,
3890 4, gdbarch_byte_order (gdbarch),
4c6b5505 3891 readbuf, writebuf, 4);
6d82d43b
AC
3892 break;
3893 default:
e2e0b3e5 3894 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3895 }
3896 return RETURN_VALUE_REGISTER_CONVENTION;
3897 }
3898#if 0
3899 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3900 && TYPE_NFIELDS (type) <= 2
3901 && TYPE_NFIELDS (type) >= 1
3902 && ((TYPE_NFIELDS (type) == 1
3903 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3904 == TYPE_CODE_FLT))
3905 || (TYPE_NFIELDS (type) == 2
3906 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3907 == TYPE_CODE_FLT)
3908 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3909 == TYPE_CODE_FLT)))
3910 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3911 {
3912 /* A struct that contains one or two floats. Each value is part
3913 in the least significant part of their floating point
3914 register.. */
870cd05e 3915 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3916 int regnum;
3917 int field;
72a155b4 3918 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3919 field < TYPE_NFIELDS (type); field++, regnum += 2)
3920 {
3921 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3922 / TARGET_CHAR_BIT);
3923 if (mips_debug)
3924 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3925 offset);
ba32f989
DJ
3926 mips_xfer_register (gdbarch, regcache,
3927 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 3928 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3929 gdbarch_byte_order (gdbarch),
4c6b5505 3930 readbuf, writebuf, offset);
6d82d43b
AC
3931 }
3932 return RETURN_VALUE_REGISTER_CONVENTION;
3933 }
3934#endif
3935#if 0
3936 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3937 || TYPE_CODE (type) == TYPE_CODE_UNION)
3938 {
3939 /* A structure or union. Extract the left justified value,
3940 regardless of the byte order. I.e. DO NOT USE
3941 mips_xfer_lower. */
3942 int offset;
3943 int regnum;
4c7d22cb 3944 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3945 offset < TYPE_LENGTH (type);
72a155b4 3946 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3947 {
72a155b4 3948 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3949 if (offset + xfer > TYPE_LENGTH (type))
3950 xfer = TYPE_LENGTH (type) - offset;
3951 if (mips_debug)
3952 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3953 offset, xfer, regnum);
ba32f989
DJ
3954 mips_xfer_register (gdbarch, regcache,
3955 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
3956 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3957 }
3958 return RETURN_VALUE_REGISTER_CONVENTION;
3959 }
3960#endif
3961 else
3962 {
3963 /* A scalar extract each part but least-significant-byte
3964 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3965 the ISA. */
6d82d43b
AC
3966 int offset;
3967 int regnum;
4c7d22cb 3968 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3969 offset < TYPE_LENGTH (type);
1a69e1e4 3970 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3971 {
1a69e1e4 3972 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3973 if (offset + xfer > TYPE_LENGTH (type))
3974 xfer = TYPE_LENGTH (type) - offset;
3975 if (mips_debug)
3976 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3977 offset, xfer, regnum);
ba32f989
DJ
3978 mips_xfer_register (gdbarch, regcache,
3979 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 3980 gdbarch_byte_order (gdbarch),
4c6b5505 3981 readbuf, writebuf, offset);
6d82d43b
AC
3982 }
3983 return RETURN_VALUE_REGISTER_CONVENTION;
3984 }
3985}
3986
3987/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3988 ABI. */
46cac009
AC
3989
3990static CORE_ADDR
7d9b040b 3991mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3992 struct regcache *regcache, CORE_ADDR bp_addr,
3993 int nargs,
3994 struct value **args, CORE_ADDR sp,
3995 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3996{
3997 int argreg;
3998 int float_argreg;
3999 int argnum;
4000 int len = 0;
4001 int stack_offset = 0;
480d3dd2 4002 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 4003 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4004 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 4005
25ab4790
AC
4006 /* For shared libraries, "t9" needs to point at the function
4007 address. */
4c7d22cb 4008 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4009
4010 /* Set the return address register to point to the entry point of
4011 the program, where a breakpoint lies in wait. */
4c7d22cb 4012 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4013
46cac009
AC
4014 /* First ensure that the stack and structure return address (if any)
4015 are properly aligned. The stack has to be at least 64-bit
4016 aligned even on 32-bit machines, because doubles must be 64-bit
4017 aligned. For n32 and n64, stack frames need to be 128-bit
4018 aligned, so we round to this widest known alignment. */
4019
5b03f266
AC
4020 sp = align_down (sp, 16);
4021 struct_addr = align_down (struct_addr, 16);
46cac009
AC
4022
4023 /* Now make space on the stack for the args. */
4024 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
4025 {
4026 struct type *arg_type = check_typedef (value_type (args[argnum]));
4027 int arglen = TYPE_LENGTH (arg_type);
4028
968b5391 4029 /* Allocate space on the stack. */
1a69e1e4 4030 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 4031 }
5b03f266 4032 sp -= align_up (len, 16);
46cac009
AC
4033
4034 if (mips_debug)
6d82d43b 4035 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4036 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
4037 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
4038
4039 /* Initialize the integer and float register pointers. */
4c7d22cb 4040 argreg = MIPS_A0_REGNUM;
72a155b4 4041 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
4042
4043 /* The struct_return pointer occupies the first parameter-passing reg. */
4044 if (struct_return)
4045 {
4046 if (mips_debug)
4047 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4048 "mips_o64_push_dummy_call: struct_return reg=%d %s\n",
4049 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4050 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 4051 stack_offset += MIPS64_REGSIZE;
46cac009
AC
4052 }
4053
4054 /* Now load as many as possible of the first arguments into
4055 registers, and push the rest onto the stack. Loop thru args
4056 from first to last. */
4057 for (argnum = 0; argnum < nargs; argnum++)
4058 {
47a35522 4059 const gdb_byte *val;
46cac009 4060 struct value *arg = args[argnum];
4991999e 4061 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
4062 int len = TYPE_LENGTH (arg_type);
4063 enum type_code typecode = TYPE_CODE (arg_type);
4064
4065 if (mips_debug)
4066 fprintf_unfiltered (gdb_stdlog,
25ab4790 4067 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
4068 argnum + 1, len, (int) typecode);
4069
47a35522 4070 val = value_contents (arg);
ebafbe83 4071
ebafbe83
MS
4072 /* Floating point arguments passed in registers have to be
4073 treated specially. On 32-bit architectures, doubles
4074 are passed in register pairs; the even register gets
4075 the low word, and the odd register gets the high word.
4076 On O32/O64, the first two floating point arguments are
4077 also copied to general registers, because MIPS16 functions
4078 don't use float registers for arguments. This duplication of
4079 arguments in general registers can't hurt non-MIPS16 functions
4080 because those registers are normally skipped. */
4081
74ed0bb4
MD
4082 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4083 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 4084 {
e17a4113 4085 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
4086 if (mips_debug)
4087 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4088 float_argreg, phex (regval, len));
9c9acae0 4089 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
4090 if (mips_debug)
4091 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4092 argreg, phex (regval, len));
9c9acae0 4093 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 4094 argreg++;
ebafbe83 4095 /* Reserve space for the FP register. */
1a69e1e4 4096 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
4097 }
4098 else
4099 {
4100 /* Copy the argument to general registers or the stack in
4101 register-sized pieces. Large arguments are split between
4102 registers and stack. */
1a69e1e4 4103 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
4104 are treated specially: Irix cc passes them in registers
4105 where gcc sometimes puts them on the stack. For maximum
4106 compatibility, we will put them in both places. */
1a69e1e4
DJ
4107 int odd_sized_struct = (len > MIPS64_REGSIZE
4108 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
4109 while (len > 0)
4110 {
4111 /* Remember if the argument was written to the stack. */
4112 int stack_used_p = 0;
1a69e1e4 4113 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
4114
4115 if (mips_debug)
4116 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4117 partial_len);
4118
4119 /* Write this portion of the argument to the stack. */
74ed0bb4 4120 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 4121 || odd_sized_struct)
ebafbe83
MS
4122 {
4123 /* Should shorter than int integer values be
4124 promoted to int before being stored? */
4125 int longword_offset = 0;
4126 CORE_ADDR addr;
4127 stack_used_p = 1;
72a155b4 4128 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 4129 {
1a69e1e4
DJ
4130 if ((typecode == TYPE_CODE_INT
4131 || typecode == TYPE_CODE_PTR
4132 || typecode == TYPE_CODE_FLT)
4133 && len <= 4)
4134 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
4135 }
4136
4137 if (mips_debug)
4138 {
5af949e3
UW
4139 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4140 paddress (gdbarch, stack_offset));
4141 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4142 paddress (gdbarch, longword_offset));
ebafbe83
MS
4143 }
4144
4145 addr = sp + stack_offset + longword_offset;
4146
4147 if (mips_debug)
4148 {
4149 int i;
5af949e3
UW
4150 fprintf_unfiltered (gdb_stdlog, " @%s ",
4151 paddress (gdbarch, addr));
ebafbe83
MS
4152 for (i = 0; i < partial_len; i++)
4153 {
6d82d43b 4154 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
4155 val[i] & 0xff);
4156 }
4157 }
4158 write_memory (addr, val, partial_len);
4159 }
4160
4161 /* Note!!! This is NOT an else clause. Odd sized
968b5391 4162 structs may go thru BOTH paths. */
ebafbe83 4163 /* Write this portion of the argument to a general
6d82d43b 4164 purpose register. */
74ed0bb4 4165 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 4166 {
e17a4113
UW
4167 LONGEST regval = extract_signed_integer (val, partial_len,
4168 byte_order);
4246e332 4169 /* Value may need to be sign extended, because
1b13c4f6 4170 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
4171
4172 /* A non-floating-point argument being passed in a
4173 general register. If a struct or union, and if
4174 the remaining length is smaller than the register
4175 size, we have to adjust the register value on
4176 big endian targets.
