* config/i386/nm-i386sol2.h (CANNOT_STEP_HW_WATCHPOINTS): Define.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
53a5351d 2 Copyright 1988-1999, Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
4 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "language.h"
31#include "gdbcore.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbtypes.h"
35#include "target.h"
36
37#include "opcode/mips.h"
c2d11a7d
JM
38#include "elf/mips.h"
39#include "elf-bfd.h"
40
c906108c 41
cce74817 42struct frame_extra_info
c5aa993b
JM
43 {
44 mips_extra_func_info_t proc_desc;
45 int num_args;
46 };
cce74817 47
a5ea2558
AC
48/* We allow the user to override MIPS_SAVED_REGSIZE, so define
49 the subcommand enum settings allowed. */
50static char saved_gpreg_size_auto[] = "auto";
51static char saved_gpreg_size_32[] = "32";
52static char saved_gpreg_size_64[] = "64";
53
54static char *saved_gpreg_size_enums[] = {
55 saved_gpreg_size_auto,
56 saved_gpreg_size_32,
57 saved_gpreg_size_64,
58 0
59};
60
61/* The current (string) value of saved_gpreg_size. */
62static char *mips_saved_regsize_string = saved_gpreg_size_auto;
63
7a292a7a
SS
64/* Some MIPS boards don't support floating point while others only
65 support single-precision floating-point operations. See also
66 FP_REGISTER_DOUBLE. */
c906108c
SS
67
68enum mips_fpu_type
c5aa993b
JM
69 {
70 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
71 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
72 MIPS_FPU_NONE /* No floating point. */
73 };
c906108c
SS
74
75#ifndef MIPS_DEFAULT_FPU_TYPE
76#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
77#endif
78static int mips_fpu_type_auto = 1;
79static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
80#define MIPS_FPU_TYPE mips_fpu_type
81
a5ea2558
AC
82#ifndef MIPS_DEFAULT_SAVED_REGSIZE
83#define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
7a292a7a 84#endif
c906108c 85
a5ea2558
AC
86#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
87
c906108c 88/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
7a292a7a 89#ifndef FP_REGISTER_DOUBLE
c906108c 90#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
7a292a7a
SS
91#endif
92
93
c2d11a7d
JM
94/* MIPS specific per-architecture information */
95struct gdbarch_tdep
96 {
97 /* from the elf header */
98 int elf_flags;
99 /* mips options */
100 int mips_eabi;
101 enum mips_fpu_type mips_fpu_type;
102 int mips_last_arg_regnum;
103 int mips_last_fp_arg_regnum;
a5ea2558 104 int mips_default_saved_regsize;
c2d11a7d
JM
105 int mips_fp_register_double;
106 };
107
108#if GDB_MULTI_ARCH
109#undef MIPS_EABI
110#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_eabi)
111#endif
112
113#if GDB_MULTI_ARCH
114#undef MIPS_LAST_FP_ARG_REGNUM
115#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
116#endif
117
118#if GDB_MULTI_ARCH
119#undef MIPS_LAST_ARG_REGNUM
120#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
121#endif
122
123#if GDB_MULTI_ARCH
124#undef MIPS_FPU_TYPE
125#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
126#endif
127
128#if GDB_MULTI_ARCH
a5ea2558
AC
129#undef MIPS_DEFAULT_SAVED_REGSIZE
130#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d
JM
131#endif
132
133/* Indicate that the ABI makes use of double-precision registers
134 provided by the FPU (rather than combining pairs of registers to
135 form double-precision values). Do not use "TARGET_IS_MIPS64" to
136 determine if the ABI is using double-precision registers. See also
137 MIPS_FPU_TYPE. */
138#if GDB_MULTI_ARCH
139#undef FP_REGISTER_DOUBLE
140#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
141#endif
142
143
7a292a7a 144#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c
SS
145
146#if 0
147static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
148#endif
149
150int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
151
152static void mips_print_register PARAMS ((int, int));
153
154static mips_extra_func_info_t
c5aa993b 155 heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
c906108c
SS
156
157static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
158
159static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
160
c906108c
SS
161int mips_set_processor_type PARAMS ((char *));
162
163static void mips_show_processor_type_command PARAMS ((char *, int));
164
165static void reinit_frame_cache_sfunc PARAMS ((char *, int,
166 struct cmd_list_element *));
167
168static mips_extra_func_info_t
c5aa993b 169 find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info * next_frame));
c906108c
SS
170
171static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
172 mips_extra_func_info_t proc_desc));
173
174/* This value is the model of MIPS in use. It is derived from the value
175 of the PrID register. */
176
177char *mips_processor_type;
178
179char *tmp_mips_processor_type;
180
181/* A set of original names, to be used when restoring back to generic
182 registers from a specific set. */
183
cce74817
JM
184char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
185char **mips_processor_reg_names = mips_generic_reg_names;
186
a5ea2558
AC
187/* The list of available "set mips " and "show mips " commands */
188static struct cmd_list_element *setmipscmdlist = NULL;
189static struct cmd_list_element *showmipscmdlist = NULL;
190
cce74817
JM
191char *
192mips_register_name (i)
193 int i;
194{
195 return mips_processor_reg_names[i];
196}
9846de1b 197/* *INDENT-OFF* */
c906108c
SS
198/* Names of IDT R3041 registers. */
199
200char *mips_r3041_reg_names[] = {
201 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
202 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
203 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
204 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
205 "sr", "lo", "hi", "bad", "cause","pc",
206 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
207 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
208 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
209 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
210 "fsr", "fir", "fp", "",
211 "", "", "bus", "ccfg", "", "", "", "",
212 "", "", "port", "cmp", "", "", "epc", "prid",
213};
214
215/* Names of IDT R3051 registers. */
216
217char *mips_r3051_reg_names[] = {
218 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
219 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
220 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
221 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
222 "sr", "lo", "hi", "bad", "cause","pc",
223 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
224 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
225 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
226 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
227 "fsr", "fir", "fp", "",
228 "inx", "rand", "elo", "", "ctxt", "", "", "",
229 "", "", "ehi", "", "", "", "epc", "prid",
230};
231
232/* Names of IDT R3081 registers. */
233
234char *mips_r3081_reg_names[] = {
235 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
236 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
237 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
238 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
239 "sr", "lo", "hi", "bad", "cause","pc",
240 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
241 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
242 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
243 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
244 "fsr", "fir", "fp", "",
245 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
246 "", "", "ehi", "", "", "", "epc", "prid",
247};
248
249/* Names of LSI 33k registers. */
250
251char *mips_lsi33k_reg_names[] = {
252 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
253 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
254 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
255 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
256 "epc", "hi", "lo", "sr", "cause","badvaddr",
257 "dcic", "bpc", "bda", "", "", "", "", "",
258 "", "", "", "", "", "", "", "",
259 "", "", "", "", "", "", "", "",
260 "", "", "", "", "", "", "", "",
261 "", "", "", "",
262 "", "", "", "", "", "", "", "",
263 "", "", "", "", "", "", "", "",
264};
265
266struct {
267 char *name;
268 char **regnames;
269} mips_processor_type_table[] = {
270 { "generic", mips_generic_reg_names },
271 { "r3041", mips_r3041_reg_names },
272 { "r3051", mips_r3051_reg_names },
273 { "r3071", mips_r3081_reg_names },
274 { "r3081", mips_r3081_reg_names },
275 { "lsi33k", mips_lsi33k_reg_names },
276 { NULL, NULL }
277};
9846de1b 278/* *INDENT-ON* */
c906108c 279
c5aa993b
JM
280
281
282
c906108c 283/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
284static int mips16_to_32_reg[8] =
285{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
286
287/* Heuristic_proc_start may hunt through the text section for a long
288 time across a 2400 baud serial line. Allows the user to limit this
289 search. */
290
291static unsigned int heuristic_fence_post = 0;
292
c5aa993b
JM
293#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
294#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
295#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
296#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
297#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
298#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
299#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
300#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
301#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
302#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
303#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
304#define _PROC_MAGIC_ 0x0F0F0F0F
305#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
306#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
307
308struct linked_proc_info
c5aa993b
JM
309 {
310 struct mips_extra_func_info info;
311 struct linked_proc_info *next;
312 }
313 *linked_proc_desc_table = NULL;
c906108c 314
cce74817
JM
315void
316mips_print_extra_frame_info (fi)
317 struct frame_info *fi;
318{
319 if (fi
320 && fi->extra_info
321 && fi->extra_info->proc_desc
322 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 323 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 324 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 325 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 326}
c906108c 327
a5ea2558
AC
328/* Return the currently configured (or set) saved register size */
329
330static unsigned int
331mips_saved_regsize ()
332{
333 if (mips_saved_regsize_string == saved_gpreg_size_auto)
334 return MIPS_DEFAULT_SAVED_REGSIZE;
335 else if (mips_saved_regsize_string == saved_gpreg_size_64)
336 return 8;
337 else /* if (mips_saved_regsize_string == saved_gpreg_size_32) */
338 return 4;
339}
340
43e526b9
JM
341/* Convert between RAW and VIRTUAL registers. The RAW register size
342 defines the remote-gdb packet. */
343
344static int mips64_transfers_32bit_regs_p = 0;
345
346int
347mips_register_raw_size (reg_nr)
348 int reg_nr;
349{
350 if (mips64_transfers_32bit_regs_p)
351 return REGISTER_VIRTUAL_SIZE (reg_nr);
352 else
353 return MIPS_REGSIZE;
354}
355
356int
357mips_register_convertible (reg_nr)
358 int reg_nr;
359{
360 if (mips64_transfers_32bit_regs_p)
361 return 0;
362 else
363 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
364}
365
366void
367mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf)
368 int n;
369 struct type *virtual_type;
370 char *raw_buf;
371 char *virt_buf;
372{
373 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
374 memcpy (virt_buf,
375 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
376 TYPE_LENGTH (virtual_type));
377 else
378 memcpy (virt_buf,
379 raw_buf,
380 TYPE_LENGTH (virtual_type));
381}
382
383void
384mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf)
385 struct type *virtual_type;
386 int n;
387 char *virt_buf;
388 char *raw_buf;
389{
390 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
391 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
392 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
393 virt_buf,
394 TYPE_LENGTH (virtual_type));
395 else
396 memcpy (raw_buf,
397 virt_buf,
398 TYPE_LENGTH (virtual_type));
399}
400
c906108c
SS
401/* Should the upper word of 64-bit addresses be zeroed? */
402static int mask_address_p = 1;
403
404/* Should call_function allocate stack space for a struct return? */
405int
406mips_use_struct_convention (gcc_p, type)
407 int gcc_p;
408 struct type *type;
409{
410 if (MIPS_EABI)
7a292a7a 411 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
c906108c 412 else
c5aa993b 413 return 1; /* Structures are returned by ref in extra arg0 */
c906108c
SS
414}
415
416/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
417
418static int
419pc_is_mips16 (bfd_vma memaddr)
420{
421 struct minimal_symbol *sym;
422
423 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
424 if (IS_MIPS16_ADDR (memaddr))
425 return 1;
426
427 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
428 the high bit of the info field. Use this to decide if the function is
429 MIPS16 or normal MIPS. */
430 sym = lookup_minimal_symbol_by_pc (memaddr);
431 if (sym)
432 return MSYMBOL_IS_SPECIAL (sym);
433 else
434 return 0;
435}
436
437
438/* This returns the PC of the first inst after the prologue. If we can't
439 find the prologue, then return 0. */
440
441static CORE_ADDR
442after_prologue (pc, proc_desc)
443 CORE_ADDR pc;
444 mips_extra_func_info_t proc_desc;
445{
446 struct symtab_and_line sal;
447 CORE_ADDR func_addr, func_end;
448
449 if (!proc_desc)
450 proc_desc = find_proc_desc (pc, NULL);
451
452 if (proc_desc)
453 {
454 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 455 strongly suspect that frameless always means prologueless... */
c906108c
SS
456 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
457 && PROC_FRAME_OFFSET (proc_desc) == 0)
458 return 0;
459 }
460
461 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
462 return 0; /* Unknown */
463
464 sal = find_pc_line (func_addr, 0);
465
466 if (sal.end < func_end)
467 return sal.end;
468
469 /* The line after the prologue is after the end of the function. In this
470 case, tell the caller to find the prologue the hard way. */
471
472 return 0;
473}
474
475/* Decode a MIPS32 instruction that saves a register in the stack, and
476 set the appropriate bit in the general register mask or float register mask
477 to indicate which register is saved. This is a helper function
478 for mips_find_saved_regs. */
479
480static void
481mips32_decode_reg_save (inst, gen_mask, float_mask)
482 t_inst inst;
483 unsigned long *gen_mask;
484 unsigned long *float_mask;
485{
486 int reg;
487
488 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
489 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
490 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
491 {
492 /* It might be possible to use the instruction to
c5aa993b
JM
493 find the offset, rather than the code below which
494 is based on things being in a certain order in the
495 frame, but figuring out what the instruction's offset
496 is relative to might be a little tricky. */
c906108c
SS
497 reg = (inst & 0x001f0000) >> 16;
498 *gen_mask |= (1 << reg);
499 }
500 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
501 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
502 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
503
504 {
505 reg = ((inst & 0x001f0000) >> 16);
506 *float_mask |= (1 << reg);
507 }
508}
509
510/* Decode a MIPS16 instruction that saves a register in the stack, and
511 set the appropriate bit in the general register or float register mask
512 to indicate which register is saved. This is a helper function
513 for mips_find_saved_regs. */
514
515static void
516mips16_decode_reg_save (inst, gen_mask)
517 t_inst inst;
518 unsigned long *gen_mask;
519{
c5aa993b 520 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
521 {
522 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
523 *gen_mask |= (1 << reg);
524 }
c5aa993b 525 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
526 {
527 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
528 *gen_mask |= (1 << reg);
529 }
c5aa993b 530 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
531 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
532 *gen_mask |= (1 << RA_REGNUM);
533}
534
535
536/* Fetch and return instruction from the specified location. If the PC
537 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
538
539static t_inst
540mips_fetch_instruction (addr)
c5aa993b 541 CORE_ADDR addr;
c906108c
SS
542{
543 char buf[MIPS_INSTLEN];
544 int instlen;
545 int status;
546
547 if (pc_is_mips16 (addr))
548 {
549 instlen = MIPS16_INSTLEN;
550 addr = UNMAKE_MIPS16_ADDR (addr);
551 }
552 else
c5aa993b 553 instlen = MIPS_INSTLEN;
c906108c
SS
554 status = read_memory_nobpt (addr, buf, instlen);
555 if (status)
556 memory_error (status, addr);
557 return extract_unsigned_integer (buf, instlen);
558}
559
560
561/* These the fields of 32 bit mips instructions */
562#define mips32_op(x) (x >> 25)
563#define itype_op(x) (x >> 25)
564#define itype_rs(x) ((x >> 21)& 0x1f)
565#define itype_rt(x) ((x >> 16) & 0x1f)
566#define itype_immediate(x) ( x & 0xffff)
567
568#define jtype_op(x) (x >> 25)
569#define jtype_target(x) ( x & 0x03fffff)
570
571#define rtype_op(x) (x >>25)
572#define rtype_rs(x) ((x>>21) & 0x1f)
573#define rtype_rt(x) ((x>>16) & 0x1f)
c5aa993b 574#define rtype_rd(x) ((x>>11) & 0x1f)
c906108c
SS
575#define rtype_shamt(x) ((x>>6) & 0x1f)
576#define rtype_funct(x) (x & 0x3f )
577
578static CORE_ADDR
c5aa993b
JM
579mips32_relative_offset (unsigned long inst)
580{
581 long x;
582 x = itype_immediate (inst);
583 if (x & 0x8000) /* sign bit set */
c906108c 584 {
c5aa993b 585 x |= 0xffff0000; /* sign extension */
c906108c 586 }
c5aa993b
JM
587 x = x << 2;
588 return x;
c906108c
SS
589}
590
591/* Determine whate to set a single step breakpoint while considering
592 branch prediction */
593CORE_ADDR
c5aa993b
JM
594mips32_next_pc (CORE_ADDR pc)
595{
596 unsigned long inst;
597 int op;
598 inst = mips_fetch_instruction (pc);
599 if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
600 {
601 if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
602 {
603 op = ((inst >> 25) & 0x03);
c906108c
SS
604 switch (op)
605 {
c5aa993b
JM
606 case 0:
607 goto equal_branch; /* BEQL */
608 case 1:
609 goto neq_branch; /* BNEZ */
610 case 2:
611 goto less_branch; /* BLEZ */
612 case 3:
613 goto greater_branch; /* BGTZ */
614 default:
615 pc += 4;
c906108c
SS
616 }
617 }
c5aa993b
JM
618 else
619 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
620 }
621 else
c5aa993b
JM
622 { /* This gets way messy */
623
c906108c 624 /* Further subdivide into SPECIAL, REGIMM and other */
c5aa993b 625 switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
c906108c 626 {
c5aa993b
JM
627 case 0: /* SPECIAL */
628 op = rtype_funct (inst);
629 switch (op)
630 {
631 case 8: /* JR */
632 case 9: /* JALR */
633 pc = read_register (rtype_rs (inst)); /* Set PC to that address */
634 break;
635 default:
636 pc += 4;
637 }
638
639 break; /* end special */
640 case 1: /* REGIMM */
c906108c 641 {
c5aa993b
JM
642 op = jtype_op (inst); /* branch condition */
643 switch (jtype_op (inst))
c906108c 644 {
c5aa993b
JM
645 case 0: /* BLTZ */
646 case 2: /* BLTXL */
647 case 16: /* BLTZALL */
648 case 18: /* BLTZALL */
c906108c 649 less_branch:
c5aa993b
JM
650 if (read_register (itype_rs (inst)) < 0)
651 pc += mips32_relative_offset (inst) + 4;
652 else
653 pc += 8; /* after the delay slot */
654 break;
655 case 1: /* GEZ */
656 case 3: /* BGEZL */
657 case 17: /* BGEZAL */
658 case 19: /* BGEZALL */
c906108c 659 greater_equal_branch:
c5aa993b
JM
660 if (read_register (itype_rs (inst)) >= 0)
661 pc += mips32_relative_offset (inst) + 4;
662 else
663 pc += 8; /* after the delay slot */
664 break;
665 /* All of the other intructions in the REGIMM catagory */
666 default:
667 pc += 4;
c906108c
SS
668 }
669 }
c5aa993b
JM
670 break; /* end REGIMM */
671 case 2: /* J */
672 case 3: /* JAL */
673 {
674 unsigned long reg;
675 reg = jtype_target (inst) << 2;
676 pc = reg + ((pc + 4) & 0xf0000000);
c906108c
SS
677 /* Whats this mysterious 0xf000000 adjustment ??? */
678 }
c5aa993b
JM
679 break;
680 /* FIXME case JALX : */
681 {
682 unsigned long reg;
683 reg = jtype_target (inst) << 2;
684 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
685 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
686 }
c5aa993b
JM
687 break; /* The new PC will be alternate mode */
688 case 4: /* BEQ , BEQL */
689 equal_branch:
690 if (read_register (itype_rs (inst)) ==
691 read_register (itype_rt (inst)))
692 pc += mips32_relative_offset (inst) + 4;
693 else
694 pc += 8;
695 break;
696 case 5: /* BNE , BNEL */
697 neq_branch:
698 if (read_register (itype_rs (inst)) !=
699 read_register (itype_rs (inst)))
700 pc += mips32_relative_offset (inst) + 4;
701 else
702 pc += 8;
703 break;
704 case 6: /* BLEZ , BLEZL */
c906108c 705 less_zero_branch:
c5aa993b
JM
706 if (read_register (itype_rs (inst) <= 0))
707 pc += mips32_relative_offset (inst) + 4;
708 else
709 pc += 8;
710 break;
711 case 7:
712 greater_branch: /* BGTZ BGTZL */
713 if (read_register (itype_rs (inst) > 0))
714 pc += mips32_relative_offset (inst) + 4;
715 else
716 pc += 8;
717 break;
718 default:
719 pc += 8;
720 } /* switch */
721 } /* else */
722 return pc;
723} /* mips32_next_pc */
c906108c
SS
724
725/* Decoding the next place to set a breakpoint is irregular for the
726 mips 16 variant, but fortunatly, there fewer instructions. We have to cope
727 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
728 We dont want to set a single step instruction on the extend instruction
729 either.
