Add default_breakpoint_from_pc
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
618f726f 3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
edfae063
AC
47#include "frame-unwind.h"
48#include "frame-base.h"
49#include "trad-frame.h"
7d9b040b 50#include "infcall.h"
fed7ba43 51#include "floatformat.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
325fac50 58#include <algorithm>
c906108c 59
8d5f9dcb
DJ
60static const struct objfile_data *mips_pdr_data;
61
5bbcb741 62static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 63
ab50adb6
MR
64static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
4cc0665f 76
1bab7383
YQ
77static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
24e05951 80/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
81/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82#define ST0_FR (1 << 26)
83
b0069a17
AC
84/* The sizes of floating point registers. */
85
86enum
87{
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90};
91
1a69e1e4
DJ
92enum
93{
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96};
0dadbba0 97
2e4ebe70
DJ
98static const char *mips_abi_string;
99
40478521 100static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
101 "auto",
102 "n32",
103 "o32",
28d169de 104 "n64",
2e4ebe70
DJ
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109};
110
44f1c4d7
YQ
111/* Enum describing the different kinds of breakpoints. */
112
113enum mips_breakpoint_kind
114{
115 /* 16-bit MIPS16 mode breakpoint. */
116 MIPS_BP_KIND_MIPS16 = 2,
117
118 /* 16-bit microMIPS mode breakpoint. */
119 MIPS_BP_KIND_MICROMIPS16 = 3,
120
121 /* 32-bit standard MIPS mode breakpoint. */
122 MIPS_BP_KIND_MIPS32 = 4,
123
124 /* 32-bit microMIPS mode breakpoint. */
125 MIPS_BP_KIND_MICROMIPS32 = 5,
126};
127
4cc0665f
MR
128/* For backwards compatibility we default to MIPS16. This flag is
129 overridden as soon as unambiguous ELF file flags tell us the
130 compressed ISA encoding used. */
131static const char mips_compression_mips16[] = "mips16";
132static const char mips_compression_micromips[] = "micromips";
133static const char *const mips_compression_strings[] =
134{
135 mips_compression_mips16,
136 mips_compression_micromips,
137 NULL
138};
139
140static const char *mips_compression_string = mips_compression_mips16;
141
f8b73d13
DJ
142/* The standard register names, and all the valid aliases for them. */
143struct register_alias
144{
145 const char *name;
146 int regnum;
147};
148
149/* Aliases for o32 and most other ABIs. */
150const struct register_alias mips_o32_aliases[] = {
151 { "ta0", 12 },
152 { "ta1", 13 },
153 { "ta2", 14 },
154 { "ta3", 15 }
155};
156
157/* Aliases for n32 and n64. */
158const struct register_alias mips_n32_n64_aliases[] = {
159 { "ta0", 8 },
160 { "ta1", 9 },
161 { "ta2", 10 },
162 { "ta3", 11 }
163};
164
165/* Aliases for ABI-independent registers. */
166const struct register_alias mips_register_aliases[] = {
167 /* The architecture manuals specify these ABI-independent names for
168 the GPRs. */
169#define R(n) { "r" #n, n }
170 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
171 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
172 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
173 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
174#undef R
175
176 /* k0 and k1 are sometimes called these instead (for "kernel
177 temp"). */
178 { "kt0", 26 },
179 { "kt1", 27 },
180
181 /* This is the traditional GDB name for the CP0 status register. */
182 { "sr", MIPS_PS_REGNUM },
183
184 /* This is the traditional GDB name for the CP0 BadVAddr register. */
185 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
186
187 /* This is the traditional GDB name for the FCSR. */
188 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
189};
190
865093a3
AR
191const struct register_alias mips_numeric_register_aliases[] = {
192#define R(n) { #n, n }
193 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
194 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
195 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
196 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
197#undef R
198};
199
c906108c
SS
200#ifndef MIPS_DEFAULT_FPU_TYPE
201#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
202#endif
203static int mips_fpu_type_auto = 1;
204static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 205
ccce17b0 206static unsigned int mips_debug = 0;
7a292a7a 207
29709017
DJ
208/* Properties (for struct target_desc) describing the g/G packet
209 layout. */
210#define PROPERTY_GP32 "internal: transfers-32bit-registers"
211#define PROPERTY_GP64 "internal: transfers-64bit-registers"
212
4eb0ad19
DJ
213struct target_desc *mips_tdesc_gp32;
214struct target_desc *mips_tdesc_gp64;
215
56cea623
AC
216const struct mips_regnum *
217mips_regnum (struct gdbarch *gdbarch)
218{
219 return gdbarch_tdep (gdbarch)->regnum;
220}
221
222static int
223mips_fpa0_regnum (struct gdbarch *gdbarch)
224{
225 return mips_regnum (gdbarch)->fp0 + 12;
226}
227
004159a2
MR
228/* Return 1 if REGNUM refers to a floating-point general register, raw
229 or cooked. Otherwise return 0. */
230
231static int
232mips_float_register_p (struct gdbarch *gdbarch, int regnum)
233{
234 int rawnum = regnum % gdbarch_num_regs (gdbarch);
235
236 return (rawnum >= mips_regnum (gdbarch)->fp0
237 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
238}
239
74ed0bb4
MD
240#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
241 == MIPS_ABI_EABI32 \
242 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 243
025bb325
MS
244#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
245 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 246
025bb325
MS
247#define MIPS_LAST_ARG_REGNUM(gdbarch) \
248 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 249
74ed0bb4 250#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 251
d1973055
KB
252/* Return the MIPS ABI associated with GDBARCH. */
253enum mips_abi
254mips_abi (struct gdbarch *gdbarch)
255{
256 return gdbarch_tdep (gdbarch)->mips_abi;
257}
258
4246e332 259int
1b13c4f6 260mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 261{
29709017
DJ
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
4246e332
AC
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271}
272
025bb325 273/* Return the currently configured (or set) saved register size. */
480d3dd2 274
e6bc2e8a 275unsigned int
13326b4e 276mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 277{
1a69e1e4
DJ
278 switch (mips_abi (gdbarch))
279 {
280 case MIPS_ABI_EABI32:
281 case MIPS_ABI_O32:
282 return 4;
283 case MIPS_ABI_N32:
284 case MIPS_ABI_N64:
285 case MIPS_ABI_O64:
286 case MIPS_ABI_EABI64:
287 return 8;
288 case MIPS_ABI_UNKNOWN:
289 case MIPS_ABI_LAST:
290 default:
291 internal_error (__FILE__, __LINE__, _("bad switch"));
292 }
d929b26f
AC
293}
294
4cc0665f
MR
295/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
296 are some functions to handle addresses associated with compressed
297 code including but not limited to testing, setting, or clearing
298 bit 0 of such addresses. */
742c84f6 299
4cc0665f
MR
300/* Return one iff compressed code is the MIPS16 instruction set. */
301
302static int
303is_mips16_isa (struct gdbarch *gdbarch)
304{
305 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
306}
307
308/* Return one iff compressed code is the microMIPS instruction set. */
309
310static int
311is_micromips_isa (struct gdbarch *gdbarch)
312{
313 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
314}
315
316/* Return one iff ADDR denotes compressed code. */
317
318static int
319is_compact_addr (CORE_ADDR addr)
742c84f6
MR
320{
321 return ((addr) & 1);
322}
323
4cc0665f
MR
324/* Return one iff ADDR denotes standard ISA code. */
325
326static int
327is_mips_addr (CORE_ADDR addr)
328{
329 return !is_compact_addr (addr);
330}
331
332/* Return one iff ADDR denotes MIPS16 code. */
333
334static int
335is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
336{
337 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
338}
339
340/* Return one iff ADDR denotes microMIPS code. */
341
342static int
343is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
344{
345 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
346}
347
348/* Strip the ISA (compression) bit off from ADDR. */
349
742c84f6 350static CORE_ADDR
4cc0665f 351unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
352{
353 return ((addr) & ~(CORE_ADDR) 1);
354}
355
4cc0665f
MR
356/* Add the ISA (compression) bit to ADDR. */
357
742c84f6 358static CORE_ADDR
4cc0665f 359make_compact_addr (CORE_ADDR addr)
742c84f6
MR
360{
361 return ((addr) | (CORE_ADDR) 1);
362}
363
3e29f34a
MR
364/* Extern version of unmake_compact_addr; we use a separate function
365 so that unmake_compact_addr can be inlined throughout this file. */
366
367CORE_ADDR
368mips_unmake_compact_addr (CORE_ADDR addr)
369{
370 return unmake_compact_addr (addr);
371}
372
71b8ef93 373/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
374 marks it as MIPS16 or microMIPS function. The MSB of the minimal
375 symbol's "info" field is used for this purpose.
5a89d8aa 376
4cc0665f
MR
377 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
378 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
379 one of the "special" bits in a minimal symbol to mark it accordingly.
380 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
381 symbols only; for synthetic symbols such as for PLT stubs that have
382 no ELF-private part at all the MIPS BFD backend arranges for this
383 information to be carried in the asymbol's udata field instead.
5a89d8aa 384
4cc0665f
MR
385 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
386 in a minimal symbol. */
5a89d8aa 387
5a89d8aa 388static void
6d82d43b
AC
389mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
390{
4cc0665f 391 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 392 unsigned char st_other;
4cc0665f 393
1bbce132
MR
394 if ((sym->flags & BSF_SYNTHETIC) == 0)
395 st_other = elfsym->internal_elf_sym.st_other;
396 else if ((sym->flags & BSF_FUNCTION) != 0)
397 st_other = sym->udata.i;
398 else
4cc0665f
MR
399 return;
400
1bbce132 401 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 402 {
f161c171 403 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
404 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
405 }
1bbce132 406 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 407 {
f161c171 408 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
409 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
410 }
4cc0665f
MR
411}
412
413/* Return one iff MSYM refers to standard ISA code. */
414
415static int
416msymbol_is_mips (struct minimal_symbol *msym)
417{
f161c171
MR
418 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
419 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
420}
421
4cc0665f
MR
422/* Return one iff MSYM refers to MIPS16 code. */
423
71b8ef93 424static int
4cc0665f 425msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 426{
f161c171 427 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
428}
429
4cc0665f
MR
430/* Return one iff MSYM refers to microMIPS code. */
431
432static int
433msymbol_is_micromips (struct minimal_symbol *msym)
434{
f161c171 435 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
436}
437
3e29f34a
MR
438/* Set the ISA bit in the main symbol too, complementing the corresponding
439 minimal symbol setting and reflecting the run-time value of the symbol.
440 The need for comes from the ISA bit having been cleared as code in
441 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
442 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
443 of symbols referring to compressed code different in GDB to the values
444 used by actual code. That in turn makes them evaluate incorrectly in
445 expressions, producing results different to what the same expressions
446 yield when compiled into the program being debugged. */
447
448static void
449mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
450{
451 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
452 {
453 /* We are in symbol reading so it is OK to cast away constness. */
454 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
455 CORE_ADDR compact_block_start;
456 struct bound_minimal_symbol msym;
457
458 compact_block_start = BLOCK_START (block) | 1;
459 msym = lookup_minimal_symbol_by_pc (compact_block_start);
460 if (msym.minsym && !msymbol_is_mips (msym.minsym))
461 {
462 BLOCK_START (block) = compact_block_start;
463 }
464 }
465}
466
88658117
AC
467/* XFER a value from the big/little/left end of the register.
468 Depending on the size of the value it might occupy the entire
469 register or just part of it. Make an allowance for this, aligning
470 things accordingly. */
471
472static void
ba32f989
DJ
473mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
474 int reg_num, int length,
870cd05e
MK
475 enum bfd_endian endian, gdb_byte *in,
476 const gdb_byte *out, int buf_offset)
88658117 477{
88658117 478 int reg_offset = 0;
72a155b4
UW
479
480 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
481 /* Need to transfer the left or right part of the register, based on
482 the targets byte order. */
88658117
AC
483 switch (endian)
484 {
485 case BFD_ENDIAN_BIG:
72a155b4 486 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
487 break;
488 case BFD_ENDIAN_LITTLE:
489 reg_offset = 0;
490 break;
6d82d43b 491 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
492 reg_offset = 0;
493 break;
494 default:
e2e0b3e5 495 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
496 }
497 if (mips_debug)
cb1d2653
AC
498 fprintf_unfiltered (gdb_stderr,
499 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
500 reg_num, reg_offset, buf_offset, length);
88658117
AC
501 if (mips_debug && out != NULL)
502 {
503 int i;
cb1d2653 504 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 505 for (i = 0; i < length; i++)
cb1d2653 506 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
507 }
508 if (in != NULL)
6d82d43b
AC
509 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
510 in + buf_offset);
88658117 511 if (out != NULL)
6d82d43b
AC
512 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
513 out + buf_offset);
88658117
AC
514 if (mips_debug && in != NULL)
515 {
516 int i;
cb1d2653 517 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 518 for (i = 0; i < length; i++)
cb1d2653 519 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
520 }
521 if (mips_debug)
522 fprintf_unfiltered (gdb_stdlog, "\n");
523}
524
dd824b04
DJ
525/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
526 compatiblity mode. A return value of 1 means that we have
527 physical 64-bit registers, but should treat them as 32-bit registers. */
528
529static int
9c9acae0 530mips2_fp_compat (struct frame_info *frame)
dd824b04 531{
72a155b4 532 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
533 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
534 meaningful. */
72a155b4 535 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
536 return 0;
537
538#if 0
539 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
540 in all the places we deal with FP registers. PR gdb/413. */
541 /* Otherwise check the FR bit in the status register - it controls
542 the FP compatiblity mode. If it is clear we are in compatibility
543 mode. */
9c9acae0 544 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
545 return 1;
546#endif
361d1df0 547
dd824b04
DJ
548 return 0;
549}
550
7a292a7a 551#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 552
74ed0bb4 553static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 554
a14ed312 555static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 556
025bb325 557/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
558
559static struct cmd_list_element *setmipscmdlist = NULL;
560static struct cmd_list_element *showmipscmdlist = NULL;
561
5e2e9765
KB
562/* Integer registers 0 thru 31 are handled explicitly by
563 mips_register_name(). Processor specific registers 32 and above
8a9fc081 564 are listed in the following tables. */
691c0433 565
6d82d43b
AC
566enum
567{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
568
569/* Generic MIPS. */
570
571static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
572 "sr", "lo", "hi", "bad", "cause", "pc",
573 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
574 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
575 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
576 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 577 "fsr", "fir",
691c0433
AC
578};
579
691c0433
AC
580/* Names of tx39 registers. */
581
582static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
583 "sr", "lo", "hi", "bad", "cause", "pc",
584 "", "", "", "", "", "", "", "",
585 "", "", "", "", "", "", "", "",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "",
589 "", "", "", "", "", "", "", "",
1faeff08 590 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
591};
592
44099a67 593/* Names of registers with Linux kernels. */
1faeff08
MR
594static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
597 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
598 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
599 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
600 "fsr", "fir"
601};
602
cce74817 603
5e2e9765 604/* Return the name of the register corresponding to REGNO. */
5a89d8aa 605static const char *
d93859e2 606mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 607{
d93859e2 608 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765
KB
609 /* GPR names for all ABIs other than n32/n64. */
610 static char *mips_gpr_names[] = {
6d82d43b
AC
611 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
612 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
613 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
614 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
615 };
616
617 /* GPR names for n32 and n64 ABIs. */
618 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
619 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
620 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
621 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
622 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
623 };
624
d93859e2 625 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 626
f57d151a 627 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
628 but then don't make the raw register names visible. This (upper)
629 range of user visible register numbers are the pseudo-registers.
630
631 This approach was adopted accommodate the following scenario:
632 It is possible to debug a 64-bit device using a 32-bit
633 programming model. In such instances, the raw registers are
634 configured to be 64-bits wide, while the pseudo registers are
635 configured to be 32-bits wide. The registers that the user
636 sees - the pseudo registers - match the users expectations
637 given the programming model being used. */
d93859e2
UW
638 int rawnum = regno % gdbarch_num_regs (gdbarch);
639 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
640 return "";
641
5e2e9765
KB
642 /* The MIPS integer registers are always mapped from 0 to 31. The
643 names of the registers (which reflects the conventions regarding
644 register use) vary depending on the ABI. */
a4b8ebc8 645 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
646 {
647 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 648 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 649 else
a4b8ebc8 650 return mips_gpr_names[rawnum];
5e2e9765 651 }
d93859e2
UW
652 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
653 return tdesc_register_name (gdbarch, rawnum);
654 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
655 {
656 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
657 if (tdep->mips_processor_reg_names[rawnum - 32])
658 return tdep->mips_processor_reg_names[rawnum - 32];
659 return "";
691c0433 660 }
5e2e9765
KB
661 else
662 internal_error (__FILE__, __LINE__,
e2e0b3e5 663 _("mips_register_name: bad register number %d"), rawnum);
cce74817 664}
5e2e9765 665
a4b8ebc8 666/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 667
a4b8ebc8
AC
668static int
669mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
670 struct reggroup *reggroup)
671{
672 int vector_p;
673 int float_p;
674 int raw_p;
72a155b4
UW
675 int rawnum = regnum % gdbarch_num_regs (gdbarch);
676 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
677 if (reggroup == all_reggroup)
678 return pseudo;
679 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
680 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
681 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
682 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
683 raw_p = rawnum < gdbarch_num_regs (gdbarch);
684 if (gdbarch_register_name (gdbarch, regnum) == NULL
685 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
686 return 0;
687 if (reggroup == float_reggroup)
688 return float_p && pseudo;
689 if (reggroup == vector_reggroup)
690 return vector_p && pseudo;
691 if (reggroup == general_reggroup)
692 return (!vector_p && !float_p) && pseudo;
693 /* Save the pseudo registers. Need to make certain that any code
694 extracting register values from a saved register cache also uses
695 pseudo registers. */
696 if (reggroup == save_reggroup)
697 return raw_p && pseudo;
698 /* Restore the same pseudo register. */
699 if (reggroup == restore_reggroup)
700 return raw_p && pseudo;
6d82d43b 701 return 0;
a4b8ebc8
AC
702}
703
f8b73d13
DJ
704/* Return the groups that a MIPS register can be categorised into.
705 This version is only used if we have a target description which
706 describes real registers (and their groups). */
707
708static int
709mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
710 struct reggroup *reggroup)
711{
712 int rawnum = regnum % gdbarch_num_regs (gdbarch);
713 int pseudo = regnum / gdbarch_num_regs (gdbarch);
714 int ret;
715
716 /* Only save, restore, and display the pseudo registers. Need to
717 make certain that any code extracting register values from a
718 saved register cache also uses pseudo registers.
719
720 Note: saving and restoring the pseudo registers is slightly
721 strange; if we have 64 bits, we should save and restore all
722 64 bits. But this is hard and has little benefit. */
723 if (!pseudo)
724 return 0;
725
726 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
727 if (ret != -1)
728 return ret;
729
730 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
731}
732
a4b8ebc8 733/* Map the symbol table registers which live in the range [1 *
f57d151a 734 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 735 registers. Take care of alignment and size problems. */
c5aa993b 736
05d1431c 737static enum register_status
a4b8ebc8 738mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 739 int cookednum, gdb_byte *buf)
a4b8ebc8 740{
72a155b4
UW
741 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
742 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
743 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 744 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
05d1431c 745 return regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
746 else if (register_size (gdbarch, rawnum) >
747 register_size (gdbarch, cookednum))
47ebcfbe 748 {
8bdf35dc 749 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
05d1431c 750 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
47ebcfbe 751 else
8bdf35dc
KB
752 {
753 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
754 LONGEST regval;
05d1431c
PA
755 enum register_status status;
756
757 status = regcache_raw_read_signed (regcache, rawnum, &regval);
758 if (status == REG_VALID)
759 store_signed_integer (buf, 4, byte_order, regval);
760 return status;
8bdf35dc 761 }
47ebcfbe
AC
762 }
763 else
e2e0b3e5 764 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
765}
766
767static void
6d82d43b
AC
768mips_pseudo_register_write (struct gdbarch *gdbarch,
769 struct regcache *regcache, int cookednum,
47a35522 770 const gdb_byte *buf)
a4b8ebc8 771{
72a155b4
UW
772 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
773 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
774 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 775 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 776 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
777 else if (register_size (gdbarch, rawnum) >
778 register_size (gdbarch, cookednum))
47ebcfbe 779 {
8bdf35dc 780 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
781 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
782 else
8bdf35dc
KB
783 {
784 /* Sign extend the shortened version of the register prior
785 to placing it in the raw register. This is required for
786 some mips64 parts in order to avoid unpredictable behavior. */
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
789 regcache_raw_write_signed (regcache, rawnum, regval);
790 }
47ebcfbe
AC
791 }
792 else
e2e0b3e5 793 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 794}
c5aa993b 795
175ff332
HZ
796static int
797mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
798 struct agent_expr *ax, int reg)
799{
800 int rawnum = reg % gdbarch_num_regs (gdbarch);
801 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
802 && reg < 2 * gdbarch_num_regs (gdbarch));
803
804 ax_reg_mask (ax, rawnum);
805
806 return 0;
807}
808
809static int
810mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
811 struct agent_expr *ax, int reg)
812{
813 int rawnum = reg % gdbarch_num_regs (gdbarch);
814 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
815 && reg < 2 * gdbarch_num_regs (gdbarch));
816 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
817 {
818 ax_reg (ax, rawnum);
819
820 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
821 {
822 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
823 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
824 {
825 ax_const_l (ax, 32);
826 ax_simple (ax, aop_lsh);
827 }
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_rsh_signed);
830 }
831 }
832 else
833 internal_error (__FILE__, __LINE__, _("bad register size"));
834
835 return 0;
836}
837
4cc0665f 838/* Table to translate 3-bit register field to actual register number. */
d467df4e 839static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
840
841/* Heuristic_proc_start may hunt through the text section for a long
842 time across a 2400 baud serial line. Allows the user to limit this
843 search. */
844
44096aee 845static int heuristic_fence_post = 0;
c906108c 846
46cd78fb 847/* Number of bytes of storage in the actual machine representation for
719ec221
AC
848 register N. NOTE: This defines the pseudo register type so need to
849 rebuild the architecture vector. */
43e526b9
JM
850
851static int mips64_transfers_32bit_regs_p = 0;
852
719ec221
AC
853static void
854set_mips64_transfers_32bit_regs (char *args, int from_tty,
855 struct cmd_list_element *c)
43e526b9 856{
719ec221
AC
857 struct gdbarch_info info;
858 gdbarch_info_init (&info);
859 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
860 instead of relying on globals. Doing that would let generic code
861 handle the search for this specific architecture. */
862 if (!gdbarch_update_p (info))
a4b8ebc8 863 {
719ec221 864 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 865 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 866 }
a4b8ebc8
AC
867}
868
47ebcfbe 869/* Convert to/from a register and the corresponding memory value. */
43e526b9 870
ee51a8c7
KB
871/* This predicate tests for the case of an 8 byte floating point
872 value that is being transferred to or from a pair of floating point
873 registers each of which are (or are considered to be) only 4 bytes
874 wide. */
ff2e87ac 875static int
ee51a8c7
KB
876mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
877 struct type *type)
ff2e87ac 878{
0abe36f5
MD
879 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
880 && register_size (gdbarch, regnum) == 4
004159a2 881 && mips_float_register_p (gdbarch, regnum)
6d82d43b 882 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
883}
884
ee51a8c7
KB
885/* This predicate tests for the case of a value of less than 8
886 bytes in width that is being transfered to or from an 8 byte
887 general purpose register. */
888static int
889mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
890 struct type *type)
891{
892 int num_regs = gdbarch_num_regs (gdbarch);
893
894 return (register_size (gdbarch, regnum) == 8
895 && regnum % num_regs > 0 && regnum % num_regs < 32
896 && TYPE_LENGTH (type) < 8);
897}
898
899static int
025bb325
MS
900mips_convert_register_p (struct gdbarch *gdbarch,
901 int regnum, struct type *type)
ee51a8c7 902{
eaa05d59
MR
903 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
904 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
905}
906
8dccd430 907static int
ff2e87ac 908mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
909 struct type *type, gdb_byte *to,
910 int *optimizedp, int *unavailablep)
102182a9 911{
ee51a8c7
KB
912 struct gdbarch *gdbarch = get_frame_arch (frame);
913
914 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
915 {
916 get_frame_register (frame, regnum + 0, to + 4);
917 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
918
919 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
920 optimizedp, unavailablep))
921 return 0;
922
923 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
924 optimizedp, unavailablep))
925 return 0;
926 *optimizedp = *unavailablep = 0;
927 return 1;
ee51a8c7
KB
928 }
929 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
930 {
931 int len = TYPE_LENGTH (type);
8dccd430
PA
932 CORE_ADDR offset;
933
934 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
935 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
936 optimizedp, unavailablep))
937 return 0;
938
939 *optimizedp = *unavailablep = 0;
940 return 1;
ee51a8c7
KB
941 }
942 else
943 {
944 internal_error (__FILE__, __LINE__,
945 _("mips_register_to_value: unrecognized case"));
946 }
102182a9
MS
947}
948
42c466d7 949static void
ff2e87ac 950mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 951 struct type *type, const gdb_byte *from)
102182a9 952{
ee51a8c7
KB
953 struct gdbarch *gdbarch = get_frame_arch (frame);
954
955 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
956 {
957 put_frame_register (frame, regnum + 0, from + 4);
958 put_frame_register (frame, regnum + 1, from + 0);
959 }
960 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
961 {
962 gdb_byte fill[8];
963 int len = TYPE_LENGTH (type);
964
965 /* Sign extend values, irrespective of type, that are stored to
966 a 64-bit general purpose register. (32-bit unsigned values
967 are stored as signed quantities within a 64-bit register.
968 When performing an operation, in compiled code, that combines
969 a 32-bit unsigned value with a signed 64-bit value, a type
970 conversion is first performed that zeroes out the high 32 bits.) */
971 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
972 {
973 if (from[0] & 0x80)
974 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
975 else
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
977 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
978 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
979 }
980 else
981 {
982 if (from[len-1] & 0x80)
983 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
984 else
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
986 put_frame_register_bytes (frame, regnum, 0, len, from);
987 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
988 }
989 }
990 else
991 {
992 internal_error (__FILE__, __LINE__,
993 _("mips_value_to_register: unrecognized case"));
994 }
102182a9
MS
995}
996
a4b8ebc8
AC
997/* Return the GDB type object for the "standard" data type of data in
998 register REG. */
78fde5f8
KB
999
1000static struct type *
a4b8ebc8
AC
1001mips_register_type (struct gdbarch *gdbarch, int regnum)
1002{
72a155b4 1003 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1004 if (mips_float_register_p (gdbarch, regnum))
a6425924 1005 {
5ef80fb0 1006 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1007 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1008 if (mips_isa_regsize (gdbarch) == 4)
27067745 1009 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1010 else
27067745 1011 return builtin_type (gdbarch)->builtin_double;
a6425924 1012 }
72a155b4 1013 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1014 {
1015 /* The raw or ISA registers. These are all sized according to
1016 the ISA regsize. */
1017 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1018 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1019 else
df4df182 1020 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1021 }
78fde5f8 1022 else
d5ac5a39 1023 {
1faeff08
MR
1024 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1025
d5ac5a39
AC
1026 /* The cooked or ABI registers. These are sized according to
1027 the ABI (with a few complications). */
1faeff08
MR
1028 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1029 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1030 return builtin_type (gdbarch)->builtin_int32;
de4bfa86 1031 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1faeff08
MR
1032 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1033 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1034 /* The pseudo/cooked view of the embedded registers is always
1035 32-bit. The raw view is handled below. */
df4df182 1036 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1037 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1038 /* The target, while possibly using a 64-bit register buffer,
1039 is only transfering 32-bits of each integer register.
1040 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1041 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1042 else if (mips_abi_regsize (gdbarch) == 4)
1043 /* The ABI is restricted to 32-bit registers (the ISA could be
1044 32- or 64-bit). */
df4df182 1045 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1046 else
1047 /* 64-bit ABI. */
df4df182 1048 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1049 }
78fde5f8
KB
1050}
1051
f8b73d13
DJ
1052/* Return the GDB type for the pseudo register REGNUM, which is the
1053 ABI-level view. This function is only called if there is a target
1054 description which includes registers, so we know precisely the
1055 types of hardware registers. */
1056
1057static struct type *
1058mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1059{
1060 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1061 int rawnum = regnum % num_regs;
1062 struct type *rawtype;
1063
1064 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1065
1066 /* Absent registers are still absent. */
1067 rawtype = gdbarch_register_type (gdbarch, rawnum);
1068 if (TYPE_LENGTH (rawtype) == 0)
1069 return rawtype;
1070
a6912260
MR
1071 /* Present the floating point registers however the hardware did;
1072 do not try to convert between FPU layouts. */
de13fcf2 1073 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1074 return rawtype;
1075
78b86327
MR
1076 /* Floating-point control registers are always 32-bit even though for
1077 backwards compatibility reasons 64-bit targets will transfer them
1078 as 64-bit quantities even if using XML descriptions. */
1079 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1080 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1081 return builtin_type (gdbarch)->builtin_int32;
1082
f8b73d13
DJ
1083 /* Use pointer types for registers if we can. For n32 we can not,
1084 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1085 if (mips_abi_regsize (gdbarch)
1086 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1087 {
1faeff08
MR
1088 if (rawnum == MIPS_SP_REGNUM
1089 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1090 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1091 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1092 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1093 }
1094
1095 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1096 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1097 || rawnum == mips_regnum (gdbarch)->lo
1098 || rawnum == mips_regnum (gdbarch)->hi
1099 || rawnum == mips_regnum (gdbarch)->badvaddr
1100 || rawnum == mips_regnum (gdbarch)->cause
1101 || rawnum == mips_regnum (gdbarch)->pc
1102 || (mips_regnum (gdbarch)->dspacc != -1
1103 && rawnum >= mips_regnum (gdbarch)->dspacc
1104 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1105 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1106
a6912260
MR
1107 /* The pseudo/cooked view of embedded registers is always
1108 32-bit, even if the target transfers 64-bit values for them.