4177
4178 It does not seem to be necessary to do the
401835eb 4179 same for integral types. */
480d3dd2 4180
72a155b4 4181 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 4182 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
4183 && (typecode == TYPE_CODE_STRUCT
4184 || typecode == TYPE_CODE_UNION))
1a69e1e4 4185 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 4186 * TARGET_CHAR_BIT);
ebafbe83
MS
4187
4188 if (mips_debug)
4189 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4190 argreg,
1a69e1e4 4191 phex (regval, MIPS64_REGSIZE));
9c9acae0 4192 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
4193 argreg++;
4194
4195 /* Prevent subsequent floating point arguments from
4196 being passed in floating point registers. */
74ed0bb4 4197 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
4198 }
4199
4200 len -= partial_len;
4201 val += partial_len;
4202
4203 /* Compute the the offset into the stack at which we
6d82d43b 4204 will copy the next parameter.
ebafbe83 4205
6d82d43b
AC
4206 In older ABIs, the caller reserved space for
4207 registers that contained arguments. This was loosely
4208 refered to as their "home". Consequently, space is
4209 always allocated. */
ebafbe83 4210
1a69e1e4 4211 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
4212 }
4213 }
4214 if (mips_debug)
4215 fprintf_unfiltered (gdb_stdlog, "\n");
4216 }
4217
f10683bb 4218 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4219
ebafbe83
MS
4220 /* Return adjusted stack pointer. */
4221 return sp;
4222}
4223
9c8fdbfa 4224static enum return_value_convention
c055b101 4225mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
9c8fdbfa 4226 struct type *type, struct regcache *regcache,
47a35522 4227 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4228{
72a155b4 4229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a076fd2
FF
4230
4231 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4232 || TYPE_CODE (type) == TYPE_CODE_UNION
4233 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4234 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 4235 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2
FF
4236 {
4237 /* A floating-point value. It fits in the least significant
4238 part of FP0. */
4239 if (mips_debug)
4240 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 4241 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
4242 gdbarch_num_regs (gdbarch)
4243 + mips_regnum (gdbarch)->fp0,
7a076fd2 4244 TYPE_LENGTH (type),
72a155b4 4245 gdbarch_byte_order (gdbarch),
4c6b5505 4246 readbuf, writebuf, 0);
7a076fd2
FF
4247 return RETURN_VALUE_REGISTER_CONVENTION;
4248 }
4249 else
4250 {
4251 /* A scalar extract each part but least-significant-byte
4252 justified. */
4253 int offset;
4254 int regnum;
4255 for (offset = 0, regnum = MIPS_V0_REGNUM;
4256 offset < TYPE_LENGTH (type);
1a69e1e4 4257 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 4258 {
1a69e1e4 4259 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
4260 if (offset + xfer > TYPE_LENGTH (type))
4261 xfer = TYPE_LENGTH (type) - offset;
4262 if (mips_debug)
4263 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4264 offset, xfer, regnum);
ba32f989
DJ
4265 mips_xfer_register (gdbarch, regcache,
4266 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 4267 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 4268 readbuf, writebuf, offset);
7a076fd2
FF
4269 }
4270 return RETURN_VALUE_REGISTER_CONVENTION;
4271 }
6d82d43b
AC
4272}
4273
dd824b04
DJ
4274/* Floating point register management.
4275
4276 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4277 64bit operations, these early MIPS cpus treat fp register pairs
4278 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4279 registers and offer a compatibility mode that emulates the MIPS2 fp
4280 model. When operating in MIPS2 fp compat mode, later cpu's split
4281 double precision floats into two 32-bit chunks and store them in
4282 consecutive fp regs. To display 64-bit floats stored in this
4283 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4284 Throw in user-configurable endianness and you have a real mess.
4285
4286 The way this works is:
4287 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4288 double-precision value will be split across two logical registers.
4289 The lower-numbered logical register will hold the low-order bits,
4290 regardless of the processor's endianness.
4291 - If we are on a 64-bit processor, and we are looking for a
4292 single-precision value, it will be in the low ordered bits
4293 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4294 save slot in memory.
4295 - If we are in 64-bit mode, everything is straightforward.
4296
4297 Note that this code only deals with "live" registers at the top of the
4298 stack. We will attempt to deal with saved registers later, when
4299 the raw/cooked register interface is in place. (We need a general
4300 interface that can deal with dynamic saved register sizes -- fp
4301 regs could be 32 bits wide in one frame and 64 on the frame above
4302 and below). */
4303
4304/* Copy a 32-bit single-precision value from the current frame
4305 into rare_buffer. */
4306
4307static void
e11c53d2 4308mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 4309 gdb_byte *rare_buffer)
dd824b04 4310{
72a155b4
UW
4311 struct gdbarch *gdbarch = get_frame_arch (frame);
4312 int raw_size = register_size (gdbarch, regno);
47a35522 4313 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 4314
e11c53d2 4315 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572 4316 error (_("can't read register %d (%s)"),
72a155b4 4317 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4318 if (raw_size == 8)
4319 {
4320 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 4321 32 bits. */
dd824b04
DJ
4322 int offset;
4323
72a155b4 4324 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
4325 offset = 4;
4326 else
4327 offset = 0;
4328
4329 memcpy (rare_buffer, raw_buffer + offset, 4);
4330 }
4331 else
4332 {
4333 memcpy (rare_buffer, raw_buffer, 4);
4334 }
4335}
4336
4337/* Copy a 64-bit double-precision value from the current frame into
4338 rare_buffer. This may include getting half of it from the next
4339 register. */
4340
4341static void
e11c53d2 4342mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 4343 gdb_byte *rare_buffer)
dd824b04 4344{
72a155b4
UW
4345 struct gdbarch *gdbarch = get_frame_arch (frame);
4346 int raw_size = register_size (gdbarch, regno);
dd824b04 4347
9c9acae0 4348 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
4349 {
4350 /* We have a 64-bit value for this register, and we should use
6d82d43b 4351 all 64 bits. */
e11c53d2 4352 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572 4353 error (_("can't read register %d (%s)"),
72a155b4 4354 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4355 }
4356 else
4357 {
72a155b4 4358 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 4359
72a155b4 4360 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 4361 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
4362 _("mips_read_fp_register_double: bad access to "
4363 "odd-numbered FP register"));
dd824b04
DJ
4364
4365 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 4366 each register. */
72a155b4 4367 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 4368 {
e11c53d2
AC
4369 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4370 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4371 }
361d1df0 4372 else
dd824b04 4373 {
e11c53d2
AC
4374 mips_read_fp_register_single (frame, regno, rare_buffer);
4375 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4376 }
4377 }
4378}
4379
c906108c 4380static void
e11c53d2
AC
4381mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4382 int regnum)
c5aa993b 4383{ /* do values for FP (float) regs */
72a155b4 4384 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4385 gdb_byte *raw_buffer;
3903d437
AC
4386 double doub, flt1; /* doubles extracted from raw hex data */
4387 int inv1, inv2;
c5aa993b 4388
72a155b4 4389 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
c906108c 4390
72a155b4 4391 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 4392 fprintf_filtered (file, "%*s",
72a155b4 4393 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 4394 "");
f0ef6b29 4395
72a155b4 4396 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 4397 {
79a45b7d
TT
4398 struct value_print_options opts;
4399
f0ef6b29
KB
4400 /* 4-byte registers: Print hex and floating. Also print even
4401 numbered registers as doubles. */
e11c53d2 4402 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745 4403 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv1);
c5aa993b 4404
79a45b7d 4405 get_formatted_print_options (&opts, 'x');
df4df182
UW
4406 print_scalar_formatted (raw_buffer,
4407 builtin_type (gdbarch)->builtin_uint32,
4408 &opts, 'w', file);
dd824b04 4409
e11c53d2 4410 fprintf_filtered (file, " flt: ");
1adad886 4411 if (inv1)
e11c53d2 4412 fprintf_filtered (file, " <invalid float> ");
1adad886 4413 else
e11c53d2 4414 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4415
72a155b4 4416 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 4417 {
e11c53d2 4418 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
4419 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4420 raw_buffer, &inv2);
1adad886 4421
e11c53d2 4422 fprintf_filtered (file, " dbl: ");
f0ef6b29 4423 if (inv2)
e11c53d2 4424 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4425 else
e11c53d2 4426 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4427 }
c906108c
SS
4428 }
4429 else
dd824b04 4430 {
79a45b7d
TT
4431 struct value_print_options opts;
4432
f0ef6b29 4433 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4434 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
4435 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
4436 raw_buffer, &inv1);
c906108c 4437
e11c53d2 4438 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
4439 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4440 raw_buffer, &inv2);
f0ef6b29 4441
79a45b7d 4442 get_formatted_print_options (&opts, 'x');
df4df182
UW
4443 print_scalar_formatted (raw_buffer,
4444 builtin_type (gdbarch)->builtin_uint64,
4445 &opts, 'g', file);
f0ef6b29 4446
e11c53d2 4447 fprintf_filtered (file, " flt: ");
1adad886 4448 if (inv1)
e11c53d2 4449 fprintf_filtered (file, "<invalid float>");
1adad886 4450 else
e11c53d2 4451 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4452
e11c53d2 4453 fprintf_filtered (file, " dbl: ");
f0ef6b29 4454 if (inv2)
e11c53d2 4455 fprintf_filtered (file, "<invalid double>");
1adad886 4456 else
e11c53d2 4457 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4458 }
4459}
4460
4461static void
e11c53d2 4462mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4463 int regnum)
f0ef6b29 4464{
a4b8ebc8 4465 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4466 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4467 int offset;
79a45b7d 4468 struct value_print_options opts;
1adad886 4469
7b9ee6a8 4470 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4471 {
e11c53d2 4472 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4473 return;
4474 }
4475
4476 /* Get the data in raw format. */
e11c53d2 4477 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4478 {
c9f4d572 4479 fprintf_filtered (file, "%s: [Invalid]",
72a155b4 4480 gdbarch_register_name (gdbarch, regnum));
f0ef6b29 4481 return;
c906108c 4482 }
f0ef6b29 4483
72a155b4 4484 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
4485
4486 /* The problem with printing numeric register names (r26, etc.) is that
4487 the user can't use them on input. Probably the best solution is to
4488 fix it so that either the numeric or the funky (a2, etc.) names
4489 are accepted on input. */
4490 if (regnum < MIPS_NUMREGS)
e11c53d2 4491 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4492 else
e11c53d2 4493 fprintf_filtered (file, ": ");
f0ef6b29 4494
72a155b4 4495 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4496 offset =
72a155b4 4497 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
f0ef6b29
KB
4498 else
4499 offset = 0;
4500
79a45b7d 4501 get_formatted_print_options (&opts, 'x');
6d82d43b 4502 print_scalar_formatted (raw_buffer + offset,
79a45b7d 4503 register_type (gdbarch, regnum), &opts, 0,
6d82d43b 4504 file);
c906108c
SS
4505}
4506
f0ef6b29
KB
4507/* Replacement for generic do_registers_info.
