* lib/gdb.exp (rerun_to_main): Allow restarting application.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
2e4ebe70 64 MIPS_ABI_UNKNOWN = 0,
0dadbba0
AC
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
28d169de 67 MIPS_ABI_N64,
0dadbba0
AC
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
2e4ebe70
DJ
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
0dadbba0
AC
72 };
73
2e4ebe70
DJ
74static const char *mips_abi_string;
75
76static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
28d169de 80 "n64",
2e4ebe70
DJ
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85};
86
cce74817 87struct frame_extra_info
c5aa993b
JM
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
cce74817 92
d929b26f
AC
93/* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
53904c9e
AC
97static const char size_auto[] = "auto";
98static const char size_32[] = "32";
99static const char size_64[] = "64";
d929b26f 100
53904c9e 101static const char *size_enums[] = {
d929b26f
AC
102 size_auto,
103 size_32,
104 size_64,
a5ea2558
AC
105 0
106};
107
7a292a7a
SS
108/* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
c906108c
SS
111
112enum mips_fpu_type
c5aa993b
JM
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
c906108c
SS
118
119#ifndef MIPS_DEFAULT_FPU_TYPE
120#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121#endif
122static int mips_fpu_type_auto = 1;
123static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 124
9ace0497 125static int mips_debug = 0;
7a292a7a 126
c2d11a7d
JM
127/* MIPS specific per-architecture information */
128struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
70f80edf 132
c2d11a7d 133 /* mips options */
0dadbba0 134 enum mips_abi mips_abi;
2e4ebe70 135 enum mips_abi found_abi;
c2d11a7d
JM
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
a5ea2558 139 int mips_default_saved_regsize;
c2d11a7d 140 int mips_fp_register_double;
d929b26f 141 int mips_default_stack_argsize;
5213ab06 142 int gdb_target_is_mips64;
4014092b 143 int default_mask_address_p;
70f80edf
JT
144
145 enum gdb_osabi osabi;
c2d11a7d
JM
146 };
147
0dadbba0 148#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 150
c2d11a7d 151#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 152
c2d11a7d 153#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 154
c2d11a7d 155#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 156
d929b26f
AC
157/* Return the currently configured (or set) saved register size. */
158
a5ea2558 159#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
71b8ef93 176/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
181
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
185
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
189
5a89d8aa
MS
190static void
191mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
192{
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
194 {
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
198 }
199}
200
71b8ef93
MS
201static int
202msymbol_is_special (struct minimal_symbol *msym)
203{
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
205}
206
207static long
208msymbol_size (struct minimal_symbol *msym)
209{
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
211}
212
88658117
AC
213/* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
217
218static void
219mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
221 int buf_offset)
222{
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
224 int reg_offset = 0;
cb1d2653
AC
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
88658117
AC
227 switch (endian)
228 {
229 case BFD_ENDIAN_BIG:
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
231 break;
232 case BFD_ENDIAN_LITTLE:
233 reg_offset = 0;
234 break;
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
236 reg_offset = 0;
237 break;
238 default:
239 internal_error (__FILE__, __LINE__, "bad switch");
240 }
241 if (mips_debug)
cb1d2653
AC
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
88658117
AC
245 if (mips_debug && out != NULL)
246 {
247 int i;
cb1d2653 248 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 249 for (i = 0; i < length; i++)
cb1d2653 250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
251 }
252 if (in != NULL)
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
254 if (out != NULL)
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
257 {
258 int i;
cb1d2653 259 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 260 for (i = 0; i < length; i++)
cb1d2653 261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
262 }
263 if (mips_debug)
264 fprintf_unfiltered (gdb_stdlog, "\n");
265}
266
dd824b04
DJ
267/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
270
271static int
272mips2_fp_compat (void)
273{
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
275 meaningful. */
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
277 return 0;
278
279#if 0
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
284 mode. */
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
286 return 1;
287#endif
361d1df0 288
dd824b04
DJ
289 return 0;
290}
291
c2d11a7d
JM
292/* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
296 MIPS_FPU_TYPE. */
c2d11a7d 297#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 298
d929b26f
AC
299/* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
302
0dadbba0 303#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
304
305#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
306
53904c9e 307static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
308
309static unsigned int
310mips_stack_argsize (void)
311{
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
315 return 8;
316 else /* if (mips_stack_argsize_string == size_32) */
317 return 4;
318}
319
5213ab06 320#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 321
92e1c15c 322#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 323
7a292a7a 324#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 325
a14ed312 326int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 327
a14ed312 328static void mips_print_register (int, int);
c906108c
SS
329
330static mips_extra_func_info_t
479412cd 331heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 332
a14ed312 333static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 334
a14ed312 335static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 336
5a89d8aa 337static int mips_set_processor_type (char *);
c906108c 338
a14ed312 339static void mips_show_processor_type_command (char *, int);
c906108c 340
a14ed312 341static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
342
343static mips_extra_func_info_t
479412cd 344find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 345
a14ed312
KB
346static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
c906108c 348
dd824b04
DJ
349static void mips_read_fp_register_single (int regno, char *rare_buffer);
350static void mips_read_fp_register_double (int regno, char *rare_buffer);
351
67b2c998
DJ
352static struct type *mips_float_register_type (void);
353static struct type *mips_double_register_type (void);
354
c906108c
SS
355/* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
357
358char *mips_processor_type;
359
360char *tmp_mips_processor_type;
361
acdb74a0
AC
362/* The list of available "set mips " and "show mips " commands */
363
364static struct cmd_list_element *setmipscmdlist = NULL;
365static struct cmd_list_element *showmipscmdlist = NULL;
366
c906108c
SS
367/* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
369
cce74817
JM
370char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371char **mips_processor_reg_names = mips_generic_reg_names;
372
5a89d8aa 373static const char *
fba45db2 374mips_register_name (int i)
cce74817
JM
375{
376 return mips_processor_reg_names[i];
377}
9846de1b 378/* *INDENT-OFF* */
c906108c
SS
379/* Names of IDT R3041 registers. */
380
381char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 391 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
394};
395
396/* Names of IDT R3051 registers. */
397
398char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 408 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
411};
412
413/* Names of IDT R3081 registers. */
414
415char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 425 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
428};
429
430/* Names of LSI 33k registers. */
431
432char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
442 "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445};
446
447struct {
448 char *name;
449 char **regnames;
450} mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
457 { NULL, NULL }
458};
9846de1b 459/* *INDENT-ON* */
c906108c 460
c5aa993b
JM
461
462
463
c906108c 464/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
465static int mips16_to_32_reg[8] =
466{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
467
468/* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
470 search. */
471
472static unsigned int heuristic_fence_post = 0;
473
c5aa993b
JM
474#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
476#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
484/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
486#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487#define _PROC_MAGIC_ 0x0F0F0F0F
488#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
490
491struct linked_proc_info
c5aa993b
JM
492 {
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
495 }
496 *linked_proc_desc_table = NULL;
c906108c 497
cce74817 498void
acdb74a0 499mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
500{
501 if (fi
502 && fi->extra_info
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 505 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 508}
c906108c 509
46cd78fb
AC
510/* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
43e526b9
JM
513
514static int mips64_transfers_32bit_regs_p = 0;
515
f7ab6ec6 516static int
acdb74a0 517mips_register_raw_size (int reg_nr)
43e526b9
JM
518{
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
524 registers. */
525 return 8;
43e526b9
JM
526 else
527 return MIPS_REGSIZE;
528}
529
46cd78fb
AC
530/* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
532
d05285fa 533static int
acdb74a0 534mips_register_convertible (int reg_nr)
43e526b9
JM
535{
536 if (mips64_transfers_32bit_regs_p)
537 return 0;
538 else
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
540}
541
d05285fa 542static void
acdb74a0
AC
543mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
43e526b9 545{
d7449b42 546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
547 memcpy (virt_buf,
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
550 else
551 memcpy (virt_buf,
552 raw_buf,
553 TYPE_LENGTH (virtual_type));
554}
555
d05285fa 556static void
acdb74a0
AC
557mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
43e526b9
JM
559{
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
563 virt_buf,
564 TYPE_LENGTH (virtual_type));
565 else
566 memcpy (raw_buf,
567 virt_buf,
568 TYPE_LENGTH (virtual_type));
569}
570
102182a9
MS
571void
572mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
573{
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
579 {
580 char temp[4];
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
584 }
585}
586
587void
588mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
589{
590if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
595 {
596 char temp[4];
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
600 }
601}
602
78fde5f8
KB
603/* Return the GDB type object for the "standard" data type
604 of data in register REG.
605
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
612
613static struct type *
614mips_register_virtual_type (int reg)
615{
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
617 {
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
621 else
622 return builtin_type_ieee_double_little;
623 }
78fde5f8
KB
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
628 else
629 {
a6425924
KB
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
78fde5f8 634 else
a6425924 635 return builtin_type_uint32;
78fde5f8
KB
636 }
637}
638
bcb0cc15
MS
639/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
640
641static CORE_ADDR
642mips_read_sp (void)
643{
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
645}
646
c906108c 647/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 648enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
649
650static int
651mips_mask_address_p (void)
652{
653 switch (mask_address_var)
654 {
7f19b9a2 655 case AUTO_BOOLEAN_TRUE:
4014092b 656 return 1;
7f19b9a2 657 case AUTO_BOOLEAN_FALSE:
4014092b
AC
658 return 0;
659 break;
7f19b9a2 660 case AUTO_BOOLEAN_AUTO:
92e1c15c 661 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 662 default:
8e65ff28
AC
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
4014092b 665 return -1;
361d1df0 666 }
4014092b
AC
667}
668
669static void
e9e68a56 670show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
671{
672 switch (mask_address_var)
673 {
7f19b9a2 674 case AUTO_BOOLEAN_TRUE:
4014092b
AC
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
676 break;
7f19b9a2 677 case AUTO_BOOLEAN_FALSE:
4014092b
AC
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
679 break;
7f19b9a2 680 case AUTO_BOOLEAN_AUTO:
4014092b
AC
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
683 break;
684 default:
8e65ff28
AC
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
4014092b 687 break;
361d1df0 688 }
4014092b 689}
c906108c
SS
690
691/* Should call_function allocate stack space for a struct return? */
cb811fe7 692
f7ab6ec6 693static int
cb811fe7 694mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 695{
cb811fe7
MS
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
697}
698
f7ab6ec6 699static int
cb811fe7
MS
700mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
701{
b78bcb18 702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
703}
704
f7ab6ec6 705static int
cb811fe7
MS
706mips_o32_use_struct_convention (int gcc_p, struct type *type)
707{
708 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
709}
710
8b389c40
MS
711/* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
714
715static int
716mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
717{
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
720
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
723
724 return 0;
725}
726
727static int
728mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
729{
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
731}
732
f7ab6ec6 733static int
8b389c40
MS
734mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
735{
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
737}
738
c906108c
SS
739/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
740
741static int
742pc_is_mips16 (bfd_vma memaddr)
743{
744 struct minimal_symbol *sym;
745
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
748 return 1;
749
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
754 if (sym)
71b8ef93 755 return msymbol_is_special (sym);
c906108c
SS
756 else
757 return 0;
758}
759
6c997a34
AC
760/* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
762
763static CORE_ADDR
39f77062 764mips_read_pc (ptid_t ptid)
6c997a34 765{
39f77062 766 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 767}
c906108c
SS
768
769/* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
771
772static CORE_ADDR
acdb74a0
AC
773after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
c906108c
SS
775{
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
778
479412cd
DJ
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
783 right now. */
c906108c 784 if (!proc_desc)
479412cd 785 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
786
787 if (proc_desc)
788 {
789 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 790 strongly suspect that frameless always means prologueless... */
c906108c
SS
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
793 return 0;
794 }
795
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
798
799 sal = find_pc_line (func_addr, 0);
800
801 if (sal.end < func_end)
802 return sal.end;
803
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
806
807 return 0;
808}
809
810/* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
814
815static void
acdb74a0
AC
816mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
c906108c
SS
818{
819 int reg;
820
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
824 {
825 /* It might be possible to use the instruction to
c5aa993b
JM
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
c906108c
SS
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
832 }
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
836
837 {
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
840 }
841}
842
843/* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
847
848static void
acdb74a0 849mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 850{
c5aa993b 851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
852 {
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
855 }
c5aa993b 856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
857 {
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
860 }
c5aa993b 861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
864}
865
866
867/* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
869
870static t_inst
acdb74a0 871mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
872{
873 char buf[MIPS_INSTLEN];
874 int instlen;
875 int status;
876
877 if (pc_is_mips16 (addr))
878 {
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
881 }
882 else
c5aa993b 883 instlen = MIPS_INSTLEN;
c906108c
SS
884 status = read_memory_nobpt (addr, buf, instlen);
885 if (status)
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
888}
889
890
891/* These the fields of 32 bit mips instructions */
e135b889
DJ
892#define mips32_op(x) (x >> 26)
893#define itype_op(x) (x >> 26)
894#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 895#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 896#define itype_immediate(x) (x & 0xffff)
c906108c 897
e135b889
DJ
898#define jtype_op(x) (x >> 26)
899#define jtype_target(x) (x & 0x03ffffff)
c906108c 900
e135b889
DJ
901#define rtype_op(x) (x >> 26)
902#define rtype_rs(x) ((x >> 21) & 0x1f)
903#define rtype_rt(x) ((x >> 16) & 0x1f)
904#define rtype_rd(x) ((x >> 11) & 0x1f)
905#define rtype_shamt(x) ((x >> 6) & 0x1f)
906#define rtype_funct(x) (x & 0x3f)
c906108c
SS
907
908static CORE_ADDR
c5aa993b
JM
909mips32_relative_offset (unsigned long inst)
910{
911 long x;
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
c906108c 914 {
c5aa993b 915 x |= 0xffff0000; /* sign extension */
c906108c 916 }
c5aa993b
JM
917 x = x << 2;
918 return x;
c906108c
SS
919}
920
921/* Determine whate to set a single step breakpoint while considering
922 branch prediction */
5a89d8aa 923static CORE_ADDR
c5aa993b
JM
924mips32_next_pc (CORE_ADDR pc)
925{
926 unsigned long inst;
927 int op;
928 inst = mips_fetch_instruction (pc);
e135b889 929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 930 {
e135b889
DJ
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 933 {
e135b889 934 op = (itype_op (inst) & 0x03);
c906108c
SS
935 switch (op)
936 {
e135b889
DJ
937 case 0: /* BEQL */
938 goto equal_branch;
939 case 1: /* BNEL */
940 goto neq_branch;
941 case 2: /* BLEZL */
942 goto less_branch;
943 case 3: /* BGTZ */
944 goto greater_branch;
c5aa993b
JM
945 default:
946 pc += 4;
c906108c
SS
947 }
948 }
e135b889
DJ
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
951 {
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
956
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
959 else
960 pc += 8;
961 }
c5aa993b
JM
962 else
963 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
964 }
965 else
c5aa993b
JM
966 { /* This gets way messy */
967
c906108c 968 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 970 {
c5aa993b
JM
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
973 switch (op)
974 {
975 case 8: /* JR */
976 case 9: /* JALR */
6c997a34
AC
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
979 break;
980 default:
981 pc += 4;
982 }
983
e135b889 984 break; /* end SPECIAL */
c5aa993b 985 case 1: /* REGIMM */
c906108c 986 {
e135b889
DJ
987 op = itype_rt (inst); /* branch condition */
988 switch (op)
c906108c 989 {
c5aa993b 990 case 0: /* BLTZ */
e135b889
DJ
991 case 2: /* BLTZL */
992 case 16: /* BLTZAL */
c5aa993b 993 case 18: /* BLTZALL */
c906108c 994 less_branch:
6c997a34 995 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
996 pc += mips32_relative_offset (inst) + 4;
997 else
998 pc += 8; /* after the delay slot */
999 break;
e135b889 1000 case 1: /* BGEZ */
c5aa993b
JM
1001 case 3: /* BGEZL */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
c906108c 1004 greater_equal_branch:
6c997a34 1005 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1006 pc += mips32_relative_offset (inst) + 4;
1007 else
1008 pc += 8; /* after the delay slot */
1009 break;
e135b889 1010 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1011 default:
1012 pc += 4;
c906108c
SS
1013 }
1014 }
e135b889 1015 break; /* end REGIMM */
c5aa993b
JM
1016 case 2: /* J */
1017 case 3: /* JAL */
1018 {
1019 unsigned long reg;
1020 reg = jtype_target (inst) << 2;
e135b889 1021 /* Upper four bits get never changed... */
c5aa993b 1022 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1023 }
c5aa993b
JM
1024 break;
1025 /* FIXME case JALX : */
1026 {
1027 unsigned long reg;
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1031 }
c5aa993b 1032 break; /* The new PC will be alternate mode */
e135b889 1033 case 4: /* BEQ, BEQL */
c5aa993b 1034 equal_branch:
6c997a34
AC
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1037 pc += mips32_relative_offset (inst) + 4;
1038 else
1039 pc += 8;
1040 break;
e135b889 1041 case 5: /* BNE, BNEL */
c5aa993b 1042 neq_branch:
6c997a34 1043 if (read_signed_register (itype_rs (inst)) !=
e135b889 1044 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
e135b889 1049 case 6: /* BLEZ, BLEZL */
c906108c 1050 less_zero_branch:
6c997a34 1051 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1052 pc += mips32_relative_offset (inst) + 4;
1053 else
1054 pc += 8;
1055 break;
1056 case 7:
e135b889
DJ
1057 default:
1058 greater_branch: /* BGTZ, BGTZL */
6c997a34 1059 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8;
1063 break;
c5aa993b
JM
1064 } /* switch */
1065 } /* else */
1066 return pc;
1067} /* mips32_next_pc */
c906108c
SS
1068
1069/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1073 either.
c5aa993b 1074 */
c906108c
SS
1075
1076/* Lots of mips16 instruction formats */
1077/* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
c5aa993b 1079 */
c906108c
SS
1080enum mips16_inst_fmts
1081{
c5aa993b
JM
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1104};
12f02c2a
AC
1105/* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
c906108c 1107struct upk_mips16
c5aa993b 1108 {
12f02c2a 1109 CORE_ADDR offset;
c5aa993b
JM
1110 unsigned int regx; /* Function in i8 type */
1111 unsigned int regy;
1112 };
c906108c
SS
1113
1114
12f02c2a
AC
1115/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
c906108c 1117
12f02c2a
AC
1118static CORE_ADDR
1119extended_offset (unsigned int extension)
c906108c 1120{
12f02c2a 1121 CORE_ADDR value;
c5aa993b
JM
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1123 value = value << 6;
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1125 value = value << 5;
1126 value |= extension & 0x01f; /* extract 4:0 */
1127 return value;
c906108c
SS
1128}
1129
1130/* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
c5aa993b 1134 */
c906108c
SS
1135/* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1137
1138
12f02c2a 1139static unsigned int
c5aa993b 1140fetch_mips_16 (CORE_ADDR pc)
c906108c 1141{
c5aa993b
JM
1142 char buf[8];
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
c906108c
SS
1146}
1147
1148static void
c5aa993b 1149unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1150 unsigned int extension,
1151 unsigned int inst,
1152 enum mips16_inst_fmts insn_format,
c5aa993b 1153 struct upk_mips16 *upk)
c906108c 1154{
12f02c2a
AC
1155 CORE_ADDR offset;
1156 int regx;
1157 int regy;
1158 switch (insn_format)
c906108c 1159 {
c5aa993b 1160 case itype:
c906108c 1161 {
12f02c2a
AC
1162 CORE_ADDR value;
1163 if (extension)
c5aa993b
JM
1164 {
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
12f02c2a 1167 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1168 }
1169 else
c5aa993b 1170 {
12f02c2a 1171 value = inst & 0x7ff;
c5aa993b 1172 /* FIXME : Consider sign extension */
c906108c 1173 }
12f02c2a
AC
1174 offset = value;
1175 regx = -1;
1176 regy = -1;
c906108c 1177 }
c5aa993b
JM
1178 break;
1179 case ritype:
1180 case i8type:
1181 { /* A register identifier and an offset */
c906108c
SS
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
12f02c2a
AC
1184 CORE_ADDR value;
1185 if (extension)
c906108c 1186 {
c5aa993b
JM
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
12f02c2a
AC
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1192 {
1193 value &= ~0x3fff; /* remove the sign bit */
1194 value = -value;
c906108c
SS
1195 }
1196 }
c5aa993b
JM
1197 else
1198 {
12f02c2a
AC
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1203 {
1204 value &= 0xef; /* remove the sign bit */
1205 value = -value;
1206 }
c5aa993b 1207 }
12f02c2a
AC
1208 offset = value;
1209 regy = -1;
c5aa993b 1210 break;
c906108c 1211 }
c5aa993b 1212 case jalxtype:
c906108c 1213 {
c5aa993b 1214 unsigned long value;
12f02c2a
AC
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1219 value |= nexthalf;
12f02c2a
AC
1220 offset = value;
1221 regx = -1;
1222 regy = -1;
c5aa993b 1223 break;
c906108c
SS
1224 }
1225 default:
8e65ff28
AC
1226 internal_error (__FILE__, __LINE__,
1227 "bad switch");
c906108c 1228 }
12f02c2a
AC
1229 upk->offset = offset;
1230 upk->regx = regx;
1231 upk->regy = regy;
c906108c
SS
1232}
1233
1234
c5aa993b
JM
1235static CORE_ADDR
1236add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1237{
c5aa993b 1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1239}
1240
12f02c2a
AC
1241static CORE_ADDR
1242extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1244 unsigned int insn)
c906108c 1245{
12f02c2a
AC
1246 int op = (insn >> 11);
1247 switch (op)
c906108c 1248 {
12f02c2a
AC
1249 case 2: /* Branch */
1250 {
1251 CORE_ADDR offset;
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1255 if (offset & 0x800)
1256 {
1257 offset &= 0xeff;
1258 offset = -offset;
1259 }
1260 pc += (offset << 1) + 2;
1261 break;
1262 }
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1264 {
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1270 else
1271 pc |= 0x01;
1272 break;
1273 }
1274 case 4: /* beqz */
1275 {
1276 struct upk_mips16 upk;
1277 int reg;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1280 if (reg == 0)
1281 pc += (upk.offset << 1) + 2;
1282 else
1283 pc += 2;
1284 break;
1285 }
1286 case 5: /* bnez */
1287 {
1288 struct upk_mips16 upk;
1289 int reg;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1292 if (reg != 0)
1293 pc += (upk.offset << 1) + 2;
1294 else
1295 pc += 2;
1296 break;
1297 }
1298 case 12: /* I8 Formats btez btnez */
1299 {
1300 struct upk_mips16 upk;
1301 int reg;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1314 {
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1317 op = insn & 0x1f;
1318 if (op == 0)
c5aa993b 1319 {
12f02c2a
AC
1320 int reg;
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1323 switch (upk.regy)
c5aa993b 1324 {
12f02c2a
AC
1325 case 0:
1326 reg = upk.regx;
1327 break;
1328 case 1:
1329 reg = 31;
1330 break; /* Function return instruction */
1331 case 2:
1332 reg = upk.regx;
1333 break;
1334 default:
1335 reg = 31;
1336 break; /* BOGUS Guess */
c906108c 1337 }
12f02c2a 1338 pc = read_signed_register (reg);
c906108c 1339 }
12f02c2a 1340 else
c5aa993b 1341 pc += 2;
12f02c2a
AC
1342 break;
1343 }
1344 case 30:
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1347 that. */
1348 {
1349 pc += 2;
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1351 break;
1352 }
1353 default:
1354 {
1355 pc += 2;
1356 break;
1357 }
c906108c 1358 }
c5aa993b 1359 return pc;
12f02c2a 1360}
c906108c 1361
5a89d8aa 1362static CORE_ADDR
12f02c2a
AC
1363mips16_next_pc (CORE_ADDR pc)
1364{
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1367}
1368
1369/* The mips_next_pc function supports single_step when the remote
7e73cedf 1370 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1374CORE_ADDR
1375mips_next_pc (CORE_ADDR pc)
c906108c 1376{
c5aa993b
JM
1377 if (pc & 0x01)
1378 return mips16_next_pc (pc);
1379 else
1380 return mips32_next_pc (pc);
12f02c2a 1381}
c906108c
SS
1382
1383/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1384 NULL).
