Fri Jun 27 21:05:45 1997 Michael Snyder (msnyder@cleaver.cygnus.com)
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
7d9884b9 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
97e091b2 2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
0434c1a0 3 Free Software Foundation, Inc.
bd5635a1
RP
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6
7This file is part of GDB.
8
361bf6ee 9This program is free software; you can redistribute it and/or modify
bd5635a1 10it under the terms of the GNU General Public License as published by
361bf6ee
JG
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
bd5635a1 13
361bf6ee 14This program is distributed in the hope that it will be useful,
bd5635a1
RP
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
361bf6ee 20along with this program; if not, write to the Free Software
09af5868 21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
bd5635a1 22
bd5635a1 23#include "defs.h"
09af5868 24#include "gdb_string.h"
bd5635a1
RP
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
ef08856f 30#include "language.h"
bd5635a1 31#include "gdbcore.h"
62a469e1
SG
32#include "symfile.h"
33#include "objfiles.h"
3fed1c4a 34#include "gdbtypes.h"
28444bf3 35#include "target.h"
bd5635a1 36
ee5fb959
JK
37#include "opcode/mips.h"
38
28444bf3 39#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
70126bf9
KH
40
41/* FIXME: Put this declaration in frame.h. */
42extern struct obstack frame_cache_obstack;
28444bf3 43
002a422b 44#if 0
ee5fb959 45static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
002a422b 46#endif
ee5fb959 47
28444bf3
DP
48static int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
49
f2bf454e
FF
50static void mips_print_register PARAMS ((int, int));
51
52static mips_extra_func_info_t
53heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
54
55static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
56
28444bf3 57static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
f2bf454e 58
e4dbd248
PS
59static void mips_set_fpu_command PARAMS ((char *, int,
60 struct cmd_list_element *));
61
62static void mips_show_fpu_command PARAMS ((char *, int,
63 struct cmd_list_element *));
64
9f9f94aa
SS
65void mips_set_processor_type_command PARAMS ((char *, int));
66
1d9489c1
JK
67int mips_set_processor_type PARAMS ((char *));
68
69static void mips_show_processor_type_command PARAMS ((char *, int));
70
9f9f94aa
SS
71static void reinit_frame_cache_sfunc PARAMS ((char *, int,
72 struct cmd_list_element *));
73
f2bf454e
FF
74static mips_extra_func_info_t
75 find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame));
76
77static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
78 mips_extra_func_info_t proc_desc));
79
9f9f94aa
SS
80/* This value is the model of MIPS in use. It is derived from the value
81 of the PrID register. */
82
83char *mips_processor_type;
84
85char *tmp_mips_processor_type;
86
c2a0f1cb
ILT
87/* Some MIPS boards don't support floating point, so we permit the
88 user to turn it off. */
9f9f94aa 89
e4dbd248
PS
90enum mips_fpu_type mips_fpu;
91
92static char *mips_fpu_string;
c2a0f1cb 93
9f9f94aa
SS
94/* A set of original names, to be used when restoring back to generic
95 registers from a specific set. */
96
97char *mips_generic_reg_names[] = REGISTER_NAMES;
98
99/* Names of IDT R3041 registers. */
100
101char *mips_r3041_reg_names[] = {
102 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
103 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
104 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
105 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
106 "sr", "lo", "hi", "bad", "cause","pc",
107 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
108 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
109 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
110 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
111 "fsr", "fir", "fp", "",
112 "", "", "bus", "ccfg", "", "", "", "",
113 "", "", "port", "cmp", "", "", "epc", "prid",
114};
115
116/* Names of IDT R3051 registers. */
117
118char *mips_r3051_reg_names[] = {
119 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
120 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
121 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
122 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
123 "sr", "lo", "hi", "bad", "cause","pc",
124 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
125 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
126 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
127 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
128 "fsr", "fir", "fp", "",
129 "inx", "rand", "elo", "", "ctxt", "", "", "",
130 "", "", "ehi", "", "", "", "epc", "prid",
131};
132
133/* Names of IDT R3081 registers. */
134
135char *mips_r3081_reg_names[] = {
136 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
137 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
138 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
139 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
140 "sr", "lo", "hi", "bad", "cause","pc",
141 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
142 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
143 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
144 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
145 "fsr", "fir", "fp", "",
146 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
147 "", "", "ehi", "", "", "", "epc", "prid",
148};
149
e4dbd248
PS
150/* Names of LSI 33k registers. */
151
152char *mips_lsi33k_reg_names[] = {
153 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
154 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
155 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
156 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
157 "epc", "hi", "lo", "sr", "cause","badvaddr",
158 "dcic", "bpc", "bda", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
162 "", "", "", "",
163 "", "", "", "", "", "", "", "",
164 "", "", "", "", "", "", "", "",
165};
166
9f9f94aa
SS
167struct {
168 char *name;
169 char **regnames;
170} mips_processor_type_table[] = {
171 { "generic", mips_generic_reg_names },
172 { "r3041", mips_r3041_reg_names },
173 { "r3051", mips_r3051_reg_names },
174 { "r3071", mips_r3081_reg_names },
175 { "r3081", mips_r3081_reg_names },
e4dbd248 176 { "lsi33k", mips_lsi33k_reg_names },
9f9f94aa
SS
177 { NULL, NULL }
178};
179
f9f8c14b
MA
180/* Table to translate MIPS16 register field to actual register number. */
181static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
182
3127785a
RP
183/* Heuristic_proc_start may hunt through the text section for a long
184 time across a 2400 baud serial line. Allows the user to limit this
185 search. */
9f9f94aa 186
3127785a
RP
187static unsigned int heuristic_fence_post = 0;
188
0f552c5f 189#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
28444bf3 190#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
0f552c5f
JG
191#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
192#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
193#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
194#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
195#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
196#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
197#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
198#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
bd5635a1 199#define _PROC_MAGIC_ 0x0F0F0F0F
0f552c5f
JG
200#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
201#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
bd5635a1
RP
202
203struct linked_proc_info
204{
205 struct mips_extra_func_info info;
206 struct linked_proc_info *next;
dac4929a 207} *linked_proc_desc_table = NULL;
bd5635a1 208
f2bf454e
FF
209
210/* This returns the PC of the first inst after the prologue. If we can't
211 find the prologue, then return 0. */
212
213static CORE_ADDR
214after_prologue (pc, proc_desc)
215 CORE_ADDR pc;
216 mips_extra_func_info_t proc_desc;
217{
218 struct symtab_and_line sal;
219 CORE_ADDR func_addr, func_end;
220
221 if (!proc_desc)
222 proc_desc = find_proc_desc (pc, NULL);
223
224 if (proc_desc)
225 {
226 /* If function is frameless, then we need to do it the hard way. I
227 strongly suspect that frameless always means prologueless... */
228 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
229 && PROC_FRAME_OFFSET (proc_desc) == 0)
230 return 0;
231 }
232
233 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
234 return 0; /* Unknown */
235
236 sal = find_pc_line (func_addr, 0);
237
238 if (sal.end < func_end)
239 return sal.end;
240
241 /* The line after the prologue is after the end of the function. In this
242 case, tell the caller to find the prologue the hard way. */
243
244 return 0;
245}
246
f9f8c14b
MA
247/* Decode a MIPS32 instruction that saves a register in the stack, and
248 set the appropriate bit in the general register mask or float register mask
249 to indicate which register is saved. This is a helper function
250 for mips_find_saved_regs. */
251
252static void
253mips32_decode_reg_save (inst, gen_mask, float_mask)
254 t_inst inst;
255 unsigned long *gen_mask;
256 unsigned long *float_mask;
257{
258 int reg;
259
260 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
261 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
262 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
263 {
264 /* It might be possible to use the instruction to
265 find the offset, rather than the code below which
266 is based on things being in a certain order in the
267 frame, but figuring out what the instruction's offset
268 is relative to might be a little tricky. */
269 reg = (inst & 0x001f0000) >> 16;
270 *gen_mask |= (1 << reg);
271 }
272 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
273 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
274 || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */
275
276 {
277 reg = ((inst & 0x001f0000) >> 16);
278 *float_mask |= (1 << reg);
279 }
280}
281
282/* Decode a MIPS16 instruction that saves a register in the stack, and
283 set the appropriate bit in the general register or float register mask
284 to indicate which register is saved. This is a helper function
285 for mips_find_saved_regs. */
286
287static void
288mips16_decode_reg_save (inst, gen_mask)
289 t_inst inst;
290 unsigned long *gen_mask;
291{
b348b9fd 292 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
f9f8c14b 293 {
b348b9fd
MA
294 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
295 *gen_mask |= (1 << reg);
296 }
297 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
298 {
299 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
f9f8c14b
MA
300 *gen_mask |= (1 << reg);
301 }
302 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
303 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
304 *gen_mask |= (1 << 31);
305}
306
c81a76b3
MA
307
308/* Fetch and return instruction from the specified location. If the PC
309 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
310
311static t_inst
312mips_fetch_instruction (addr)
313 CORE_ADDR addr;
314{
315 char buf[MIPS_INSTLEN];
316 int instlen;
317 int status;
318
319 if (IS_MIPS16_ADDR (addr))
320 {
321 instlen = MIPS16_INSTLEN;
322 addr = UNMAKE_MIPS16_ADDR (addr);
323 }
324 else
325 instlen = MIPS_INSTLEN;
326 status = read_memory_nobpt (addr, buf, instlen);
327 if (status)
328 memory_error (status, addr);
329 return extract_unsigned_integer (buf, instlen);
330}
331
332
70126bf9
KH
333/* Guaranteed to set fci->saved_regs to some values (it never leaves it
334 NULL). */
335
336void
337mips_find_saved_regs (fci)
9f9f94aa 338 struct frame_info *fci;
70126bf9
KH
339{
340 int ireg;
341 CORE_ADDR reg_position;
342 /* r0 bit means kernel trap */
343 int kernel_trap;
344 /* What registers have been saved? Bitmasks. */
345 unsigned long gen_mask, float_mask;
346 mips_extra_func_info_t proc_desc;
c81a76b3 347 t_inst inst;
70126bf9
KH
348
349 fci->saved_regs = (struct frame_saved_regs *)
350 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
351 memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
352
e4dbd248
PS
353 /* If it is the frame for sigtramp, the saved registers are located
354 in a sigcontext structure somewhere on the stack.
355 If the stack layout for sigtramp changes we might have to change these
356 constants and the companion fixup_sigtramp in mdebugread.c */
357#ifndef SIGFRAME_BASE
358/* To satisfy alignment restrictions, sigcontext is located 4 bytes
359 above the sigtramp frame. */
28444bf3
DP
360#define SIGFRAME_BASE MIPS_REGSIZE
361/* FIXME! Are these correct?? */
362#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
363#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
364#define SIGFRAME_FPREGSAVE_OFF \
365 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
e4dbd248
PS
366#endif
367#ifndef SIGFRAME_REG_SIZE
28444bf3
DP
368/* FIXME! Is this correct?? */
369#define SIGFRAME_REG_SIZE MIPS_REGSIZE
e4dbd248
PS
370#endif
371 if (fci->signal_handler_caller)
372 {
28444bf3 373 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
e4dbd248
PS
374 {
375 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
376 + ireg * SIGFRAME_REG_SIZE;
377 fci->saved_regs->regs[ireg] = reg_position;
378 }
28444bf3 379 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
e4dbd248
PS
380 {
381 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
382 + ireg * SIGFRAME_REG_SIZE;
383 fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position;
384 }
385 fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
386 return;
387 }
388
70126bf9
KH
389 proc_desc = fci->proc_desc;
390 if (proc_desc == NULL)
391 /* I'm not sure how/whether this can happen. Normally when we can't
392 find a proc_desc, we "synthesize" one using heuristic_proc_desc
393 and set the saved_regs right away. */
394 return;
395
396 kernel_trap = PROC_REG_MASK(proc_desc) & 1;
397 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
398 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
399
f9f8c14b
MA
400 if (/* In any frame other than the innermost or a frame interrupted by
401 a signal, we assume that all registers have been saved.