4508 Print regs in pretty columns. */
4509
4510static int
e11c53d2
AC
4511print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4512 int regnum)
f0ef6b29 4513{
e11c53d2
AC
4514 fprintf_filtered (file, " ");
4515 mips_print_fp_register (file, frame, regnum);
4516 fprintf_filtered (file, "\n");
f0ef6b29
KB
4517 return regnum + 1;
4518}
4519
4520
c906108c
SS
4521/* Print a row's worth of GP (int) registers, with name labels above */
4522
4523static int
e11c53d2 4524print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4525 int start_regnum)
c906108c 4526{
a4b8ebc8 4527 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4528 /* do values for GP (int) regs */
47a35522 4529 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4530 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4531 int col, byte;
a4b8ebc8 4532 int regnum;
c906108c
SS
4533
4534 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4535 for (col = 0, regnum = start_regnum;
72a155b4
UW
4536 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4537 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4538 regnum++)
c906108c 4539 {
72a155b4 4540 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4541 continue; /* unused register */
7b9ee6a8 4542 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4543 TYPE_CODE_FLT)
c5aa993b 4544 break; /* end the row: reached FP register */
0cc93a06 4545 /* Large registers are handled separately. */
72a155b4 4546 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4547 {
4548 if (col > 0)
4549 break; /* End the row before this register. */
4550
4551 /* Print this register on a row by itself. */
4552 mips_print_register (file, frame, regnum);
4553 fprintf_filtered (file, "\n");
4554 return regnum + 1;
4555 }
d05f6826
DJ
4556 if (col == 0)
4557 fprintf_filtered (file, " ");
6d82d43b 4558 fprintf_filtered (file,
72a155b4
UW
4559 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4560 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
4561 col++;
4562 }
d05f6826
DJ
4563
4564 if (col == 0)
4565 return regnum;
4566
a4b8ebc8 4567 /* print the R0 to R31 names */
72a155b4 4568 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 4569 fprintf_filtered (file, "\n R%-4d",
72a155b4 4570 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
4571 else
4572 fprintf_filtered (file, "\n ");
c906108c 4573
c906108c 4574 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4575 for (col = 0, regnum = start_regnum;
72a155b4
UW
4576 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4577 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4578 regnum++)
c906108c 4579 {
72a155b4 4580 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4581 continue; /* unused register */
7b9ee6a8 4582 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4583 TYPE_CODE_FLT)
c5aa993b 4584 break; /* end row: reached FP register */
72a155b4 4585 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4586 break; /* End row: large register. */
4587
c906108c 4588 /* OK: get the data in raw format. */
e11c53d2 4589 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 4590 error (_("can't read register %d (%s)"),
72a155b4 4591 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 4592 /* pad small registers */
4246e332 4593 for (byte = 0;
72a155b4
UW
4594 byte < (mips_abi_regsize (gdbarch)
4595 - register_size (gdbarch, regnum)); byte++)
c906108c
SS
4596 printf_filtered (" ");
4597 /* Now print the register value in hex, endian order. */
72a155b4 4598 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4599 for (byte =
72a155b4
UW
4600 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4601 byte < register_size (gdbarch, regnum); byte++)
47a35522 4602 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4603 else
72a155b4 4604 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 4605 byte >= 0; byte--)
47a35522 4606 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4607 fprintf_filtered (file, " ");
c906108c
SS
4608 col++;
4609 }
c5aa993b 4610 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4611 fprintf_filtered (file, "\n");
c906108c
SS
4612
4613 return regnum;
4614}
4615
4616/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4617
bf1f5b4c 4618static void
e11c53d2
AC
4619mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4620 struct frame_info *frame, int regnum, int all)
c906108c 4621{
c5aa993b 4622 if (regnum != -1) /* do one specified register */
c906108c 4623 {
72a155b4
UW
4624 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4625 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 4626 error (_("Not a valid register for the current processor type"));
c906108c 4627
0cc93a06 4628 mips_print_register (file, frame, regnum);
e11c53d2 4629 fprintf_filtered (file, "\n");
c906108c 4630 }
c5aa993b
JM
4631 else
4632 /* do all (or most) registers */
c906108c 4633 {
72a155b4
UW
4634 regnum = gdbarch_num_regs (gdbarch);
4635 while (regnum < gdbarch_num_regs (gdbarch)
4636 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 4637 {
7b9ee6a8 4638 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4639 TYPE_CODE_FLT)
e11c53d2
AC
4640 {
4641 if (all) /* true for "INFO ALL-REGISTERS" command */
4642 regnum = print_fp_register_row (file, frame, regnum);
4643 else
4644 regnum += MIPS_NUMREGS; /* skip floating point regs */
4645 }
c906108c 4646 else
e11c53d2 4647 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4648 }
4649 }
4650}
4651
c906108c
SS
4652/* Is this a branch with a delay slot? */
4653
c906108c 4654static int
acdb74a0 4655is_delayed (unsigned long insn)
c906108c
SS
4656{
4657 int i;
4658 for (i = 0; i < NUMOPCODES; ++i)
4659 if (mips_opcodes[i].pinfo != INSN_MACRO
4660 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4661 break;
4662 return (i < NUMOPCODES
4663 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4664 | INSN_COND_BRANCH_DELAY
4665 | INSN_COND_BRANCH_LIKELY)));
4666}
4667
63807e1d 4668static int
3352ef37
AC
4669mips_single_step_through_delay (struct gdbarch *gdbarch,
4670 struct frame_info *frame)
c906108c 4671{
e17a4113 4672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 4673 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4674 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4675
4676 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4677 if (mips_pc_is_mips16 (pc))
c906108c
SS
4678 return 0;
4679
06648491
MK
4680 if (!breakpoint_here_p (pc + 4))
4681 return 0;
4682
3352ef37
AC
4683 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4684 /* If error reading memory, guess that it is not a delayed
4685 branch. */
c906108c 4686 return 0;
e17a4113 4687 return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
c906108c
SS
4688}
4689
6d82d43b
AC
4690/* To skip prologues, I use this predicate. Returns either PC itself
4691 if the code at PC does not look like a function prologue; otherwise
4692 returns an address that (if we're lucky) follows the prologue. If
4693 LENIENT, then we must skip everything which is involved in setting
4694 up the frame (it's OK to skip more, just so long as we don't skip
4695 anything which might clobber the registers which are being saved.
4696 We must skip more in the case where part of the prologue is in the
4697 delay slot of a non-prologue instruction). */
4698
4699static CORE_ADDR
6093d2eb 4700mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 4701{
8b622e6a
AC
4702 CORE_ADDR limit_pc;
4703 CORE_ADDR func_addr;
4704
6d82d43b
AC
4705 /* See if we can determine the end of the prologue via the symbol table.
4706 If so, then return either PC, or the PC after the prologue, whichever
4707 is greater. */
8b622e6a
AC
4708 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4709 {
d80b854b
UW
4710 CORE_ADDR post_prologue_pc
4711 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a
AC
4712 if (post_prologue_pc != 0)
4713 return max (pc, post_prologue_pc);
4714 }
6d82d43b
AC
4715
4716 /* Can't determine prologue from the symbol table, need to examine
4717 instructions. */
4718
98b4dd94
JB
4719 /* Find an upper limit on the function prologue using the debug
4720 information. If the debug information could not be used to provide
4721 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 4722 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
4723 if (limit_pc == 0)
4724 limit_pc = pc + 100; /* Magic. */
4725
0fe7e7c8 4726 if (mips_pc_is_mips16 (pc))
e17a4113 4727 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 4728 else
e17a4113 4729 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
4730}
4731
97ab0fdd
MR
4732/* Check whether the PC is in a function epilogue (32-bit version).
4733 This is a helper function for mips_in_function_epilogue_p. */
4734static int
e17a4113 4735mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
4736{
4737 CORE_ADDR func_addr = 0, func_end = 0;
4738
4739 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4740 {
4741 /* The MIPS epilogue is max. 12 bytes long. */
4742 CORE_ADDR addr = func_end - 12;
4743
4744 if (addr < func_addr + 4)
4745 addr = func_addr + 4;
4746 if (pc < addr)
4747 return 0;
4748
4749 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4750 {
4751 unsigned long high_word;
4752 unsigned long inst;
4753
e17a4113 4754 inst = mips_fetch_instruction (gdbarch, pc);
97ab0fdd
MR
4755 high_word = (inst >> 16) & 0xffff;
4756
4757 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4758 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4759 && inst != 0x03e00008 /* jr $ra */
4760 && inst != 0x00000000) /* nop */
4761 return 0;
4762 }
4763
4764 return 1;
4765 }
4766
4767 return 0;
4768}
4769
4770/* Check whether the PC is in a function epilogue (16-bit version).