1385
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1392 though.) */
c906108c 1393
d28e01f4 1394static void
acdb74a0 1395mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1396{
1397 int ireg;
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1400 int kernel_trap;
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1404 t_inst inst;
1405
1406 frame_saved_regs_zalloc (fci);
1407
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412#ifndef SIGFRAME_BASE
1413/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415#define SIGFRAME_BASE MIPS_REGSIZE
1416/* FIXME! Are these correct?? */
1417#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419#define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1421#endif
1422#ifndef SIGFRAME_REG_SIZE
1423/* FIXME! Is this correct?? */
1424#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1425#endif
1426 if (fci->signal_handler_caller)
1427 {
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1429 {
c5aa993b
JM
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1433 }
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1435 {
c5aa993b
JM
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1439 }
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1441 return;
1442 }
1443
cce74817 1444 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1449 return;
1450
c5aa993b
JM
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1454
c5aa993b
JM
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1460
c5aa993b
JM
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1463
c5aa993b
JM
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
c906108c 1466
c5aa993b 1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1468
c5aa993b
JM
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1473 && !kernel_trap)
c906108c
SS
1474 {
1475 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1476 claims are saved have been saved yet. */
c906108c
SS
1477
1478 CORE_ADDR addr;
1479
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1483 int instlen;
1484
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1488
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1492 {
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1496 else
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1498 addr += instlen;
1499 }
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1502 }
1503
1504 /* Fill in the offsets for the registers which gen_mask says
1505 were saved. */
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1508 if (gen_mask & 0x80000000)
1509 {
1510 fci->saved_regs[ireg] = reg_position;
7a292a7a 1511 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1512 }
1513
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1519 {
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1522 {
1523 int reg;
1524 int sreg_count = (inst >> 6) & 3;
c5aa993b 1525
c906108c
SS
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1528 if (inst & 0x20)
7a292a7a 1529 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1530
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1532 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1533 {
1534 fci->saved_regs[reg] = reg_position;
7a292a7a 1535 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1536 }
1537 }
1538 }
1539
1540 /* Fill in the offsets for the registers which float_mask says
1541 were saved. */
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1543
6acdf5c7
MS
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1545 saved.
1546
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1549
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1555 bit register. */
1556
1557 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1558 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1559
1560 /* Fill in the offsets for the float registers which float_mask says
1561 were saved. */
c5aa993b 1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1563 if (float_mask & 0x80000000)
1564 {
c5aa993b 1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1566 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1567 }
1568
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1570}
1571
d28e01f4
KB
1572/* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1578
1579static void
1580mips_frame_init_saved_regs (struct frame_info *frame)
1581{
1582 if (frame->saved_regs == NULL)
1583 {
1584 mips_find_saved_regs (frame);
1585 }
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1587}
1588
c906108c 1589static CORE_ADDR
acdb74a0 1590read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1591{
64159455
AC
1592 int optimized;
1593 CORE_ADDR addr;
1594 int realnum;
1595 enum lval_type lval;
1596 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1597 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1598 raw_buffer);
1599 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1600 should have a pseudo register range that correspons to the ABI's,
1601 rather than the ISA's, view of registers. These registers would
1602 then implicitly describe their size and hence could be used
1603 without the below munging. */
1604 if (lval == lval_memory)
c906108c 1605 {
64159455 1606 if (regno < 32)
c906108c 1607 {
64159455
AC
1608 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1609 saved. */
1610 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
c906108c
SS
1611 }
1612 }
64159455
AC
1613
1614 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1615}
1616
1617/* mips_addr_bits_remove - remove useless address bits */
1618
875e1767 1619static CORE_ADDR
acdb74a0 1620mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1621{
5213ab06
AC
1622 if (GDB_TARGET_IS_MIPS64)
1623 {
4014092b 1624 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1625 {
1626 /* This hack is a work-around for existing boards using
1627 PMON, the simulator, and any other 64-bit targets that
1628 doesn't have true 64-bit addressing. On these targets,
1629 the upper 32 bits of addresses are ignored by the
1630 hardware. Thus, the PC or SP are likely to have been
1631 sign extended to all 1s by instruction sequences that
1632 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1633 code that loads an address is this:
1634 lui $r2, <upper 16 bits>
1635 ori $r2, <lower 16 bits>
1636 But the lui sign-extends the value such that the upper 32
1637 bits may be all 1s. The workaround is simply to mask off
1638 these bits. In the future, gcc may be changed to support
1639 true 64-bit addressing, and this masking will have to be
1640 disabled. */
5213ab06
AC
1641 addr &= (CORE_ADDR) 0xffffffff;
1642 }
1643 }
4014092b 1644 else if (mips_mask_address_p ())
5213ab06 1645 {
4014092b
AC
1646 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1647 masking off bits, instead, the actual target should be asking
1648 for the address to be converted to a valid pointer. */
5213ab06
AC
1649 /* Even when GDB is configured for some 32-bit targets
1650 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1651 so CORE_ADDR is 64 bits. So we still have to mask off
1652 useless bits from addresses. */
c5aa993b 1653 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1654 }
c906108c
SS
1655 return addr;
1656}
1657
9022177c
DJ
1658/* mips_software_single_step() is called just before we want to resume
1659 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1660 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1661 the target of the coming instruction and breakpoint it.
1662
1663 single_step is also called just after the inferior stops. If we had
1664 set up a simulated single-step, we undo our damage. */
1665
1666void
1667mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1668{
1669 static CORE_ADDR next_pc;
1670 typedef char binsn_quantum[BREAKPOINT_MAX];
1671 static binsn_quantum break_mem;
1672 CORE_ADDR pc;
1673
1674 if (insert_breakpoints_p)
1675 {
1676 pc = read_register (PC_REGNUM);
1677 next_pc = mips_next_pc (pc);
1678
1679 target_insert_breakpoint (next_pc, break_mem);
1680 }
1681 else
1682 target_remove_breakpoint (next_pc, break_mem);
1683}
1684
10312cc4 1685static void
acdb74a0 1686mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1687{
1688 CORE_ADDR pc, tmp;
1689
1690 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1691 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
5a89d8aa 1692 tmp = SKIP_TRAMPOLINE_CODE (pc);
c5aa993b 1693 prev->pc = tmp ? tmp : pc;
c906108c
SS
1694}
1695
1696
f7ab6ec6 1697static CORE_ADDR
acdb74a0 1698mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1699{
1700 CORE_ADDR saved_pc;
cce74817 1701 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1702 /* We have to get the saved pc from the sigcontext
1703 if it is a signal handler frame. */
1704 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1705 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1706
c5aa993b 1707 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1708 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1709 else
7a292a7a 1710 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1711
1712 return ADDR_BITS_REMOVE (saved_pc);
1713}
1714
1715static struct mips_extra_func_info temp_proc_desc;
cce74817 1716static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1717
1718/* Set a register's saved stack address in temp_saved_regs. If an address
1719 has already been set for this register, do nothing; this way we will
1720 only recognize the first save of a given register in a function prologue.
1721 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1722
1723static void
acdb74a0 1724set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1725{
cce74817
JM
1726 if (temp_saved_regs[regno] == 0)
1727 temp_saved_regs[regno] = offset;
c906108c
SS
1728}
1729
1730
1731/* Test whether the PC points to the return instruction at the
1732 end of a function. */
1733
c5aa993b 1734static int
acdb74a0 1735mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1736{
1737 if (pc_is_mips16 (pc))
1738 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1739 generates a "jr $ra"; other times it generates code to load
1740 the return address from the stack to an accessible register (such
1741 as $a3), then a "jr" using that register. This second case
1742 is almost impossible to distinguish from an indirect jump
1743 used for switch statements, so we don't even try. */
1744 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1745 else
1746 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1747}
1748
1749
1750/* This fencepost looks highly suspicious to me. Removing it also
1751 seems suspicious as it could affect remote debugging across serial
1752 lines. */
1753
1754static CORE_ADDR
acdb74a0 1755heuristic_proc_start (CORE_ADDR pc)
c906108c 1756{
c5aa993b
JM
1757 CORE_ADDR start_pc;
1758 CORE_ADDR fence;
1759 int instlen;
1760 int seen_adjsp = 0;
c906108c 1761
c5aa993b
JM
1762 pc = ADDR_BITS_REMOVE (pc);
1763 start_pc = pc;
1764 fence = start_pc - heuristic_fence_post;
1765 if (start_pc == 0)
1766 return 0;
c906108c 1767
c5aa993b
JM
1768 if (heuristic_fence_post == UINT_MAX
1769 || fence < VM_MIN_ADDRESS)
1770 fence = VM_MIN_ADDRESS;
c906108c 1771
c5aa993b 1772 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1773
c5aa993b
JM
1774 /* search back for previous return */
1775 for (start_pc -= instlen;; start_pc -= instlen)
1776 if (start_pc < fence)
1777 {
1778 /* It's not clear to me why we reach this point when
1779 stop_soon_quietly, but with this test, at least we
1780 don't print out warnings for every child forked (eg, on
1781 decstation). 22apr93 rich@cygnus.com. */
1782 if (!stop_soon_quietly)
c906108c 1783 {
c5aa993b
JM
1784 static int blurb_printed = 0;
1785
1786 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1787 paddr_nz (pc));
1788
1789 if (!blurb_printed)
c906108c 1790 {
c5aa993b
JM
1791 /* This actually happens frequently in embedded
1792 development, when you first connect to a board
1793 and your stack pointer and pc are nowhere in
1794 particular. This message needs to give people
1795 in that situation enough information to
1796 determine that it's no big deal. */
1797 printf_filtered ("\n\
cd0fc7c3
SS
1798 GDB is unable to find the start of the function at 0x%s\n\
1799and thus can't determine the size of that function's stack frame.\n\
1800This means that GDB may be unable to access that stack frame, or\n\
1801the frames below it.\n\
1802 This problem is most likely caused by an invalid program counter or\n\
1803stack pointer.\n\
1804 However, if you think GDB should simply search farther back\n\
1805from 0x%s for code which looks like the beginning of a\n\
1806function, you can increase the range of the search using the `set\n\
1807heuristic-fence-post' command.\n",
c5aa993b
JM
1808 paddr_nz (pc), paddr_nz (pc));
1809 blurb_printed = 1;
c906108c 1810 }
c906108c
SS
1811 }
1812
c5aa993b
JM
1813 return 0;
1814 }
1815 else if (pc_is_mips16 (start_pc))
1816 {
1817 unsigned short inst;
1818
1819 /* On MIPS16, any one of the following is likely to be the
1820 start of a function:
1821 entry
1822 addiu sp,-n
1823 daddiu sp,-n
1824 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1825 inst = mips_fetch_instruction (start_pc);
1826 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1827 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1828 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1829 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1830 break;
1831 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1832 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1833 seen_adjsp = 1;
1834 else
1835 seen_adjsp = 0;
1836 }
1837 else if (mips_about_to_return (start_pc))
1838 {
1839 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1840 break;
1841 }
1842
c5aa993b 1843 return start_pc;
c906108c
SS
1844}
1845
1846/* Fetch the immediate value from a MIPS16 instruction.
1847 If the previous instruction was an EXTEND, use it to extend
1848 the upper bits of the immediate value. This is a helper function
1849 for mips16_heuristic_proc_desc. */
1850
1851static int
acdb74a0
AC
1852mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1853 unsigned short inst, /* current instruction */
1854 int nbits, /* number of bits in imm field */
1855 int scale, /* scale factor to be applied to imm */
1856 int is_signed) /* is the imm field signed? */
c906108c
SS
1857{
1858 int offset;
1859
1860 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1861 {
1862 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1863 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1864 offset = 0 - (0x10000 - (offset & 0xffff));
1865 return offset | (inst & 0x1f);
1866 }
1867 else
1868 {
1869 int max_imm = 1 << nbits;
1870 int mask = max_imm - 1;
1871 int sign_bit = max_imm >> 1;
1872
1873 offset = inst & mask;
1874 if (is_signed && (offset & sign_bit))
1875 offset = 0 - (max_imm - offset);
1876 return offset * scale;
1877 }
1878}
1879
1880
1881/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1882 stream from start_pc to limit_pc. */
1883
1884static void
acdb74a0
AC
1885mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1886 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1887{
1888 CORE_ADDR cur_pc;
1889 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1890 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1891 unsigned inst = 0; /* current instruction */
1892 unsigned entry_inst = 0; /* the entry instruction */
1893 int reg, offset;
1894
c5aa993b
JM
1895 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1896 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1897
1898 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1899 {
1900 /* Save the previous instruction. If it's an EXTEND, we'll extract
1901 the immediate offset extension from it in mips16_get_imm. */
1902 prev_inst = inst;
1903
1904 /* Fetch and decode the instruction. */
1905 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1906 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1907 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1908 {
1909 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1910 if (offset < 0) /* negative stack adjustment? */
1911 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1912 else
1913 /* Exit loop if a positive stack adjustment is found, which
1914 usually means that the stack cleanup code in the function
1915 epilogue is reached. */
1916 break;
1917 }
1918 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1919 {
1920 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1921 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1922 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1923 set_reg_offset (reg, sp + offset);
1924 }
1925 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1926 {
1927 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1928 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1929 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1930 set_reg_offset (reg, sp + offset);
1931 }
1932 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1933 {
1934 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1935 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1936 set_reg_offset (RA_REGNUM, sp + offset);
1937 }
1938 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1939 {
1940 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1941 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1942 set_reg_offset (RA_REGNUM, sp + offset);
1943 }
c5aa993b 1944 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1945 {
1946 frame_addr = sp;
1947 PROC_FRAME_REG (&temp_proc_desc) = 17;
1948 }
1949 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1950 {
1951 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1952 frame_addr = sp + offset;
1953 PROC_FRAME_REG (&temp_proc_desc) = 17;
1954 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1955 }
1956 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1957 {
1958 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1959 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1960 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1961 set_reg_offset (reg, frame_addr + offset);
1962 }
1963 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1964 {
1965 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1966 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1967 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1968 set_reg_offset (reg, frame_addr + offset);
1969 }
c5aa993b
JM
1970 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1971 entry_inst = inst; /* save for later processing */
c906108c 1972 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1973 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1974 }
1975
c5aa993b
JM
1976 /* The entry instruction is typically the first instruction in a function,
1977 and it stores registers at offsets relative to the value of the old SP
1978 (before the prologue). But the value of the sp parameter to this
1979 function is the new SP (after the prologue has been executed). So we
1980 can't calculate those offsets until we've seen the entire prologue,
1981 and can calculate what the old SP must have been. */
1982 if (entry_inst != 0)
1983 {
1984 int areg_count = (entry_inst >> 8) & 7;
1985 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1986
c5aa993b
JM
1987 /* The entry instruction always subtracts 32 from the SP. */
1988 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1989
c5aa993b
JM
1990 /* Now we can calculate what the SP must have been at the
1991 start of the function prologue. */
1992 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1993
c5aa993b
JM
1994 /* Check if a0-a3 were saved in the caller's argument save area. */
1995 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1996 {
1997 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1998 set_reg_offset (reg, sp + offset);
1999 offset += MIPS_SAVED_REGSIZE;
2000 }
c906108c 2001
c5aa993b
JM
2002 /* Check if the ra register was pushed on the stack. */
2003 offset = -4;
2004 if (entry_inst & 0x20)
2005 {
2006 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2007 set_reg_offset (RA_REGNUM, sp + offset);
2008 offset -= MIPS_SAVED_REGSIZE;
2009 }
c906108c 2010
c5aa993b
JM
2011 /* Check if the s0 and s1 registers were pushed on the stack. */
2012 for (reg = 16; reg < sreg_count + 16; reg++)
2013 {
2014 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2015 set_reg_offset (reg, sp + offset);
2016 offset -= MIPS_SAVED_REGSIZE;
2017 }
2018 }
c906108c
SS
2019}
2020
2021static void
fba45db2
KB
2022mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2023 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2024{
2025 CORE_ADDR cur_pc;
c5aa993b 2026 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2027restart:
cce74817 2028 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2029 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2030 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2031 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2032 {
2033 unsigned long inst, high_word, low_word;
2034 int reg;
2035
2036 /* Fetch the instruction. */
2037 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2038
2039 /* Save some code by pre-extracting some useful fields. */
2040 high_word = (inst >> 16) & 0xffff;
2041 low_word = inst & 0xffff;
2042 reg = high_word & 0x1f;
2043
c5aa993b 2044 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2045 || high_word == 0x23bd /* addi $sp,$sp,-i */
2046 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2047 {
2048 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2049 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2050 else
2051 /* Exit loop if a positive stack adjustment is found, which
2052 usually means that the stack cleanup code in the function
2053 epilogue is reached. */
2054 break;
2055 }
2056 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2057 {
c5aa993b 2058 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2059 set_reg_offset (reg, sp + low_word);
2060 }
2061 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2062 {
2063 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2064 but the register size used is only 32 bits. Make the address
2065 for the saved register point to the lower 32 bits. */
c5aa993b 2066 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2067 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2068 }
c5aa993b 2069 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2070 {
2071 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2072 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2073 frame_addr = sp + low_word;
c906108c
SS
2074 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2075 {
2076 unsigned alloca_adjust;
2077 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2078 frame_addr = read_next_frame_reg (next_frame, 30);
2079 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2080 if (alloca_adjust > 0)
2081 {
2082 /* FP > SP + frame_size. This may be because
2083 * of an alloca or somethings similar.
2084 * Fix sp to "pre-alloca" value, and try again.
2085 */
2086 sp += alloca_adjust;
2087 goto restart;
2088 }
2089 }
2090 }
c5aa993b
JM
2091 /* move $30,$sp. With different versions of gas this will be either
2092 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2093 Accept any one of these. */
c906108c
SS
2094 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2095 {
2096 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2097 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2098 {
2099 unsigned alloca_adjust;
2100 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2101 frame_addr = read_next_frame_reg (next_frame, 30);
2102 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2103 if (alloca_adjust > 0)
2104 {
2105 /* FP > SP + frame_size. This may be because
2106 * of an alloca or somethings similar.
2107 * Fix sp to "pre-alloca" value, and try again.
2108 */
2109 sp += alloca_adjust;
2110 goto restart;
2111 }
2112 }
2113 }
c5aa993b 2114 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2115 {
c5aa993b 2116 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2117 set_reg_offset (reg, frame_addr + low_word);
2118 }
2119 }
2120}
2121
2122static mips_extra_func_info_t
acdb74a0 2123heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2124 struct frame_info *next_frame, int cur_frame)
c906108c 2125{
479412cd
DJ
2126 CORE_ADDR sp;
2127
2128 if (cur_frame)
2129 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2130 else
2131 sp = 0;
c906108c 2132
c5aa993b
JM
2133 if (start_pc == 0)
2134 return NULL;
2135 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 2136 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2137 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2138 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2139 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2140
2141 if (start_pc + 200 < limit_pc)
2142 limit_pc = start_pc + 200;
2143 if (pc_is_mips16 (start_pc))
2144 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2145 else
2146 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2147 return &temp_proc_desc;
2148}
2149
6c0d6680
DJ
2150struct mips_objfile_private
2151{
2152 bfd_size_type size;
2153 char *contents;
2154};
2155
2156/* Global used to communicate between non_heuristic_proc_desc and
2157 compare_pdr_entries within qsort (). */
2158static bfd *the_bfd;
2159
2160static int
2161compare_pdr_entries (const void *a, const void *b)
2162{
2163 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2164 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2165
2166 if (lhs < rhs)
2167 return -1;
2168 else if (lhs == rhs)
2169 return 0;
2170 else
2171 return 1;
2172}
2173
c906108c 2174static mips_extra_func_info_t
acdb74a0 2175non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2176{
2177 CORE_ADDR startaddr;
2178 mips_extra_func_info_t proc_desc;
c5aa993b 2179 struct block *b = block_for_pc (pc);
c906108c 2180 struct symbol *sym;
6c0d6680
DJ
2181 struct obj_section *sec;
2182 struct mips_objfile_private *priv;
2183
2184 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2185 return NULL;
c906108c
SS
2186
2187 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2188 if (addrptr)
2189 *addrptr = startaddr;
6c0d6680
DJ
2190
2191 priv = NULL;
2192
2193 sec = find_pc_section (pc);
2194 if (sec != NULL)
c906108c 2195 {
6c0d6680
DJ
2196 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2197
2198 /* Search the ".pdr" section generated by GAS. This includes most of
2199 the information normally found in ECOFF PDRs. */
2200
2201 the_bfd = sec->objfile->obfd;
2202 if (priv == NULL
2203 && (the_bfd->format == bfd_object
2204 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2205 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2206 {
2207 /* Right now GAS only outputs the address as a four-byte sequence.