c5aa993b 730 */
c906108c
SS
731
732/* Lots of mips16 instruction formats */
733/* Predicting jumps requires itype,ritype,i8type
734 and their extensions extItype,extritype,extI8type
c5aa993b 735 */
c906108c
SS
736enum mips16_inst_fmts
737{
c5aa993b
JM
738 itype, /* 0 immediate 5,10 */
739 ritype, /* 1 5,3,8 */
740 rrtype, /* 2 5,3,3,5 */
741 rritype, /* 3 5,3,3,5 */
742 rrrtype, /* 4 5,3,3,3,2 */
743 rriatype, /* 5 5,3,3,1,4 */
744 shifttype, /* 6 5,3,3,3,2 */
745 i8type, /* 7 5,3,8 */
746 i8movtype, /* 8 5,3,3,5 */
747 i8mov32rtype, /* 9 5,3,5,3 */
748 i64type, /* 10 5,3,8 */
749 ri64type, /* 11 5,3,3,5 */
750 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
751 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
752 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
753 extRRItype, /* 15 5,5,5,5,3,3,5 */
754 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
755 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
756 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
757 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
758 extRi64type, /* 20 5,6,5,5,3,3,5 */
759 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
760};
c906108c
SS
761/* I am heaping all the fields of the formats into one structure and then,
762 only the fields which are involved in instruction extension */
763struct upk_mips16
c5aa993b
JM
764 {
765 unsigned short inst;
766 enum mips16_inst_fmts fmt;
767 unsigned long offset;
768 unsigned int regx; /* Function in i8 type */
769 unsigned int regy;
770 };
c906108c
SS
771
772
773
c5aa993b
JM
774static void
775print_unpack (char *comment,
776 struct upk_mips16 *u)
c906108c 777{
d4f3574e
SS
778 printf ("%s %04x ,f(%d) off(%s) (x(%x) y(%x)\n",
779 comment, u->inst, u->fmt, paddr (u->offset), u->regx, u->regy);
c906108c
SS
780}
781
782/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
783 format for the bits which make up the immediatate extension.
c5aa993b 784 */
c906108c 785static unsigned long
c5aa993b 786extended_offset (unsigned long extension)
c906108c 787{
c5aa993b
JM
788 unsigned long value;
789 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
790 value = value << 6;
791 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
792 value = value << 5;
793 value |= extension & 0x01f; /* extract 4:0 */
794 return value;
c906108c
SS
795}
796
797/* Only call this function if you know that this is an extendable
798 instruction, It wont malfunction, but why make excess remote memory references?
799 If the immediate operands get sign extended or somthing, do it after
800 the extension is performed.
c5aa993b 801 */
c906108c
SS
802/* FIXME: Every one of these cases needs to worry about sign extension
803 when the offset is to be used in relative addressing */
804
805
c5aa993b
JM
806static unsigned short
807fetch_mips_16 (CORE_ADDR pc)
c906108c 808{
c5aa993b
JM
809 char buf[8];
810 pc &= 0xfffffffe; /* clear the low order bit */
811 target_read_memory (pc, buf, 2);
812 return extract_unsigned_integer (buf, 2);
c906108c
SS
813}
814
815static void
c5aa993b
JM
816unpack_mips16 (CORE_ADDR pc,
817 struct upk_mips16 *upk)
c906108c 818{
c5aa993b
JM
819 CORE_ADDR extpc;
820 unsigned long extension;
821 int extended;
822 extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */
c906108c
SS
823 /* Decrement to previous address and loose the 16bit mode flag */
824 /* return if the instruction was extendable, but not actually extended */
c5aa993b
JM
825 extended = ((mips32_op (extension) == 30) ? 1 : 0);
826 if (extended)
827 {
828 extension = mips_fetch_instruction (extpc);
829 }
c906108c
SS
830 switch (upk->fmt)
831 {
c5aa993b 832 case itype:
c906108c 833 {
c5aa993b 834 unsigned long value;
c906108c 835 if (extended)
c5aa993b
JM
836 {
837 value = extended_offset (extension);
838 value = value << 11; /* rom for the original value */
839 value |= upk->inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
840 }
841 else
c5aa993b
JM
842 {
843 value = upk->inst & 0x7ff;
844 /* FIXME : Consider sign extension */
c906108c 845 }
c5aa993b 846 upk->offset = value;
c906108c 847 }
c5aa993b
JM
848 break;
849 case ritype:
850 case i8type:
851 { /* A register identifier and an offset */
c906108c
SS
852 /* Most of the fields are the same as I type but the
853 immediate value is of a different length */
c5aa993b 854 unsigned long value;
c906108c
SS
855 if (extended)
856 {
c5aa993b
JM
857 value = extended_offset (extension);
858 value = value << 8; /* from the original instruction */
859 value |= upk->inst & 0xff; /* eleven bits from instruction */
860 upk->regx = (extension >> 8) & 0x07; /* or i8 funct */
861 if (value & 0x4000) /* test the sign bit , bit 26 */
862 {
863 value &= ~0x3fff; /* remove the sign bit */
864 value = -value;
c906108c
SS
865 }
866 }
c5aa993b
JM
867 else
868 {
869 value = upk->inst & 0xff; /* 8 bits */
870 upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */
871 /* FIXME: Do sign extension , this format needs it */
872 if (value & 0x80) /* THIS CONFUSES ME */
873 {
874 value &= 0xef; /* remove the sign bit */
875 value = -value;
876 }
877
878 }
879 upk->offset = value;
880 break;
c906108c 881 }
c5aa993b 882 case jalxtype:
c906108c 883 {
c5aa993b
JM
884 unsigned long value;
885 unsigned short nexthalf;
886 value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f);
887 value = value << 16;
888 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
889 value |= nexthalf;
890 upk->offset = value;
891 break;
c906108c
SS
892 }
893 default:
c5aa993b
JM
894 printf_filtered ("Decoding unimplemented instruction format type\n");
895 break;
c906108c
SS
896 }
897 /* print_unpack("UPK",upk) ; */
898}
899
900
901#define mips16_op(x) (x >> 11)
902
903/* This is a map of the opcodes which ae known to perform branches */
904static unsigned char map16[32] =
c5aa993b
JM
905{0, 0, 1, 1, 1, 1, 0, 0,
906 0, 0, 0, 0, 1, 0, 0, 0,
907 0, 0, 0, 0, 0, 0, 0, 0,
908 0, 0, 0, 0, 0, 1, 1, 0
909};
c906108c 910
c5aa993b
JM
911static CORE_ADDR
912add_offset_16 (CORE_ADDR pc, int offset)
c906108c 913{
c5aa993b
JM
914 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
915
c906108c
SS
916}
917
918
919
c5aa993b 920static struct upk_mips16 upk;
c906108c 921
c5aa993b
JM
922CORE_ADDR
923mips16_next_pc (CORE_ADDR pc)
c906108c 924{
c5aa993b
JM
925 int op;
926 t_inst inst;
c906108c 927 /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
c5aa993b
JM
928 inst = fetch_mips_16 (pc);
929 upk.inst = inst;
930 op = mips16_op (upk.inst);
c906108c
SS
931 if (map16[op])
932 {
c5aa993b 933 int reg;
c906108c
SS
934 switch (op)
935 {
c5aa993b
JM
936 case 2: /* Branch */
937 upk.fmt = itype;
938 unpack_mips16 (pc, &upk);
939 {
940 long offset;
941 offset = upk.offset;
c906108c 942 if (offset & 0x800)
c5aa993b
JM
943 {
944 offset &= 0xeff;
945 offset = -offset;
c906108c 946 }
c5aa993b 947 pc += (offset << 1) + 2;
c906108c 948 }
c5aa993b
JM
949 break;
950 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
951 upk.fmt = jalxtype;
952 unpack_mips16 (pc, &upk);
953 pc = add_offset_16 (pc, upk.offset);
954 if ((upk.inst >> 10) & 0x01) /* Exchange mode */
955 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
956 else
957 pc |= 0x01;
958 break;
959 case 4: /* beqz */
960 upk.fmt = ritype;
961 unpack_mips16 (pc, &upk);
962 reg = read_register (upk.regx);
963 if (reg == 0)
964 pc += (upk.offset << 1) + 2;
965 else
966 pc += 2;
967 break;
968 case 5: /* bnez */
969 upk.fmt = ritype;
970 unpack_mips16 (pc, &upk);
971 reg = read_register (upk.regx);
972 if (reg != 0)
973 pc += (upk.offset << 1) + 2;
974 else
975 pc += 2;
976 break;
977 case 12: /* I8 Formats btez btnez */
978 upk.fmt = i8type;
979 unpack_mips16 (pc, &upk);
980 /* upk.regx contains the opcode */
981 reg = read_register (24); /* Test register is 24 */
982 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
983 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
984 /* pc = add_offset_16(pc,upk.offset) ; */
985 pc += (upk.offset << 1) + 2;
986 else
987 pc += 2;
988 break;
989 case 29: /* RR Formats JR, JALR, JALR-RA */
990 upk.fmt = rrtype;
991 op = upk.inst & 0x1f;
c906108c 992 if (op == 0)
c5aa993b
JM
993 {
994 upk.regx = (upk.inst >> 8) & 0x07;
995 upk.regy = (upk.inst >> 5) & 0x07;
c906108c
SS
996 switch (upk.regy)
997 {
c5aa993b
JM
998 case 0:
999 reg = upk.regx;
1000 break;
1001 case 1:
1002 reg = 31;
1003 break; /* Function return instruction */
1004 case 2:
1005 reg = upk.regx;
1006 break;
1007 default:
1008 reg = 31;
1009 break; /* BOGUS Guess */
c906108c 1010 }
c5aa993b 1011 pc = read_register (reg);
c906108c 1012 }
c5aa993b
JM
1013 else
1014 pc += 2;
1015 break;
1016 case 30: /* This is an extend instruction */
1017 pc += 4; /* Dont be setting breakpints on the second half */
1018 break;
1019 default:
1020 printf ("Filtered - next PC probably incorrrect due to jump inst\n");
1021 pc += 2;
1022 break;
c906108c
SS
1023 }
1024 }
c5aa993b
JM
1025 else
1026 pc += 2; /* just a good old instruction */
c906108c
SS
1027 /* See if we CAN actually break on the next instruction */
1028 /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
c5aa993b
JM
1029 return pc;
1030} /* mips16_next_pc */
c906108c
SS
1031
1032/* The mips_next_pc function supports single_tep when the remote target monitor or
1033 stub is not developed enough to so a single_step.
1034 It works by decoding the current instruction and predicting where a branch
1035 will go. This isnt hard because all the data is available.
1036 The MIPS32 and MIPS16 variants are quite different
c5aa993b
JM
1037 */
1038CORE_ADDR
1039mips_next_pc (CORE_ADDR pc)
c906108c 1040{
c5aa993b 1041 t_inst inst;
c906108c
SS
1042 /* inst = mips_fetch_instruction(pc) ; */
1043 /* if (pc_is_mips16) <----- This is failing */
c5aa993b
JM
1044 if (pc & 0x01)
1045 return mips16_next_pc (pc);
1046 else
1047 return mips32_next_pc (pc);
1048} /* mips_next_pc */
c906108c
SS
1049
1050/* Guaranteed to set fci->saved_regs to some values (it never leaves it
1051 NULL). */
1052
1053void
1054mips_find_saved_regs (fci)
1055 struct frame_info *fci;
1056{
1057 int ireg;
1058 CORE_ADDR reg_position;
1059 /* r0 bit means kernel trap */
1060 int kernel_trap;
1061 /* What registers have been saved? Bitmasks. */
1062 unsigned long gen_mask, float_mask;
1063 mips_extra_func_info_t proc_desc;
1064 t_inst inst;
1065
1066 frame_saved_regs_zalloc (fci);
1067
1068 /* If it is the frame for sigtramp, the saved registers are located
1069 in a sigcontext structure somewhere on the stack.