4771 This is a helper function for mips_in_function_epilogue_p. */
4772static int
e17a4113 4773mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
4774{
4775 CORE_ADDR func_addr = 0, func_end = 0;
4776
4777 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4778 {
4779 /* The MIPS epilogue is max. 12 bytes long. */
4780 CORE_ADDR addr = func_end - 12;
4781
4782 if (addr < func_addr + 4)
4783 addr = func_addr + 4;
4784 if (pc < addr)
4785 return 0;
4786
4787 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4788 {
4789 unsigned short inst;
4790
e17a4113 4791 inst = mips_fetch_instruction (gdbarch, pc);
97ab0fdd
MR
4792
4793 if ((inst & 0xf800) == 0xf000) /* extend */
4794 continue;
4795
4796 if (inst != 0x6300 /* addiu $sp,offset */
4797 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4798 && inst != 0xe820 /* jr $ra */
4799 && inst != 0xe8a0 /* jrc $ra */
4800 && inst != 0x6500) /* nop */
4801 return 0;
4802 }
4803
4804 return 1;
4805 }
4806
4807 return 0;
4808}
4809
4810/* The epilogue is defined here as the area at the end of a function,
4811 after an instruction which destroys the function's stack frame. */
4812static int
4813mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4814{
4815 if (mips_pc_is_mips16 (pc))
e17a4113 4816 return mips16_in_function_epilogue_p (gdbarch, pc);
97ab0fdd 4817 else
e17a4113 4818 return mips32_in_function_epilogue_p (gdbarch, pc);
97ab0fdd
MR
4819}
4820
a5ea2558
AC
4821/* Root of all "set mips "/"show mips " commands. This will eventually be
4822 used for all MIPS-specific commands. */
4823
a5ea2558 4824static void
acdb74a0 4825show_mips_command (char *args, int from_tty)
a5ea2558
AC
4826{
4827 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4828}
4829
a5ea2558 4830static void
acdb74a0 4831set_mips_command (char *args, int from_tty)
a5ea2558 4832{
6d82d43b
AC
4833 printf_unfiltered
4834 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4835 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4836}
4837
c906108c
SS
4838/* Commands to show/set the MIPS FPU type. */
4839
c906108c 4840static void
acdb74a0 4841show_mipsfpu_command (char *args, int from_tty)
c906108c 4842{
c906108c 4843 char *fpu;
6ca0852e 4844
1cf3db46 4845 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
6ca0852e
UW
4846 {
4847 printf_unfiltered
4848 ("The MIPS floating-point coprocessor is unknown "
4849 "because the current architecture is not MIPS.\n");
4850 return;
4851 }
4852
1cf3db46 4853 switch (MIPS_FPU_TYPE (target_gdbarch))
c906108c
SS
4854 {
4855 case MIPS_FPU_SINGLE:
4856 fpu = "single-precision";
4857 break;
4858 case MIPS_FPU_DOUBLE:
4859 fpu = "double-precision";
4860 break;
4861 case MIPS_FPU_NONE:
4862 fpu = "absent (none)";
4863 break;
93d56215 4864 default:
e2e0b3e5 4865 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4866 }
4867 if (mips_fpu_type_auto)
6d82d43b
AC
4868 printf_unfiltered
4869 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4870 fpu);
c906108c 4871 else
6d82d43b
AC
4872 printf_unfiltered
4873 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4874}
4875
4876
c906108c 4877static void
acdb74a0 4878set_mipsfpu_command (char *args, int from_tty)
c906108c 4879{
6d82d43b
AC
4880 printf_unfiltered
4881 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4882 show_mipsfpu_command (args, from_tty);
4883}
4884
c906108c 4885static void
acdb74a0 4886set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4887{
8d5838b5
AC
4888 struct gdbarch_info info;
4889 gdbarch_info_init (&info);
c906108c
SS
4890 mips_fpu_type = MIPS_FPU_SINGLE;
4891 mips_fpu_type_auto = 0;
8d5838b5
AC
4892 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4893 instead of relying on globals. Doing that would let generic code
4894 handle the search for this specific architecture. */
4895 if (!gdbarch_update_p (info))
e2e0b3e5 4896 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4897}
4898
c906108c 4899static void
acdb74a0 4900set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4901{
8d5838b5
AC
4902 struct gdbarch_info info;
4903 gdbarch_info_init (&info);
c906108c
SS
4904 mips_fpu_type = MIPS_FPU_DOUBLE;
4905 mips_fpu_type_auto = 0;
8d5838b5
AC
4906 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4907 instead of relying on globals. Doing that would let generic code
4908 handle the search for this specific architecture. */
4909 if (!gdbarch_update_p (info))
e2e0b3e5 4910 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4911}
4912
c906108c 4913static void
acdb74a0 4914set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4915{
8d5838b5
AC
4916 struct gdbarch_info info;
4917 gdbarch_info_init (&info);
c906108c
SS
4918 mips_fpu_type = MIPS_FPU_NONE;
4919 mips_fpu_type_auto = 0;
8d5838b5
AC
4920 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4921 instead of relying on globals. Doing that would let generic code
4922 handle the search for this specific architecture. */
4923 if (!gdbarch_update_p (info))
e2e0b3e5 4924 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4925}
4926
c906108c 4927static void
acdb74a0 4928set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4929{
4930 mips_fpu_type_auto = 1;
4931}
4932
c906108c 4933/* Attempt to identify the particular processor model by reading the
691c0433
AC
4934 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4935 the relevant processor still exists (it dates back to '94) and
4936 secondly this is not the way to do this. The processor type should
4937 be set by forcing an architecture change. */
c906108c 4938
691c0433
AC
4939void
4940deprecated_mips_set_processor_regs_hack (void)
c906108c 4941{
bb486190
UW
4942 struct regcache *regcache = get_current_regcache ();
4943 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a9614958 4945 ULONGEST prid;
c906108c 4946
bb486190 4947 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
c906108c 4948 if ((prid & ~0xf) == 0x700)
691c0433 4949 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4950}
4951
4952/* Just like reinit_frame_cache, but with the right arguments to be
4953 callable as an sfunc. */
4954
4955static void
acdb74a0
AC
4956reinit_frame_cache_sfunc (char *args, int from_tty,
4957 struct cmd_list_element *c)
c906108c
SS
4958{
4959 reinit_frame_cache ();
4960}
4961
a89aa300
AC
4962static int
4963gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4964{
d31431ed
AC
4965 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4966 disassembler needs to be able to locally determine the ISA, and
4967 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4968 work. */
ec4045ea
AC
4969 if (mips_pc_is_mips16 (memaddr))
4970 info->mach = bfd_mach_mips16;
c906108c
SS
4971
4972 /* Round down the instruction address to the appropriate boundary. */
65c11066 4973 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4974
e5ab0dce 4975 /* Set the disassembler options. */
9dae60cc 4976 if (!info->disassembler_options)
e5ab0dce
AC
4977 /* This string is not recognized explicitly by the disassembler,
4978 but it tells the disassembler to not try to guess the ABI from
4979 the bfd elf headers, such that, if the user overrides the ABI
4980 of a program linked as NewABI, the disassembly will follow the
4981 register naming conventions specified by the user. */
4982 info->disassembler_options = "gpr-names=32";
4983
c906108c 4984 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 4985 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
4986 return print_insn_big_mips (memaddr, info);
4987 else
4988 return print_insn_little_mips (memaddr, info);
4989}
4990
9dae60cc
UW
4991static int
4992gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
4993{
4994 /* Set up the disassembler info, so that we get the right
4995 register names from libopcodes. */
4996 info->disassembler_options = "gpr-names=n32";
4997 info->flavour = bfd_target_elf_flavour;
4998
4999 return gdb_print_insn_mips (memaddr, info);
5000}
5001
5002static int
5003gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
5004{
5005 /* Set up the disassembler info, so that we get the right
5006 register names from libopcodes. */
5007 info->disassembler_options = "gpr-names=64";
5008 info->flavour = bfd_target_elf_flavour;
5009
5010 return gdb_print_insn_mips (memaddr, info);
5011}
5012
3b3b875c
UW
5013/* This function implements gdbarch_breakpoint_from_pc. It uses the program
5014 counter value to determine whether a 16- or 32-bit breakpoint should be used.
5015 It returns a pointer to a string of bytes that encode a breakpoint
5016 instruction, stores the length of the string to *lenptr, and adjusts pc (if
5017 necessary) to point to the actual memory location where the breakpoint
5018 should be inserted. */
c906108c 5019
47a35522 5020static const gdb_byte *
67d57894 5021mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
c906108c 5022{
67d57894 5023 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c 5024 {
0fe7e7c8 5025 if (mips_pc_is_mips16 (*pcptr))
c906108c 5026 {
47a35522 5027 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 5028 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5029 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5030 return mips16_big_breakpoint;
5031 }
5032 else
5033 {
aaab4dba
AC
5034 /* The IDT board uses an unusual breakpoint value, and
5035 sometimes gets confused when it sees the usual MIPS
5036 breakpoint instruction. */
47a35522
MK
5037 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
5038 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
5039 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 5040
c5aa993b 5041 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5042
5043 if (strcmp (target_shortname, "mips") == 0)
5044 return idt_big_breakpoint;
5045 else if (strcmp (target_shortname, "ddb") == 0
5046 || strcmp (target_shortname, "pmon") == 0
5047 || strcmp (target_shortname, "lsi") == 0)
5048 return pmon_big_breakpoint;
5049 else
5050 return big_breakpoint;
5051 }
5052 }
5053 else
5054 {
0fe7e7c8 5055 if (mips_pc_is_mips16 (*pcptr))
c906108c 5056 {
47a35522 5057 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 5058 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5059 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5060 return mips16_little_breakpoint;
5061 }
5062 else
5063 {
47a35522
MK
5064 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5065 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5066 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 5067
c5aa993b 5068 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5069
5070 if (strcmp (target_shortname, "mips") == 0)
5071 return idt_little_breakpoint;
5072 else if (strcmp (target_shortname, "ddb") == 0
5073 || strcmp (target_shortname, "pmon") == 0
5074 || strcmp (target_shortname, "lsi") == 0)
5075 return pmon_little_breakpoint;
5076 else
5077 return little_breakpoint;
5078 }
5079 }
5080}
5081
5082/* If PC is in a mips16 call or return stub, return the address of the target
5083 PC, which is either the callee or the caller. There are several
5084 cases which must be handled:
5085
5086 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5087 target PC is in $31 ($ra).