1109 New targets relying on XML descriptions should only transfer
1110 the necessary 32 bits, but older versions of GDB expected 64,
1111 so allow the target to provide 64 bits without interfering
1112 with the displayed type. */
de4bfa86 1113 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
78b86327 1114 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1faeff08 1115 && rawnum <= MIPS_LAST_EMBED_REGNUM)
a6912260 1116 return builtin_type (gdbarch)->builtin_int32;
1faeff08 1117
f8b73d13
DJ
1118 /* For all other registers, pass through the hardware type. */
1119 return rawtype;
1120}
bcb0cc15 1121
025bb325 1122/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1123enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1124
1125static int
480d3dd2 1126mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1127{
1128 switch (mask_address_var)
1129 {
7f19b9a2 1130 case AUTO_BOOLEAN_TRUE:
4014092b 1131 return 1;
7f19b9a2 1132 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1133 return 0;
1134 break;
7f19b9a2 1135 case AUTO_BOOLEAN_AUTO:
480d3dd2 1136 return tdep->default_mask_address_p;
4014092b 1137 default:
025bb325
MS
1138 internal_error (__FILE__, __LINE__,
1139 _("mips_mask_address_p: bad switch"));
4014092b 1140 return -1;
361d1df0 1141 }
4014092b
AC
1142}
1143
1144static void
08546159
AC
1145show_mask_address (struct ui_file *file, int from_tty,
1146 struct cmd_list_element *c, const char *value)
4014092b 1147{
f5656ead 1148 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1149
1150 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1151 switch (mask_address_var)
1152 {
7f19b9a2 1153 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1154 printf_filtered ("The 32 bit mips address mask is enabled\n");
1155 break;
7f19b9a2 1156 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1157 printf_filtered ("The 32 bit mips address mask is disabled\n");
1158 break;
7f19b9a2 1159 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1160 printf_filtered
1161 ("The 32 bit address mask is set automatically. Currently %s\n",
1162 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1163 break;
1164 default:
e2e0b3e5 1165 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1166 break;
361d1df0 1167 }
4014092b 1168}
c906108c 1169
4cc0665f
MR
1170/* Tell if the program counter value in MEMADDR is in a standard ISA
1171 function. */
1172
1173int
1174mips_pc_is_mips (CORE_ADDR memaddr)
1175{
7cbd4a93 1176 struct bound_minimal_symbol sym;
4cc0665f
MR
1177
1178 /* Flags indicating that this is a MIPS16 or microMIPS function is
1179 stored by elfread.c in the high bit of the info field. Use this
1180 to decide if the function is standard MIPS. Otherwise if bit 0
1181 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1182 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1183 if (sym.minsym)
1184 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1185 else
1186 return is_mips_addr (memaddr);
1187}
1188
c906108c
SS
1189/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1190
0fe7e7c8 1191int
4cc0665f 1192mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1193{
7cbd4a93 1194 struct bound_minimal_symbol sym;
c906108c 1195
91912e4d
MR
1196 /* A flag indicating that this is a MIPS16 function is stored by
1197 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1198 if the function is MIPS16. Otherwise if bit 0 of the address is
1199 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1200 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1201 if (sym.minsym)
1202 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1203 else
1204 return is_mips16_addr (gdbarch, memaddr);
1205}
1206
1207/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1208
1209int
1210mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1211{
7cbd4a93 1212 struct bound_minimal_symbol sym;
4cc0665f
MR
1213
1214 /* A flag indicating that this is a microMIPS function is stored by
1215 elfread.c in the high bit of the info field. Use this to decide
1216 if the function is microMIPS. Otherwise if bit 0 of the address
1217 is set, then ELF file flags will tell if this is a microMIPS
1218 function. */
3e29f34a 1219 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1220 if (sym.minsym)
1221 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1222 else
1223 return is_micromips_addr (gdbarch, memaddr);
1224}
1225
1226/* Tell the ISA type of the function the program counter value in MEMADDR
1227 is in. */
1228
1229static enum mips_isa
1230mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1231{
7cbd4a93 1232 struct bound_minimal_symbol sym;
4cc0665f
MR
1233
1234 /* A flag indicating that this is a MIPS16 or a microMIPS function
1235 is stored by elfread.c in the high bit of the info field. Use
1236 this to decide if the function is MIPS16 or microMIPS or normal
1237 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1238 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1239 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1240 if (sym.minsym)
4cc0665f 1241 {
7cbd4a93 1242 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1243 return ISA_MICROMIPS;
7cbd4a93 1244 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1245 return ISA_MIPS16;
1246 else
1247 return ISA_MIPS;
1248 }
c906108c 1249 else
4cc0665f
MR
1250 {
1251 if (is_mips_addr (memaddr))
1252 return ISA_MIPS;
1253 else if (is_micromips_addr (gdbarch, memaddr))
1254 return ISA_MICROMIPS;
1255 else
1256 return ISA_MIPS16;
1257 }
c906108c
SS
1258}
1259
3e29f34a
MR
1260/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1261 The need for comes from the ISA bit having been cleared, making
1262 addresses in FDE, range records, etc. referring to compressed code
1263 different to those in line information, the symbol table and finally
1264 the PC register. That in turn confuses many operations. */
1265
1266static CORE_ADDR
1267mips_adjust_dwarf2_addr (CORE_ADDR pc)
1268{
1269 pc = unmake_compact_addr (pc);
1270 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1271}
1272
1273/* Recalculate the line record requested so that the resulting PC has
1274 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1275 this adjustment comes from some records associated with compressed
1276 code having the ISA bit cleared, most notably at function prologue
1277 ends. The ISA bit is in this context retrieved from the minimal
1278 symbol covering the address requested, which in turn has been
1279 constructed from the binary's symbol table rather than DWARF-2
1280 information. The correct setting of the ISA bit is required for
1281 breakpoint addresses to correctly match against the stop PC.
1282
1283 As line entries can specify relative address adjustments we need to
1284 keep track of the absolute value of the last line address recorded
1285 in line information, so that we can calculate the actual address to
1286 apply the ISA bit adjustment to. We use PC for this tracking and
1287 keep the original address there.
1288
1289 As such relative address adjustments can be odd within compressed
1290 code we need to keep track of the last line address with the ISA
1291 bit adjustment applied too, as the original address may or may not
1292 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1293 the adjusted address there.
1294
1295 For relative address adjustments we then use these variables to
1296 calculate the address intended by line information, which will be
1297 PC-relative, and return an updated adjustment carrying ISA bit
1298 information, which will be ADJ_PC-relative. For absolute address
1299 adjustments we just return the same address that we store in ADJ_PC
1300 too.
1301
1302 As the first line entry can be relative to an implied address value
1303 of 0 we need to have the initial address set up that we store in PC
1304 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1305 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1306
1307static CORE_ADDR
1308mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1309{
1310 static CORE_ADDR adj_pc;
1311 static CORE_ADDR pc;
1312 CORE_ADDR isa_pc;
1313
1314 pc = rel ? pc + addr : addr;
1315 isa_pc = mips_adjust_dwarf2_addr (pc);
1316 addr = rel ? isa_pc - adj_pc : isa_pc;
1317 adj_pc = isa_pc;
1318 return addr;
1319}
1320
14132e89
MR
1321/* Various MIPS16 thunk (aka stub or trampoline) names. */
1322
1323static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1324static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1325static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1326static const char mips_str_call_stub[] = "__call_stub_";
1327static const char mips_str_fn_stub[] = "__fn_stub_";
1328
1329/* This is used as a PIC thunk prefix. */
1330
1331static const char mips_str_pic[] = ".pic.";
1332
1333/* Return non-zero if the PC is inside a call thunk (aka stub or
1334 trampoline) that should be treated as a temporary frame. */
1335
1336static int
1337mips_in_frame_stub (CORE_ADDR pc)
1338{
1339 CORE_ADDR start_addr;
1340 const char *name;
1341
1342 /* Find the starting address of the function containing the PC. */
1343 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1344 return 0;
1345
1346 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
61012eef 1347 if (startswith (name, mips_str_mips16_call_stub))
14132e89
MR
1348 return 1;
1349 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
61012eef 1350 if (startswith (name, mips_str_call_stub))
14132e89
MR
1351 return 1;
1352 /* If the PC is in __fn_stub_*, this is a call stub. */
61012eef 1353 if (startswith (name, mips_str_fn_stub))
14132e89
MR
1354 return 1;
1355
1356 return 0; /* Not a stub. */
1357}
1358
b2fa5097 1359/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1360 all registers should be sign extended for simplicity? */
6c997a34
AC
1361
1362static CORE_ADDR
61a1198a 1363mips_read_pc (struct regcache *regcache)
6c997a34 1364{
8376de04 1365 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
70242eb1 1366 LONGEST pc;
8376de04 1367
61a1198a
UW
1368 regcache_cooked_read_signed (regcache, regnum, &pc);
1369 return pc;
b6cb9035
AC
1370}
1371
58dfe9ff
AC
1372static CORE_ADDR
1373mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1374{
14132e89 1375 CORE_ADDR pc;
930bd0e0 1376
8376de04 1377 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1378 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1379 intermediate frames. In this case we can get the caller's address
1380 from $ra, or if $ra contains an address within a thunk as well, then
1381 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1382 and thus the caller's address is in $s2. */
1383 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1384 {
1385 pc = frame_unwind_register_signed
1386 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1387 if (mips_in_frame_stub (pc))
3e29f34a
MR
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1390 }
930bd0e0 1391 return pc;
edfae063
AC
1392}
1393
30244cd8
UW
1394static CORE_ADDR
1395mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1396{
72a155b4
UW
1397 return frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1399}
1400
b8a22b94 1401/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1402 dummy frame. The frame ID's base needs to match the TOS value
1403 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1404 breakpoint. */
1405
1406static struct frame_id
b8a22b94 1407mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1408{
f57d151a 1409 return frame_id_build
b8a22b94
DJ
1410 (get_frame_register_signed (this_frame,
1411 gdbarch_num_regs (gdbarch)
1412 + MIPS_SP_REGNUM),
1413 get_frame_pc (this_frame));
58dfe9ff
AC
1414}
1415
5a439849
MR
1416/* Implement the "write_pc" gdbarch method. */
1417
1418void
61a1198a 1419mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1420{
8376de04
MR
1421 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1422
3e29f34a 1423 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1424}
c906108c 1425
4cc0665f
MR
1426/* Fetch and return instruction from the specified location. Handle
1427 MIPS16/microMIPS as appropriate. */
c906108c 1428
d37cca3d 1429static ULONGEST
4cc0665f 1430mips_fetch_instruction (struct gdbarch *gdbarch,
d09f2c3f 1431 enum mips_isa isa, CORE_ADDR addr, int *errp)
c906108c 1432{
e17a4113 1433 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1434 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c 1435 int instlen;
d09f2c3f 1436 int err;
c906108c 1437
4cc0665f 1438 switch (isa)
c906108c 1439 {
4cc0665f
MR
1440 case ISA_MICROMIPS:
1441 case ISA_MIPS16:
95ac2dcf 1442 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1443 addr = unmake_compact_addr (addr);
1444 break;
1445 case ISA_MIPS:
1446 instlen = MIPS_INSN32_SIZE;
1447 break;
1448 default:
1449 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1450 break;
c906108c 1451 }
d09f2c3f
PA
1452 err = target_read_memory (addr, buf, instlen);
1453 if (errp != NULL)
1454 *errp = err;
1455 if (err != 0)
4cc0665f 1456 {
d09f2c3f
PA
1457 if (errp == NULL)
1458 memory_error (TARGET_XFER_E_IO, addr);
4cc0665f
MR
1459 return 0;
1460 }
e17a4113 1461 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1462}
1463
025bb325 1464/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1465#define mips32_op(x) (x >> 26)
1466#define itype_op(x) (x >> 26)
1467#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1468#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1469#define itype_immediate(x) (x & 0xffff)
c906108c 1470
e135b889
DJ
1471#define jtype_op(x) (x >> 26)
1472#define jtype_target(x) (x & 0x03ffffff)
c906108c 1473
e135b889
DJ
1474#define rtype_op(x) (x >> 26)
1475#define rtype_rs(x) ((x >> 21) & 0x1f)
1476#define rtype_rt(x) ((x >> 16) & 0x1f)
1477#define rtype_rd(x) ((x >> 11) & 0x1f)
1478#define rtype_shamt(x) ((x >> 6) & 0x1f)
1479#define rtype_funct(x) (x & 0x3f)
c906108c 1480
4cc0665f
MR
1481/* MicroMIPS instruction fields. */
1482#define micromips_op(x) ((x) >> 10)
1483
1484/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1485 bit and the size respectively of the field extracted. */
1486#define b0s4_imm(x) ((x) & 0xf)
1487#define b0s5_imm(x) ((x) & 0x1f)
1488#define b0s5_reg(x) ((x) & 0x1f)
1489#define b0s7_imm(x) ((x) & 0x7f)
1490#define b0s10_imm(x) ((x) & 0x3ff)
1491#define b1s4_imm(x) (((x) >> 1) & 0xf)
1492#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1493#define b2s3_cc(x) (((x) >> 2) & 0x7)
1494#define b4s2_regl(x) (((x) >> 4) & 0x3)
1495#define b5s5_op(x) (((x) >> 5) & 0x1f)
1496#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1497#define b6s4_op(x) (((x) >> 6) & 0xf)
1498#define b7s3_reg(x) (((x) >> 7) & 0x7)
1499
1500/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1501 respectively of the field extracted. */
1502#define b0s6_op(x) ((x) & 0x3f)
1503#define b0s11_op(x) ((x) & 0x7ff)
1504#define b0s12_imm(x) ((x) & 0xfff)
1505#define b0s16_imm(x) ((x) & 0xffff)
1506#define b0s26_imm(x) ((x) & 0x3ffffff)
1507#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1508#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1509#define b12s4_op(x) (((x) >> 12) & 0xf)
1510
1511/* Return the size in bytes of the instruction INSN encoded in the ISA
1512 instruction set. */
1513
1514static int
1515mips_insn_size (enum mips_isa isa, ULONGEST insn)
1516{
1517 switch (isa)
1518 {
1519 case ISA_MICROMIPS:
100b4f2e
MR
1520 if ((micromips_op (insn) & 0x4) == 0x4
1521 || (micromips_op (insn) & 0x7) == 0x0)
4cc0665f
MR
1522 return 2 * MIPS_INSN16_SIZE;
1523 else
1524 return MIPS_INSN16_SIZE;
1525 case ISA_MIPS16:
1526 if ((insn & 0xf800) == 0xf000)
1527 return 2 * MIPS_INSN16_SIZE;
1528 else
1529 return MIPS_INSN16_SIZE;
1530 case ISA_MIPS:
1531 return MIPS_INSN32_SIZE;
1532 }
1533 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1534}
1535
06987e64
MK
1536static LONGEST
1537mips32_relative_offset (ULONGEST inst)
c5aa993b 1538{
06987e64 1539 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1540}
1541
a385295e
MR
1542/* Determine the address of the next instruction executed after the INST
1543 floating condition branch instruction at PC. COUNT specifies the
1544 number of the floating condition bits tested by the branch. */
1545
1546static CORE_ADDR
1547mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1548 ULONGEST inst, CORE_ADDR pc, int count)
1549{
1550 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1551 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1552 int tf = itype_rt (inst) & 1;
1553 int mask = (1 << count) - 1;
1554 ULONGEST fcs;
1555 int cond;
1556
1557 if (fcsr == -1)
1558 /* No way to handle; it'll most likely trap anyway. */
1559 return pc;
1560
1561 fcs = get_frame_register_unsigned (frame, fcsr);
1562 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1563
1564 if (((cond >> cnum) & mask) != mask * !tf)
1565 pc += mips32_relative_offset (inst);
1566 else
1567 pc += 4;
1568
1569 return pc;
1570}
1571
f94363d7
AP
1572/* Return nonzero if the gdbarch is an Octeon series. */
1573
1574static int
1575is_octeon (struct gdbarch *gdbarch)
1576{
1577 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1578
1579 return (info->mach == bfd_mach_mips_octeon
1580 || info->mach == bfd_mach_mips_octeonp
1581 || info->mach == bfd_mach_mips_octeon2);
1582}
1583
1584/* Return true if the OP represents the Octeon's BBIT instruction. */
1585
1586static int
1587is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1588{
1589 if (!is_octeon (gdbarch))
1590 return 0;
1591 /* BBIT0 is encoded as LWC2: 110 010. */
1592 /* BBIT032 is encoded as LDC2: 110 110. */
1593 /* BBIT1 is encoded as SWC2: 111 010. */
1594 /* BBIT132 is encoded as SDC2: 111 110. */
1595 if (op == 50 || op == 54 || op == 58 || op == 62)
1596 return 1;
1597 return 0;
1598}
1599
1600
f49e4e6d
MS
1601/* Determine where to set a single step breakpoint while considering
1602 branch prediction. */
78a59c2f 1603
5a89d8aa 1604static CORE_ADDR
0b1b3e42 1605mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b 1606{
e17a4113 1607 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b
JM
1608 unsigned long inst;
1609 int op;
4cc0665f 1610 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1611 op = itype_op (inst);
025bb325
MS
1612 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1613 instruction. */
c5aa993b 1614 {
4f5bcb50 1615 if (op >> 2 == 5)
6d82d43b 1616 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1617 {
4f5bcb50 1618 switch (op & 0x03)
c906108c 1619 {
e135b889
DJ
1620 case 0: /* BEQL */
1621 goto equal_branch;
1622 case 1: /* BNEL */
1623 goto neq_branch;
1624 case 2: /* BLEZL */
1625 goto less_branch;
313628cc 1626 case 3: /* BGTZL */
e135b889 1627 goto greater_branch;
c5aa993b
JM
1628 default:
1629 pc += 4;
c906108c
SS
1630 }
1631 }
4f5bcb50 1632 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1633 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e 1634 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
4f5bcb50 1635 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1636 && (itype_rt (inst) & 2) == 0)
1637 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1638 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
4f5bcb50 1639 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1640 && (itype_rt (inst) & 2) == 0)
1641 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1642 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
4f5bcb50 1643 else if (op == 29)
9e8da49c
MR
1644 /* JALX: 011101 */
1645 /* The new PC will be alternate mode. */
1646 {
1647 unsigned long reg;
1648
1649 reg = jtype_target (inst) << 2;
1650 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1651 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1652 }
f94363d7
AP
1653 else if (is_octeon_bbit_op (op, gdbarch))
1654 {
1655 int bit, branch_if;
1656
1657 branch_if = op == 58 || op == 62;
1658 bit = itype_rt (inst);
1659
1660 /* Take into account the *32 instructions. */
1661 if (op == 54 || op == 62)
1662 bit += 32;
1663
1664 if (((get_frame_register_signed (frame,
1665 itype_rs (inst)) >> bit) & 1)
1666 == branch_if)
1667 pc += mips32_relative_offset (inst) + 4;
1668 else
1669 pc += 8; /* After the delay slot. */
1670 }
1671
c5aa993b 1672 else
025bb325 1673 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1674 }
1675 else
025bb325 1676 { /* This gets way messy. */
c5aa993b 1677
025bb325 1678 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1679 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1680 {
c5aa993b
JM
1681 case 0: /* SPECIAL */
1682 op = rtype_funct (inst);
1683 switch (op)
1684 {
1685 case 8: /* JR */
1686 case 9: /* JALR */
025bb325 1687 /* Set PC to that address. */
0b1b3e42 1688 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b 1689 break;
e38d4e1a
DJ
1690 case 12: /* SYSCALL */
1691 {
1692 struct gdbarch_tdep *tdep;
1693
1694 tdep = gdbarch_tdep (get_frame_arch (frame));
1695 if (tdep->syscall_next_pc != NULL)
1696 pc = tdep->syscall_next_pc (frame);
1697 else
1698 pc += 4;
1699 }
1700 break;
c5aa993b
JM
1701 default:
1702 pc += 4;
1703 }
1704
6d82d43b 1705 break; /* end SPECIAL */
025bb325 1706 case 1: /* REGIMM */
c906108c 1707 {
e135b889
DJ
1708 op = itype_rt (inst); /* branch condition */
1709 switch (op)
c906108c 1710 {
c5aa993b 1711 case 0: /* BLTZ */
e135b889
DJ
1712 case 2: /* BLTZL */
1713 case 16: /* BLTZAL */
c5aa993b 1714 case 18: /* BLTZALL */
c906108c 1715 less_branch:
0b1b3e42 1716 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1717 pc += mips32_relative_offset (inst) + 4;
1718 else
1719 pc += 8; /* after the delay slot */
1720 break;
e135b889 1721 case 1: /* BGEZ */
c5aa993b
JM
1722 case 3: /* BGEZL */
1723 case 17: /* BGEZAL */
1724 case 19: /* BGEZALL */
0b1b3e42 1725 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1726 pc += mips32_relative_offset (inst) + 4;
1727 else
1728 pc += 8; /* after the delay slot */
1729 break;
a385295e
MR
1730 case 0x1c: /* BPOSGE32 */
1731 case 0x1e: /* BPOSGE64 */
1732 pc += 4;
1733 if (itype_rs (inst) == 0)
1734 {
1735 unsigned int pos = (op & 2) ? 64 : 32;
1736 int dspctl = mips_regnum (gdbarch)->dspctl;
1737
1738 if (dspctl == -1)
1739 /* No way to handle; it'll most likely trap anyway. */
1740 break;
1741
1742 if ((get_frame_register_unsigned (frame,
1743 dspctl) & 0x7f) >= pos)
1744 pc += mips32_relative_offset (inst);
1745 else
1746 pc += 4;
1747 }
1748 break;
e135b889 1749 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1750 default:
1751 pc += 4;
c906108c
SS
1752 }
1753 }
6d82d43b 1754 break; /* end REGIMM */
c5aa993b
JM
1755 case 2: /* J */
1756 case 3: /* JAL */
1757 {
1758 unsigned long reg;
1759 reg = jtype_target (inst) << 2;
025bb325 1760 /* Upper four bits get never changed... */
5b652102 1761 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1762 }
c5aa993b 1763 break;
e135b889 1764 case 4: /* BEQ, BEQL */
c5aa993b 1765 equal_branch:
0b1b3e42
UW
1766 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1767 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1768 pc += mips32_relative_offset (inst) + 4;
1769 else
1770 pc += 8;
1771 break;
e135b889 1772 case 5: /* BNE, BNEL */
c5aa993b 1773 neq_branch:
0b1b3e42
UW
1774 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1775 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1776 pc += mips32_relative_offset (inst) + 4;
1777 else
1778 pc += 8;
1779 break;
e135b889 1780 case 6: /* BLEZ, BLEZL */
0b1b3e42 1781 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1782 pc += mips32_relative_offset (inst) + 4;
1783 else
1784 pc += 8;
1785 break;
1786 case 7:
e135b889
DJ
1787 default:
1788 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1789 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1790 pc += mips32_relative_offset (inst) + 4;
1791 else
1792 pc += 8;
1793 break;
c5aa993b
JM
1794 } /* switch */
1795 } /* else */
1796 return pc;
1797} /* mips32_next_pc */
c906108c 1798
4cc0665f
MR
1799/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1800 INSN. */
1801
1802static LONGEST
1803micromips_relative_offset7 (ULONGEST insn)
1804{
1805 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1806}
1807
1808/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1809 INSN. */
1810
1811static LONGEST
1812micromips_relative_offset10 (ULONGEST insn)
1813{
1814 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1815}
1816
1817/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1818 INSN. */
1819
1820static LONGEST
1821micromips_relative_offset16 (ULONGEST insn)
1822{
1823 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1824}
1825
1826/* Return the size in bytes of the microMIPS instruction at the address PC. */
1827
1828static int
1829micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1830{
1831 ULONGEST insn;
1832
1833 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1834 return mips_insn_size (ISA_MICROMIPS, insn);
1835}
1836
1837/* Calculate the address of the next microMIPS instruction to execute
1838 after the INSN coprocessor 1 conditional branch instruction at the
1839 address PC. COUNT denotes the number of coprocessor condition bits
1840 examined by the branch. */
1841
1842static CORE_ADDR
1843micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1844 ULONGEST insn, CORE_ADDR pc, int count)
1845{
1846 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1847 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1848 int tf = b5s5_op (insn >> 16) & 1;
1849 int mask = (1 << count) - 1;
1850 ULONGEST fcs;
1851 int cond;
1852
1853 if (fcsr == -1)
1854 /* No way to handle; it'll most likely trap anyway. */
1855 return pc;
1856
1857 fcs = get_frame_register_unsigned (frame, fcsr);
1858 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1859
1860 if (((cond >> cnum) & mask) != mask * !tf)
1861 pc += micromips_relative_offset16 (insn);
1862 else
1863 pc += micromips_pc_insn_size (gdbarch, pc);
1864
1865 return pc;
1866}
1867
1868/* Calculate the address of the next microMIPS instruction to execute
1869 after the instruction at the address PC. */
1870
1871static CORE_ADDR
1872micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1873{
1874 struct gdbarch *gdbarch = get_frame_arch (frame);
1875 ULONGEST insn;
1876
1877 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1878 pc += MIPS_INSN16_SIZE;
1879 switch (mips_insn_size (ISA_MICROMIPS, insn))
1880 {
4cc0665f
MR
1881 /* 32-bit instructions. */
1882 case 2 * MIPS_INSN16_SIZE:
1883 insn <<= 16;
1884 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1885 pc += MIPS_INSN16_SIZE;
1886 switch (micromips_op (insn >> 16))
1887 {
1888 case 0x00: /* POOL32A: bits 000000 */
1889 if (b0s6_op (insn) == 0x3c
1890 /* POOL32Axf: bits 000000 ... 111100 */
1891 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1892 /* JALR, JALR.HB: 000000 000x111100 111100 */
1893 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1894 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1895 break;
1896
1897 case 0x10: /* POOL32I: bits 010000 */
1898 switch (b5s5_op (insn >> 16))
1899 {
1900 case 0x00: /* BLTZ: bits 010000 00000 */
1901 case 0x01: /* BLTZAL: bits 010000 00001 */
1902 case 0x11: /* BLTZALS: bits 010000 10001 */
1903 if (get_frame_register_signed (frame,
1904 b0s5_reg (insn >> 16)) < 0)
1905 pc += micromips_relative_offset16 (insn);
1906 else
1907 pc += micromips_pc_insn_size (gdbarch, pc);
1908 break;
1909
1910 case 0x02: /* BGEZ: bits 010000 00010 */
1911 case 0x03: /* BGEZAL: bits 010000 00011 */
1912 case 0x13: /* BGEZALS: bits 010000 10011 */
1913 if (get_frame_register_signed (frame,
1914 b0s5_reg (insn >> 16)) >= 0)
1915 pc += micromips_relative_offset16 (insn);
1916 else
1917 pc += micromips_pc_insn_size (gdbarch, pc);
1918 break;
1919
1920 case 0x04: /* BLEZ: bits 010000 00100 */
1921 if (get_frame_register_signed (frame,
1922 b0s5_reg (insn >> 16)) <= 0)
1923 pc += micromips_relative_offset16 (insn);
1924 else
1925 pc += micromips_pc_insn_size (gdbarch, pc);
1926 break;
1927
1928 case 0x05: /* BNEZC: bits 010000 00101 */
1929 if (get_frame_register_signed (frame,
1930 b0s5_reg (insn >> 16)) != 0)
1931 pc += micromips_relative_offset16 (insn);
1932 break;
1933
1934 case 0x06: /* BGTZ: bits 010000 00110 */
1935 if (get_frame_register_signed (frame,
1936 b0s5_reg (insn >> 16)) > 0)
1937 pc += micromips_relative_offset16 (insn);
1938 else
1939 pc += micromips_pc_insn_size (gdbarch, pc);
1940 break;
1941
1942 case 0x07: /* BEQZC: bits 010000 00111 */
1943 if (get_frame_register_signed (frame,
1944 b0s5_reg (insn >> 16)) == 0)
1945 pc += micromips_relative_offset16 (insn);
1946 break;
1947
1948 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1949 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1950 if (((insn >> 16) & 0x3) == 0x0)
1951 /* BC2F, BC2T: don't know how to handle these. */
1952 break;
1953 break;
1954
1955 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1956 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1957 {
1958 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1959 int dspctl = mips_regnum (gdbarch)->dspctl;
1960
1961 if (dspctl == -1)
1962 /* No way to handle; it'll most likely trap anyway. */
1963 break;
1964
1965 if ((get_frame_register_unsigned (frame,
1966 dspctl) & 0x7f) >= pos)
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 }
1971 break;
1972
1973 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1974 /* BC1ANY2F: bits 010000 11100 xxx01 */
1975 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1976 /* BC1ANY2T: bits 010000 11101 xxx01 */
1977 if (((insn >> 16) & 0x2) == 0x0)
1978 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1979 ((insn >> 16) & 0x1) + 1);
1980 break;
1981
1982 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1983 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1984 if (((insn >> 16) & 0x3) == 0x1)
1985 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1986 break;
1987 }
1988 break;
1989
1990 case 0x1d: /* JALS: bits 011101 */
1991 case 0x35: /* J: bits 110101 */
1992 case 0x3d: /* JAL: bits 111101 */
1993 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1994 break;
1995
1996 case 0x25: /* BEQ: bits 100101 */
1997 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1998 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1999 pc += micromips_relative_offset16 (insn);
2000 else
2001 pc += micromips_pc_insn_size (gdbarch, pc);
2002 break;
2003
2004 case 0x2d: /* BNE: bits 101101 */
2005 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2006 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2007 pc += micromips_relative_offset16 (insn);
2008 else
2009 pc += micromips_pc_insn_size (gdbarch, pc);
2010 break;
2011
2012 case 0x3c: /* JALX: bits 111100 */
2013 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2014 break;
2015 }
2016 break;
2017
2018 /* 16-bit instructions. */
2019 case MIPS_INSN16_SIZE:
2020 switch (micromips_op (insn))
2021 {
2022 case 0x11: /* POOL16C: bits 010001 */
2023 if ((b5s5_op (insn) & 0x1c) == 0xc)
2024 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2025 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2026 else if (b5s5_op (insn) == 0x18)
2027 /* JRADDIUSP: bits 010001 11000 */
2028 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2029 break;
2030
2031 case 0x23: /* BEQZ16: bits 100011 */
2032 {
2033 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2034
2035 if (get_frame_register_signed (frame, rs) == 0)
2036 pc += micromips_relative_offset7 (insn);