402 This assumes that all register saves in a function happen before
403 the first function call. */
404 (fci->next == NULL || fci->next->signal_handler_caller)
70126bf9
KH
405
406 /* In a dummy frame we know exactly where things are saved. */
407 && !PROC_DESC_IS_DUMMY (proc_desc)
408
f2bf454e
FF
409 /* Don't bother unless we are inside a function prologue. Outside the
410 prologue, we know where everything is. */
411
412 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
413
70126bf9
KH
414 /* Not sure exactly what kernel_trap means, but if it means
415 the kernel saves the registers without a prologue doing it,
416 we better not examine the prologue to see whether registers
417 have been saved yet. */
418 && !kernel_trap)
419 {
420 /* We need to figure out whether the registers that the proc_desc
421 claims are saved have been saved yet. */
422
423 CORE_ADDR addr;
70126bf9
KH
424
425 /* Bitmasks; set if we have found a save for the register. */
426 unsigned long gen_save_found = 0;
427 unsigned long float_save_found = 0;
c81a76b3 428 int instlen;
70126bf9 429
c1fc0935
MA
430 /* If the address is odd, assume this is MIPS16 code. */
431 addr = PROC_LOW_ADDR (proc_desc);
c81a76b3 432 instlen = IS_MIPS16_ADDR (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
f9f8c14b 433
20fa0902
MA
434 /* Scan through this function's instructions preceding the current
435 PC, and look for those that save registers. */
f9f8c14b
MA
436 while (addr < fci->pc)
437 {
c81a76b3
MA
438 inst = mips_fetch_instruction (addr);
439 if (IS_MIPS16_ADDR (addr))
f9f8c14b
MA
440 mips16_decode_reg_save (inst, &gen_save_found);
441 else
442 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
443 addr += instlen;
70126bf9
KH
444 }
445 gen_mask = gen_save_found;
446 float_mask = float_save_found;
447 }
448
449 /* Fill in the offsets for the registers which gen_mask says
450 were saved. */
451 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
28444bf3 452 for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1)
70126bf9
KH
453 if (gen_mask & 0x80000000)
454 {
455 fci->saved_regs->regs[ireg] = reg_position;
456 reg_position -= MIPS_REGSIZE;
457 }
c81a76b3
MA
458
459 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
460 of that normally used by gcc. Therefore, we have to fetch the first
461 instruction of the function, and if it's an entry instruction that
462 saves $s0 or $s1, correct their saved addresses. */
463 if (IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)))
464 {
465 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
466 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
467 {
468 int reg;
469 int sreg_count = (inst >> 6) & 3;
470
471 /* Check if the ra register was pushed on the stack. */
472 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
473 if (inst & 0x20)
474 reg_position -= MIPS_REGSIZE;
475
476 /* Check if the s0 and s1 registers were pushed on the stack. */
477 for (reg = 16; reg < sreg_count+16; reg++)
478 {
479 fci->saved_regs->regs[reg] = reg_position;
480 reg_position -= MIPS_REGSIZE;
481 }
482 }
483 }
484
70126bf9
KH
485 /* Fill in the offsets for the registers which float_mask says
486 were saved. */
487 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
488
489 /* The freg_offset points to where the first *double* register
490 is saved. So skip to the high-order word. */
28444bf3 491 if (! GDB_TARGET_IS_MIPS64)
c81a76b3 492 reg_position += MIPS_REGSIZE;
28444bf3 493
20fa0902
MA
494 /* Fill in the offsets for the float registers which float_mask says
495 were saved. */
28444bf3 496 for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1)
70126bf9
KH
497 if (float_mask & 0x80000000)
498 {
499 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
500 reg_position -= MIPS_REGSIZE;
501 }
502
503 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
504}
bd5635a1 505
28444bf3 506static CORE_ADDR
bd5635a1 507read_next_frame_reg(fi, regno)
9f9f94aa 508 struct frame_info *fi;
bd5635a1
RP
509 int regno;
510{
bd5635a1 511 for (; fi; fi = fi->next)
70126bf9 512 {
e4dbd248
PS
513 /* We have to get the saved sp from the sigcontext
514 if it is a signal handler frame. */
515 if (regno == SP_REGNUM && !fi->signal_handler_caller)
516 return fi->frame;
70126bf9
KH
517 else
518 {
519 if (fi->saved_regs == NULL)
520 mips_find_saved_regs (fi);
521 if (fi->saved_regs->regs[regno])
522 return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE);
523 }
524 }
525 return read_register (regno);
bd5635a1
RP
526}
527
96431497
MA
528/* mips_addr_bits_remove - remove useless address bits */
529
530CORE_ADDR
531mips_addr_bits_remove (addr)
532 CORE_ADDR addr;
533{
97e091b2
MA
534#if GDB_TARGET_IS_MIPS64
535 if ((addr >> 32 == (CORE_ADDR)0xffffffff)
f781fe93
MA
536 && (strcmp (target_shortname,"pmon")==0
537 || strcmp (target_shortname,"ddb")==0
538 || strcmp (target_shortname,"sim")==0))
96431497
MA
539 {
540 /* This hack is a work-around for existing boards using PMON,
541 the simulator, and any other 64-bit targets that doesn't have
542 true 64-bit addressing. On these targets, the upper 32 bits
543 of addresses are ignored by the hardware. Thus, the PC or SP
544 are likely to have been sign extended to all 1s by instruction
545 sequences that load 32-bit addresses. For example, a typical
546 piece of code that loads an address is this:
547 lui $r2, <upper 16 bits>
548 ori $r2, <lower 16 bits>
549 But the lui sign-extends the value such that the upper 32 bits
550 may be all 1s. The workaround is simply to mask off these bits.
551 In the future, gcc may be changed to support true 64-bit
552 addressing, and this masking will have to be disabled. */
553 addr &= (CORE_ADDR)0xffffffff;
554 }
f9f8c14b
MA
555#else
556 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
557 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
558 So we still have to mask off useless bits from addresses. */
559 addr &= (CORE_ADDR)0xffffffff;
97e091b2 560#endif
96431497
MA
561
562 return addr;
563}
564
f781fe93
MA
565void
566mips_init_frame_pc_first (fromleaf, prev)
567 int fromleaf;
568 struct frame_info *prev;
569{
570 CORE_ADDR pc, tmp;
571
572 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
573 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
574 tmp = mips_skip_stub (pc);
575 prev->pc = tmp ? tmp : pc;
576}
577
578
28444bf3 579CORE_ADDR
bd5635a1 580mips_frame_saved_pc(frame)
9f9f94aa 581 struct frame_info *frame;
bd5635a1 582{
28444bf3 583 CORE_ADDR saved_pc;
0f552c5f 584 mips_extra_func_info_t proc_desc = frame->proc_desc;
0434c1a0
PS
585 /* We have to get the saved pc from the sigcontext
586 if it is a signal handler frame. */
587 int pcreg = frame->signal_handler_caller ? PC_REGNUM
588 : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
0f552c5f 589
bd5635a1 590 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
28444bf3
DP
591 saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE);
592 else
593 saved_pc = read_next_frame_reg(frame, pcreg);
0f552c5f 594
96431497 595 return ADDR_BITS_REMOVE (saved_pc);
bd5635a1
RP
596}
597
598static struct mips_extra_func_info temp_proc_desc;
599static struct frame_saved_regs temp_saved_regs;
600
a8172eea
RP
601/* This fencepost looks highly suspicious to me. Removing it also
602 seems suspicious as it could affect remote debugging across serial
3127785a 603 lines. */
a8172eea 604
0f552c5f
JG
605static CORE_ADDR
606heuristic_proc_start(pc)
bd5635a1
RP
607 CORE_ADDR pc;
608{
32dab603
MA
609 CORE_ADDR start_pc;
610 CORE_ADDR fence;
20fa0902 611 int instlen;
b348b9fd 612 int seen_adjsp = 0;
0f552c5f 613
32dab603
MA
614 pc = ADDR_BITS_REMOVE (pc);
615 start_pc = pc;
616 fence = start_pc - heuristic_fence_post;
0f552c5f 617 if (start_pc == 0) return 0;
3127785a
RP
618
619 if (heuristic_fence_post == UINT_MAX
620 || fence < VM_MIN_ADDRESS)
621 fence = VM_MIN_ADDRESS;
0f552c5f 622
c1fc0935 623 instlen = IS_MIPS16_ADDR (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
20fa0902 624
bd5635a1 625 /* search back for previous return */
20fa0902 626 for (start_pc -= instlen; ; start_pc -= instlen)
a8172eea
RP
627 if (start_pc < fence)
628 {
3127785a
RP
629 /* It's not clear to me why we reach this point when
630 stop_soon_quietly, but with this test, at least we
631 don't print out warnings for every child forked (eg, on
632 decstation). 22apr93 rich@cygnus.com. */
633 if (!stop_soon_quietly)
634 {
23d35572
JK
635 static int blurb_printed = 0;
636
3127785a
RP
637 if (fence == VM_MIN_ADDRESS)
638 warning("Hit beginning of text section without finding");
639 else
640 warning("Hit heuristic-fence-post without finding");
641
f781fe93 642 warning("enclosing function for address 0x%s", paddr_nz (pc));
23d35572
JK
643 if (!blurb_printed)
644 {
645 printf_filtered ("\
646This warning occurs if you are debugging a function without any symbols\n\
647(for example, in a stripped executable). In that case, you may wish to\n\
648increase the size of the search with the `set heuristic-fence-post' command.\n\
649\n\
650Otherwise, you told GDB there was a function where there isn't one, or\n\
651(more likely) you have encountered a bug in GDB.\n");
652 blurb_printed = 1;
653 }
3127785a
RP
654 }
655
a8172eea
RP
656 return 0;
657 }
c1fc0935 658 else if (IS_MIPS16_ADDR (start_pc))
20fa0902 659 {
c1fc0935
MA
660 unsigned short inst;
661
b348b9fd
MA
662 /* On MIPS16, any one of the following is likely to be the
663 start of a function:
664 entry
665 addiu sp,-n
666 daddiu sp,-n
667 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
c81a76b3 668 inst = mips_fetch_instruction (start_pc);
b348b9fd
MA
669 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
670 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
671 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
672 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
673 break;
674 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
675 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
676 seen_adjsp = 1;
677 else
678 seen_adjsp = 0;
20fa0902 679 }
bd5635a1 680 else if (ABOUT_TO_RETURN(start_pc))
20fa0902
MA
681 {
682 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
bd5635a1 683 break;
20fa0902 684 }
bd5635a1 685
bd5635a1
RP
686#if 0
687 /* skip nops (usually 1) 0 - is this */
28444bf3
DP
688 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
689 start_pc += MIPS_INSTLEN;
bd5635a1
RP
690#endif
691 return start_pc;
692}
693
c81a76b3 694/* Fetch the immediate value from a MIPS16 instruction.