c906108c 5088 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5089 and the target PC is in $2.
c906108c 5090 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5091 before the jal instruction, this is effectively a call stub
5092 and the the target PC is in $2. Otherwise this is effectively
5093 a return stub and the target PC is in $18.
c906108c
SS
5094
5095 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 5096 gory details. */
c906108c 5097
757a7cc6 5098static CORE_ADDR
db5f024e 5099mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 5100{
e17a4113 5101 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c
SS
5102 char *name;
5103 CORE_ADDR start_addr;
5104
5105 /* Find the starting address and name of the function containing the PC. */
5106 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5107 return 0;
5108
5109 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5110 target PC is in $31 ($ra). */
5111 if (strcmp (name, "__mips16_ret_sf") == 0
5112 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 5113 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
5114
5115 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5116 {
5117 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5118 and the target PC is in $2. */
5119 if (name[19] >= '0' && name[19] <= '9')
52f729a7 5120 return get_frame_register_signed (frame, 2);
c906108c
SS
5121
5122 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5123 before the jal instruction, this is effectively a call stub
5124 and the the target PC is in $2. Otherwise this is effectively
5125 a return stub and the target PC is in $18. */
c906108c
SS
5126 else if (name[19] == 's' || name[19] == 'd')
5127 {
5128 if (pc == start_addr)
5129 {
5130 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5131 stub. Such a stub for a function bar might have a name
5132 like __fn_stub_bar, and might look like this:
5133 mfc1 $4,$f13
5134 mfc1 $5,$f12
5135 mfc1 $6,$f15
5136 mfc1 $7,$f14
5137 la $1,bar (becomes a lui/addiu pair)
5138 jr $1
5139 So scan down to the lui/addi and extract the target
5140 address from those two instructions. */
c906108c 5141
52f729a7 5142 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 5143 ULONGEST inst;
c906108c
SS
5144 int i;
5145
5146 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
5147 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5148 0)
c906108c
SS
5149 return target_pc;
5150 if (strncmp (name, "__fn_stub_", 10) != 0
5151 && strcmp (name, "etext") != 0
5152 && strcmp (name, "_etext") != 0)
5153 return target_pc;
5154
5155 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5156 The limit on the search is arbitrarily set to 20
5157 instructions. FIXME. */
95ac2dcf 5158 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 5159 {
e17a4113 5160 inst = mips_fetch_instruction (gdbarch, target_pc);
c5aa993b
JM
5161 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5162 pc = (inst << 16) & 0xffff0000; /* high word */
5163 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5164 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5165 }
5166
5167 /* Couldn't find the lui/addui pair, so return stub address. */
5168 return target_pc;
5169 }
5170 else
5171 /* This is the 'return' part of a call stub. The return
5172 address is in $r18. */
52f729a7 5173 return get_frame_register_signed (frame, 18);
c906108c
SS
5174 }
5175 }
c5aa993b 5176 return 0; /* not a stub */
c906108c
SS
5177}
5178
db5f024e
DJ
5179/* If the current PC is the start of a non-PIC-to-PIC stub, return the
5180 PC of the stub target. The stub just loads $t9 and jumps to it,
5181 so that $t9 has the correct value at function entry. */
5182
5183static CORE_ADDR
5184mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5185{
e17a4113
UW
5186 struct gdbarch *gdbarch = get_frame_arch (frame);
5187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
db5f024e
DJ
5188 struct minimal_symbol *msym;
5189 int i;
5190 gdb_byte stub_code[16];
5191 int32_t stub_words[4];
5192
5193 /* The stub for foo is named ".pic.foo", and is either two
5194 instructions inserted before foo or a three instruction sequence
5195 which jumps to foo. */
5196 msym = lookup_minimal_symbol_by_pc (pc);
5197 if (msym == NULL
5198 || SYMBOL_VALUE_ADDRESS (msym) != pc
5199 || SYMBOL_LINKAGE_NAME (msym) == NULL
5200 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
5201 return 0;
5202
5203 /* A two-instruction header. */
5204 if (MSYMBOL_SIZE (msym) == 8)
5205 return pc + 8;
5206
5207 /* A three-instruction (plus delay slot) trampoline. */
5208 if (MSYMBOL_SIZE (msym) == 16)
5209 {
5210 if (target_read_memory (pc, stub_code, 16) != 0)
5211 return 0;
5212 for (i = 0; i < 4; i++)
e17a4113
UW
5213 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
5214 4, byte_order);
db5f024e
DJ
5215
5216 /* A stub contains these instructions:
5217 lui t9, %hi(target)
5218 j target
5219 addiu t9, t9, %lo(target)
5220 nop
5221
5222 This works even for N64, since stubs are only generated with
5223 -msym32. */
5224 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
5225 && (stub_words[1] & 0xfc000000U) == 0x08000000
5226 && (stub_words[2] & 0xffff0000U) == 0x27390000
5227 && stub_words[3] == 0x00000000)
5228 return (((stub_words[0] & 0x0000ffff) << 16)
5229 + (stub_words[2] & 0x0000ffff));
5230 }
5231
5232 /* Not a recognized stub. */
5233 return 0;
5234}
5235
5236static CORE_ADDR
5237mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5238{
5239 CORE_ADDR target_pc;
5240
5241 target_pc = mips_skip_mips16_trampoline_code (frame, pc);
5242 if (target_pc)
5243 return target_pc;
5244
5245 target_pc = find_solib_trampoline_target (frame, pc);
5246 if (target_pc)
5247 return target_pc;
5248
5249 target_pc = mips_skip_pic_trampoline_code (frame, pc);
5250 if (target_pc)
5251 return target_pc;
5252
5253 return 0;
5254}
5255
a4b8ebc8 5256/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 5257 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
5258
5259static int
d3f73121 5260mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 5261{
a4b8ebc8 5262 int regnum;
2f38ef89 5263 if (num >= 0 && num < 32)
a4b8ebc8 5264 regnum = num;
2f38ef89 5265 else if (num >= 38 && num < 70)
d3f73121 5266 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 5267 else if (num == 70)
d3f73121 5268 regnum = mips_regnum (gdbarch)->hi;
040b99fd 5269 else if (num == 71)
d3f73121 5270 regnum = mips_regnum (gdbarch)->lo;
2f38ef89 5271 else
a4b8ebc8
AC
5272 /* This will hopefully (eventually) provoke a warning. Should
5273 we be calling complaint() here? */
d3f73121
MD
5274 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5275 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
5276}
5277
2f38ef89 5278
a4b8ebc8 5279/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 5280 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
5281
5282static int
d3f73121 5283mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 5284{
a4b8ebc8 5285 int regnum;
2f38ef89 5286 if (num >= 0 && num < 32)
a4b8ebc8 5287 regnum = num;
2f38ef89 5288 else if (num >= 32 && num < 64)
d3f73121 5289 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 5290 else if (num == 64)
d3f73121 5291 regnum = mips_regnum (gdbarch)->hi;
040b99fd 5292 else if (num == 65)
d3f73121 5293 regnum = mips_regnum (gdbarch)->lo;
2f38ef89 5294 else
a4b8ebc8
AC
5295 /* This will hopefully (eventually) provoke a warning. Should we
5296 be calling complaint() here? */
d3f73121
MD
5297 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5298 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
5299}
5300
5301static int
e7faf938 5302mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
5303{
5304 /* Only makes sense to supply raw registers. */
e7faf938 5305 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
5306 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5307 decide if it is valid. Should instead define a standard sim/gdb
5308 register numbering scheme. */
e7faf938
MD
5309 if (gdbarch_register_name (gdbarch,
5310 gdbarch_num_regs (gdbarch) + regnum) != NULL
5311 && gdbarch_register_name (gdbarch,
5312 gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
5313 return regnum;
5314 else
6d82d43b 5315 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
5316}
5317
2f38ef89 5318
4844f454
CV
5319/* Convert an integer into an address. Extracting the value signed
5320 guarantees a correctly sign extended address. */
fc0c74b1
AC
5321
5322static CORE_ADDR
79dd2d24 5323mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 5324 struct type *type, const gdb_byte *buf)
fc0c74b1 5325{
e17a4113
UW
5326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5327 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
5328}
5329
82e91389
DJ
5330/* Dummy virtual frame pointer method. This is no more or less accurate
5331 than most other architectures; we just need to be explicit about it,
5332 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5333 an assertion failure. */
5334
5335static void
a54fba4c
MD
5336mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5337 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
5338{
5339 *reg = MIPS_SP_REGNUM;
5340 *offset = 0;
5341}
5342
caaa3122
DJ
5343static void
5344mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5345{
5346 enum mips_abi *abip = (enum mips_abi *) obj;
5347 const char *name = bfd_get_section_name (abfd, sect);
5348
5349 if (*abip != MIPS_ABI_UNKNOWN)
5350 return;
5351
5352 if (strncmp (name, ".mdebug.", 8) != 0)
5353 return;
5354
5355 if (strcmp (name, ".mdebug.abi32") == 0)
5356 *abip = MIPS_ABI_O32;
5357 else if (strcmp (name, ".mdebug.abiN32") == 0)
5358 *abip = MIPS_ABI_N32;
62a49b2c 5359 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5360 *abip = MIPS_ABI_N64;
caaa3122
DJ
5361 else if (strcmp (name, ".mdebug.abiO64") == 0)
5362 *abip = MIPS_ABI_O64;
5363 else if (strcmp (name, ".mdebug.eabi32") == 0)
5364 *abip = MIPS_ABI_EABI32;
5365 else if (strcmp (name, ".mdebug.eabi64") == 0)
5366 *abip = MIPS_ABI_EABI64;
5367 else
8a3fe4f8 5368 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
5369}
5370
22e47e37
FF
5371static void
5372mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5373{
5374 int *lbp = (int *) obj;
5375 const char *name = bfd_get_section_name (abfd, sect);
5376
5377 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5378 *lbp = 32;