2037 else
2038 pc += micromips_pc_insn_size (gdbarch, pc);
2039 }
2040 break;
2041
2042 case 0x2b: /* BNEZ16: bits 101011 */
2043 {
2044 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2045
2046 if (get_frame_register_signed (frame, rs) != 0)
2047 pc += micromips_relative_offset7 (insn);
2048 else
2049 pc += micromips_pc_insn_size (gdbarch, pc);
2050 }
2051 break;
2052
2053 case 0x33: /* B16: bits 110011 */
2054 pc += micromips_relative_offset10 (insn);
2055 break;
2056 }
2057 break;
2058 }
2059
2060 return pc;
2061}
2062
c906108c 2063/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2064 mips 16 variant, but fortunately, there fewer instructions. We have
2065 to cope ith extensions for 16 bit instructions and a pair of actual
2066 32 bit instructions. We dont want to set a single step instruction
2067 on the extend instruction either. */
c906108c
SS
2068
2069/* Lots of mips16 instruction formats */
2070/* Predicting jumps requires itype,ritype,i8type
025bb325 2071 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2072enum mips16_inst_fmts
2073{
c5aa993b
JM
2074 itype, /* 0 immediate 5,10 */
2075 ritype, /* 1 5,3,8 */
2076 rrtype, /* 2 5,3,3,5 */
2077 rritype, /* 3 5,3,3,5 */
2078 rrrtype, /* 4 5,3,3,3,2 */
2079 rriatype, /* 5 5,3,3,1,4 */
2080 shifttype, /* 6 5,3,3,3,2 */
2081 i8type, /* 7 5,3,8 */
2082 i8movtype, /* 8 5,3,3,5 */
2083 i8mov32rtype, /* 9 5,3,5,3 */
2084 i64type, /* 10 5,3,8 */
2085 ri64type, /* 11 5,3,3,5 */
2086 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2087 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2088 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2089 extRRItype, /* 15 5,5,5,5,3,3,5 */
2090 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2091 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2092 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2093 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2094 extRi64type, /* 20 5,6,5,5,3,3,5 */
2095 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2096};
12f02c2a 2097/* I am heaping all the fields of the formats into one structure and
025bb325 2098 then, only the fields which are involved in instruction extension. */
c906108c 2099struct upk_mips16
6d82d43b
AC
2100{
2101 CORE_ADDR offset;
025bb325 2102 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2103 unsigned int regy;
2104};
c906108c
SS
2105
2106
12f02c2a 2107/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2108 for the bits which make up the immediate extension. */
c906108c 2109
12f02c2a
AC
2110static CORE_ADDR
2111extended_offset (unsigned int extension)
c906108c 2112{
12f02c2a 2113 CORE_ADDR value;
130854df 2114
4c2051c6 2115 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2116 value = value << 6;
4c2051c6 2117 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2118 value = value << 5;
130854df
MR
2119 value |= extension & 0x1f; /* Extract 4:0. */
2120
c5aa993b 2121 return value;
c906108c
SS
2122}
2123
2124/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2125 instruction. It won't malfunction, but why make excess remote memory
2126 references? If the immediate operands get sign extended or something,
2127 do it after the extension is performed. */
c906108c 2128/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2129 when the offset is to be used in relative addressing. */
c906108c 2130
12f02c2a 2131static unsigned int
e17a4113 2132fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2133{
e17a4113 2134 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2135 gdb_byte buf[8];
a2fb2cee
MR
2136
2137 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2138 target_read_memory (pc, buf, 2);
e17a4113 2139 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2140}
2141
2142static void
e17a4113 2143unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2144 unsigned int extension,
2145 unsigned int inst,
6d82d43b 2146 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2147{
12f02c2a
AC
2148 CORE_ADDR offset;
2149 int regx;
2150 int regy;
2151 switch (insn_format)
c906108c 2152 {
c5aa993b 2153 case itype:
c906108c 2154 {
12f02c2a
AC
2155 CORE_ADDR value;
2156 if (extension)
c5aa993b 2157 {
4c2051c6
MR
2158 value = extended_offset ((extension << 16) | inst);
2159 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2160 }
2161 else
c5aa993b 2162 {
12f02c2a 2163 value = inst & 0x7ff;
4c2051c6 2164 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2165 }
12f02c2a
AC
2166 offset = value;
2167 regx = -1;
2168 regy = -1;
c906108c 2169 }
c5aa993b
JM
2170 break;
2171 case ritype:
2172 case i8type:
025bb325 2173 { /* A register identifier and an offset. */
c906108c 2174 /* Most of the fields are the same as I type but the
025bb325 2175 immediate value is of a different length. */
12f02c2a
AC
2176 CORE_ADDR value;
2177 if (extension)
c906108c 2178 {
4c2051c6
MR
2179 value = extended_offset ((extension << 16) | inst);
2180 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2181 }
c5aa993b
JM
2182 else
2183 {
4c2051c6
MR
2184 value = inst & 0xff; /* 8 bits */
2185 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2186 }
12f02c2a 2187 offset = value;
4c2051c6 2188 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2189 regy = -1;
c5aa993b 2190 break;
c906108c 2191 }
c5aa993b 2192 case jalxtype:
c906108c 2193 {
c5aa993b 2194 unsigned long value;
12f02c2a
AC
2195 unsigned int nexthalf;
2196 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2197 value = value << 16;
4cc0665f
MR
2198 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2199 /* Low bit still set. */
c5aa993b 2200 value |= nexthalf;
12f02c2a
AC
2201 offset = value;
2202 regx = -1;
2203 regy = -1;
c5aa993b 2204 break;
c906108c
SS
2205 }
2206 default:
e2e0b3e5 2207 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2208 }
12f02c2a
AC
2209 upk->offset = offset;
2210 upk->regx = regx;
2211 upk->regy = regy;
c906108c
SS
2212}
2213
2214
484933d1
MR
2215/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2216 and having a signed 16-bit OFFSET. */
2217
c5aa993b
JM
2218static CORE_ADDR
2219add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2220{
484933d1 2221 return pc + (offset << 1) + 2;
c906108c
SS
2222}
2223
12f02c2a 2224static CORE_ADDR
0b1b3e42 2225extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 2226 unsigned int extension, unsigned int insn)
c906108c 2227{
e17a4113 2228 struct gdbarch *gdbarch = get_frame_arch (frame);
12f02c2a
AC
2229 int op = (insn >> 11);
2230 switch (op)
c906108c 2231 {
6d82d43b 2232 case 2: /* Branch */
12f02c2a 2233 {
12f02c2a 2234 struct upk_mips16 upk;
e17a4113 2235 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2236 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2237 break;
2238 }
025bb325
MS
2239 case 3: /* JAL , JALX - Watch out, these are 32 bit
2240 instructions. */
12f02c2a
AC
2241 {
2242 struct upk_mips16 upk;
e17a4113 2243 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2244 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2245 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2246 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2247 else
2248 pc |= 0x01;
2249 break;
2250 }
6d82d43b 2251 case 4: /* beqz */
12f02c2a
AC
2252 {
2253 struct upk_mips16 upk;
2254 int reg;
e17a4113 2255 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2256 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a 2257 if (reg == 0)
484933d1 2258 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2259 else
2260 pc += 2;
2261 break;
2262 }
6d82d43b 2263 case 5: /* bnez */
12f02c2a
AC
2264 {
2265 struct upk_mips16 upk;
2266 int reg;
e17a4113 2267 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
4cc0665f 2268 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
12f02c2a 2269 if (reg != 0)
484933d1 2270 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2271 else
2272 pc += 2;
2273 break;
2274 }
6d82d43b 2275 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2276 {
2277 struct upk_mips16 upk;
2278 int reg;
e17a4113 2279 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2280 /* upk.regx contains the opcode */
0b1b3e42 2281 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
2282 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2283 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2284 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2285 else
2286 pc += 2;
2287 break;
2288 }
6d82d43b 2289 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2290 {
2291 struct upk_mips16 upk;
2292 /* upk.fmt = rrtype; */
2293 op = insn & 0x1f;
2294 if (op == 0)
c5aa993b 2295 {
12f02c2a
AC
2296 int reg;
2297 upk.regx = (insn >> 8) & 0x07;
2298 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2299 if ((upk.regy & 1) == 0)
4cc0665f 2300 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2301 else
2302 reg = 31; /* Function return instruction. */
0b1b3e42 2303 pc = get_frame_register_signed (frame, reg);
c906108c 2304 }
12f02c2a 2305 else
c5aa993b 2306 pc += 2;
12f02c2a
AC
2307 break;
2308 }
2309 case 30:
2310 /* This is an instruction extension. Fetch the real instruction
2311 (which follows the extension) and decode things based on
025bb325 2312 that. */
12f02c2a
AC
2313 {
2314 pc += 2;
e17a4113
UW
2315 pc = extended_mips16_next_pc (frame, pc, insn,
2316 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2317 break;
2318 }
2319 default:
2320 {
2321 pc += 2;
2322 break;
2323 }
c906108c 2324 }
c5aa993b 2325 return pc;
12f02c2a 2326}
c906108c 2327
5a89d8aa 2328static CORE_ADDR
0b1b3e42 2329mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a 2330{
e17a4113
UW
2331 struct gdbarch *gdbarch = get_frame_arch (frame);
2332 unsigned int insn = fetch_mips_16 (gdbarch, pc);
0b1b3e42 2333 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
2334}
2335
2336/* The mips_next_pc function supports single_step when the remote
7e73cedf 2337 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2338 It works by decoding the current instruction and predicting where a
1aee363c 2339 branch will go. This isn't hard because all the data is available.
4cc0665f 2340 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2341static CORE_ADDR
0b1b3e42 2342mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 2343{
4cc0665f
MR
2344 struct gdbarch *gdbarch = get_frame_arch (frame);
2345
2346 if (mips_pc_is_mips16 (gdbarch, pc))
0b1b3e42 2347 return mips16_next_pc (frame, pc);
4cc0665f
MR
2348 else if (mips_pc_is_micromips (gdbarch, pc))
2349 return micromips_next_pc (frame, pc);
c5aa993b 2350 else
0b1b3e42 2351 return mips32_next_pc (frame, pc);
12f02c2a 2352}
c906108c 2353
ab50adb6
MR
2354/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2355 or jump. */
2356
2357static int
2358mips16_instruction_is_compact_branch (unsigned short insn)
2359{
2360 switch (insn & 0xf800)
2361 {
2362 case 0xe800:
2363 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2364 case 0x6000:
2365 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2366 case 0x2800: /* BNEZ */
2367 case 0x2000: /* BEQZ */
2368 case 0x1000: /* B */
2369 return 1;
2370 default:
2371 return 0;
2372 }
2373}
2374
2375/* Return non-zero if the microMIPS instruction INSN is a compact branch
2376 or jump. */
2377
2378static int
2379micromips_instruction_is_compact_branch (unsigned short insn)
2380{
2381 switch (micromips_op (insn))
2382 {
2383 case 0x11: /* POOL16C: bits 010001 */
2384 return (b5s5_op (insn) == 0x18
2385 /* JRADDIUSP: bits 010001 11000 */
2386 || b5s5_op (insn) == 0xd);
2387 /* JRC: bits 010011 01101 */
2388 case 0x10: /* POOL32I: bits 010000 */
2389 return (b5s5_op (insn) & 0x1d) == 0x5;
2390 /* BEQZC/BNEZC: bits 010000 001x1 */
2391 default:
2392 return 0;
2393 }
2394}
2395
edfae063
AC
2396struct mips_frame_cache
2397{
2398 CORE_ADDR base;
2399 struct trad_frame_saved_reg *saved_regs;
2400};
2401
29639122
JB
2402/* Set a register's saved stack address in temp_saved_regs. If an
2403 address has already been set for this register, do nothing; this
2404 way we will only recognize the first save of a given register in a
2405 function prologue.
eec63939 2406
f57d151a
UW
2407 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2408 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2409 Strictly speaking, only the second range is used as it is only second
2410 range (the ABI instead of ISA registers) that comes into play when finding
2411 saved registers in a frame. */
eec63939
AC
2412
2413static void
74ed0bb4
MD
2414set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2415 int regnum, CORE_ADDR offset)
eec63939 2416{
29639122
JB
2417 if (this_cache != NULL
2418 && this_cache->saved_regs[regnum].addr == -1)
2419 {
74ed0bb4
MD
2420 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2421 = offset;
2422 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2423 = offset;
29639122 2424 }
eec63939
AC
2425}
2426
eec63939 2427
29639122
JB
2428/* Fetch the immediate value from a MIPS16 instruction.
2429 If the previous instruction was an EXTEND, use it to extend
2430 the upper bits of the immediate value. This is a helper function
2431 for mips16_scan_prologue. */
eec63939 2432
29639122
JB
2433static int
2434mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2435 unsigned short inst, /* current instruction */
2436 int nbits, /* number of bits in imm field */
2437 int scale, /* scale factor to be applied to imm */
025bb325 2438 int is_signed) /* is the imm field signed? */
eec63939 2439{
29639122 2440 int offset;
eec63939 2441
29639122
JB
2442 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2443 {
2444 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2445 if (offset & 0x8000) /* check for negative extend */
2446 offset = 0 - (0x10000 - (offset & 0xffff));
2447 return offset | (inst & 0x1f);
2448 }
eec63939 2449 else
29639122
JB
2450 {
2451 int max_imm = 1 << nbits;
2452 int mask = max_imm - 1;
2453 int sign_bit = max_imm >> 1;
45c9dd44 2454
29639122
JB
2455 offset = inst & mask;
2456 if (is_signed && (offset & sign_bit))
2457 offset = 0 - (max_imm - offset);
2458 return offset * scale;
2459 }
2460}
eec63939 2461
65596487 2462
29639122
JB
2463/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2464 the associated FRAME_CACHE if not null.
2465 Return the address of the first instruction past the prologue. */
eec63939 2466
29639122 2467static CORE_ADDR
e17a4113
UW
2468mips16_scan_prologue (struct gdbarch *gdbarch,
2469 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2470 struct frame_info *this_frame,
29639122
JB
2471 struct mips_frame_cache *this_cache)
2472{
ab50adb6
MR
2473 int prev_non_prologue_insn = 0;
2474 int this_non_prologue_insn;
2475 int non_prologue_insns = 0;
2476 CORE_ADDR prev_pc;
29639122 2477 CORE_ADDR cur_pc;
025bb325 2478 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2479 CORE_ADDR sp;
2480 long frame_offset = 0; /* Size of stack frame. */
2481 long frame_adjust = 0; /* Offset of FP from SP. */
2482 int frame_reg = MIPS_SP_REGNUM;
025bb325 2483 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2484 unsigned inst = 0; /* current instruction */
2485 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2486 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2487 int prev_delay_slot = 0;
2488 int in_delay_slot;
29639122 2489 int reg, offset;
a343eb3c 2490
29639122 2491 int extend_bytes = 0;
ab50adb6
MR
2492 int prev_extend_bytes = 0;
2493 CORE_ADDR end_prologue_addr;
a343eb3c 2494
29639122 2495 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2496 THIS_FRAME. */
2497 if (this_frame != NULL)
2498 sp = get_frame_register_signed (this_frame,
2499 gdbarch_num_regs (gdbarch)
2500 + MIPS_SP_REGNUM);
29639122
JB
2501 else
2502 sp = 0;
eec63939 2503
29639122
JB
2504 if (limit_pc > start_pc + 200)
2505 limit_pc = start_pc + 200;
ab50adb6 2506 prev_pc = start_pc;
eec63939 2507
ab50adb6
MR
2508 /* Permit at most one non-prologue non-control-transfer instruction
2509 in the middle which may have been reordered by the compiler for
2510 optimisation. */
95ac2dcf 2511 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2512 {
ab50adb6
MR
2513 this_non_prologue_insn = 0;
2514 in_delay_slot = 0;
2515
29639122
JB
2516 /* Save the previous instruction. If it's an EXTEND, we'll extract
2517 the immediate offset extension from it in mips16_get_imm. */
2518 prev_inst = inst;
eec63939 2519
025bb325 2520 /* Fetch and decode the instruction. */
4cc0665f
MR
2521 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2522 cur_pc, NULL);
eec63939 2523
29639122
JB
2524 /* Normally we ignore extend instructions. However, if it is
2525 not followed by a valid prologue instruction, then this
2526 instruction is not part of the prologue either. We must
2527 remember in this case to adjust the end_prologue_addr back
2528 over the extend. */
2529 if ((inst & 0xf800) == 0xf000) /* extend */
2530 {
95ac2dcf 2531 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2532 continue;
2533 }
eec63939 2534
29639122
JB
2535 prev_extend_bytes = extend_bytes;
2536 extend_bytes = 0;
eec63939 2537
29639122
JB
2538 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2539 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2540 {
2541 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2542 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2543 frame_offset -= offset;
2544 else
2545 /* Exit loop if a positive stack adjustment is found, which
2546 usually means that the stack cleanup code in the function
2547 epilogue is reached. */
2548 break;
2549 }
2550 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2551 {
2552 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2553 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2554 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2555 }
2556 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2557 {
2558 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2559 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2560 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2561 }
2562 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2563 {
2564 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2565 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2566 }
2567 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2568 {
2569 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2570 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2571 }
2572 else if (inst == 0x673d) /* move $s1, $sp */
2573 {
2574 frame_addr = sp;
2575 frame_reg = 17;
2576 }
2577 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2578 {
2579 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2580 frame_addr = sp + offset;
2581 frame_reg = 17;
2582 frame_adjust = offset;
2583 }
2584 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2585 {
2586 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2587 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2588 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2589 }
2590 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2591 {
2592 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2593 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2594 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2595 }
2596 else if ((inst & 0xf81f) == 0xe809
2597 && (inst & 0x700) != 0x700) /* entry */
025bb325 2598 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2599 else if ((inst & 0xff80) == 0x6480) /* save */
2600 {
025bb325 2601 save_inst = inst; /* Save for later processing. */
2207132d
MR
2602 if (prev_extend_bytes) /* extend */
2603 save_inst |= prev_inst << 16;
2604 }
29639122
JB
2605 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2606 {
2607 /* This instruction is part of the prologue, but we don't
2608 need to do anything special to handle it. */
2609 }
ab50adb6
MR
2610 else if (mips16_instruction_has_delay_slot (inst, 0))
2611 /* JAL/JALR/JALX/JR */
2612 {
2613 /* The instruction in the delay slot can be a part
2614 of the prologue, so move forward once more. */
2615 in_delay_slot = 1;
2616 if (mips16_instruction_has_delay_slot (inst, 1))
2617 /* JAL/JALX */
2618 {
2619 prev_extend_bytes = MIPS_INSN16_SIZE;
2620 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2621 }
2622 }
29639122
JB
2623 else
2624 {
ab50adb6 2625 this_non_prologue_insn = 1;
29639122 2626 }
ab50adb6
MR
2627
2628 non_prologue_insns += this_non_prologue_insn;
2629
2630 /* A jump or branch, or enough non-prologue insns seen? If so,
2631 then we must have reached the end of the prologue by now. */
2632 if (prev_delay_slot || non_prologue_insns > 1
2633 || mips16_instruction_is_compact_branch (inst))
2634 break;
2635
2636 prev_non_prologue_insn = this_non_prologue_insn;
2637 prev_delay_slot = in_delay_slot;
2638 prev_pc = cur_pc - prev_extend_bytes;
29639122 2639 }
eec63939 2640
29639122
JB
2641 /* The entry instruction is typically the first instruction in a function,
2642 and it stores registers at offsets relative to the value of the old SP
2643 (before the prologue). But the value of the sp parameter to this
2644 function is the new SP (after the prologue has been executed). So we
2645 can't calculate those offsets until we've seen the entire prologue,
025bb325 2646 and can calculate what the old SP must have been. */
29639122
JB
2647 if (entry_inst != 0)
2648 {
2649 int areg_count = (entry_inst >> 8) & 7;
2650 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2651
29639122
JB
2652 /* The entry instruction always subtracts 32 from the SP. */
2653 frame_offset += 32;
2654
2655 /* Now we can calculate what the SP must have been at the
2656 start of the function prologue. */
2657 sp += frame_offset;
2658
2659 /* Check if a0-a3 were saved in the caller's argument save area. */
2660 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2661 {
74ed0bb4 2662 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2663 offset += mips_abi_regsize (gdbarch);
29639122
JB
2664 }
2665
2666 /* Check if the ra register was pushed on the stack. */
2667 offset = -4;
2668 if (entry_inst & 0x20)
2669 {
74ed0bb4 2670 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2671 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2672 }
2673
2674 /* Check if the s0 and s1 registers were pushed on the stack. */
2675 for (reg = 16; reg < sreg_count + 16; reg++)
2676 {
74ed0bb4 2677 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2678 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2679 }
2680 }
2681
2207132d
MR
2682 /* The SAVE instruction is similar to ENTRY, except that defined by the
2683 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2684 size of the frame is specified as an immediate field of instruction
2685 and an extended variation exists which lets additional registers and
2686 frame space to be specified. The instruction always treats registers
2687 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2688 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2689 {
2690 static int args_table[16] = {
2691 0, 0, 0, 0, 1, 1, 1, 1,
2692 2, 2, 2, 0, 3, 3, 4, -1,
2693 };
2694 static int astatic_table[16] = {
2695 0, 1, 2, 3, 0, 1, 2, 3,
2696 0, 1, 2, 4, 0, 1, 0, -1,
2697 };
2698 int aregs = (save_inst >> 16) & 0xf;
2699 int xsregs = (save_inst >> 24) & 0x7;
2700 int args = args_table[aregs];
2701 int astatic = astatic_table[aregs];
2702 long frame_size;
2703
2704 if (args < 0)
2705 {
2706 warning (_("Invalid number of argument registers encoded in SAVE."));
2707 args = 0;
2708 }
2709 if (astatic < 0)
2710 {
2711 warning (_("Invalid number of static registers encoded in SAVE."));
2712 astatic = 0;
2713 }
2714
2715 /* For standard SAVE the frame size of 0 means 128. */
2716 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2717 if (frame_size == 0 && (save_inst >> 16) == 0)
2718 frame_size = 16;
2719 frame_size *= 8;
2720 frame_offset += frame_size;
2721
2722 /* Now we can calculate what the SP must have been at the
2723 start of the function prologue. */
2724 sp += frame_offset;
2725
2726 /* Check if A0-A3 were saved in the caller's argument save area. */
2727 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2728 {
74ed0bb4 2729 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2730 offset += mips_abi_regsize (gdbarch);
2731 }
2732
2733 offset = -4;
2734
2735 /* Check if the RA register was pushed on the stack. */
2736 if (save_inst & 0x40)
2737 {
74ed0bb4 2738 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2739 offset -= mips_abi_regsize (gdbarch);
2740 }
2741
2742 /* Check if the S8 register was pushed on the stack. */
2743 if (xsregs > 6)
2744 {
74ed0bb4 2745 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2746 offset -= mips_abi_regsize (gdbarch);
2747 xsregs--;
2748 }
2749 /* Check if S2-S7 were pushed on the stack. */
2750 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2751 {
74ed0bb4 2752 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2753 offset -= mips_abi_regsize (gdbarch);
2754 }
2755
2756 /* Check if the S1 register was pushed on the stack. */
2757 if (save_inst & 0x10)
2758 {
74ed0bb4 2759 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2760 offset -= mips_abi_regsize (gdbarch);
2761 }
2762 /* Check if the S0 register was pushed on the stack. */
2763 if (save_inst & 0x20)
2764 {
74ed0bb4 2765 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2766 offset -= mips_abi_regsize (gdbarch);
2767 }
2768
4cc0665f
MR
2769 /* Check if A0-A3 were pushed on the stack. */
2770 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2771 {
2772 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2773 offset -= mips_abi_regsize (gdbarch);
2774 }
2775 }
2776
2777 if (this_cache != NULL)
2778 {
2779 this_cache->base =
2780 (get_frame_register_signed (this_frame,
2781 gdbarch_num_regs (gdbarch) + frame_reg)
2782 + frame_offset - frame_adjust);
2783 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2784 be able to get rid of the assignment below, evetually. But it's
2785 still needed for now. */
2786 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2787 + mips_regnum (gdbarch)->pc]
2788 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2789 }
2790
ab50adb6
MR
2791 /* Set end_prologue_addr to the address of the instruction immediately
2792 after the last one we scanned. Unless the last one looked like a
2793 non-prologue instruction (and we looked ahead), in which case use
2794 its address instead. */
2795 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2796 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2797
2798 return end_prologue_addr;
2799}
2800
2801/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2802 Procedures that use the 32-bit instruction set are handled by the
2803 mips_insn32 unwinder. */
2804
2805static struct mips_frame_cache *
2806mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2807{
2808 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2809 struct mips_frame_cache *cache;
2810
2811 if ((*this_cache) != NULL)
19ba03f4 2812 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2813 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2814 (*this_cache) = cache;
2815 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2816
2817 /* Analyze the function prologue. */
2818 {
2819 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2820 CORE_ADDR start_addr;
2821
2822 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2823 if (start_addr == 0)
2824 start_addr = heuristic_proc_start (gdbarch, pc);
2825 /* We can't analyze the prologue if we couldn't find the begining
2826 of the function. */
2827 if (start_addr == 0)
2828 return cache;
2829
19ba03f4
SM
2830 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2831 (struct mips_frame_cache *) *this_cache);
4cc0665f
MR
2832 }
2833
2834 /* gdbarch_sp_regnum contains the value and not the address. */
2835 trad_frame_set_value (cache->saved_regs,
2836 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2837 cache->base);
2838
19ba03f4 2839 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2840}
2841
2842static void
2843mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2844 struct frame_id *this_id)
2845{
2846 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2847 this_cache);
2848 /* This marks the outermost frame. */
2849 if (info->base == 0)
2850 return;
2851 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2852}
2853
2854static struct value *
2855mips_insn16_frame_prev_register (struct frame_info *this_frame,
2856 void **this_cache, int regnum)
2857{
2858 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2859 this_cache);
2860 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2861}
2862
2863static int
2864mips_insn16_frame_sniffer (const struct frame_unwind *self,
2865 struct frame_info *this_frame, void **this_cache)
2866{
2867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2868 CORE_ADDR pc = get_frame_pc (this_frame);
2869 if (mips_pc_is_mips16 (gdbarch, pc))
2870 return 1;
2871 return 0;
2872}
2873
2874static const struct frame_unwind mips_insn16_frame_unwind =
2875{
2876 NORMAL_FRAME,
2877 default_frame_unwind_stop_reason,
2878 mips_insn16_frame_this_id,
2879 mips_insn16_frame_prev_register,
2880 NULL,
2881 mips_insn16_frame_sniffer
2882};
2883
2884static CORE_ADDR
2885mips_insn16_frame_base_address (struct frame_info *this_frame,
2886 void **this_cache)
2887{
2888 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2889 this_cache);
2890 return info->base;
2891}
2892
2893static const struct frame_base mips_insn16_frame_base =
2894{
2895 &mips_insn16_frame_unwind,
2896 mips_insn16_frame_base_address,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address
2899};
2900
2901static const struct frame_base *
2902mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2903{
2904 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2905 CORE_ADDR pc = get_frame_pc (this_frame);
2906 if (mips_pc_is_mips16 (gdbarch, pc))
2907 return &mips_insn16_frame_base;
2908 else
2909 return NULL;
2910}
2911
2912/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2913 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2914 interpreted directly, and then multiplied by 4. */
2915
2916static int
2917micromips_decode_imm9 (int imm)
2918{
2919 imm = (imm ^ 0x100) - 0x100;
2920 if (imm > -3 && imm < 2)
2921 imm ^= 0x100;
2922 return imm << 2;
2923}
2924
2925/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2926 the address of the first instruction past the prologue. */
2927
2928static CORE_ADDR
2929micromips_scan_prologue (struct gdbarch *gdbarch,
2930 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2931 struct frame_info *this_frame,
2932 struct mips_frame_cache *this_cache)
2933{
ab50adb6 2934 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2935 int prev_non_prologue_insn = 0;
2936 int frame_reg = MIPS_SP_REGNUM;
2937 int this_non_prologue_insn;
2938 int non_prologue_insns = 0;
2939 long frame_offset = 0; /* Size of stack frame. */
2940 long frame_adjust = 0; /* Offset of FP from SP. */
ab50adb6
MR
2941 int prev_delay_slot = 0;
2942 int in_delay_slot;
4cc0665f
MR
2943 CORE_ADDR prev_pc;
2944 CORE_ADDR cur_pc;
2945 ULONGEST insn; /* current instruction */
2946 CORE_ADDR sp;
2947 long offset;
2948 long sp_adj;
2949 long v1_off = 0; /* The assumption is LUI will replace it. */
2950 int reglist;
2951 int breg;
2952 int dreg;
2953 int sreg;
2954 int treg;
2955 int loc;
2956 int op;
2957 int s;
2958 int i;
2959
2960 /* Can be called when there's no process, and hence when there's no