2208 This means that we should not bother with this method on 64-bit
2209 targets (until that is fixed). */
2210
2211 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2212 sizeof (struct mips_objfile_private));
2213 priv->size = 0;
2214 sec->objfile->obj_private = priv;
2215 }
2216 else if (priv == NULL)
2217 {
2218 asection *bfdsec;
2219
2220 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2221 sizeof (struct mips_objfile_private));
2222
2223 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2224 if (bfdsec != NULL)
2225 {
2226 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2227 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2228 priv->size);
2229 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2230 priv->contents, 0, priv->size);
2231
2232 /* In general, the .pdr section is sorted. However, in the
2233 presence of multiple code sections (and other corner cases)
2234 it can become unsorted. Sort it so that we can use a faster
2235 binary search. */
2236 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2237 }
2238 else
2239 priv->size = 0;
2240
2241 sec->objfile->obj_private = priv;
2242 }
2243 the_bfd = NULL;
2244
2245 if (priv->size != 0)
2246 {
2247 int low, mid, high;
2248 char *ptr;
2249
2250 low = 0;
2251 high = priv->size / 32;
2252
2253 do
2254 {
2255 CORE_ADDR pdr_pc;
2256
2257 mid = (low + high) / 2;
2258
2259 ptr = priv->contents + mid * 32;
2260 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2261 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2262 SECT_OFF_TEXT (sec->objfile));
2263 if (pdr_pc == startaddr)
2264 break;
2265 if (pdr_pc > startaddr)
2266 high = mid;
2267 else
2268 low = mid + 1;
2269 }
2270 while (low != high);
2271
2272 if (low != high)
2273 {
2274 struct symbol *sym = find_pc_function (pc);
2275
2276 /* Fill in what we need of the proc_desc. */
2277 proc_desc = (mips_extra_func_info_t)
2278 obstack_alloc (&sec->objfile->psymbol_obstack,
2279 sizeof (struct mips_extra_func_info));
2280 PROC_LOW_ADDR (proc_desc) = startaddr;
2281
2282 /* Only used for dummy frames. */
2283 PROC_HIGH_ADDR (proc_desc) = 0;
2284
2285 PROC_FRAME_OFFSET (proc_desc)
2286 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2287 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2288 ptr + 24);
2289 PROC_FRAME_ADJUST (proc_desc) = 0;
2290 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2291 ptr + 4);
2292 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2293 ptr + 12);
2294 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2295 ptr + 8);
2296 PROC_FREG_OFFSET (proc_desc)
2297 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2298 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2299 ptr + 28);
2300 proc_desc->pdr.isym = (long) sym;
2301
2302 return proc_desc;
2303 }
2304 }
c906108c
SS
2305 }
2306
6c0d6680
DJ
2307 if (b == NULL)
2308 return NULL;
2309
2310 if (startaddr > BLOCK_START (b))
2311 {
2312 /* This is the "pathological" case referred to in a comment in
2313 print_frame_info. It might be better to move this check into
2314 symbol reading. */
2315 return NULL;
2316 }
2317
2318 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2319
c906108c
SS
2320 /* If we never found a PDR for this function in symbol reading, then
2321 examine prologues to find the information. */
2322 if (sym)
2323 {
2324 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2325 if (PROC_FRAME_REG (proc_desc) == -1)
2326 return NULL;
2327 else
2328 return proc_desc;
2329 }
2330 else
2331 return NULL;
2332}
2333
2334
2335static mips_extra_func_info_t
479412cd 2336find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2337{
2338 mips_extra_func_info_t proc_desc;
2339 CORE_ADDR startaddr;
2340
2341 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2342
2343 if (proc_desc)
2344 {
2345 /* IF this is the topmost frame AND
2346 * (this proc does not have debugging information OR
2347 * the PC is in the procedure prologue)
2348 * THEN create a "heuristic" proc_desc (by analyzing
2349 * the actual code) to replace the "official" proc_desc.
2350 */
2351 if (next_frame == NULL)
2352 {
2353 struct symtab_and_line val;
2354 struct symbol *proc_symbol =
c86b5b38 2355 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2356
2357 if (proc_symbol)
2358 {
2359 val = find_pc_line (BLOCK_START
c5aa993b 2360 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2361 0);
2362 val.pc = val.end ? val.end : pc;
2363 }
2364 if (!proc_symbol || pc < val.pc)
2365 {
2366 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2367 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2368 pc, next_frame, cur_frame);
c906108c
SS
2369 if (found_heuristic)
2370 proc_desc = found_heuristic;
2371 }
2372 }
2373 }
2374 else
2375 {
2376 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2377 by procedure call dummys. However, the procedures being called ought
2378 to have their own proc_descs, and even if they don't,
2379 heuristic_proc_desc knows how to create them! */
c906108c
SS
2380
2381 register struct linked_proc_info *link;
2382
2383 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2384 if (PROC_LOW_ADDR (&link->info) <= pc
2385 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2386 return &link->info;
2387
2388 if (startaddr == 0)
2389 startaddr = heuristic_proc_start (pc);
2390
2391 proc_desc =
479412cd 2392 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2393 }
2394 return proc_desc;
2395}
2396
2397static CORE_ADDR
acdb74a0
AC
2398get_frame_pointer (struct frame_info *frame,
2399 mips_extra_func_info_t proc_desc)
c906108c 2400{
c86b5b38
MS
2401 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2402 PROC_FRAME_REG (proc_desc)) +
2403 PROC_FRAME_OFFSET (proc_desc) -
2404 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2405}
2406
5a89d8aa 2407static mips_extra_func_info_t cached_proc_desc;
c906108c 2408
f7ab6ec6 2409static CORE_ADDR
acdb74a0 2410mips_frame_chain (struct frame_info *frame)
c906108c
SS
2411{
2412 mips_extra_func_info_t proc_desc;
2413 CORE_ADDR tmp;
c5aa993b 2414 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2415
2416 if (saved_pc == 0 || inside_entry_file (saved_pc))
2417 return 0;
2418
2419 /* Check if the PC is inside a call stub. If it is, fetch the
2420 PC of the caller of that stub. */
5a89d8aa 2421 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2422 saved_pc = tmp;
2423
2424 /* Look up the procedure descriptor for this PC. */
479412cd 2425 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2426 if (!proc_desc)
2427 return 0;
2428
2429 cached_proc_desc = proc_desc;
2430
2431 /* If no frame pointer and frame size is zero, we must be at end
2432 of stack (or otherwise hosed). If we don't check frame size,
2433 we loop forever if we see a zero size frame. */
2434 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2435 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2436 /* The previous frame from a sigtramp frame might be frameless
2437 and have frame size zero. */
2438 && !frame->signal_handler_caller
2439 /* Check if this is a call dummy frame. */
f7ab6ec6 2440 && frame->pc != CALL_DUMMY_ADDRESS ())
c906108c
SS
2441 return 0;
2442 else
2443 return get_frame_pointer (frame, proc_desc);
2444}
2445
f7ab6ec6 2446static void
acdb74a0 2447mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2448{
2449 int regnum;
2450
2451 /* Use proc_desc calculated in frame_chain */
2452 mips_extra_func_info_t proc_desc =
c86b5b38 2453 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2454
cce74817
JM
2455 fci->extra_info = (struct frame_extra_info *)
2456 frame_obstack_alloc (sizeof (struct frame_extra_info));
2457
c906108c 2458 fci->saved_regs = NULL;
cce74817 2459 fci->extra_info->proc_desc =
c906108c
SS
2460 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2461 if (proc_desc)
2462 {
2463 /* Fixup frame-pointer - only needed for top frame */
2464 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2465 Get the value of the frame relative sp, procedure might have been
2466 interrupted by a signal at it's very start. */
c906108c
SS
2467 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2468 && !PROC_DESC_IS_DUMMY (proc_desc))
2469 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2470 else
2471 fci->frame = get_frame_pointer (fci->next, proc_desc);
2472
2473 if (proc_desc == &temp_proc_desc)
2474 {
2475 char *name;
2476
2477 /* Do not set the saved registers for a sigtramp frame,
2478 mips_find_saved_registers will do that for us.
2479 We can't use fci->signal_handler_caller, it is not yet set. */
2480 find_pc_partial_function (fci->pc, &name,
c5aa993b 2481 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2482 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2483 {
c5aa993b 2484 frame_saved_regs_zalloc (fci);
cce74817 2485 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2486 fci->saved_regs[PC_REGNUM]
2487 = fci->saved_regs[RA_REGNUM];
ffabd70d
KB
2488 /* Set value of previous frame's stack pointer. Remember that
2489 saved_regs[SP_REGNUM] is special in that it contains the
2490 value of the stack pointer register. The other saved_regs
2491 values are addresses (in the inferior) at which a given
2492 register's value may be found. */
2493 fci->saved_regs[SP_REGNUM] = fci->frame;
c906108c
SS
2494 }
2495 }
2496
2497 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2498 /* assume we can't tell how many args for now */
2499 fci->extra_info->num_args = -1;
c906108c
SS
2500 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2501 {
c5aa993b 2502 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2503 {
cce74817 2504 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2505 break;
2506 }
c5aa993b 2507 }
c906108c
SS
2508 }
2509}
2510
2511/* MIPS stack frames are almost impenetrable. When execution stops,
2512 we basically have to look at symbol information for the function
2513 that we stopped in, which tells us *which* register (if any) is
2514 the base of the frame pointer, and what offset from that register
361d1df0 2515 the frame itself is at.
c906108c
SS
2516
2517 This presents a problem when trying to examine a stack in memory
2518 (that isn't executing at the moment), using the "frame" command. We
2519 don't have a PC, nor do we have any registers except SP.
2520
2521 This routine takes two arguments, SP and PC, and tries to make the
2522 cached frames look as if these two arguments defined a frame on the
2523 cache. This allows the rest of info frame to extract the important
2524 arguments without difficulty. */
2525
2526struct frame_info *
acdb74a0 2527setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2528{
2529 if (argc != 2)
2530 error ("MIPS frame specifications require two arguments: sp and pc");
2531
2532 return create_new_frame (argv[0], argv[1]);
2533}
2534
f09ded24
AC
2535/* According to the current ABI, should the type be passed in a
2536 floating-point register (assuming that there is space)? When there
2537 is no FPU, FP are not even considered as possibile candidates for
2538 FP registers and, consequently this returns false - forces FP
2539 arguments into integer registers. */
2540
2541static int
2542fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2543{
2544 return ((typecode == TYPE_CODE_FLT
2545 || (MIPS_EABI
2546 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2547 && TYPE_NFIELDS (arg_type) == 1
2548 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2549 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2550}
2551
49e790b0
DJ
2552/* On o32, argument passing in GPRs depends on the alignment of the type being
2553 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2554
2555static int
2556mips_type_needs_double_align (struct type *type)
2557{
2558 enum type_code typecode = TYPE_CODE (type);
361d1df0 2559
49e790b0
DJ
2560 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2561 return 1;
2562 else if (typecode == TYPE_CODE_STRUCT)
2563 {
2564 if (TYPE_NFIELDS (type) < 1)
2565 return 0;
2566 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2567 }
2568 else if (typecode == TYPE_CODE_UNION)
2569 {
361d1df0 2570 int i, n;
49e790b0
DJ
2571
2572 n = TYPE_NFIELDS (type);
2573 for (i = 0; i < n; i++)
2574 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2575 return 1;
2576 return 0;
2577 }
2578 return 0;
2579}
2580
cb3d25d1
MS
2581/* Macros to round N up or down to the next A boundary;
2582 A must be a power of two. */
2583
2584#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2585#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2586
f7ab6ec6 2587static CORE_ADDR
46e0f506
MS
2588mips_eabi_push_arguments (int nargs,
2589 struct value **args,
2590 CORE_ADDR sp,
2591 int struct_return,
2592 CORE_ADDR struct_addr)
c906108c
SS
2593{
2594 int argreg;
2595 int float_argreg;
2596 int argnum;
2597 int len = 0;
2598 int stack_offset = 0;
2599
c906108c 2600 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2601 are properly aligned. The stack has to be at least 64-bit
2602 aligned even on 32-bit machines, because doubles must be 64-bit
2603 aligned. For n32 and n64, stack frames need to be 128-bit
2604 aligned, so we round to this widest known alignment. */
2605
c906108c 2606 sp = ROUND_DOWN (sp, 16);
cce41527 2607 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2608
46e0f506 2609 /* Now make space on the stack for the args. We allocate more
c906108c 2610 than necessary for EABI, because the first few arguments are
46e0f506 2611 passed in registers, but that's OK. */
c906108c 2612 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2613 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2614 MIPS_STACK_ARGSIZE);
c906108c
SS
2615 sp -= ROUND_UP (len, 16);
2616
9ace0497 2617 if (mips_debug)
46e0f506
MS
2618 fprintf_unfiltered (gdb_stdlog,
2619 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2620 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2621
c906108c
SS
2622 /* Initialize the integer and float register pointers. */
2623 argreg = A0_REGNUM;
2624 float_argreg = FPA0_REGNUM;
2625
46e0f506 2626 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2627 if (struct_return)
9ace0497
AC
2628 {
2629 if (mips_debug)
2630 fprintf_unfiltered (gdb_stdlog,
46e0f506 2631 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2632 argreg, paddr_nz (struct_addr));
9ace0497
AC
2633 write_register (argreg++, struct_addr);
2634 }
c906108c
SS
2635
2636 /* Now load as many as possible of the first arguments into
2637 registers, and push the rest onto the stack. Loop thru args
2638 from first to last. */
2639 for (argnum = 0; argnum < nargs; argnum++)
2640 {
2641 char *val;
cb3d25d1 2642 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2643 struct value *arg = args[argnum];
c906108c
SS
2644 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2645 int len = TYPE_LENGTH (arg_type);
2646 enum type_code typecode = TYPE_CODE (arg_type);
2647
9ace0497
AC
2648 if (mips_debug)
2649 fprintf_unfiltered (gdb_stdlog,
46e0f506 2650 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2651 argnum + 1, len, (int) typecode);
9ace0497 2652
c906108c 2653 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2654 reference. */
2655 if (len > MIPS_SAVED_REGSIZE
9ace0497 2656 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2657 {
7a292a7a 2658 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2659 typecode = TYPE_CODE_PTR;
7a292a7a 2660 len = MIPS_SAVED_REGSIZE;
c906108c 2661 val = valbuf;
9ace0497
AC
2662 if (mips_debug)
2663 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2664 }
2665 else
c5aa993b 2666 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2667
2668 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2669 even-numbered floating point register. Round the FP register
2670 up before the check to see if there are any FP registers
46e0f506
MS
2671 left. Non MIPS_EABI targets also pass the FP in the integer
2672 registers so also round up normal registers. */
acdb74a0
AC
2673 if (!FP_REGISTER_DOUBLE
2674 && fp_register_arg_p (typecode, arg_type))
2675 {
2676 if ((float_argreg & 1))
2677 float_argreg++;
2678 }
c906108c
SS
2679
2680 /* Floating point arguments passed in registers have to be
2681 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2682 are passed in register pairs; the even register gets
2683 the low word, and the odd register gets the high word.
2684 On non-EABI processors, the first two floating point arguments are
2685 also copied to general registers, because MIPS16 functions
2686 don't use float registers for arguments. This duplication of
2687 arguments in general registers can't hurt non-MIPS16 functions
2688 because those registers are normally skipped. */
1012bd0e
EZ
2689 /* MIPS_EABI squeezes a struct that contains a single floating
2690 point value into an FP register instead of pushing it onto the
46e0f506 2691 stack. */
f09ded24
AC
2692 if (fp_register_arg_p (typecode, arg_type)
2693 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2694 {
2695 if (!FP_REGISTER_DOUBLE && len == 8)
2696 {
d7449b42 2697 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2698 unsigned long regval;
2699
2700 /* Write the low word of the double to the even register(s). */
c5aa993b 2701 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2702 if (mips_debug)
acdb74a0 2703 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2704 float_argreg, phex (regval, 4));
c906108c 2705 write_register (float_argreg++, regval);
c906108c
SS
2706
2707 /* Write the high word of the double to the odd register(s). */
c5aa993b 2708 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2709 if (mips_debug)
acdb74a0 2710 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2711 float_argreg, phex (regval, 4));
c906108c 2712 write_register (float_argreg++, regval);
c906108c
SS
2713 }
2714 else
2715 {
2716 /* This is a floating point value that fits entirely
2717 in a single register. */
53a5351d 2718 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2719 above to ensure that it is even register aligned. */
9ace0497
AC
2720 LONGEST regval = extract_unsigned_integer (val, len);
2721 if (mips_debug)
acdb74a0 2722 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2723 float_argreg, phex (regval, len));
c906108c 2724 write_register (float_argreg++, regval);
c906108c
SS
2725 }
2726 }
2727 else
2728 {
2729 /* Copy the argument to general registers or the stack in
2730 register-sized pieces. Large arguments are split between
2731 registers and stack. */
2732 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2733 are treated specially: Irix cc passes them in registers
2734 where gcc sometimes puts them on the stack. For maximum
2735 compatibility, we will put them in both places. */
c5aa993b 2736 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2737 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2738
f09ded24 2739 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2740 register are only written to memory. */
c906108c
SS
2741 while (len > 0)
2742 {
ebafbe83 2743 /* Remember if the argument was written to the stack. */
566f0f7a 2744 int stack_used_p = 0;
46e0f506
MS
2745 int partial_len =
2746 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2747
acdb74a0
AC
2748 if (mips_debug)
2749 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2750 partial_len);
2751
566f0f7a 2752 /* Write this portion of the argument to the stack. */
f09ded24
AC
2753 if (argreg > MIPS_LAST_ARG_REGNUM
2754 || odd_sized_struct
2755 || fp_register_arg_p (typecode, arg_type))
c906108c 2756 {
c906108c
SS
2757 /* Should shorter than int integer values be
2758 promoted to int before being stored? */
c906108c 2759 int longword_offset = 0;
9ace0497 2760 CORE_ADDR addr;
566f0f7a 2761 stack_used_p = 1;
d7449b42 2762 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2763 {
d929b26f 2764 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2765 (typecode == TYPE_CODE_INT ||
2766 typecode == TYPE_CODE_PTR ||
2767 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2768 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2769 else if ((typecode == TYPE_CODE_STRUCT ||
2770 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2771 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2772 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2773 }
c5aa993b 2774
9ace0497
AC
2775 if (mips_debug)
2776 {
cb3d25d1
MS
2777 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2778 paddr_nz (stack_offset));
2779 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2780 paddr_nz (longword_offset));
9ace0497 2781 }
361d1df0 2782
9ace0497
AC
2783 addr = sp + stack_offset + longword_offset;
2784
2785 if (mips_debug)
2786 {
2787 int i;
cb3d25d1
MS
2788 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2789 paddr_nz (addr));
9ace0497
AC
2790 for (i = 0; i < partial_len; i++)
2791 {
cb3d25d1
MS
2792 fprintf_unfiltered (gdb_stdlog, "%02x",
2793 val[i] & 0xff);
9ace0497
AC
2794 }
2795 }
2796 write_memory (addr, val, partial_len);
c906108c
SS
2797 }
2798
f09ded24
AC
2799 /* Note!!! This is NOT an else clause. Odd sized
2800 structs may go thru BOTH paths. Floating point
46e0f506 2801 arguments will not. */
566f0f7a 2802 /* Write this portion of the argument to a general
46e0f506 2803 purpose register. */
f09ded24
AC
2804 if (argreg <= MIPS_LAST_ARG_REGNUM
2805 && !fp_register_arg_p (typecode, arg_type))
c906108c 2806 {
9ace0497 2807 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2808
9ace0497 2809 if (mips_debug)
acdb74a0 2810 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2811 argreg,
2812 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2813 write_register (argreg, regval);
2814 argreg++;
c906108c 2815 }
c5aa993b 2816
c906108c
SS
2817 len -= partial_len;
2818 val += partial_len;
2819
566f0f7a
AC
2820 /* Compute the the offset into the stack at which we
2821 will copy the next parameter.
2822
566f0f7a 2823 In the new EABI (and the NABI32), the stack_offset
46e0f506 2824 only needs to be adjusted when it has been used. */
c906108c 2825
46e0f506 2826 if (stack_used_p)
d929b26f 2827 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2828 }
2829 }
9ace0497
AC
2830 if (mips_debug)
2831 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2832 }
2833
0f71a2f6
JM
2834 /* Return adjusted stack pointer. */
2835 return sp;
2836}
2837
ebafbe83
MS
2838/* N32/N64 version of push_arguments. */
2839
f7ab6ec6 2840static CORE_ADDR
cb3d25d1
MS
2841mips_n32n64_push_arguments (int nargs,
2842 struct value **args,
2843 CORE_ADDR sp,
2844 int struct_return,
2845 CORE_ADDR struct_addr)
2846{
2847 int argreg;
2848 int float_argreg;
2849 int argnum;
2850 int len = 0;
2851 int stack_offset = 0;
2852
2853 /* First ensure that the stack and structure return address (if any)
2854 are properly aligned. The stack has to be at least 64-bit
2855 aligned even on 32-bit machines, because doubles must be 64-bit
2856 aligned. For n32 and n64, stack frames need to be 128-bit
2857 aligned, so we round to this widest known alignment. */
2858
2859 sp = ROUND_DOWN (sp, 16);
2860 struct_addr = ROUND_DOWN (struct_addr, 16);
2861
2862 /* Now make space on the stack for the args. */
2863 for (argnum = 0; argnum < nargs; argnum++)
2864 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2865 MIPS_STACK_ARGSIZE);
2866 sp -= ROUND_UP (len, 16);
2867
2868 if (mips_debug)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2871 paddr_nz (sp), ROUND_UP (len, 16));
2872
2873 /* Initialize the integer and float register pointers. */
2874 argreg = A0_REGNUM;
2875 float_argreg = FPA0_REGNUM;
2876
46e0f506 2877 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2878 if (struct_return)
2879 {
2880 if (mips_debug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2883 argreg, paddr_nz (struct_addr));
2884 write_register (argreg++, struct_addr);
2885 }
2886
2887 /* Now load as many as possible of the first arguments into
2888 registers, and push the rest onto the stack. Loop thru args
2889 from first to last. */
2890 for (argnum = 0; argnum < nargs; argnum++)
2891 {
2892 char *val;
2893 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2894 struct value *arg = args[argnum];
2895 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2896 int len = TYPE_LENGTH (arg_type);
2897 enum type_code typecode = TYPE_CODE (arg_type);
2898
2899 if (mips_debug)
2900 fprintf_unfiltered (gdb_stdlog,
2901 "mips_n32n64_push_arguments: %d len=%d type=%d",
2902 argnum + 1, len, (int) typecode);
2903
2904 val = (char *) VALUE_CONTENTS (arg);
2905
2906 if (fp_register_arg_p (typecode, arg_type)
2907 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2908 {
2909 /* This is a floating point value that fits entirely
2910 in a single register. */
2911 /* On 32 bit ABI's the float_argreg is further adjusted
2912 above to ensure that it is even register aligned. */
2913 LONGEST regval = extract_unsigned_integer (val, len);
2914 if (mips_debug)
2915 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2916 float_argreg, phex (regval, len));
2917 write_register (float_argreg++, regval);
2918
2919 if (mips_debug)
2920 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2921 argreg, phex (regval, len));
2922 write_register (argreg, regval);
2923 argreg += 1;
2924 }
2925 else
2926 {
2927 /* Copy the argument to general registers or the stack in
2928 register-sized pieces. Large arguments are split between
2929 registers and stack. */
2930 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2931 are treated specially: Irix cc passes them in registers
2932 where gcc sometimes puts them on the stack. For maximum
2933 compatibility, we will put them in both places. */
2934 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2935 (len % MIPS_SAVED_REGSIZE != 0));
2936 /* Note: Floating-point values that didn't fit into an FP
2937 register are only written to memory. */
2938 while (len > 0)
2939 {
2940 /* Rememer if the argument was written to the stack. */
2941 int stack_used_p = 0;
2942 int partial_len = len < MIPS_SAVED_REGSIZE ?