5379 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5380 *lbp = 64;
5381 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5382 warning (_("unrecognized .gcc_compiled_longXX"));
5383}
5384
2e4ebe70
DJ
5385static enum mips_abi
5386global_mips_abi (void)
5387{
5388 int i;
5389
5390 for (i = 0; mips_abi_strings[i] != NULL; i++)
5391 if (mips_abi_strings[i] == mips_abi_string)
5392 return (enum mips_abi) i;
5393
e2e0b3e5 5394 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
5395}
5396
29709017
DJ
5397static void
5398mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5399{
29709017
DJ
5400 /* If the size matches the set of 32-bit or 64-bit integer registers,
5401 assume that's what we've got. */
4eb0ad19
DJ
5402 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5403 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
5404
5405 /* If the size matches the full set of registers GDB traditionally
5406 knows about, including floating point, for either 32-bit or
5407 64-bit, assume that's what we've got. */
4eb0ad19
DJ
5408 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5409 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
5410
5411 /* Otherwise we don't have a useful guess. */
5412}
5413
f8b73d13
DJ
5414static struct value *
5415value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5416{
5417 const int *reg_p = baton;
5418 return value_of_register (*reg_p, frame);
5419}
5420
c2d11a7d 5421static struct gdbarch *
6d82d43b 5422mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 5423{
c2d11a7d
JM
5424 struct gdbarch *gdbarch;
5425 struct gdbarch_tdep *tdep;
5426 int elf_flags;
2e4ebe70 5427 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 5428 int i, num_regs;
8d5838b5 5429 enum mips_fpu_type fpu_type;
f8b73d13 5430 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 5431 int elf_fpu_type = 0;
f8b73d13
DJ
5432
5433 /* Check any target description for validity. */
5434 if (tdesc_has_registers (info.target_desc))
5435 {
5436 static const char *const mips_gprs[] = {
5437 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5438 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5439 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5440 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5441 };
5442 static const char *const mips_fprs[] = {
5443 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5444 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5445 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5446 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5447 };
5448
5449 const struct tdesc_feature *feature;
5450 int valid_p;
5451
5452 feature = tdesc_find_feature (info.target_desc,
5453 "org.gnu.gdb.mips.cpu");
5454 if (feature == NULL)
5455 return NULL;
5456
5457 tdesc_data = tdesc_data_alloc ();
5458
5459 valid_p = 1;
5460 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5461 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5462 mips_gprs[i]);
5463
5464
5465 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5466 MIPS_EMBED_LO_REGNUM, "lo");
5467 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5468 MIPS_EMBED_HI_REGNUM, "hi");
5469 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5470 MIPS_EMBED_PC_REGNUM, "pc");
5471
5472 if (!valid_p)
5473 {
5474 tdesc_data_cleanup (tdesc_data);
5475 return NULL;
5476 }
5477
5478 feature = tdesc_find_feature (info.target_desc,
5479 "org.gnu.gdb.mips.cp0");
5480 if (feature == NULL)
5481 {
5482 tdesc_data_cleanup (tdesc_data);
5483 return NULL;
5484 }
5485
5486 valid_p = 1;
5487 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5488 MIPS_EMBED_BADVADDR_REGNUM,
5489 "badvaddr");
5490 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5491 MIPS_PS_REGNUM, "status");
5492 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5493 MIPS_EMBED_CAUSE_REGNUM, "cause");
5494
5495 if (!valid_p)
5496 {
5497 tdesc_data_cleanup (tdesc_data);
5498 return NULL;
5499 }
5500
5501 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5502 backend is not prepared for that, though. */
5503 feature = tdesc_find_feature (info.target_desc,
5504 "org.gnu.gdb.mips.fpu");
5505 if (feature == NULL)
5506 {
5507 tdesc_data_cleanup (tdesc_data);
5508 return NULL;
5509 }
5510
5511 valid_p = 1;
5512 for (i = 0; i < 32; i++)
5513 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5514 i + MIPS_EMBED_FP0_REGNUM,
5515 mips_fprs[i]);
5516
5517 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5518 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5519 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5520 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5521
5522 if (!valid_p)
5523 {
5524 tdesc_data_cleanup (tdesc_data);
5525 return NULL;
5526 }
5527
5528 /* It would be nice to detect an attempt to use a 64-bit ABI
5529 when only 32-bit registers are provided. */
5530 }
c2d11a7d 5531
ec03c1ac
AC
5532 /* First of all, extract the elf_flags, if available. */
5533 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5534 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5535 else if (arches != NULL)
5536 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5537 else
5538 elf_flags = 0;
5539 if (gdbarch_debug)
5540 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5541 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 5542
102182a9 5543 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5544 switch ((elf_flags & EF_MIPS_ABI))
5545 {
5546 case E_MIPS_ABI_O32:
ec03c1ac 5547 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5548 break;
5549 case E_MIPS_ABI_O64:
ec03c1ac 5550 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5551 break;
5552 case E_MIPS_ABI_EABI32:
ec03c1ac 5553 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5554 break;
5555 case E_MIPS_ABI_EABI64:
ec03c1ac 5556 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5557 break;
5558 default:
acdb74a0 5559 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5560 found_abi = MIPS_ABI_N32;
acdb74a0 5561 else
ec03c1ac 5562 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5563 break;
5564 }
acdb74a0 5565
caaa3122 5566 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5567 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5568 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5569
dc305454 5570 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
5571 MIPS architecture (if there is one). */
5572 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5573 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5574
32a6503c 5575 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5576 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5577 && info.bfd_arch_info != NULL
5578 && info.bfd_arch_info->arch == bfd_arch_mips)
5579 {
5580 switch (info.bfd_arch_info->mach)
5581 {
5582 case bfd_mach_mips3900:
ec03c1ac 5583 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5584 break;
5585 case bfd_mach_mips4100:
5586 case bfd_mach_mips5000:
ec03c1ac 5587 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5588 break;
1d06468c
EZ
5589 case bfd_mach_mips8000:
5590 case bfd_mach_mips10000:
32a6503c
KB
5591 /* On Irix, ELF64 executables use the N64 ABI. The
5592 pseudo-sections which describe the ABI aren't present
5593 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5594 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5595 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5596 found_abi = MIPS_ABI_N64;
28d169de 5597 else
ec03c1ac 5598 found_abi = MIPS_ABI_N32;
1d06468c 5599 break;
bf64bfd6
AC
5600 }
5601 }
2e4ebe70 5602
26c53e50
DJ
5603 /* Default 64-bit objects to N64 instead of O32. */
5604 if (found_abi == MIPS_ABI_UNKNOWN
5605 && info.abfd != NULL
5606 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5607 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5608 found_abi = MIPS_ABI_N64;
5609
ec03c1ac
AC
5610 if (gdbarch_debug)
5611 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5612 found_abi);
5613
5614 /* What has the user specified from the command line? */
5615 wanted_abi = global_mips_abi ();
5616 if (gdbarch_debug)
5617 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5618 wanted_abi);
2e4ebe70
DJ
5619
5620 /* Now that we have found what the ABI for this binary would be,
5621 check whether the user is overriding it. */
2e4ebe70
DJ
5622 if (wanted_abi != MIPS_ABI_UNKNOWN)
5623 mips_abi = wanted_abi;
ec03c1ac
AC
5624 else if (found_abi != MIPS_ABI_UNKNOWN)
5625 mips_abi = found_abi;
5626 else
5627 mips_abi = MIPS_ABI_O32;
5628 if (gdbarch_debug)
5629 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5630 mips_abi);
2e4ebe70 5631
ec03c1ac 5632 /* Also used when doing an architecture lookup. */
4b9b3959 5633 if (gdbarch_debug)
ec03c1ac
AC
5634 fprintf_unfiltered (gdb_stdlog,
5635 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5636 mips64_transfers_32bit_regs_p);
0dadbba0 5637
8d5838b5 5638 /* Determine the MIPS FPU type. */
609ca2b9
DJ
5639#ifdef HAVE_ELF
5640 if (info.abfd
5641 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5642 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5643 Tag_GNU_MIPS_ABI_FP);
5644#endif /* HAVE_ELF */
5645
8d5838b5
AC
5646 if (!mips_fpu_type_auto)
5647 fpu_type = mips_fpu_type;
609ca2b9
DJ
5648 else if (elf_fpu_type != 0)
5649 {
5650 switch (elf_fpu_type)
5651 {
5652 case 1:
5653 fpu_type = MIPS_FPU_DOUBLE;
5654 break;
5655 case 2:
5656 fpu_type = MIPS_FPU_SINGLE;
5657 break;
5658 case 3:
5659 default:
5660 /* Soft float or unknown. */
5661 fpu_type = MIPS_FPU_NONE;
5662 break;
5663 }
5664 }
8d5838b5
AC
5665 else if (info.bfd_arch_info != NULL
5666 && info.bfd_arch_info->arch == bfd_arch_mips)
5667 switch (info.bfd_arch_info->mach)
5668 {
5669 case bfd_mach_mips3900:
5670 case bfd_mach_mips4100:
5671 case bfd_mach_mips4111:
a9d61c86 5672 case bfd_mach_mips4120:
8d5838b5
AC
5673 fpu_type = MIPS_FPU_NONE;
5674 break;
5675 case bfd_mach_mips4650:
5676 fpu_type = MIPS_FPU_SINGLE;
5677 break;
5678 default:
5679 fpu_type = MIPS_FPU_DOUBLE;
5680 break;
5681 }
5682 else if (arches != NULL)
5683 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5684 else
5685 fpu_type = MIPS_FPU_DOUBLE;
5686 if (gdbarch_debug)
5687 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5688 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5689
29709017
DJ
5690 /* Check for blatant incompatibilities. */
5691