2961 THIS_FRAME. */
2962 if (this_frame != NULL)
2963 sp = get_frame_register_signed (this_frame,
2964 gdbarch_num_regs (gdbarch)
2965 + MIPS_SP_REGNUM);
2966 else
2967 sp = 0;
2968
2969 if (limit_pc > start_pc + 200)
2970 limit_pc = start_pc + 200;
2971 prev_pc = start_pc;
2972
2973 /* Permit at most one non-prologue non-control-transfer instruction
2974 in the middle which may have been reordered by the compiler for
2975 optimisation. */
2976 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2977 {
2978 this_non_prologue_insn = 0;
ab50adb6 2979 in_delay_slot = 0;
4cc0665f
MR
2980 sp_adj = 0;
2981 loc = 0;
2982 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2983 loc += MIPS_INSN16_SIZE;
2984 switch (mips_insn_size (ISA_MICROMIPS, insn))
2985 {
4cc0665f
MR
2986 /* 32-bit instructions. */
2987 case 2 * MIPS_INSN16_SIZE:
2988 insn <<= 16;
2989 insn |= mips_fetch_instruction (gdbarch,
2990 ISA_MICROMIPS, cur_pc + loc, NULL);
2991 loc += MIPS_INSN16_SIZE;
2992 switch (micromips_op (insn >> 16))
2993 {
2994 /* Record $sp/$fp adjustment. */
2995 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2996 case 0x0: /* POOL32A: bits 000000 */
2997 case 0x16: /* POOL32S: bits 010110 */
2998 op = b0s11_op (insn);
2999 sreg = b0s5_reg (insn >> 16);
3000 treg = b5s5_reg (insn >> 16);
3001 dreg = b11s5_reg (insn);
3002 if (op == 0x1d0
3003 /* SUBU: bits 000000 00111010000 */
3004 /* DSUBU: bits 010110 00111010000 */
3005 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3006 && treg == 3)
3007 /* (D)SUBU $sp, $v1 */
3008 sp_adj = v1_off;
3009 else if (op != 0x150
3010 /* ADDU: bits 000000 00101010000 */
3011 /* DADDU: bits 010110 00101010000 */
3012 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3013 this_non_prologue_insn = 1;
3014 break;
3015
3016 case 0x8: /* POOL32B: bits 001000 */
3017 op = b12s4_op (insn);
3018 breg = b0s5_reg (insn >> 16);
3019 reglist = sreg = b5s5_reg (insn >> 16);
3020 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3021 if ((op == 0x9 || op == 0xc)
3022 /* SWP: bits 001000 1001 */
3023 /* SDP: bits 001000 1100 */
3024 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3025 /* S[DW]P reg,offset($sp) */
3026 {
3027 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3028 set_reg_offset (gdbarch, this_cache,
3029 sreg, sp + offset);
3030 set_reg_offset (gdbarch, this_cache,
3031 sreg + 1, sp + offset + s);
3032 }
3033 else if ((op == 0xd || op == 0xf)
3034 /* SWM: bits 001000 1101 */
3035 /* SDM: bits 001000 1111 */
3036 && breg == MIPS_SP_REGNUM
3037 /* SWM reglist,offset($sp) */
3038 && ((reglist >= 1 && reglist <= 9)
3039 || (reglist >= 16 && reglist <= 25)))
3040 {
325fac50 3041 int sreglist = std::min(reglist & 0xf, 8);
4cc0665f
MR
3042
3043 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3044 for (i = 0; i < sreglist; i++)
3045 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3046 if ((reglist & 0xf) > 8)
3047 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3048 if ((reglist & 0x10) == 0x10)
3049 set_reg_offset (gdbarch, this_cache,
3050 MIPS_RA_REGNUM, sp + s * i++);
3051 }
3052 else
3053 this_non_prologue_insn = 1;
3054 break;
3055
3056 /* Record $sp/$fp adjustment. */
3057 /* Discard (D)ADDIU $gp used for PIC code. */
3058 case 0xc: /* ADDIU: bits 001100 */
3059 case 0x17: /* DADDIU: bits 010111 */
3060 sreg = b0s5_reg (insn >> 16);
3061 dreg = b5s5_reg (insn >> 16);
3062 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3063 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3064 /* (D)ADDIU $sp, imm */
3065 sp_adj = offset;
3066 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3067 /* (D)ADDIU $fp, $sp, imm */
3068 {
4cc0665f
MR
3069 frame_adjust = offset;
3070 frame_reg = 30;
3071 }
3072 else if (sreg != 28 || dreg != 28)
3073 /* (D)ADDIU $gp, imm */
3074 this_non_prologue_insn = 1;
3075 break;
3076
3077 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3078 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3079 case 0x10: /* POOL32I: bits 010000 */
3080 if (b5s5_op (insn >> 16) == 0xd
3081 /* LUI: bits 010000 001101 */
3082 && b0s5_reg (insn >> 16) == 3)
3083 /* LUI $v1, imm */
3084 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3085 else if (b5s5_op (insn >> 16) != 0xd
3086 /* LUI: bits 010000 001101 */
3087 || b0s5_reg (insn >> 16) != 28)
3088 /* LUI $gp, imm */
3089 this_non_prologue_insn = 1;
3090 break;
3091
3092 /* ORI $v1 is used for larger $sp adjustments. */
3093 case 0x14: /* ORI: bits 010100 */
3094 sreg = b0s5_reg (insn >> 16);
3095 dreg = b5s5_reg (insn >> 16);
3096 if (sreg == 3 && dreg == 3)
3097 /* ORI $v1, imm */
3098 v1_off |= b0s16_imm (insn);
3099 else
3100 this_non_prologue_insn = 1;
3101 break;
3102
3103 case 0x26: /* SWC1: bits 100110 */
3104 case 0x2e: /* SDC1: bits 101110 */
3105 breg = b0s5_reg (insn >> 16);
3106 if (breg != MIPS_SP_REGNUM)
3107 /* S[DW]C1 reg,offset($sp) */
3108 this_non_prologue_insn = 1;
3109 break;
3110
3111 case 0x36: /* SD: bits 110110 */
3112 case 0x3e: /* SW: bits 111110 */
3113 breg = b0s5_reg (insn >> 16);
3114 sreg = b5s5_reg (insn >> 16);
3115 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3116 if (breg == MIPS_SP_REGNUM)
3117 /* S[DW] reg,offset($sp) */
3118 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3119 else
3120 this_non_prologue_insn = 1;
3121 break;
3122
3123 default:
ab50adb6
MR
3124 /* The instruction in the delay slot can be a part
3125 of the prologue, so move forward once more. */
3126 if (micromips_instruction_has_delay_slot (insn, 0))
3127 in_delay_slot = 1;
3128 else
3129 this_non_prologue_insn = 1;
4cc0665f
MR
3130 break;
3131 }
ab50adb6 3132 insn >>= 16;
4cc0665f
MR
3133 break;
3134
3135 /* 16-bit instructions. */
3136 case MIPS_INSN16_SIZE:
3137 switch (micromips_op (insn))
3138 {
3139 case 0x3: /* MOVE: bits 000011 */
3140 sreg = b0s5_reg (insn);
3141 dreg = b5s5_reg (insn);
3142 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3143 /* MOVE $fp, $sp */
78cc6c2d 3144 frame_reg = 30;
4cc0665f
MR
3145 else if ((sreg & 0x1c) != 0x4)
3146 /* MOVE reg, $a0-$a3 */
3147 this_non_prologue_insn = 1;
3148 break;
3149
3150 case 0x11: /* POOL16C: bits 010001 */
3151 if (b6s4_op (insn) == 0x5)
3152 /* SWM: bits 010001 0101 */
3153 {
3154 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3155 reglist = b4s2_regl (insn);
3156 for (i = 0; i <= reglist; i++)
3157 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3158 set_reg_offset (gdbarch, this_cache,
3159 MIPS_RA_REGNUM, sp + 4 * i++);
3160 }
3161 else
3162 this_non_prologue_insn = 1;
3163 break;
3164
3165 case 0x13: /* POOL16D: bits 010011 */
3166 if ((insn & 0x1) == 0x1)
3167 /* ADDIUSP: bits 010011 1 */
3168 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3169 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3170 /* ADDIUS5: bits 010011 0 */
3171 /* ADDIUS5 $sp, imm */
3172 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3173 else
3174 this_non_prologue_insn = 1;
3175 break;
3176
3177 case 0x32: /* SWSP: bits 110010 */
3178 offset = b0s5_imm (insn) << 2;
3179 sreg = b5s5_reg (insn);
3180 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3181 break;
3182
3183 default:
ab50adb6
MR
3184 /* The instruction in the delay slot can be a part
3185 of the prologue, so move forward once more. */
3186 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3187 in_delay_slot = 1;
3188 else
3189 this_non_prologue_insn = 1;
4cc0665f
MR
3190 break;
3191 }
3192 break;
3193 }
3194 if (sp_adj < 0)
3195 frame_offset -= sp_adj;
3196
3197 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3198
3199 /* A jump or branch, enough non-prologue insns seen or positive
3200 stack adjustment? If so, then we must have reached the end
3201 of the prologue by now. */
3202 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3203 || micromips_instruction_is_compact_branch (insn))
3204 break;
3205
4cc0665f 3206 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3207 prev_delay_slot = in_delay_slot;
4cc0665f 3208 prev_pc = cur_pc;
2207132d
MR
3209 }
3210
29639122
JB
3211 if (this_cache != NULL)
3212 {
3213 this_cache->base =
4cc0665f 3214 (get_frame_register_signed (this_frame,
b8a22b94 3215 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3216 + frame_offset - frame_adjust);
29639122 3217 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3218 be able to get rid of the assignment below, evetually. But it's
3219 still needed for now. */
72a155b4
UW
3220 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3221 + mips_regnum (gdbarch)->pc]
4cc0665f 3222 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3223 }
3224
ab50adb6
MR
3225 /* Set end_prologue_addr to the address of the instruction immediately
3226 after the last one we scanned. Unless the last one looked like a
3227 non-prologue instruction (and we looked ahead), in which case use
3228 its address instead. */
3229 end_prologue_addr
3230 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3231
3232 return end_prologue_addr;
eec63939
AC
3233}
3234
4cc0665f 3235/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3236 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3237 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3238
3239static struct mips_frame_cache *
4cc0665f 3240mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3241{
e17a4113 3242 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3243 struct mips_frame_cache *cache;
eec63939
AC
3244
3245 if ((*this_cache) != NULL)
19ba03f4 3246 return (struct mips_frame_cache *) (*this_cache);
4cc0665f 3247
29639122
JB
3248 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3249 (*this_cache) = cache;
b8a22b94 3250 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3251
29639122
JB
3252 /* Analyze the function prologue. */
3253 {
b8a22b94 3254 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3255 CORE_ADDR start_addr;
eec63939 3256
29639122
JB
3257 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3258 if (start_addr == 0)
4cc0665f 3259 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3260 /* We can't analyze the prologue if we couldn't find the begining
3261 of the function. */
3262 if (start_addr == 0)
3263 return cache;
eec63939 3264
19ba03f4
SM
3265 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3266 (struct mips_frame_cache *) *this_cache);
29639122 3267 }
4cc0665f 3268
3e8c568d 3269 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3270 trad_frame_set_value (cache->saved_regs,
e17a4113 3271 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3272 cache->base);
eec63939 3273
19ba03f4 3274 return (struct mips_frame_cache *) (*this_cache);
eec63939
AC
3275}
3276
3277static void
4cc0665f
MR
3278mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3279 struct frame_id *this_id)
eec63939 3280{
4cc0665f
MR
3281 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3282 this_cache);
21327321
DJ
3283 /* This marks the outermost frame. */
3284 if (info->base == 0)
3285 return;
b8a22b94 3286 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3287}
3288
b8a22b94 3289static struct value *
4cc0665f
MR
3290mips_micro_frame_prev_register (struct frame_info *this_frame,
3291 void **this_cache, int regnum)
eec63939 3292{
4cc0665f
MR
3293 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3294 this_cache);
b8a22b94
DJ
3295 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3296}
3297
3298static int
4cc0665f
MR
3299mips_micro_frame_sniffer (const struct frame_unwind *self,
3300 struct frame_info *this_frame, void **this_cache)
b8a22b94 3301{
4cc0665f 3302 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3303 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3304
3305 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3306 return 1;
3307 return 0;
eec63939
AC
3308}
3309
4cc0665f 3310static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3311{
3312 NORMAL_FRAME,
8fbca658 3313 default_frame_unwind_stop_reason,
4cc0665f
MR
3314 mips_micro_frame_this_id,
3315 mips_micro_frame_prev_register,
b8a22b94 3316 NULL,
4cc0665f 3317 mips_micro_frame_sniffer
eec63939
AC
3318};
3319
eec63939 3320static CORE_ADDR
4cc0665f
MR
3321mips_micro_frame_base_address (struct frame_info *this_frame,
3322 void **this_cache)
eec63939 3323{
4cc0665f
MR
3324 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3325 this_cache);
29639122 3326 return info->base;
eec63939
AC
3327}
3328
4cc0665f 3329static const struct frame_base mips_micro_frame_base =
eec63939 3330{
4cc0665f
MR
3331 &mips_micro_frame_unwind,
3332 mips_micro_frame_base_address,
3333 mips_micro_frame_base_address,
3334 mips_micro_frame_base_address
eec63939
AC
3335};
3336
3337static const struct frame_base *
4cc0665f 3338mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3339{
4cc0665f 3340 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3341 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3342
3343 if (mips_pc_is_micromips (gdbarch, pc))
3344 return &mips_micro_frame_base;
eec63939
AC
3345 else
3346 return NULL;
edfae063
AC
3347}
3348
29639122
JB
3349/* Mark all the registers as unset in the saved_regs array
3350 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3351
74ed0bb4
MD
3352static void
3353reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3354{
29639122
JB
3355 if (this_cache == NULL || this_cache->saved_regs == NULL)
3356 return;
3357
3358 {
74ed0bb4 3359 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3360 int i;
64159455 3361
29639122
JB
3362 for (i = 0; i < num_regs; i++)
3363 {
3364 this_cache->saved_regs[i].addr = -1;
3365 }
3366 }
c906108c
SS
3367}
3368
025bb325 3369/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3370 the associated FRAME_CACHE if not null.
3371 Return the address of the first instruction past the prologue. */
c906108c 3372
875e1767 3373static CORE_ADDR
e17a4113
UW
3374mips32_scan_prologue (struct gdbarch *gdbarch,
3375 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3376 struct frame_info *this_frame,
29639122 3377 struct mips_frame_cache *this_cache)
c906108c 3378{
ab50adb6
MR
3379 int prev_non_prologue_insn;
3380 int this_non_prologue_insn;
3381 int non_prologue_insns;
025bb325
MS
3382 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3383 frame-pointer. */
ab50adb6
MR
3384 int prev_delay_slot;
3385 CORE_ADDR prev_pc;
3386 CORE_ADDR cur_pc;
29639122
JB
3387 CORE_ADDR sp;
3388 long frame_offset;
3389 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3390
ab50adb6 3391 CORE_ADDR end_prologue_addr;
29639122
JB
3392 int seen_sp_adjust = 0;
3393 int load_immediate_bytes = 0;
ab50adb6 3394 int in_delay_slot;
7d1e6fb8 3395 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3396
29639122 3397 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3398 THIS_FRAME. */
3399 if (this_frame != NULL)
3400 sp = get_frame_register_signed (this_frame,
3401 gdbarch_num_regs (gdbarch)
3402 + MIPS_SP_REGNUM);
8fa9cfa1 3403 else
29639122 3404 sp = 0;
9022177c 3405
29639122
JB
3406 if (limit_pc > start_pc + 200)
3407 limit_pc = start_pc + 200;
9022177c 3408
29639122 3409restart:
ab50adb6
MR
3410 prev_non_prologue_insn = 0;
3411 non_prologue_insns = 0;
3412 prev_delay_slot = 0;
3413 prev_pc = start_pc;
9022177c 3414
ab50adb6
MR
3415 /* Permit at most one non-prologue non-control-transfer instruction
3416 in the middle which may have been reordered by the compiler for
3417 optimisation. */
29639122 3418 frame_offset = 0;
95ac2dcf 3419 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3420 {
eaa6a9a4
MR
3421 unsigned long inst, high_word;
3422 long offset;
29639122 3423 int reg;
9022177c 3424
ab50adb6
MR
3425 this_non_prologue_insn = 0;
3426 in_delay_slot = 0;
3427
025bb325 3428 /* Fetch the instruction. */
4cc0665f
MR
3429 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3430 cur_pc, NULL);
9022177c 3431
29639122
JB
3432 /* Save some code by pre-extracting some useful fields. */
3433 high_word = (inst >> 16) & 0xffff;
eaa6a9a4 3434 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
29639122 3435 reg = high_word & 0x1f;
fe29b929 3436
025bb325 3437 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3438 || high_word == 0x23bd /* addi $sp,$sp,-i */
3439 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3440 {
eaa6a9a4
MR
3441 if (offset < 0) /* Negative stack adjustment? */
3442 frame_offset -= offset;
29639122
JB
3443 else
3444 /* Exit loop if a positive stack adjustment is found, which
3445 usually means that the stack cleanup code in the function
3446 epilogue is reached. */
3447 break;
3448 seen_sp_adjust = 1;
3449 }
7d1e6fb8
KB
3450 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3451 && !regsize_is_64_bits)
29639122 3452 {
eaa6a9a4 3453 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122 3454 }
7d1e6fb8
KB
3455 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3456 && regsize_is_64_bits)
29639122
JB
3457 {
3458 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
eaa6a9a4 3459 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
3460 }
3461 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3462 {
3463 /* Old gcc frame, r30 is virtual frame pointer. */
eaa6a9a4
MR
3464 if (offset != frame_offset)
3465 frame_addr = sp + offset;
b8a22b94 3466 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3467 {
3468 unsigned alloca_adjust;
a4b8ebc8 3469
29639122 3470 frame_reg = 30;
b8a22b94
DJ
3471 frame_addr = get_frame_register_signed
3472 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3473 frame_offset = 0;
d2ca4222 3474
eaa6a9a4 3475 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
29639122
JB
3476 if (alloca_adjust > 0)
3477 {
025bb325 3478 /* FP > SP + frame_size. This may be because of
29639122
JB
3479 an alloca or somethings similar. Fix sp to
3480 "pre-alloca" value, and try again. */
3481 sp += alloca_adjust;
3482 /* Need to reset the status of all registers. Otherwise,
3483 we will hit a guard that prevents the new address
3484 for each register to be recomputed during the second
3485 pass. */
74ed0bb4 3486 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3487 goto restart;
3488 }
3489 }
3490 }
3491 /* move $30,$sp. With different versions of gas this will be either
3492 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3493 Accept any one of these. */
3494 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3495 {
3496 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3497 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3498 {
3499 unsigned alloca_adjust;
c906108c 3500
29639122 3501 frame_reg = 30;
b8a22b94
DJ
3502 frame_addr = get_frame_register_signed
3503 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3504
29639122
JB
3505 alloca_adjust = (unsigned) (frame_addr - sp);
3506 if (alloca_adjust > 0)
3507 {
025bb325 3508 /* FP > SP + frame_size. This may be because of
29639122
JB
3509 an alloca or somethings similar. Fix sp to
3510 "pre-alloca" value, and try again. */
3511 sp = frame_addr;
3512 /* Need to reset the status of all registers. Otherwise,
3513 we will hit a guard that prevents the new address
3514 for each register to be recomputed during the second
3515 pass. */
74ed0bb4 3516 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3517 goto restart;
3518 }
3519 }
3520 }
7d1e6fb8
KB
3521 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3522 && !regsize_is_64_bits)
29639122 3523 {
eaa6a9a4 3524 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
3525 }
3526 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3527 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3528 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3529 || high_word == 0x3c1c /* lui $gp,n */
3530 || high_word == 0x279c /* addiu $gp,$gp,n */
3531 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3532 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3533 )
19080931
MR
3534 {
3535 /* These instructions are part of the prologue, but we don't
3536 need to do anything special to handle them. */
3537 }
29639122
JB
3538 /* The instructions below load $at or $t0 with an immediate
3539 value in preparation for a stack adjustment via
025bb325 3540 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3541 initialize a local variable, so we accept them only before
3542 a stack adjustment instruction was seen. */
3543 else if (!seen_sp_adjust
ab50adb6 3544 && !prev_delay_slot
19080931
MR
3545 && (high_word == 0x3c01 /* lui $at,n */
3546 || high_word == 0x3c08 /* lui $t0,n */
3547 || high_word == 0x3421 /* ori $at,$at,n */
3548 || high_word == 0x3508 /* ori $t0,$t0,n */
3549 || high_word == 0x3401 /* ori $at,$zero,n */
3550 || high_word == 0x3408 /* ori $t0,$zero,n */
3551 ))
3552 {
ab50adb6 3553 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3554 }
ab50adb6
MR
3555 /* Check for branches and jumps. The instruction in the delay
3556 slot can be a part of the prologue, so move forward once more. */
3557 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3558 {
3559 in_delay_slot = 1;
3560 }
3561 /* This instruction is not an instruction typically found
3562 in a prologue, so we must have reached the end of the
3563 prologue. */
29639122 3564 else
19080931 3565 {
ab50adb6 3566 this_non_prologue_insn = 1;
19080931 3567 }
db5f024e 3568
ab50adb6
MR
3569 non_prologue_insns += this_non_prologue_insn;
3570
3571 /* A jump or branch, or enough non-prologue insns seen? If so,
3572 then we must have reached the end of the prologue by now. */
3573 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3574 break;
ab50adb6
MR
3575
3576 prev_non_prologue_insn = this_non_prologue_insn;
3577 prev_delay_slot = in_delay_slot;
3578 prev_pc = cur_pc;
a4b8ebc8 3579 }
c906108c 3580
29639122
JB
3581 if (this_cache != NULL)
3582 {
3583 this_cache->base =
b8a22b94
DJ
3584 (get_frame_register_signed (this_frame,
3585 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3586 + frame_offset);
3587 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3588 this assignment below, eventually. But it's still needed
3589 for now. */
72a155b4
UW
3590 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3591 + mips_regnum (gdbarch)->pc]
3592 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3593 + MIPS_RA_REGNUM];
29639122 3594 }
c906108c 3595
ab50adb6
MR
3596 /* Set end_prologue_addr to the address of the instruction immediately
3597 after the last one we scanned. Unless the last one looked like a
3598 non-prologue instruction (and we looked ahead), in which case use
3599 its address instead. */
3600 end_prologue_addr
3601 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3602
3603 /* In a frameless function, we might have incorrectly
025bb325 3604 skipped some load immediate instructions. Undo the skipping
29639122
JB
3605 if the load immediate was not followed by a stack adjustment. */
3606 if (load_immediate_bytes && !seen_sp_adjust)
3607 end_prologue_addr -= load_immediate_bytes;
c906108c 3608
29639122 3609 return end_prologue_addr;
c906108c
SS
3610}
3611
29639122
JB
3612/* Heuristic unwinder for procedures using 32-bit instructions (covers
3613 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3614 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3615 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3616
29639122 3617static struct mips_frame_cache *
b8a22b94 3618mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3619{
e17a4113 3620 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3621 struct mips_frame_cache *cache;
c906108c 3622
29639122 3623 if ((*this_cache) != NULL)
19ba03f4 3624 return (struct mips_frame_cache *) (*this_cache);
c5aa993b 3625
29639122
JB
3626 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3627 (*this_cache) = cache;
b8a22b94 3628 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3629
29639122
JB
3630 /* Analyze the function prologue. */
3631 {
b8a22b94 3632 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3633 CORE_ADDR start_addr;
c906108c 3634
29639122
JB
3635 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3636 if (start_addr == 0)
e17a4113 3637 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3638 /* We can't analyze the prologue if we couldn't find the begining
3639 of the function. */
3640 if (start_addr == 0)
3641 return cache;
c5aa993b 3642
19ba03f4
SM
3643 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3644 (struct mips_frame_cache *) *this_cache);
29639122
JB
3645 }
3646
3e8c568d 3647 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3648 trad_frame_set_value (cache->saved_regs,
e17a4113 3649 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3650 cache->base);
c5aa993b 3651
19ba03f4 3652 return (struct mips_frame_cache *) (*this_cache);
c906108c
SS
3653}
3654
29639122 3655static void
b8a22b94 3656mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3657 struct frame_id *this_id)
c906108c 3658{
b8a22b94 3659 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3660 this_cache);
21327321
DJ
3661 /* This marks the outermost frame. */
3662 if (info->base == 0)
3663 return;
b8a22b94 3664 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3665}
c906108c 3666
b8a22b94
DJ
3667static struct value *
3668mips_insn32_frame_prev_register (struct frame_info *this_frame,
3669 void **this_cache, int regnum)
29639122 3670{
b8a22b94 3671 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3672 this_cache);
b8a22b94
DJ
3673 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3674}
3675
3676static int
3677mips_insn32_frame_sniffer (const struct frame_unwind *self,
3678 struct frame_info *this_frame, void **this_cache)
3679{
3680 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3681 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3682 return 1;
3683 return 0;
c906108c
SS
3684}
3685
29639122
JB
3686static const struct frame_unwind mips_insn32_frame_unwind =
3687{
3688 NORMAL_FRAME,
8fbca658 3689 default_frame_unwind_stop_reason,
29639122 3690 mips_insn32_frame_this_id,
b8a22b94
DJ
3691 mips_insn32_frame_prev_register,
3692 NULL,
3693 mips_insn32_frame_sniffer
29639122 3694};
c906108c 3695
1c645fec 3696static CORE_ADDR
b8a22b94 3697mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3698 void **this_cache)
c906108c 3699{
b8a22b94 3700 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3701 this_cache);
3702 return info->base;
3703}
c906108c 3704
29639122
JB
3705static const struct frame_base mips_insn32_frame_base =
3706{
3707 &mips_insn32_frame_unwind,
3708 mips_insn32_frame_base_address,
3709 mips_insn32_frame_base_address,
3710 mips_insn32_frame_base_address
3711};
1c645fec 3712
29639122 3713static const struct frame_base *
b8a22b94 3714mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3715{
b8a22b94 3716 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3717 if (mips_pc_is_mips (pc))
29639122 3718 return &mips_insn32_frame_base;
a65bbe44 3719 else
29639122
JB
3720 return NULL;
3721}
a65bbe44 3722
29639122 3723static struct trad_frame_cache *
b8a22b94 3724mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3725{
3726 CORE_ADDR pc;
3727 CORE_ADDR start_addr;
3728 CORE_ADDR stack_addr;
3729 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3730 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3731 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3732
29639122 3733 if ((*this_cache) != NULL)
19ba03f4 3734 return (struct trad_frame_cache *) (*this_cache);
b8a22b94 3735 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3736 (*this_cache) = this_trad_cache;
1c645fec 3737
29639122 3738 /* The return address is in the link register. */
3e8c568d 3739 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3740 gdbarch_pc_regnum (gdbarch),
b8a22b94 3741 num_regs + MIPS_RA_REGNUM);
1c645fec 3742
29639122
JB
3743 /* Frame ID, since it's a frameless / stackless function, no stack
3744 space is allocated and SP on entry is the current SP. */
b8a22b94 3745 pc = get_frame_pc (this_frame);
29639122 3746 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3747 stack_addr = get_frame_register_signed (this_frame,
3748 num_regs + MIPS_SP_REGNUM);
aa6c981f 3749 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3750
29639122
JB
3751 /* Assume that the frame's base is the same as the
3752 stack-pointer. */
3753 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3754
29639122
JB
3755 return this_trad_cache;
3756}
c906108c 3757
29639122 3758static void
b8a22b94 3759mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3760 struct frame_id *this_id)
3761{
3762 struct trad_frame_cache *this_trad_cache
b8a22b94 3763 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3764 trad_frame_get_id (this_trad_cache, this_id);
3765}
c906108c 3766
b8a22b94
DJ
3767static struct value *
3768mips_stub_frame_prev_register (struct frame_info *this_frame,
3769 void **this_cache, int regnum)
29639122
JB
3770{
3771 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3772 = mips_stub_frame_cache (this_frame, this_cache);
3773 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3774}
c906108c 3775
b8a22b94
DJ
3776static int
3777mips_stub_frame_sniffer (const struct frame_unwind *self,
3778 struct frame_info *this_frame, void **this_cache)
29639122 3779{
aa6c981f 3780 gdb_byte dummy[4];
979b38e0 3781 struct obj_section *s;
b8a22b94 3782 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3783 struct bound_minimal_symbol msym;
979b38e0 3784
aa6c981f 3785 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3786 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3787 return 1;
aa6c981f 3788
3e5d3a5a 3789 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3790 return 1;
979b38e0 3791
db5f024e
DJ
3792 /* Calling a PIC function from a non-PIC function passes through a
3793 stub. The stub for foo is named ".pic.foo". */
3794 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3795 if (msym.minsym != NULL
efd66ac6 3796 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
61012eef 3797 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
3798 return 1;
3799
b8a22b94 3800 return 0;
29639122 3801}
c906108c 3802
b8a22b94
DJ
3803static const struct frame_unwind mips_stub_frame_unwind =
3804{
3805 NORMAL_FRAME,
8fbca658 3806 default_frame_unwind_stop_reason,
b8a22b94
DJ
3807 mips_stub_frame_this_id,
3808 mips_stub_frame_prev_register,
3809 NULL,
3810 mips_stub_frame_sniffer
3811};
3812
29639122 3813static CORE_ADDR
b8a22b94 3814mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3815 void **this_cache)
3816{
3817 struct trad_frame_cache *this_trad_cache
b8a22b94 3818 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3819 return trad_frame_get_this_base (this_trad_cache);
3820}
0fce0821 3821
29639122
JB
3822static const struct frame_base mips_stub_frame_base =
3823{
3824 &mips_stub_frame_unwind,
3825 mips_stub_frame_base_address,
3826 mips_stub_frame_base_address,
3827 mips_stub_frame_base_address
3828};
3829
3830static const struct frame_base *
b8a22b94 3831mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3832{
b8a22b94 3833 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3834 return &mips_stub_frame_base;
3835 else
3836 return NULL;
3837}
3838
29639122 3839/* mips_addr_bits_remove - remove useless address bits */
65596487 3840
29639122 3841static CORE_ADDR
24568a2c 3842mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3843{
24568a2c 3844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3845
29639122
JB
3846 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3847 /* This hack is a work-around for existing boards using PMON, the