2943 len : MIPS_SAVED_REGSIZE;
2944
2945 if (mips_debug)
2946 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2947 partial_len);
2948
2949 /* Write this portion of the argument to the stack. */
2950 if (argreg > MIPS_LAST_ARG_REGNUM
2951 || odd_sized_struct
2952 || fp_register_arg_p (typecode, arg_type))
2953 {
2954 /* Should shorter than int integer values be
2955 promoted to int before being stored? */
2956 int longword_offset = 0;
2957 CORE_ADDR addr;
2958 stack_used_p = 1;
2959 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2960 {
2961 if (MIPS_STACK_ARGSIZE == 8 &&
2962 (typecode == TYPE_CODE_INT ||
2963 typecode == TYPE_CODE_PTR ||
2964 typecode == TYPE_CODE_FLT) && len <= 4)
2965 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
2966 }
2967
2968 if (mips_debug)
2969 {
2970 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2971 paddr_nz (stack_offset));
2972 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2973 paddr_nz (longword_offset));
2974 }
2975
2976 addr = sp + stack_offset + longword_offset;
2977
2978 if (mips_debug)
2979 {
2980 int i;
2981 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2982 paddr_nz (addr));
2983 for (i = 0; i < partial_len; i++)
2984 {
2985 fprintf_unfiltered (gdb_stdlog, "%02x",
2986 val[i] & 0xff);
2987 }
2988 }
2989 write_memory (addr, val, partial_len);
2990 }
2991
2992 /* Note!!! This is NOT an else clause. Odd sized
2993 structs may go thru BOTH paths. Floating point
2994 arguments will not. */
2995 /* Write this portion of the argument to a general
2996 purpose register. */
2997 if (argreg <= MIPS_LAST_ARG_REGNUM
2998 && !fp_register_arg_p (typecode, arg_type))
2999 {
3000 LONGEST regval = extract_unsigned_integer (val, partial_len);
3001
3002 /* A non-floating-point argument being passed in a
3003 general register. If a struct or union, and if
3004 the remaining length is smaller than the register
3005 size, we have to adjust the register value on
3006 big endian targets.
3007
3008 It does not seem to be necessary to do the
3009 same for integral types.
3010
3011 cagney/2001-07-23: gdb/179: Also, GCC, when
3012 outputting LE O32 with sizeof (struct) <
3013 MIPS_SAVED_REGSIZE, generates a left shift as
3014 part of storing the argument in a register a
3015 register (the left shift isn't generated when
3016 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3017 is quite possible that this is GCC contradicting
3018 the LE/O32 ABI, GDB has not been adjusted to
3019 accommodate this. Either someone needs to
3020 demonstrate that the LE/O32 ABI specifies such a
3021 left shift OR this new ABI gets identified as
3022 such and GDB gets tweaked accordingly. */
3023
3024 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3025 && partial_len < MIPS_SAVED_REGSIZE
3026 && (typecode == TYPE_CODE_STRUCT ||
3027 typecode == TYPE_CODE_UNION))
3028 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3029 TARGET_CHAR_BIT);
3030
3031 if (mips_debug)
3032 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3033 argreg,
3034 phex (regval, MIPS_SAVED_REGSIZE));
3035 write_register (argreg, regval);
3036 argreg++;
3037 }
3038
3039 len -= partial_len;
3040 val += partial_len;
3041
3042 /* Compute the the offset into the stack at which we
3043 will copy the next parameter.
3044
3045 In N32 (N64?), the stack_offset only needs to be
3046 adjusted when it has been used. */
3047
3048 if (stack_used_p)
3049 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3050 }
3051 }
3052 if (mips_debug)
3053 fprintf_unfiltered (gdb_stdlog, "\n");
3054 }
3055
3056 /* Return adjusted stack pointer. */
3057 return sp;
3058}
3059
46cac009 3060/* O32 version of push_arguments. */
ebafbe83 3061
46cac009
AC
3062static CORE_ADDR
3063mips_o32_push_arguments (int nargs,
3064 struct value **args,
3065 CORE_ADDR sp,
3066 int struct_return,
3067 CORE_ADDR struct_addr)
ebafbe83
MS
3068{
3069 int argreg;
3070 int float_argreg;
3071 int argnum;
3072 int len = 0;
3073 int stack_offset = 0;
ebafbe83
MS
3074
3075 /* First ensure that the stack and structure return address (if any)
3076 are properly aligned. The stack has to be at least 64-bit
3077 aligned even on 32-bit machines, because doubles must be 64-bit
3078 aligned. For n32 and n64, stack frames need to be 128-bit
3079 aligned, so we round to this widest known alignment. */
3080
3081 sp = ROUND_DOWN (sp, 16);
3082 struct_addr = ROUND_DOWN (struct_addr, 16);
3083
3084 /* Now make space on the stack for the args. */
3085 for (argnum = 0; argnum < nargs; argnum++)
3086 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3087 MIPS_STACK_ARGSIZE);
3088 sp -= ROUND_UP (len, 16);
3089
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog,
46cac009 3092 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3093 paddr_nz (sp), ROUND_UP (len, 16));
3094
3095 /* Initialize the integer and float register pointers. */
3096 argreg = A0_REGNUM;
3097 float_argreg = FPA0_REGNUM;
3098
bcb0cc15 3099 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3100 if (struct_return)
3101 {
3102 if (mips_debug)
3103 fprintf_unfiltered (gdb_stdlog,
46cac009 3104 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3105 argreg, paddr_nz (struct_addr));
3106 write_register (argreg++, struct_addr);
3107 stack_offset += MIPS_STACK_ARGSIZE;
3108 }
3109
3110 /* Now load as many as possible of the first arguments into
3111 registers, and push the rest onto the stack. Loop thru args
3112 from first to last. */
3113 for (argnum = 0; argnum < nargs; argnum++)
3114 {
3115 char *val;
3116 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3117 struct value *arg = args[argnum];
3118 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3119 int len = TYPE_LENGTH (arg_type);
3120 enum type_code typecode = TYPE_CODE (arg_type);
3121
3122 if (mips_debug)
3123 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3124 "mips_o32_push_arguments: %d len=%d type=%d",
3125 argnum + 1, len, (int) typecode);
3126
3127 val = (char *) VALUE_CONTENTS (arg);
3128
3129 /* 32-bit ABIs always start floating point arguments in an
3130 even-numbered floating point register. Round the FP register
3131 up before the check to see if there are any FP registers
3132 left. O32/O64 targets also pass the FP in the integer
3133 registers so also round up normal registers. */
3134 if (!FP_REGISTER_DOUBLE
3135 && fp_register_arg_p (typecode, arg_type))
3136 {
3137 if ((float_argreg & 1))
3138 float_argreg++;
3139 }
3140
3141 /* Floating point arguments passed in registers have to be
3142 treated specially. On 32-bit architectures, doubles
3143 are passed in register pairs; the even register gets
3144 the low word, and the odd register gets the high word.
3145 On O32/O64, the first two floating point arguments are
3146 also copied to general registers, because MIPS16 functions
3147 don't use float registers for arguments. This duplication of
3148 arguments in general registers can't hurt non-MIPS16 functions
3149 because those registers are normally skipped. */
3150
3151 if (fp_register_arg_p (typecode, arg_type)
3152 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3153 {
3154 if (!FP_REGISTER_DOUBLE && len == 8)
3155 {
3156 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3157 unsigned long regval;
3158
3159 /* Write the low word of the double to the even register(s). */
3160 regval = extract_unsigned_integer (val + low_offset, 4);
3161 if (mips_debug)
3162 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3163 float_argreg, phex (regval, 4));
3164 write_register (float_argreg++, regval);
3165 if (mips_debug)
3166 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3167 argreg, phex (regval, 4));
3168 write_register (argreg++, regval);
3169
3170 /* Write the high word of the double to the odd register(s). */
3171 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3172 if (mips_debug)
3173 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3174 float_argreg, phex (regval, 4));
3175 write_register (float_argreg++, regval);
3176
3177 if (mips_debug)
3178 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3179 argreg, phex (regval, 4));
3180 write_register (argreg++, regval);
3181 }
3182 else
3183 {
3184 /* This is a floating point value that fits entirely
3185 in a single register. */
3186 /* On 32 bit ABI's the float_argreg is further adjusted
3187 above to ensure that it is even register aligned. */
3188 LONGEST regval = extract_unsigned_integer (val, len);
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3191 float_argreg, phex (regval, len));
3192 write_register (float_argreg++, regval);
3193 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3194 registers for each argument. The below is (my
3195 guess) to ensure that the corresponding integer
3196 register has reserved the same space. */
3197 if (mips_debug)
3198 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3199 argreg, phex (regval, len));
3200 write_register (argreg, regval);
3201 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3202 }
3203 /* Reserve space for the FP register. */
3204 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3205 }
3206 else
3207 {
3208 /* Copy the argument to general registers or the stack in
3209 register-sized pieces. Large arguments are split between
3210 registers and stack. */
3211 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3212 are treated specially: Irix cc passes them in registers
3213 where gcc sometimes puts them on the stack. For maximum
3214 compatibility, we will put them in both places. */
3215 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3216 (len % MIPS_SAVED_REGSIZE != 0));
3217 /* Structures should be aligned to eight bytes (even arg registers)
3218 on MIPS_ABI_O32, if their first member has double precision. */
3219 if (MIPS_SAVED_REGSIZE < 8
3220 && mips_type_needs_double_align (arg_type))
3221 {
3222 if ((argreg & 1))
3223 argreg++;
3224 }
3225 /* Note: Floating-point values that didn't fit into an FP
3226 register are only written to memory. */
3227 while (len > 0)
3228 {
3229 /* Remember if the argument was written to the stack. */
3230 int stack_used_p = 0;
3231 int partial_len =
3232 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3233
3234 if (mips_debug)
3235 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3236 partial_len);
3237
3238 /* Write this portion of the argument to the stack. */
3239 if (argreg > MIPS_LAST_ARG_REGNUM
3240 || odd_sized_struct
3241 || fp_register_arg_p (typecode, arg_type))
3242 {
3243 /* Should shorter than int integer values be
3244 promoted to int before being stored? */
3245 int longword_offset = 0;
3246 CORE_ADDR addr;
3247 stack_used_p = 1;
3248 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3249 {
3250 if (MIPS_STACK_ARGSIZE == 8 &&
3251 (typecode == TYPE_CODE_INT ||
3252 typecode == TYPE_CODE_PTR ||
3253 typecode == TYPE_CODE_FLT) && len <= 4)
3254 longword_offset = MIPS_STACK_ARGSIZE - len;
3255 }
3256
3257 if (mips_debug)
3258 {
3259 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3260 paddr_nz (stack_offset));
3261 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3262 paddr_nz (longword_offset));
3263 }
3264
3265 addr = sp + stack_offset + longword_offset;
3266
3267 if (mips_debug)
3268 {
3269 int i;
3270 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3271 paddr_nz (addr));
3272 for (i = 0; i < partial_len; i++)
3273 {
3274 fprintf_unfiltered (gdb_stdlog, "%02x",
3275 val[i] & 0xff);
3276 }
3277 }
3278 write_memory (addr, val, partial_len);
3279 }
3280
3281 /* Note!!! This is NOT an else clause. Odd sized
3282 structs may go thru BOTH paths. Floating point
3283 arguments will not. */
3284 /* Write this portion of the argument to a general
3285 purpose register. */
3286 if (argreg <= MIPS_LAST_ARG_REGNUM
3287 && !fp_register_arg_p (typecode, arg_type))
3288 {
3289 LONGEST regval = extract_signed_integer (val, partial_len);
3290 /* Value may need to be sign extended, because
3291 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3292
3293 /* A non-floating-point argument being passed in a
3294 general register. If a struct or union, and if
3295 the remaining length is smaller than the register
3296 size, we have to adjust the register value on
3297 big endian targets.
3298
3299 It does not seem to be necessary to do the
3300 same for integral types.
3301
3302 Also don't do this adjustment on O64 binaries.
3303
3304 cagney/2001-07-23: gdb/179: Also, GCC, when
3305 outputting LE O32 with sizeof (struct) <
3306 MIPS_SAVED_REGSIZE, generates a left shift as
3307 part of storing the argument in a register a
3308 register (the left shift isn't generated when
3309 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3310 is quite possible that this is GCC contradicting
3311 the LE/O32 ABI, GDB has not been adjusted to
3312 accommodate this. Either someone needs to
3313 demonstrate that the LE/O32 ABI specifies such a
3314 left shift OR this new ABI gets identified as
3315 such and GDB gets tweaked accordingly. */
3316
3317 if (MIPS_SAVED_REGSIZE < 8
3318 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3319 && partial_len < MIPS_SAVED_REGSIZE
3320 && (typecode == TYPE_CODE_STRUCT ||
3321 typecode == TYPE_CODE_UNION))
3322 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3323 TARGET_CHAR_BIT);
3324
3325 if (mips_debug)
3326 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3327 argreg,
3328 phex (regval, MIPS_SAVED_REGSIZE));
3329 write_register (argreg, regval);
3330 argreg++;
3331
3332 /* Prevent subsequent floating point arguments from
3333 being passed in floating point registers. */
3334 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3335 }
3336
3337 len -= partial_len;
3338 val += partial_len;
3339
3340 /* Compute the the offset into the stack at which we
3341 will copy the next parameter.
3342
3343 In older ABIs, the caller reserved space for
3344 registers that contained arguments. This was loosely
3345 refered to as their "home". Consequently, space is
3346 always allocated. */
3347
3348 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3349 }
3350 }
3351 if (mips_debug)
3352 fprintf_unfiltered (gdb_stdlog, "\n");
3353 }
3354
3355 /* Return adjusted stack pointer. */
3356 return sp;
3357}
3358
3359/* O64 version of push_arguments. */
3360
3361static CORE_ADDR
3362mips_o64_push_arguments (int nargs,
3363 struct value **args,
3364 CORE_ADDR sp,
3365 int struct_return,
3366 CORE_ADDR struct_addr)
3367{
3368 int argreg;
3369 int float_argreg;
3370 int argnum;
3371 int len = 0;
3372 int stack_offset = 0;
3373
3374 /* First ensure that the stack and structure return address (if any)
3375 are properly aligned. The stack has to be at least 64-bit
3376 aligned even on 32-bit machines, because doubles must be 64-bit
3377 aligned. For n32 and n64, stack frames need to be 128-bit
3378 aligned, so we round to this widest known alignment. */
3379
3380 sp = ROUND_DOWN (sp, 16);
3381 struct_addr = ROUND_DOWN (struct_addr, 16);
3382
3383 /* Now make space on the stack for the args. */
3384 for (argnum = 0; argnum < nargs; argnum++)
3385 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3386 MIPS_STACK_ARGSIZE);
3387 sp -= ROUND_UP (len, 16);
3388
3389 if (mips_debug)
3390 fprintf_unfiltered (gdb_stdlog,
3391 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3392 paddr_nz (sp), ROUND_UP (len, 16));
3393
3394 /* Initialize the integer and float register pointers. */
3395 argreg = A0_REGNUM;
3396 float_argreg = FPA0_REGNUM;
3397
3398 /* The struct_return pointer occupies the first parameter-passing reg. */
3399 if (struct_return)
3400 {
3401 if (mips_debug)
3402 fprintf_unfiltered (gdb_stdlog,
3403 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3404 argreg, paddr_nz (struct_addr));
3405 write_register (argreg++, struct_addr);
3406 stack_offset += MIPS_STACK_ARGSIZE;
3407 }
3408
3409 /* Now load as many as possible of the first arguments into
3410 registers, and push the rest onto the stack. Loop thru args
3411 from first to last. */
3412 for (argnum = 0; argnum < nargs; argnum++)
3413 {
3414 char *val;
3415 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3416 struct value *arg = args[argnum];
3417 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3418 int len = TYPE_LENGTH (arg_type);
3419 enum type_code typecode = TYPE_CODE (arg_type);
3420
3421 if (mips_debug)
3422 fprintf_unfiltered (gdb_stdlog,
3423 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3424 argnum + 1, len, (int) typecode);
3425
3426 val = (char *) VALUE_CONTENTS (arg);
3427
3428 /* 32-bit ABIs always start floating point arguments in an
3429 even-numbered floating point register. Round the FP register
3430 up before the check to see if there are any FP registers
3431 left. O32/O64 targets also pass the FP in the integer
3432 registers so also round up normal registers. */
3433 if (!FP_REGISTER_DOUBLE
3434 && fp_register_arg_p (typecode, arg_type))
3435 {
3436 if ((float_argreg & 1))
3437 float_argreg++;
3438 }
3439
3440 /* Floating point arguments passed in registers have to be
3441 treated specially. On 32-bit architectures, doubles
3442 are passed in register pairs; the even register gets
3443 the low word, and the odd register gets the high word.
3444 On O32/O64, the first two floating point arguments are
3445 also copied to general registers, because MIPS16 functions
3446 don't use float registers for arguments. This duplication of
3447 arguments in general registers can't hurt non-MIPS16 functions
3448 because those registers are normally skipped. */
3449
3450 if (fp_register_arg_p (typecode, arg_type)
3451 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3452 {
3453 if (!FP_REGISTER_DOUBLE && len == 8)
3454 {
3455 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3456 unsigned long regval;
3457
3458 /* Write the low word of the double to the even register(s). */
3459 regval = extract_unsigned_integer (val + low_offset, 4);
3460 if (mips_debug)
3461 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3462 float_argreg, phex (regval, 4));
3463 write_register (float_argreg++, regval);
3464 if (mips_debug)
3465 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3466 argreg, phex (regval, 4));
3467 write_register (argreg++, regval);
3468
3469 /* Write the high word of the double to the odd register(s). */
3470 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3471 if (mips_debug)
3472 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3473 float_argreg, phex (regval, 4));
3474 write_register (float_argreg++, regval);
3475
3476 if (mips_debug)
3477 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3478 argreg, phex (regval, 4));
3479 write_register (argreg++, regval);
3480 }
3481 else
3482 {
3483 /* This is a floating point value that fits entirely
3484 in a single register. */
3485 /* On 32 bit ABI's the float_argreg is further adjusted
3486 above to ensure that it is even register aligned. */
3487 LONGEST regval = extract_unsigned_integer (val, len);
3488 if (mips_debug)
3489 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3490 float_argreg, phex (regval, len));
3491 write_register (float_argreg++, regval);
3492 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3493 registers for each argument. The below is (my
3494 guess) to ensure that the corresponding integer
3495 register has reserved the same space. */
3496 if (mips_debug)
3497 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3498 argreg, phex (regval, len));
3499 write_register (argreg, regval);
3500 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3501 }
3502 /* Reserve space for the FP register. */
3503 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3504 }
3505 else
3506 {
3507 /* Copy the argument to general registers or the stack in
3508 register-sized pieces. Large arguments are split between
3509 registers and stack. */
3510 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3511 are treated specially: Irix cc passes them in registers
3512 where gcc sometimes puts them on the stack. For maximum
3513 compatibility, we will put them in both places. */
3514 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3515 (len % MIPS_SAVED_REGSIZE != 0));
3516 /* Structures should be aligned to eight bytes (even arg registers)
3517 on MIPS_ABI_O32, if their first member has double precision. */
3518 if (MIPS_SAVED_REGSIZE < 8
3519 && mips_type_needs_double_align (arg_type))
3520 {
3521 if ((argreg & 1))
3522 argreg++;
3523 }
3524 /* Note: Floating-point values that didn't fit into an FP
3525 register are only written to memory. */
3526 while (len > 0)
3527 {
3528 /* Remember if the argument was written to the stack. */
3529 int stack_used_p = 0;
3530 int partial_len =
3531 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3532
3533 if (mips_debug)
3534 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3535 partial_len);
3536
3537 /* Write this portion of the argument to the stack. */
3538 if (argreg > MIPS_LAST_ARG_REGNUM
3539 || odd_sized_struct
3540 || fp_register_arg_p (typecode, arg_type))
3541 {
3542 /* Should shorter than int integer values be
3543 promoted to int before being stored? */
3544 int longword_offset = 0;
3545 CORE_ADDR addr;
3546 stack_used_p = 1;
3547 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3548 {
3549 if (MIPS_STACK_ARGSIZE == 8 &&
3550 (typecode == TYPE_CODE_INT ||
3551 typecode == TYPE_CODE_PTR ||
3552 typecode == TYPE_CODE_FLT) && len <= 4)
3553 longword_offset = MIPS_STACK_ARGSIZE - len;
3554 }
3555
3556 if (mips_debug)
3557 {
3558 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3559 paddr_nz (stack_offset));
3560 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3561 paddr_nz (longword_offset));
3562 }
3563
3564 addr = sp + stack_offset + longword_offset;
3565
3566 if (mips_debug)
3567 {
3568 int i;
3569 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3570 paddr_nz (addr));
3571 for (i = 0; i < partial_len; i++)
3572 {
3573 fprintf_unfiltered (gdb_stdlog, "%02x",
3574 val[i] & 0xff);
3575 }
3576 }
3577 write_memory (addr, val, partial_len);
3578 }
3579
3580 /* Note!!! This is NOT an else clause. Odd sized
3581 structs may go thru BOTH paths. Floating point
3582 arguments will not. */
3583 /* Write this portion of the argument to a general
3584 purpose register. */
3585 if (argreg <= MIPS_LAST_ARG_REGNUM
3586 && !fp_register_arg_p (typecode, arg_type))
3587 {
3588 LONGEST regval = extract_signed_integer (val, partial_len);
3589 /* Value may need to be sign extended, because
3590 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3591
3592 /* A non-floating-point argument being passed in a
3593 general register. If a struct or union, and if
3594 the remaining length is smaller than the register
3595 size, we have to adjust the register value on
3596 big endian targets.