5692 /* If we have only 32-bit registers, then we can't debug a 64-bit
5693 ABI. */
5694 if (info.target_desc
5695 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5696 && mips_abi != MIPS_ABI_EABI32
5697 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5698 {
5699 if (tdesc_data != NULL)
5700 tdesc_data_cleanup (tdesc_data);
5701 return NULL;
5702 }
29709017 5703
c2d11a7d
JM
5704 /* try to find a pre-existing architecture */
5705 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5706 arches != NULL;
5707 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5708 {
5709 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5710 using. */
9103eae0 5711 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5712 continue;
9103eae0 5713 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5714 continue;
719ec221
AC
5715 /* Need to be pedantic about which register virtual size is
5716 used. */
5717 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5718 != mips64_transfers_32bit_regs_p)
5719 continue;
8d5838b5
AC
5720 /* Be pedantic about which FPU is selected. */
5721 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5722 continue;
f8b73d13
DJ
5723
5724 if (tdesc_data != NULL)
5725 tdesc_data_cleanup (tdesc_data);
4be87837 5726 return arches->gdbarch;
c2d11a7d
JM
5727 }
5728
102182a9 5729 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5730 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5731 gdbarch = gdbarch_alloc (&info, tdep);
5732 tdep->elf_flags = elf_flags;
719ec221 5733 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5734 tdep->found_abi = found_abi;
5735 tdep->mips_abi = mips_abi;
8d5838b5 5736 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5737 tdep->register_size_valid_p = 0;
5738 tdep->register_size = 0;
5739
5740 if (info.target_desc)
5741 {
5742 /* Some useful properties can be inferred from the target. */
5743 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5744 {
5745 tdep->register_size_valid_p = 1;
5746 tdep->register_size = 4;
5747 }
5748 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5749 {
5750 tdep->register_size_valid_p = 1;
5751 tdep->register_size = 8;
5752 }
5753 }
c2d11a7d 5754
102182a9 5755 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5756 set_gdbarch_short_bit (gdbarch, 16);
5757 set_gdbarch_int_bit (gdbarch, 32);
5758 set_gdbarch_float_bit (gdbarch, 32);
5759 set_gdbarch_double_bit (gdbarch, 64);
5760 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5761 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5762 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5763 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5764
6d82d43b 5765 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5766 mips_elf_make_msymbol_special);
5767
16e109ca 5768 /* Fill in the OS dependant register numbers and names. */
56cea623 5769 {
16e109ca 5770 const char **reg_names;
56cea623
AC
5771 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5772 struct mips_regnum);
f8b73d13
DJ
5773 if (tdesc_has_registers (info.target_desc))
5774 {
5775 regnum->lo = MIPS_EMBED_LO_REGNUM;
5776 regnum->hi = MIPS_EMBED_HI_REGNUM;
5777 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5778 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5779 regnum->pc = MIPS_EMBED_PC_REGNUM;
5780 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5781 regnum->fp_control_status = 70;
5782 regnum->fp_implementation_revision = 71;
5783 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5784 reg_names = NULL;
5785 }
5786 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5787 {
5788 regnum->fp0 = 32;
5789 regnum->pc = 64;
5790 regnum->cause = 65;
5791 regnum->badvaddr = 66;
5792 regnum->hi = 67;
5793 regnum->lo = 68;
5794 regnum->fp_control_status = 69;
5795 regnum->fp_implementation_revision = 70;
5796 num_regs = 71;
16e109ca 5797 reg_names = mips_irix_reg_names;
56cea623
AC
5798 }
5799 else
5800 {
5801 regnum->lo = MIPS_EMBED_LO_REGNUM;
5802 regnum->hi = MIPS_EMBED_HI_REGNUM;
5803 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5804 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5805 regnum->pc = MIPS_EMBED_PC_REGNUM;
5806 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5807 regnum->fp_control_status = 70;
5808 regnum->fp_implementation_revision = 71;
5809 num_regs = 90;
16e109ca
AC
5810 if (info.bfd_arch_info != NULL
5811 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5812 reg_names = mips_tx39_reg_names;
5813 else
5814 reg_names = mips_generic_reg_names;
56cea623 5815 }
3e8c568d 5816 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
fb14de7b 5817 replaced by gdbarch_read_pc? */
f10683bb
MH
5818 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5819 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5820 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5821 set_gdbarch_num_regs (gdbarch, num_regs);
5822 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca 5823 set_gdbarch_register_name (gdbarch, mips_register_name);
82e91389 5824 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
16e109ca
AC
5825 tdep->mips_processor_reg_names = reg_names;
5826 tdep->regnum = regnum;
56cea623 5827 }
fe29b929 5828
0dadbba0 5829 switch (mips_abi)
c2d11a7d 5830 {
0dadbba0 5831 case MIPS_ABI_O32:
25ab4790 5832 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5833 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5834 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5835 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5836 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5837 set_gdbarch_long_bit (gdbarch, 32);
5838 set_gdbarch_ptr_bit (gdbarch, 32);
5839 set_gdbarch_long_long_bit (gdbarch, 64);
5840 break;
0dadbba0 5841 case MIPS_ABI_O64:
25ab4790 5842 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5843 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5844 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5845 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5846 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5847 set_gdbarch_long_bit (gdbarch, 32);
5848 set_gdbarch_ptr_bit (gdbarch, 32);
5849 set_gdbarch_long_long_bit (gdbarch, 64);
5850 break;
0dadbba0 5851 case MIPS_ABI_EABI32:
25ab4790 5852 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5853 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5854 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5855 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5856 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5857 set_gdbarch_long_bit (gdbarch, 32);
5858 set_gdbarch_ptr_bit (gdbarch, 32);
5859 set_gdbarch_long_long_bit (gdbarch, 64);
5860 break;
0dadbba0 5861 case MIPS_ABI_EABI64:
25ab4790 5862 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5863 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5864 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5865 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5866 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5867 set_gdbarch_long_bit (gdbarch, 64);
5868 set_gdbarch_ptr_bit (gdbarch, 64);
5869 set_gdbarch_long_long_bit (gdbarch, 64);
5870 break;
0dadbba0 5871 case MIPS_ABI_N32:
25ab4790 5872 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5873 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5874 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5875 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5876 tdep->default_mask_address_p = 0;
0dadbba0
AC
5877 set_gdbarch_long_bit (gdbarch, 32);
5878 set_gdbarch_ptr_bit (gdbarch, 32);
5879 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5880 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 5881 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
5882 break;
5883 case MIPS_ABI_N64:
25ab4790 5884 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5885 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5886 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5887 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5888 tdep->default_mask_address_p = 0;
5889 set_gdbarch_long_bit (gdbarch, 64);
5890 set_gdbarch_ptr_bit (gdbarch, 64);
5891 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5892 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 5893 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 5894 break;
c2d11a7d 5895 default:
e2e0b3e5 5896 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5897 }
5898
22e47e37
FF
5899 /* GCC creates a pseudo-section whose name specifies the size of
5900 longs, since -mlong32 or -mlong64 may be used independent of
5901 other options. How those options affect pointer sizes is ABI and
5902 architecture dependent, so use them to override the default sizes
5903 set by the ABI. This table shows the relationship between ABI,
5904 -mlongXX, and size of pointers:
5905
5906 ABI -mlongXX ptr bits
5907 --- -------- --------
5908 o32 32 32
5909 o32 64 32
5910 n32 32 32
5911 n32 64 64
5912 o64 32 32
5913 o64 64 64
5914 n64 32 32
5915 n64 64 64
5916 eabi32 32 32
5917 eabi32 64 32
5918 eabi64 32 32
5919 eabi64 64 64
5920
5921 Note that for o32 and eabi32, pointers are always 32 bits
5922 regardless of any -mlongXX option. For all others, pointers and
5923 longs are the same, as set by -mlongXX or set by defaults.
5924 */
5925
5926 if (info.abfd != NULL)
5927 {
5928 int long_bit = 0;
5929
5930 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5931 if (long_bit)
5932 {
5933 set_gdbarch_long_bit (gdbarch, long_bit);
5934 switch (mips_abi)
5935 {
5936 case MIPS_ABI_O32:
5937 case MIPS_ABI_EABI32:
5938 break;
5939 case MIPS_ABI_N32:
5940 case MIPS_ABI_O64:
5941 case MIPS_ABI_N64:
5942 case MIPS_ABI_EABI64:
5943 set_gdbarch_ptr_bit (gdbarch, long_bit);
5944 break;
5945 default:
5946 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5947 }
5948 }
5949 }
5950
a5ea2558
AC
5951 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5952 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5953 comment:
5954
5955 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5956 flag in object files because to do so would make it impossible to
102182a9 5957 link with libraries compiled without "-gp32". This is
a5ea2558 5958 unnecessarily restrictive.
361d1df0 5959
a5ea2558
AC
5960 We could solve this problem by adding "-gp32" multilibs to gcc,
5961 but to set this flag before gcc is built with such multilibs will
5962 break too many systems.''