3848 simulator, and any other 64-bit targets that doesn't have true
3849 64-bit addressing. On these targets, the upper 32 bits of
3850 addresses are ignored by the hardware. Thus, the PC or SP are
3851 likely to have been sign extended to all 1s by instruction
3852 sequences that load 32-bit addresses. For example, a typical
3853 piece of code that loads an address is this:
65596487 3854
29639122
JB
3855 lui $r2, <upper 16 bits>
3856 ori $r2, <lower 16 bits>
65596487 3857
29639122
JB
3858 But the lui sign-extends the value such that the upper 32 bits
3859 may be all 1s. The workaround is simply to mask off these
3860 bits. In the future, gcc may be changed to support true 64-bit
3861 addressing, and this masking will have to be disabled. */
3862 return addr &= 0xffffffffUL;
3863 else
3864 return addr;
65596487
JB
3865}
3866
3d5f6d12
DJ
3867
3868/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3869 instruction and ending with a SC/SCD instruction. If such a sequence
3870 is found, attempt to step through it. A breakpoint is placed at the end of
3871 the sequence. */
3872
4cc0665f
MR
3873/* Instructions used during single-stepping of atomic sequences, standard
3874 ISA version. */
3875#define LL_OPCODE 0x30
3876#define LLD_OPCODE 0x34
3877#define SC_OPCODE 0x38
3878#define SCD_OPCODE 0x3c
3879
3d5f6d12 3880static int
4cc0665f
MR
3881mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3882 struct address_space *aspace, CORE_ADDR pc)
3d5f6d12
DJ
3883{
3884 CORE_ADDR breaks[2] = {-1, -1};
3885 CORE_ADDR loc = pc;
3886 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3887 ULONGEST insn;
3d5f6d12
DJ
3888 int insn_count;
3889 int index;
3890 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3891 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3892
4cc0665f 3893 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3894 /* Assume all atomic sequences start with a ll/lld instruction. */
3895 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3896 return 0;
3897
3898 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3899 instructions. */
3900 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3901 {
3902 int is_branch = 0;
3903 loc += MIPS_INSN32_SIZE;
4cc0665f 3904 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3905
3906 /* Assume that there is at most one branch in the atomic
3907 sequence. If a branch is found, put a breakpoint in its
3908 destination address. */
3909 switch (itype_op (insn))
3910 {
3911 case 0: /* SPECIAL */
3912 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
025bb325 3913 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3914 break;
3915 case 1: /* REGIMM */
a385295e
MR
3916 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3917 || ((itype_rt (insn) & 0x1e) == 0
3918 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3919 break;
3920 case 2: /* J */
3921 case 3: /* JAL */
025bb325 3922 return 0; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3923 case 4: /* BEQ */
3924 case 5: /* BNE */
3925 case 6: /* BLEZ */
3926 case 7: /* BGTZ */
3927 case 20: /* BEQL */
3928 case 21: /* BNEL */
3929 case 22: /* BLEZL */
3930 case 23: /* BGTTL */
3931 is_branch = 1;
3932 break;
3933 case 17: /* COP1 */
a385295e
MR
3934 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3935 && (itype_rt (insn) & 0x2) == 0);
3936 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3937 break;
3938 /* Fall through. */
3d5f6d12
DJ
3939 case 18: /* COP2 */
3940 case 19: /* COP3 */
3941 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3942 break;
3943 }
3944 if (is_branch)
3945 {
3946 branch_bp = loc + mips32_relative_offset (insn) + 4;
3947 if (last_breakpoint >= 1)
3948 return 0; /* More than one branch found, fallback to the
3949 standard single-step code. */
3950 breaks[1] = branch_bp;
3951 last_breakpoint++;
3952 }
3953
3954 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3955 break;
3956 }
3957
3958 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3959 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3960 return 0;
3961
3962 loc += MIPS_INSN32_SIZE;
3963
3964 /* Insert a breakpoint right after the end of the atomic sequence. */
3965 breaks[0] = loc;
3966
3967 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3968 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3969 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3970 last_breakpoint = 0;
3971
3972 /* Effectively inserts the breakpoints. */
3973 for (index = 0; index <= last_breakpoint; index++)
6c95b8df 3974 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3d5f6d12
DJ
3975
3976 return 1;
3977}
3978
4cc0665f
MR
3979static int
3980micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3981 struct address_space *aspace,
3982 CORE_ADDR pc)
3983{
3984 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3985 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3986 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
3987 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3988 destination. */
4cc0665f
MR
3989 CORE_ADDR loc = pc;
3990 int sc_found = 0;
3991 ULONGEST insn;
3992 int insn_count;
3993 int index;
3994
3995 /* Assume all atomic sequences start with a ll/lld instruction. */
3996 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3997 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3998 return 0;
3999 loc += MIPS_INSN16_SIZE;
4000 insn <<= 16;
4001 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4002 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4003 return 0;
4004 loc += MIPS_INSN16_SIZE;
4005
4006 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4007 that no atomic sequence is longer than "atomic_sequence_length"
4008 instructions. */
4009 for (insn_count = 0;
4010 !sc_found && insn_count < atomic_sequence_length;
4011 ++insn_count)
4012 {
4013 int is_branch = 0;
4014
4015 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4016 loc += MIPS_INSN16_SIZE;
4017
4018 /* Assume that there is at most one conditional branch in the
4019 atomic sequence. If a branch is found, put a breakpoint in
4020 its destination address. */
4021 switch (mips_insn_size (ISA_MICROMIPS, insn))
4022 {
4cc0665f
MR
4023 /* 32-bit instructions. */
4024 case 2 * MIPS_INSN16_SIZE:
4025 switch (micromips_op (insn))
4026 {
4027 case 0x10: /* POOL32I: bits 010000 */
4028 if ((b5s5_op (insn) & 0x18) != 0x0
4029 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4030 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4031 && (b5s5_op (insn) & 0x1d) != 0x11
4032 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4033 && ((b5s5_op (insn) & 0x1e) != 0x14
4034 || (insn & 0x3) != 0x0)
4035 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4036 && (b5s5_op (insn) & 0x1e) != 0x1a
4037 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4038 && ((b5s5_op (insn) & 0x1e) != 0x1c
4039 || (insn & 0x3) != 0x0)
4040 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4041 && ((b5s5_op (insn) & 0x1c) != 0x1c
4042 || (insn & 0x3) != 0x1))
4043 /* BC1ANY*: bits 010000 111xx xxx01 */
4044 break;
4045 /* Fall through. */
4046
4047 case 0x25: /* BEQ: bits 100101 */
4048 case 0x2d: /* BNE: bits 101101 */
4049 insn <<= 16;
4050 insn |= mips_fetch_instruction (gdbarch,
4051 ISA_MICROMIPS, loc, NULL);
4052 branch_bp = (loc + MIPS_INSN16_SIZE
4053 + micromips_relative_offset16 (insn));
4054 is_branch = 1;
4055 break;
4056
4057 case 0x00: /* POOL32A: bits 000000 */
4058 insn <<= 16;
4059 insn |= mips_fetch_instruction (gdbarch,
4060 ISA_MICROMIPS, loc, NULL);
4061 if (b0s6_op (insn) != 0x3c
4062 /* POOL32Axf: bits 000000 ... 111100 */
4063 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4064 /* JALR, JALR.HB: 000000 000x111100 111100 */
4065 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4066 break;
4067 /* Fall through. */
4068
4069 case 0x1d: /* JALS: bits 011101 */
4070 case 0x35: /* J: bits 110101 */
4071 case 0x3d: /* JAL: bits 111101 */
4072 case 0x3c: /* JALX: bits 111100 */
4073 return 0; /* Fall back to the standard single-step code. */
4074
4075 case 0x18: /* POOL32C: bits 011000 */
4076 if ((b12s4_op (insn) & 0xb) == 0xb)
4077 /* SC, SCD: bits 011000 1x11 */
4078 sc_found = 1;
4079 break;
4080 }
4081 loc += MIPS_INSN16_SIZE;
4082 break;
4083
4084 /* 16-bit instructions. */
4085 case MIPS_INSN16_SIZE:
4086 switch (micromips_op (insn))
4087 {
4088 case 0x23: /* BEQZ16: bits 100011 */
4089 case 0x2b: /* BNEZ16: bits 101011 */
4090 branch_bp = loc + micromips_relative_offset7 (insn);
4091 is_branch = 1;
4092 break;
4093
4094 case 0x11: /* POOL16C: bits 010001 */
4095 if ((b5s5_op (insn) & 0x1c) != 0xc
4096 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4097 && b5s5_op (insn) != 0x18)
4098 /* JRADDIUSP: bits 010001 11000 */
4099 break;
4100 return 0; /* Fall back to the standard single-step code. */
4101
4102 case 0x33: /* B16: bits 110011 */
4103 return 0; /* Fall back to the standard single-step code. */
4104 }
4105 break;
4106 }
4107 if (is_branch)
4108 {
4109 if (last_breakpoint >= 1)
4110 return 0; /* More than one branch found, fallback to the
4111 standard single-step code. */
4112 breaks[1] = branch_bp;
4113 last_breakpoint++;
4114 }
4115 }
4116 if (!sc_found)
4117 return 0;
4118
4119 /* Insert a breakpoint right after the end of the atomic sequence. */
4120 breaks[0] = loc;
4121
4122 /* Check for duplicated breakpoints. Check also for a breakpoint
4123 placed (branch instruction's destination) in the atomic sequence */
4124 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4125 last_breakpoint = 0;
4126
4127 /* Effectively inserts the breakpoints. */
4128 for (index = 0; index <= last_breakpoint; index++)
3373342d 4129 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
4cc0665f
MR
4130
4131 return 1;
4132}
4133
4134static int
4135deal_with_atomic_sequence (struct gdbarch *gdbarch,
4136 struct address_space *aspace, CORE_ADDR pc)
4137{
4138 if (mips_pc_is_mips (pc))
4139 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4140 else if (mips_pc_is_micromips (gdbarch, pc))
4141 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4142 else
4143 return 0;
4144}
4145
29639122
JB
4146/* mips_software_single_step() is called just before we want to resume
4147 the inferior, if we want to single-step it but there is no hardware
4148 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4149 the target of the coming instruction and breakpoint it. */
29639122 4150
e6590a1b 4151int
0b1b3e42 4152mips_software_single_step (struct frame_info *frame)
c906108c 4153{
a6d9a66e 4154 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 4155 struct address_space *aspace = get_frame_address_space (frame);
8181d85f 4156 CORE_ADDR pc, next_pc;
65596487 4157
0b1b3e42 4158 pc = get_frame_pc (frame);
6c95b8df 4159 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3d5f6d12
DJ
4160 return 1;
4161
0b1b3e42 4162 next_pc = mips_next_pc (frame, pc);
e6590a1b 4163
6c95b8df 4164 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 4165 return 1;
29639122 4166}
a65bbe44 4167
29639122 4168/* Test whether the PC points to the return instruction at the
025bb325 4169 end of a function. */
65596487 4170
29639122 4171static int
e17a4113 4172mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4173{
6321c22a
MR
4174 ULONGEST insn;
4175 ULONGEST hint;
4176
4177 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4178 called for MIPS16 functions. And likewise microMIPS ones. */
4179 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4180
4cc0665f 4181 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4182 hint = 0x7c0;
4183 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4184}
c906108c 4185
c906108c 4186
29639122
JB
4187/* This fencepost looks highly suspicious to me. Removing it also
4188 seems suspicious as it could affect remote debugging across serial
4189 lines. */
c906108c 4190
29639122 4191static CORE_ADDR
74ed0bb4 4192heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4193{
4194 CORE_ADDR start_pc;
4195 CORE_ADDR fence;
4196 int instlen;
4197 int seen_adjsp = 0;
d6b48e9c 4198 struct inferior *inf;
65596487 4199
74ed0bb4 4200 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4201 start_pc = pc;
4202 fence = start_pc - heuristic_fence_post;
4203 if (start_pc == 0)
4204 return 0;
65596487 4205
44096aee 4206 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4207 fence = VM_MIN_ADDRESS;
65596487 4208
4cc0665f 4209 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4210
d6b48e9c
PA
4211 inf = current_inferior ();
4212
025bb325 4213 /* Search back for previous return. */
29639122
JB
4214 for (start_pc -= instlen;; start_pc -= instlen)
4215 if (start_pc < fence)
4216 {
4217 /* It's not clear to me why we reach this point when
4218 stop_soon, but with this test, at least we
4219 don't print out warnings for every child forked (eg, on
4220 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4221 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4222 {
4223 static int blurb_printed = 0;
98b4dd94 4224
5af949e3
UW
4225 warning (_("GDB can't find the start of the function at %s."),
4226 paddress (gdbarch, pc));
29639122
JB
4227
4228 if (!blurb_printed)
4229 {
4230 /* This actually happens frequently in embedded
4231 development, when you first connect to a board
4232 and your stack pointer and pc are nowhere in
4233 particular. This message needs to give people
4234 in that situation enough information to
4235 determine that it's no big deal. */
4236 printf_filtered ("\n\
5af949e3 4237 GDB is unable to find the start of the function at %s\n\
29639122
JB
4238and thus can't determine the size of that function's stack frame.\n\
4239This means that GDB may be unable to access that stack frame, or\n\
4240the frames below it.\n\
4241 This problem is most likely caused by an invalid program counter or\n\
4242stack pointer.\n\
4243 However, if you think GDB should simply search farther back\n\
5af949e3 4244from %s for code which looks like the beginning of a\n\
29639122 4245function, you can increase the range of the search using the `set\n\
5af949e3
UW
4246heuristic-fence-post' command.\n",
4247 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4248 blurb_printed = 1;
4249 }
4250 }
4251
4252 return 0;
4253 }
4cc0665f 4254 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4255 {
4256 unsigned short inst;
4257
4258 /* On MIPS16, any one of the following is likely to be the
4259 start of a function:
193774b3
MR
4260 extend save
4261 save
29639122
JB
4262 entry
4263 addiu sp,-n
4264 daddiu sp,-n
025bb325 4265 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4266 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4267 if ((inst & 0xff80) == 0x6480) /* save */
4268 {
4269 if (start_pc - instlen >= fence)
4270 {
4cc0665f
MR
4271 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4272 start_pc - instlen, NULL);
193774b3
MR
4273 if ((inst & 0xf800) == 0xf000) /* extend */
4274 start_pc -= instlen;
4275 }
4276 break;
4277 }
4278 else if (((inst & 0xf81f) == 0xe809
4279 && (inst & 0x700) != 0x700) /* entry */
4280 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4281 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4282 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4283 break;
4284 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4285 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4286 seen_adjsp = 1;
4287 else
4288 seen_adjsp = 0;
4289 }
4cc0665f
MR
4290 else if (mips_pc_is_micromips (gdbarch, start_pc))
4291 {
4292 ULONGEST insn;
4293 int stop = 0;
4294 long offset;
4295 int dreg;
4296 int sreg;
4297
4298 /* On microMIPS, any one of the following is likely to be the
4299 start of a function:
4300 ADDIUSP -imm
4301 (D)ADDIU $sp, -imm
4302 LUI $gp, imm */
4303 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4304 switch (micromips_op (insn))
4305 {
4306 case 0xc: /* ADDIU: bits 001100 */
4307 case 0x17: /* DADDIU: bits 010111 */
4308 sreg = b0s5_reg (insn);
4309 dreg = b5s5_reg (insn);
4310 insn <<= 16;
4311 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4312 pc + MIPS_INSN16_SIZE, NULL);
4313 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4314 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4315 /* (D)ADDIU $sp, imm */
4316 && offset < 0)
4317 stop = 1;
4318 break;
4319
4320 case 0x10: /* POOL32I: bits 010000 */
4321 if (b5s5_op (insn) == 0xd
4322 /* LUI: bits 010000 001101 */
4323 && b0s5_reg (insn >> 16) == 28)
4324 /* LUI $gp, imm */
4325 stop = 1;
4326 break;
4327
4328 case 0x13: /* POOL16D: bits 010011 */
4329 if ((insn & 0x1) == 0x1)
4330 /* ADDIUSP: bits 010011 1 */
4331 {
4332 offset = micromips_decode_imm9 (b1s9_imm (insn));
4333 if (offset < 0)
4334 /* ADDIUSP -imm */
4335 stop = 1;
4336 }
4337 else
4338 /* ADDIUS5: bits 010011 0 */
4339 {
4340 dreg = b5s5_reg (insn);
4341 offset = (b1s4_imm (insn) ^ 8) - 8;
4342 if (dreg == MIPS_SP_REGNUM && offset < 0)
4343 /* ADDIUS5 $sp, -imm */
4344 stop = 1;
4345 }
4346 break;
4347 }
4348 if (stop)
4349 break;
4350 }
e17a4113 4351 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4352 {
4c7d22cb 4353 /* Skip return and its delay slot. */
95ac2dcf 4354 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4355 break;
4356 }
4357
4358 return start_pc;
c906108c
SS
4359}
4360
6c0d6680
DJ
4361struct mips_objfile_private
4362{
4363 bfd_size_type size;
4364 char *contents;
4365};
4366
f09ded24
AC
4367/* According to the current ABI, should the type be passed in a
4368 floating-point register (assuming that there is space)? When there
a1f5b845 4369 is no FPU, FP are not even considered as possible candidates for
f09ded24 4370 FP registers and, consequently this returns false - forces FP
025bb325 4371 arguments into integer registers. */
f09ded24
AC
4372
4373static int
74ed0bb4
MD
4374fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4375 struct type *arg_type)
f09ded24
AC
4376{
4377 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4378 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4379 && (typecode == TYPE_CODE_STRUCT
4380 || typecode == TYPE_CODE_UNION)
f09ded24 4381 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4382 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4383 == TYPE_CODE_FLT))
74ed0bb4 4384 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4385}
4386
49e790b0 4387/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4388 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4389
4390static int
4391mips_type_needs_double_align (struct type *type)
4392{
4393 enum type_code typecode = TYPE_CODE (type);
361d1df0 4394
49e790b0
DJ
4395 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4396 return 1;
4397 else if (typecode == TYPE_CODE_STRUCT)
4398 {
4399 if (TYPE_NFIELDS (type) < 1)
4400 return 0;
4401 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4402 }
4403 else if (typecode == TYPE_CODE_UNION)
4404 {
361d1df0 4405 int i, n;
49e790b0
DJ
4406
4407 n = TYPE_NFIELDS (type);
4408 for (i = 0; i < n; i++)
4409 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4410 return 1;
4411 return 0;
4412 }
4413 return 0;
4414}
4415
dc604539
AC
4416/* Adjust the address downward (direction of stack growth) so that it
4417 is correctly aligned for a new stack frame. */
4418static CORE_ADDR
4419mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4420{
5b03f266 4421 return align_down (addr, 16);
dc604539
AC
4422}
4423
8ae38c14 4424/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4425
4426static CORE_ADDR
4427mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4428 CORE_ADDR funaddr, struct value **args,
4429 int nargs, struct type *value_type,
4430 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4431 struct regcache *regcache)
4432{
2c76a0c7 4433 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4434 CORE_ADDR nop_addr;
4435 CORE_ADDR bp_slot;
2c76a0c7
JB
4436
4437 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4438 bp_slot = sp - sizeof (nop_insn);
4439
4440 /* Return to microMIPS mode if calling microMIPS code to avoid
4441 triggering an address error exception on processors that only
4442 support microMIPS execution. */
4443 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4444 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4445
4446 /* The breakpoint layer automatically adjusts the address of
4447 breakpoints inserted in a branch delay slot. With enough
4448 bad luck, the 4 bytes located just before our breakpoint
4449 instruction could look like a branch instruction, and thus
4450 trigger the adjustement, and break the function call entirely.
4451 So, we reserve those 4 bytes and write a nop instruction
4452 to prevent that from happening. */
2e81047f 4453 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4454 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4455 sp = mips_frame_align (gdbarch, nop_addr);
4456
4457 /* Inferior resumes at the function entry point. */
4458 *real_pc = funaddr;
4459
4460 return sp;
4461}
4462
f7ab6ec6 4463static CORE_ADDR
7d9b040b 4464mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4465 struct regcache *regcache, CORE_ADDR bp_addr,
4466 int nargs, struct value **args, CORE_ADDR sp,
4467 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4468{
4469 int argreg;
4470 int float_argreg;
4471 int argnum;
4472 int len = 0;
4473 int stack_offset = 0;
e17a4113 4474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4475 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 4476 int regsize = mips_abi_regsize (gdbarch);
c906108c 4477
25ab4790
AC
4478 /* For shared libraries, "t9" needs to point at the function
4479 address. */
4c7d22cb 4480 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4481
4482 /* Set the return address register to point to the entry point of
4483 the program, where a breakpoint lies in wait. */
4c7d22cb 4484 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4485
c906108c 4486 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4487 are properly aligned. The stack has to be at least 64-bit
4488 aligned even on 32-bit machines, because doubles must be 64-bit
4489 aligned. For n32 and n64, stack frames need to be 128-bit
4490 aligned, so we round to this widest known alignment. */
4491
5b03f266
AC
4492 sp = align_down (sp, 16);
4493 struct_addr = align_down (struct_addr, 16);
c5aa993b 4494
46e0f506 4495 /* Now make space on the stack for the args. We allocate more
c906108c 4496 than necessary for EABI, because the first few arguments are
46e0f506 4497 passed in registers, but that's OK. */
c906108c 4498 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4499 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 4500 sp -= align_up (len, 16);
c906108c 4501
9ace0497 4502 if (mips_debug)
6d82d43b 4503 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4504 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4505 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4506
c906108c 4507 /* Initialize the integer and float register pointers. */
4c7d22cb 4508 argreg = MIPS_A0_REGNUM;
72a155b4 4509 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4510
46e0f506 4511 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4512 if (struct_return)
9ace0497
AC
4513 {
4514 if (mips_debug)
4515 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4516 "mips_eabi_push_dummy_call: "
4517 "struct_return reg=%d %s\n",
5af949e3 4518 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4519 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4520 }
c906108c
SS
4521
4522 /* Now load as many as possible of the first arguments into
4523 registers, and push the rest onto the stack. Loop thru args
4524 from first to last. */
4525 for (argnum = 0; argnum < nargs; argnum++)
4526 {
47a35522
MK
4527 const gdb_byte *val;
4528 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 4529 struct value *arg = args[argnum];
4991999e 4530 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4531 int len = TYPE_LENGTH (arg_type);
4532 enum type_code typecode = TYPE_CODE (arg_type);
4533
9ace0497
AC
4534 if (mips_debug)
4535 fprintf_unfiltered (gdb_stdlog,
25ab4790 4536 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4537 argnum + 1, len, (int) typecode);
9ace0497 4538
c906108c 4539 /* The EABI passes structures that do not fit in a register by
46e0f506 4540 reference. */
3e29f34a 4541 if (len > regsize
9ace0497 4542 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4543 {
e17a4113
UW
4544 store_unsigned_integer (valbuf, regsize, byte_order,
4545 value_address (arg));
c906108c 4546 typecode = TYPE_CODE_PTR;
1a69e1e4 4547 len = regsize;
c906108c 4548 val = valbuf;
9ace0497
AC
4549 if (mips_debug)
4550 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4551 }
4552 else
47a35522 4553 val = value_contents (arg);
c906108c
SS
4554
4555 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4556 even-numbered floating point register. Round the FP register
4557 up before the check to see if there are any FP registers
46e0f506
MS
4558 left. Non MIPS_EABI targets also pass the FP in the integer
4559 registers so also round up normal registers. */
74ed0bb4 4560 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4561 {
4562 if ((float_argreg & 1))
4563 float_argreg++;
4564 }
c906108c
SS
4565
4566 /* Floating point arguments passed in registers have to be
4567 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4568 are passed in register pairs; the even register gets
4569 the low word, and the odd register gets the high word.
4570 On non-EABI processors, the first two floating point arguments are
4571 also copied to general registers, because MIPS16 functions
4572 don't use float registers for arguments. This duplication of
4573 arguments in general registers can't hurt non-MIPS16 functions
4574 because those registers are normally skipped. */
1012bd0e
EZ
4575 /* MIPS_EABI squeezes a struct that contains a single floating
4576 point value into an FP register instead of pushing it onto the
46e0f506 4577 stack. */
74ed0bb4
MD
4578 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4579 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4580 {
6da397e0
KB
4581 /* EABI32 will pass doubles in consecutive registers, even on
4582 64-bit cores. At one time, we used to check the size of
4583 `float_argreg' to determine whether or not to pass doubles
4584 in consecutive registers, but this is not sufficient for
4585 making the ABI determination. */
4586 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4587 {
72a155b4 4588 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4589 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4590 long regval;
c906108c
SS
4591
4592 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4593 regval = extract_signed_integer (val + low_offset,
4594 4, byte_order);
9ace0497 4595 if (mips_debug)
acdb74a0 4596 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4597 float_argreg, phex (regval, 4));
a8852dc5 4598 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4599
4600 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4601 regval = extract_signed_integer (val + 4 - low_offset,
4602 4, byte_order);
9ace0497 4603 if (mips_debug)
acdb74a0 4604 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4605 float_argreg, phex (regval, 4));
a8852dc5 4606 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4607 }
4608 else
4609 {
4610 /* This is a floating point value that fits entirely
4611 in a single register. */
53a5351d 4612 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4613 above to ensure that it is even register aligned. */
a8852dc5 4614 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4615 if (mips_debug)
acdb74a0 4616 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4617 float_argreg, phex (regval, len));
a8852dc5 4618 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4619 }
4620 }
4621 else
4622 {
4623 /* Copy the argument to general registers or the stack in
4624 register-sized pieces. Large arguments are split between
4625 registers and stack. */
1a69e1e4
DJ
4626 /* Note: structs whose size is not a multiple of regsize
4627 are treated specially: Irix cc passes
d5ac5a39
AC
4628 them in registers where gcc sometimes puts them on the
4629 stack. For maximum compatibility, we will put them in
4630 both places. */
1a69e1e4 4631 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 4632
f09ded24 4633 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4634 register are only written to memory. */
c906108c
SS
4635 while (len > 0)
4636 {
ebafbe83 4637 /* Remember if the argument was written to the stack. */
566f0f7a 4638 int stack_used_p = 0;
1a69e1e4 4639 int partial_len = (len < regsize ? len : regsize);
c906108c 4640
acdb74a0
AC
4641 if (mips_debug)
4642 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4643 partial_len);
4644
566f0f7a 4645 /* Write this portion of the argument to the stack. */
74ed0bb4 4646 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4647 || odd_sized_struct
74ed0bb4 4648 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4649 {
c906108c 4650 /* Should shorter than int integer values be
025bb325 4651 promoted to int before being stored? */
c906108c 4652 int longword_offset = 0;
9ace0497 4653 CORE_ADDR addr;
566f0f7a 4654 stack_used_p = 1;
72a155b4 4655 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4656 {
1a69e1e4 4657 if (regsize == 8
480d3dd2
AC
4658 && (typecode == TYPE_CODE_INT
4659 || typecode == TYPE_CODE_PTR
6d82d43b 4660 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 4661 longword_offset = regsize - len;
480d3dd2
AC
4662 else if ((typecode == TYPE_CODE_STRUCT
4663 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
4664 && TYPE_LENGTH (arg_type) < regsize)
4665 longword_offset = regsize - len;
7a292a7a 4666 }
c5aa993b 4667
9ace0497
AC
4668 if (mips_debug)
4669 {
5af949e3
UW
4670 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4671 paddress (gdbarch, stack_offset));
4672 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4673 paddress (gdbarch, longword_offset));
9ace0497 4674 }
361d1df0 4675
9ace0497
AC
4676 addr = sp + stack_offset + longword_offset;
4677
4678 if (mips_debug)
4679 {
4680 int i;
5af949e3
UW
4681 fprintf_unfiltered (gdb_stdlog, " @%s ",
4682 paddress (gdbarch, addr));
9ace0497
AC
4683 for (i = 0; i < partial_len; i++)
4684 {
6d82d43b 4685 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4686 val[i] & 0xff);
9ace0497
AC
4687 }
4688 }
4689 write_memory (addr, val, partial_len);
c906108c
SS
4690 }
4691
f09ded24
AC
4692 /* Note!!! This is NOT an else clause. Odd sized
4693 structs may go thru BOTH paths. Floating point
46e0f506 4694 arguments will not. */
566f0f7a 4695 /* Write this portion of the argument to a general
6d82d43b 4696 purpose register. */
74ed0bb4
MD
4697 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4698 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4699 {
6d82d43b 4700 LONGEST regval =
a8852dc5 4701 extract_signed_integer (val, partial_len, byte_order);
c906108c 4702
9ace0497 4703 if (mips_debug)
acdb74a0 4704 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4705 argreg,
1a69e1e4 4706 phex (regval, regsize));
a8852dc5 4707 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4708 argreg++;
c906108c 4709 }
c5aa993b 4710
c906108c
SS
4711 len -= partial_len;
4712 val += partial_len;
4713
b021a221
MS
4714 /* Compute the offset into the stack at which we will
4715 copy the next parameter.