3597
3598 It does not seem to be necessary to do the
3599 same for integral types.
3600
3601 Also don't do this adjustment on O64 binaries.
3602
3603 cagney/2001-07-23: gdb/179: Also, GCC, when
3604 outputting LE O32 with sizeof (struct) <
3605 MIPS_SAVED_REGSIZE, generates a left shift as
3606 part of storing the argument in a register a
3607 register (the left shift isn't generated when
3608 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3609 is quite possible that this is GCC contradicting
3610 the LE/O32 ABI, GDB has not been adjusted to
3611 accommodate this. Either someone needs to
3612 demonstrate that the LE/O32 ABI specifies such a
3613 left shift OR this new ABI gets identified as
3614 such and GDB gets tweaked accordingly. */
3615
3616 if (MIPS_SAVED_REGSIZE < 8
3617 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3618 && partial_len < MIPS_SAVED_REGSIZE
3619 && (typecode == TYPE_CODE_STRUCT ||
3620 typecode == TYPE_CODE_UNION))
3621 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3622 TARGET_CHAR_BIT);
3623
3624 if (mips_debug)
3625 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3626 argreg,
3627 phex (regval, MIPS_SAVED_REGSIZE));
3628 write_register (argreg, regval);
3629 argreg++;
3630
3631 /* Prevent subsequent floating point arguments from
3632 being passed in floating point registers. */
3633 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3634 }
3635
3636 len -= partial_len;
3637 val += partial_len;
3638
3639 /* Compute the the offset into the stack at which we
3640 will copy the next parameter.
3641
3642 In older ABIs, the caller reserved space for
3643 registers that contained arguments. This was loosely
3644 refered to as their "home". Consequently, space is
3645 always allocated. */
3646
3647 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3648 }
3649 }
3650 if (mips_debug)
3651 fprintf_unfiltered (gdb_stdlog, "\n");
3652 }
3653
3654 /* Return adjusted stack pointer. */
3655 return sp;
3656}
3657
f7ab6ec6 3658static CORE_ADDR
acdb74a0 3659mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3660{
c906108c
SS
3661 /* Set the return address register to point to the entry
3662 point of the program, where a breakpoint lies in wait. */
c5aa993b 3663 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3664 return sp;
3665}
3666
3667static void
c5aa993b 3668mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3669{
cb3d25d1 3670 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3671 int regsize;
3672 int offset;
3673 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3674 {
3675 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3676 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3677 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3678 : 0);
3679 }
3680 else
3681 {
3682 regsize = REGISTER_RAW_SIZE (regno);
3683 offset = 0;
3684 }
c906108c
SS
3685 *sp -= regsize;
3686 read_register_gen (regno, buffer);
7a292a7a 3687 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3688}
3689
3690/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3691#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3692
f7ab6ec6 3693static void
acdb74a0 3694mips_push_dummy_frame (void)
c906108c
SS
3695{
3696 int ireg;
c5aa993b
JM
3697 struct linked_proc_info *link = (struct linked_proc_info *)
3698 xmalloc (sizeof (struct linked_proc_info));
c906108c 3699 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3700 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3701 CORE_ADDR old_sp = sp;
3702 link->next = linked_proc_desc_table;
3703 linked_proc_desc_table = link;
3704
3705/* FIXME! are these correct ? */
c5aa993b 3706#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3707#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3708#define FLOAT_REG_SAVE_MASK MASK(0,19)
3709#define FLOAT_SINGLE_REG_SAVE_MASK \
3710 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3711 /*
3712 * The registers we must save are all those not preserved across
3713 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3714 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3715 * and FP Control/Status registers.
361d1df0 3716 *
c906108c
SS
3717 *
3718 * Dummy frame layout:
3719 * (high memory)
c5aa993b
JM
3720 * Saved PC
3721 * Saved MMHI, MMLO, FPC_CSR
3722 * Saved R31
3723 * Saved R28
3724 * ...
3725 * Saved R1
c906108c
SS
3726 * Saved D18 (i.e. F19, F18)
3727 * ...
3728 * Saved D0 (i.e. F1, F0)
c5aa993b 3729 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3730 * (low memory)
3731 */
3732
3733 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3734 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3735 PROC_FRAME_OFFSET (proc_desc) = 0;
3736 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3737 mips_push_register (&sp, PC_REGNUM);
3738 mips_push_register (&sp, HI_REGNUM);
3739 mips_push_register (&sp, LO_REGNUM);
3740 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3741
3742 /* Save general CPU registers */
c5aa993b 3743 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3744 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3745 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3746 for (ireg = 32; --ireg >= 0;)
3747 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3748 mips_push_register (&sp, ireg);
3749
3750 /* Save floating point registers starting with high order word */
c5aa993b 3751 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3752 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3753 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3754 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3755 from FP. */
c5aa993b
JM
3756 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3757 for (ireg = 32; --ireg >= 0;)
3758 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3759 mips_push_register (&sp, ireg + FP0_REGNUM);
3760
3761 /* Update the frame pointer for the call dummy and the stack pointer.
3762 Set the procedure's starting and ending addresses to point to the
3763 call dummy address at the entry point. */
3764 write_register (PUSH_FP_REGNUM, old_sp);
3765 write_register (SP_REGNUM, sp);
c5aa993b
JM
3766 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3767 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3768 SET_PROC_DESC_IS_DUMMY (proc_desc);
3769 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3770}
3771
f7ab6ec6 3772static void
acdb74a0 3773mips_pop_frame (void)
c906108c
SS
3774{
3775 register int regnum;
3776 struct frame_info *frame = get_current_frame ();
3777 CORE_ADDR new_sp = FRAME_FP (frame);
3778
cce74817 3779 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 3780
c5aa993b 3781 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c 3782 if (frame->saved_regs == NULL)
ffabd70d 3783 FRAME_INIT_SAVED_REGS (frame);
c906108c 3784 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145
MS
3785 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3786 && frame->saved_regs[regnum])
3787 {
3788 /* Floating point registers must not be sign extended,
3789 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3790
3791 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3792 write_register (regnum,
3793 read_memory_unsigned_integer (frame->saved_regs[regnum],
3794 MIPS_SAVED_REGSIZE));
3795 else
3796 write_register (regnum,
3797 read_memory_integer (frame->saved_regs[regnum],
3798 MIPS_SAVED_REGSIZE));
3799 }
757a7cc6 3800
c906108c
SS
3801 write_register (SP_REGNUM, new_sp);
3802 flush_cached_frames ();
3803
c5aa993b 3804 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3805 {
3806 struct linked_proc_info *pi_ptr, *prev_ptr;
3807
3808 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3809 pi_ptr != NULL;
3810 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3811 {
3812 if (&pi_ptr->info == proc_desc)
3813 break;
3814 }
3815
3816 if (pi_ptr == NULL)
3817 error ("Can't locate dummy extra frame info\n");
3818
3819 if (prev_ptr != NULL)
3820 prev_ptr->next = pi_ptr->next;
3821 else
3822 linked_proc_desc_table = pi_ptr->next;
3823
b8c9b27d 3824 xfree (pi_ptr);
c906108c
SS
3825
3826 write_register (HI_REGNUM,
c5aa993b 3827 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3828 MIPS_SAVED_REGSIZE));
c906108c 3829 write_register (LO_REGNUM,
c5aa993b 3830 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3831 MIPS_SAVED_REGSIZE));
c906108c
SS
3832 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3833 write_register (FCRCS_REGNUM,
c5aa993b 3834 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3835 MIPS_SAVED_REGSIZE));
c906108c
SS
3836 }
3837}
3838
f7ab6ec6
MS
3839static void
3840mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3841 struct value **args, struct type *type, int gcc_p)
3842{
3843 write_register(T9_REGNUM, fun);
3844}
3845
dd824b04
DJ
3846/* Floating point register management.
3847
3848 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3849 64bit operations, these early MIPS cpus treat fp register pairs
3850 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3851 registers and offer a compatibility mode that emulates the MIPS2 fp
3852 model. When operating in MIPS2 fp compat mode, later cpu's split
3853 double precision floats into two 32-bit chunks and store them in
3854 consecutive fp regs. To display 64-bit floats stored in this
3855 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3856 Throw in user-configurable endianness and you have a real mess.
3857
3858 The way this works is:
3859 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3860 double-precision value will be split across two logical registers.
3861 The lower-numbered logical register will hold the low-order bits,
3862 regardless of the processor's endianness.
3863 - If we are on a 64-bit processor, and we are looking for a
3864 single-precision value, it will be in the low ordered bits
3865 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3866 save slot in memory.
3867 - If we are in 64-bit mode, everything is straightforward.
3868
3869 Note that this code only deals with "live" registers at the top of the
3870 stack. We will attempt to deal with saved registers later, when
3871 the raw/cooked register interface is in place. (We need a general
3872 interface that can deal with dynamic saved register sizes -- fp
3873 regs could be 32 bits wide in one frame and 64 on the frame above
3874 and below). */
3875
67b2c998
DJ
3876static struct type *
3877mips_float_register_type (void)
3878{
361d1df0 3879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3880 return builtin_type_ieee_single_big;
3881 else
3882 return builtin_type_ieee_single_little;
3883}
3884
3885static struct type *
3886mips_double_register_type (void)
3887{
361d1df0 3888 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3889 return builtin_type_ieee_double_big;
3890 else
3891 return builtin_type_ieee_double_little;
3892}
3893
dd824b04
DJ
3894/* Copy a 32-bit single-precision value from the current frame
3895 into rare_buffer. */
3896
3897static void
3898mips_read_fp_register_single (int regno, char *rare_buffer)
3899{
3900 int raw_size = REGISTER_RAW_SIZE (regno);
3901 char *raw_buffer = alloca (raw_size);
3902
cda5a58a 3903 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
3904 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3905 if (raw_size == 8)
3906 {
3907 /* We have a 64-bit value for this register. Find the low-order
3908 32 bits. */
3909 int offset;
3910
3911 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3912 offset = 4;
3913 else
3914 offset = 0;
3915
3916 memcpy (rare_buffer, raw_buffer + offset, 4);
3917 }
3918 else
3919 {
3920 memcpy (rare_buffer, raw_buffer, 4);
3921 }
3922}
3923
3924/* Copy a 64-bit double-precision value from the current frame into
3925 rare_buffer. This may include getting half of it from the next
3926 register. */
3927
3928static void
3929mips_read_fp_register_double (int regno, char *rare_buffer)
3930{
3931 int raw_size = REGISTER_RAW_SIZE (regno);
3932
3933 if (raw_size == 8 && !mips2_fp_compat ())
3934 {
3935 /* We have a 64-bit value for this register, and we should use
3936 all 64 bits. */
cda5a58a 3937 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
3938 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3939 }
3940 else
3941 {
3942 if ((regno - FP0_REGNUM) & 1)
3943 internal_error (__FILE__, __LINE__,
3944 "mips_read_fp_register_double: bad access to "
3945 "odd-numbered FP register");
3946
3947 /* mips_read_fp_register_single will find the correct 32 bits from
3948 each register. */
3949 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3950 {
3951 mips_read_fp_register_single (regno, rare_buffer + 4);
3952 mips_read_fp_register_single (regno + 1, rare_buffer);
3953 }
361d1df0 3954 else
dd824b04
DJ
3955 {
3956 mips_read_fp_register_single (regno, rare_buffer);
3957 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3958 }
3959 }
3960}
3961
c906108c 3962static void
acdb74a0 3963mips_print_register (int regnum, int all)
c906108c 3964{
119d55d8 3965 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
3966
3967 /* Get the data in raw format. */
cda5a58a 3968 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
3969 {
3970 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3971 return;
3972 }
3973
dd824b04
DJ
3974 /* If we have a actual 32-bit floating point register (or we are in
3975 32-bit compatibility mode), and the register is even-numbered,
3976 also print it as a double (spanning two registers). */
c906108c 3977 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
3978 && (REGISTER_RAW_SIZE (regnum) == 4
3979 || mips2_fp_compat ())
c5aa993b 3980 && !((regnum - FP0_REGNUM) & 1))
dd824b04 3981 {
cb3d25d1 3982 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 3983
dd824b04 3984 mips_read_fp_register_double (regnum, dbuffer);
c906108c 3985
dd824b04 3986 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 3987 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
3988 gdb_stdout, 0, 1, 0, Val_pretty_default);
3989 printf_filtered ("); ");
3990 }
c906108c
SS
3991 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3992
3993 /* The problem with printing numeric register names (r26, etc.) is that
3994 the user can't use them on input. Probably the best solution is to
3995 fix it so that either the numeric or the funky (a2, etc.) names
3996 are accepted on input. */
3997 if (regnum < MIPS_NUMREGS)
3998 printf_filtered ("(r%d): ", regnum);
3999 else
4000 printf_filtered (": ");
4001
4002 /* If virtual format is floating, print it that way. */
4003 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
4004 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4005 {
4006 /* We have a meaningful 64-bit value in this register. Show
4007 it as a 32-bit float and a 64-bit double. */
d7449b42 4008 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
4009
4010 printf_filtered (" (float) ");
67b2c998 4011 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
4012 gdb_stdout, 0, 1, 0, Val_pretty_default);
4013 printf_filtered (", (double) ");
67b2c998 4014 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
4015 gdb_stdout, 0, 1, 0, Val_pretty_default);
4016 }
4017 else
4018 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4019 gdb_stdout, 0, 1, 0, Val_pretty_default);
4020 /* Else print as integer in hex. */
4021 else
ed9a39eb
JM
4022 {
4023 int offset;
4024
d7449b42 4025 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
4026 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4027 else
4028 offset = 0;
361d1df0 4029
ed9a39eb
JM
4030 print_scalar_formatted (raw_buffer + offset,
4031 REGISTER_VIRTUAL_TYPE (regnum),
4032 'x', 0, gdb_stdout);
4033 }
c906108c
SS
4034}
4035
361d1df0 4036/* Replacement for generic do_registers_info.
c906108c
SS
4037 Print regs in pretty columns. */
4038
4039static int
acdb74a0 4040do_fp_register_row (int regnum)
c5aa993b 4041{ /* do values for FP (float) regs */
dd824b04 4042 char *raw_buffer;
c906108c
SS
4043 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4044 int inv1, inv2, inv3;
c5aa993b 4045
dd824b04 4046 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4047
dd824b04 4048 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4049 {
dd824b04
DJ
4050 /* 4-byte registers: we can fit two registers per row. */
4051 /* Also print every pair of 4-byte regs as an 8-byte double. */
4052 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4053 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4054
dd824b04 4055 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 4056 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
4057
4058 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4059 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4060
1adad886
AC
4061 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4062 if (inv1)
4063 printf_filtered (": <invalid float>");
4064 else
4065 printf_filtered ("%-17.9g", flt1);
4066
4067 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4068 if (inv2)
4069 printf_filtered (": <invalid float>");
4070 else
4071 printf_filtered ("%-17.9g", flt2);
4072
4073 printf_filtered (" dbl: ");
4074 if (inv3)
4075 printf_filtered ("<invalid double>");
4076 else
4077 printf_filtered ("%-24.17g", doub);
4078 printf_filtered ("\n");
4079
c906108c 4080 /* may want to do hex display here (future enhancement) */
c5aa993b 4081 regnum += 2;
c906108c
SS
4082 }
4083 else
dd824b04
DJ
4084 {
4085 /* Eight byte registers: print each one as float AND as double. */
4086 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4087 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 4088
dd824b04 4089 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4090 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4091
1adad886
AC
4092 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4093 if (inv1)
4094 printf_filtered ("<invalid float>");
4095 else
4096 printf_filtered ("flt: %-17.9g", flt1);
4097
4098 printf_filtered (" dbl: ");
4099 if (inv3)
4100 printf_filtered ("<invalid double>");
4101 else
4102 printf_filtered ("%-24.17g", doub);
4103
4104 printf_filtered ("\n");
c906108c
SS
4105 /* may want to do hex display here (future enhancement) */
4106 regnum++;
4107 }
4108 return regnum;
4109}
4110
4111/* Print a row's worth of GP (int) registers, with name labels above */
4112
4113static int
acdb74a0 4114do_gp_register_row (int regnum)
c906108c
SS
4115{
4116 /* do values for GP (int) regs */
cb3d25d1 4117 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4118 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4119 int col, byte;
4120 int start_regnum = regnum;
4121 int numregs = NUM_REGS;
4122
4123
4124 /* For GP registers, we print a separate row of names above the vals */
4125 printf_filtered (" ");
4126 for (col = 0; col < ncols && regnum < numregs; regnum++)
4127 {
4128 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4129 continue; /* unused register */
c906108c 4130 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4131 break; /* end the row: reached FP register */
4132 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4133 REGISTER_NAME (regnum));
4134 col++;
4135 }
c5aa993b 4136 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4137 start_regnum); /* print the R0 to R31 names */
4138
4139 regnum = start_regnum; /* go back to start of row */
4140 /* now print the values in hex, 4 or 8 to the row */
4141 for (col = 0; col < ncols && regnum < numregs; regnum++)
4142 {
4143 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4144 continue; /* unused register */
c906108c 4145 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4146 break; /* end row: reached FP register */
c906108c 4147 /* OK: get the data in raw format. */
cda5a58a 4148 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
4149 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4150 /* pad small registers */
43e526b9 4151 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4152 printf_filtered (" ");
4153 /* Now print the register value in hex, endian order. */
d7449b42 4154 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4155 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4156 byte < REGISTER_RAW_SIZE (regnum);
4157 byte++)
c906108c
SS
4158 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4159 else
43e526b9
JM
4160 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4161 byte >= 0;
4162 byte--)
c906108c
SS
4163 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4164 printf_filtered (" ");
4165 col++;
4166 }
c5aa993b 4167 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4168 printf_filtered ("\n");
4169
4170 return regnum;
4171}
4172
4173/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4174
bf1f5b4c 4175static void
acdb74a0 4176mips_do_registers_info (int regnum, int fpregs)
c906108c 4177{
c5aa993b 4178 if (regnum != -1) /* do one specified register */
c906108c
SS
4179 {
4180 if (*(REGISTER_NAME (regnum)) == '\0')
4181 error ("Not a valid register for the current processor type");
4182
4183 mips_print_register (regnum, 0);
4184 printf_filtered ("\n");
4185 }
c5aa993b
JM
4186 else
4187 /* do all (or most) registers */
c906108c
SS
4188 {
4189 regnum = 0;
4190 while (regnum < NUM_REGS)
4191 {
c5aa993b
JM
4192 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4193 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4194 regnum = do_fp_register_row (regnum); /* FP regs */
4195 else
4196 regnum += MIPS_NUMREGS; /* skip floating point regs */
4197 else
4198 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4199 }
4200 }
4201}
4202
c906108c
SS
4203/* Is this a branch with a delay slot? */
4204
a14ed312 4205static int is_delayed (unsigned long);
c906108c
SS
4206
4207static int
acdb74a0 4208is_delayed (unsigned long insn)
c906108c
SS
4209{
4210 int i;
4211 for (i = 0; i < NUMOPCODES; ++i)
4212 if (mips_opcodes[i].pinfo != INSN_MACRO
4213 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4214 break;
4215 return (i < NUMOPCODES
4216 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4217 | INSN_COND_BRANCH_DELAY
4218 | INSN_COND_BRANCH_LIKELY)));
4219}
4220
4221int
acdb74a0 4222mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4223{
4224 char buf[MIPS_INSTLEN];
4225
4226 /* There is no branch delay slot on MIPS16. */
4227 if (pc_is_mips16 (pc))
4228 return 0;
4229
4230 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4231 /* If error reading memory, guess that it is not a delayed branch. */
4232 return 0;
c5aa993b 4233 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4234}
4235
4236
4237/* Skip the PC past function prologue instructions (32-bit version).
4238 This is a helper function for mips_skip_prologue. */
4239
4240static CORE_ADDR
f7b9e9fc 4241mips32_skip_prologue (CORE_ADDR pc)
c906108c 4242{
c5aa993b
JM
4243 t_inst inst;
4244 CORE_ADDR end_pc;
4245 int seen_sp_adjust = 0;
4246 int load_immediate_bytes = 0;
4247
4248 /* Skip the typical prologue instructions. These are the stack adjustment
4249 instruction and the instructions that save registers on the stack
4250 or in the gcc frame. */
4251 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4252 {
4253 unsigned long high_word;
c906108c 4254
c5aa993b
JM
4255 inst = mips_fetch_instruction (pc);
4256 high_word = (inst >> 16) & 0xffff;
c906108c 4257
c5aa993b
JM
4258 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4259 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4260 seen_sp_adjust = 1;
4261 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4262 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4263 seen_sp_adjust = 1;
4264 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4265 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4266 && (inst & 0x001F0000)) /* reg != $zero */
4267 continue;
4268
4269 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4270 continue;
4271 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4272 /* sx reg,n($s8) */
4273 continue; /* reg != $zero */
4274
4275 /* move $s8,$sp. With different versions of gas this will be either
4276 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4277 Accept any one of these. */
4278 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4279 continue;
4280
4281 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4282 continue;
4283 else if (high_word == 0x3c1c) /* lui $gp,n */
4284 continue;
4285 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4286 continue;
4287 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4288 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4289 continue;
4290 /* The following instructions load $at or $t0 with an immediate
4291 value in preparation for a stack adjustment via
4292 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4293 a local variable, so we accept them only before a stack adjustment
4294 instruction was seen. */
4295 else if (!seen_sp_adjust)
4296 {
4297 if (high_word == 0x3c01 || /* lui $at,n */
4298 high_word == 0x3c08) /* lui $t0,n */
4299 {
4300 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4301 continue;
4302 }
4303 else if (high_word == 0x3421 || /* ori $at,$at,n */
4304 high_word == 0x3508 || /* ori $t0,$t0,n */
4305 high_word == 0x3401 || /* ori $at,$zero,n */
4306 high_word == 0x3408) /* ori $t0,$zero,n */
4307 {
4308 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4309 continue;
4310 }
4311 else
4312 break;
4313 }
4314 else
4315 break;
c906108c
SS
4316 }
4317
c5aa993b
JM
4318 /* In a frameless function, we might have incorrectly
4319 skipped some load immediate instructions. Undo the skipping
4320 if the load immediate was not followed by a stack adjustment. */
4321 if (load_immediate_bytes && !seen_sp_adjust)
4322 pc -= load_immediate_bytes;
4323 return pc;
c906108c
SS
4324}
4325
4326/* Skip the PC past function prologue instructions (16-bit version).