1070 If the stack layout for sigtramp changes we might have to change these
1071 constants and the companion fixup_sigtramp in mdebugread.c */
1072#ifndef SIGFRAME_BASE
1073/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1074 above the sigtramp frame. */
1075#define SIGFRAME_BASE MIPS_REGSIZE
1076/* FIXME! Are these correct?? */
1077#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1078#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1079#define SIGFRAME_FPREGSAVE_OFF \
1080 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1081#endif
1082#ifndef SIGFRAME_REG_SIZE
1083/* FIXME! Is this correct?? */
1084#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1085#endif
1086 if (fci->signal_handler_caller)
1087 {
1088 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1089 {
c5aa993b
JM
1090 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1091 + ireg * SIGFRAME_REG_SIZE;
1092 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1093 }
1094 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1095 {
c5aa993b
JM
1096 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1097 + ireg * SIGFRAME_REG_SIZE;
1098 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1099 }
1100 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1101 return;
1102 }
1103
cce74817 1104 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1105 if (proc_desc == NULL)
1106 /* I'm not sure how/whether this can happen. Normally when we can't
1107 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1108 and set the saved_regs right away. */
1109 return;
1110
c5aa993b
JM
1111 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1112 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1113 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1114
c5aa993b
JM
1115 if ( /* In any frame other than the innermost or a frame interrupted by
1116 a signal, we assume that all registers have been saved.
1117 This assumes that all register saves in a function happen before
1118 the first function call. */
1119 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1120
c5aa993b
JM
1121 /* In a dummy frame we know exactly where things are saved. */
1122 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1123
c5aa993b
JM
1124 /* Don't bother unless we are inside a function prologue. Outside the
1125 prologue, we know where everything is. */
c906108c 1126
c5aa993b 1127 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1128
c5aa993b
JM
1129 /* Not sure exactly what kernel_trap means, but if it means
1130 the kernel saves the registers without a prologue doing it,
1131 we better not examine the prologue to see whether registers
1132 have been saved yet. */
1133 && !kernel_trap)
c906108c
SS
1134 {
1135 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1136 claims are saved have been saved yet. */
c906108c
SS
1137
1138 CORE_ADDR addr;
1139
1140 /* Bitmasks; set if we have found a save for the register. */
1141 unsigned long gen_save_found = 0;
1142 unsigned long float_save_found = 0;
1143 int instlen;
1144
1145 /* If the address is odd, assume this is MIPS16 code. */
1146 addr = PROC_LOW_ADDR (proc_desc);
1147 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1148
1149 /* Scan through this function's instructions preceding the current
1150 PC, and look for those that save registers. */
1151 while (addr < fci->pc)
1152 {
1153 inst = mips_fetch_instruction (addr);
1154 if (pc_is_mips16 (addr))
1155 mips16_decode_reg_save (inst, &gen_save_found);
1156 else
1157 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1158 addr += instlen;
1159 }
1160 gen_mask = gen_save_found;
1161 float_mask = float_save_found;
1162 }
1163
1164 /* Fill in the offsets for the registers which gen_mask says
1165 were saved. */
1166 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1167 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1168 if (gen_mask & 0x80000000)
1169 {
1170 fci->saved_regs[ireg] = reg_position;
7a292a7a 1171 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1172 }
1173
1174 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1175 of that normally used by gcc. Therefore, we have to fetch the first
1176 instruction of the function, and if it's an entry instruction that
1177 saves $s0 or $s1, correct their saved addresses. */
1178 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1179 {
1180 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1181 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1182 {
1183 int reg;
1184 int sreg_count = (inst >> 6) & 3;
c5aa993b 1185
c906108c
SS
1186 /* Check if the ra register was pushed on the stack. */
1187 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1188 if (inst & 0x20)
7a292a7a 1189 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1190
1191 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1192 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1193 {
1194 fci->saved_regs[reg] = reg_position;
7a292a7a 1195 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1196 }
1197 }
1198 }
1199
1200 /* Fill in the offsets for the registers which float_mask says
1201 were saved. */
1202 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1203
1204 /* The freg_offset points to where the first *double* register
1205 is saved. So skip to the high-order word. */
c5aa993b 1206 if (!GDB_TARGET_IS_MIPS64)
7a292a7a 1207 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1208
1209 /* Fill in the offsets for the float registers which float_mask says
1210 were saved. */
c5aa993b 1211 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1212 if (float_mask & 0x80000000)
1213 {
c5aa993b 1214 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1215 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1216 }
1217
1218 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1219}
1220
1221static CORE_ADDR
c5aa993b 1222read_next_frame_reg (fi, regno)
c906108c
SS
1223 struct frame_info *fi;
1224 int regno;
1225{
1226 for (; fi; fi = fi->next)
1227 {
1228 /* We have to get the saved sp from the sigcontext
c5aa993b 1229 if it is a signal handler frame. */
c906108c
SS
1230 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1231 return fi->frame;
1232 else
1233 {
1234 if (fi->saved_regs == NULL)
1235 mips_find_saved_regs (fi);
1236 if (fi->saved_regs[regno])
2acceee2 1237 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1238 }
1239 }
1240 return read_register (regno);
1241}
1242
1243/* mips_addr_bits_remove - remove useless address bits */
1244
1245CORE_ADDR
1246mips_addr_bits_remove (addr)
c5aa993b 1247 CORE_ADDR addr;
c906108c
SS
1248{
1249#if GDB_TARGET_IS_MIPS64
c5aa993b 1250 if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff))
c906108c
SS
1251 {
1252 /* This hack is a work-around for existing boards using PMON,
c5aa993b
JM
1253 the simulator, and any other 64-bit targets that doesn't have
1254 true 64-bit addressing. On these targets, the upper 32 bits
1255 of addresses are ignored by the hardware. Thus, the PC or SP
1256 are likely to have been sign extended to all 1s by instruction
1257 sequences that load 32-bit addresses. For example, a typical
1258 piece of code that loads an address is this:
1259 lui $r2, <upper 16 bits>
1260 ori $r2, <lower 16 bits>
1261 But the lui sign-extends the value such that the upper 32 bits
1262 may be all 1s. The workaround is simply to mask off these bits.
1263 In the future, gcc may be changed to support true 64-bit
1264 addressing, and this masking will have to be disabled. */
1265 addr &= (CORE_ADDR) 0xffffffff;
c906108c
SS
1266 }
1267#else
1268 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
1269 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
1270 So we still have to mask off useless bits from addresses. */
c5aa993b 1271 addr &= (CORE_ADDR) 0xffffffff;
c906108c
SS
1272#endif
1273
1274 return addr;
1275}
1276
1277void
1278mips_init_frame_pc_first (fromleaf, prev)
1279 int fromleaf;
1280 struct frame_info *prev;
1281{
1282 CORE_ADDR pc, tmp;
1283
1284 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1285 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1286 tmp = mips_skip_stub (pc);
c5aa993b 1287 prev->pc = tmp ? tmp : pc;
c906108c
SS
1288}
1289
1290
1291CORE_ADDR
c5aa993b 1292mips_frame_saved_pc (frame)
c906108c
SS
1293 struct frame_info *frame;
1294{
1295 CORE_ADDR saved_pc;
cce74817 1296 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1297 /* We have to get the saved pc from the sigcontext
1298 if it is a signal handler frame. */
1299 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1300 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1301
c5aa993b 1302 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1303 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1304 else
7a292a7a 1305 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1306
1307 return ADDR_BITS_REMOVE (saved_pc);
1308}
1309
1310static struct mips_extra_func_info temp_proc_desc;
cce74817 1311static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1312
1313/* Set a register's saved stack address in temp_saved_regs. If an address
1314 has already been set for this register, do nothing; this way we will
1315 only recognize the first save of a given register in a function prologue.
1316 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1317
1318static void
1319set_reg_offset (regno, offset)
1320 int regno;
1321 CORE_ADDR offset;
1322{
cce74817
JM
1323 if (temp_saved_regs[regno] == 0)
1324 temp_saved_regs[regno] = offset;
c906108c
SS
1325}
1326
1327
1328/* Test whether the PC points to the return instruction at the
1329 end of a function. */
1330
c5aa993b 1331static int
c906108c
SS
1332mips_about_to_return (pc)
1333 CORE_ADDR pc;
1334{
1335 if (pc_is_mips16 (pc))
1336 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1337 generates a "jr $ra"; other times it generates code to load
1338 the return address from the stack to an accessible register (such
1339 as $a3), then a "jr" using that register. This second case
1340 is almost impossible to distinguish from an indirect jump
1341 used for switch statements, so we don't even try. */
1342 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1343 else
1344 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1345}
1346
1347
1348/* This fencepost looks highly suspicious to me. Removing it also
1349 seems suspicious as it could affect remote debugging across serial
1350 lines. */
1351
1352static CORE_ADDR
1353heuristic_proc_start (pc)
c5aa993b 1354 CORE_ADDR pc;
c906108c 1355{
c5aa993b
JM
1356 CORE_ADDR start_pc;
1357 CORE_ADDR fence;
1358 int instlen;
1359 int seen_adjsp = 0;
c906108c 1360
c5aa993b
JM
1361 pc = ADDR_BITS_REMOVE (pc);
1362 start_pc = pc;
1363 fence = start_pc - heuristic_fence_post;
1364 if (start_pc == 0)
1365 return 0;
c906108c 1366
c5aa993b
JM
1367 if (heuristic_fence_post == UINT_MAX
1368 || fence < VM_MIN_ADDRESS)
1369 fence = VM_MIN_ADDRESS;
c906108c 1370
c5aa993b 1371 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1372
c5aa993b
JM
1373 /* search back for previous return */
1374 for (start_pc -= instlen;; start_pc -= instlen)
1375 if (start_pc < fence)
1376 {
1377 /* It's not clear to me why we reach this point when
1378 stop_soon_quietly, but with this test, at least we
1379 don't print out warnings for every child forked (eg, on
1380 decstation). 22apr93 rich@cygnus.com. */
1381 if (!stop_soon_quietly)
c906108c 1382 {
c5aa993b
JM
1383 static int blurb_printed = 0;
1384
1385 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1386 paddr_nz (pc));
1387
1388 if (!blurb_printed)
c906108c 1389 {
c5aa993b
JM
1390 /* This actually happens frequently in embedded
1391 development, when you first connect to a board
1392 and your stack pointer and pc are nowhere in
1393 particular. This message needs to give people
1394 in that situation enough information to
1395 determine that it's no big deal. */
1396 printf_filtered ("\n\
cd0fc7c3
SS
1397 GDB is unable to find the start of the function at 0x%s\n\
1398and thus can't determine the size of that function's stack frame.\n\
1399This means that GDB may be unable to access that stack frame, or\n\
1400the frames below it.\n\
1401 This problem is most likely caused by an invalid program counter or\n\
1402stack pointer.\n\
1403 However, if you think GDB should simply search farther back\n\
1404from 0x%s for code which looks like the beginning of a\n\
1405function, you can increase the range of the search using the `set\n\
1406heuristic-fence-post' command.\n",
c5aa993b
JM
1407 paddr_nz (pc), paddr_nz (pc));
1408 blurb_printed = 1;
c906108c 1409 }
c906108c
SS
1410 }
1411
c5aa993b
JM
1412 return 0;
1413 }
1414 else if (pc_is_mips16 (start_pc))
1415 {
1416 unsigned short inst;
1417
1418 /* On MIPS16, any one of the following is likely to be the
1419 start of a function:
1420 entry
1421 addiu sp,-n
1422 daddiu sp,-n
1423 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1424 inst = mips_fetch_instruction (start_pc);
1425 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1426 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1427 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1428 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1429 break;
1430 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1431 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1432 seen_adjsp = 1;
1433 else
1434 seen_adjsp = 0;
1435 }
1436 else if (mips_about_to_return (start_pc))
1437 {
1438 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1439 break;
1440 }
1441
c906108c 1442#if 0
c5aa993b
JM
1443 /* skip nops (usually 1) 0 - is this */
1444 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
1445 start_pc += MIPS_INSTLEN;
c906108c 1446#endif
c5aa993b 1447 return start_pc;
c906108c
SS
1448}
1449
1450/* Fetch the immediate value from a MIPS16 instruction.
1451 If the previous instruction was an EXTEND, use it to extend
1452 the upper bits of the immediate value. This is a helper function
1453 for mips16_heuristic_proc_desc. */
1454
1455static int
1456mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
c5aa993b
JM
1457 unsigned short prev_inst; /* previous instruction */
1458 unsigned short inst; /* current instruction */
1459 int nbits; /* number of bits in imm field */
1460 int scale; /* scale factor to be applied to imm */
1461 int is_signed; /* is the imm field signed? */
c906108c
SS
1462{
1463 int offset;
1464
1465 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1466 {
1467 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1468 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1469 offset = 0 - (0x10000 - (offset & 0xffff));
1470 return offset | (inst & 0x1f);
1471 }
1472 else
1473 {
1474 int max_imm = 1 << nbits;
1475 int mask = max_imm - 1;
1476 int sign_bit = max_imm >> 1;
1477
1478 offset = inst & mask;
1479 if (is_signed && (offset & sign_bit))
1480 offset = 0 - (max_imm - offset);
1481 return offset * scale;
1482 }
1483}
1484
1485
1486/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1487 stream from start_pc to limit_pc. */
1488
1489static void
c5aa993b
JM
1490mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1491 CORE_ADDR start_pc, limit_pc;
1492 struct frame_info *next_frame;
1493 CORE_ADDR sp;
c906108c
SS
1494{
1495 CORE_ADDR cur_pc;
1496 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1497 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1498 unsigned inst = 0; /* current instruction */
1499 unsigned entry_inst = 0; /* the entry instruction */
1500 int reg, offset;
1501
c5aa993b
JM
1502 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1503 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1504
1505 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1506 {
1507 /* Save the previous instruction. If it's an EXTEND, we'll extract
1508 the immediate offset extension from it in mips16_get_imm. */
1509 prev_inst = inst;
1510
1511 /* Fetch and decode the instruction. */
1512 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1513 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1514 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1515 {
1516 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1517 if (offset < 0) /* negative stack adjustment? */
1518 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1519 else
1520 /* Exit loop if a positive stack adjustment is found, which
1521 usually means that the stack cleanup code in the function
1522 epilogue is reached. */
1523 break;
1524 }
1525 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1526 {
1527 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1528 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1529 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1530 set_reg_offset (reg, sp + offset);
1531 }
1532 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1533 {
1534 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1535 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1536 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1537 set_reg_offset (reg, sp + offset);
1538 }
1539 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1540 {
1541 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1542 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1543 set_reg_offset (RA_REGNUM, sp + offset);
1544 }
1545 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1546 {
1547 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1548 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1549 set_reg_offset (RA_REGNUM, sp + offset);
1550 }
c5aa993b 1551 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1552 {
1553 frame_addr = sp;
1554 PROC_FRAME_REG (&temp_proc_desc) = 17;
1555 }
1556 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1557 {
1558 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1559 frame_addr = sp + offset;
1560 PROC_FRAME_REG (&temp_proc_desc) = 17;
1561 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1562 }
1563 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1564 {
1565 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1566 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1567 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1568 set_reg_offset (reg, frame_addr + offset);
1569 }
1570 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1571 {
1572 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1573 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1574 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1575 set_reg_offset (reg, frame_addr + offset);
1576 }
c5aa993b
JM
1577 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1578 entry_inst = inst; /* save for later processing */
c906108c 1579 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1580 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1581 }
1582
c5aa993b
JM
1583 /* The entry instruction is typically the first instruction in a function,
1584 and it stores registers at offsets relative to the value of the old SP
1585 (before the prologue). But the value of the sp parameter to this
1586 function is the new SP (after the prologue has been executed). So we
1587 can't calculate those offsets until we've seen the entire prologue,
1588 and can calculate what the old SP must have been. */
1589 if (entry_inst != 0)
1590 {
1591 int areg_count = (entry_inst >> 8) & 7;
1592 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1593
c5aa993b
JM
1594 /* The entry instruction always subtracts 32 from the SP. */
1595 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1596
c5aa993b
JM
1597 /* Now we can calculate what the SP must have been at the
1598 start of the function prologue. */
1599 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1600
c5aa993b
JM
1601 /* Check if a0-a3 were saved in the caller's argument save area. */
1602 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1603 {
1604 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1605 set_reg_offset (reg, sp + offset);
1606 offset += MIPS_SAVED_REGSIZE;
1607 }
c906108c 1608
c5aa993b
JM
1609 /* Check if the ra register was pushed on the stack. */
1610 offset = -4;
1611 if (entry_inst & 0x20)
1612 {
1613 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1614 set_reg_offset (RA_REGNUM, sp + offset);
1615 offset -= MIPS_SAVED_REGSIZE;
1616 }
c906108c 1617
c5aa993b
JM
1618 /* Check if the s0 and s1 registers were pushed on the stack. */
1619 for (reg = 16; reg < sreg_count + 16; reg++)
1620 {
1621 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1622 set_reg_offset (reg, sp + offset);
1623 offset -= MIPS_SAVED_REGSIZE;
1624 }
1625 }
c906108c
SS
1626}
1627
1628static void
c5aa993b
JM
1629mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
1630 CORE_ADDR start_pc, limit_pc;
1631 struct frame_info *next_frame;
1632 CORE_ADDR sp;
c906108c
SS
1633{
1634 CORE_ADDR cur_pc;
c5aa993b 1635 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1636restart:
cce74817 1637 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1638 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1639 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1640 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1641 {
1642 unsigned long inst, high_word, low_word;
1643 int reg;
1644
1645 /* Fetch the instruction. */
1646 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1647
1648 /* Save some code by pre-extracting some useful fields. */
1649 high_word = (inst >> 16) & 0xffff;
1650 low_word = inst & 0xffff;
1651 reg = high_word & 0x1f;
1652
c5aa993b 1653 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1654 || high_word == 0x23bd /* addi $sp,$sp,-i */
1655 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1656 {
1657 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1658 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1659 else
1660 /* Exit loop if a positive stack adjustment is found, which
1661 usually means that the stack cleanup code in the function
1662 epilogue is reached. */
1663 break;
1664 }
1665 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1666 {
c5aa993b 1667 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1668 set_reg_offset (reg, sp + low_word);
1669 }
1670 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1671 {
1672 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1673 but the register size used is only 32 bits. Make the address
1674 for the saved register point to the lower 32 bits. */
c5aa993b 1675 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1676 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1677 }
c5aa993b 1678 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1679 {
1680 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1681 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1682 frame_addr = sp + low_word;
c906108c
SS
1683 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1684 {
1685 unsigned alloca_adjust;
1686 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1687 frame_addr = read_next_frame_reg (next_frame, 30);
1688 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1689 if (alloca_adjust > 0)
1690 {
1691 /* FP > SP + frame_size. This may be because
1692 * of an alloca or somethings similar.