b348b9fd
MA
695 If the previous instruction was an EXTEND, use it to extend
696 the upper bits of the immediate value. This is a helper function
697 for mips16_heuristic_proc_desc. */
698
699static int
700mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
701 unsigned short prev_inst; /* previous instruction */
702 unsigned short inst; /* current current instruction */
703 int nbits; /* number of bits in imm field */
704 int scale; /* scale factor to be applied to imm */
705 int is_signed; /* is the imm field signed? */
706{
707 int offset;
708
709 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
710 {
7d9e8fac 711 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
b348b9fd
MA
712 if (offset & 0x8000) /* check for negative extend */
713 offset = 0 - (0x10000 - (offset & 0xffff));
714 return offset | (inst & 0x1f);
715 }
716 else
717 {
718 int max_imm = 1 << nbits;
719 int mask = max_imm - 1;
720 int sign_bit = max_imm >> 1;
721
722 offset = inst & mask;
723 if (is_signed && (offset & sign_bit))
724 offset = 0 - (max_imm - offset);
725 return offset * scale;
726 }
727}
728
729
730/* Fill in values in temp_proc_desc based on the MIPS16 instruction
731 stream from start_pc to limit_pc. */
732
733static void
734mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
bd5635a1 735 CORE_ADDR start_pc, limit_pc;
9f9f94aa 736 struct frame_info *next_frame;
b348b9fd 737 CORE_ADDR sp;
bd5635a1 738{
b348b9fd
MA
739 CORE_ADDR cur_pc;
740 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
741 unsigned short prev_inst = 0; /* saved copy of previous instruction */
742 unsigned inst = 0; /* current instruction */
bd5635a1 743
b348b9fd 744 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
34df79fc 745
b348b9fd
MA
746 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
747 {
c81a76b3 748 int reg, offset;
b348b9fd
MA
749
750 /* Save the previous instruction. If it's an EXTEND, we'll extract
751 the immediate offset extension from it in mips16_get_imm. */
752 prev_inst = inst;
753
c81a76b3
MA
754 /* Fetch and decode the instruction. */
755 inst = (unsigned short) mips_fetch_instruction (cur_pc);
b348b9fd
MA
756 if ((inst & 0xff00) == 0x6300 /* addiu sp */
757 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
758 {
759 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
760 if (offset < 0) /* negative stack adjustment? */
761 PROC_FRAME_OFFSET(&temp_proc_desc) -= offset;
762 else
763 /* Exit loop if a positive stack adjustment is found, which
764 usually means that the stack cleanup code in the function
765 epilogue is reached. */
766 break;
767 }
768 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
769 {
770 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
771 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
772 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
773 temp_saved_regs.regs[reg] = sp + offset;
774 }
775 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
776 {
777 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
778 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
779 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
780 temp_saved_regs.regs[reg] = sp + offset;
781 }
782 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
783 {
784 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
785 PROC_REG_MASK(&temp_proc_desc) |= (1 << 31);
786 temp_saved_regs.regs[31] = sp + offset;
97e091b2 787 }
b348b9fd
MA
788 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
789 {
790 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
791 PROC_REG_MASK(&temp_proc_desc) |= (1 << 31);
792 temp_saved_regs.regs[31] = sp + offset;
bd5635a1 793 }
b348b9fd
MA
794 else if (inst == 0x673d) /* move $s1, $sp */
795 {
796 frame_addr = read_next_frame_reg(next_frame, 30);
797 PROC_FRAME_REG (&temp_proc_desc) = 17;
97e091b2 798 }
32dab603
MA
799 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
800 {
801 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
802 frame_addr = sp + offset;
803 PROC_FRAME_REG (&temp_proc_desc) = 17;
804 }
b348b9fd
MA
805 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
806 {
807 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
808 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
809 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
810 temp_saved_regs.regs[reg] = frame_addr + offset;
811 }
812 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
813 {
814 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
815 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
816 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
817 temp_saved_regs.regs[reg] = frame_addr + offset;
818 }
819 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
820 {
821 int areg_count = (inst >> 8) & 7;
822 int sreg_count = (inst >> 6) & 3;
823
824 /* The entry instruction always subtracts 32 from the SP. */
825 PROC_FRAME_OFFSET(&temp_proc_desc) += 32;
826
827 /* Check if a0-a3 were saved in the caller's argument save area. */
c81a76b3 828 for (reg = 4, offset = 32; reg < areg_count+4; reg++)
b348b9fd
MA
829 {
830 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
831 temp_saved_regs.regs[reg] = sp + offset;
c81a76b3 832 offset -= MIPS_REGSIZE;
b348b9fd
MA
833 }
834
835 /* Check if the ra register was pushed on the stack. */
836 offset = 28;
837 if (inst & 0x20)
838 {
839 PROC_REG_MASK(&temp_proc_desc) |= 1 << 31;
840 temp_saved_regs.regs[31] = sp + offset;
c81a76b3 841 offset -= MIPS_REGSIZE;
b348b9fd
MA
842 }
843
844 /* Check if the s0 and s1 registers were pushed on the stack. */
c81a76b3 845 for (reg = 16; reg < sreg_count+16; reg++)
b348b9fd
MA
846 {
847 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
848 temp_saved_regs.regs[reg] = sp + offset;
c81a76b3 849 offset -= MIPS_REGSIZE;
b348b9fd
MA
850 }
851 }
7d9e8fac
MA
852 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
853 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
b348b9fd
MA
854 }
855}
856
857static void
858mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
859 CORE_ADDR start_pc, limit_pc;
860 struct frame_info *next_frame;
861 CORE_ADDR sp;
862{
863 CORE_ADDR cur_pc;
864 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
865restart:
866 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
867 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
868 {
b348b9fd 869 unsigned long inst, high_word, low_word;
c81a76b3 870 int reg;
b348b9fd
MA
871
872 /* Fetch the instruction. */
c81a76b3 873 inst = (unsigned long) mips_fetch_instruction (cur_pc);
b348b9fd
MA
874
875 /* Save some code by pre-extracting some useful fields. */
876 high_word = (inst >> 16) & 0xffff;
877 low_word = inst & 0xffff;
878 reg = high_word & 0x1f;
879
880 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
881 || high_word == 0x23bd /* addi $sp,$sp,-i */
882 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
883 {
884 if (low_word & 0x8000) /* negative stack adjustment? */
885 PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word;
886 else
887 /* Exit loop if a positive stack adjustment is found, which
888 usually means that the stack cleanup code in the function
889 epilogue is reached. */
890 break;
891 }
892 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
893 {
894 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
895 temp_saved_regs.regs[reg] = sp + low_word;
896 }
897 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
898 {
899 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
900 but the register size used is only 32 bits. Make the address
901 for the saved register point to the lower 32 bits. */
902 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
903 temp_saved_regs.regs[reg] = sp + low_word + 8 - MIPS_REGSIZE;
904 }
905 else if (high_word == 0x27be) /* addiu $30,$sp,size */
906 {
907 /* Old gcc frame, r30 is virtual frame pointer. */
32dab603 908 if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc))
b348b9fd
MA
909 frame_addr = sp + low_word;
910 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
911 {
912 unsigned alloca_adjust;
913 PROC_FRAME_REG (&temp_proc_desc) = 30;
914 frame_addr = read_next_frame_reg(next_frame, 30);
915 alloca_adjust = (unsigned)(frame_addr - (sp + low_word));
916 if (alloca_adjust > 0)
917 {
918 /* FP > SP + frame_size. This may be because
919 * of an alloca or somethings similar.
920 * Fix sp to "pre-alloca" value, and try again.
921 */
922 sp += alloca_adjust;
923 goto restart;
bd5635a1
RP
924 }
925 }
926 }
b348b9fd
MA
927 /* move $30,$sp. With different versions of gas this will be either
928 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
929 Accept any one of these. */
930 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
931 {
932 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
933 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
934 {
935 unsigned alloca_adjust;
936 PROC_FRAME_REG (&temp_proc_desc) = 30;
937 frame_addr = read_next_frame_reg(next_frame, 30);
938 alloca_adjust = (unsigned)(frame_addr - sp);
939 if (alloca_adjust > 0)
940 {
941 /* FP > SP + frame_size. This may be because
942 * of an alloca or somethings similar.
943 * Fix sp to "pre-alloca" value, and try again.
944 */
945 sp += alloca_adjust;
946 goto restart;
97e091b2
MA
947 }
948 }
949 }
b348b9fd
MA
950 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
951 {
952 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
953 temp_saved_regs.regs[reg] = frame_addr + low_word;
bd5635a1
RP
954 }
955 }
b348b9fd
MA
956}
957
958static mips_extra_func_info_t
959heuristic_proc_desc(start_pc, limit_pc, next_frame)
960 CORE_ADDR start_pc, limit_pc;
961 struct frame_info *next_frame;
962{
963 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
964
965 if (start_pc == 0) return NULL;
966 memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
967 memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
968 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
969 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
970 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
971
972 if (start_pc + 200 < limit_pc)
973 limit_pc = start_pc + 200;
c1fc0935 974 if (IS_MIPS16_ADDR (start_pc))
b348b9fd
MA
975 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
976 else
977 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
978 return &temp_proc_desc;
bd5635a1
RP
979}
980
0f552c5f 981static mips_extra_func_info_t
c1fc0935 982non_heuristic_proc_desc (pc, addrptr)
9f9f94aa 983 CORE_ADDR pc;
c1fc0935 984 CORE_ADDR *addrptr;
bd5635a1 985{
c1fc0935 986 CORE_ADDR startaddr;
bd5635a1 987 mips_extra_func_info_t proc_desc;
0f552c5f 988 struct block *b = block_for_pc(pc);
48be4c35 989 struct symbol *sym;
48be4c35
JK
990
991 find_pc_partial_function (pc, NULL, &startaddr, NULL);
c1fc0935
MA
992 if (addrptr)
993 *addrptr = startaddr;
97e091b2 994 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
48be4c35
JK
995 sym = NULL;
996 else
997 {
998 if (startaddr > BLOCK_START (b))
999 /* This is the "pathological" case referred to in a comment in
1000 print_frame_info. It might be better to move this check into
1001 symbol reading. */
1002 sym = NULL;
1003 else
c1fc0935 1004 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
48be4c35 1005 }
0f552c5f 1006
e4dbd248
PS
1007 /* If we never found a PDR for this function in symbol reading, then
1008 examine prologues to find the information. */
0f552c5f 1009 if (sym)
bd5635a1 1010 {
c1fc0935
MA
1011 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1012 if (PROC_FRAME_REG (proc_desc) == -1)
1013 return NULL;
1014 else
1015 return proc_desc;
1016 }
1017 else
1018 return NULL;
1019}
1020
1021
1022static mips_extra_func_info_t
1023find_proc_desc (pc, next_frame)
1024 CORE_ADDR pc;
1025 struct frame_info *next_frame;
1026{
1027 mips_extra_func_info_t proc_desc;
1028 CORE_ADDR startaddr;
1029
1030 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1031
1032 if (proc_desc)
1033 {
1034 /* IF this is the topmost frame AND
1035 * (this proc does not have debugging information OR
1036 * the PC is in the procedure prologue)
1037 * THEN create a "heuristic" proc_desc (by analyzing
1038 * the actual code) to replace the "official" proc_desc.