4327 This is a helper function for mips_skip_prologue. */
4328
4329static CORE_ADDR
f7b9e9fc 4330mips16_skip_prologue (CORE_ADDR pc)
c906108c 4331{
c5aa993b
JM
4332 CORE_ADDR end_pc;
4333 int extend_bytes = 0;
4334 int prev_extend_bytes;
c906108c 4335
c5aa993b
JM
4336 /* Table of instructions likely to be found in a function prologue. */
4337 static struct
c906108c
SS
4338 {
4339 unsigned short inst;
4340 unsigned short mask;
c5aa993b
JM
4341 }
4342 table[] =
4343 {
c906108c 4344 {
c5aa993b
JM
4345 0x6300, 0xff00
4346 }
4347 , /* addiu $sp,offset */
4348 {
4349 0xfb00, 0xff00
4350 }
4351 , /* daddiu $sp,offset */
4352 {
4353 0xd000, 0xf800
4354 }
4355 , /* sw reg,n($sp) */
4356 {
4357 0xf900, 0xff00
4358 }
4359 , /* sd reg,n($sp) */
4360 {
4361 0x6200, 0xff00
4362 }
4363 , /* sw $ra,n($sp) */
4364 {
4365 0xfa00, 0xff00
4366 }
4367 , /* sd $ra,n($sp) */
4368 {
4369 0x673d, 0xffff
4370 }
4371 , /* move $s1,sp */
4372 {
4373 0xd980, 0xff80
4374 }
4375 , /* sw $a0-$a3,n($s1) */
4376 {
4377 0x6704, 0xff1c
4378 }
4379 , /* move reg,$a0-$a3 */
4380 {
4381 0xe809, 0xf81f
4382 }
4383 , /* entry pseudo-op */
4384 {
4385 0x0100, 0xff00
4386 }
4387 , /* addiu $s1,$sp,n */
4388 {
4389 0, 0
4390 } /* end of table marker */
4391 };
4392
4393 /* Skip the typical prologue instructions. These are the stack adjustment
4394 instruction and the instructions that save registers on the stack
4395 or in the gcc frame. */
4396 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4397 {
4398 unsigned short inst;
4399 int i;
c906108c 4400
c5aa993b 4401 inst = mips_fetch_instruction (pc);
c906108c 4402
c5aa993b
JM
4403 /* Normally we ignore an extend instruction. However, if it is
4404 not followed by a valid prologue instruction, we must adjust
4405 the pc back over the extend so that it won't be considered
4406 part of the prologue. */
4407 if ((inst & 0xf800) == 0xf000) /* extend */
4408 {
4409 extend_bytes = MIPS16_INSTLEN;
4410 continue;
4411 }
4412 prev_extend_bytes = extend_bytes;
4413 extend_bytes = 0;
c906108c 4414
c5aa993b
JM
4415 /* Check for other valid prologue instructions besides extend. */
4416 for (i = 0; table[i].mask != 0; i++)
4417 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4418 break;
4419 if (table[i].mask != 0) /* it was in table? */
4420 continue; /* ignore it */
4421 else
4422 /* non-prologue */
4423 {
4424 /* Return the current pc, adjusted backwards by 2 if
4425 the previous instruction was an extend. */
4426 return pc - prev_extend_bytes;
4427 }
c906108c
SS
4428 }
4429 return pc;
4430}
4431
4432/* To skip prologues, I use this predicate. Returns either PC itself
4433 if the code at PC does not look like a function prologue; otherwise
4434 returns an address that (if we're lucky) follows the prologue. If
4435 LENIENT, then we must skip everything which is involved in setting
4436 up the frame (it's OK to skip more, just so long as we don't skip
4437 anything which might clobber the registers which are being saved.
4438 We must skip more in the case where part of the prologue is in the
4439 delay slot of a non-prologue instruction). */
4440
f7ab6ec6 4441static CORE_ADDR
f7b9e9fc 4442mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4443{
4444 /* See if we can determine the end of the prologue via the symbol table.
4445 If so, then return either PC, or the PC after the prologue, whichever
4446 is greater. */
4447
4448 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4449
4450 if (post_prologue_pc != 0)
4451 return max (pc, post_prologue_pc);
4452
4453 /* Can't determine prologue from the symbol table, need to examine
4454 instructions. */
4455
4456 if (pc_is_mips16 (pc))
f7b9e9fc 4457 return mips16_skip_prologue (pc);
c906108c 4458 else
f7b9e9fc 4459 return mips32_skip_prologue (pc);
c906108c 4460}
c906108c 4461
7a292a7a
SS
4462/* Determine how a return value is stored within the MIPS register
4463 file, given the return type `valtype'. */
4464
4465struct return_value_word
4466{
4467 int len;
4468 int reg;
4469 int reg_offset;
4470 int buf_offset;
4471};
4472
7a292a7a 4473static void
acdb74a0
AC
4474return_value_location (struct type *valtype,
4475 struct return_value_word *hi,
4476 struct return_value_word *lo)
7a292a7a
SS
4477{
4478 int len = TYPE_LENGTH (valtype);
c5aa993b 4479
7a292a7a
SS
4480 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4481 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4482 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4483 {
4484 if (!FP_REGISTER_DOUBLE && len == 8)
4485 {
4486 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4487 spread them across a floating-point register pair. */
d7449b42
AC
4488 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4489 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4490 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4491 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4492 ? 4 : 0);
4493 hi->reg_offset = lo->reg_offset;
4494 lo->reg = FP0_REGNUM + 0;
4495 hi->reg = FP0_REGNUM + 1;
4496 lo->len = 4;
4497 hi->len = 4;
4498 }
4499 else
4500 {
4501 /* The floating point value fits in a single floating-point
c5aa993b 4502 register. */
d7449b42 4503 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4504 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4505 && len == 4)
4506 ? 4 : 0);
4507 lo->reg = FP0_REGNUM;
4508 lo->len = len;
4509 lo->buf_offset = 0;
4510 hi->len = 0;
4511 hi->reg_offset = 0;
4512 hi->buf_offset = 0;
4513 hi->reg = 0;
4514 }
4515 }
4516 else
4517 {
4518 /* Locate a result possibly spread across two registers. */
4519 int regnum = 2;
4520 lo->reg = regnum + 0;
4521 hi->reg = regnum + 1;
d7449b42 4522 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4523 && len < MIPS_SAVED_REGSIZE)
4524 {
bf1f5b4c
MS
4525 /* "un-left-justify" the value in the low register */
4526 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4527 lo->len = len;
bf1f5b4c 4528 hi->reg_offset = 0;
7a292a7a
SS
4529 hi->len = 0;
4530 }
d7449b42 4531 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4532 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4533 && len < MIPS_SAVED_REGSIZE * 2
4534 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4535 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4536 {
4537 /* "un-left-justify" the value spread across two registers. */
4538 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4539 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4540 hi->reg_offset = 0;
4541 hi->len = len - lo->len;
4542 }
4543 else
4544 {
4545 /* Only perform a partial copy of the second register. */
4546 lo->reg_offset = 0;
4547 hi->reg_offset = 0;
4548 if (len > MIPS_SAVED_REGSIZE)
4549 {
4550 lo->len = MIPS_SAVED_REGSIZE;
4551 hi->len = len - MIPS_SAVED_REGSIZE;
4552 }
4553 else
4554 {
4555 lo->len = len;
4556 hi->len = 0;
4557 }
4558 }
d7449b42 4559 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4560 && REGISTER_RAW_SIZE (regnum) == 8
4561 && MIPS_SAVED_REGSIZE == 4)
4562 {
4563 /* Account for the fact that only the least-signficant part
c5aa993b 4564 of the register is being used */
7a292a7a
SS
4565 lo->reg_offset += 4;
4566 hi->reg_offset += 4;
4567 }
4568 lo->buf_offset = 0;
4569 hi->buf_offset = lo->len;
4570 }
4571}
4572
4573/* Given a return value in `regbuf' with a type `valtype', extract and
4574 copy its value into `valbuf'. */
4575
46cac009
AC
4576static void
4577mips_eabi_extract_return_value (struct type *valtype,
4578 char regbuf[REGISTER_BYTES],
4579 char *valbuf)
4580{
4581 struct return_value_word lo;
4582 struct return_value_word hi;
4583 return_value_location (valtype, &hi, &lo);
4584
4585 memcpy (valbuf + lo.buf_offset,
4586 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4587 lo.len);
4588
4589 if (hi.len > 0)
4590 memcpy (valbuf + hi.buf_offset,
4591 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4592 hi.len);
4593}
4594
46cac009
AC
4595static void
4596mips_o64_extract_return_value (struct type *valtype,
4597 char regbuf[REGISTER_BYTES],
4598 char *valbuf)
4599{
4600 struct return_value_word lo;
4601 struct return_value_word hi;
4602 return_value_location (valtype, &hi, &lo);
4603
4604 memcpy (valbuf + lo.buf_offset,
4605 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4606 lo.len);
4607
4608 if (hi.len > 0)
4609 memcpy (valbuf + hi.buf_offset,
4610 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4611 hi.len);
4612}
4613
7a292a7a
SS
4614/* Given a return value in `valbuf' with a type `valtype', write it's
4615 value into the appropriate register. */
4616
46cac009
AC
4617static void
4618mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4619{
4620 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4621 struct return_value_word lo;
4622 struct return_value_word hi;
4623 return_value_location (valtype, &hi, &lo);
4624
4625 memset (raw_buffer, 0, sizeof (raw_buffer));
4626 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4627 write_register_bytes (REGISTER_BYTE (lo.reg),
4628 raw_buffer,
4629 REGISTER_RAW_SIZE (lo.reg));
4630
4631 if (hi.len > 0)
4632 {
4633 memset (raw_buffer, 0, sizeof (raw_buffer));
4634 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4635 write_register_bytes (REGISTER_BYTE (hi.reg),
4636 raw_buffer,
4637 REGISTER_RAW_SIZE (hi.reg));
4638 }
4639}
4640
4641static void
cb1d2653 4642mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009
AC
4643{
4644 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4645 struct return_value_word lo;
4646 struct return_value_word hi;
4647 return_value_location (valtype, &hi, &lo);
4648
4649 memset (raw_buffer, 0, sizeof (raw_buffer));
4650 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4651 write_register_bytes (REGISTER_BYTE (lo.reg),
4652 raw_buffer,
4653 REGISTER_RAW_SIZE (lo.reg));
4654
4655 if (hi.len > 0)
4656 {
4657 memset (raw_buffer, 0, sizeof (raw_buffer));
4658 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4659 write_register_bytes (REGISTER_BYTE (hi.reg),
4660 raw_buffer,
4661 REGISTER_RAW_SIZE (hi.reg));
4662 }
4663}
4664
cb1d2653
AC
4665/* O32 ABI stuff. */
4666
46cac009 4667static void
cb1d2653
AC
4668mips_o32_xfer_return_value (struct type *type,
4669 struct regcache *regcache,
4670 bfd_byte *in, const bfd_byte *out)
46cac009 4671{
cb1d2653
AC
4672 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4673 if (TYPE_CODE (type) == TYPE_CODE_FLT
4674 && TYPE_LENGTH (type) == 4
4675 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4676 {
cb1d2653
AC
4677 /* A single-precision floating-point value. It fits in the
4678 least significant part of FP0. */
4679 if (mips_debug)
4680 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4681 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4682 TARGET_BYTE_ORDER, in, out, 0);
4683 }
4684 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4685 && TYPE_LENGTH (type) == 8
4686 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4687 {
4688 /* A double-precision floating-point value. It fits in the
4689 least significant part of FP0/FP1 but with byte ordering
4690 based on the target (???). */
4691 if (mips_debug)
4692 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4693 switch (TARGET_BYTE_ORDER)
4694 {
4695 case BFD_ENDIAN_LITTLE:
4696 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4697 TARGET_BYTE_ORDER, in, out, 0);
4698 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4699 TARGET_BYTE_ORDER, in, out, 4);
4700 break;
4701 case BFD_ENDIAN_BIG:
4702 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4703 TARGET_BYTE_ORDER, in, out, 0);
4704 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4705 TARGET_BYTE_ORDER, in, out, 4);
4706 break;
4707 default:
4708 internal_error (__FILE__, __LINE__, "bad switch");
4709 }
4710 }
4711#if 0
4712 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4713 && TYPE_NFIELDS (type) <= 2
4714 && TYPE_NFIELDS (type) >= 1
4715 && ((TYPE_NFIELDS (type) == 1
4716 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4717 == TYPE_CODE_FLT))
4718 || (TYPE_NFIELDS (type) == 2
4719 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4720 == TYPE_CODE_FLT)
4721 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4722 == TYPE_CODE_FLT)))
4723 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4724 {
4725 /* A struct that contains one or two floats. Each value is part
4726 in the least significant part of their floating point
4727 register.. */
4728 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4729 int regnum;
4730 int field;
4731 for (field = 0, regnum = FP0_REGNUM;
4732 field < TYPE_NFIELDS (type);
4733 field++, regnum += 2)
4734 {
4735 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4736 / TARGET_CHAR_BIT);
4737 if (mips_debug)
4738 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4739 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4740 TARGET_BYTE_ORDER, in, out, offset);
4741 }
4742 }
4743#endif
4744#if 0
4745 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4746 || TYPE_CODE (type) == TYPE_CODE_UNION)
4747 {
4748 /* A structure or union. Extract the left justified value,
4749 regardless of the byte order. I.e. DO NOT USE
4750 mips_xfer_lower. */
4751 int offset;
4752 int regnum;
4753 for (offset = 0, regnum = V0_REGNUM;
4754 offset < TYPE_LENGTH (type);
4755 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4756 {
4757 int xfer = REGISTER_RAW_SIZE (regnum);
4758 if (offset + xfer > TYPE_LENGTH (type))
4759 xfer = TYPE_LENGTH (type) - offset;
4760 if (mips_debug)
4761 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4762 offset, xfer, regnum);
4763 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4764 in, out, offset);
4765 }
4766 }
4767#endif
4768 else
4769 {
4770 /* A scalar extract each part but least-significant-byte
4771 justified. o32 thinks registers are 4 byte, regardless of
4772 the ISA. mips_stack_argsize controls this. */
4773 int offset;
4774 int regnum;
4775 for (offset = 0, regnum = V0_REGNUM;
4776 offset < TYPE_LENGTH (type);
4777 offset += mips_stack_argsize (), regnum++)
4778 {
4779 int xfer = mips_stack_argsize ();
4780 int pos = 0;
4781 if (offset + xfer > TYPE_LENGTH (type))
4782 xfer = TYPE_LENGTH (type) - offset;
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4785 offset, xfer, regnum);
4786 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4787 in, out, offset);
4788 }
46cac009
AC
4789 }
4790}
4791
cb1d2653
AC
4792static void
4793mips_o32_extract_return_value (struct type *type,
4794 struct regcache *regcache,
ebba8386 4795 void *valbuf)
cb1d2653
AC
4796{
4797 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4798}
4799
4800static void
4801mips_o32_store_return_value (struct type *type, char *valbuf)
4802{
4803 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4804}
4805
4806/* N32/N44 ABI stuff. */
4807
46cac009 4808static void
88658117
AC
4809mips_n32n64_xfer_return_value (struct type *type,
4810 struct regcache *regcache,
4811 bfd_byte *in, const bfd_byte *out)
c906108c 4812{
88658117
AC
4813 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4814 if (TYPE_CODE (type) == TYPE_CODE_FLT
4815 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4816 {
88658117
AC
4817 /* A floating-point value belongs in the least significant part
4818 of FP0. */
4819 if (mips_debug)
4820 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4821 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4822 TARGET_BYTE_ORDER, in, out, 0);
4823 }
4824 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4825 && TYPE_NFIELDS (type) <= 2
4826 && TYPE_NFIELDS (type) >= 1
4827 && ((TYPE_NFIELDS (type) == 1
4828 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4829 == TYPE_CODE_FLT))
4830 || (TYPE_NFIELDS (type) == 2
4831 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4832 == TYPE_CODE_FLT)
4833 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4834 == TYPE_CODE_FLT)))
4835 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4836 {
4837 /* A struct that contains one or two floats. Each value is part
4838 in the least significant part of their floating point
4839 register.. */
4840 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4841 int regnum;
4842 int field;
4843 for (field = 0, regnum = FP0_REGNUM;
4844 field < TYPE_NFIELDS (type);
4845 field++, regnum += 2)
4846 {
4847 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4848 / TARGET_CHAR_BIT);
4849 if (mips_debug)
4850 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4851 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4852 TARGET_BYTE_ORDER, in, out, offset);
4853 }
7a292a7a 4854 }
88658117
AC
4855 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4856 || TYPE_CODE (type) == TYPE_CODE_UNION)
4857 {
4858 /* A structure or union. Extract the left justified value,
4859 regardless of the byte order. I.e. DO NOT USE
4860 mips_xfer_lower. */
4861 int offset;
4862 int regnum;
4863 for (offset = 0, regnum = V0_REGNUM;
4864 offset < TYPE_LENGTH (type);
4865 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4866 {
4867 int xfer = REGISTER_RAW_SIZE (regnum);
4868 if (offset + xfer > TYPE_LENGTH (type))
4869 xfer = TYPE_LENGTH (type) - offset;
4870 if (mips_debug)
4871 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4872 offset, xfer, regnum);
4873 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4874 in, out, offset);
4875 }
4876 }
4877 else
4878 {
4879 /* A scalar extract each part but least-significant-byte
4880 justified. */
4881 int offset;
4882 int regnum;
4883 for (offset = 0, regnum = V0_REGNUM;
4884 offset < TYPE_LENGTH (type);
4885 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4886 {
4887 int xfer = REGISTER_RAW_SIZE (regnum);
4888 int pos = 0;
4889 if (offset + xfer > TYPE_LENGTH (type))
4890 xfer = TYPE_LENGTH (type) - offset;
4891 if (mips_debug)
4892 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4893 offset, xfer, regnum);
4894 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4895 in, out, offset);
4896 }
4897 }
4898}
4899
4900static void
4901mips_n32n64_extract_return_value (struct type *type,
4902 struct regcache *regcache,
ebba8386 4903 void *valbuf)
88658117
AC
4904{
4905 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4906}
4907
4908static void
4909mips_n32n64_store_return_value (struct type *type, char *valbuf)
4910{
4911 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4912}
4913
2f1488ce
MS
4914static void
4915mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4916{
4917 /* Nothing to do -- push_arguments does all the work. */
4918}
4919
4920static CORE_ADDR
6672060b 4921mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4922{
4923 /* FIXME: This will only work at random. The caller passes the
4924 struct_return address in V0, but it is not preserved. It may
4925 still be there, or this may be a random value. */
77d8f2b4
MS
4926 LONGEST val;
4927
4928 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4929 return val;
2f1488ce
MS
4930}
4931
c906108c
SS
4932/* Exported procedure: Is PC in the signal trampoline code */
4933
102182a9
MS
4934static int
4935mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4936{
4937 if (sigtramp_address == 0)
4938 fixup_sigtramp ();
4939 return (pc >= sigtramp_address && pc < sigtramp_end);
4940}
4941
a5ea2558
AC
4942/* Root of all "set mips "/"show mips " commands. This will eventually be
4943 used for all MIPS-specific commands. */
4944
a5ea2558 4945static void
acdb74a0 4946show_mips_command (char *args, int from_tty)
a5ea2558
AC
4947{
4948 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4949}
4950
a5ea2558 4951static void
acdb74a0 4952set_mips_command (char *args, int from_tty)
a5ea2558
AC
4953{
4954 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4955 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4956}
4957
c906108c
SS
4958/* Commands to show/set the MIPS FPU type. */
4959
c906108c 4960static void
acdb74a0 4961show_mipsfpu_command (char *args, int from_tty)
c906108c 4962{
c906108c
SS
4963 char *fpu;
4964 switch (MIPS_FPU_TYPE)
4965 {
4966 case MIPS_FPU_SINGLE:
4967 fpu = "single-precision";
4968 break;
4969 case MIPS_FPU_DOUBLE:
4970 fpu = "double-precision";
4971 break;
4972 case MIPS_FPU_NONE:
4973 fpu = "absent (none)";
4974 break;
93d56215
AC
4975 default:
4976 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4977 }
4978 if (mips_fpu_type_auto)
4979 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4980 fpu);
4981 else
4982 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4983 fpu);
4984}
4985
4986
c906108c 4987static void
acdb74a0 4988set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
4989{
4990 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4991 show_mipsfpu_command (args, from_tty);
4992}
4993
c906108c 4994static void
acdb74a0 4995set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
4996{
4997 mips_fpu_type = MIPS_FPU_SINGLE;
4998 mips_fpu_type_auto = 0;
9e364162 4999 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5000}
5001
c906108c 5002static void
acdb74a0 5003set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5004{
5005 mips_fpu_type = MIPS_FPU_DOUBLE;
5006 mips_fpu_type_auto = 0;
9e364162 5007 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5008}
5009
c906108c 5010static void
acdb74a0 5011set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5012{
5013 mips_fpu_type = MIPS_FPU_NONE;
5014 mips_fpu_type_auto = 0;
9e364162 5015 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5016}
5017
c906108c 5018static void
acdb74a0 5019set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5020{
5021 mips_fpu_type_auto = 1;
5022}
5023
5024/* Command to set the processor type. */
5025
5026void
acdb74a0 5027mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5028{
5029 int i;
5030
5031 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5032 {
5033 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5034 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5035 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5036
5037 /* Restore the value. */
4fcf66da 5038 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5039
5040 return;
5041 }
c5aa993b 5042
c906108c
SS
5043 if (!mips_set_processor_type (tmp_mips_processor_type))
5044 {
5045 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5046 /* Restore its value. */
4fcf66da 5047 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5048 }
5049}
5050
5051static void
acdb74a0 5052mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5053{
5054}
5055
5056/* Modify the actual processor type. */
5057
5a89d8aa 5058static int
acdb74a0 5059mips_set_processor_type (char *str)
c906108c 5060{
1012bd0e 5061 int i;
c906108c
SS
5062
5063 if (str == NULL)
5064 return 0;
5065
5066 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5067 {
5068 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5069 {
5070 mips_processor_type = str;
cce74817 5071 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5072 return 1;
c906108c
SS
5073 /* FIXME tweak fpu flag too */
5074 }
5075 }
5076
5077 return 0;
5078}
5079
5080/* Attempt to identify the particular processor model by reading the
5081 processor id. */
5082
5083char *
acdb74a0 5084mips_read_processor_type (void)
c906108c
SS
5085{
5086 CORE_ADDR prid;
5087
5088 prid = read_register (PRID_REGNUM);
5089
5090 if ((prid & ~0xf) == 0x700)
c5aa993b 5091 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5092
5093 return NULL;
5094}
5095
5096/* Just like reinit_frame_cache, but with the right arguments to be
5097 callable as an sfunc. */
5098
5099static void
acdb74a0
AC
5100reinit_frame_cache_sfunc (char *args, int from_tty,
5101 struct cmd_list_element *c)
c906108c
SS
5102{
5103 reinit_frame_cache ();
5104}
5105
5106int
acdb74a0 5107gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5108{
5109 mips_extra_func_info_t proc_desc;
5110
5111 /* Search for the function containing this address. Set the low bit
5112 of the address when searching, in case we were given an even address
5113 that is the start of a 16-bit function. If we didn't do this,
5114 the search would fail because the symbol table says the function
5115 starts at an odd address, i.e. 1 byte past the given address. */
5116 memaddr = ADDR_BITS_REMOVE (memaddr);
5117 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5118
5119 /* Make an attempt to determine if this is a 16-bit function. If
5120 the procedure descriptor exists and the address therein is odd,
5121 it's definitely a 16-bit function. Otherwise, we have to just
5122 guess that if the address passed in is odd, it's 16-bits. */
5123 if (proc_desc)
361d1df0 5124 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5125 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5126 else
361d1df0 5127 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5128 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5129
5130 /* Round down the instruction address to the appropriate boundary. */
65c11066 5131 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5132
c906108c 5133 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5134 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5135 return print_insn_big_mips (memaddr, info);
5136 else
5137 return print_insn_little_mips (memaddr, info);
5138}
5139
5140/* Old-style breakpoint macros.