1693 * Fix sp to "pre-alloca" value, and try again.
1694 */
1695 sp += alloca_adjust;
1696 goto restart;
1697 }
1698 }
1699 }
c5aa993b
JM
1700 /* move $30,$sp. With different versions of gas this will be either
1701 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1702 Accept any one of these. */
c906108c
SS
1703 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1704 {
1705 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1706 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1707 {
1708 unsigned alloca_adjust;
1709 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1710 frame_addr = read_next_frame_reg (next_frame, 30);
1711 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
1712 if (alloca_adjust > 0)
1713 {
1714 /* FP > SP + frame_size. This may be because
1715 * of an alloca or somethings similar.
1716 * Fix sp to "pre-alloca" value, and try again.
1717 */
1718 sp += alloca_adjust;
1719 goto restart;
1720 }
1721 }
1722 }
c5aa993b 1723 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 1724 {
c5aa993b 1725 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1726 set_reg_offset (reg, frame_addr + low_word);
1727 }
1728 }
1729}
1730
1731static mips_extra_func_info_t
c5aa993b
JM
1732heuristic_proc_desc (start_pc, limit_pc, next_frame)
1733 CORE_ADDR start_pc, limit_pc;
1734 struct frame_info *next_frame;
c906108c
SS
1735{
1736 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1737
c5aa993b
JM
1738 if (start_pc == 0)
1739 return NULL;
1740 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 1741 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1742 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1743 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1744 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1745
1746 if (start_pc + 200 < limit_pc)
1747 limit_pc = start_pc + 200;
1748 if (pc_is_mips16 (start_pc))
1749 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1750 else
1751 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1752 return &temp_proc_desc;
1753}
1754
1755static mips_extra_func_info_t
1756non_heuristic_proc_desc (pc, addrptr)
1757 CORE_ADDR pc;
1758 CORE_ADDR *addrptr;
1759{
1760 CORE_ADDR startaddr;
1761 mips_extra_func_info_t proc_desc;
c5aa993b 1762 struct block *b = block_for_pc (pc);
c906108c
SS
1763 struct symbol *sym;
1764
1765 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1766 if (addrptr)
1767 *addrptr = startaddr;
1768 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1769 sym = NULL;
1770 else
1771 {
1772 if (startaddr > BLOCK_START (b))
1773 /* This is the "pathological" case referred to in a comment in
1774 print_frame_info. It might be better to move this check into
1775 symbol reading. */
1776 sym = NULL;
1777 else
1778 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1779 }
1780
1781 /* If we never found a PDR for this function in symbol reading, then
1782 examine prologues to find the information. */
1783 if (sym)
1784 {
1785 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1786 if (PROC_FRAME_REG (proc_desc) == -1)
1787 return NULL;
1788 else
1789 return proc_desc;
1790 }
1791 else
1792 return NULL;
1793}
1794
1795
1796static mips_extra_func_info_t
1797find_proc_desc (pc, next_frame)
1798 CORE_ADDR pc;
1799 struct frame_info *next_frame;
1800{
1801 mips_extra_func_info_t proc_desc;
1802 CORE_ADDR startaddr;
1803
1804 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1805
1806 if (proc_desc)
1807 {
1808 /* IF this is the topmost frame AND
1809 * (this proc does not have debugging information OR
1810 * the PC is in the procedure prologue)
1811 * THEN create a "heuristic" proc_desc (by analyzing
1812 * the actual code) to replace the "official" proc_desc.
1813 */
1814 if (next_frame == NULL)
1815 {
1816 struct symtab_and_line val;
1817 struct symbol *proc_symbol =
c5aa993b 1818 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
1819
1820 if (proc_symbol)
1821 {
1822 val = find_pc_line (BLOCK_START
c5aa993b 1823 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
1824 0);
1825 val.pc = val.end ? val.end : pc;
1826 }
1827 if (!proc_symbol || pc < val.pc)
1828 {
1829 mips_extra_func_info_t found_heuristic =
c5aa993b
JM
1830 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1831 pc, next_frame);
c906108c
SS
1832 if (found_heuristic)
1833 proc_desc = found_heuristic;
1834 }
1835 }
1836 }
1837 else
1838 {
1839 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
1840 by procedure call dummys. However, the procedures being called ought
1841 to have their own proc_descs, and even if they don't,
1842 heuristic_proc_desc knows how to create them! */
c906108c
SS
1843
1844 register struct linked_proc_info *link;
1845
1846 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
1847 if (PROC_LOW_ADDR (&link->info) <= pc
1848 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
1849 return &link->info;
1850
1851 if (startaddr == 0)
1852 startaddr = heuristic_proc_start (pc);
1853
1854 proc_desc =
1855 heuristic_proc_desc (startaddr, pc, next_frame);
1856 }
1857 return proc_desc;
1858}
1859
1860static CORE_ADDR
c5aa993b
JM
1861get_frame_pointer (frame, proc_desc)
1862 struct frame_info *frame;
1863 mips_extra_func_info_t proc_desc;
c906108c
SS
1864{
1865 return ADDR_BITS_REMOVE (
c5aa993b
JM
1866 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1867 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
1868}
1869
1870mips_extra_func_info_t cached_proc_desc;
1871
1872CORE_ADDR
c5aa993b
JM
1873mips_frame_chain (frame)
1874 struct frame_info *frame;
c906108c
SS
1875{
1876 mips_extra_func_info_t proc_desc;
1877 CORE_ADDR tmp;
c5aa993b 1878 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1879
1880 if (saved_pc == 0 || inside_entry_file (saved_pc))
1881 return 0;
1882
1883 /* Check if the PC is inside a call stub. If it is, fetch the
1884 PC of the caller of that stub. */
1885 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1886 saved_pc = tmp;
1887
1888 /* Look up the procedure descriptor for this PC. */
c5aa993b 1889 proc_desc = find_proc_desc (saved_pc, frame);
c906108c
SS
1890 if (!proc_desc)
1891 return 0;
1892
1893 cached_proc_desc = proc_desc;
1894
1895 /* If no frame pointer and frame size is zero, we must be at end
1896 of stack (or otherwise hosed). If we don't check frame size,
1897 we loop forever if we see a zero size frame. */
1898 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1899 && PROC_FRAME_OFFSET (proc_desc) == 0
c5aa993b
JM
1900 /* The previous frame from a sigtramp frame might be frameless
1901 and have frame size zero. */
c906108c
SS
1902 && !frame->signal_handler_caller)
1903 return 0;
1904 else
1905 return get_frame_pointer (frame, proc_desc);
1906}
1907
1908void
c5aa993b 1909mips_init_extra_frame_info (fromleaf, fci)
cce74817 1910 int fromleaf;
c906108c
SS
1911 struct frame_info *fci;
1912{
1913 int regnum;
1914
1915 /* Use proc_desc calculated in frame_chain */
1916 mips_extra_func_info_t proc_desc =
c5aa993b 1917 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
c906108c 1918
cce74817
JM
1919 fci->extra_info = (struct frame_extra_info *)
1920 frame_obstack_alloc (sizeof (struct frame_extra_info));
1921
c906108c 1922 fci->saved_regs = NULL;
cce74817 1923 fci->extra_info->proc_desc =
c906108c
SS
1924 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1925 if (proc_desc)
1926 {
1927 /* Fixup frame-pointer - only needed for top frame */
1928 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
1929 Get the value of the frame relative sp, procedure might have been
1930 interrupted by a signal at it's very start. */
c906108c
SS
1931 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1932 && !PROC_DESC_IS_DUMMY (proc_desc))
1933 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
1934 else
1935 fci->frame = get_frame_pointer (fci->next, proc_desc);
1936
1937 if (proc_desc == &temp_proc_desc)
1938 {
1939 char *name;
1940
1941 /* Do not set the saved registers for a sigtramp frame,
1942 mips_find_saved_registers will do that for us.
1943 We can't use fci->signal_handler_caller, it is not yet set. */
1944 find_pc_partial_function (fci->pc, &name,
c5aa993b 1945 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
1946 if (!IN_SIGTRAMP (fci->pc, name))
1947 {
c5aa993b 1948 frame_saved_regs_zalloc (fci);
cce74817 1949 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
1950 fci->saved_regs[PC_REGNUM]
1951 = fci->saved_regs[RA_REGNUM];
1952 }
1953 }
1954
1955 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
1956 /* assume we can't tell how many args for now */
1957 fci->extra_info->num_args = -1;
c906108c
SS
1958 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
1959 {
c5aa993b 1960 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 1961 {
cce74817 1962 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
1963 break;
1964 }
c5aa993b 1965 }
c906108c
SS
1966 }
1967}
1968
1969/* MIPS stack frames are almost impenetrable. When execution stops,
1970 we basically have to look at symbol information for the function
1971 that we stopped in, which tells us *which* register (if any) is
1972 the base of the frame pointer, and what offset from that register
1973 the frame itself is at.
1974
1975 This presents a problem when trying to examine a stack in memory
1976 (that isn't executing at the moment), using the "frame" command. We
1977 don't have a PC, nor do we have any registers except SP.
1978
1979 This routine takes two arguments, SP and PC, and tries to make the
1980 cached frames look as if these two arguments defined a frame on the
1981 cache. This allows the rest of info frame to extract the important
1982 arguments without difficulty. */
1983
1984struct frame_info *
1985setup_arbitrary_frame (argc, argv)
1986 int argc;
1987 CORE_ADDR *argv;
1988{
1989 if (argc != 2)
1990 error ("MIPS frame specifications require two arguments: sp and pc");
1991
1992 return create_new_frame (argv[0], argv[1]);
1993}
1994
1995/*
1996 * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack?
1997 *
1998 * For n32 ABI, eight.
1999 * For all others, he same as the size of a general register.
2000 */
2001#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
2002#define MIPS_NABI32 1
2003#define STACK_ARGSIZE 8
2004#else
2005#define MIPS_NABI32 0
7a292a7a 2006#define STACK_ARGSIZE MIPS_SAVED_REGSIZE
c906108c
SS
2007#endif
2008
2009CORE_ADDR
c5aa993b 2010mips_push_arguments (nargs, args, sp, struct_return, struct_addr)
c906108c
SS
2011 int nargs;
2012 value_ptr *args;
2013 CORE_ADDR sp;
2014 int struct_return;
2015 CORE_ADDR struct_addr;
2016{
2017 int argreg;
2018 int float_argreg;
2019 int argnum;
2020 int len = 0;
2021 int stack_offset = 0;
2022
2023 /* Macros to round N up or down to the next A boundary; A must be
2024 a power of two. */
2025#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2026#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
c5aa993b 2027
c906108c
SS
2028 /* First ensure that the stack and structure return address (if any)
2029 are properly aligned. The stack has to be at least 64-bit aligned
2030 even on 32-bit machines, because doubles must be 64-bit aligned.
2031 On at least one MIPS variant, stack frames need to be 128-bit
2032 aligned, so we round to this widest known alignment. */
2033 sp = ROUND_DOWN (sp, 16);
7a292a7a 2034 struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE);
c5aa993b 2035
c906108c
SS
2036 /* Now make space on the stack for the args. We allocate more
2037 than necessary for EABI, because the first few arguments are
2038 passed in registers, but that's OK. */
2039 for (argnum = 0; argnum < nargs; argnum++)
c5aa993b 2040 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE);
c906108c
SS
2041 sp -= ROUND_UP (len, 16);
2042
2043 /* Initialize the integer and float register pointers. */
2044 argreg = A0_REGNUM;
2045 float_argreg = FPA0_REGNUM;
2046
2047 /* the struct_return pointer occupies the first parameter-passing reg */
2048 if (struct_return)
c5aa993b 2049 write_register (argreg++, struct_addr);
c906108c
SS
2050
2051 /* Now load as many as possible of the first arguments into
2052 registers, and push the rest onto the stack. Loop thru args
2053 from first to last. */
2054 for (argnum = 0; argnum < nargs; argnum++)
2055 {
2056 char *val;
2057 char valbuf[MAX_REGISTER_RAW_SIZE];
2058 value_ptr arg = args[argnum];
2059 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2060 int len = TYPE_LENGTH (arg_type);
2061 enum type_code typecode = TYPE_CODE (arg_type);
2062
2063 /* The EABI passes structures that do not fit in a register by
c5aa993b 2064 reference. In all other cases, pass the structure by value. */
7a292a7a 2065 if (MIPS_EABI && len > MIPS_SAVED_REGSIZE &&
c906108c
SS
2066 (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2067 {
7a292a7a 2068 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2069 typecode = TYPE_CODE_PTR;
7a292a7a 2070 len = MIPS_SAVED_REGSIZE;
c906108c
SS
2071 val = valbuf;
2072 }
2073 else
c5aa993b 2074 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2075
2076 /* 32-bit ABIs always start floating point arguments in an
2077 even-numbered floating point register. */
2078 if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
c5aa993b 2079 && (float_argreg & 1))
c906108c
SS
2080 float_argreg++;
2081
2082 /* Floating point arguments passed in registers have to be
2083 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2084 are passed in register pairs; the even register gets
2085 the low word, and the odd register gets the high word.