1039 */
1040 if (next_frame == NULL)
1041 {
1042 struct symtab_and_line val;
1043 struct symbol *proc_symbol =
1044 PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
1045
1046 if (proc_symbol)
1047 {
1048 val = find_pc_line (BLOCK_START
1049 (SYMBOL_BLOCK_VALUE(proc_symbol)),
1050 0);
1051 val.pc = val.end ? val.end : pc;
bd5635a1 1052 }
c1fc0935
MA
1053 if (!proc_symbol || pc < val.pc)
1054 {
1055 mips_extra_func_info_t found_heuristic =
1056 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1057 pc, next_frame);
1058 if (found_heuristic)
1059 proc_desc = found_heuristic;
bd5635a1
RP
1060 }
1061 }
1062 }
1063 else
1064 {
0f552c5f
JG
1065 /* Is linked_proc_desc_table really necessary? It only seems to be used
1066 by procedure call dummys. However, the procedures being called ought
1067 to have their own proc_descs, and even if they don't,
1068 heuristic_proc_desc knows how to create them! */
1069
bd5635a1 1070 register struct linked_proc_info *link;
9f9f94aa 1071
bd5635a1 1072 for (link = linked_proc_desc_table; link; link = link->next)
9f9f94aa
SS
1073 if (PROC_LOW_ADDR(&link->info) <= pc
1074 && PROC_HIGH_ADDR(&link->info) > pc)
1075 return &link->info;
23d35572 1076
48be4c35
JK
1077 if (startaddr == 0)
1078 startaddr = heuristic_proc_start (pc);
1079
bd5635a1 1080 proc_desc =
48be4c35 1081 heuristic_proc_desc (startaddr, pc, next_frame);
bd5635a1
RP
1082 }
1083 return proc_desc;
1084}
1085
96431497
MA
1086static CORE_ADDR
1087get_frame_pointer(frame, proc_desc)
1088 struct frame_info *frame;
1089 mips_extra_func_info_t proc_desc;
1090{
1091 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
1092 PROC_FRAME_REG(proc_desc)) + PROC_FRAME_OFFSET(proc_desc));
1093}
1094
bd5635a1
RP
1095mips_extra_func_info_t cached_proc_desc;
1096
9f9f94aa 1097CORE_ADDR
0f552c5f 1098mips_frame_chain(frame)
9f9f94aa 1099 struct frame_info *frame;
bd5635a1 1100{
f781fe93
MA
1101 mips_extra_func_info_t proc_desc;
1102 CORE_ADDR tmp;
1103 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
1104
1105 if (saved_pc == 0 || inside_entry_file (saved_pc))
1106 return 0;
1107
1108 /* Check if the PC is inside a call stub. If it is, fetch the
1109 PC of the caller of that stub. */
1110 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1111 saved_pc = tmp;
1112
1113 /* Look up the procedure descriptor for this PC. */
1114 proc_desc = find_proc_desc(saved_pc, frame);
1115 if (!proc_desc)
1116 return 0;
1117
1118 cached_proc_desc = proc_desc;
1119
1120 /* If no frame pointer and frame size is zero, we must be at end
1121 of stack (or otherwise hosed). If we don't check frame size,
1122 we loop forever if we see a zero size frame. */
1123 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1124 && PROC_FRAME_OFFSET (proc_desc) == 0
1125 /* The previous frame from a sigtramp frame might be frameless
1126 and have frame size zero. */
1127 && !frame->signal_handler_caller)
1128 return 0;
1129 else
1130 return get_frame_pointer (frame, proc_desc);
bd5635a1
RP
1131}
1132
1133void
1134init_extra_frame_info(fci)
1135 struct frame_info *fci;
1136{
96431497
MA
1137 int regnum;
1138
bd5635a1 1139 /* Use proc_desc calculated in frame_chain */
ee5fb959
JK
1140 mips_extra_func_info_t proc_desc =
1141 fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
0f552c5f 1142
70126bf9 1143 fci->saved_regs = NULL;
bd5635a1 1144 fci->proc_desc =
ee5fb959 1145 proc_desc == &temp_proc_desc ? 0 : proc_desc;
bd5635a1
RP
1146 if (proc_desc)
1147 {
c2a0f1cb 1148 /* Fixup frame-pointer - only needed for top frame */
5efd597b
PS
1149 /* This may not be quite right, if proc has a real frame register.
1150 Get the value of the frame relative sp, procedure might have been
1151 interrupted by a signal at it's very start. */
70126bf9
KH
1152 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1153 && !PROC_DESC_IS_DUMMY (proc_desc))
1154 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
c2a0f1cb 1155 else
96431497 1156 fci->frame = get_frame_pointer (fci->next, proc_desc);
bd5635a1 1157
48be4c35 1158 if (proc_desc == &temp_proc_desc)
ee5fb959 1159 {
09af5868
PS
1160 char *name;
1161
1162 /* Do not set the saved registers for a sigtramp frame,
1163 mips_find_saved_registers will do that for us.
1164 We can't use fci->signal_handler_caller, it is not yet set. */
1165 find_pc_partial_function (fci->pc, &name,
1166 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
1167 if (!IN_SIGTRAMP (fci->pc, name))
1168 {
1169 fci->saved_regs = (struct frame_saved_regs*)
1170 obstack_alloc (&frame_cache_obstack,
1171 sizeof (struct frame_saved_regs));
1172 *fci->saved_regs = temp_saved_regs;
1173 fci->saved_regs->regs[PC_REGNUM]
1174 = fci->saved_regs->regs[RA_REGNUM];
1175 }
ee5fb959 1176 }
bd5635a1
RP
1177
1178 /* hack: if argument regs are saved, guess these contain args */
96431497
MA
1179 fci->num_args = -1; /* assume we can't tell how many args for now */
1180 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
1181 {
1182 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
1183 {
1184 fci->num_args = regnum - A0_REGNUM + 1;
1185 break;
1186 }
1187 }
bd5635a1 1188 }
bd5635a1
RP
1189}
1190
a70dc898
RP
1191/* MIPS stack frames are almost impenetrable. When execution stops,
1192 we basically have to look at symbol information for the function
1193 that we stopped in, which tells us *which* register (if any) is
1194 the base of the frame pointer, and what offset from that register
1195 the frame itself is at.
1196
1197 This presents a problem when trying to examine a stack in memory
1198 (that isn't executing at the moment), using the "frame" command. We
1199 don't have a PC, nor do we have any registers except SP.
1200
1201 This routine takes two arguments, SP and PC, and tries to make the
1202 cached frames look as if these two arguments defined a frame on the
1203 cache. This allows the rest of info frame to extract the important
1204 arguments without difficulty. */
1205
9f9f94aa 1206struct frame_info *
c2a0f1cb
ILT
1207setup_arbitrary_frame (argc, argv)
1208 int argc;
9f9f94aa 1209 CORE_ADDR *argv;
a70dc898 1210{
c2a0f1cb
ILT
1211 if (argc != 2)
1212 error ("MIPS frame specifications require two arguments: sp and pc");
1213
1214 return create_new_frame (argv[0], argv[1]);
a70dc898
RP
1215}
1216
0f552c5f
JG
1217CORE_ADDR
1218mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
97e091b2
MA
1219 int nargs;
1220 value_ptr *args;
1221 CORE_ADDR sp;
1222 int struct_return;
1223 CORE_ADDR struct_addr;
bd5635a1 1224{
97e091b2
MA
1225 int argreg;
1226 int float_argreg;
1227 int argnum;
1228 int len = 0;
1229 int stack_offset;
1230
1231 /* Macros to round N up or down to the next A boundary; A must be
1232 a power of two. */
1233#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
1234#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
28444bf3
DP
1235
1236 /* First ensure that the stack and structure return address (if any)
97e091b2
MA
1237 are properly aligned. The stack has to be 64-bit aligned even
1238 on 32-bit machines, because doubles must be 64-bit aligned. */
1239 sp = ROUND_DOWN (sp, 8);
1240 struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE);
28444bf3 1241
97e091b2
MA
1242 /* Now make space on the stack for the args. We allocate more
1243 than necessary for EABI, because the first few arguments are
1244 passed in registers, but that's OK. */
1245 for (argnum = 0; argnum < nargs; argnum++)
1246 len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE);
61d2d19a 1247 sp -= ROUND_UP (len, 8);
97e091b2
MA
1248
1249 /* Initialize the integer and float register pointers. */
1250 argreg = A0_REGNUM;
1251 float_argreg = FPA0_REGNUM;
1252
1253 /* the struct_return pointer occupies the first parameter-passing reg */
5efd597b 1254 if (struct_return)
97e091b2
MA
1255 write_register (argreg++, struct_addr);
1256
1257 /* The offset onto the stack at which we will start copying parameters
1258 (after the registers are used up) begins at 16 in the old ABI.
1259 This leaves room for the "home" area for register parameters. */
1260 stack_offset = MIPS_EABI ? 0 : MIPS_REGSIZE * 4;
1261
1262 /* Now load as many as possible of the first arguments into
1263 registers, and push the rest onto the stack. Loop thru args
1264 from first to last. */
1265 for (argnum = 0; argnum < nargs; argnum++)
5efd597b 1266 {
97e091b2
MA
1267 char *val;
1268 char valbuf[REGISTER_RAW_SIZE(A0_REGNUM)];
1269 value_ptr arg = args[argnum];
1270 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1271 int len = TYPE_LENGTH (arg_type);
1272 enum type_code typecode = TYPE_CODE (arg_type);
1273
61d2d19a
PS
1274 /* The EABI passes structures that do not fit in a register by
1275 reference. In all other cases, pass the structure by value. */
1276 if (typecode == TYPE_CODE_STRUCT && MIPS_EABI && len > MIPS_REGSIZE)
97e091b2
MA
1277 {
1278 store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg));
08d8f995 1279 typecode = TYPE_CODE_PTR;
97e091b2
MA
1280 len = MIPS_REGSIZE;
1281 val = valbuf;
1282 }
1283 else
1284 val = (char *)VALUE_CONTENTS (arg);
1285
1286 /* 32-bit ABIs always start floating point arguments in an
1287 even-numbered floating point register. */
1288 if (!GDB_TARGET_IS_MIPS64 && typecode == TYPE_CODE_FLT
1289 && (float_argreg & 1))
1290 float_argreg++;
1291
1292 /* Floating point arguments passed in registers have to be
1293 treated specially. On 32-bit architectures, doubles
1294 are passed in register pairs; the even register gets
c81a76b3
MA
1295 the low word, and the odd register gets the high word.