566f0f7a 4716
566f0f7a 4717 In the new EABI (and the NABI32), the stack_offset
46e0f506 4718 only needs to be adjusted when it has been used. */
c906108c 4719
46e0f506 4720 if (stack_used_p)
1a69e1e4 4721 stack_offset += align_up (partial_len, regsize);
c906108c
SS
4722 }
4723 }
9ace0497
AC
4724 if (mips_debug)
4725 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4726 }
4727
f10683bb 4728 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4729
0f71a2f6
JM
4730 /* Return adjusted stack pointer. */
4731 return sp;
4732}
4733
a1f5b845 4734/* Determine the return value convention being used. */
6d82d43b 4735
9c8fdbfa 4736static enum return_value_convention
6a3a010b 4737mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4738 struct type *type, struct regcache *regcache,
47a35522 4739 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4740{
609ba780
JM
4741 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4742 int fp_return_type = 0;
4743 int offset, regnum, xfer;
4744
9c8fdbfa
AC
4745 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4746 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4747
4748 /* Floating point type? */
4749 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4750 {
4751 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4752 fp_return_type = 1;
4753 /* Structs with a single field of float type
4754 are returned in a floating point register. */
4755 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4756 || TYPE_CODE (type) == TYPE_CODE_UNION)
4757 && TYPE_NFIELDS (type) == 1)
4758 {
4759 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4760
4761 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4762 fp_return_type = 1;
4763 }
4764 }
4765
4766 if (fp_return_type)
4767 {
4768 /* A floating-point value belongs in the least significant part
4769 of FP0/FP1. */
4770 if (mips_debug)
4771 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4772 regnum = mips_regnum (gdbarch)->fp0;
4773 }
4774 else
4775 {
4776 /* An integer value goes in V0/V1. */
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4779 regnum = MIPS_V0_REGNUM;
4780 }
4781 for (offset = 0;
4782 offset < TYPE_LENGTH (type);
4783 offset += mips_abi_regsize (gdbarch), regnum++)
4784 {
4785 xfer = mips_abi_regsize (gdbarch);
4786 if (offset + xfer > TYPE_LENGTH (type))
4787 xfer = TYPE_LENGTH (type) - offset;
4788 mips_xfer_register (gdbarch, regcache,
4789 gdbarch_num_regs (gdbarch) + regnum, xfer,
4790 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4791 offset);
4792 }
4793
9c8fdbfa 4794 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4795}
4796
6d82d43b
AC
4797
4798/* N32/N64 ABI stuff. */
ebafbe83 4799
8d26208a
DJ
4800/* Search for a naturally aligned double at OFFSET inside a struct
4801 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4802 registers. */
4803
4804static int
74ed0bb4
MD
4805mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4806 int offset)
8d26208a
DJ
4807{
4808 int i;
4809
4810 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4811 return 0;
4812
74ed0bb4 4813 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4814 return 0;
4815
4816 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4817 return 0;
4818
4819 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4820 {
4821 int pos;
4822 struct type *field_type;
4823
4824 /* We're only looking at normal fields. */
5bc60cfb 4825 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4826 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4827 continue;
4828
4829 /* If we have gone past the offset, there is no double to pass. */
4830 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4831 if (pos > offset)
4832 return 0;
4833
4834 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4835
4836 /* If this field is entirely before the requested offset, go
4837 on to the next one. */
4838 if (pos + TYPE_LENGTH (field_type) <= offset)
4839 continue;
4840
4841 /* If this is our special aligned double, we can stop. */
4842 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4843 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4844 return 1;
4845
4846 /* This field starts at or before the requested offset, and
4847 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4848 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4849 }
4850
4851 return 0;
4852}
4853
f7ab6ec6 4854static CORE_ADDR
7d9b040b 4855mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4856 struct regcache *regcache, CORE_ADDR bp_addr,
4857 int nargs, struct value **args, CORE_ADDR sp,
4858 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4859{
4860 int argreg;
4861 int float_argreg;
4862 int argnum;
4863 int len = 0;
4864 int stack_offset = 0;
e17a4113 4865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4866 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4867
25ab4790
AC
4868 /* For shared libraries, "t9" needs to point at the function
4869 address. */
4c7d22cb 4870 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4871
4872 /* Set the return address register to point to the entry point of
4873 the program, where a breakpoint lies in wait. */
4c7d22cb 4874 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4875
cb3d25d1
MS
4876 /* First ensure that the stack and structure return address (if any)
4877 are properly aligned. The stack has to be at least 64-bit
4878 aligned even on 32-bit machines, because doubles must be 64-bit
4879 aligned. For n32 and n64, stack frames need to be 128-bit
4880 aligned, so we round to this widest known alignment. */
4881
5b03f266
AC
4882 sp = align_down (sp, 16);
4883 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4884
4885 /* Now make space on the stack for the args. */
4886 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4887 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4888 sp -= align_up (len, 16);
cb3d25d1
MS
4889
4890 if (mips_debug)
6d82d43b 4891 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4892 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4893 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4894
4895 /* Initialize the integer and float register pointers. */
4c7d22cb 4896 argreg = MIPS_A0_REGNUM;
72a155b4 4897 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4898
46e0f506 4899 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4900 if (struct_return)
4901 {
4902 if (mips_debug)
4903 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4904 "mips_n32n64_push_dummy_call: "
4905 "struct_return reg=%d %s\n",
5af949e3 4906 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4907 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4908 }
4909
4910 /* Now load as many as possible of the first arguments into
4911 registers, and push the rest onto the stack. Loop thru args
4912 from first to last. */
4913 for (argnum = 0; argnum < nargs; argnum++)
4914 {
47a35522 4915 const gdb_byte *val;
cb3d25d1 4916 struct value *arg = args[argnum];
4991999e 4917 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4918 int len = TYPE_LENGTH (arg_type);
4919 enum type_code typecode = TYPE_CODE (arg_type);
4920
4921 if (mips_debug)
4922 fprintf_unfiltered (gdb_stdlog,
25ab4790 4923 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4924 argnum + 1, len, (int) typecode);
4925
47a35522 4926 val = value_contents (arg);
cb3d25d1 4927
5b68030f
JM
4928 /* A 128-bit long double value requires an even-odd pair of
4929 floating-point registers. */
4930 if (len == 16
4931 && fp_register_arg_p (gdbarch, typecode, arg_type)
4932 && (float_argreg & 1))
4933 {
4934 float_argreg++;
4935 argreg++;
4936 }
4937
74ed0bb4
MD
4938 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4939 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4940 {
4941 /* This is a floating point value that fits entirely
5b68030f
JM
4942 in a single register or a pair of registers. */
4943 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4944 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4945 if (mips_debug)
4946 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4947 float_argreg, phex (regval, reglen));
8d26208a 4948 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4949
4950 if (mips_debug)
4951 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4952 argreg, phex (regval, reglen));
9c9acae0 4953 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4954 float_argreg++;
4955 argreg++;
5b68030f
JM
4956 if (len == 16)
4957 {
e17a4113
UW
4958 regval = extract_unsigned_integer (val + reglen,
4959 reglen, byte_order);
5b68030f
JM
4960 if (mips_debug)
4961 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4962 float_argreg, phex (regval, reglen));
4963 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4964
4965 if (mips_debug)
4966 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4967 argreg, phex (regval, reglen));
4968 regcache_cooked_write_unsigned (regcache, argreg, regval);
4969 float_argreg++;
4970 argreg++;
4971 }
cb3d25d1
MS
4972 }
4973 else
4974 {
4975 /* Copy the argument to general registers or the stack in
4976 register-sized pieces. Large arguments are split between
4977 registers and stack. */
ab2e1992
MR
4978 /* For N32/N64, structs, unions, or other composite types are
4979 treated as a sequence of doublewords, and are passed in integer
4980 or floating point registers as though they were simple scalar
4981 parameters to the extent that they fit, with any excess on the
4982 stack packed according to the normal memory layout of the
4983 object.
4984 The caller does not reserve space for the register arguments;
4985 the callee is responsible for reserving it if required. */
cb3d25d1 4986 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4987 register are only written to memory. */
cb3d25d1
MS
4988 while (len > 0)
4989 {
ad018eee 4990 /* Remember if the argument was written to the stack. */
cb3d25d1 4991 int stack_used_p = 0;
1a69e1e4 4992 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
4993
4994 if (mips_debug)
4995 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4996 partial_len);
4997
74ed0bb4
MD
4998 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4999 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5000
cb3d25d1 5001 /* Write this portion of the argument to the stack. */
74ed0bb4 5002 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5003 {
5004 /* Should shorter than int integer values be
025bb325 5005 promoted to int before being stored? */
cb3d25d1
MS
5006 int longword_offset = 0;
5007 CORE_ADDR addr;
5008 stack_used_p = 1;
72a155b4 5009 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5010 {
1a69e1e4 5011 if ((typecode == TYPE_CODE_INT
5b68030f 5012 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5013 && len <= 4)
5014 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5015 }
5016
5017 if (mips_debug)
5018 {
5af949e3
UW
5019 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5020 paddress (gdbarch, stack_offset));
5021 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5022 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5023 }
5024
5025 addr = sp + stack_offset + longword_offset;
5026
5027 if (mips_debug)
5028 {
5029 int i;
5af949e3
UW
5030 fprintf_unfiltered (gdb_stdlog, " @%s ",
5031 paddress (gdbarch, addr));
cb3d25d1
MS
5032 for (i = 0; i < partial_len; i++)
5033 {
6d82d43b 5034 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5035 val[i] & 0xff);
5036 }
5037 }
5038 write_memory (addr, val, partial_len);
5039 }
5040
5041 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5042 structs may go thru BOTH paths. */
cb3d25d1 5043 /* Write this portion of the argument to a general
6d82d43b 5044 purpose register. */
74ed0bb4 5045 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5046 {
5863b5d5
MR
5047 LONGEST regval;
5048
5049 /* Sign extend pointers, 32-bit integers and signed
5050 16-bit and 8-bit integers; everything else is taken
5051 as is. */
5052
5053 if ((partial_len == 4
5054 && (typecode == TYPE_CODE_PTR
5055 || typecode == TYPE_CODE_INT))
5056 || (partial_len < 4
5057 && typecode == TYPE_CODE_INT
5058 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5059 regval = extract_signed_integer (val, partial_len,
5060 byte_order);
5863b5d5 5061 else
e17a4113
UW
5062 regval = extract_unsigned_integer (val, partial_len,
5063 byte_order);
cb3d25d1
MS
5064
5065 /* A non-floating-point argument being passed in a
5066 general register. If a struct or union, and if
5067 the remaining length is smaller than the register
5068 size, we have to adjust the register value on
5069 big endian targets.
5070
5071 It does not seem to be necessary to do the
1a69e1e4 5072 same for integral types. */
cb3d25d1 5073
72a155b4 5074 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5075 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5076 && (typecode == TYPE_CODE_STRUCT
5077 || typecode == TYPE_CODE_UNION))
1a69e1e4 5078 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5079 * TARGET_CHAR_BIT);
cb3d25d1
MS
5080
5081 if (mips_debug)
5082 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5083 argreg,
1a69e1e4 5084 phex (regval, MIPS64_REGSIZE));
9c9acae0 5085 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5086
74ed0bb4 5087 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5088 TYPE_LENGTH (arg_type) - len))
5089 {
5090 if (mips_debug)
5091 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5092 float_argreg,
5093 phex (regval, MIPS64_REGSIZE));
5094 regcache_cooked_write_unsigned (regcache, float_argreg,
5095 regval);
5096 }
5097
5098 float_argreg++;
cb3d25d1
MS
5099 argreg++;
5100 }
5101
5102 len -= partial_len;
5103 val += partial_len;
5104
b021a221
MS
5105 /* Compute the offset into the stack at which we will
5106 copy the next parameter.
cb3d25d1
MS
5107
5108 In N32 (N64?), the stack_offset only needs to be
5109 adjusted when it has been used. */
5110
5111 if (stack_used_p)
1a69e1e4 5112 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5113 }
5114 }
5115 if (mips_debug)
5116 fprintf_unfiltered (gdb_stdlog, "\n");
5117 }
5118
f10683bb 5119 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5120
cb3d25d1
MS
5121 /* Return adjusted stack pointer. */
5122 return sp;
5123}
5124
6d82d43b 5125static enum return_value_convention
6a3a010b 5126mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5127 struct type *type, struct regcache *regcache,
47a35522 5128 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5129{
72a155b4 5130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5131
5132 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5133
5134 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5135 if needed), as appropriate for the type. Composite results (struct,
5136 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5137 following rules:
5138
5139 * A struct with only one or two floating point fields is returned in $f0
5140 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5141 case.
5142
f08877ba 5143 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5144 $2 (first 64 bits) and $3 (remainder, if necessary).
5145
5146 * Larger composite results are handled by converting the function to a
5147 procedure with an implicit first parameter, which is a pointer to an area
5148 reserved by the caller to receive the result. [The o32-bit ABI requires
5149 that all composite results be handled by conversion to implicit first
5150 parameters. The MIPS/SGI Fortran implementation has always made a
5151 specific exception to return COMPLEX results in the floating point
5152 registers.] */
5153
f08877ba 5154 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5155 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5156 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5157 && TYPE_LENGTH (type) == 16
5158 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5159 {
5160 /* A 128-bit floating-point value fills both $f0 and $f2. The
5161 two registers are used in the same as memory order, so the
5162 eight bytes with the lower memory address are in $f0. */
5163 if (mips_debug)
5164 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5165 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5166 (gdbarch_num_regs (gdbarch)
5167 + mips_regnum (gdbarch)->fp0),
72a155b4 5168 8, gdbarch_byte_order (gdbarch),
4c6b5505 5169 readbuf, writebuf, 0);
ba32f989 5170 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5171 (gdbarch_num_regs (gdbarch)
5172 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5173 8, gdbarch_byte_order (gdbarch),
4c6b5505 5174 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5175 writebuf ? writebuf + 8 : writebuf, 0);
5176 return RETURN_VALUE_REGISTER_CONVENTION;
5177 }
6d82d43b
AC
5178 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5179 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5180 {
59aa1faa 5181 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5182 if (mips_debug)
5183 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5184 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5185 (gdbarch_num_regs (gdbarch)
5186 + mips_regnum (gdbarch)->fp0),
6d82d43b 5187 TYPE_LENGTH (type),
72a155b4 5188 gdbarch_byte_order (gdbarch),
4c6b5505 5189 readbuf, writebuf, 0);
6d82d43b
AC
5190 return RETURN_VALUE_REGISTER_CONVENTION;
5191 }
5192 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5193 && TYPE_NFIELDS (type) <= 2
5194 && TYPE_NFIELDS (type) >= 1
5195 && ((TYPE_NFIELDS (type) == 1
b18bb924 5196 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5197 == TYPE_CODE_FLT))
5198 || (TYPE_NFIELDS (type) == 2
b18bb924 5199 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5200 == TYPE_CODE_FLT)
b18bb924 5201 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5202 == TYPE_CODE_FLT))))
6d82d43b
AC
5203 {
5204 /* A struct that contains one or two floats. Each value is part
5205 in the least significant part of their floating point
5b68030f 5206 register (or GPR, for soft float). */
6d82d43b
AC
5207 int regnum;
5208 int field;
5b68030f
JM
5209 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5210 ? mips_regnum (gdbarch)->fp0
5211 : MIPS_V0_REGNUM);
6d82d43b
AC
5212 field < TYPE_NFIELDS (type); field++, regnum += 2)
5213 {
5214 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5215 / TARGET_CHAR_BIT);
5216 if (mips_debug)
5217 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5218 offset);
5b68030f
JM
5219 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5220 {
5221 /* A 16-byte long double field goes in two consecutive
5222 registers. */
5223 mips_xfer_register (gdbarch, regcache,
5224 gdbarch_num_regs (gdbarch) + regnum,
5225 8,
5226 gdbarch_byte_order (gdbarch),
5227 readbuf, writebuf, offset);
5228 mips_xfer_register (gdbarch, regcache,
5229 gdbarch_num_regs (gdbarch) + regnum + 1,
5230 8,
5231 gdbarch_byte_order (gdbarch),
5232 readbuf, writebuf, offset + 8);
5233 }
5234 else
5235 mips_xfer_register (gdbarch, regcache,
5236 gdbarch_num_regs (gdbarch) + regnum,
5237 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5238 gdbarch_byte_order (gdbarch),
5239 readbuf, writebuf, offset);
6d82d43b
AC
5240 }
5241 return RETURN_VALUE_REGISTER_CONVENTION;
5242 }
5243 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5244 || TYPE_CODE (type) == TYPE_CODE_UNION
5245 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5246 {
f08877ba 5247 /* A composite type. Extract the left justified value,
6d82d43b
AC
5248 regardless of the byte order. I.e. DO NOT USE
5249 mips_xfer_lower. */
5250 int offset;
5251 int regnum;
4c7d22cb 5252 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5253 offset < TYPE_LENGTH (type);
72a155b4 5254 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5255 {
72a155b4 5256 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5257 if (offset + xfer > TYPE_LENGTH (type))
5258 xfer = TYPE_LENGTH (type) - offset;
5259 if (mips_debug)
5260 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5261 offset, xfer, regnum);
ba32f989
DJ
5262 mips_xfer_register (gdbarch, regcache,
5263 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5264 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5265 offset);
6d82d43b
AC
5266 }
5267 return RETURN_VALUE_REGISTER_CONVENTION;
5268 }
5269 else
5270 {
5271 /* A scalar extract each part but least-significant-byte
5272 justified. */
5273 int offset;
5274 int regnum;
4c7d22cb 5275 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5276 offset < TYPE_LENGTH (type);
72a155b4 5277 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5278 {
72a155b4 5279 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5280 if (offset + xfer > TYPE_LENGTH (type))
5281 xfer = TYPE_LENGTH (type) - offset;
5282 if (mips_debug)
5283 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5284 offset, xfer, regnum);
ba32f989
DJ
5285 mips_xfer_register (gdbarch, regcache,
5286 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5287 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5288 readbuf, writebuf, offset);
6d82d43b
AC
5289 }
5290 return RETURN_VALUE_REGISTER_CONVENTION;
5291 }
5292}
5293
6a3a010b
MR
5294/* Which registers to use for passing floating-point values between
5295 function calls, one of floating-point, general and both kinds of
5296 registers. O32 and O64 use different register kinds for standard
5297 MIPS and MIPS16 code; to make the handling of cases where we may
5298 not know what kind of code is being used (e.g. no debug information)
5299 easier we sometimes use both kinds. */
5300
5301enum mips_fval_reg
5302{
5303 mips_fval_fpr,
5304 mips_fval_gpr,
5305 mips_fval_both
5306};
5307
6d82d43b
AC
5308/* O32 ABI stuff. */
5309
5310static CORE_ADDR
7d9b040b 5311mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5312 struct regcache *regcache, CORE_ADDR bp_addr,
5313 int nargs, struct value **args, CORE_ADDR sp,
5314 int struct_return, CORE_ADDR struct_addr)
5315{
5316 int argreg;
5317 int float_argreg;
5318 int argnum;
5319 int len = 0;
5320 int stack_offset = 0;
e17a4113 5321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5322 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5323
5324 /* For shared libraries, "t9" needs to point at the function
5325 address. */
4c7d22cb 5326 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5327
5328 /* Set the return address register to point to the entry point of
5329 the program, where a breakpoint lies in wait. */
4c7d22cb 5330 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5331
5332 /* First ensure that the stack and structure return address (if any)
5333 are properly aligned. The stack has to be at least 64-bit
5334 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5335 aligned. For n32 and n64, stack frames need to be 128-bit
5336 aligned, so we round to this widest known alignment. */
5337
5b03f266
AC
5338 sp = align_down (sp, 16);
5339 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5340
5341 /* Now make space on the stack for the args. */
5342 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5343 {
5344 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5345
5346 /* Align to double-word if necessary. */
2afd3f0a 5347 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5348 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5349 /* Allocate space on the stack. */
354ecfd5 5350 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5351 }
5b03f266 5352 sp -= align_up (len, 16);
ebafbe83
MS
5353
5354 if (mips_debug)
6d82d43b 5355 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5356 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5357 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5358
5359 /* Initialize the integer and float register pointers. */
4c7d22cb 5360 argreg = MIPS_A0_REGNUM;
72a155b4 5361 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5362
bcb0cc15 5363 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5364 if (struct_return)
5365 {
5366 if (mips_debug)
5367 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5368 "mips_o32_push_dummy_call: "
5369 "struct_return reg=%d %s\n",
5af949e3 5370 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5371 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5372 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5373 }
5374
5375 /* Now load as many as possible of the first arguments into
5376 registers, and push the rest onto the stack. Loop thru args
5377 from first to last. */
5378 for (argnum = 0; argnum < nargs; argnum++)
5379 {
47a35522 5380 const gdb_byte *val;
ebafbe83 5381 struct value *arg = args[argnum];
4991999e 5382 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5383 int len = TYPE_LENGTH (arg_type);
5384 enum type_code typecode = TYPE_CODE (arg_type);
5385
5386 if (mips_debug)
5387 fprintf_unfiltered (gdb_stdlog,
25ab4790 5388 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5389 argnum + 1, len, (int) typecode);
5390
47a35522 5391 val = value_contents (arg);
46cac009
AC
5392
5393 /* 32-bit ABIs always start floating point arguments in an
5394 even-numbered floating point register. Round the FP register
5395 up before the check to see if there are any FP registers
6a3a010b
MR
5396 left. O32 targets also pass the FP in the integer registers
5397 so also round up normal registers. */
74ed0bb4 5398 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5399 {
5400 if ((float_argreg & 1))
5401 float_argreg++;
5402 }
5403
5404 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5405 treated specially. On 32-bit architectures, doubles are
5406 passed in register pairs; the even FP register gets the
5407 low word, and the odd FP register gets the high word.
5408 On O32, the first two floating point arguments are also
5409 copied to general registers, following their memory order,
5410 because MIPS16 functions don't use float registers for
5411 arguments. This duplication of arguments in general
5412 registers can't hurt non-MIPS16 functions, because those
5413 registers are normally skipped. */
46cac009 5414
74ed0bb4
MD
5415 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5416 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5417 {
8b07f6d8 5418 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5419 {
6a3a010b
MR
5420 int freg_offset = gdbarch_byte_order (gdbarch)
5421 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5422 unsigned long regval;
5423
6a3a010b
MR
5424 /* First word. */
5425 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5426 if (mips_debug)
5427 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5428 float_argreg + freg_offset,
5429 phex (regval, 4));
025bb325 5430 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5431 float_argreg++ + freg_offset,
5432 regval);
46cac009
AC
5433 if (mips_debug)
5434 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5435 argreg, phex (regval, 4));
9c9acae0 5436 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5437
6a3a010b
MR
5438 /* Second word. */
5439 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5440 if (mips_debug)
5441 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5442 float_argreg - freg_offset,
5443 phex (regval, 4));
025bb325 5444 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5445 float_argreg++ - freg_offset,
5446 regval);
46cac009
AC
5447 if (mips_debug)
5448 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5449 argreg, phex (regval, 4));
9c9acae0 5450 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5451 }
5452 else
5453 {
5454 /* This is a floating point value that fits entirely
5455 in a single register. */
5456 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5457 above to ensure that it is even register aligned. */
e17a4113 5458 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5459 if (mips_debug)
5460 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5461 float_argreg, phex (regval, len));
025bb325
MS
5462 regcache_cooked_write_unsigned (regcache,
5463 float_argreg++, regval);
5b68030f
JM
5464 /* Although two FP registers are reserved for each
5465 argument, only one corresponding integer register is
5466 reserved. */
46cac009
AC
5467 if (mips_debug)
5468 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5469 argreg, phex (regval, len));
5b68030f 5470 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5471 }
5472 /* Reserve space for the FP register. */
1a69e1e4 5473 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5474 }
5475 else
5476 {
5477 /* Copy the argument to general registers or the stack in
5478 register-sized pieces. Large arguments are split between
5479 registers and stack. */
1a69e1e4
DJ
5480 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5481 are treated specially: Irix cc passes
d5ac5a39
AC
5482 them in registers where gcc sometimes puts them on the
5483 stack. For maximum compatibility, we will put them in
5484 both places. */
1a69e1e4
DJ
5485 int odd_sized_struct = (len > MIPS32_REGSIZE
5486 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5487 /* Structures should be aligned to eight bytes (even arg registers)
5488 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5489 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5490 {
5491 if ((argreg & 1))
968b5391
MR
5492 {
5493 argreg++;
1a69e1e4 5494 stack_offset += MIPS32_REGSIZE;
968b5391 5495 }
46cac009 5496 }
46cac009
AC
5497 while (len > 0)
5498 {
1a69e1e4 5499 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5500
5501 if (mips_debug)
5502 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5503 partial_len);
5504
5505 /* Write this portion of the argument to the stack. */
74ed0bb4 5506 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5507 || odd_sized_struct)
46cac009
AC
5508 {
5509 /* Should shorter than int integer values be
025bb325 5510 promoted to int before being stored? */
46cac009
AC
5511 int longword_offset = 0;
5512 CORE_ADDR addr;
46cac009
AC
5513
5514 if (mips_debug)
5515 {
5af949e3
UW
5516 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5517 paddress (gdbarch, stack_offset));
5518 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5519 paddress (gdbarch, longword_offset));
46cac009
AC
5520 }
5521
5522 addr = sp + stack_offset + longword_offset;
5523
5524 if (mips_debug)
5525 {
5526 int i;
5af949e3
UW
5527 fprintf_unfiltered (gdb_stdlog, " @%s ",
5528 paddress (gdbarch, addr));
46cac009
AC
5529 for (i = 0; i < partial_len; i++)
5530 {
6d82d43b 5531 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5532 val[i] & 0xff);
5533 }
5534 }
5535 write_memory (addr, val, partial_len);
5536 }
5537
5538 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5539 structs may go thru BOTH paths. */
46cac009 5540 /* Write this portion of the argument to a general
6d82d43b 5541 purpose register. */
74ed0bb4 5542 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5543 {
e17a4113
UW
5544 LONGEST regval = extract_signed_integer (val, partial_len,
5545 byte_order);
4246e332 5546 /* Value may need to be sign extended, because
1b13c4f6 5547 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5548
5549 /* A non-floating-point argument being passed in a
5550 general register. If a struct or union, and if
5551 the remaining length is smaller than the register
5552 size, we have to adjust the register value on
5553 big endian targets.
5554
5555 It does not seem to be necessary to do the
5556 same for integral types.
5557
5558 Also don't do this adjustment on O64 binaries.
5559
5560 cagney/2001-07-23: gdb/179: Also, GCC, when
5561 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5562 mips_abi_regsize(), generates a left shift
5563 as part of storing the argument in a register
5564 (the left shift isn't generated when
1b13c4f6 5565 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5566 it is quite possible that this is GCC
5567 contradicting the LE/O32 ABI, GDB has not been
5568 adjusted to accommodate this. Either someone
5569 needs to demonstrate that the LE/O32 ABI
5570 specifies such a left shift OR this new ABI gets
5571 identified as such and GDB gets tweaked
5572 accordingly. */
5573
72a155b4 5574 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5575 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5576 && (typecode == TYPE_CODE_STRUCT
5577 || typecode == TYPE_CODE_UNION))
1a69e1e4 5578 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5579 * TARGET_CHAR_BIT);
46cac009
AC
5580
5581 if (mips_debug)
5582 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5583 argreg,
1a69e1e4 5584 phex (regval, MIPS32_REGSIZE));
9c9acae0 5585 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5586 argreg++;
5587
5588 /* Prevent subsequent floating point arguments from
5589 being passed in floating point registers. */
74ed0bb4 5590 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5591 }
5592
5593 len -= partial_len;
5594 val += partial_len;
5595
b021a221
MS
5596 /* Compute the offset into the stack at which we will
5597 copy the next parameter.