2086 On non-EABI processors, the first two floating point arguments are
2087 also copied to general registers, because MIPS16 functions
2088 don't use float registers for arguments. This duplication of
2089 arguments in general registers can't hurt non-MIPS16 functions
2090 because those registers are normally skipped. */
c906108c
SS
2091 if (typecode == TYPE_CODE_FLT
2092 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
2093 && MIPS_FPU_TYPE != MIPS_FPU_NONE)
2094 {
2095 if (!FP_REGISTER_DOUBLE && len == 8)
2096 {
2097 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2098 unsigned long regval;
2099
2100 /* Write the low word of the double to the even register(s). */
c5aa993b 2101 regval = extract_unsigned_integer (val + low_offset, 4);
c906108c
SS
2102 write_register (float_argreg++, regval);
2103 if (!MIPS_EABI)
c5aa993b 2104 write_register (argreg + 1, regval);
c906108c
SS
2105
2106 /* Write the high word of the double to the odd register(s). */
c5aa993b 2107 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
c906108c
SS
2108 write_register (float_argreg++, regval);
2109 if (!MIPS_EABI)
c5aa993b 2110 {
c906108c
SS
2111 write_register (argreg, regval);
2112 argreg += 2;
2113 }
2114
2115 }
2116 else
2117 {
2118 /* This is a floating point value that fits entirely
2119 in a single register. */
53a5351d
JM
2120 /* On 32 bit ABI's the float_argreg is further adjusted
2121 above to ensure that it is even register aligned. */
c906108c
SS
2122 CORE_ADDR regval = extract_address (val, len);
2123 write_register (float_argreg++, regval);
2124 if (!MIPS_EABI)
c5aa993b 2125 {
53a5351d
JM
2126 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2127 registers for each argument. The below is (my
2128 guess) to ensure that the corresponding integer
2129 register has reserved the same space. */
c906108c
SS
2130 write_register (argreg, regval);
2131 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2132 }
2133 }
2134 }
2135 else
2136 {
2137 /* Copy the argument to general registers or the stack in
2138 register-sized pieces. Large arguments are split between
2139 registers and stack. */
2140 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2141 are treated specially: Irix cc passes them in registers
2142 where gcc sometimes puts them on the stack. For maximum
2143 compatibility, we will put them in both places. */
2144
c5aa993b 2145 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2146 (len % MIPS_SAVED_REGSIZE != 0));
c906108c
SS
2147 while (len > 0)
2148 {
7a292a7a 2149 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c
SS
2150
2151 if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
2152 {
2153 /* Write this portion of the argument to the stack. */
2154 /* Should shorter than int integer values be
2155 promoted to int before being stored? */
2156
2157 int longword_offset = 0;
2158 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
7a292a7a
SS
2159 {
2160 if (STACK_ARGSIZE == 8 &&
2161 (typecode == TYPE_CODE_INT ||
2162 typecode == TYPE_CODE_PTR ||
2163 typecode == TYPE_CODE_FLT) && len <= 4)
2164 longword_offset = STACK_ARGSIZE - len;
2165 else if ((typecode == TYPE_CODE_STRUCT ||
2166 typecode == TYPE_CODE_UNION) &&
2167 TYPE_LENGTH (arg_type) < STACK_ARGSIZE)
2168 longword_offset = STACK_ARGSIZE - len;
2169 }
c5aa993b
JM
2170
2171 write_memory (sp + stack_offset + longword_offset,
c906108c
SS
2172 val, partial_len);
2173 }
2174
2175 /* Note!!! This is NOT an else clause.
c5aa993b 2176 Odd sized structs may go thru BOTH paths. */
c906108c
SS
2177 if (argreg <= MIPS_LAST_ARG_REGNUM)
2178 {
2179 CORE_ADDR regval = extract_address (val, partial_len);
2180
2181 /* A non-floating-point argument being passed in a
2182 general register. If a struct or union, and if
2183 the remaining length is smaller than the register
2184 size, we have to adjust the register value on
2185 big endian targets.
2186
2187 It does not seem to be necessary to do the
2188 same for integral types.
2189
2190 Also don't do this adjustment on EABI and O64
2191 binaries. */
2192
2193 if (!MIPS_EABI
7a292a7a 2194 && MIPS_SAVED_REGSIZE < 8
c906108c 2195 && TARGET_BYTE_ORDER == BIG_ENDIAN
7a292a7a 2196 && partial_len < MIPS_SAVED_REGSIZE
c906108c
SS
2197 && (typecode == TYPE_CODE_STRUCT ||
2198 typecode == TYPE_CODE_UNION))
c5aa993b 2199 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
c906108c
SS
2200 TARGET_CHAR_BIT);
2201
2202 write_register (argreg, regval);
2203 argreg++;
c5aa993b 2204
c906108c
SS
2205 /* If this is the old ABI, prevent subsequent floating
2206 point arguments from being passed in floating point
2207 registers. */
2208 if (!MIPS_EABI)
2209 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2210 }
c5aa993b 2211
c906108c
SS
2212 len -= partial_len;
2213 val += partial_len;
2214
2215 /* The offset onto the stack at which we will start
c5aa993b
JM
2216 copying parameters (after the registers are used up)
2217 begins at (4 * MIPS_REGSIZE) in the old ABI. This
2218 leaves room for the "home" area for register parameters.
c906108c 2219
c5aa993b
JM
2220 In the new EABI (and the NABI32), the 8 register parameters
2221 do not have "home" stack space reserved for them, so the
2222 stack offset does not get incremented until after
2223 we have used up the 8 parameter registers. */
c906108c
SS
2224
2225 if (!(MIPS_EABI || MIPS_NABI32) ||
2226 argnum >= 8)
2227 stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE);
2228 }
2229 }
2230 }
2231
0f71a2f6
JM
2232 /* Return adjusted stack pointer. */
2233 return sp;
2234}
2235
2236CORE_ADDR
2237mips_push_return_address (pc, sp)
2238 CORE_ADDR pc;
2239 CORE_ADDR sp;
2240{
c906108c
SS
2241 /* Set the return address register to point to the entry
2242 point of the program, where a breakpoint lies in wait. */
c5aa993b 2243 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
2244 return sp;
2245}
2246
2247static void
c5aa993b 2248mips_push_register (CORE_ADDR * sp, int regno)
c906108c
SS
2249{
2250 char buffer[MAX_REGISTER_RAW_SIZE];
7a292a7a
SS
2251 int regsize;
2252 int offset;
2253 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2254 {
2255 regsize = MIPS_SAVED_REGSIZE;
2256 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2257 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2258 : 0);
2259 }
2260 else
2261 {
2262 regsize = REGISTER_RAW_SIZE (regno);
2263 offset = 0;
2264 }
c906108c
SS
2265 *sp -= regsize;
2266 read_register_gen (regno, buffer);
7a292a7a 2267 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
2268}
2269
2270/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2271#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2272
2273void
7a292a7a 2274mips_push_dummy_frame ()
c906108c
SS
2275{
2276 int ireg;
c5aa993b
JM
2277 struct linked_proc_info *link = (struct linked_proc_info *)
2278 xmalloc (sizeof (struct linked_proc_info));
c906108c
SS
2279 mips_extra_func_info_t proc_desc = &link->info;
2280 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
2281 CORE_ADDR old_sp = sp;
2282 link->next = linked_proc_desc_table;
2283 linked_proc_desc_table = link;
2284
2285/* FIXME! are these correct ? */
c5aa993b 2286#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
2287#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2288#define FLOAT_REG_SAVE_MASK MASK(0,19)
2289#define FLOAT_SINGLE_REG_SAVE_MASK \
2290 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2291 /*
2292 * The registers we must save are all those not preserved across
2293 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2294 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2295 * and FP Control/Status registers.
2296 *
2297 *
2298 * Dummy frame layout:
2299 * (high memory)
c5aa993b
JM
2300 * Saved PC
2301 * Saved MMHI, MMLO, FPC_CSR
2302 * Saved R31
2303 * Saved R28
2304 * ...
2305 * Saved R1
c906108c
SS
2306 * Saved D18 (i.e. F19, F18)
2307 * ...
2308 * Saved D0 (i.e. F1, F0)
c5aa993b 2309 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
2310 * (low memory)
2311 */
2312
2313 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
2314 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2315 PROC_FRAME_OFFSET (proc_desc) = 0;
2316 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
2317 mips_push_register (&sp, PC_REGNUM);
2318 mips_push_register (&sp, HI_REGNUM);
2319 mips_push_register (&sp, LO_REGNUM);
2320 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2321
2322 /* Save general CPU registers */
c5aa993b 2323 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 2324 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
2325 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2326 for (ireg = 32; --ireg >= 0;)
2327 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2328 mips_push_register (&sp, ireg);
2329
2330 /* Save floating point registers starting with high order word */
c5aa993b 2331 PROC_FREG_MASK (proc_desc) =
c906108c
SS
2332 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2333 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2334 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2335 from FP. */
c5aa993b
JM
2336 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2337 for (ireg = 32; --ireg >= 0;)
2338 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
2339 mips_push_register (&sp, ireg + FP0_REGNUM);
2340
2341 /* Update the frame pointer for the call dummy and the stack pointer.
2342 Set the procedure's starting and ending addresses to point to the
2343 call dummy address at the entry point. */
2344 write_register (PUSH_FP_REGNUM, old_sp);
2345 write_register (SP_REGNUM, sp);
c5aa993b
JM
2346 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2347 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2348 SET_PROC_DESC_IS_DUMMY (proc_desc);
2349 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
2350}
2351
2352void
c5aa993b 2353mips_pop_frame ()
c906108c
SS
2354{
2355 register int regnum;
2356 struct frame_info *frame = get_current_frame ();
2357 CORE_ADDR new_sp = FRAME_FP (frame);
2358
cce74817 2359 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 2360
c5aa993b 2361 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
2362 if (frame->saved_regs == NULL)
2363 mips_find_saved_regs (frame);
2364 for (regnum = 0; regnum < NUM_REGS; regnum++)
2365 {
2366 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2367 && frame->saved_regs[regnum])
2368 write_register (regnum,
2369 read_memory_integer (frame->saved_regs[regnum],
c5aa993b 2370 MIPS_SAVED_REGSIZE));
c906108c
SS
2371 }
2372 write_register (SP_REGNUM, new_sp);
2373 flush_cached_frames ();
2374
c5aa993b 2375 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
2376 {
2377 struct linked_proc_info *pi_ptr, *prev_ptr;
2378
2379 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2380 pi_ptr != NULL;
2381 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2382 {
2383 if (&pi_ptr->info == proc_desc)
2384 break;
2385 }
2386
2387 if (pi_ptr == NULL)
2388 error ("Can't locate dummy extra frame info\n");
2389
2390 if (prev_ptr != NULL)
2391 prev_ptr->next = pi_ptr->next;
2392 else
2393 linked_proc_desc_table = pi_ptr->next;
2394
2395 free (pi_ptr);
2396
2397 write_register (HI_REGNUM,
c5aa993b 2398 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 2399 MIPS_SAVED_REGSIZE));
c906108c 2400 write_register (LO_REGNUM,
c5aa993b 2401 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 2402 MIPS_SAVED_REGSIZE));
c906108c
SS
2403 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2404 write_register (FCRCS_REGNUM,
c5aa993b 2405 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 2406 MIPS_SAVED_REGSIZE));
c906108c
SS
2407 }
2408}
2409
2410static void
2411mips_print_register (regnum, all)
2412 int regnum, all;
2413{
2414 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2415
2416 /* Get the data in raw format. */
2417 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2418 {
2419 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2420 return;
2421 }
2422
2423 /* If an even floating point register, also print as double. */
2424 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
c5aa993b
JM
2425 && !((regnum - FP0_REGNUM) & 1))
2426 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
c906108c 2427 {
c5aa993b 2428 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
c906108c
SS
2429
2430 read_relative_register_raw_bytes (regnum, dbuffer);
c5aa993b 2431 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
c906108c
SS
2432 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2433
c5aa993b 2434 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
c906108c
SS
2435 val_print (builtin_type_double, dbuffer, 0, 0,
2436 gdb_stdout, 0, 1, 0, Val_pretty_default);
2437 printf_filtered ("); ");
2438 }
2439 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2440
2441 /* The problem with printing numeric register names (r26, etc.) is that
2442 the user can't use them on input. Probably the best solution is to
2443 fix it so that either the numeric or the funky (a2, etc.) names
2444 are accepted on input. */
2445 if (regnum < MIPS_NUMREGS)
2446 printf_filtered ("(r%d): ", regnum);
2447 else
2448 printf_filtered (": ");
2449
2450 /* If virtual format is floating, print it that way. */
2451 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2452 if (FP_REGISTER_DOUBLE)
c5aa993b 2453 { /* show 8-byte floats as float AND double: */
c906108c
SS
2454 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2455
2456 printf_filtered (" (float) ");
2457 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2458 gdb_stdout, 0, 1, 0, Val_pretty_default);
2459 printf_filtered (", (double) ");
2460 val_print (builtin_type_double, raw_buffer, 0, 0,
2461 gdb_stdout, 0, 1, 0, Val_pretty_default);
2462 }
2463 else
2464 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2465 gdb_stdout, 0, 1, 0, Val_pretty_default);
2466 /* Else print as integer in hex. */
2467 else
ed9a39eb
JM
2468 {
2469 int offset;
2470
2471 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2472 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2473 else
2474 offset = 0;
2475
2476 print_scalar_formatted (raw_buffer + offset,
2477 REGISTER_VIRTUAL_TYPE (regnum),
2478 'x', 0, gdb_stdout);
2479 }
c906108c
SS
2480}
2481
2482/* Replacement for generic do_registers_info.
2483 Print regs in pretty columns. */
2484
2485static int
2486do_fp_register_row (regnum)
2487 int regnum;
c5aa993b 2488{ /* do values for FP (float) regs */
c906108c
SS
2489 char *raw_buffer[2];
2490 char *dbl_buffer;
2491 /* use HI and LO to control the order of combining two flt regs */
2492 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2493 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2494 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2495 int inv1, inv2, inv3;
c5aa993b 2496
c906108c
SS
2497 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2498 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2499 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2500
2501 /* Get the data in raw format. */
2502 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2503 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
c5aa993b 2504 if (REGISTER_RAW_SIZE (regnum) == 4)
c906108c
SS
2505 {
2506 /* 4-byte registers: we can fit two registers per row. */
2507 /* Also print every pair of 4-byte regs as an 8-byte double. */
2508 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
c5aa993b 2509 error ("can't read register %d (%s)",
c906108c
SS
2510 regnum + 1, REGISTER_NAME (regnum + 1));
2511
2512 /* copy the two floats into one double, and unpack both */
c5aa993b
JM
2513 memcpy (dbl_buffer, raw_buffer, sizeof (dbl_buffer));
2514 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2515 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2516 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2517
2518 printf_filtered (inv1 ? " %-5s: <invalid float>" :
2519 " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
2520 printf_filtered (inv2 ? " %-5s: <invalid float>" :
c906108c 2521 " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
c5aa993b 2522 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2523 " dbl: %-24.17g\n", doub);
2524 /* may want to do hex display here (future enhancement) */
c5aa993b 2525 regnum += 2;
c906108c
SS
2526 }
2527 else
c5aa993b 2528 { /* eight byte registers: print each one as float AND as double. */
c906108c
SS
2529 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2530
c5aa993b
JM
2531 memcpy (dbl_buffer, raw_buffer[HI], sizeof (dbl_buffer));
2532 flt1 = unpack_double (builtin_type_float,
c906108c 2533 &raw_buffer[HI][offset], &inv1);
c5aa993b 2534 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
c906108c 2535
c5aa993b 2536 printf_filtered (inv1 ? " %-5s: <invalid float>" :
c906108c 2537 " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
c5aa993b 2538 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
c906108c
SS
2539 " dbl: %-24.17g\n", doub);
2540 /* may want to do hex display here (future enhancement) */
2541 regnum++;
2542 }
2543 return regnum;
2544}
2545
2546/* Print a row's worth of GP (int) registers, with name labels above */
2547
2548static int
2549do_gp_register_row (regnum)
2550 int regnum;
2551{
2552 /* do values for GP (int) regs */
2553 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2554 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2555 int col, byte;
2556 int start_regnum = regnum;
2557 int numregs = NUM_REGS;
2558
2559
2560 /* For GP registers, we print a separate row of names above the vals */
2561 printf_filtered (" ");
2562 for (col = 0; col < ncols && regnum < numregs; regnum++)
2563 {
2564 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2565 continue; /* unused register */
c906108c 2566 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
2567 break; /* end the row: reached FP register */
2568 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
2569 REGISTER_NAME (regnum));
2570 col++;
2571 }
c5aa993b 2572 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
2573 start_regnum); /* print the R0 to R31 names */
2574
2575 regnum = start_regnum; /* go back to start of row */
2576 /* now print the values in hex, 4 or 8 to the row */
2577 for (col = 0; col < ncols && regnum < numregs; regnum++)
2578 {
2579 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 2580 continue; /* unused register */
c906108c 2581 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 2582 break; /* end row: reached FP register */
c906108c
SS
2583 /* OK: get the data in raw format. */
2584 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2585 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2586 /* pad small registers */
43e526b9 2587 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
2588 printf_filtered (" ");
2589 /* Now print the register value in hex, endian order. */
2590 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
43e526b9
JM
2591 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2592 byte < REGISTER_RAW_SIZE (regnum);
2593 byte++)
c906108c
SS
2594 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2595 else
43e526b9
JM
2596 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2597 byte >= 0;
2598 byte--)
c906108c
SS
2599 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2600 printf_filtered (" ");
2601 col++;
2602 }
c5aa993b 2603 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
2604 printf_filtered ("\n");
2605
2606 return regnum;
2607}
2608
2609/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2610
2611void
2612mips_do_registers_info (regnum, fpregs)
2613 int regnum;
2614 int fpregs;
2615{
c5aa993b 2616 if (regnum != -1) /* do one specified register */
c906108c
SS
2617 {
2618 if (*(REGISTER_NAME (regnum)) == '\0')
2619 error ("Not a valid register for the current processor type");
2620
2621 mips_print_register (regnum, 0);
2622 printf_filtered ("\n");
2623 }
c5aa993b
JM
2624 else
2625 /* do all (or most) registers */
c906108c
SS
2626 {
2627 regnum = 0;
2628 while (regnum < NUM_REGS)
2629 {
c5aa993b
JM
2630 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2631 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
2632 regnum = do_fp_register_row (regnum); /* FP regs */
2633 else
2634 regnum += MIPS_NUMREGS; /* skip floating point regs */
2635 else
2636 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2637 }
2638 }
2639}
2640
2641/* Return number of args passed to a frame. described by FIP.