1296 On non-EABI processors, the first two floating point arguments are
1297 also copied to general registers, because MIPS16 functions
1298 don't use float registers for arguments. This duplication of
1299 arguments in general registers can't hurt non-MIPS16 functions
1300 because those registers are normally skipped. */
97e091b2
MA
1301 if (typecode == TYPE_CODE_FLT
1302 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
1303 && mips_fpu != MIPS_FPU_NONE)
1304 {
1305 if (!GDB_TARGET_IS_MIPS64 && len == 8)
1306 {
1307 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
1308 unsigned long regval;
1309
c81a76b3 1310 /* Write the low word of the double to the even register(s). */
97e091b2 1311 regval = extract_unsigned_integer (val+low_offset, 4);
c81a76b3
MA
1312 write_register (float_argreg++, regval);
1313 if (!MIPS_EABI)
1314 write_register (argreg+1, regval);
1315
1316 /* Write the high word of the double to the odd register(s). */
97e091b2 1317 regval = extract_unsigned_integer (val+4-low_offset, 4);
c81a76b3
MA
1318 write_register (float_argreg++, regval);
1319 if (!MIPS_EABI)
1320 {
1321 write_register (argreg, regval);
1322 argreg += 2;
1323 }
97e091b2
MA
1324
1325 }
1326 else
1327 {
c81a76b3
MA
1328 /* This is a floating point value that fits entirely
1329 in a single register. */
97e091b2
MA
1330 CORE_ADDR regval = extract_address (val, len);
1331 write_register (float_argreg++, regval);
c81a76b3
MA
1332 if (!MIPS_EABI)
1333 {
1334 write_register (argreg, regval);
1335 argreg += GDB_TARGET_IS_MIPS64 ? 1 : 2;
1336 }
97e091b2 1337 }
97e091b2
MA
1338 }
1339 else
1340 {
1341 /* Copy the argument to general registers or the stack in
1342 register-sized pieces. Large arguments are split between
1343 registers and stack. */
1344 while (len > 0)
1345 {
1346 int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE;
61d2d19a 1347
97e091b2
MA
1348 if (argreg <= MIPS_LAST_ARG_REGNUM)
1349 {
61d2d19a
PS
1350 CORE_ADDR regval = extract_address (val, partial_len);
1351
1352 /* It's a simple argument being passed in a general
1353 register.
1354 If the argument length is smaller than the register size,
b348b9fd
MA
1355 we have to adjust the argument on big endian targets.
1356 But don't do this adjustment on EABI targets. */
61d2d19a 1357 if (TARGET_BYTE_ORDER == BIG_ENDIAN
b348b9fd
MA
1358 && partial_len < MIPS_REGSIZE
1359 && !MIPS_EABI)
61d2d19a 1360 regval <<= ((MIPS_REGSIZE - partial_len) * TARGET_CHAR_BIT);
97e091b2
MA
1361 write_register (argreg, regval);
1362 argreg++;
1363
1364 /* If this is the old ABI, prevent subsequent floating
1365 point arguments from being passed in floating point
1366 registers. */
1367 if (!MIPS_EABI)
1368 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
1369 }
1370 else
1371 {
61d2d19a 1372 /* Write this portion of the argument to the stack. */
08d8f995
MS
1373 int longword_offset;
1374
61d2d19a 1375 partial_len = len;
08d8f995
MS
1376 longword_offset = 0;
1377 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1378 if (MIPS_REGSIZE == 8 &&
1379 (typecode == TYPE_CODE_INT ||
1380 typecode == TYPE_CODE_PTR ||
1381 typecode == TYPE_CODE_FLT) && len <= 4)
1382 longword_offset = 4;
1383 else if ((typecode == TYPE_CODE_STRUCT ||
1384 typecode == TYPE_CODE_UNION) &&
1385 len < MIPS_REGSIZE)
1386 longword_offset = MIPS_REGSIZE - len;
1387
1388 write_memory (sp + stack_offset + longword_offset,
1389 val, partial_len);
61d2d19a 1390 stack_offset += ROUND_UP (partial_len, MIPS_REGSIZE);
97e091b2
MA
1391 }
1392
1393 len -= partial_len;
1394 val += partial_len;
1395 }
1396 }
5efd597b 1397 }
97e091b2
MA
1398
1399 /* Set the return address register to point to the entry
1400 point of the program, where a breakpoint lies in wait. */
1401 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS());
1402
1403 /* Return adjusted stack pointer. */
bd5635a1
RP
1404 return sp;
1405}
1406
c81a76b3 1407static void
28444bf3
DP
1408mips_push_register(CORE_ADDR *sp, int regno)
1409{
1410 char buffer[MAX_REGISTER_RAW_SIZE];
1411 int regsize = REGISTER_RAW_SIZE (regno);
1412
1413 *sp -= regsize;
1414 read_register_gen (regno, buffer);
1415 write_memory (*sp, buffer, regsize);
1416}
1417
1418/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
e03c0cc6 1419#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
bd5635a1
RP
1420
1421void
1422mips_push_dummy_frame()
1423{
1424 int ireg;
1425 struct linked_proc_info *link = (struct linked_proc_info*)
1426 xmalloc(sizeof(struct linked_proc_info));
1427 mips_extra_func_info_t proc_desc = &link->info;
96431497 1428 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
28444bf3 1429 CORE_ADDR old_sp = sp;
bd5635a1
RP
1430 link->next = linked_proc_desc_table;
1431 linked_proc_desc_table = link;
28444bf3
DP
1432
1433/* FIXME! are these correct ? */
bd5635a1 1434#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
28444bf3 1435#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
bd5635a1 1436#define FLOAT_REG_SAVE_MASK MASK(0,19)
e4dbd248
PS
1437#define FLOAT_SINGLE_REG_SAVE_MASK \
1438 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
bd5635a1
RP
1439 /*
1440 * The registers we must save are all those not preserved across
1441 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
28444bf3
DP
1442 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
1443 * and FP Control/Status registers.
1444 *
bd5635a1
RP
1445 *
1446 * Dummy frame layout:
1447 * (high memory)
1448 * Saved PC
1449 * Saved MMHI, MMLO, FPC_CSR
1450 * Saved R31
1451 * Saved R28
1452 * ...
1453 * Saved R1
1454 * Saved D18 (i.e. F19, F18)
1455 * ...
1456 * Saved D0 (i.e. F1, F0)
f9f8c14b 1457 * Argument build area and stack arguments written via mips_push_arguments
bd5635a1
RP
1458 * (low memory)
1459 */
28444bf3
DP
1460
1461 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
28444bf3
DP
1462 PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
1463 PROC_FRAME_OFFSET(proc_desc) = 0;
1464 mips_push_register (&sp, PC_REGNUM);
1465 mips_push_register (&sp, HI_REGNUM);
1466 mips_push_register (&sp, LO_REGNUM);
1467 mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
1468
1469 /* Save general CPU registers */
bd5635a1 1470 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
28444bf3 1471 PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */
bd5635a1
RP
1472 for (ireg = 32; --ireg >= 0; )
1473 if (PROC_REG_MASK(proc_desc) & (1 << ireg))
28444bf3 1474 mips_push_register (&sp, ireg);
3fed1c4a 1475
28444bf3
DP
1476 /* Save floating point registers starting with high order word */
1477 PROC_FREG_MASK(proc_desc) =
1478 mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
1479 : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
1480 PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */
bd5635a1
RP
1481 for (ireg = 32; --ireg >= 0; )
1482 if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
28444bf3 1483 mips_push_register (&sp, ireg + FP0_REGNUM);
3fed1c4a 1484
f9f8c14b
MA
1485 /* Update the frame pointer for the call dummy and the stack pointer.
1486 Set the procedure's starting and ending addresses to point to the
1487 call dummy address at the entry point. */
1488 write_register (PUSH_FP_REGNUM, old_sp);
bd5635a1 1489 write_register (SP_REGNUM, sp);
97e091b2
MA
1490 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS();
1491 PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4;
bd5635a1
RP
1492 SET_PROC_DESC_IS_DUMMY(proc_desc);
1493 PROC_PC_REG(proc_desc) = RA_REGNUM;
1494}
1495
1496void
1497mips_pop_frame()
dac4929a
SG
1498{
1499 register int regnum;
9f9f94aa
SS
1500 struct frame_info *frame = get_current_frame ();
1501 CORE_ADDR new_sp = FRAME_FP (frame);
dac4929a 1502
a70dc898 1503 mips_extra_func_info_t proc_desc = frame->proc_desc;
dac4929a
SG
1504
1505 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
70126bf9
KH
1506 if (frame->saved_regs == NULL)
1507 mips_find_saved_regs (frame);
61d2d19a 1508 for (regnum = 0; regnum < NUM_REGS; regnum++)
dac4929a 1509 {
61d2d19a
PS
1510 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1511 && frame->saved_regs->regs[regnum])
1512 write_register (regnum,
1513 read_memory_integer (frame->saved_regs->regs[regnum],
1514 MIPS_REGSIZE));
dac4929a
SG
1515 }
1516 write_register (SP_REGNUM, new_sp);
1517 flush_cached_frames ();
dac4929a 1518
199b2450 1519 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
bd5635a1 1520 {
dac4929a
SG
1521 struct linked_proc_info *pi_ptr, *prev_ptr;
1522
1523 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1524 pi_ptr != NULL;
1525 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1526 {
1527 if (&pi_ptr->info == proc_desc)
1528 break;
1529 }
1530
1531 if (pi_ptr == NULL)
1532 error ("Can't locate dummy extra frame info\n");
1533
1534 if (prev_ptr != NULL)
1535 prev_ptr->next = pi_ptr->next;
1536 else
1537 linked_proc_desc_table = pi_ptr->next;
1538
1539 free (pi_ptr);
1540
28444bf3
DP
1541 write_register (HI_REGNUM,
1542 read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE));
1543 write_register (LO_REGNUM,
1544 read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE));
e4dbd248 1545 if (mips_fpu != MIPS_FPU_NONE)
28444bf3
DP
1546 write_register (FCRCS_REGNUM,
1547 read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE));
bd5635a1 1548 }
bd5635a1
RP
1549}
1550
0f552c5f 1551static void
a70dc898 1552mips_print_register (regnum, all)
bd5635a1
RP
1553 int regnum, all;
1554{
e4dbd248 1555 char raw_buffer[MAX_REGISTER_RAW_SIZE];
bd5635a1 1556
48be4c35
JK
1557 /* Get the data in raw format. */
1558 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1559 {
1560 printf_filtered ("%s: [Invalid]", reg_names[regnum]);
1561 return;
1562 }
1563
1564 /* If an even floating pointer register, also print as double. */
28444bf3 1565 if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM+MIPS_NUMREGS
e4dbd248
PS
1566 && !((regnum-FP0_REGNUM) & 1))
1567 {
f781fe93 1568 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
48be4c35 1569
f781fe93
MA
1570 read_relative_register_raw_bytes (regnum, dbuffer);
1571 read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
1572 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
c81a76b3 1573
e4dbd248
PS
1574 printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
1575 val_print (builtin_type_double, dbuffer, 0,
1576 gdb_stdout, 0, 1, 0, Val_pretty_default);
1577 printf_filtered ("); ");
1578 }
199b2450 1579 fputs_filtered (reg_names[regnum], gdb_stdout);
48be4c35
JK
1580
1581 /* The problem with printing numeric register names (r26, etc.) is that
1582 the user can't use them on input. Probably the best solution is to
1583 fix it so that either the numeric or the funky (a2, etc.) names
1584 are accepted on input. */
28444bf3 1585 if (regnum < MIPS_NUMREGS)
48be4c35
JK
1586 printf_filtered ("(r%d): ", regnum);
1587 else
1588 printf_filtered (": ");
bd5635a1 1589
48be4c35 1590 /* If virtual format is floating, print it that way. */
ac57e5ad 1591 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
48be4c35 1592 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
199b2450 1593 gdb_stdout, 0, 1, 0, Val_pretty_default);
48be4c35
JK
1594 /* Else print as integer in hex. */
1595 else
ac57e5ad
SS
1596 print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
1597 'x', 0, gdb_stdout);
bd5635a1
RP
1598}
1599
d8b3b00e 1600/* Replacement for generic do_registers_info. */
9f9f94aa 1601
0f552c5f 1602void
361bf6ee 1603mips_do_registers_info (regnum, fpregs)
bd5635a1 1604 int regnum;
361bf6ee 1605 int fpregs;
bd5635a1 1606{
9f9f94aa
SS
1607 if (regnum != -1)
1608 {
1609 if (*(reg_names[regnum]) == '\0')
1610 error ("Not a valid register for the current processor type");
1611
bd5635a1
RP
1612 mips_print_register (regnum, 0);
1613 printf_filtered ("\n");
9f9f94aa
SS
1614 }
1615 else
1616 {
09af5868 1617 int did_newline = 0;
9f9f94aa
SS
1618
1619 for (regnum = 0; regnum < NUM_REGS; )
1620 {
1621 if (((!fpregs) && regnum >= FP0_REGNUM && regnum <= FCRIR_REGNUM)
1622 || *(reg_names[regnum]) == '\0')
1623 {
1624 regnum++;
1625 continue;
1626 }
bd5635a1
RP
1627 mips_print_register (regnum, 1);
1628 regnum++;
9f9f94aa
SS
1629 printf_filtered ("; ");
1630 did_newline = 0;
1631 if ((regnum & 3) == 0)
1632 {
1633 printf_filtered ("\n");
1634 did_newline = 1;
1635 }
1636 }
1637 if (!did_newline)
1638 printf_filtered ("\n");
1639 }
bd5635a1 1640}
9f9f94aa 1641
bd5635a1
RP
1642/* Return number of args passed to a frame. described by FIP.