46cac009 5598
6d82d43b
AC
5599 In older ABIs, the caller reserved space for
5600 registers that contained arguments. This was loosely
5601 refered to as their "home". Consequently, space is
5602 always allocated. */
46cac009 5603
1a69e1e4 5604 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5605 }
5606 }
5607 if (mips_debug)
5608 fprintf_unfiltered (gdb_stdlog, "\n");
5609 }
5610
f10683bb 5611 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5612
46cac009
AC
5613 /* Return adjusted stack pointer. */
5614 return sp;
5615}
5616
6d82d43b 5617static enum return_value_convention
6a3a010b 5618mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5619 struct type *type, struct regcache *regcache,
47a35522 5620 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5621{
6a3a010b 5622 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5623 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5624 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5625 enum mips_fval_reg fval_reg;
6d82d43b 5626
6a3a010b 5627 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5628 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5629 || TYPE_CODE (type) == TYPE_CODE_UNION
5630 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5631 return RETURN_VALUE_STRUCT_CONVENTION;
5632 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5633 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5634 {
6a3a010b
MR
5635 /* A single-precision floating-point value. If reading in or copying,
5636 then we get it from/put it to FP0 for standard MIPS code or GPR2
5637 for MIPS16 code. If writing out only, then we put it to both FP0
5638 and GPR2. We do not support reading in with no function known, if
5639 this safety check ever triggers, then we'll have to try harder. */
5640 gdb_assert (function || !readbuf);
6d82d43b 5641 if (mips_debug)
6a3a010b
MR
5642 switch (fval_reg)
5643 {
5644 case mips_fval_fpr:
5645 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5646 break;
5647 case mips_fval_gpr:
5648 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5649 break;
5650 case mips_fval_both:
5651 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5652 break;
5653 }
5654 if (fval_reg != mips_fval_gpr)
5655 mips_xfer_register (gdbarch, regcache,
5656 (gdbarch_num_regs (gdbarch)
5657 + mips_regnum (gdbarch)->fp0),
5658 TYPE_LENGTH (type),
5659 gdbarch_byte_order (gdbarch),
5660 readbuf, writebuf, 0);
5661 if (fval_reg != mips_fval_fpr)
5662 mips_xfer_register (gdbarch, regcache,
5663 gdbarch_num_regs (gdbarch) + 2,
5664 TYPE_LENGTH (type),
5665 gdbarch_byte_order (gdbarch),
5666 readbuf, writebuf, 0);
6d82d43b
AC
5667 return RETURN_VALUE_REGISTER_CONVENTION;
5668 }
5669 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5670 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5671 {
6a3a010b
MR
5672 /* A double-precision floating-point value. If reading in or copying,
5673 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5674 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5675 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5676 no function known, if this safety check ever triggers, then we'll
5677 have to try harder. */
5678 gdb_assert (function || !readbuf);
6d82d43b 5679 if (mips_debug)
6a3a010b
MR
5680 switch (fval_reg)
5681 {
5682 case mips_fval_fpr:
5683 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5684 break;
5685 case mips_fval_gpr:
5686 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5687 break;
5688 case mips_fval_both:
5689 fprintf_unfiltered (gdb_stderr,
5690 "Return float in $fp1/$fp0 and $2/$3\n");
5691 break;
5692 }
5693 if (fval_reg != mips_fval_gpr)
6d82d43b 5694 {
6a3a010b
MR
5695 /* The most significant part goes in FP1, and the least significant
5696 in FP0. */
5697 switch (gdbarch_byte_order (gdbarch))
5698 {
5699 case BFD_ENDIAN_LITTLE:
5700 mips_xfer_register (gdbarch, regcache,
5701 (gdbarch_num_regs (gdbarch)
5702 + mips_regnum (gdbarch)->fp0 + 0),
5703 4, gdbarch_byte_order (gdbarch),
5704 readbuf, writebuf, 0);
5705 mips_xfer_register (gdbarch, regcache,
5706 (gdbarch_num_regs (gdbarch)
5707 + mips_regnum (gdbarch)->fp0 + 1),
5708 4, gdbarch_byte_order (gdbarch),
5709 readbuf, writebuf, 4);
5710 break;
5711 case BFD_ENDIAN_BIG:
5712 mips_xfer_register (gdbarch, regcache,
5713 (gdbarch_num_regs (gdbarch)
5714 + mips_regnum (gdbarch)->fp0 + 1),
5715 4, gdbarch_byte_order (gdbarch),
5716 readbuf, writebuf, 0);
5717 mips_xfer_register (gdbarch, regcache,
5718 (gdbarch_num_regs (gdbarch)
5719 + mips_regnum (gdbarch)->fp0 + 0),
5720 4, gdbarch_byte_order (gdbarch),
5721 readbuf, writebuf, 4);
5722 break;
5723 default:
5724 internal_error (__FILE__, __LINE__, _("bad switch"));
5725 }
5726 }
5727 if (fval_reg != mips_fval_fpr)
5728 {
5729 /* The two 32-bit parts are always placed in GPR2 and GPR3
5730 following these registers' memory order. */
ba32f989 5731 mips_xfer_register (gdbarch, regcache,
6a3a010b 5732 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5733 4, gdbarch_byte_order (gdbarch),
4c6b5505 5734 readbuf, writebuf, 0);
ba32f989 5735 mips_xfer_register (gdbarch, regcache,
6a3a010b 5736 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5737 4, gdbarch_byte_order (gdbarch),
4c6b5505 5738 readbuf, writebuf, 4);
6d82d43b
AC
5739 }
5740 return RETURN_VALUE_REGISTER_CONVENTION;
5741 }
5742#if 0
5743 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5744 && TYPE_NFIELDS (type) <= 2
5745 && TYPE_NFIELDS (type) >= 1
5746 && ((TYPE_NFIELDS (type) == 1
5747 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5748 == TYPE_CODE_FLT))
5749 || (TYPE_NFIELDS (type) == 2
5750 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5751 == TYPE_CODE_FLT)
5752 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5753 == TYPE_CODE_FLT)))
5754 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5755 {
5756 /* A struct that contains one or two floats. Each value is part
5757 in the least significant part of their floating point
5758 register.. */
870cd05e 5759 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
5760 int regnum;
5761 int field;
72a155b4 5762 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5763 field < TYPE_NFIELDS (type); field++, regnum += 2)
5764 {
5765 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5766 / TARGET_CHAR_BIT);
5767 if (mips_debug)
5768 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5769 offset);
ba32f989
DJ
5770 mips_xfer_register (gdbarch, regcache,
5771 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5772 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5773 gdbarch_byte_order (gdbarch),
4c6b5505 5774 readbuf, writebuf, offset);
6d82d43b
AC
5775 }
5776 return RETURN_VALUE_REGISTER_CONVENTION;
5777 }
5778#endif
5779#if 0
5780 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5781 || TYPE_CODE (type) == TYPE_CODE_UNION)
5782 {
5783 /* A structure or union. Extract the left justified value,
5784 regardless of the byte order. I.e. DO NOT USE
5785 mips_xfer_lower. */
5786 int offset;
5787 int regnum;
4c7d22cb 5788 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5789 offset < TYPE_LENGTH (type);
72a155b4 5790 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5791 {
72a155b4 5792 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5793 if (offset + xfer > TYPE_LENGTH (type))
5794 xfer = TYPE_LENGTH (type) - offset;
5795 if (mips_debug)
5796 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5797 offset, xfer, regnum);
ba32f989
DJ
5798 mips_xfer_register (gdbarch, regcache,
5799 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5800 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5801 }
5802 return RETURN_VALUE_REGISTER_CONVENTION;
5803 }
5804#endif
5805 else
5806 {
5807 /* A scalar extract each part but least-significant-byte
5808 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5809 the ISA. */
6d82d43b
AC
5810 int offset;
5811 int regnum;
4c7d22cb 5812 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5813 offset < TYPE_LENGTH (type);
1a69e1e4 5814 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5815 {
1a69e1e4 5816 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5817 if (offset + xfer > TYPE_LENGTH (type))
5818 xfer = TYPE_LENGTH (type) - offset;
5819 if (mips_debug)
5820 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5821 offset, xfer, regnum);
ba32f989
DJ
5822 mips_xfer_register (gdbarch, regcache,
5823 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5824 gdbarch_byte_order (gdbarch),
4c6b5505 5825 readbuf, writebuf, offset);
6d82d43b
AC
5826 }
5827 return RETURN_VALUE_REGISTER_CONVENTION;
5828 }
5829}
5830
5831/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5832 ABI. */
46cac009
AC
5833
5834static CORE_ADDR
7d9b040b 5835mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5836 struct regcache *regcache, CORE_ADDR bp_addr,
5837 int nargs,
5838 struct value **args, CORE_ADDR sp,
5839 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5840{
5841 int argreg;
5842 int float_argreg;
5843 int argnum;
5844 int len = 0;
5845 int stack_offset = 0;
e17a4113 5846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5847 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5848
25ab4790
AC
5849 /* For shared libraries, "t9" needs to point at the function
5850 address. */
4c7d22cb 5851 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5852
5853 /* Set the return address register to point to the entry point of
5854 the program, where a breakpoint lies in wait. */
4c7d22cb 5855 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5856
46cac009
AC
5857 /* First ensure that the stack and structure return address (if any)
5858 are properly aligned. The stack has to be at least 64-bit
5859 aligned even on 32-bit machines, because doubles must be 64-bit
5860 aligned. For n32 and n64, stack frames need to be 128-bit
5861 aligned, so we round to this widest known alignment. */
5862
5b03f266
AC
5863 sp = align_down (sp, 16);
5864 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5865
5866 /* Now make space on the stack for the args. */
5867 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5868 {
5869 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5870
968b5391 5871 /* Allocate space on the stack. */
354ecfd5 5872 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5873 }
5b03f266 5874 sp -= align_up (len, 16);
46cac009
AC
5875
5876 if (mips_debug)
6d82d43b 5877 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5878 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5879 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5880
5881 /* Initialize the integer and float register pointers. */
4c7d22cb 5882 argreg = MIPS_A0_REGNUM;
72a155b4 5883 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5884
5885 /* The struct_return pointer occupies the first parameter-passing reg. */
5886 if (struct_return)
5887 {
5888 if (mips_debug)
5889 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5890 "mips_o64_push_dummy_call: "
5891 "struct_return reg=%d %s\n",
5af949e3 5892 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5893 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5894 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5895 }
5896
5897 /* Now load as many as possible of the first arguments into
5898 registers, and push the rest onto the stack. Loop thru args
5899 from first to last. */
5900 for (argnum = 0; argnum < nargs; argnum++)
5901 {
47a35522 5902 const gdb_byte *val;
46cac009 5903 struct value *arg = args[argnum];
4991999e 5904 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5905 int len = TYPE_LENGTH (arg_type);
5906 enum type_code typecode = TYPE_CODE (arg_type);
5907
5908 if (mips_debug)
5909 fprintf_unfiltered (gdb_stdlog,
25ab4790 5910 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5911 argnum + 1, len, (int) typecode);
5912
47a35522 5913 val = value_contents (arg);
ebafbe83 5914
ebafbe83 5915 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5916 treated specially. On 32-bit architectures, doubles are
5917 passed in register pairs; the even FP register gets the
5918 low word, and the odd FP register gets the high word.
5919 On O64, the first two floating point arguments are also
5920 copied to general registers, because MIPS16 functions
5921 don't use float registers for arguments. This duplication
5922 of arguments in general registers can't hurt non-MIPS16
5923 functions because those registers are normally skipped. */
ebafbe83 5924
74ed0bb4
MD
5925 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5926 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5927 {
e17a4113 5928 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5929 if (mips_debug)
5930 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5931 float_argreg, phex (regval, len));
9c9acae0 5932 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5933 if (mips_debug)
5934 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5935 argreg, phex (regval, len));
9c9acae0 5936 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5937 argreg++;
ebafbe83 5938 /* Reserve space for the FP register. */
1a69e1e4 5939 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5940 }
5941 else
5942 {
5943 /* Copy the argument to general registers or the stack in
5944 register-sized pieces. Large arguments are split between
5945 registers and stack. */
1a69e1e4 5946 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5947 are treated specially: Irix cc passes them in registers
5948 where gcc sometimes puts them on the stack. For maximum
5949 compatibility, we will put them in both places. */
1a69e1e4
DJ
5950 int odd_sized_struct = (len > MIPS64_REGSIZE
5951 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5952 while (len > 0)
5953 {
1a69e1e4 5954 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5955
5956 if (mips_debug)
5957 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5958 partial_len);
5959
5960 /* Write this portion of the argument to the stack. */
74ed0bb4 5961 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5962 || odd_sized_struct)
ebafbe83
MS
5963 {
5964 /* Should shorter than int integer values be
025bb325 5965 promoted to int before being stored? */
ebafbe83
MS
5966 int longword_offset = 0;
5967 CORE_ADDR addr;
72a155b4 5968 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5969 {
1a69e1e4
DJ
5970 if ((typecode == TYPE_CODE_INT
5971 || typecode == TYPE_CODE_PTR
5972 || typecode == TYPE_CODE_FLT)
5973 && len <= 4)
5974 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
5975 }
5976
5977 if (mips_debug)
5978 {
5af949e3
UW
5979 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5980 paddress (gdbarch, stack_offset));
5981 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5982 paddress (gdbarch, longword_offset));
ebafbe83
MS
5983 }
5984
5985 addr = sp + stack_offset + longword_offset;
5986
5987 if (mips_debug)
5988 {
5989 int i;
5af949e3
UW
5990 fprintf_unfiltered (gdb_stdlog, " @%s ",
5991 paddress (gdbarch, addr));
ebafbe83
MS
5992 for (i = 0; i < partial_len; i++)
5993 {
6d82d43b 5994 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
5995 val[i] & 0xff);
5996 }
5997 }
5998 write_memory (addr, val, partial_len);
5999 }
6000
6001 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6002 structs may go thru BOTH paths. */
ebafbe83 6003 /* Write this portion of the argument to a general
6d82d43b 6004 purpose register. */
74ed0bb4 6005 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6006 {
e17a4113
UW
6007 LONGEST regval = extract_signed_integer (val, partial_len,
6008 byte_order);
4246e332 6009 /* Value may need to be sign extended, because
1b13c4f6 6010 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6011
6012 /* A non-floating-point argument being passed in a
6013 general register. If a struct or union, and if
6014 the remaining length is smaller than the register
6015 size, we have to adjust the register value on
6016 big endian targets.
6017
6018 It does not seem to be necessary to do the
025bb325 6019 same for integral types. */
480d3dd2 6020
72a155b4 6021 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6022 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6023 && (typecode == TYPE_CODE_STRUCT
6024 || typecode == TYPE_CODE_UNION))
1a69e1e4 6025 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6026 * TARGET_CHAR_BIT);
ebafbe83
MS
6027
6028 if (mips_debug)
6029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6030 argreg,
1a69e1e4 6031 phex (regval, MIPS64_REGSIZE));
9c9acae0 6032 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6033 argreg++;
6034
6035 /* Prevent subsequent floating point arguments from
6036 being passed in floating point registers. */
74ed0bb4 6037 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6038 }
6039
6040 len -= partial_len;
6041 val += partial_len;
6042
b021a221
MS
6043 /* Compute the offset into the stack at which we will
6044 copy the next parameter.
ebafbe83 6045
6d82d43b
AC
6046 In older ABIs, the caller reserved space for
6047 registers that contained arguments. This was loosely
6048 refered to as their "home". Consequently, space is
6049 always allocated. */
ebafbe83 6050
1a69e1e4 6051 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6052 }
6053 }
6054 if (mips_debug)
6055 fprintf_unfiltered (gdb_stdlog, "\n");
6056 }
6057
f10683bb 6058 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6059
ebafbe83
MS
6060 /* Return adjusted stack pointer. */
6061 return sp;
6062}
6063
9c8fdbfa 6064static enum return_value_convention
6a3a010b 6065mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6066 struct type *type, struct regcache *regcache,
47a35522 6067 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6068{
6a3a010b 6069 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6070 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 6071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 6072 enum mips_fval_reg fval_reg;
7a076fd2 6073
6a3a010b 6074 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6075 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6076 || TYPE_CODE (type) == TYPE_CODE_UNION
6077 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6078 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6079 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6080 {
6a3a010b
MR
6081 /* A floating-point value. If reading in or copying, then we get it
6082 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6083 If writing out only, then we put it to both FP0 and GPR2. We do
6084 not support reading in with no function known, if this safety
6085 check ever triggers, then we'll have to try harder. */
6086 gdb_assert (function || !readbuf);
7a076fd2 6087 if (mips_debug)
6a3a010b
MR
6088 switch (fval_reg)
6089 {
6090 case mips_fval_fpr:
6091 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6092 break;
6093 case mips_fval_gpr:
6094 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6095 break;
6096 case mips_fval_both:
6097 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6098 break;
6099 }
6100 if (fval_reg != mips_fval_gpr)
6101 mips_xfer_register (gdbarch, regcache,
6102 (gdbarch_num_regs (gdbarch)
6103 + mips_regnum (gdbarch)->fp0),
6104 TYPE_LENGTH (type),
6105 gdbarch_byte_order (gdbarch),
6106 readbuf, writebuf, 0);
6107 if (fval_reg != mips_fval_fpr)
6108 mips_xfer_register (gdbarch, regcache,
6109 gdbarch_num_regs (gdbarch) + 2,
6110 TYPE_LENGTH (type),
6111 gdbarch_byte_order (gdbarch),
6112 readbuf, writebuf, 0);
7a076fd2
FF
6113 return RETURN_VALUE_REGISTER_CONVENTION;
6114 }
6115 else
6116 {
6117 /* A scalar extract each part but least-significant-byte
025bb325 6118 justified. */
7a076fd2
FF
6119 int offset;
6120 int regnum;
6121 for (offset = 0, regnum = MIPS_V0_REGNUM;
6122 offset < TYPE_LENGTH (type);
1a69e1e4 6123 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6124 {
1a69e1e4 6125 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6126 if (offset + xfer > TYPE_LENGTH (type))
6127 xfer = TYPE_LENGTH (type) - offset;
6128 if (mips_debug)
6129 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6130 offset, xfer, regnum);
ba32f989
DJ
6131 mips_xfer_register (gdbarch, regcache,
6132 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6133 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6134 readbuf, writebuf, offset);
7a076fd2
FF
6135 }
6136 return RETURN_VALUE_REGISTER_CONVENTION;
6137 }
6d82d43b
AC
6138}
6139
dd824b04
DJ
6140/* Floating point register management.
6141
6142 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6143 64bit operations, these early MIPS cpus treat fp register pairs
6144 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6145 registers and offer a compatibility mode that emulates the MIPS2 fp
6146 model. When operating in MIPS2 fp compat mode, later cpu's split
6147 double precision floats into two 32-bit chunks and store them in
6148 consecutive fp regs. To display 64-bit floats stored in this
6149 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6150 Throw in user-configurable endianness and you have a real mess.
6151
6152 The way this works is:
6153 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6154 double-precision value will be split across two logical registers.
6155 The lower-numbered logical register will hold the low-order bits,
6156 regardless of the processor's endianness.
6157 - If we are on a 64-bit processor, and we are looking for a
6158 single-precision value, it will be in the low ordered bits
6159 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6160 save slot in memory.
6161 - If we are in 64-bit mode, everything is straightforward.
6162
6163 Note that this code only deals with "live" registers at the top of the
6164 stack. We will attempt to deal with saved registers later, when
025bb325 6165 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6166 interface that can deal with dynamic saved register sizes -- fp
6167 regs could be 32 bits wide in one frame and 64 on the frame above
6168 and below). */
6169
6170/* Copy a 32-bit single-precision value from the current frame
6171 into rare_buffer. */
6172
6173static void
e11c53d2 6174mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6175 gdb_byte *rare_buffer)
dd824b04 6176{
72a155b4
UW
6177 struct gdbarch *gdbarch = get_frame_arch (frame);
6178 int raw_size = register_size (gdbarch, regno);
224c3ddb 6179 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
dd824b04 6180
ca9d61b9 6181 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6182 error (_("can't read register %d (%s)"),
72a155b4 6183 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6184 if (raw_size == 8)
6185 {
6186 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6187 32 bits. */
dd824b04
DJ
6188 int offset;
6189
72a155b4 6190 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6191 offset = 4;
6192 else
6193 offset = 0;
6194
6195 memcpy (rare_buffer, raw_buffer + offset, 4);
6196 }
6197 else
6198 {
6199 memcpy (rare_buffer, raw_buffer, 4);
6200 }
6201}
6202
6203/* Copy a 64-bit double-precision value from the current frame into
6204 rare_buffer. This may include getting half of it from the next
6205 register. */
6206
6207static void
e11c53d2 6208mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6209 gdb_byte *rare_buffer)
dd824b04 6210{
72a155b4
UW
6211 struct gdbarch *gdbarch = get_frame_arch (frame);
6212 int raw_size = register_size (gdbarch, regno);
dd824b04 6213
9c9acae0 6214 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6215 {
6216 /* We have a 64-bit value for this register, and we should use
6d82d43b 6217 all 64 bits. */
ca9d61b9 6218 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6219 error (_("can't read register %d (%s)"),
72a155b4 6220 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6221 }
6222 else
6223 {
72a155b4 6224 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6225
72a155b4 6226 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6227 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6228 _("mips_read_fp_register_double: bad access to "
6229 "odd-numbered FP register"));
dd824b04
DJ
6230
6231 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6232 each register. */
72a155b4 6233 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6234 {
e11c53d2
AC
6235 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6236 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6237 }
361d1df0 6238 else
dd824b04 6239 {
e11c53d2
AC
6240 mips_read_fp_register_single (frame, regno, rare_buffer);
6241 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6242 }
6243 }
6244}
6245
c906108c 6246static void
e11c53d2
AC
6247mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6248 int regnum)
025bb325 6249{ /* Do values for FP (float) regs. */
72a155b4 6250 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6251 gdb_byte *raw_buffer;
025bb325 6252 double doub, flt1; /* Doubles extracted from raw hex data. */
3903d437 6253 int inv1, inv2;
c5aa993b 6254
224c3ddb
SM
6255 raw_buffer
6256 = ((gdb_byte *)
6257 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
c906108c 6258
72a155b4 6259 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6260 fprintf_filtered (file, "%*s",
72a155b4 6261 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6262 "");
f0ef6b29 6263
72a155b4 6264 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6265 {
79a45b7d
TT
6266 struct value_print_options opts;
6267
f0ef6b29
KB
6268 /* 4-byte registers: Print hex and floating. Also print even
6269 numbered registers as doubles. */
e11c53d2 6270 mips_read_fp_register_single (frame, regnum, raw_buffer);
025bb325
MS
6271 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6272 raw_buffer, &inv1);
c5aa993b 6273
79a45b7d 6274 get_formatted_print_options (&opts, 'x');
df4df182
UW
6275 print_scalar_formatted (raw_buffer,
6276 builtin_type (gdbarch)->builtin_uint32,
6277 &opts, 'w', file);
dd824b04 6278
e11c53d2 6279 fprintf_filtered (file, " flt: ");
1adad886 6280 if (inv1)
e11c53d2 6281 fprintf_filtered (file, " <invalid float> ");
1adad886 6282 else
e11c53d2 6283 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6284
72a155b4 6285 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6286 {
e11c53d2 6287 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6288 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6289 raw_buffer, &inv2);
1adad886 6290
e11c53d2 6291 fprintf_filtered (file, " dbl: ");
f0ef6b29 6292 if (inv2)
e11c53d2 6293 fprintf_filtered (file, "<invalid double>");
f0ef6b29 6294 else
e11c53d2 6295 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 6296 }
c906108c
SS
6297 }
6298 else
dd824b04 6299 {
79a45b7d
TT
6300 struct value_print_options opts;
6301
f0ef6b29 6302 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6303 mips_read_fp_register_single (frame, regnum, raw_buffer);
27067745
UW
6304 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6305 raw_buffer, &inv1);
c906108c 6306
e11c53d2 6307 mips_read_fp_register_double (frame, regnum, raw_buffer);
27067745
UW
6308 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6309 raw_buffer, &inv2);
f0ef6b29 6310
79a45b7d 6311 get_formatted_print_options (&opts, 'x');
df4df182
UW
6312 print_scalar_formatted (raw_buffer,
6313 builtin_type (gdbarch)->builtin_uint64,
6314 &opts, 'g', file);
f0ef6b29 6315
e11c53d2 6316 fprintf_filtered (file, " flt: ");
1adad886 6317 if (inv1)
e11c53d2 6318 fprintf_filtered (file, "<invalid float>");
1adad886 6319 else
e11c53d2 6320 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 6321
e11c53d2 6322 fprintf_filtered (file, " dbl: ");
f0ef6b29 6323 if (inv2)
e11c53d2 6324 fprintf_filtered (file, "<invalid double>");
1adad886 6325 else
e11c53d2 6326 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
6327 }
6328}
6329
6330static void
e11c53d2 6331mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6332 int regnum)
f0ef6b29 6333{
a4b8ebc8 6334 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6335 struct value_print_options opts;
de15c4ab 6336 struct value *val;
1adad886 6337
004159a2 6338 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6339 {
e11c53d2 6340 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6341 return;
6342 }
6343
de15c4ab 6344 val = get_frame_register_value (frame, regnum);
f0ef6b29 6345
72a155b4 6346 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6347
6348 /* The problem with printing numeric register names (r26, etc.) is that
6349 the user can't use them on input. Probably the best solution is to
6350 fix it so that either the numeric or the funky (a2, etc.) names
6351 are accepted on input. */
6352 if (regnum < MIPS_NUMREGS)
e11c53d2 6353 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6354 else
e11c53d2 6355 fprintf_filtered (file, ": ");
f0ef6b29 6356
79a45b7d 6357 get_formatted_print_options (&opts, 'x');
de15c4ab
PA
6358 val_print_scalar_formatted (value_type (val),
6359 value_contents_for_printing (val),
6360 value_embedded_offset (val),
6361 val,
6362 &opts, 0, file);
c906108c
SS
6363}
6364
1bab7383
YQ
6365/* Print IEEE exception condition bits in FLAGS. */
6366
6367static void
6368print_fpu_flags (struct ui_file *file, int flags)
6369{
6370 if (flags & (1 << 0))
6371 fputs_filtered (" inexact", file);
6372 if (flags & (1 << 1))
6373 fputs_filtered (" uflow", file);
6374 if (flags & (1 << 2))
6375 fputs_filtered (" oflow", file);
6376 if (flags & (1 << 3))
6377 fputs_filtered (" div0", file);
6378 if (flags & (1 << 4))
6379 fputs_filtered (" inval", file);
6380 if (flags & (1 << 5))
6381 fputs_filtered (" unimp", file);
6382 fputc_filtered ('\n', file);
6383}
6384
6385/* Print interesting information about the floating point processor
6386 (if present) or emulator. */
6387
6388static void
6389mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6390 struct frame_info *frame, const char *args)
6391{
6392 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6393 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6394 ULONGEST fcs = 0;
6395 int i;
6396
6397 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6398 type = MIPS_FPU_NONE;
6399
6400 fprintf_filtered (file, "fpu type: %s\n",
6401 type == MIPS_FPU_DOUBLE ? "double-precision"
6402 : type == MIPS_FPU_SINGLE ? "single-precision"
6403 : "none / unused");
6404
6405 if (type == MIPS_FPU_NONE)
6406 return;
6407
6408 fprintf_filtered (file, "reg size: %d bits\n",
6409 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6410
6411 fputs_filtered ("cond :", file);
6412 if (fcs & (1 << 23))
6413 fputs_filtered (" 0", file);
6414 for (i = 1; i <= 7; i++)
6415 if (fcs & (1 << (24 + i)))
6416 fprintf_filtered (file, " %d", i);
6417 fputc_filtered ('\n', file);
6418
6419 fputs_filtered ("cause :", file);
6420 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6421 fputs ("mask :", stdout);
6422 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6423 fputs ("flags :", stdout);
6424 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6425
6426 fputs_filtered ("rounding: ", file);
6427 switch (fcs & 3)
6428 {
6429 case 0: fputs_filtered ("nearest\n", file); break;
6430 case 1: fputs_filtered ("zero\n", file); break;
6431 case 2: fputs_filtered ("+inf\n", file); break;
6432 case 3: fputs_filtered ("-inf\n", file); break;
6433 }
6434
6435 fputs_filtered ("flush :", file);
6436 if (fcs & (1 << 21))
6437 fputs_filtered (" nearest", file);
6438 if (fcs & (1 << 22))
6439 fputs_filtered (" override", file);
6440 if (fcs & (1 << 24))
6441 fputs_filtered (" zero", file);
6442 if ((fcs & (0xb << 21)) == 0)
6443 fputs_filtered (" no", file);
6444 fputc_filtered ('\n', file);
6445
6446 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6447 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6448 fputc_filtered ('\n', file);
6449
6450 default_print_float_info (gdbarch, file, frame, args);
6451}
6452
f0ef6b29
KB
6453/* Replacement for generic do_registers_info.
6454 Print regs in pretty columns. */
6455
6456static int
e11c53d2
AC
6457print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6458 int regnum)
f0ef6b29 6459{
e11c53d2
AC
6460 fprintf_filtered (file, " ");
6461 mips_print_fp_register (file, frame, regnum);
6462 fprintf_filtered (file, "\n");
f0ef6b29
KB
6463 return regnum + 1;
6464}
6465
6466
025bb325 6467/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6468
6469static int
e11c53d2 6470print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6471 int start_regnum)
c906108c 6472{
a4b8ebc8 6473 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6474 /* Do values for GP (int) regs. */
47a35522 6475 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
025bb325
MS
6476 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6477 per row. */
c906108c 6478 int col, byte;
a4b8ebc8 6479 int regnum;
c906108c 6480
025bb325 6481 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6482 for (col = 0, regnum = start_regnum;
72a155b4
UW
6483 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6484 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6485 regnum++)
c906108c 6486 {
72a155b4 6487 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6488 continue; /* unused register */
004159a2 6489 if (mips_float_register_p (gdbarch, regnum))
025bb325 6490 break; /* End the row: reached FP register. */
0cc93a06 6491 /* Large registers are handled separately. */
72a155b4 6492 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6493 {
6494 if (col > 0)
6495 break; /* End the row before this register. */
6496
6497 /* Print this register on a row by itself. */
6498 mips_print_register (file, frame, regnum);
6499 fprintf_filtered (file, "\n");
6500 return regnum + 1;
6501 }
d05f6826
DJ
6502 if (col == 0)
6503 fprintf_filtered (file, " ");
6d82d43b 6504 fprintf_filtered (file,
72a155b4
UW
6505 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6506 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6507 col++;
6508 }
d05f6826
DJ
6509
6510 if (col == 0)
6511 return regnum;
6512
025bb325 6513 /* Print the R0 to R31 names. */
72a155b4 6514 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6515 fprintf_filtered (file, "\n R%-4d",
72a155b4 6516 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6517 else
6518 fprintf_filtered (file, "\n ");
c906108c 6519
025bb325 6520 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6521 for (col = 0, regnum = start_regnum;
72a155b4
UW
6522 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6523 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6524 regnum++)
c906108c 6525 {
72a155b4 6526 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6527 continue; /* unused register */
004159a2 6528 if (mips_float_register_p (gdbarch, regnum))
025bb325 6529 break; /* End row: reached FP register. */
72a155b4 6530 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6531 break; /* End row: large register. */
6532
c906108c 6533 /* OK: get the data in raw format. */
ca9d61b9 6534 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
c9f4d572 6535 error (_("can't read register %d (%s)"),
72a155b4 6536 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 6537 /* pad small registers */
4246e332 6538 for (byte = 0;
72a155b4
UW
6539 byte < (mips_abi_regsize (gdbarch)
6540 - register_size (gdbarch, regnum)); byte++)
c906108c 6541 printf_filtered (" ");
025bb325 6542 /* Now print the register value in hex, endian order. */
72a155b4 6543 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6544 for (byte =
72a155b4
UW
6545 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6546 byte < register_size (gdbarch, regnum); byte++)
47a35522 6547 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6548 else
72a155b4 6549 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6550 byte >= 0; byte--)
47a35522 6551 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6552 fprintf_filtered (file, " ");
c906108c
SS
6553 col++;
6554 }
025bb325 6555 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6556 fprintf_filtered (file, "\n");
c906108c
SS
6557
6558 return regnum;
6559}
6560
025bb325 6561/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6562
bf1f5b4c 6563static void
e11c53d2
AC
6564mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6565 struct frame_info *frame, int regnum, int all)
c906108c 6566{
025bb325 6567 if (regnum != -1) /* Do one specified register. */
c906108c 6568 {
72a155b4
UW
6569 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6570 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6571 error (_("Not a valid register for the current processor type"));
c906108c 6572
0cc93a06 6573 mips_print_register (file, frame, regnum);
e11c53d2 6574 fprintf_filtered (file, "\n");
c906108c 6575 }
c5aa993b 6576 else
025bb325 6577 /* Do all (or most) registers. */
c906108c 6578 {
72a155b4
UW
6579 regnum = gdbarch_num_regs (gdbarch);
6580 while (regnum < gdbarch_num_regs (gdbarch)
6581 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6582 {
004159a2 6583 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6584 {
025bb325 6585 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6586 regnum = print_fp_register_row (file, frame, regnum);
6587 else
025bb325 6588 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6589 }
c906108c 6590 else
e11c53d2 6591 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6592 }
6593 }
6594}
6595
63807e1d 6596static int
3352ef37
AC
6597mips_single_step_through_delay (struct gdbarch *gdbarch,
6598 struct frame_info *frame)
c906108c 6599{
e17a4113 6600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3352ef37 6601 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6602 struct address_space *aspace;
6603 enum mips_isa isa;
6604 ULONGEST insn;
6605 int status;
6606 int size;
6607
6608 if ((mips_pc_is_mips (pc)
ab50adb6 6609 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6610 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6611 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6612 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6613 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6614 return 0;
6615
4cc0665f
MR
6616 isa = mips_pc_isa (gdbarch, pc);
6617 /* _has_delay_slot above will have validated the read. */
6618 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6619 size = mips_insn_size (isa, insn);
6620 aspace = get_frame_address_space (frame);
6621 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6622}
6623
6d82d43b
AC
6624/* To skip prologues, I use this predicate. Returns either PC itself
6625 if the code at PC does not look like a function prologue; otherwise
6626 returns an address that (if we're lucky) follows the prologue. If
6627 LENIENT, then we must skip everything which is involved in setting
6628 up the frame (it's OK to skip more, just so long as we don't skip
6629 anything which might clobber the registers which are being saved.