2642 Can return -1, meaning no way to tell. */
2643
2644int
2645mips_frame_num_args (frame)
c5aa993b 2646 struct frame_info *frame;
c906108c 2647{
c5aa993b 2648#if 0 /* FIXME Use or lose this! */
c906108c
SS
2649 struct chain_info_t *p;
2650
2651 p = mips_find_cached_frame (FRAME_FP (frame));
2652 if (p->valid)
2653 return p->the_info.numargs;
2654#endif
2655 return -1;
2656}
2657
2658/* Is this a branch with a delay slot? */
2659
2660static int is_delayed PARAMS ((unsigned long));
2661
2662static int
2663is_delayed (insn)
2664 unsigned long insn;
2665{
2666 int i;
2667 for (i = 0; i < NUMOPCODES; ++i)
2668 if (mips_opcodes[i].pinfo != INSN_MACRO
2669 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2670 break;
2671 return (i < NUMOPCODES
2672 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2673 | INSN_COND_BRANCH_DELAY
2674 | INSN_COND_BRANCH_LIKELY)));
2675}
2676
2677int
2678mips_step_skips_delay (pc)
2679 CORE_ADDR pc;
2680{
2681 char buf[MIPS_INSTLEN];
2682
2683 /* There is no branch delay slot on MIPS16. */
2684 if (pc_is_mips16 (pc))
2685 return 0;
2686
2687 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2688 /* If error reading memory, guess that it is not a delayed branch. */
2689 return 0;
c5aa993b 2690 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
2691}
2692
2693
2694/* Skip the PC past function prologue instructions (32-bit version).
2695 This is a helper function for mips_skip_prologue. */
2696
2697static CORE_ADDR
2698mips32_skip_prologue (pc, lenient)
c5aa993b 2699 CORE_ADDR pc; /* starting PC to search from */
c906108c
SS
2700 int lenient;
2701{
c5aa993b
JM
2702 t_inst inst;
2703 CORE_ADDR end_pc;
2704 int seen_sp_adjust = 0;
2705 int load_immediate_bytes = 0;
2706
2707 /* Skip the typical prologue instructions. These are the stack adjustment
2708 instruction and the instructions that save registers on the stack
2709 or in the gcc frame. */
2710 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2711 {
2712 unsigned long high_word;
c906108c 2713
c5aa993b
JM
2714 inst = mips_fetch_instruction (pc);
2715 high_word = (inst >> 16) & 0xffff;
c906108c
SS
2716
2717#if 0
c5aa993b
JM
2718 if (lenient && is_delayed (inst))
2719 continue;
c906108c
SS
2720#endif
2721
c5aa993b
JM
2722 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2723 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2724 seen_sp_adjust = 1;
2725 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2726 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2727 seen_sp_adjust = 1;
2728 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2729 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2730 && (inst & 0x001F0000)) /* reg != $zero */
2731 continue;
2732
2733 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2734 continue;
2735 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
2736 /* sx reg,n($s8) */
2737 continue; /* reg != $zero */
2738
2739 /* move $s8,$sp. With different versions of gas this will be either
2740 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
2741 Accept any one of these. */
2742 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2743 continue;
2744
2745 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
2746 continue;
2747 else if (high_word == 0x3c1c) /* lui $gp,n */
2748 continue;
2749 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
2750 continue;
2751 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2752 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
2753 continue;
2754 /* The following instructions load $at or $t0 with an immediate
2755 value in preparation for a stack adjustment via
2756 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
2757 a local variable, so we accept them only before a stack adjustment
2758 instruction was seen. */
2759 else if (!seen_sp_adjust)
2760 {
2761 if (high_word == 0x3c01 || /* lui $at,n */
2762 high_word == 0x3c08) /* lui $t0,n */
2763 {
2764 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2765 continue;
2766 }
2767 else if (high_word == 0x3421 || /* ori $at,$at,n */
2768 high_word == 0x3508 || /* ori $t0,$t0,n */
2769 high_word == 0x3401 || /* ori $at,$zero,n */
2770 high_word == 0x3408) /* ori $t0,$zero,n */
2771 {
2772 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
2773 continue;
2774 }
2775 else
2776 break;
2777 }
2778 else
2779 break;
c906108c
SS
2780 }
2781
c5aa993b
JM
2782 /* In a frameless function, we might have incorrectly
2783 skipped some load immediate instructions. Undo the skipping
2784 if the load immediate was not followed by a stack adjustment. */
2785 if (load_immediate_bytes && !seen_sp_adjust)
2786 pc -= load_immediate_bytes;
2787 return pc;
c906108c
SS
2788}
2789
2790/* Skip the PC past function prologue instructions (16-bit version).
2791 This is a helper function for mips_skip_prologue. */
2792
2793static CORE_ADDR
2794mips16_skip_prologue (pc, lenient)
c5aa993b 2795 CORE_ADDR pc; /* starting PC to search from */
c906108c
SS
2796 int lenient;
2797{
c5aa993b
JM
2798 CORE_ADDR end_pc;
2799 int extend_bytes = 0;
2800 int prev_extend_bytes;
c906108c 2801
c5aa993b
JM
2802 /* Table of instructions likely to be found in a function prologue. */
2803 static struct
c906108c
SS
2804 {
2805 unsigned short inst;
2806 unsigned short mask;
c5aa993b
JM
2807 }
2808 table[] =
2809 {
c906108c 2810 {
c5aa993b
JM
2811 0x6300, 0xff00
2812 }
2813 , /* addiu $sp,offset */
2814 {
2815 0xfb00, 0xff00
2816 }
2817 , /* daddiu $sp,offset */
2818 {
2819 0xd000, 0xf800
2820 }
2821 , /* sw reg,n($sp) */
2822 {
2823 0xf900, 0xff00
2824 }
2825 , /* sd reg,n($sp) */
2826 {
2827 0x6200, 0xff00
2828 }
2829 , /* sw $ra,n($sp) */
2830 {
2831 0xfa00, 0xff00
2832 }
2833 , /* sd $ra,n($sp) */
2834 {
2835 0x673d, 0xffff
2836 }
2837 , /* move $s1,sp */
2838 {
2839 0xd980, 0xff80
2840 }
2841 , /* sw $a0-$a3,n($s1) */
2842 {
2843 0x6704, 0xff1c
2844 }
2845 , /* move reg,$a0-$a3 */
2846 {
2847 0xe809, 0xf81f
2848 }
2849 , /* entry pseudo-op */
2850 {
2851 0x0100, 0xff00
2852 }
2853 , /* addiu $s1,$sp,n */
2854 {
2855 0, 0
2856 } /* end of table marker */
2857 };
2858
2859 /* Skip the typical prologue instructions. These are the stack adjustment
2860 instruction and the instructions that save registers on the stack
2861 or in the gcc frame. */
2862 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2863 {
2864 unsigned short inst;
2865 int i;
c906108c 2866
c5aa993b 2867 inst = mips_fetch_instruction (pc);
c906108c 2868
c5aa993b
JM
2869 /* Normally we ignore an extend instruction. However, if it is
2870 not followed by a valid prologue instruction, we must adjust
2871 the pc back over the extend so that it won't be considered
2872 part of the prologue. */
2873 if ((inst & 0xf800) == 0xf000) /* extend */
2874 {
2875 extend_bytes = MIPS16_INSTLEN;
2876 continue;
2877 }
2878 prev_extend_bytes = extend_bytes;
2879 extend_bytes = 0;
c906108c 2880
c5aa993b
JM
2881 /* Check for other valid prologue instructions besides extend. */
2882 for (i = 0; table[i].mask != 0; i++)
2883 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
2884 break;
2885 if (table[i].mask != 0) /* it was in table? */
2886 continue; /* ignore it */
2887 else
2888 /* non-prologue */
2889 {
2890 /* Return the current pc, adjusted backwards by 2 if
2891 the previous instruction was an extend. */
2892 return pc - prev_extend_bytes;
2893 }
c906108c
SS
2894 }
2895 return pc;
2896}
2897
2898/* To skip prologues, I use this predicate. Returns either PC itself
2899 if the code at PC does not look like a function prologue; otherwise
2900 returns an address that (if we're lucky) follows the prologue. If
2901 LENIENT, then we must skip everything which is involved in setting
2902 up the frame (it's OK to skip more, just so long as we don't skip
2903 anything which might clobber the registers which are being saved.
2904 We must skip more in the case where part of the prologue is in the
2905 delay slot of a non-prologue instruction). */
2906
2907CORE_ADDR
2908mips_skip_prologue (pc, lenient)
2909 CORE_ADDR pc;
2910 int lenient;
2911{
2912 /* See if we can determine the end of the prologue via the symbol table.
2913 If so, then return either PC, or the PC after the prologue, whichever
2914 is greater. */
2915
2916 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
2917
2918 if (post_prologue_pc != 0)
2919 return max (pc, post_prologue_pc);
2920
2921 /* Can't determine prologue from the symbol table, need to examine
2922 instructions. */
2923
2924 if (pc_is_mips16 (pc))
2925 return mips16_skip_prologue (pc, lenient);
2926 else
2927 return mips32_skip_prologue (pc, lenient);
2928}
2929
2930#if 0
2931/* The lenient prologue stuff should be superseded by the code in
2932 init_extra_frame_info which looks to see whether the stores mentioned
2933 in the proc_desc have actually taken place. */
2934
2935/* Is address PC in the prologue (loosely defined) for function at
2936 STARTADDR? */
2937
2938static int
2939mips_in_lenient_prologue (startaddr, pc)
2940 CORE_ADDR startaddr;
2941 CORE_ADDR pc;
2942{
2943 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
2944 return pc >= startaddr && pc < end_prologue;
2945}
2946#endif
2947
7a292a7a
SS
2948/* Determine how a return value is stored within the MIPS register
2949 file, given the return type `valtype'. */
2950
2951struct return_value_word
2952{
2953 int len;
2954 int reg;
2955 int reg_offset;
2956 int buf_offset;
2957};
2958
2959static void return_value_location PARAMS ((struct type *, struct return_value_word *, struct return_value_word *));
2960
2961static void
2962return_value_location (valtype, hi, lo)
2963 struct type *valtype;
2964 struct return_value_word *hi;
2965 struct return_value_word *lo;
2966{
2967 int len = TYPE_LENGTH (valtype);
c5aa993b 2968
7a292a7a
SS
2969 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2970 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
2971 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
2972 {
2973 if (!FP_REGISTER_DOUBLE && len == 8)
2974 {
2975 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 2976 spread them across a floating-point register pair. */
7a292a7a
SS
2977 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2978 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
2979 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
2980 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
2981 ? 4 : 0);
2982 hi->reg_offset = lo->reg_offset;
2983 lo->reg = FP0_REGNUM + 0;
2984 hi->reg = FP0_REGNUM + 1;
2985 lo->len = 4;
2986 hi->len = 4;
2987 }
2988 else
2989 {
2990 /* The floating point value fits in a single floating-point
c5aa993b 2991 register. */
7a292a7a
SS
2992 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
2993 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
2994 && len == 4)
2995 ? 4 : 0);
2996 lo->reg = FP0_REGNUM;
2997 lo->len = len;
2998 lo->buf_offset = 0;
2999 hi->len = 0;
3000 hi->reg_offset = 0;
3001 hi->buf_offset = 0;
3002 hi->reg = 0;
3003 }
3004 }
3005 else
3006 {
3007 /* Locate a result possibly spread across two registers. */
3008 int regnum = 2;
3009 lo->reg = regnum + 0;
3010 hi->reg = regnum + 1;
3011 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3012 && len < MIPS_SAVED_REGSIZE)
3013 {
3014 /* "un-left-justify" the value in the low register */
3015 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3016 lo->len = len;
3017 hi->reg_offset = 0;
3018 hi->len = 0;
3019 }
3020 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3021 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3022 && len < MIPS_SAVED_REGSIZE * 2
3023 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3024 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3025 {
3026 /* "un-left-justify" the value spread across two registers. */
3027 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3028 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3029 hi->reg_offset = 0;
3030 hi->len = len - lo->len;
3031 }
3032 else
3033 {
3034 /* Only perform a partial copy of the second register. */
3035 lo->reg_offset = 0;
3036 hi->reg_offset = 0;
3037 if (len > MIPS_SAVED_REGSIZE)
3038 {
3039 lo->len = MIPS_SAVED_REGSIZE;
3040 hi->len = len - MIPS_SAVED_REGSIZE;
3041 }
3042 else
3043 {
3044 lo->len = len;
3045 hi->len = 0;
3046 }
3047 }
3048 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3049 && REGISTER_RAW_SIZE (regnum) == 8
3050 && MIPS_SAVED_REGSIZE == 4)
3051 {
3052 /* Account for the fact that only the least-signficant part
c5aa993b 3053 of the register is being used */
7a292a7a
SS
3054 lo->reg_offset += 4;
3055 hi->reg_offset += 4;
3056 }
3057 lo->buf_offset = 0;
3058 hi->buf_offset = lo->len;
3059 }
3060}
3061
3062/* Given a return value in `regbuf' with a type `valtype', extract and
3063 copy its value into `valbuf'. */
3064
c906108c
SS
3065void
3066mips_extract_return_value (valtype, regbuf, valbuf)
c5aa993b
JM
3067 struct type *valtype;
3068 char regbuf[REGISTER_BYTES];
3069 char *valbuf;
c906108c 3070{
7a292a7a
SS
3071 struct return_value_word lo;
3072 struct return_value_word hi;
3073 return_value_location (valtype, &lo, &hi);
3074
3075 memcpy (valbuf + lo.buf_offset,
3076 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3077 lo.len);
3078
3079 if (hi.len > 0)
3080 memcpy (valbuf + hi.buf_offset,
3081 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3082 hi.len);
3083
3084#if 0
c906108c
SS
3085 int regnum;
3086 int offset = 0;
3087 int len = TYPE_LENGTH (valtype);
c5aa993b 3088
c906108c
SS
3089 regnum = 2;
3090 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3091 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3092 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3093 && len <= MIPS_FPU_SINGLE_REGSIZE)))
3094 regnum = FP0_REGNUM;
3095
3096 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
c5aa993b 3097 { /* "un-left-justify" the value from the register */
c906108c
SS
3098 if (len < REGISTER_RAW_SIZE (regnum))
3099 offset = REGISTER_RAW_SIZE (regnum) - len;
c5aa993b 3100 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
c906108c
SS
3101 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3102 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3103 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3104 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3105 }
3106 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
3107 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
7a292a7a 3108#endif
c906108c
SS
3109}
3110
7a292a7a
SS
3111/* Given a return value in `valbuf' with a type `valtype', write it's
3112 value into the appropriate register. */
3113
c906108c
SS
3114void
3115mips_store_return_value (valtype, valbuf)
c5aa993b
JM
3116 struct type *valtype;
3117 char *valbuf;
c906108c 3118{
7a292a7a
SS
3119 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3120 struct return_value_word lo;
3121 struct return_value_word hi;
3122 return_value_location (valtype, &lo, &hi);
3123
3124 memset (raw_buffer, 0, sizeof (raw_buffer));
3125 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3126 write_register_bytes (REGISTER_BYTE (lo.reg),
3127 raw_buffer,
3128 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 3129
7a292a7a
SS
3130 if (hi.len > 0)
3131 {
3132 memset (raw_buffer, 0, sizeof (raw_buffer));
3133 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3134 write_register_bytes (REGISTER_BYTE (hi.reg),
3135 raw_buffer,
3136 REGISTER_RAW_SIZE (hi.reg));
3137 }
3138
3139#if 0
c906108c
SS
3140 int regnum;
3141 int offset = 0;
3142 int len = TYPE_LENGTH (valtype);
3143 char raw_buffer[MAX_REGISTER_RAW_SIZE];
c5aa993b 3144
c906108c
SS
3145 regnum = 2;
3146 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3147 && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
3148 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
3149 && len <= MIPS_REGSIZE)))
3150 regnum = FP0_REGNUM;
3151
3152 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
c5aa993b 3153 { /* "left-justify" the value in the register */
c906108c
SS
3154 if (len < REGISTER_RAW_SIZE (regnum))
3155 offset = REGISTER_RAW_SIZE (regnum) - len;
c5aa993b 3156 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
c906108c
SS
3157 len < REGISTER_RAW_SIZE (regnum) * 2 &&
3158 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3159 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3160 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
3161 }
c5aa993b
JM
3162 memcpy (raw_buffer + offset, valbuf, len);
3163 REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer);
3164 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
3165 len > REGISTER_RAW_SIZE (regnum) ?