1643 Can return -1, meaning no way to tell. */
1644
0f552c5f 1645int
9f9f94aa
SS
1646mips_frame_num_args (frame)
1647 struct frame_info *frame;
bd5635a1 1648{
9f9f94aa
SS
1649#if 0 /* FIXME Use or lose this! */
1650 struct chain_info_t *p;
bd5635a1 1651
9f9f94aa
SS
1652 p = mips_find_cached_frame (FRAME_FP (frame));
1653 if (p->valid)
1654 return p->the_info.numargs;
bd5635a1 1655#endif
9f9f94aa 1656 return -1;
bd5635a1 1657}
96431497 1658
427fec5d 1659/* Is this a branch with a delay slot? */
9f9f94aa 1660
b5aff268
JK
1661static int is_delayed PARAMS ((unsigned long));
1662
ee5fb959
JK
1663static int
1664is_delayed (insn)
1665 unsigned long insn;
1666{
1667 int i;
1668 for (i = 0; i < NUMOPCODES; ++i)
1669 if (mips_opcodes[i].pinfo != INSN_MACRO
1670 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
1671 break;
427fec5d
JK
1672 return (i < NUMOPCODES
1673 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
1674 | INSN_COND_BRANCH_DELAY
1675 | INSN_COND_BRANCH_LIKELY)));
ee5fb959 1676}
b5aff268
JK
1677
1678int
1679mips_step_skips_delay (pc)
1680 CORE_ADDR pc;
1681{
96431497 1682 char buf[MIPS_INSTLEN];
b5aff268 1683
f9f8c14b 1684 /* There is no branch delay slot on MIPS16. */
c1fc0935 1685 if (IS_MIPS16_ADDR (pc))
f9f8c14b
MA
1686 return 0;
1687
96431497 1688 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
b5aff268
JK
1689 /* If error reading memory, guess that it is not a delayed branch. */
1690 return 0;
96431497 1691 return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN));
b5aff268 1692}
ee5fb959 1693
bd5635a1 1694
20fa0902
MA
1695/* Skip the PC past function prologue instructions (32-bit version).
1696 This is a helper function for mips_skip_prologue. */
1697
1698static CORE_ADDR
1699mips32_skip_prologue (pc, lenient)
1700 CORE_ADDR pc; /* starting PC to search from */
ee5fb959 1701 int lenient;
bd5635a1 1702{
28444bf3 1703 t_inst inst;
20fa0902 1704 CORE_ADDR end_pc;
0b0d6c3f 1705 int seen_sp_adjust = 0;
ac57e5ad 1706 int load_immediate_bytes = 0;
bd5635a1 1707
e157305c
PS
1708 /* Skip the typical prologue instructions. These are the stack adjustment
1709 instruction and the instructions that save registers on the stack
1710 or in the gcc frame. */
20fa0902 1711 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
ee5fb959 1712 {
b348b9fd 1713 unsigned long high_word;
ee5fb959 1714
c81a76b3 1715 inst = mips_fetch_instruction (pc);
b348b9fd 1716 high_word = (inst >> 16) & 0xffff;
ee5fb959 1717
002a422b 1718#if 0
ee5fb959
JK
1719 if (lenient && is_delayed (inst))
1720 continue;
002a422b 1721#endif
ee5fb959 1722
b348b9fd
MA
1723 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
1724 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
0b0d6c3f 1725 seen_sp_adjust = 1;
ac57e5ad
SS
1726 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
1727 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
1728 seen_sp_adjust = 1;
97e091b2
MA
1729 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
1730 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
1731 && (inst & 0x001F0000)) /* reg != $zero */
1732 continue;
1733
e157305c
PS
1734 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
1735 continue;
1736 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
1737 /* sx reg,n($s8) */
1738 continue; /* reg != $zero */
1d9489c1
JK
1739
1740 /* move $s8,$sp. With different versions of gas this will be either
20fa0902
MA
1741 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
1742 Accept any one of these. */
1743 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
0b0d6c3f 1744 continue;
1d9489c1 1745
1b71de8e
PS
1746 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
1747 continue;
b348b9fd 1748 else if (high_word == 0x3c1c) /* lui $gp,n */
e03c0cc6 1749 continue;
b348b9fd 1750 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
e03c0cc6
ILT
1751 continue;
1752 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1753 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
1754 continue;
ac57e5ad
SS
1755 /* The following instructions load $at or $t0 with an immediate
1756 value in preparation for a stack adjustment via
1757 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
1758 a local variable, so we accept them only before a stack adjustment
1759 instruction was seen. */
1760 else if (!seen_sp_adjust)
1761 {
b348b9fd
MA
1762 if (high_word == 0x3c01 || /* lui $at,n */
1763 high_word == 0x3c08) /* lui $t0,n */
ac57e5ad 1764 {
28444bf3 1765 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
ac57e5ad
SS
1766 continue;
1767 }
b348b9fd
MA
1768 else if (high_word == 0x3421 || /* ori $at,$at,n */
1769 high_word == 0x3508 || /* ori $t0,$t0,n */
1770 high_word == 0x3401 || /* ori $at,$zero,n */
1771 high_word == 0x3408) /* ori $t0,$zero,n */
ac57e5ad 1772 {
28444bf3 1773 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
ac57e5ad
SS
1774 continue;
1775 }
1776 else
1777 break;
1778 }
0b0d6c3f 1779 else
ac57e5ad 1780 break;
d747e0af 1781 }
e157305c 1782
ac57e5ad
SS
1783 /* In a frameless function, we might have incorrectly
1784 skipped some load immediate instructions. Undo the skipping
1785 if the load immediate was not followed by a stack adjustment. */
1786 if (load_immediate_bytes && !seen_sp_adjust)
20fa0902
MA
1787 pc -= load_immediate_bytes;
1788 return pc;
1789}
1790
1791/* Skip the PC past function prologue instructions (16-bit version).
1792 This is a helper function for mips_skip_prologue. */
1793
1794static CORE_ADDR
1795mips16_skip_prologue (pc, lenient)
1796 CORE_ADDR pc; /* starting PC to search from */
1797 int lenient;
1798{
1799 CORE_ADDR end_pc;
c81a76b3
MA
1800 int extend_bytes = 0;
1801 int prev_extend_bytes;
20fa0902
MA
1802
1803 /* Table of instructions likely to be found in a function prologue. */
1804 static struct
1805 {
1806 unsigned short inst;
1807 unsigned short mask;
1808 } table[] =
1809 {
1810 { 0x6300, 0xff00 }, /* addiu $sp,offset */
1811 { 0xfb00, 0xff00 }, /* daddiu $sp,offset */
1812 { 0xd000, 0xf800 }, /* sw reg,n($sp) */
1813 { 0xf900, 0xff00 }, /* sd reg,n($sp) */
1814 { 0x6200, 0xff00 }, /* sw $ra,n($sp) */
1815 { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */
1816 { 0x673d, 0xffff }, /* move $s1,sp */
1817 { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */
1818 { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */
1819 { 0xe809, 0xf81f }, /* entry pseudo-op */
32dab603 1820 { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */
20fa0902
MA
1821 { 0, 0 } /* end of table marker */
1822 };
1823
1824 /* Skip the typical prologue instructions. These are the stack adjustment
1825 instruction and the instructions that save registers on the stack
1826 or in the gcc frame. */
1827 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
1828 {
20fa0902 1829 unsigned short inst;
20fa0902
MA
1830 int i;
1831
c81a76b3 1832 inst = mips_fetch_instruction (pc);
20fa0902
MA
1833
1834 /* Normally we ignore an extend instruction. However, if it is
1835 not followed by a valid prologue instruction, we must adjust
1836 the pc back over the extend so that it won't be considered
1837 part of the prologue. */
1838 if ((inst & 0xf800) == 0xf000) /* extend */
1839 {
1840 extend_bytes = MIPS16_INSTLEN;
1841 continue;
1842 }
1843 prev_extend_bytes = extend_bytes;
1844 extend_bytes = 0;
1845
1846 /* Check for other valid prologue instructions besides extend. */
1847 for (i = 0; table[i].mask != 0; i++)
1848 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
1849 break;
1850 if (table[i].mask != 0) /* it was in table? */
32dab603 1851 continue; /* ignore it */
20fa0902
MA
1852 else /* non-prologue */
1853 {
1854 /* Return the current pc, adjusted backwards by 2 if
1855 the previous instruction was an extend. */
1856 return pc - prev_extend_bytes;
1857 }
1858 }
32dab603 1859 return pc;
20fa0902
MA
1860}
1861
1862/* To skip prologues, I use this predicate. Returns either PC itself
1863 if the code at PC does not look like a function prologue; otherwise
1864 returns an address that (if we're lucky) follows the prologue. If
1865 LENIENT, then we must skip everything which is involved in setting
1866 up the frame (it's OK to skip more, just so long as we don't skip
1867 anything which might clobber the registers which are being saved.