5141 The IDT board uses an unusual breakpoint value, and sometimes gets
5142 confused when it sees the usual MIPS breakpoint instruction. */
5143
5144#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5145#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5146#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5147#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5148#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5149#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5150#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5151#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5152
5153/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5154 counter value to determine whether a 16- or 32-bit breakpoint should be
5155 used. It returns a pointer to a string of bytes that encode a breakpoint
5156 instruction, stores the length of the string to *lenptr, and adjusts pc
5157 (if necessary) to point to the actual memory location where the
5158 breakpoint should be inserted. */
5159
f7ab6ec6 5160static const unsigned char *
acdb74a0 5161mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5162{
d7449b42 5163 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5164 {
5165 if (pc_is_mips16 (*pcptr))
5166 {
1012bd0e
EZ
5167 static unsigned char mips16_big_breakpoint[] =
5168 MIPS16_BIG_BREAKPOINT;
c906108c 5169 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5170 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5171 return mips16_big_breakpoint;
5172 }
5173 else
5174 {
1012bd0e
EZ
5175 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5176 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5177 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5178
c5aa993b 5179 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5180
5181 if (strcmp (target_shortname, "mips") == 0)
5182 return idt_big_breakpoint;
5183 else if (strcmp (target_shortname, "ddb") == 0
5184 || strcmp (target_shortname, "pmon") == 0
5185 || strcmp (target_shortname, "lsi") == 0)
5186 return pmon_big_breakpoint;
5187 else
5188 return big_breakpoint;
5189 }
5190 }
5191 else
5192 {
5193 if (pc_is_mips16 (*pcptr))
5194 {
1012bd0e
EZ
5195 static unsigned char mips16_little_breakpoint[] =
5196 MIPS16_LITTLE_BREAKPOINT;
c906108c 5197 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5198 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5199 return mips16_little_breakpoint;
5200 }
5201 else
5202 {
1012bd0e
EZ
5203 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5204 static unsigned char pmon_little_breakpoint[] =
5205 PMON_LITTLE_BREAKPOINT;
5206 static unsigned char idt_little_breakpoint[] =
5207 IDT_LITTLE_BREAKPOINT;
c906108c 5208
c5aa993b 5209 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5210
5211 if (strcmp (target_shortname, "mips") == 0)
5212 return idt_little_breakpoint;
5213 else if (strcmp (target_shortname, "ddb") == 0
5214 || strcmp (target_shortname, "pmon") == 0
5215 || strcmp (target_shortname, "lsi") == 0)
5216 return pmon_little_breakpoint;
5217 else
5218 return little_breakpoint;
5219 }
5220 }
5221}
5222
5223/* If PC is in a mips16 call or return stub, return the address of the target
5224 PC, which is either the callee or the caller. There are several
5225 cases which must be handled:
5226
5227 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5228 target PC is in $31 ($ra).
c906108c 5229 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5230 and the target PC is in $2.
c906108c 5231 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5232 before the jal instruction, this is effectively a call stub
5233 and the the target PC is in $2. Otherwise this is effectively
5234 a return stub and the target PC is in $18.
c906108c
SS
5235
5236 See the source code for the stubs in gcc/config/mips/mips16.S for
5237 gory details.
5238
5239 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5240 */
c906108c 5241
757a7cc6 5242static CORE_ADDR
acdb74a0 5243mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5244{
5245 char *name;
5246 CORE_ADDR start_addr;
5247
5248 /* Find the starting address and name of the function containing the PC. */
5249 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5250 return 0;
5251
5252 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5253 target PC is in $31 ($ra). */
5254 if (strcmp (name, "__mips16_ret_sf") == 0
5255 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5256 return read_signed_register (RA_REGNUM);
c906108c
SS
5257
5258 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5259 {
5260 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5261 and the target PC is in $2. */
5262 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5263 return read_signed_register (2);
c906108c
SS
5264
5265 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5266 before the jal instruction, this is effectively a call stub
5267 and the the target PC is in $2. Otherwise this is effectively
5268 a return stub and the target PC is in $18. */
c906108c
SS
5269 else if (name[19] == 's' || name[19] == 'd')
5270 {
5271 if (pc == start_addr)
5272 {
5273 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5274 stub. Such a stub for a function bar might have a name
5275 like __fn_stub_bar, and might look like this:
5276 mfc1 $4,$f13
5277 mfc1 $5,$f12
5278 mfc1 $6,$f15
5279 mfc1 $7,$f14
5280 la $1,bar (becomes a lui/addiu pair)
5281 jr $1
5282 So scan down to the lui/addi and extract the target
5283 address from those two instructions. */
c906108c 5284
6c997a34 5285 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5286 t_inst inst;
5287 int i;
5288
5289 /* See if the name of the target function is __fn_stub_*. */
5290 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5291 return target_pc;
5292 if (strncmp (name, "__fn_stub_", 10) != 0
5293 && strcmp (name, "etext") != 0
5294 && strcmp (name, "_etext") != 0)
5295 return target_pc;
5296
5297 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5298 The limit on the search is arbitrarily set to 20
5299 instructions. FIXME. */
c906108c
SS
5300 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5301 {
c5aa993b
JM
5302 inst = mips_fetch_instruction (target_pc);
5303 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5304 pc = (inst << 16) & 0xffff0000; /* high word */
5305 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5306 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5307 }
5308
5309 /* Couldn't find the lui/addui pair, so return stub address. */
5310 return target_pc;
5311 }
5312 else
5313 /* This is the 'return' part of a call stub. The return
5314 address is in $r18. */
6c997a34 5315 return read_signed_register (18);
c906108c
SS
5316 }
5317 }
c5aa993b 5318 return 0; /* not a stub */
c906108c
SS
5319}
5320
5321
5322/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5323 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5324
757a7cc6 5325static int
acdb74a0 5326mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5327{
5328 CORE_ADDR start_addr;
5329
5330 /* Find the starting address of the function containing the PC. If the
5331 caller didn't give us a name, look it up at the same time. */
5332 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5333 return 0;
5334
5335 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5336 {
5337 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5338 if (name[19] >= '0' && name[19] <= '9')
5339 return 1;
5340 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5341 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5342 else if (name[19] == 's' || name[19] == 'd')
5343 return pc == start_addr;
5344 }
5345
c5aa993b 5346 return 0; /* not a stub */
c906108c
SS
5347}
5348
5349
5350/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5351 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5352
e41b17f0 5353static int
acdb74a0 5354mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5355{
5356 CORE_ADDR start_addr;
5357
5358 /* Find the starting address of the function containing the PC. */
5359 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5360 return 0;
5361
5362 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5363 if (strcmp (name, "__mips16_ret_sf") == 0
5364 || strcmp (name, "__mips16_ret_df") == 0)
5365 return 1;
5366
5367 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5368 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5369 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5370 && (name[19] == 's' || name[19] == 'd')
5371 && pc != start_addr)
5372 return 1;
5373
c5aa993b 5374 return 0; /* not a stub */
c906108c
SS
5375}
5376
5377
5378/* Return non-zero if the PC is in a library helper function that should
5379 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5380
5381int
acdb74a0 5382mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5383{
5384 char *name;
5385
5386 /* Find the starting address and name of the function containing the PC. */
5387 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5388 return 0;
5389
5390 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5391 that we want to ignore. */
5392 return (strcmp (name, "__mips16_ret_sf") == 0
5393 || strcmp (name, "__mips16_ret_df") == 0);
5394}
5395
5396
5397/* Return a location where we can set a breakpoint that will be hit
5398 when an inferior function call returns. This is normally the
5399 program's entry point. Executables that don't have an entry
5400 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5401 whose address is the location where the breakpoint should be placed. */
5402
f7ab6ec6 5403static CORE_ADDR
acdb74a0 5404mips_call_dummy_address (void)
c906108c
SS
5405{
5406 struct minimal_symbol *sym;
5407
5408 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5409 if (sym)
5410 return SYMBOL_VALUE_ADDRESS (sym);
5411 else
5412 return entry_point_address ();
5413}
5414
5415
9dcb560c 5416/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
5417 information for float parameters, both prototyped and unprototyped, then
5418 define this macro. This forces gdb to always assume that floats are
5419 passed as doubles and then converted in the callee.
5420
5421 For the mips chip, it appears that the debug info marks the parameters as
5422 floats regardless of whether the function is prototyped, but the actual
5423 values are passed as doubles for the non-prototyped case and floats for
5424 the prototyped case. Thus we choose to make the non-prototyped case work
5425 for C and break the prototyped case, since the non-prototyped case is
5426 probably much more common. (FIXME). */
5427
5428static int
5429mips_coerce_float_to_double (struct type *formal, struct type *actual)
5430{
5431 return current_language->la_language == language_c;
5432}
5433
47a8d4ba
AC
5434/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5435 the register stored on the stack (32) is different to its real raw
5436 size (64). The below ensures that registers are fetched from the
5437 stack using their ABI size and then stored into the RAW_BUFFER
5438 using their raw size.
5439
5440 The alternative to adding this function would be to add an ABI
5441 macro - REGISTER_STACK_SIZE(). */
5442
5443static void
acdb74a0 5444mips_get_saved_register (char *raw_buffer,
795e1e11 5445 int *optimizedp,
acdb74a0
AC
5446 CORE_ADDR *addrp,
5447 struct frame_info *frame,
5448 int regnum,
795e1e11 5449 enum lval_type *lvalp)
47a8d4ba 5450{
795e1e11
AC
5451 CORE_ADDR addrx;
5452 enum lval_type lvalx;
5453 int optimizedx;
5454 int realnum;
47a8d4ba
AC
5455
5456 if (!target_has_registers)
5457 error ("No registers.");
5458
795e1e11
AC
5459 /* Make certain that all needed parameters are present. */
5460 if (addrp == NULL)
5461 addrp = &addrx;
5462 if (lvalp == NULL)
5463 lvalp = &lvalx;
5464 if (optimizedp == NULL)
5465 optimizedp = &optimizedx;
5466 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5467 addrp, &realnum, raw_buffer);
5468 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5469 have a pseudo register range that correspons to the ABI's, rather
5470 than the ISA's, view of registers. These registers would then
5471 implicitly describe their size and hence could be used without
5472 the below munging. */
5473 if ((*lvalp) == lval_memory)
47a8d4ba 5474 {
47a8d4ba
AC
5475 if (raw_buffer != NULL)
5476 {
47a8d4ba 5477 if (regnum < 32)
795e1e11
AC
5478 {
5479 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5480 saved. */
5481 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5482 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5483 }
47a8d4ba
AC
5484 }
5485 }
47a8d4ba 5486}
2acceee2 5487
f7b9e9fc
AC
5488/* Immediately after a function call, return the saved pc.
5489 Can't always go through the frames for this because on some machines
5490 the new frame is not set up until the new function executes
5491 some instructions. */
5492
5493static CORE_ADDR
5494mips_saved_pc_after_call (struct frame_info *frame)
5495{
6c997a34 5496 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5497}
5498
5499
88c72b7d
AC
5500/* Convert a dbx stab register number (from `r' declaration) to a gdb
5501 REGNUM */
5502
5503static int
5504mips_stab_reg_to_regnum (int num)
5505{
5506 if (num < 32)
5507 return num;
361d1df0 5508 else
88c72b7d
AC
5509 return num + FP0_REGNUM - 38;
5510}
5511
5512/* Convert a ecoff register number to a gdb REGNUM */
5513
5514static int
5515mips_ecoff_reg_to_regnum (int num)
5516{
5517 if (num < 32)
5518 return num;
5519 else
5520 return num + FP0_REGNUM - 32;
5521}
5522
fc0c74b1
AC
5523/* Convert an integer into an address. By first converting the value
5524 into a pointer and then extracting it signed, the address is
5525 guarenteed to be correctly sign extended. */
5526
5527static CORE_ADDR
5528mips_integer_to_address (struct type *type, void *buf)
5529{
5530 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5531 LONGEST val = unpack_long (type, buf);
5532 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5533 return extract_signed_integer (tmp,
5534 TYPE_LENGTH (builtin_type_void_data_ptr));
5535}
5536
caaa3122
DJ
5537static void
5538mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5539{
5540 enum mips_abi *abip = (enum mips_abi *) obj;
5541 const char *name = bfd_get_section_name (abfd, sect);
5542
5543 if (*abip != MIPS_ABI_UNKNOWN)
5544 return;
5545
5546 if (strncmp (name, ".mdebug.", 8) != 0)
5547 return;
5548
5549 if (strcmp (name, ".mdebug.abi32") == 0)
5550 *abip = MIPS_ABI_O32;
5551 else if (strcmp (name, ".mdebug.abiN32") == 0)
5552 *abip = MIPS_ABI_N32;
e3bddbfa
KB
5553 else if (strcmp (name, ".mdebug.abiN64") == 0)
5554 *abip = MIPS_ABI_N64;
caaa3122
DJ
5555 else if (strcmp (name, ".mdebug.abiO64") == 0)
5556 *abip = MIPS_ABI_O64;
5557 else if (strcmp (name, ".mdebug.eabi32") == 0)
5558 *abip = MIPS_ABI_EABI32;
5559 else if (strcmp (name, ".mdebug.eabi64") == 0)
5560 *abip = MIPS_ABI_EABI64;
5561 else
5562 warning ("unsupported ABI %s.", name + 8);
5563}
5564
2e4ebe70
DJ
5565static enum mips_abi
5566global_mips_abi (void)
5567{
5568 int i;
5569
5570 for (i = 0; mips_abi_strings[i] != NULL; i++)
5571 if (mips_abi_strings[i] == mips_abi_string)
5572 return (enum mips_abi) i;
5573
5574 internal_error (__FILE__, __LINE__,
5575 "unknown ABI string");
5576}
5577
c2d11a7d 5578static struct gdbarch *
acdb74a0
AC
5579mips_gdbarch_init (struct gdbarch_info info,
5580 struct gdbarch_list *arches)
c2d11a7d
JM
5581{
5582 static LONGEST mips_call_dummy_words[] =
5583 {0};
5584 struct gdbarch *gdbarch;
5585 struct gdbarch_tdep *tdep;
5586 int elf_flags;
2e4ebe70 5587 enum mips_abi mips_abi, found_abi, wanted_abi;
70f80edf 5588 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 5589
1d06468c
EZ
5590 /* Reset the disassembly info, in case it was set to something
5591 non-default. */
5592 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5593 tm_print_insn_info.arch = bfd_arch_unknown;
5594 tm_print_insn_info.mach = 0;
5595
70f80edf
JT
5596 elf_flags = 0;
5597
5598 if (info.abfd)
5599 {
5600 /* First of all, extract the elf_flags, if available. */
5601 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5602 elf_flags = elf_elfheader (info.abfd)->e_flags;
5603
5604 /* Try to determine the OS ABI of the object we are loading. If
5605 we end up with `unknown', just leave it that way. */
5606 osabi = gdbarch_lookup_osabi (info.abfd);
5607 }
c2d11a7d 5608
102182a9 5609 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5610 switch ((elf_flags & EF_MIPS_ABI))
5611 {
5612 case E_MIPS_ABI_O32:
5613 mips_abi = MIPS_ABI_O32;
5614 break;
5615 case E_MIPS_ABI_O64:
5616 mips_abi = MIPS_ABI_O64;
5617 break;
5618 case E_MIPS_ABI_EABI32:
5619 mips_abi = MIPS_ABI_EABI32;
5620 break;
5621 case E_MIPS_ABI_EABI64:
4a7f7ba8 5622 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5623 break;
5624 default:
acdb74a0
AC
5625 if ((elf_flags & EF_MIPS_ABI2))
5626 mips_abi = MIPS_ABI_N32;
5627 else
5628 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5629 break;
5630 }
acdb74a0 5631
caaa3122
DJ
5632 /* GCC creates a pseudo-section whose name describes the ABI. */
5633 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5634 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5635
2e4ebe70
DJ
5636 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5637 Use the ABI from the last architecture if there is one. */
5638 if (info.abfd == NULL && arches != NULL)
5639 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5640
32a6503c 5641 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5642 if (mips_abi == MIPS_ABI_UNKNOWN
5643 && info.bfd_arch_info != NULL
5644 && info.bfd_arch_info->arch == bfd_arch_mips)
5645 {
5646 switch (info.bfd_arch_info->mach)
5647 {
5648 case bfd_mach_mips3900:
5649 mips_abi = MIPS_ABI_EABI32;
5650 break;
5651 case bfd_mach_mips4100:
5652 case bfd_mach_mips5000:
5653 mips_abi = MIPS_ABI_EABI64;
5654 break;
1d06468c
EZ
5655 case bfd_mach_mips8000:
5656 case bfd_mach_mips10000:
32a6503c
KB
5657 /* On Irix, ELF64 executables use the N64 ABI. The
5658 pseudo-sections which describe the ABI aren't present
5659 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5660 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5661 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5662 mips_abi = MIPS_ABI_N64;
5663 else
5664 mips_abi = MIPS_ABI_N32;
1d06468c 5665 break;
bf64bfd6
AC
5666 }
5667 }
2e4ebe70 5668
2e4ebe70
DJ
5669 if (mips_abi == MIPS_ABI_UNKNOWN)
5670 mips_abi = MIPS_ABI_O32;
5671
5672 /* Now that we have found what the ABI for this binary would be,
5673 check whether the user is overriding it. */
5674 found_abi = mips_abi;
5675 wanted_abi = global_mips_abi ();
5676 if (wanted_abi != MIPS_ABI_UNKNOWN)
5677 mips_abi = wanted_abi;
5678
4b9b3959
AC
5679 if (gdbarch_debug)
5680 {
5681 fprintf_unfiltered (gdb_stdlog,
9ace0497 5682 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5683 elf_flags);
4b9b3959
AC
5684 fprintf_unfiltered (gdb_stdlog,
5685 "mips_gdbarch_init: mips_abi = %d\n",
5686 mips_abi);
2e4ebe70
DJ
5687 fprintf_unfiltered (gdb_stdlog,
5688 "mips_gdbarch_init: found_mips_abi = %d\n",
5689 found_abi);
4b9b3959 5690 }
0dadbba0 5691
c2d11a7d
JM
5692 /* try to find a pre-existing architecture */
5693 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5694 arches != NULL;
5695 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5696 {
5697 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5698 using. */
9103eae0 5699 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5700 continue;
9103eae0 5701 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5702 continue;
70f80edf
JT
5703 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5704 return arches->gdbarch;
c2d11a7d
JM
5705 }
5706
102182a9 5707 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5708 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5709 gdbarch = gdbarch_alloc (&info, tdep);
5710 tdep->elf_flags = elf_flags;
70f80edf 5711 tdep->osabi = osabi;
c2d11a7d 5712
102182a9 5713 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5714 set_gdbarch_short_bit (gdbarch, 16);
5715 set_gdbarch_int_bit (gdbarch, 32);
5716 set_gdbarch_float_bit (gdbarch, 32);
5717 set_gdbarch_double_bit (gdbarch, 64);
5718 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5719 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
d05285fa
MS
5720 set_gdbarch_max_register_raw_size (gdbarch, 8);
5721 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5722 tdep->found_abi = found_abi;
0dadbba0 5723 tdep->mips_abi = mips_abi;
1d06468c 5724
f7ab6ec6
MS
5725 set_gdbarch_elf_make_msymbol_special (gdbarch,
5726 mips_elf_make_msymbol_special);
5727
0dadbba0 5728 switch (mips_abi)
c2d11a7d 5729 {
0dadbba0 5730 case MIPS_ABI_O32:
46cac009 5731 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5732 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5733 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5734 tdep->mips_default_saved_regsize = 4;
0dadbba0 5735 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5736 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5737 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5738 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5739 tdep->gdb_target_is_mips64 = 0;
4014092b 5740 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5741 set_gdbarch_long_bit (gdbarch, 32);
5742 set_gdbarch_ptr_bit (gdbarch, 32);
5743 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5744 set_gdbarch_reg_struct_has_addr (gdbarch,
5745 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5746 set_gdbarch_use_struct_convention (gdbarch,
5747 mips_o32_use_struct_convention);
c2d11a7d 5748 break;
0dadbba0 5749 case MIPS_ABI_O64:
46cac009 5750 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5751 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5752 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5753 tdep->mips_default_saved_regsize = 8;
0dadbba0 5754 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5755 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5756 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5757 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5758 tdep->gdb_target_is_mips64 = 1;
361d1df0 5759 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5760 set_gdbarch_long_bit (gdbarch, 32);
5761 set_gdbarch_ptr_bit (gdbarch, 32);
5762 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5763 set_gdbarch_reg_struct_has_addr (gdbarch,
5764 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5765 set_gdbarch_use_struct_convention (gdbarch,
5766 mips_o32_use_struct_convention);
c2d11a7d 5767 break;
0dadbba0 5768 case MIPS_ABI_EABI32:
46e0f506 5769 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5770 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5771 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5772 tdep->mips_default_saved_regsize = 4;
0dadbba0 5773 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5774 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5775 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5776 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5777 tdep->gdb_target_is_mips64 = 0;
4014092b 5778 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5779 set_gdbarch_long_bit (gdbarch, 32);
5780 set_gdbarch_ptr_bit (gdbarch, 32);
5781 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5782 set_gdbarch_reg_struct_has_addr (gdbarch,
5783 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5784 set_gdbarch_use_struct_convention (gdbarch,
5785 mips_eabi_use_struct_convention);
c2d11a7d 5786 break;
0dadbba0 5787 case MIPS_ABI_EABI64:
46e0f506 5788 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5789 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5790 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5791 tdep->mips_default_saved_regsize = 8;
0dadbba0 5792 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5793 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5794 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5795 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5796 tdep->gdb_target_is_mips64 = 1;
4014092b 5797 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5798 set_gdbarch_long_bit (gdbarch, 64);
5799 set_gdbarch_ptr_bit (gdbarch, 64);
5800 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5801 set_gdbarch_reg_struct_has_addr (gdbarch,
5802 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5803 set_gdbarch_use_struct_convention (gdbarch,
5804 mips_eabi_use_struct_convention);
c2d11a7d 5805 break;
0dadbba0 5806 case MIPS_ABI_N32:
cb3d25d1 5807 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5808 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5809 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5810 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5811 tdep->mips_default_stack_argsize = 8;
5812 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5813 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5814 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5815 tdep->gdb_target_is_mips64 = 1;
4014092b 5816 tdep->default_mask_address_p = 0;
0dadbba0
AC
5817 set_gdbarch_long_bit (gdbarch, 32);
5818 set_gdbarch_ptr_bit (gdbarch, 32);
5819 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5820
5821 /* Set up the disassembler info, so that we get the right
28d169de
KB
5822 register names from libopcodes. */
5823 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5824 tm_print_insn_info.arch = bfd_arch_mips;
5825 if (info.bfd_arch_info != NULL
5826 && info.bfd_arch_info->arch == bfd_arch_mips
5827 && info.bfd_arch_info->mach)
5828 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5829 else
5830 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5831
5832 set_gdbarch_use_struct_convention (gdbarch,
5833 mips_n32n64_use_struct_convention);
8b389c40
MS
5834 set_gdbarch_reg_struct_has_addr (gdbarch,
5835 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5836 break;
5837 case MIPS_ABI_N64:
cb3d25d1 5838 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5839 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5840 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5841 tdep->mips_default_saved_regsize = 8;
5842 tdep->mips_default_stack_argsize = 8;
5843 tdep->mips_fp_register_double = 1;
5844 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5845 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5846 tdep->gdb_target_is_mips64 = 1;
5847 tdep->default_mask_address_p = 0;
5848 set_gdbarch_long_bit (gdbarch, 64);
5849 set_gdbarch_ptr_bit (gdbarch, 64);
5850 set_gdbarch_long_long_bit (gdbarch, 64);
5851
5852 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5853 register names from libopcodes. */
5854 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5855 tm_print_insn_info.arch = bfd_arch_mips;
5856 if (info.bfd_arch_info != NULL
5857 && info.bfd_arch_info->arch == bfd_arch_mips
5858 && info.bfd_arch_info->mach)
5859 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5860 else
5861 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5862
5863 set_gdbarch_use_struct_convention (gdbarch,
5864 mips_n32n64_use_struct_convention);
8b389c40
MS
5865 set_gdbarch_reg_struct_has_addr (gdbarch,
5866 mips_n32n64_reg_struct_has_addr);
0dadbba0 5867 break;
c2d11a7d 5868 default:
2e4ebe70
DJ
5869 internal_error (__FILE__, __LINE__,
5870 "unknown ABI in switch");
c2d11a7d
JM
5871 }
5872
a5ea2558
AC
5873 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5874 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5875 comment:
5876
5877 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5878 flag in object files because to do so would make it impossible to
102182a9 5879 link with libraries compiled without "-gp32". This is
a5ea2558 5880 unnecessarily restrictive.