3166 len : REGISTER_RAW_SIZE (regnum));
7a292a7a 3167#endif
c906108c
SS
3168}
3169
3170/* Exported procedure: Is PC in the signal trampoline code */
3171
3172int
3173in_sigtramp (pc, ignore)
3174 CORE_ADDR pc;
3175 char *ignore; /* function name */
3176{
3177 if (sigtramp_address == 0)
3178 fixup_sigtramp ();
3179 return (pc >= sigtramp_address && pc < sigtramp_end);
3180}
3181
a5ea2558
AC
3182/* Root of all "set mips "/"show mips " commands. This will eventually be
3183 used for all MIPS-specific commands. */
3184
3185static void show_mips_command PARAMS ((char *, int));
3186static void
3187show_mips_command (args, from_tty)
3188 char *args;
3189 int from_tty;
3190{
3191 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3192}
3193
3194static void set_mips_command PARAMS ((char *, int));
3195static void
3196set_mips_command (args, from_tty)
3197 char *args;
3198 int from_tty;
3199{
3200 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3201 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3202}
3203
c906108c
SS
3204/* Commands to show/set the MIPS FPU type. */
3205
3206static void show_mipsfpu_command PARAMS ((char *, int));
3207static void
3208show_mipsfpu_command (args, from_tty)
3209 char *args;
3210 int from_tty;
3211{
3212 char *msg;
3213 char *fpu;
3214 switch (MIPS_FPU_TYPE)
3215 {
3216 case MIPS_FPU_SINGLE:
3217 fpu = "single-precision";
3218 break;
3219 case MIPS_FPU_DOUBLE:
3220 fpu = "double-precision";
3221 break;
3222 case MIPS_FPU_NONE:
3223 fpu = "absent (none)";
3224 break;
3225 }
3226 if (mips_fpu_type_auto)
3227 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3228 fpu);
3229 else
3230 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3231 fpu);
3232}
3233
3234
3235static void set_mipsfpu_command PARAMS ((char *, int));
3236static void
3237set_mipsfpu_command (args, from_tty)
3238 char *args;
3239 int from_tty;
3240{
3241 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3242 show_mipsfpu_command (args, from_tty);
3243}
3244
3245static void set_mipsfpu_single_command PARAMS ((char *, int));
3246static void
3247set_mipsfpu_single_command (args, from_tty)
3248 char *args;
3249 int from_tty;
3250{
3251 mips_fpu_type = MIPS_FPU_SINGLE;
3252 mips_fpu_type_auto = 0;
c2d11a7d
JM
3253 if (GDB_MULTI_ARCH)
3254 {
3255 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3256 }
c906108c
SS
3257}
3258
3259static void set_mipsfpu_double_command PARAMS ((char *, int));
3260static void
3261set_mipsfpu_double_command (args, from_tty)
3262 char *args;
3263 int from_tty;
3264{
3265 mips_fpu_type = MIPS_FPU_DOUBLE;
3266 mips_fpu_type_auto = 0;
c2d11a7d
JM
3267 if (GDB_MULTI_ARCH)
3268 {
3269 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3270 }
c906108c
SS
3271}
3272
3273static void set_mipsfpu_none_command PARAMS ((char *, int));
3274static void
3275set_mipsfpu_none_command (args, from_tty)
3276 char *args;
3277 int from_tty;
3278{
3279 mips_fpu_type = MIPS_FPU_NONE;
3280 mips_fpu_type_auto = 0;
c2d11a7d
JM
3281 if (GDB_MULTI_ARCH)
3282 {
3283 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3284 }
c906108c
SS
3285}
3286
3287static void set_mipsfpu_auto_command PARAMS ((char *, int));
3288static void
3289set_mipsfpu_auto_command (args, from_tty)
3290 char *args;
3291 int from_tty;
3292{
3293 mips_fpu_type_auto = 1;
3294}
3295
3296/* Command to set the processor type. */
3297
3298void
3299mips_set_processor_type_command (args, from_tty)
3300 char *args;
3301 int from_tty;
3302{
3303 int i;
3304
3305 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3306 {
3307 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3308 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3309 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3310
3311 /* Restore the value. */
3312 tmp_mips_processor_type = strsave (mips_processor_type);
3313
3314 return;
3315 }
c5aa993b 3316
c906108c
SS
3317 if (!mips_set_processor_type (tmp_mips_processor_type))
3318 {
3319 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3320 /* Restore its value. */
3321 tmp_mips_processor_type = strsave (mips_processor_type);
3322 }
3323}
3324
3325static void
3326mips_show_processor_type_command (args, from_tty)
3327 char *args;
3328 int from_tty;
3329{
3330}
3331
3332/* Modify the actual processor type. */
3333
3334int
3335mips_set_processor_type (str)
3336 char *str;
3337{
3338 int i, j;
3339
3340 if (str == NULL)
3341 return 0;
3342
3343 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3344 {
3345 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3346 {
3347 mips_processor_type = str;
cce74817 3348 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 3349 return 1;
c906108c
SS
3350 /* FIXME tweak fpu flag too */
3351 }
3352 }
3353
3354 return 0;
3355}
3356
3357/* Attempt to identify the particular processor model by reading the
3358 processor id. */
3359
3360char *
3361mips_read_processor_type ()
3362{
3363 CORE_ADDR prid;
3364
3365 prid = read_register (PRID_REGNUM);
3366
3367 if ((prid & ~0xf) == 0x700)
c5aa993b 3368 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
3369
3370 return NULL;
3371}
3372
3373/* Just like reinit_frame_cache, but with the right arguments to be
3374 callable as an sfunc. */
3375
3376static void
3377reinit_frame_cache_sfunc (args, from_tty, c)
3378 char *args;
3379 int from_tty;
3380 struct cmd_list_element *c;
3381{
3382 reinit_frame_cache ();
3383}
3384
3385int
3386gdb_print_insn_mips (memaddr, info)
3387 bfd_vma memaddr;
3388 disassemble_info *info;
3389{
3390 mips_extra_func_info_t proc_desc;
3391
3392 /* Search for the function containing this address. Set the low bit
3393 of the address when searching, in case we were given an even address
3394 that is the start of a 16-bit function. If we didn't do this,
3395 the search would fail because the symbol table says the function
3396 starts at an odd address, i.e. 1 byte past the given address. */
3397 memaddr = ADDR_BITS_REMOVE (memaddr);
3398 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3399
3400 /* Make an attempt to determine if this is a 16-bit function. If
3401 the procedure descriptor exists and the address therein is odd,
3402 it's definitely a 16-bit function. Otherwise, we have to just
3403 guess that if the address passed in is odd, it's 16-bits. */
3404 if (proc_desc)
3405 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
3406 else
3407 info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
3408
3409 /* Round down the instruction address to the appropriate boundary. */
3410 memaddr &= (info->mach == 16 ? ~1 : ~3);
c5aa993b 3411
c906108c
SS
3412 /* Call the appropriate disassembler based on the target endian-ness. */
3413 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3414 return print_insn_big_mips (memaddr, info);
3415 else
3416 return print_insn_little_mips (memaddr, info);
3417}
3418
3419/* Old-style breakpoint macros.
3420 The IDT board uses an unusual breakpoint value, and sometimes gets
3421 confused when it sees the usual MIPS breakpoint instruction. */
3422
3423#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3424#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3425#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3426#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3427#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3428#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3429#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3430#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3431
3432/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3433 counter value to determine whether a 16- or 32-bit breakpoint should be
3434 used. It returns a pointer to a string of bytes that encode a breakpoint
3435 instruction, stores the length of the string to *lenptr, and adjusts pc
3436 (if necessary) to point to the actual memory location where the
3437 breakpoint should be inserted. */
3438
c5aa993b
JM
3439unsigned char *
3440mips_breakpoint_from_pc (pcptr, lenptr)
c906108c
SS
3441 CORE_ADDR *pcptr;
3442 int *lenptr;
3443{
3444 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3445 {
3446 if (pc_is_mips16 (*pcptr))
3447 {
3448 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
3449 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3450 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
3451 return mips16_big_breakpoint;
3452 }
3453 else
3454 {
3455 static char big_breakpoint[] = BIG_BREAKPOINT;
3456 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3457 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3458
c5aa993b 3459 *lenptr = sizeof (big_breakpoint);
c906108c
SS
3460
3461 if (strcmp (target_shortname, "mips") == 0)
3462 return idt_big_breakpoint;
3463 else if (strcmp (target_shortname, "ddb") == 0
3464 || strcmp (target_shortname, "pmon") == 0
3465 || strcmp (target_shortname, "lsi") == 0)
3466 return pmon_big_breakpoint;
3467 else
3468 return big_breakpoint;
3469 }
3470 }
3471 else
3472 {
3473 if (pc_is_mips16 (*pcptr))
3474 {
3475 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
3476 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 3477 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
3478 return mips16_little_breakpoint;
3479 }
3480 else
3481 {
3482 static char little_breakpoint[] = LITTLE_BREAKPOINT;
3483 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
3484 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
3485
c5aa993b 3486 *lenptr = sizeof (little_breakpoint);
c906108c
SS
3487
3488 if (strcmp (target_shortname, "mips") == 0)
3489 return idt_little_breakpoint;
3490 else if (strcmp (target_shortname, "ddb") == 0
3491 || strcmp (target_shortname, "pmon") == 0
3492 || strcmp (target_shortname, "lsi") == 0)
3493 return pmon_little_breakpoint;
3494 else
3495 return little_breakpoint;
3496 }
3497 }
3498}
3499
3500/* If PC is in a mips16 call or return stub, return the address of the target
3501 PC, which is either the callee or the caller. There are several
3502 cases which must be handled:
3503
3504 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 3505 target PC is in $31 ($ra).
c906108c 3506 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 3507 and the target PC is in $2.
c906108c 3508 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3509 before the jal instruction, this is effectively a call stub
3510 and the the target PC is in $2. Otherwise this is effectively
3511 a return stub and the target PC is in $18.
c906108c
SS
3512
3513 See the source code for the stubs in gcc/config/mips/mips16.S for
3514 gory details.
3515
3516 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 3517 */
c906108c
SS
3518
3519CORE_ADDR
3520mips_skip_stub (pc)
3521 CORE_ADDR pc;
3522{
3523 char *name;
3524 CORE_ADDR start_addr;
3525
3526 /* Find the starting address and name of the function containing the PC. */
3527 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3528 return 0;
3529
3530 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3531 target PC is in $31 ($ra). */
3532 if (strcmp (name, "__mips16_ret_sf") == 0
3533 || strcmp (name, "__mips16_ret_df") == 0)
3534 return read_register (RA_REGNUM);
3535
3536 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3537 {
3538 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3539 and the target PC is in $2. */
3540 if (name[19] >= '0' && name[19] <= '9')
3541 return read_register (2);
3542
3543 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
3544 before the jal instruction, this is effectively a call stub
3545 and the the target PC is in $2. Otherwise this is effectively
3546 a return stub and the target PC is in $18. */
c906108c
SS
3547 else if (name[19] == 's' || name[19] == 'd')
3548 {
3549 if (pc == start_addr)
3550 {
3551 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
3552 stub. Such a stub for a function bar might have a name
3553 like __fn_stub_bar, and might look like this:
3554 mfc1 $4,$f13
3555 mfc1 $5,$f12
3556 mfc1 $6,$f15
3557 mfc1 $7,$f14
3558 la $1,bar (becomes a lui/addiu pair)
3559 jr $1
3560 So scan down to the lui/addi and extract the target
3561 address from those two instructions. */
c906108c
SS
3562
3563 CORE_ADDR target_pc = read_register (2);
3564 t_inst inst;
3565 int i;
3566
3567 /* See if the name of the target function is __fn_stub_*. */
3568 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3569 return target_pc;
3570 if (strncmp (name, "__fn_stub_", 10) != 0
3571 && strcmp (name, "etext") != 0
3572 && strcmp (name, "_etext") != 0)
3573 return target_pc;
3574
3575 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
3576 The limit on the search is arbitrarily set to 20
3577 instructions. FIXME. */
c906108c
SS
3578 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3579 {
c5aa993b
JM
3580 inst = mips_fetch_instruction (target_pc);
3581 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3582 pc = (inst << 16) & 0xffff0000; /* high word */
3583 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3584 return pc | (inst & 0xffff); /* low word */
c906108c
SS
3585 }
3586
3587 /* Couldn't find the lui/addui pair, so return stub address. */
3588 return target_pc;
3589 }
3590 else
3591 /* This is the 'return' part of a call stub. The return
3592 address is in $r18. */
3593 return read_register (18);
3594 }
3595 }
c5aa993b 3596 return 0; /* not a stub */
c906108c
SS
3597}
3598
3599
3600/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3601 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3602
3603int
3604mips_in_call_stub (pc, name)
3605 CORE_ADDR pc;
3606 char *name;
3607{
3608 CORE_ADDR start_addr;
3609
3610 /* Find the starting address of the function containing the PC. If the
3611 caller didn't give us a name, look it up at the same time. */
3612 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3613 return 0;
3614
3615 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3616 {
3617 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3618 if (name[19] >= '0' && name[19] <= '9')
3619 return 1;
3620 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 3621 before the jal instruction, this is effectively a call stub. */
c906108c
SS
3622 else if (name[19] == 's' || name[19] == 'd')
3623 return pc == start_addr;
3624 }
3625
c5aa993b 3626 return 0; /* not a stub */
c906108c
SS
3627}
3628
3629
3630/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3631 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3632
3633int
3634mips_in_return_stub (pc, name)
3635 CORE_ADDR pc;
3636 char *name;
3637{
3638 CORE_ADDR start_addr;
3639
3640 /* Find the starting address of the function containing the PC. */
3641 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3642 return 0;
3643
3644 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3645 if (strcmp (name, "__mips16_ret_sf") == 0
3646 || strcmp (name, "__mips16_ret_df") == 0)
3647 return 1;
3648
3649 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 3650 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
3651 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3652 && (name[19] == 's' || name[19] == 'd')
3653 && pc != start_addr)
3654 return 1;
3655
c5aa993b 3656 return 0; /* not a stub */
c906108c
SS
3657}
3658
3659
3660/* Return non-zero if the PC is in a library helper function that should
3661 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3662
3663int
3664mips_ignore_helper (pc)
3665 CORE_ADDR pc;
3666{
3667 char *name;
3668
3669 /* Find the starting address and name of the function containing the PC. */
3670 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3671 return 0;
3672
3673 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3674 that we want to ignore. */
3675 return (strcmp (name, "__mips16_ret_sf") == 0
3676 || strcmp (name, "__mips16_ret_df") == 0);
3677}
3678
3679
3680/* Return a location where we can set a breakpoint that will be hit
3681 when an inferior function call returns. This is normally the
3682 program's entry point. Executables that don't have an entry
3683 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3684 whose address is the location where the breakpoint should be placed. */
3685
3686CORE_ADDR
3687mips_call_dummy_address ()
3688{
3689 struct minimal_symbol *sym;
3690
3691 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3692 if (sym)
3693 return SYMBOL_VALUE_ADDRESS (sym);
3694 else
3695 return entry_point_address ();
3696}
3697
3698
b9a8e3bf
JB
3699/* If the current gcc for for this target does not produce correct debugging
3700 information for float parameters, both prototyped and unprototyped, then
3701 define this macro. This forces gdb to always assume that floats are
3702 passed as doubles and then converted in the callee.