1868 We must skip more in the case where part of the prologue is in the
1869 delay slot of a non-prologue instruction). */
1870
1871CORE_ADDR
1872mips_skip_prologue (pc, lenient)
1873 CORE_ADDR pc;
1874 int lenient;
1875{
1876 /* See if we can determine the end of the prologue via the symbol table.
1877 If so, then return either PC, or the PC after the prologue, whichever
1878 is greater. */
1879
1880 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
1881
1882 if (post_prologue_pc != 0)
1883 return max (pc, post_prologue_pc);
1884
1885 /* Can't determine prologue from the symbol table, need to examine
1886 instructions. */
1887
c1fc0935 1888 if (IS_MIPS16_ADDR (pc))
20fa0902
MA
1889 return mips16_skip_prologue (pc, lenient);
1890 else
1891 return mips32_skip_prologue (pc, lenient);
bd5635a1 1892}
c2a0f1cb 1893
002a422b 1894#if 0
20fa0902 1895/* The lenient prologue stuff should be superseded by the code in
002a422b
JK
1896 init_extra_frame_info which looks to see whether the stores mentioned
1897 in the proc_desc have actually taken place. */
1898
ee5fb959
JK
1899/* Is address PC in the prologue (loosely defined) for function at
1900 STARTADDR? */
1901
1902static int
1903mips_in_lenient_prologue (startaddr, pc)
1904 CORE_ADDR startaddr;
1905 CORE_ADDR pc;
1906{
1907 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
1908 return pc >= startaddr && pc < end_prologue;
1909}
002a422b 1910#endif
ee5fb959 1911
ac8cf67d
PS
1912/* Given a return value in `regbuf' with a type `valtype',
1913 extract and copy its value into `valbuf'. */
1914void
1915mips_extract_return_value (valtype, regbuf, valbuf)
1916 struct type *valtype;
1917 char regbuf[REGISTER_BYTES];
1918 char *valbuf;
1919{
1920 int regnum;
92a6d600 1921 int offset = 0;
c81a76b3 1922 int len = TYPE_LENGTH (valtype);
ac8cf67d 1923
e4dbd248
PS
1924 regnum = 2;
1925 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
0af60e03
MS
1926 && (mips_fpu == MIPS_FPU_DOUBLE
1927 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
f781fe93 1928 regnum = FP0_REGNUM;
ac8cf67d 1929
0af60e03
MS
1930 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1931 { /* "un-left-justify" the value from the register */
1932 if (len < REGISTER_RAW_SIZE (regnum) &&
1933 TYPE_CODE (valtype) != TYPE_CODE_FLT)
1934 offset = REGISTER_RAW_SIZE (regnum) - len;
1935 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
1936 len < REGISTER_RAW_SIZE (regnum) * 2 &&
1937 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
1938 TYPE_CODE (valtype) == TYPE_CODE_UNION))
1939 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
1940 }
c81a76b3 1941 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
f781fe93 1942 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
ac8cf67d
PS
1943}
1944
1945/* Given a return value in `regbuf' with a type `valtype',
1946 write it's value into the appropriate register. */
1947void
1948mips_store_return_value (valtype, valbuf)
1949 struct type *valtype;
1950 char *valbuf;
1951{
1952 int regnum;
0af60e03
MS
1953 int offset = 0;
1954 int len = TYPE_LENGTH (valtype);
ac8cf67d
PS
1955 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1956
e4dbd248
PS
1957 regnum = 2;
1958 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
0af60e03
MS
1959 && (mips_fpu == MIPS_FPU_DOUBLE
1960 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
e4dbd248
PS
1961 regnum = FP0_REGNUM;
1962
0af60e03
MS
1963 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1964 { /* "left-justify" the value in the register */
1965 if (len < REGISTER_RAW_SIZE (regnum))
1966 offset = REGISTER_RAW_SIZE (regnum) - len;
1967 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
1968 len < REGISTER_RAW_SIZE (regnum) * 2 &&
1969 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
1970 TYPE_CODE (valtype) == TYPE_CODE_UNION))
1971 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
1972 }
1973 memcpy(raw_buffer + offset, valbuf, len);
ac8cf67d 1974 REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
0af60e03
MS
1975 write_register_bytes(REGISTER_BYTE (regnum), raw_buffer,
1976 len > REGISTER_RAW_SIZE (regnum) ?
1977 len : REGISTER_RAW_SIZE (regnum));
ac8cf67d
PS
1978}
1979
e03c0cc6
ILT
1980/* Exported procedure: Is PC in the signal trampoline code */
1981
1982int
1983in_sigtramp (pc, ignore)
1984 CORE_ADDR pc;
1985 char *ignore; /* function name */
1986{
1987 if (sigtramp_address == 0)
1988 fixup_sigtramp ();
1989 return (pc >= sigtramp_address && pc < sigtramp_end);
1990}
1991
e4dbd248
PS
1992/* Command to set FPU type. mips_fpu_string will have been set to the
1993 user's argument. Set mips_fpu based on mips_fpu_string, and then
1994 canonicalize mips_fpu_string. */
1995
1996/*ARGSUSED*/
1997static void
1998mips_set_fpu_command (args, from_tty, c)
1999 char *args;
2000 int from_tty;
2001 struct cmd_list_element *c;
2002{
2003 char *err = NULL;
2004
2005 if (mips_fpu_string == NULL || *mips_fpu_string == '\0')
2006 mips_fpu = MIPS_FPU_DOUBLE;
2007 else if (strcasecmp (mips_fpu_string, "double") == 0
2008 || strcasecmp (mips_fpu_string, "on") == 0
2009 || strcasecmp (mips_fpu_string, "1") == 0
2010 || strcasecmp (mips_fpu_string, "yes") == 0)
2011 mips_fpu = MIPS_FPU_DOUBLE;
2012 else if (strcasecmp (mips_fpu_string, "none") == 0
2013 || strcasecmp (mips_fpu_string, "off") == 0
2014 || strcasecmp (mips_fpu_string, "0") == 0
2015 || strcasecmp (mips_fpu_string, "no") == 0)
2016 mips_fpu = MIPS_FPU_NONE;
2017 else if (strcasecmp (mips_fpu_string, "single") == 0)
2018 mips_fpu = MIPS_FPU_SINGLE;
2019 else
2020 err = strsave (mips_fpu_string);
2021
2022 if (mips_fpu_string != NULL)
2023 free (mips_fpu_string);
2024
2025 switch (mips_fpu)
2026 {
2027 case MIPS_FPU_DOUBLE:
2028 mips_fpu_string = strsave ("double");
2029 break;
2030 case MIPS_FPU_SINGLE:
2031 mips_fpu_string = strsave ("single");
2032 break;
2033 case MIPS_FPU_NONE:
2034 mips_fpu_string = strsave ("none");
2035 break;
2036 }
2037
2038 if (err != NULL)
2039 {
2040 struct cleanup *cleanups = make_cleanup (free, err);
2041 error ("Unknown FPU type `%s'. Use `double', `none', or `single'.",
2042 err);
2043 do_cleanups (cleanups);
2044 }
2045}
2046
2047static void
2048mips_show_fpu_command (args, from_tty, c)
2049 char *args;
2050 int from_tty;
2051 struct cmd_list_element *c;
2052{
2053}
2054
9f9f94aa
SS
2055/* Command to set the processor type. */
2056
2057void
2058mips_set_processor_type_command (args, from_tty)
2059 char *args;
2060 int from_tty;
2061{
2062 int i;
2063
2064 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
2065 {
2066 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
2067 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2068 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
2069
2070 /* Restore the value. */
2071 tmp_mips_processor_type = strsave (mips_processor_type);
2072
2073 return;
2074 }
2075
2076 if (!mips_set_processor_type (tmp_mips_processor_type))
2077 {
2078 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
2079 /* Restore its value. */
2080 tmp_mips_processor_type = strsave (mips_processor_type);
2081 }
2082}
2083
2084static void
2085mips_show_processor_type_command (args, from_tty)
2086 char *args;
2087 int from_tty;
2088{
2089}
2090
2091/* Modify the actual processor type. */
2092
2093int
2094mips_set_processor_type (str)
2095 char *str;
2096{
2097 int i, j;
2098
2099 if (str == NULL)
1d9489c1 2100 return 0;
9f9f94aa
SS
2101
2102 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2103 {
2104 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
2105 {
2106 mips_processor_type = str;
2107
2108 for (j = 0; j < NUM_REGS; ++j)
2109 reg_names[j] = mips_processor_type_table[i].regnames[j];
2110
2111 return 1;
2112
2113 /* FIXME tweak fpu flag too */
2114 }
2115 }
2116
2117 return 0;
2118}
2119
2120/* Attempt to identify the particular processor model by reading the
2121 processor id. */
2122
2123char *
2124mips_read_processor_type ()
2125{
28444bf3 2126 CORE_ADDR prid;
9f9f94aa
SS
2127
2128 prid = read_register (PRID_REGNUM);
2129
80e0e92a 2130 if ((prid & ~0xf) == 0x700)
9f9f94aa
SS
2131 return savestring ("r3041", strlen("r3041"));
2132
2133 return NULL;
2134}
427fec5d
JK
2135
2136/* Just like reinit_frame_cache, but with the right arguments to be
2137 callable as an sfunc. */
9f9f94aa 2138
427fec5d
JK
2139static void
2140reinit_frame_cache_sfunc (args, from_tty, c)
2141 char *args;
2142 int from_tty;
2143 struct cmd_list_element *c;
2144{
2145 reinit_frame_cache ();
2146}
c2a0f1cb 2147
28444bf3 2148static int
18b46e7c
SS
2149gdb_print_insn_mips (memaddr, info)
2150 bfd_vma memaddr;
2151 disassemble_info *info;
2152{
f9f8c14b
MA
2153 mips_extra_func_info_t proc_desc;
2154
2155 /* Search for the function containing this address. Set the low bit
2156 of the address when searching, in case we were given an even address
2157 that is the start of a 16-bit function. If we didn't do this,
2158 the search would fail because the symbol table says the function
2159 starts at an odd address, i.e. 1 byte past the given address. */
c1fc0935
MA
2160 memaddr = ADDR_BITS_REMOVE (memaddr);
2161 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
f9f8c14b
MA
2162
2163 /* Make an attempt to determine if this is a 16-bit function. If
2164 the procedure descriptor exists and the address therein is odd,
2165 it's definitely a 16-bit function. Otherwise, we have to just
2166 guess that if the address passed in is odd, it's 16-bits. */
2167 if (proc_desc)
c1fc0935 2168 info->mach = IS_MIPS16_ADDR (PROC_LOW_ADDR (proc_desc)) ? 16 : 0;
f9f8c14b 2169 else
c1fc0935 2170 info->mach = IS_MIPS16_ADDR (memaddr) ? 16 : 0;
f9f8c14b 2171
c1fc0935 2172 /* Round down the instruction address to the appropriate boundary. */
f9f8c14b
MA
2173 memaddr &= (info->mach == 16 ? ~1 : ~3);
2174
2175 /* Call the appropriate disassembler based on the target endian-ness. */
18b46e7c
SS
2176 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2177 return print_insn_big_mips (memaddr, info);
2178 else
2179 return print_insn_little_mips (memaddr, info);
2180}
2181
f9f8c14b
MA
2182/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
2183 counter value to determine whether a 16- or 32-bit breakpoint should be
2184 used. It returns a pointer to a string of bytes that encode a breakpoint
2185 instruction, stores the length of the string to *lenptr, and adjusts pc
2186 (if necessary) to point to the actual memory location where the
2187 breakpoint should be inserted. */
2188
2189unsigned char *mips_breakpoint_from_pc (pcptr, lenptr)
2190 CORE_ADDR *pcptr;
2191 int *lenptr;
2192{
2193 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2194 {
c1fc0935 2195 if (IS_MIPS16_ADDR (*pcptr))
f9f8c14b
MA
2196 {
2197 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
c1fc0935 2198 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