5963
5964 But even more unhelpfully, the default linker output target for
5965 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5966 for 64-bit programs - you need to change the ABI to change this,
102182a9 5967 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5968 this flag to detect 32-bit mode would do the wrong thing given
5969 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5970 as 32-bit programs by default. */
a5ea2558 5971
6c997a34 5972 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5973 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5974
102182a9
MS
5975 /* Add/remove bits from an address. The MIPS needs be careful to
5976 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5977 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5978
58dfe9ff
AC
5979 /* Unwind the frame. */
5980 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5981 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 5982 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 5983
102182a9 5984 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5985 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5986 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5987 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
5988 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5989 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5990 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5991
c2d11a7d
JM
5992 /* MIPS version of CALL_DUMMY */
5993
9710e734
AC
5994 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5995 replaced by a command, and all targets will default to on stack
5996 (regardless of the stack's execute status). */
5997 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5998 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5999
87783b8b
AC
6000 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
6001 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
6002 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
6003
f7b9e9fc
AC
6004 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6005 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
6006
6007 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 6008
97ab0fdd
MR
6009 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
6010
fc0c74b1
AC
6011 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6012 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6013 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 6014
a4b8ebc8 6015 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 6016
e11c53d2 6017 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 6018
9dae60cc
UW
6019 if (mips_abi == MIPS_ABI_N32)
6020 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
6021 else if (mips_abi == MIPS_ABI_N64)
6022 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
6023 else
6024 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 6025
d92524f1
PM
6026 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
6027 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 6028 need to all be folded into the target vector. Since they are
d92524f1
PM
6029 being used as guards for target_stopped_by_watchpoint, why not have
6030 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
6031 is sitting on? */
6032 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6033
e7d6a6d2 6034 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 6035
3352ef37
AC
6036 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
6037
0d5de010
DJ
6038 /* Virtual tables. */
6039 set_gdbarch_vbit_in_delta (gdbarch, 1);
6040
29709017
DJ
6041 mips_register_g_packet_guesses (gdbarch);
6042
6de918a6 6043 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 6044 info.tdep_info = (void *) tdesc_data;
6de918a6 6045 gdbarch_init_osabi (info, gdbarch);
757a7cc6 6046
5792a79b 6047 /* Unwind the frame. */
b8a22b94
DJ
6048 dwarf2_append_unwinders (gdbarch);
6049 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
6050 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
6051 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 6052 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 6053 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
6054 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
6055 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 6056
f8b73d13
DJ
6057 if (tdesc_data)
6058 {
6059 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 6060 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
6061
6062 /* Override the normal target description methods to handle our
6063 dual real and pseudo registers. */
6064 set_gdbarch_register_name (gdbarch, mips_register_name);
6065 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
6066
6067 num_regs = gdbarch_num_regs (gdbarch);
6068 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6069 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
6070 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6071 }
6072
6073 /* Add ABI-specific aliases for the registers. */
6074 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
6075 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
6076 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
6077 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
6078 else
6079 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
6080 user_reg_add (gdbarch, mips_o32_aliases[i].name,
6081 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
6082
6083 /* Add some other standard aliases. */
6084 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
6085 user_reg_add (gdbarch, mips_register_aliases[i].name,
6086 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
6087
865093a3
AR
6088 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
6089 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
6090 value_of_mips_user_reg,
6091 &mips_numeric_register_aliases[i].regnum);
6092
4b9b3959
AC
6093 return gdbarch;
6094}
6095
2e4ebe70 6096static void
6d82d43b 6097mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
6098{
6099 struct gdbarch_info info;
6100
6101 /* Force the architecture to update, and (if it's a MIPS architecture)
6102 mips_gdbarch_init will take care of the rest. */
6103 gdbarch_info_init (&info);
6104 gdbarch_update_p (info);
6105}
6106
ad188201
KB
6107/* Print out which MIPS ABI is in use. */
6108
6109static void
1f8ca57c
JB
6110show_mips_abi (struct ui_file *file,
6111 int from_tty,
6112 struct cmd_list_element *ignored_cmd,
6113 const char *ignored_value)
ad188201 6114{
1cf3db46 6115 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
6116 fprintf_filtered
6117 (file,
6118 "The MIPS ABI is unknown because the current architecture "
6119 "is not MIPS.\n");
ad188201
KB
6120 else
6121 {
6122 enum mips_abi global_abi = global_mips_abi ();
1cf3db46 6123 enum mips_abi actual_abi = mips_abi (target_gdbarch);
ad188201
KB
6124 const char *actual_abi_str = mips_abi_strings[actual_abi];
6125
6126 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
6127 fprintf_filtered
6128 (file,
6129 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 6130 actual_abi_str);
ad188201 6131 else if (global_abi == actual_abi)
1f8ca57c
JB
6132 fprintf_filtered
6133 (file,
6134 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 6135 actual_abi_str);
ad188201
KB
6136 else
6137 {
6138 /* Probably shouldn't happen... */
1f8ca57c
JB
6139 fprintf_filtered
6140 (file,
6141 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 6142 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
6143 }
6144 }
6145}
6146
4b9b3959 6147static void
72a155b4 6148mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 6149{
72a155b4 6150 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 6151 if (tdep != NULL)
c2d11a7d 6152 {
acdb74a0
AC
6153 int ef_mips_arch;
6154 int ef_mips_32bitmode;
f49e4e6d 6155 /* Determine the ISA. */
acdb74a0
AC
6156 switch (tdep->elf_flags & EF_MIPS_ARCH)
6157 {
6158 case E_MIPS_ARCH_1:
6159 ef_mips_arch = 1;
6160 break;
6161 case E_MIPS_ARCH_2:
6162 ef_mips_arch = 2;
6163 break;
6164 case E_MIPS_ARCH_3:
6165 ef_mips_arch = 3;
6166 break;
6167 case E_MIPS_ARCH_4:
93d56215 6168 ef_mips_arch = 4;
acdb74a0
AC
6169 break;
6170 default:
93d56215 6171 ef_mips_arch = 0;
acdb74a0
AC
6172 break;
6173 }
f49e4e6d 6174 /* Determine the size of a pointer. */
acdb74a0 6175 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6178 tdep->elf_flags);
4b9b3959 6179 fprintf_unfiltered (file,
acdb74a0
AC
6180 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6181 ef_mips_32bitmode);
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: ef_mips_arch = %d\n",
6184 ef_mips_arch);
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 6187 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 6190 mips_mask_address_p (tdep),
4014092b 6191 tdep->default_mask_address_p);
c2d11a7d 6192 }
4b9b3959
AC
6193 fprintf_unfiltered (file,
6194 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6195 MIPS_DEFAULT_FPU_TYPE,
6196 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6197 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6198 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6199 : "???"));
74ed0bb4
MD
6200 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
6201 MIPS_EABI (gdbarch));
4b9b3959
AC
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
6204 MIPS_FPU_TYPE (gdbarch),
6205 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
6206 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
6207 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 6208 : "???"));
c2d11a7d
JM
6209}
6210
6d82d43b 6211extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 6212
c906108c 6213void
acdb74a0 6214_initialize_mips_tdep (void)
c906108c
SS
6215{
6216 static struct cmd_list_element *mipsfpulist = NULL;
6217 struct cmd_list_element *c;
6218
6d82d43b 6219 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
6220 if (MIPS_ABI_LAST + 1
6221 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 6222 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 6223
4b9b3959 6224 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 6225
8d5f9dcb
DJ
6226 mips_pdr_data = register_objfile_data ();
6227
4eb0ad19
DJ
6228 /* Create feature sets with the appropriate properties. The values
6229 are not important. */
6230 mips_tdesc_gp32 = allocate_target_description ();
6231 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
6232
6233 mips_tdesc_gp64 = allocate_target_description ();
6234 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
6235
a5ea2558
AC
6236 /* Add root prefix command for all "set mips"/"show mips" commands */
6237 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 6238 _("Various MIPS specific commands."),
a5ea2558
AC
6239 &setmipscmdlist, "set mips ", 0, &setlist);
6240
6241 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 6242 _("Various MIPS specific commands."),
a5ea2558
AC
6243 &showmipscmdlist, "show mips ", 0, &showlist);
6244
2e4ebe70 6245 /* Allow the user to override the ABI. */
7ab04401
AC
6246 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
6247 &mips_abi_string, _("\
6248Set the MIPS ABI used by this program."), _("\
6249Show the MIPS ABI used by this program."), _("\
6250This option can be set to one of:\n\
6251 auto - the default ABI associated with the current binary\n\
6252 o32\n\
6253 o64\n\
6254 n32\n\
6255 n64\n\
6256 eabi32\n\
6257 eabi64"),
6258 mips_abi_update,
6259 show_mips_abi,
6260 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 6261
c906108c
SS
6262 /* Let the user turn off floating point and set the fence post for
6263 heuristic_proc_start. */
6264
6265 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 6266 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
6267 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6268 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 6269 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
6270 &mipsfpulist);
6271 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 6272 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
6273 &mipsfpulist);
6274 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6275 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6276 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6277 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 6278 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
6279 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6280 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6281 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6282 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 6283 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
6284 &mipsfpulist);
6285 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 6286 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
6287 &showlist);
6288
c906108c
SS
6289 /* We really would like to have both "0" and "unlimited" work, but
6290 command.c doesn't deal with that. So make it a var_zinteger
6291 because the user can always use "999999" or some such for unlimited. */
6bcadd06 6292 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
6293 &heuristic_fence_post, _("\
6294Set the distance searched for the start of a function."), _("\
6295Show the distance searched for the start of a function."), _("\
c906108c
SS
6296If you are debugging a stripped executable, GDB needs to search through the\n\
6297program for the start of a function. This command sets the distance of the\n\
7915a72c 6298search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 6299 reinit_frame_cache_sfunc,
7915a72c 6300 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 6301 &setlist, &showlist);
c906108c
SS
6302
6303 /* Allow the user to control whether the upper bits of 64-bit
6304 addresses should be zeroed. */
7915a72c
AC
6305 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6306 &mask_address_var, _("\
6307Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6308Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 6309Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 6310allow GDB to determine the correct value."),
08546159
AC
6311 NULL, show_mask_address,
6312 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6313
6314 /* Allow the user to control the size of 32 bit registers within the
6315 raw remote packet. */
b3f42336 6316 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
6317 &mips64_transfers_32bit_regs_p, _("\
6318Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6319 _("\
6320Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6321 _("\
719ec221
AC
6322Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6323that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 632464 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 6325 set_mips64_transfers_32bit_regs,
7915a72c 6326 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 6327 &setlist, &showlist);
9ace0497
AC
6328
6329 /* Debug this files internals. */
6bcadd06 6330 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
6331 &mips_debug, _("\
6332Set mips debugging."), _("\
6333Show mips debugging."), _("\
6334When non-zero, mips specific debugging is enabled."),
2c5b56ce 6335 NULL,
7915a72c 6336 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 6337 &setdebuglist, &showdebuglist);
c906108c 6338}
This page took 1.419469 seconds and 4 git commands to generate.