361d1df0 5881
a5ea2558
AC
5882 We could solve this problem by adding "-gp32" multilibs to gcc,
5883 but to set this flag before gcc is built with such multilibs will
5884 break too many systems.''
5885
5886 But even more unhelpfully, the default linker output target for
5887 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5888 for 64-bit programs - you need to change the ABI to change this,
102182a9 5889 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5890 this flag to detect 32-bit mode would do the wrong thing given
5891 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5892 as 32-bit programs by default. */
a5ea2558 5893
c2d11a7d
JM
5894 /* enable/disable the MIPS FPU */
5895 if (!mips_fpu_type_auto)
5896 tdep->mips_fpu_type = mips_fpu_type;
5897 else if (info.bfd_arch_info != NULL
5898 && info.bfd_arch_info->arch == bfd_arch_mips)
5899 switch (info.bfd_arch_info->mach)
5900 {
b0069a17 5901 case bfd_mach_mips3900:
c2d11a7d 5902 case bfd_mach_mips4100:
ed9a39eb 5903 case bfd_mach_mips4111:
c2d11a7d
JM
5904 tdep->mips_fpu_type = MIPS_FPU_NONE;
5905 break;
bf64bfd6
AC
5906 case bfd_mach_mips4650:
5907 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5908 break;
c2d11a7d
JM
5909 default:
5910 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5911 break;
5912 }
5913 else
5914 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5915
5916 /* MIPS version of register names. NOTE: At present the MIPS
5917 register name management is part way between the old -
5918 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5919 Further work on it is required. */
18f81521
MS
5920 /* NOTE: many targets (esp. embedded) do not go thru the
5921 gdbarch_register_name vector at all, instead bypassing it
5922 by defining REGISTER_NAMES. */
c2d11a7d 5923 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5924 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5925 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
a094c6fb 5926 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5927 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d
JM
5928 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5929
102182a9
MS
5930 /* Add/remove bits from an address. The MIPS needs be careful to
5931 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5932 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5933
10312cc4
AC
5934 /* There's a mess in stack frame creation. See comments in
5935 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5936 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 5937 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5938
102182a9 5939 /* Map debug register numbers onto internal register numbers. */
88c72b7d
AC
5940 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5941 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5942
c2d11a7d
JM
5943 /* Initialize a frame */
5944 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
d28e01f4 5945 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
c2d11a7d
JM
5946
5947 /* MIPS version of CALL_DUMMY */
5948
5949 set_gdbarch_call_dummy_p (gdbarch, 1);
5950 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5951 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5952 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5953 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
f7ab6ec6
MS
5954 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5955 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
5956 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
c2d11a7d
JM
5957 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5958 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5959 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5960 set_gdbarch_call_dummy_length (gdbarch, 0);
f7ab6ec6 5961 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
c2d11a7d
JM
5962 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5963 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5964 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5965 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
bf1f5b4c 5966 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5967 set_gdbarch_register_convert_to_virtual (gdbarch,
5968 mips_register_convert_to_virtual);
5969 set_gdbarch_register_convert_to_raw (gdbarch,
5970 mips_register_convert_to_raw);
5971
b9a8e3bf 5972 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 5973
b5d1566e 5974 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
c4093a6a 5975 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
b5d1566e
MS
5976 set_gdbarch_frameless_function_invocation (gdbarch,
5977 generic_frameless_function_invocation_not);
5978 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5979 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
5980 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
5981 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5982 set_gdbarch_frame_args_skip (gdbarch, 0);
5983
47a8d4ba 5984 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5985
f7b9e9fc
AC
5986 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5987 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5988 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5989
5990 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5991 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5992
fc0c74b1
AC
5993 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5994 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5995 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5996
102182a9
MS
5997 set_gdbarch_function_start_offset (gdbarch, 0);
5998
32a6503c
KB
5999 /* There are MIPS targets which do not yet use this since they still
6000 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 6001 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 6002 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 6003
bf1f5b4c 6004 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 6005 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6006
70f80edf
JT
6007 /* Hook in OS ABI-specific overrides, if they have been registered. */
6008 gdbarch_init_osabi (info, gdbarch, osabi);
6009
2f1488ce
MS
6010 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6011 set_gdbarch_extract_struct_value_address (gdbarch,
6012 mips_extract_struct_value_address);
757a7cc6
MS
6013
6014 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6015
6016 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6017 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6018
4b9b3959
AC
6019 return gdbarch;
6020}
6021
2e4ebe70
DJ
6022static void
6023mips_abi_update (char *ignore_args, int from_tty,
6024 struct cmd_list_element *c)
6025{
6026 struct gdbarch_info info;
6027
6028 /* Force the architecture to update, and (if it's a MIPS architecture)
6029 mips_gdbarch_init will take care of the rest. */
6030 gdbarch_info_init (&info);
6031 gdbarch_update_p (info);
6032}
6033
4b9b3959
AC
6034static void
6035mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6036{
6037 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6038 if (tdep != NULL)
c2d11a7d 6039 {
acdb74a0
AC
6040 int ef_mips_arch;
6041 int ef_mips_32bitmode;
6042 /* determine the ISA */
6043 switch (tdep->elf_flags & EF_MIPS_ARCH)
6044 {
6045 case E_MIPS_ARCH_1:
6046 ef_mips_arch = 1;
6047 break;
6048 case E_MIPS_ARCH_2:
6049 ef_mips_arch = 2;
6050 break;
6051 case E_MIPS_ARCH_3:
6052 ef_mips_arch = 3;
6053 break;
6054 case E_MIPS_ARCH_4:
93d56215 6055 ef_mips_arch = 4;
acdb74a0
AC
6056 break;
6057 default:
93d56215 6058 ef_mips_arch = 0;
acdb74a0
AC
6059 break;
6060 }
6061 /* determine the size of a pointer */
6062 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6063 fprintf_unfiltered (file,
6064 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6065 tdep->elf_flags);
4b9b3959 6066 fprintf_unfiltered (file,
acdb74a0
AC
6067 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6068 ef_mips_32bitmode);
6069 fprintf_unfiltered (file,
6070 "mips_dump_tdep: ef_mips_arch = %d\n",
6071 ef_mips_arch);
6072 fprintf_unfiltered (file,
6073 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6074 tdep->mips_abi,
2e4ebe70 6075 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6078 mips_mask_address_p (),
6079 tdep->default_mask_address_p);
c2d11a7d 6080 }
4b9b3959
AC
6081 fprintf_unfiltered (file,
6082 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6083 FP_REGISTER_DOUBLE);
6084 fprintf_unfiltered (file,
6085 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6086 MIPS_DEFAULT_FPU_TYPE,
6087 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6088 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6089 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6090 : "???"));
6091 fprintf_unfiltered (file,
6092 "mips_dump_tdep: MIPS_EABI = %d\n",
6093 MIPS_EABI);
6094 fprintf_unfiltered (file,
acdb74a0
AC
6095 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6096 MIPS_LAST_FP_ARG_REGNUM,
6097 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6098 fprintf_unfiltered (file,
6099 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6100 MIPS_FPU_TYPE,
6101 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6102 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6103 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6104 : "???"));
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6107 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6108 fprintf_unfiltered (file,
6109 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6110 FP_REGISTER_DOUBLE);
4b9b3959
AC
6111 fprintf_unfiltered (file,
6112 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6113 MIPS_DEFAULT_STACK_ARGSIZE);
6114 fprintf_unfiltered (file,
6115 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6116 MIPS_STACK_ARGSIZE);
6117 fprintf_unfiltered (file,
6118 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6119 MIPS_REGSIZE);
2475bac3
AC
6120 fprintf_unfiltered (file,
6121 "mips_dump_tdep: A0_REGNUM = %d\n",
6122 A0_REGNUM);
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6125 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6128 XSTRING (ATTACH_DETACH));
6129 fprintf_unfiltered (file,
6130 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6131 BADVADDR_REGNUM);
6132 fprintf_unfiltered (file,
6133 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6136 CAUSE_REGNUM);
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: CPLUS_MARKER = %c\n",
6139 CPLUS_MARKER);
2475bac3
AC
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
6142 XSTRING (DO_REGISTERS_INFO));
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6145 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6148 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6151 FCRCS_REGNUM);
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6154 FCRIR_REGNUM);
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6157 FIRST_EMBED_REGNUM);
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6160 FPA0_REGNUM);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6163 GDB_TARGET_IS_MIPS64);
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6166 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6169 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6170 fprintf_unfiltered (file,
6171 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6172 GEN_REG_SAVE_MASK);
6173 fprintf_unfiltered (file,
6174 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6175 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: HI_REGNUM = %d\n",
6178 HI_REGNUM);
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6185 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6188 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6191 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6196 LAST_EMBED_REGNUM);
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: LO_REGNUM = %d\n",
6201 LO_REGNUM);
6202#ifdef MACHINE_CPROC_FP_OFFSET
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6205 MACHINE_CPROC_FP_OFFSET);
6206#endif
6207#ifdef MACHINE_CPROC_PC_OFFSET
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6210 MACHINE_CPROC_PC_OFFSET);
6211#endif
6212#ifdef MACHINE_CPROC_SP_OFFSET
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6215 MACHINE_CPROC_SP_OFFSET);
6216#endif
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6223 MIPS16_INSTLEN);
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6226 fprintf_unfiltered (file,
6227 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6232 MIPS_INSTLEN);
6233 fprintf_unfiltered (file,
acdb74a0
AC
6234 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6235 MIPS_LAST_ARG_REGNUM,
6236 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6239 MIPS_NUMREGS);
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6244 MIPS_SAVED_REGSIZE);
2475bac3
AC
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: OP_LDFPR = used?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: OP_LDGPR = used?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PRID_REGNUM = %d\n",
6255 PRID_REGNUM);
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6258 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: PROC_PC_REG = function?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PS_REGNUM = %d\n",
6285 PS_REGNUM);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6288 PUSH_FP_REGNUM);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: RA_REGNUM = %d\n",
6291 RA_REGNUM);
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6294 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6297 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: ROUND_DOWN = function?\n");
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: ROUND_UP = function?\n");
6304#ifdef SAVED_BYTES
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SAVED_BYTES = %d\n",
6307 SAVED_BYTES);
6308#endif
6309#ifdef SAVED_FP
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SAVED_FP = %d\n",
6312 SAVED_FP);
6313#endif
6314#ifdef SAVED_PC
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SAVED_PC = %d\n",
6317 SAVED_PC);
6318#endif
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6321 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6326 SIGFRAME_BASE);
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6329 SIGFRAME_FPREGSAVE_OFF);
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6332 SIGFRAME_PC_OFF);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6335 SIGFRAME_REGSAVE_OFF);
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6338 SIGFRAME_REG_SIZE);
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6341 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6344 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6345 fprintf_unfiltered (file,
b0ed3589
AC
6346 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6347 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6350 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6351#ifdef STACK_END_ADDR
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6354 STACK_END_ADDR);
6355#endif
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6358 XSTRING (STEP_SKIPS_DELAY (PC)));
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6361 STEP_SKIPS_DELAY_P);
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6364 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: T9_REGNUM = %d\n",
6367 T9_REGNUM);
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6372 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6375 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: TARGET_MIPS = used?\n");
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6380 XSTRING (TM_PRINT_INSN_MACH));
6381#ifdef TRACE_CLEAR
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6384 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6385#endif
6386#ifdef TRACE_FLAVOR
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6389 TRACE_FLAVOR);
6390#endif
6391#ifdef TRACE_FLAVOR_SIZE
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6394 TRACE_FLAVOR_SIZE);
6395#endif
6396#ifdef TRACE_SET
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: TRACE_SET # %s\n",
6399 XSTRING (TRACE_SET (X,STATE)));
6400#endif
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6403#ifdef UNUSED_REGNUM
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6406 UNUSED_REGNUM);
6407#endif
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: V0_REGNUM = %d\n",
6410 V0_REGNUM);
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6413 (long) VM_MIN_ADDRESS);
6414#ifdef VX_NUM_REGS
6415 fprintf_unfiltered (file,
6416 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6417 VX_NUM_REGS);
6418#endif
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6421 ZERO_REGNUM);
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6424 _PROC_MAGIC_);
70f80edf
JT
6425
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: OS ABI = %s\n",
6428 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
6429}
6430
c906108c 6431void
acdb74a0 6432_initialize_mips_tdep (void)
c906108c
SS
6433{
6434 static struct cmd_list_element *mipsfpulist = NULL;
6435 struct cmd_list_element *c;
6436
2e4ebe70
DJ
6437 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6438 if (MIPS_ABI_LAST + 1
6439 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6440 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6441
4b9b3959 6442 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6443 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6444 tm_print_insn = gdb_print_insn_mips;
6445
a5ea2558
AC
6446 /* Add root prefix command for all "set mips"/"show mips" commands */
6447 add_prefix_cmd ("mips", no_class, set_mips_command,
6448 "Various MIPS specific commands.",
6449 &setmipscmdlist, "set mips ", 0, &setlist);
6450
6451 add_prefix_cmd ("mips", no_class, show_mips_command,
6452 "Various MIPS specific commands.",
6453 &showmipscmdlist, "show mips ", 0, &showlist);
6454
6455 /* Allow the user to override the saved register size. */
6456 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6457 class_obscure,
6458 size_enums,
6459 &mips_saved_regsize_string, "\
a5ea2558
AC
6460Set size of general purpose registers saved on the stack.\n\
6461This option can be set to one of:\n\
6462 32 - Force GDB to treat saved GP registers as 32-bit\n\
6463 64 - Force GDB to treat saved GP registers as 64-bit\n\
6464 auto - Allow GDB to use the target's default setting or autodetect the\n\
6465 saved GP register size from information contained in the executable.\n\
6466 (default: auto)",
1ed2a135 6467 &setmipscmdlist),
a5ea2558
AC
6468 &showmipscmdlist);
6469
d929b26f
AC
6470 /* Allow the user to override the argument stack size. */
6471 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6472 class_obscure,
6473 size_enums,
1ed2a135 6474 &mips_stack_argsize_string, "\
d929b26f
AC
6475Set the amount of stack space reserved for each argument.\n\
6476This option can be set to one of:\n\
6477 32 - Force GDB to allocate 32-bit chunks per argument\n\
6478 64 - Force GDB to allocate 64-bit chunks per argument\n\
6479 auto - Allow GDB to determine the correct setting from the current\n\
6480 target and executable (default)",
6481 &setmipscmdlist),
6482 &showmipscmdlist);
6483
2e4ebe70
DJ
6484 /* Allow the user to override the ABI. */
6485 c = add_set_enum_cmd
6486 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6487 "Set the ABI used by this program.\n"
6488 "This option can be set to one of:\n"
6489 " auto - the default ABI associated with the current binary\n"
6490 " o32\n"
6491 " o64\n"
6492 " n32\n"
f3a7b3a5 6493 " n64\n"
2e4ebe70
DJ
6494 " eabi32\n"
6495 " eabi64",
6496 &setmipscmdlist);
6497 add_show_from_set (c, &showmipscmdlist);
6498 set_cmd_sfunc (c, mips_abi_update);
6499
c906108c
SS
6500 /* Let the user turn off floating point and set the fence post for
6501 heuristic_proc_start. */
6502
6503 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6504 "Set use of MIPS floating-point coprocessor.",
6505 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6506 add_cmd ("single", class_support, set_mipsfpu_single_command,
6507 "Select single-precision MIPS floating-point coprocessor.",
6508 &mipsfpulist);
6509 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6510 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6511 &mipsfpulist);
6512 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6513 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6514 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6515 add_cmd ("none", class_support, set_mipsfpu_none_command,
6516 "Select no MIPS floating-point coprocessor.",
6517 &mipsfpulist);
6518 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6519 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6520 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6521 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6522 "Select MIPS floating-point coprocessor automatically.",
6523 &mipsfpulist);
6524 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6525 "Show current use of MIPS floating-point coprocessor target.",
6526 &showlist);
6527
c906108c
SS
6528 /* We really would like to have both "0" and "unlimited" work, but
6529 command.c doesn't deal with that. So make it a var_zinteger
6530 because the user can always use "999999" or some such for unlimited. */
6531 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6532 (char *) &heuristic_fence_post,
6533 "\
6534Set the distance searched for the start of a function.\n\
6535If you are debugging a stripped executable, GDB needs to search through the\n\
6536program for the start of a function. This command sets the distance of the\n\
6537search. The only need to set it is when debugging a stripped executable.",
6538 &setlist);
6539 /* We need to throw away the frame cache when we set this, since it
6540 might change our ability to get backtraces. */
9f60d481 6541 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6542 add_show_from_set (c, &showlist);
6543
6544 /* Allow the user to control whether the upper bits of 64-bit
6545 addresses should be zeroed. */
e9e68a56
AC
6546 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6547Set zeroing of upper 32 bits of 64-bit addresses.\n\
6548Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6549allow GDB to determine the correct value.\n", "\
6550Show zeroing of upper 32 bits of 64-bit addresses.",
6551 NULL, show_mask_address,
6552 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6553
6554 /* Allow the user to control the size of 32 bit registers within the
6555 raw remote packet. */
6556 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6557 class_obscure,
6558 var_boolean,
6559 (char *)&mips64_transfers_32bit_regs_p, "\
6560Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6561Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6562that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
656364 bits for others. Use \"off\" to disable compatibility mode",
6564 &setlist),
6565 &showlist);
9ace0497
AC
6566
6567 /* Debug this files internals. */
6568 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6569 &mips_debug, "Set mips debugging.\n\
6570When non-zero, mips specific debugging is enabled.", &setdebuglist),
6571 &showdebuglist);
c906108c 6572}
This page took 0.722263 seconds and 4 git commands to generate.