f9f8c14b
MA
2199 *lenptr = sizeof(mips16_big_breakpoint);
2200 return mips16_big_breakpoint;
2201 }
2202 else
2203 {
2204 static char big_breakpoint[] = BIG_BREAKPOINT;
f781fe93
MA
2205 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
2206 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
2207
f9f8c14b 2208 *lenptr = sizeof(big_breakpoint);
f781fe93
MA
2209
2210 if (strcmp (target_shortname, "mips") == 0)
2211 return idt_big_breakpoint;
2212 else if (strcmp (target_shortname, "ddb") == 0
2213 || strcmp (target_shortname, "pmon") == 0
2214 || strcmp (target_shortname, "lsi") == 0)
2215 return pmon_big_breakpoint;
2216 else
2217 return big_breakpoint;
f9f8c14b
MA
2218 }
2219 }
2220 else
2221 {
c1fc0935 2222 if (IS_MIPS16_ADDR (*pcptr))
f9f8c14b
MA
2223 {
2224 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
c1fc0935 2225 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
f9f8c14b
MA
2226 *lenptr = sizeof(mips16_little_breakpoint);
2227 return mips16_little_breakpoint;
2228 }
2229 else
2230 {
2231 static char little_breakpoint[] = LITTLE_BREAKPOINT;
f781fe93
MA
2232 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
2233 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
2234
f9f8c14b 2235 *lenptr = sizeof(little_breakpoint);
f781fe93
MA
2236
2237 if (strcmp (target_shortname, "mips") == 0)
2238 return idt_little_breakpoint;
2239 else if (strcmp (target_shortname, "ddb") == 0
2240 || strcmp (target_shortname, "pmon") == 0
2241 || strcmp (target_shortname, "lsi") == 0)
2242 return pmon_little_breakpoint;
2243 else
2244 return little_breakpoint;
f9f8c14b
MA
2245 }
2246 }
2247}
2248
2249/* Test whether the PC points to the return instruction at the
2250 end of a function. This implements the ABOUT_TO_RETURN macro. */
2251
2252int
2253mips_about_to_return (pc)
2254 CORE_ADDR pc;
2255{
c1fc0935 2256 if (IS_MIPS16_ADDR (pc))
f9f8c14b
MA
2257 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2258 generates a "jr $ra"; other times it generates code to load
2259 the return address from the stack to an accessible register (such
2260 as $a3), then a "jr" using that register. This second case
2261 is almost impossible to distinguish from an indirect jump
2262 used for switch statements, so we don't even try. */
c81a76b3 2263 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
f9f8c14b 2264 else
c81a76b3 2265 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
f9f8c14b
MA
2266}
2267
2268
f781fe93
MA
2269/* If PC is in a mips16 call or return stub, return the address of the target
2270 PC, which is either the callee or the caller. There are several
2271 cases which must be handled:
2272
2273 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2274 target PC is in $31 ($ra).
2275 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2276 and the target PC is in $2.
2277 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2278 before the jal instruction, this is effectively a call stub
2279 and the the target PC is in $2. Otherwise this is effectively
2280 a return stub and the target PC is in $18.
2281
2282 See the source code for the stubs in gcc/config/mips/mips16.S for
2283 gory details.
2284
2285 This function implements the SKIP_TRAMPOLINE_CODE macro.
2286*/
2287
2288CORE_ADDR
2289mips_skip_stub (pc)
2290 CORE_ADDR pc;
2291{
2292 char *name;
2293 CORE_ADDR start_addr;
2294
2295 /* Find the starting address and name of the function containing the PC. */
2296 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2297 return 0;
2298
2299 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2300 target PC is in $31 ($ra). */
2301 if (strcmp (name, "__mips16_ret_sf") == 0
2302 || strcmp (name, "__mips16_ret_df") == 0)
2303 return read_register (RA_REGNUM);
2304
2305 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2306 {
2307 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2308 and the target PC is in $2. */
2309 if (name[19] >= '0' && name[19] <= '9')
2310 return read_register (2);
2311
2312 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2313 before the jal instruction, this is effectively a call stub
2314 and the the target PC is in $2. Otherwise this is effectively
2315 a return stub and the target PC is in $18. */
2316 else if (name[19] == 's' || name[19] == 'd')
2317 {
2318 if (pc == start_addr)
2319 {
2320 /* Check if the target of the stub is a compiler-generated
2321 stub. Such a stub for a function bar might have a name
2322 like __fn_stub_bar, and might look like this:
2323 mfc1 $4,$f13
2324 mfc1 $5,$f12
2325 mfc1 $6,$f15
2326 mfc1 $7,$f14
2327 la $1,bar (becomes a lui/addiu pair)
2328 jr $1
2329 So scan down to the lui/addi and extract the target
2330 address from those two instructions. */
2331
2332 CORE_ADDR target_pc = read_register (2);
2333 t_inst inst;
2334 int i;
2335
2336 /* See if the name of the target function is __fn_stub_*. */
2337 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
2338 return target_pc;
2339 if (strncmp (name, "__fn_stub_", 10) != 0
2340 && strcmp (name, "etext") != 0
2341 && strcmp (name, "_etext") != 0)
2342 return target_pc;
2343
2344 /* Scan through this _fn_stub_ code for the lui/addiu pair.
2345 The limit on the search is arbitrarily set to 20
2346 instructions. FIXME. */
2347 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
2348 {
2349 inst = mips_fetch_instruction (target_pc);
2350 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
2351 pc = (inst << 16) & 0xffff0000; /* high word */
2352 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
2353 return pc | (inst & 0xffff); /* low word */
2354 }
2355
2356 /* Couldn't find the lui/addui pair, so return stub address. */
2357 return target_pc;
2358 }
2359 else
2360 /* This is the 'return' part of a call stub. The return
2361 address is in $r18. */
2362 return read_register (18);
2363 }
2364 }
2365 return 0; /* not a stub */
2366}
2367
2368
2369/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
2370 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
2371
2372int
2373mips_in_call_stub (pc, name)
2374 CORE_ADDR pc;
2375 char *name;
2376{
2377 CORE_ADDR start_addr;
2378
2379 /* Find the starting address of the function containing the PC. If the
2380 caller didn't give us a name, look it up at the same time. */
2381 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2382 return 0;
2383
2384 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2385 {
2386 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
2387 if (name[19] >= '0' && name[19] <= '9')
2388 return 1;
2389 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2390 before the jal instruction, this is effectively a call stub. */
2391 else if (name[19] == 's' || name[19] == 'd')
2392 return pc == start_addr;
2393 }
2394
2395 return 0; /* not a stub */
2396}
2397
2398
2399/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
2400 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
2401
2402int
2403mips_in_return_stub (pc, name)
2404 CORE_ADDR pc;
2405 char *name;
2406{
2407 CORE_ADDR start_addr;
2408
2409 /* Find the starting address of the function containing the PC. */
2410 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
2411 return 0;
2412
2413 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
2414 if (strcmp (name, "__mips16_ret_sf") == 0
2415 || strcmp (name, "__mips16_ret_df") == 0)
2416 return 1;
2417
2418 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
2419 i.e. after the jal instruction, this is effectively a return stub. */
2420 if (strncmp (name, "__mips16_call_stub_", 19) == 0
2421 && (name[19] == 's' || name[19] == 'd')
2422 && pc != start_addr)
2423 return 1;
2424
2425 return 0; /* not a stub */
2426}
2427
2428
2429/* Return non-zero if the PC is in a library helper function that should
2430 be ignored. This implements the IGNORE_HELPER_CALL macro. */
2431
2432int
2433mips_ignore_helper (pc)
2434 CORE_ADDR pc;
2435{
2436 char *name;
2437
2438 /* Find the starting address and name of the function containing the PC. */
2439 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
2440 return 0;
2441
2442 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
2443 that we want to ignore. */
2444 return (strcmp (name, "__mips16_ret_sf") == 0
2445 || strcmp (name, "__mips16_ret_df") == 0);
2446}
2447
2448
c2a0f1cb
ILT
2449void
2450_initialize_mips_tdep ()
2451{
427fec5d
JK
2452 struct cmd_list_element *c;
2453
18b46e7c
SS
2454 tm_print_insn = gdb_print_insn_mips;
2455
427fec5d
JK
2456 /* Let the user turn off floating point and set the fence post for
2457 heuristic_proc_start. */
2458
e4dbd248
PS
2459 c = add_set_cmd ("mipsfpu", class_support, var_string_noescape,
2460 (char *) &mips_fpu_string,
2461 "Set use of floating point coprocessor.\n\
2462Set to `none' to avoid using floating point instructions when calling\n\
2463functions or dealing with return values. Set to `single' to use only\n\
2464single precision floating point as on the R4650. Set to `double' for\n\
2465normal floating point support.",
2466 &setlist);
2467 c->function.sfunc = mips_set_fpu_command;
2468 c = add_show_from_set (c, &showlist);
2469 c->function.sfunc = mips_show_fpu_command;
2470
2471 mips_fpu = MIPS_FPU_DOUBLE;
2472 mips_fpu_string = strsave ("double");
3127785a 2473
9f9f94aa
SS
2474 c = add_set_cmd ("processor", class_support, var_string_noescape,
2475 (char *) &tmp_mips_processor_type,
2476 "Set the type of MIPS processor in use.\n\
2477Set this to be able to access processor-type-specific registers.\n\
2478",
2479 &setlist);
2480 c->function.cfunc = mips_set_processor_type_command;
2481 c = add_show_from_set (c, &showlist);
2482 c->function.cfunc = mips_show_processor_type_command;
2483
2484 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
2485 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
2486
bdef72d2
JK
2487 /* We really would like to have both "0" and "unlimited" work, but
2488 command.c doesn't deal with that. So make it a var_zinteger
2489 because the user can always use "999999" or some such for unlimited. */
2490 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
427fec5d
JK
2491 (char *) &heuristic_fence_post,
2492 "\
23d35572
JK
2493Set the distance searched for the start of a function.\n\
2494If you are debugging a stripped executable, GDB needs to search through the\n\
2495program for the start of a function. This command sets the distance of the\n\
2496search. The only need to set it is when debugging a stripped executable.",
427fec5d
JK
2497 &setlist);
2498 /* We need to throw away the frame cache when we set this, since it
2499 might change our ability to get backtraces. */
2500 c->function.sfunc = reinit_frame_cache_sfunc;
2501 add_show_from_set (c, &showlist);
c2a0f1cb 2502}
This page took 0.483957 seconds and 4 git commands to generate.