3703
3704 For the mips chip, it appears that the debug info marks the parameters as
3705 floats regardless of whether the function is prototyped, but the actual
3706 values are passed as doubles for the non-prototyped case and floats for
3707 the prototyped case. Thus we choose to make the non-prototyped case work
3708 for C and break the prototyped case, since the non-prototyped case is
3709 probably much more common. (FIXME). */
3710
3711static int
3712mips_coerce_float_to_double (struct type *formal, struct type *actual)
3713{
3714 return current_language->la_language == language_c;
3715}
3716
2acceee2 3717
c2d11a7d
JM
3718static gdbarch_init_ftype mips_gdbarch_init;
3719static struct gdbarch *
3720mips_gdbarch_init (info, arches)
3721 struct gdbarch_info info;
3722 struct gdbarch_list *arches;
3723{
3724 static LONGEST mips_call_dummy_words[] =
3725 {0};
3726 struct gdbarch *gdbarch;
3727 struct gdbarch_tdep *tdep;
3728 int elf_flags;
3729 char *ef_mips_abi;
3730 int ef_mips_bitptrs;
3731 int ef_mips_arch;
3732
3733 /* Extract the elf_flags if available */
3734 if (info.abfd != NULL
3735 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3736 elf_flags = elf_elfheader (info.abfd)->e_flags;
3737 else
3738 elf_flags = 0;
3739
3740 /* try to find a pre-existing architecture */
3741 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3742 arches != NULL;
3743 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3744 {
3745 /* MIPS needs to be pedantic about which ABI the object is
3746 using. */
3747 if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
3748 continue;
3749 return arches->gdbarch;
3750 }
3751
3752 /* Need a new architecture. Fill in a target specific vector. */
3753 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3754 gdbarch = gdbarch_alloc (&info, tdep);
3755 tdep->elf_flags = elf_flags;
3756
3757 /* Initially set everything according to the ABI. */
3758 set_gdbarch_short_bit (gdbarch, 16);
3759 set_gdbarch_int_bit (gdbarch, 32);
3760 set_gdbarch_float_bit (gdbarch, 32);
3761 set_gdbarch_double_bit (gdbarch, 64);
3762 set_gdbarch_long_double_bit (gdbarch, 64);
3763 switch ((elf_flags & EF_MIPS_ABI))
3764 {
3765 case E_MIPS_ABI_O32:
3766 ef_mips_abi = "o32";
3767 tdep->mips_eabi = 0;
a5ea2558 3768 tdep->mips_default_saved_regsize = 4;
c2d11a7d
JM
3769 tdep->mips_fp_register_double = 0;
3770 set_gdbarch_long_bit (gdbarch, 32);
3771 set_gdbarch_ptr_bit (gdbarch, 32);
3772 set_gdbarch_long_long_bit (gdbarch, 64);
3773 break;
3774 case E_MIPS_ABI_O64:
3775 ef_mips_abi = "o64";
3776 tdep->mips_eabi = 0;
a5ea2558 3777 tdep->mips_default_saved_regsize = 8;
c2d11a7d
JM
3778 tdep->mips_fp_register_double = 1;
3779 set_gdbarch_long_bit (gdbarch, 32);
3780 set_gdbarch_ptr_bit (gdbarch, 32);
3781 set_gdbarch_long_long_bit (gdbarch, 64);
3782 break;
3783 case E_MIPS_ABI_EABI32:
3784 ef_mips_abi = "eabi32";
3785 tdep->mips_eabi = 1;
a5ea2558 3786 tdep->mips_default_saved_regsize = 4;
c2d11a7d
JM
3787 tdep->mips_fp_register_double = 0;
3788 set_gdbarch_long_bit (gdbarch, 32);
3789 set_gdbarch_ptr_bit (gdbarch, 32);
3790 set_gdbarch_long_long_bit (gdbarch, 64);
3791 break;
3792 case E_MIPS_ABI_EABI64:
3793 ef_mips_abi = "eabi64";
3794 tdep->mips_eabi = 1;
a5ea2558 3795 tdep->mips_default_saved_regsize = 8;
c2d11a7d
JM
3796 tdep->mips_fp_register_double = 1;
3797 set_gdbarch_long_bit (gdbarch, 64);
3798 set_gdbarch_ptr_bit (gdbarch, 64);
3799 set_gdbarch_long_long_bit (gdbarch, 64);
3800 break;
3801 default:
3802 ef_mips_abi = "default";
3803 tdep->mips_eabi = 0;
a5ea2558 3804 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
c2d11a7d
JM
3805 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
3806 set_gdbarch_long_bit (gdbarch, 32);
3807 set_gdbarch_ptr_bit (gdbarch, 32);
3808 set_gdbarch_long_long_bit (gdbarch, 64);
3809 break;
3810 }
3811
a5ea2558
AC
3812 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
3813 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
3814 comment:
3815
3816 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
3817 flag in object files because to do so would make it impossible to
3818 link with libraries compiled without "-gp32". This is
3819 unnecessarily restrictive.
3820
3821 We could solve this problem by adding "-gp32" multilibs to gcc,
3822 but to set this flag before gcc is built with such multilibs will
3823 break too many systems.''
3824
3825 But even more unhelpfully, the default linker output target for
3826 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
3827 for 64-bit programs - you need to change the ABI to change this,
3828 and not all gcc targets support that currently. Therefore using
3829 this flag to detect 32-bit mode would do the wrong thing given
3830 the current gcc - it would make GDB treat these 64-bit programs
3831 as 32-bit programs by default. */
3832
c2d11a7d
JM
3833 /* determine the ISA */
3834 switch (elf_flags & EF_MIPS_ARCH)
3835 {
3836 case E_MIPS_ARCH_1:
3837 ef_mips_arch = 1;
3838 break;
3839 case E_MIPS_ARCH_2:
3840 ef_mips_arch = 2;
3841 break;
3842 case E_MIPS_ARCH_3:
3843 ef_mips_arch = 3;
3844 break;
3845 case E_MIPS_ARCH_4:
3846 ef_mips_arch = 0;
3847 break;
3848 default:
3849 break;
3850 }
3851
3852#if 0
3853 /* determine the size of a pointer */
3854 if ((elf_flags & EF_MIPS_32BITPTRS))
3855 {
3856 ef_mips_bitptrs = 32;
3857 }
3858 else if ((elf_flags & EF_MIPS_64BITPTRS))
3859 {
3860 ef_mips_bitptrs = 64;
3861 }
3862 else
3863 {
3864 ef_mips_bitptrs = 0;
3865 }
3866#endif
3867
3868 /* Select either of the two alternative ABI's */
3869 if (tdep->mips_eabi)
3870 {
3871 /* EABI uses R4 through R11 for args */
3872 tdep->mips_last_arg_regnum = 11;
3873 /* EABI uses F12 through F19 for args */
3874 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
3875 }
3876 else
3877 {
3878 /* old ABI uses R4 through R7 for args */
3879 tdep->mips_last_arg_regnum = 7;
3880 /* old ABI uses F12 through F15 for args */
3881 tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
3882 }
3883
3884 /* enable/disable the MIPS FPU */
3885 if (!mips_fpu_type_auto)
3886 tdep->mips_fpu_type = mips_fpu_type;
3887 else if (info.bfd_arch_info != NULL
3888 && info.bfd_arch_info->arch == bfd_arch_mips)
3889 switch (info.bfd_arch_info->mach)
3890 {
3891 case bfd_mach_mips4100:
ed9a39eb 3892 case bfd_mach_mips4111:
c2d11a7d
JM
3893 tdep->mips_fpu_type = MIPS_FPU_NONE;
3894 break;
3895 default:
3896 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
3897 break;
3898 }
3899 else
3900 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
3901
3902 /* MIPS version of register names. NOTE: At present the MIPS
3903 register name management is part way between the old -
3904 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
3905 Further work on it is required. */
3906 set_gdbarch_register_name (gdbarch, mips_register_name);
3907 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
3908 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3909 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
3910 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
3911 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3912 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
3913
3914 /* Initialize a frame */
3915 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
3916
3917 /* MIPS version of CALL_DUMMY */
3918
3919 set_gdbarch_call_dummy_p (gdbarch, 1);
3920 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
3921 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
3922 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
3923 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
3924 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3925 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
3926 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3927 set_gdbarch_call_dummy_length (gdbarch, 0);
3928 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
3929 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
3930 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
3931 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
3932 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
3933 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
b9a8e3bf 3934 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 3935
c4093a6a 3936 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
c2d11a7d
JM
3937 set_gdbarch_get_saved_register (gdbarch, default_get_saved_register);
3938
3939 if (gdbarch_debug)
3940 {
3941 fprintf_unfiltered (gdb_stderr,
3942 "mips_gdbarch_init: (info)elf_flags = 0x%x\n",
3943 elf_flags);
3944 fprintf_unfiltered (gdb_stderr,
3945 "mips_gdbarch_init: (info)ef_mips_abi = %s\n",
3946 ef_mips_abi);
3947 fprintf_unfiltered (gdb_stderr,
3948 "mips_gdbarch_init: (info)ef_mips_arch = %d\n",
3949 ef_mips_arch);
3950 fprintf_unfiltered (gdb_stderr,
3951 "mips_gdbarch_init: (info)ef_mips_bitptrs = %d\n",
3952 ef_mips_bitptrs);
3953 fprintf_unfiltered (gdb_stderr,
3954 "mips_gdbarch_init: MIPS_EABI = %d\n",
3955 tdep->mips_eabi);
3956 fprintf_unfiltered (gdb_stderr,
3957 "mips_gdbarch_init: MIPS_LAST_ARG_REGNUM = %d\n",
3958 tdep->mips_last_arg_regnum);
3959 fprintf_unfiltered (gdb_stderr,
3960 "mips_gdbarch_init: MIPS_LAST_FP_ARG_REGNUM = %d (%d)\n",
3961 tdep->mips_last_fp_arg_regnum,
3962 tdep->mips_last_fp_arg_regnum - FP0_REGNUM);
3963 fprintf_unfiltered (gdb_stderr,
3964 "mips_gdbarch_init: tdep->mips_fpu_type = %d (%s)\n",
3965 tdep->mips_fpu_type,
3966 (tdep->mips_fpu_type == MIPS_FPU_NONE ? "none"
3967 : tdep->mips_fpu_type == MIPS_FPU_SINGLE ? "single"
3968 : tdep->mips_fpu_type == MIPS_FPU_DOUBLE ? "double"
3969 : "???"));
3970 fprintf_unfiltered (gdb_stderr,
a5ea2558
AC
3971 "mips_gdbarch_init: tdep->mips_default_saved_regsize = %d\n",
3972 tdep->mips_default_saved_regsize);
c2d11a7d
JM
3973 fprintf_unfiltered (gdb_stderr,
3974 "mips_gdbarch_init: tdep->mips_fp_register_double = %d (%s)\n",
3975 tdep->mips_fp_register_double,
3976 (tdep->mips_fp_register_double ? "true" : "false"));
3977 }
3978
3979 return gdbarch;
3980}
3981
3982
c906108c
SS
3983void
3984_initialize_mips_tdep ()
3985{
3986 static struct cmd_list_element *mipsfpulist = NULL;
3987 struct cmd_list_element *c;
3988
c2d11a7d
JM
3989 if (GDB_MULTI_ARCH)
3990 register_gdbarch_init (bfd_arch_mips, mips_gdbarch_init);
c5aa993b 3991 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
3992 tm_print_insn = gdb_print_insn_mips;
3993
a5ea2558
AC
3994 /* Add root prefix command for all "set mips"/"show mips" commands */
3995 add_prefix_cmd ("mips", no_class, set_mips_command,
3996 "Various MIPS specific commands.",
3997 &setmipscmdlist, "set mips ", 0, &setlist);
3998
3999 add_prefix_cmd ("mips", no_class, show_mips_command,
4000 "Various MIPS specific commands.",
4001 &showmipscmdlist, "show mips ", 0, &showlist);
4002
4003 /* Allow the user to override the saved register size. */
4004 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4005 class_obscure,
4006 saved_gpreg_size_enums,
4007 (char *) &mips_saved_regsize_string, "\
4008Set size of general purpose registers saved on the stack.\n\
4009This option can be set to one of:\n\
4010 32 - Force GDB to treat saved GP registers as 32-bit\n\
4011 64 - Force GDB to treat saved GP registers as 64-bit\n\
4012 auto - Allow GDB to use the target's default setting or autodetect the\n\
4013 saved GP register size from information contained in the executable.\n\
4014 (default: auto)",
4015 &setmipscmdlist),
4016 &showmipscmdlist);
4017
c906108c
SS
4018 /* Let the user turn off floating point and set the fence post for
4019 heuristic_proc_start. */
4020
4021 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4022 "Set use of MIPS floating-point coprocessor.",
4023 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4024 add_cmd ("single", class_support, set_mipsfpu_single_command,
4025 "Select single-precision MIPS floating-point coprocessor.",
4026 &mipsfpulist);
4027 add_cmd ("double", class_support, set_mipsfpu_double_command,
4028 "Select double-precision MIPS floating-point coprocessor .",
4029 &mipsfpulist);
4030 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4031 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4032 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4033 add_cmd ("none", class_support, set_mipsfpu_none_command,
4034 "Select no MIPS floating-point coprocessor.",
4035 &mipsfpulist);
4036 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4037 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4038 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4039 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4040 "Select MIPS floating-point coprocessor automatically.",
4041 &mipsfpulist);
4042 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4043 "Show current use of MIPS floating-point coprocessor target.",
4044 &showlist);
4045
c2d11a7d 4046#if !GDB_MULTI_ARCH
c906108c
SS
4047 c = add_set_cmd ("processor", class_support, var_string_noescape,
4048 (char *) &tmp_mips_processor_type,
4049 "Set the type of MIPS processor in use.\n\
4050Set this to be able to access processor-type-specific registers.\n\
4051",
4052 &setlist);
4053 c->function.cfunc = mips_set_processor_type_command;
4054 c = add_show_from_set (c, &showlist);
4055 c->function.cfunc = mips_show_processor_type_command;
4056
4057 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
4058 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
c2d11a7d 4059#endif
c906108c
SS
4060
4061 /* We really would like to have both "0" and "unlimited" work, but
4062 command.c doesn't deal with that. So make it a var_zinteger
4063 because the user can always use "999999" or some such for unlimited. */
4064 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4065 (char *) &heuristic_fence_post,
4066 "\
4067Set the distance searched for the start of a function.\n\
4068If you are debugging a stripped executable, GDB needs to search through the\n\
4069program for the start of a function. This command sets the distance of the\n\
4070search. The only need to set it is when debugging a stripped executable.",
4071 &setlist);
4072 /* We need to throw away the frame cache when we set this, since it
4073 might change our ability to get backtraces. */
4074 c->function.sfunc = reinit_frame_cache_sfunc;
4075 add_show_from_set (c, &showlist);
4076
4077 /* Allow the user to control whether the upper bits of 64-bit
4078 addresses should be zeroed. */
4079 add_show_from_set
c5aa993b
JM
4080 (add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p,
4081 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
c906108c
SS
4082Use \"on\" to enable the masking, and \"off\" to disable it.\n\
4083Without an argument, zeroing of upper address bits is enabled.", &setlist),
4084 &showlist);
43e526b9
JM
4085
4086 /* Allow the user to control the size of 32 bit registers within the
4087 raw remote packet. */
4088 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4089 class_obscure,
4090 var_boolean,
4091 (char *)&mips64_transfers_32bit_regs_p, "\
4092Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4093Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4094that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
409564 bits for others. Use \"off\" to disable compatibility mode",
4096 &setlist),
4097 &showlist);
c906108c 4098}
This page took 0.232004 seconds and 4 git commands to generate.