6630 We must skip more in the case where part of the prologue is in the
6631 delay slot of a non-prologue instruction). */
6632
6633static CORE_ADDR
6093d2eb 6634mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6635{
8b622e6a
AC
6636 CORE_ADDR limit_pc;
6637 CORE_ADDR func_addr;
6638
6d82d43b
AC
6639 /* See if we can determine the end of the prologue via the symbol table.
6640 If so, then return either PC, or the PC after the prologue, whichever
6641 is greater. */
8b622e6a
AC
6642 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6643 {
d80b854b
UW
6644 CORE_ADDR post_prologue_pc
6645 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a 6646 if (post_prologue_pc != 0)
325fac50 6647 return std::max (pc, post_prologue_pc);
8b622e6a 6648 }
6d82d43b
AC
6649
6650 /* Can't determine prologue from the symbol table, need to examine
6651 instructions. */
6652
98b4dd94
JB
6653 /* Find an upper limit on the function prologue using the debug
6654 information. If the debug information could not be used to provide
6655 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6656 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6657 if (limit_pc == 0)
6658 limit_pc = pc + 100; /* Magic. */
6659
4cc0665f 6660 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6661 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6662 else if (mips_pc_is_micromips (gdbarch, pc))
6663 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6664 else
e17a4113 6665 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6666}
6667
c9cf6e20
MG
6668/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6669 This is a helper function for mips_stack_frame_destroyed_p. */
6670
97ab0fdd 6671static int
c9cf6e20 6672mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6673{
6674 CORE_ADDR func_addr = 0, func_end = 0;
6675
6676 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6677 {
6678 /* The MIPS epilogue is max. 12 bytes long. */
6679 CORE_ADDR addr = func_end - 12;
6680
6681 if (addr < func_addr + 4)
6682 addr = func_addr + 4;
6683 if (pc < addr)
6684 return 0;
6685
6686 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6687 {
6688 unsigned long high_word;
6689 unsigned long inst;
6690
4cc0665f 6691 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6692 high_word = (inst >> 16) & 0xffff;
6693
6694 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6695 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6696 && inst != 0x03e00008 /* jr $ra */
6697 && inst != 0x00000000) /* nop */
6698 return 0;
6699 }
6700
6701 return 1;
6702 }
6703
6704 return 0;
6705}
6706
c9cf6e20
MG
6707/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6708 This is a helper function for mips_stack_frame_destroyed_p. */
4cc0665f
MR
6709
6710static int
c9cf6e20 6711micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
6712{
6713 CORE_ADDR func_addr = 0;
6714 CORE_ADDR func_end = 0;
6715 CORE_ADDR addr;
6716 ULONGEST insn;
6717 long offset;
6718 int dreg;
6719 int sreg;
6720 int loc;
6721
6722 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6723 return 0;
6724
6725 /* The microMIPS epilogue is max. 12 bytes long. */
6726 addr = func_end - 12;
6727
6728 if (addr < func_addr + 2)
6729 addr = func_addr + 2;
6730 if (pc < addr)
6731 return 0;
6732
6733 for (; pc < func_end; pc += loc)
6734 {
6735 loc = 0;
6736 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6737 loc += MIPS_INSN16_SIZE;
6738 switch (mips_insn_size (ISA_MICROMIPS, insn))
6739 {
4cc0665f
MR
6740 /* 32-bit instructions. */
6741 case 2 * MIPS_INSN16_SIZE:
6742 insn <<= 16;
6743 insn |= mips_fetch_instruction (gdbarch,
6744 ISA_MICROMIPS, pc + loc, NULL);
6745 loc += MIPS_INSN16_SIZE;
6746 switch (micromips_op (insn >> 16))
6747 {
6748 case 0xc: /* ADDIU: bits 001100 */
6749 case 0x17: /* DADDIU: bits 010111 */
6750 sreg = b0s5_reg (insn >> 16);
6751 dreg = b5s5_reg (insn >> 16);
6752 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6753 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6754 /* (D)ADDIU $sp, imm */
6755 && offset >= 0)
6756 break;
6757 return 0;
6758
6759 default:
6760 return 0;
6761 }
6762 break;
6763
6764 /* 16-bit instructions. */
6765 case MIPS_INSN16_SIZE:
6766 switch (micromips_op (insn))
6767 {
6768 case 0x3: /* MOVE: bits 000011 */
6769 sreg = b0s5_reg (insn);
6770 dreg = b5s5_reg (insn);
6771 if (sreg == 0 && dreg == 0)
6772 /* MOVE $zero, $zero aka NOP */
6773 break;
6774 return 0;
6775
6776 case 0x11: /* POOL16C: bits 010001 */
6777 if (b5s5_op (insn) == 0x18
6778 /* JRADDIUSP: bits 010011 11000 */
6779 || (b5s5_op (insn) == 0xd
6780 /* JRC: bits 010011 01101 */
6781 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6782 /* JRC $ra */
6783 break;
6784 return 0;
6785
6786 case 0x13: /* POOL16D: bits 010011 */
6787 offset = micromips_decode_imm9 (b1s9_imm (insn));
6788 if ((insn & 0x1) == 0x1
6789 /* ADDIUSP: bits 010011 1 */
6790 && offset > 0)
6791 break;
6792 return 0;
6793
6794 default:
6795 return 0;
6796 }
6797 }
6798 }
6799
6800 return 1;
6801}
6802
c9cf6e20
MG
6803/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6804 This is a helper function for mips_stack_frame_destroyed_p. */
6805
97ab0fdd 6806static int
c9cf6e20 6807mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6808{
6809 CORE_ADDR func_addr = 0, func_end = 0;
6810
6811 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6812 {
6813 /* The MIPS epilogue is max. 12 bytes long. */
6814 CORE_ADDR addr = func_end - 12;
6815
6816 if (addr < func_addr + 4)
6817 addr = func_addr + 4;
6818 if (pc < addr)
6819 return 0;
6820
6821 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6822 {
6823 unsigned short inst;
6824
4cc0665f 6825 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6826
6827 if ((inst & 0xf800) == 0xf000) /* extend */
6828 continue;
6829
6830 if (inst != 0x6300 /* addiu $sp,offset */
6831 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6832 && inst != 0xe820 /* jr $ra */
6833 && inst != 0xe8a0 /* jrc $ra */
6834 && inst != 0x6500) /* nop */
6835 return 0;
6836 }
6837
6838 return 1;
6839 }
6840
6841 return 0;
6842}
6843
c9cf6e20
MG
6844/* Implement the stack_frame_destroyed_p gdbarch method.
6845
6846 The epilogue is defined here as the area at the end of a function,
97ab0fdd 6847 after an instruction which destroys the function's stack frame. */
c9cf6e20 6848
97ab0fdd 6849static int
c9cf6e20 6850mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd 6851{
4cc0665f 6852 if (mips_pc_is_mips16 (gdbarch, pc))
c9cf6e20 6853 return mips16_stack_frame_destroyed_p (gdbarch, pc);
4cc0665f 6854 else if (mips_pc_is_micromips (gdbarch, pc))
c9cf6e20 6855 return micromips_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd 6856 else
c9cf6e20 6857 return mips32_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd
MR
6858}
6859
025bb325 6860/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6861 used for all MIPS-specific commands. */
6862
a5ea2558 6863static void
acdb74a0 6864show_mips_command (char *args, int from_tty)
a5ea2558
AC
6865{
6866 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6867}
6868
a5ea2558 6869static void
acdb74a0 6870set_mips_command (char *args, int from_tty)
a5ea2558 6871{
6d82d43b
AC
6872 printf_unfiltered
6873 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6874 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6875}
6876
c906108c
SS
6877/* Commands to show/set the MIPS FPU type. */
6878
c906108c 6879static void
acdb74a0 6880show_mipsfpu_command (char *args, int from_tty)
c906108c 6881{
c906108c 6882 char *fpu;
6ca0852e 6883
f5656ead 6884 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6885 {
6886 printf_unfiltered
6887 ("The MIPS floating-point coprocessor is unknown "
6888 "because the current architecture is not MIPS.\n");
6889 return;
6890 }
6891
f5656ead 6892 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6893 {
6894 case MIPS_FPU_SINGLE:
6895 fpu = "single-precision";
6896 break;
6897 case MIPS_FPU_DOUBLE:
6898 fpu = "double-precision";
6899 break;
6900 case MIPS_FPU_NONE:
6901 fpu = "absent (none)";
6902 break;
93d56215 6903 default:
e2e0b3e5 6904 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6905 }
6906 if (mips_fpu_type_auto)
025bb325
MS
6907 printf_unfiltered ("The MIPS floating-point coprocessor "
6908 "is set automatically (currently %s)\n",
6909 fpu);
c906108c 6910 else
6d82d43b
AC
6911 printf_unfiltered
6912 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6913}
6914
6915
c906108c 6916static void
acdb74a0 6917set_mipsfpu_command (char *args, int from_tty)
c906108c 6918{
025bb325
MS
6919 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6920 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6921 show_mipsfpu_command (args, from_tty);
6922}
6923
c906108c 6924static void
acdb74a0 6925set_mipsfpu_single_command (char *args, int from_tty)
c906108c 6926{
8d5838b5
AC
6927 struct gdbarch_info info;
6928 gdbarch_info_init (&info);
c906108c
SS
6929 mips_fpu_type = MIPS_FPU_SINGLE;
6930 mips_fpu_type_auto = 0;
8d5838b5
AC
6931 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6932 instead of relying on globals. Doing that would let generic code
6933 handle the search for this specific architecture. */
6934 if (!gdbarch_update_p (info))
e2e0b3e5 6935 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6936}
6937
c906108c 6938static void
acdb74a0 6939set_mipsfpu_double_command (char *args, int from_tty)
c906108c 6940{
8d5838b5
AC
6941 struct gdbarch_info info;
6942 gdbarch_info_init (&info);
c906108c
SS
6943 mips_fpu_type = MIPS_FPU_DOUBLE;
6944 mips_fpu_type_auto = 0;
8d5838b5
AC
6945 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6946 instead of relying on globals. Doing that would let generic code
6947 handle the search for this specific architecture. */
6948 if (!gdbarch_update_p (info))
e2e0b3e5 6949 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6950}
6951
c906108c 6952static void
acdb74a0 6953set_mipsfpu_none_command (char *args, int from_tty)
c906108c 6954{
8d5838b5
AC
6955 struct gdbarch_info info;
6956 gdbarch_info_init (&info);
c906108c
SS
6957 mips_fpu_type = MIPS_FPU_NONE;
6958 mips_fpu_type_auto = 0;
8d5838b5
AC
6959 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6960 instead of relying on globals. Doing that would let generic code
6961 handle the search for this specific architecture. */
6962 if (!gdbarch_update_p (info))
e2e0b3e5 6963 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6964}
6965
c906108c 6966static void
acdb74a0 6967set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
6968{
6969 mips_fpu_type_auto = 1;
6970}
6971
c906108c
SS
6972/* Just like reinit_frame_cache, but with the right arguments to be
6973 callable as an sfunc. */
6974
6975static void
acdb74a0
AC
6976reinit_frame_cache_sfunc (char *args, int from_tty,
6977 struct cmd_list_element *c)
c906108c
SS
6978{
6979 reinit_frame_cache ();
6980}
6981
a89aa300
AC
6982static int
6983gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 6984{
19ba03f4 6985 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
4cc0665f 6986
d31431ed
AC
6987 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6988 disassembler needs to be able to locally determine the ISA, and
6989 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6990 work. */
4cc0665f 6991 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 6992 info->mach = bfd_mach_mips16;
4cc0665f
MR
6993 else if (mips_pc_is_micromips (gdbarch, memaddr))
6994 info->mach = bfd_mach_mips_micromips;
c906108c
SS
6995
6996 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
6997 memaddr &= (info->mach == bfd_mach_mips16
6998 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 6999
e5ab0dce 7000 /* Set the disassembler options. */
9dae60cc 7001 if (!info->disassembler_options)
e5ab0dce
AC
7002 /* This string is not recognized explicitly by the disassembler,
7003 but it tells the disassembler to not try to guess the ABI from
7004 the bfd elf headers, such that, if the user overrides the ABI
7005 of a program linked as NewABI, the disassembly will follow the
7006 register naming conventions specified by the user. */
7007 info->disassembler_options = "gpr-names=32";
7008
c906108c 7009 /* Call the appropriate disassembler based on the target endian-ness. */
40887e1a 7010 if (info->endian == BFD_ENDIAN_BIG)
c906108c
SS
7011 return print_insn_big_mips (memaddr, info);
7012 else
7013 return print_insn_little_mips (memaddr, info);
7014}
7015
9dae60cc
UW
7016static int
7017gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7018{
7019 /* Set up the disassembler info, so that we get the right
7020 register names from libopcodes. */
7021 info->disassembler_options = "gpr-names=n32";
7022 info->flavour = bfd_target_elf_flavour;
7023
7024 return gdb_print_insn_mips (memaddr, info);
7025}
7026
7027static int
7028gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7029{
7030 /* Set up the disassembler info, so that we get the right
7031 register names from libopcodes. */
7032 info->disassembler_options = "gpr-names=64";
7033 info->flavour = bfd_target_elf_flavour;
7034
7035 return gdb_print_insn_mips (memaddr, info);
7036}
7037
cd6c3b4f
YQ
7038/* Implement the breakpoint_kind_from_pc gdbarch method. */
7039
d19280ad
YQ
7040static int
7041mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
c906108c 7042{
4cc0665f
MR
7043 CORE_ADDR pc = *pcptr;
7044
d19280ad 7045 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7046 {
d19280ad
YQ
7047 *pcptr = unmake_compact_addr (pc);
7048 return MIPS_BP_KIND_MIPS16;
7049 }
7050 else if (mips_pc_is_micromips (gdbarch, pc))
7051 {
7052 ULONGEST insn;
7053 int status;
c906108c 7054
d19280ad
YQ
7055 *pcptr = unmake_compact_addr (pc);
7056 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7057 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7058 return MIPS_BP_KIND_MICROMIPS16;
7059 else
7060 return MIPS_BP_KIND_MICROMIPS32;
c906108c
SS
7061 }
7062 else
d19280ad
YQ
7063 return MIPS_BP_KIND_MIPS32;
7064}
7065
cd6c3b4f
YQ
7066/* Implement the sw_breakpoint_from_kind gdbarch method. */
7067
d19280ad
YQ
7068static const gdb_byte *
7069mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7070{
7071 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7072
7073 switch (kind)
c906108c 7074 {
d19280ad
YQ
7075 case MIPS_BP_KIND_MIPS16:
7076 {
7077 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7078 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7079
7080 *size = 2;
7081 if (byte_order_for_code == BFD_ENDIAN_BIG)
7082 return mips16_big_breakpoint;
7083 else
c906108c 7084 return mips16_little_breakpoint;
d19280ad
YQ
7085 }
7086 case MIPS_BP_KIND_MICROMIPS16:
7087 {
7088 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7089 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7090
7091 *size = 2;
7092
7093 if (byte_order_for_code == BFD_ENDIAN_BIG)
7094 return micromips16_big_breakpoint;
7095 else
7096 return micromips16_little_breakpoint;
7097 }
7098 case MIPS_BP_KIND_MICROMIPS32:
7099 {
7100 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7101 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7102
7103 *size = 4;
7104 if (byte_order_for_code == BFD_ENDIAN_BIG)
7105 return micromips32_big_breakpoint;
7106 else
7107 return micromips32_little_breakpoint;
7108 }
7109 case MIPS_BP_KIND_MIPS32:
7110 {
7111 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7112 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
c906108c 7113
d19280ad
YQ
7114 *size = 4;
7115 if (byte_order_for_code == BFD_ENDIAN_BIG)
7116 return big_breakpoint;
7117 else
7e3d947d 7118 return little_breakpoint;
d19280ad
YQ
7119 }
7120 default:
7121 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7122 };
c906108c
SS
7123}
7124
ab50adb6
MR
7125/* Return non-zero if the standard MIPS instruction INST has a branch
7126 delay slot (i.e. it is a jump or branch instruction). This function
7127 is based on mips32_next_pc. */
c8cef75f
MR
7128
7129static int
ab50adb6 7130mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7131{
c8cef75f 7132 int op;
a385295e
MR
7133 int rs;
7134 int rt;
c8cef75f 7135
c8cef75f
MR
7136 op = itype_op (inst);
7137 if ((inst & 0xe0000000) != 0)
a385295e
MR
7138 {
7139 rs = itype_rs (inst);
7140 rt = itype_rt (inst);
f94363d7
AP
7141 return (is_octeon_bbit_op (op, gdbarch)
7142 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7143 || op == 29 /* JALX: bits 011101 */
7144 || (op == 17
7145 && (rs == 8
c8cef75f 7146 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7147 || (rs == 9 && (rt & 0x2) == 0)
7148 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7149 || (rs == 10 && (rt & 0x2) == 0))));
7150 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7151 }
c8cef75f
MR
7152 else
7153 switch (op & 0x07) /* extract bits 28,27,26 */
7154 {
7155 case 0: /* SPECIAL */
7156 op = rtype_funct (inst);
7157 return (op == 8 /* JR */
7158 || op == 9); /* JALR */
7159 break; /* end SPECIAL */
7160 case 1: /* REGIMM */
a385295e
MR
7161 rs = itype_rs (inst);
7162 rt = itype_rt (inst); /* branch condition */
7163 return ((rt & 0xc) == 0
c8cef75f
MR
7164 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7165 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7166 || ((rt & 0x1e) == 0x1c && rs == 0));
7167 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7168 break; /* end REGIMM */
7169 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7170 return 1;
7171 break;
7172 }
7173}
7174
ab50adb6
MR
7175/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7176 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7177
4cc0665f 7178static int
ab50adb6 7179mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7180{
7181 ULONGEST insn;
7182 int status;
7183
ab50adb6 7184 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7185 if (status)
7186 return 0;
7187
ab50adb6
MR
7188 return mips32_instruction_has_delay_slot (gdbarch, insn);
7189}
4cc0665f 7190
ab50adb6
MR
7191/* Return non-zero if the microMIPS instruction INSN, comprising the
7192 16-bit major opcode word in the high 16 bits and any second word
7193 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7194 jump or branch instruction). The instruction must be 32-bit if
7195 MUSTBE32 is set or can be any instruction otherwise. */
7196
7197static int
7198micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7199{
7200 ULONGEST major = insn >> 16;
4cc0665f 7201
ab50adb6
MR
7202 switch (micromips_op (major))
7203 {
7204 /* 16-bit instructions. */
7205 case 0x33: /* B16: bits 110011 */
7206 case 0x2b: /* BNEZ16: bits 101011 */
7207 case 0x23: /* BEQZ16: bits 100011 */
7208 return !mustbe32;
7209 case 0x11: /* POOL16C: bits 010001 */
7210 return (!mustbe32
7211 && ((b5s5_op (major) == 0xc
7212 /* JR16: bits 010001 01100 */
7213 || (b5s5_op (major) & 0x1e) == 0xe)));
7214 /* JALR16, JALRS16: bits 010001 0111x */
7215 /* 32-bit instructions. */
7216 case 0x3d: /* JAL: bits 111101 */
7217 case 0x3c: /* JALX: bits 111100 */
7218 case 0x35: /* J: bits 110101 */
7219 case 0x2d: /* BNE: bits 101101 */
7220 case 0x25: /* BEQ: bits 100101 */
7221 case 0x1d: /* JALS: bits 011101 */
7222 return 1;
7223 case 0x10: /* POOL32I: bits 010000 */
7224 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7225 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7226 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7227 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7228 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7229 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7230 || ((b5s5_op (major) & 0x1e) == 0x14
7231 && (major & 0x3) == 0x0)
4cc0665f 7232 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7233 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7234 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7235 || ((b5s5_op (major) & 0x1e) == 0x1c
7236 && (major & 0x3) == 0x0)
4cc0665f 7237 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7238 || ((b5s5_op (major) & 0x1c) == 0x1c
7239 && (major & 0x3) == 0x1));
4cc0665f 7240 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7241 case 0x0: /* POOL32A: bits 000000 */
7242 return (b0s6_op (insn) == 0x3c
7243 /* POOL32Axf: bits 000000 ... 111100 */
7244 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7245 /* JALR, JALR.HB: 000000 000x111100 111100 */
7246 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7247 default:
7248 return 0;
7249 }
4cc0665f
MR
7250}
7251
ab50adb6 7252/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7253 slot (i.e. it is a non-compact jump instruction). The instruction
7254 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7255
c8cef75f 7256static int
ab50adb6
MR
7257micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7258 CORE_ADDR addr, int mustbe32)
c8cef75f 7259{
ab50adb6 7260 ULONGEST insn;
c8cef75f 7261 int status;
3f7f3650 7262 int size;
c8cef75f 7263
ab50adb6 7264 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7265 if (status)
7266 return 0;
3f7f3650 7267 size = mips_insn_size (ISA_MICROMIPS, insn);
ab50adb6 7268 insn <<= 16;
3f7f3650 7269 if (size == 2 * MIPS_INSN16_SIZE)
ab50adb6
MR
7270 {
7271 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7272 if (status)
7273 return 0;
7274 }
7275
7276 return micromips_instruction_has_delay_slot (insn, mustbe32);
7277}
c8cef75f 7278
ab50adb6
MR
7279/* Return non-zero if the MIPS16 instruction INST, which must be
7280 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7281 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7282 instruction). This function is based on mips16_next_pc. */
7283
7284static int
7285mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7286{
ae790652
MR
7287 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7288 return !mustbe32;
c8cef75f
MR
7289 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7290}
7291
ab50adb6
MR
7292/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7293 slot (i.e. it is a non-compact jump instruction). The instruction
7294 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7295
7296static int
7297mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7298 CORE_ADDR addr, int mustbe32)
7299{
7300 unsigned short insn;
7301 int status;
7302
7303 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7304 if (status)
7305 return 0;
7306
7307 return mips16_instruction_has_delay_slot (insn, mustbe32);
7308}
7309
c8cef75f
MR
7310/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7311 This assumes KSSEG exists. */
7312
7313static CORE_ADDR
7314mips_segment_boundary (CORE_ADDR bpaddr)
7315{
7316 CORE_ADDR mask = CORE_ADDR_MAX;
7317 int segsize;
7318
7319 if (sizeof (CORE_ADDR) == 8)
7320 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7321 a compiler warning produced where CORE_ADDR is a 32-bit type even
7322 though in that case this is dead code). */
7323 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7324 {
7325 case 3:
7326 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7327 segsize = 29; /* 32-bit compatibility segment */
7328 else
7329 segsize = 62; /* xkseg */
7330 break;
7331 case 2: /* xkphys */
7332 segsize = 59;
7333 break;
7334 default: /* xksseg (1), xkuseg/kuseg (0) */
7335 segsize = 62;
7336 break;
7337 }
7338 else if (bpaddr & 0x80000000) /* kernel segment */
7339 segsize = 29;
7340 else
7341 segsize = 31; /* user segment */
7342 mask <<= segsize;
7343 return bpaddr & mask;
7344}
7345
7346/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7347 it backwards if necessary. Return the address of the new location. */
7348
7349static CORE_ADDR
7350mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7351{
22e048c9 7352 CORE_ADDR prev_addr;
c8cef75f
MR
7353 CORE_ADDR boundary;
7354 CORE_ADDR func_addr;
7355
7356 /* If a breakpoint is set on the instruction in a branch delay slot,
7357 GDB gets confused. When the breakpoint is hit, the PC isn't on
7358 the instruction in the branch delay slot, the PC will point to
7359 the branch instruction. Since the PC doesn't match any known
7360 breakpoints, GDB reports a trap exception.
7361
7362 There are two possible fixes for this problem.
7363
7364 1) When the breakpoint gets hit, see if the BD bit is set in the
7365 Cause register (which indicates the last exception occurred in a
7366 branch delay slot). If the BD bit is set, fix the PC to point to
7367 the instruction in the branch delay slot.
7368
7369 2) When the user sets the breakpoint, don't allow him to set the
7370 breakpoint on the instruction in the branch delay slot. Instead
7371 move the breakpoint to the branch instruction (which will have
7372 the same result).
7373
7374 The problem with the first solution is that if the user then
7375 single-steps the processor, the branch instruction will get
7376 skipped (since GDB thinks the PC is on the instruction in the
7377 branch delay slot).
7378
7379 So, we'll use the second solution. To do this we need to know if
7380 the instruction we're trying to set the breakpoint on is in the
7381 branch delay slot. */
7382
7383 boundary = mips_segment_boundary (bpaddr);
7384
7385 /* Make sure we don't scan back before the beginning of the current
7386 function, since we may fetch constant data or insns that look like
7387 a jump. Of course we might do that anyway if the compiler has
7388 moved constants inline. :-( */
7389 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7390 && func_addr > boundary && func_addr <= bpaddr)
7391 boundary = func_addr;
7392
4cc0665f 7393 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7394 {
7395 if (bpaddr == boundary)
7396 return bpaddr;
7397
7398 /* If the previous instruction has a branch delay slot, we have
7399 to move the breakpoint to the branch instruction. */
7400 prev_addr = bpaddr - 4;
ab50adb6 7401 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7402 bpaddr = prev_addr;
7403 }
7404 else
7405 {
ab50adb6 7406 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7407 CORE_ADDR addr, jmpaddr;
7408 int i;
7409
4cc0665f 7410 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7411
7412 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7413 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7414 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7415 The microMIPS ASE has a whole range of jumps and branches
7416 with delay slots, some of which take 4 bytes and some take
7417 2 bytes, so the idea is the same.
c8cef75f
MR
7418 FIXME: We have to assume that bpaddr is not the second half
7419 of an extended instruction. */
ab50adb6
MR
7420 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7421 ? micromips_insn_at_pc_has_delay_slot
7422 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7423
7424 jmpaddr = 0;
7425 addr = bpaddr;
7426 for (i = 1; i < 4; i++)
7427 {
4cc0665f 7428 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7429 break;
4cc0665f 7430 addr -= MIPS_INSN16_SIZE;
ab50adb6 7431 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7432 /* Looks like a JR/JALR at [target-1], but it could be
7433 the second word of a previous JAL/JALX, so record it
7434 and check back one more. */
7435 jmpaddr = addr;
ab50adb6 7436 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7437 {
7438 if (i == 2)
7439 /* Looks like a JAL/JALX at [target-2], but it could also
7440 be the second word of a previous JAL/JALX, record it,
7441 and check back one more. */
7442 jmpaddr = addr;
7443 else
7444 /* Looks like a JAL/JALX at [target-3], so any previously
7445 recorded JAL/JALX or JR/JALR must be wrong, because:
7446
7447 >-3: JAL
7448 -2: JAL-ext (can't be JAL/JALX)
7449 -1: bdslot (can't be JR/JALR)
7450 0: target insn
7451
7452 Of course it could be another JAL-ext which looks
7453 like a JAL, but in that case we'd have broken out
7454 of this loop at [target-2]:
7455
7456 -4: JAL
7457 >-3: JAL-ext
7458 -2: bdslot (can't be jmp)
7459 -1: JR/JALR
7460 0: target insn */
7461 jmpaddr = 0;
7462 }
7463 else
7464 {
7465 /* Not a jump instruction: if we're at [target-1] this
7466 could be the second word of a JAL/JALX, so continue;
7467 otherwise we're done. */
7468 if (i > 1)
7469 break;
7470 }
7471 }
7472
7473 if (jmpaddr)
7474 bpaddr = jmpaddr;
7475 }
7476
7477 return bpaddr;
7478}
7479
14132e89
MR
7480/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7481 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7482
7483static int
7484mips_is_stub_suffix (const char *suffix, int zero)
7485{
7486 switch (suffix[0])
7487 {
7488 case '0':
7489 return zero && suffix[1] == '\0';
7490 case '1':
7491 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7492 case '2':
7493 case '5':
7494 case '6':
7495 case '9':
7496 return suffix[1] == '\0';
7497 default:
7498 return 0;
7499 }
7500}
7501
7502/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7503 call stubs, one of sf, df, sc, or dc. */
7504
7505static int
7506mips_is_stub_mode (const char *mode)
7507{
7508 return ((mode[0] == 's' || mode[0] == 'd')
7509 && (mode[1] == 'f' || mode[1] == 'c'));
7510}
7511
7512/* Code at PC is a compiler-generated stub. Such a stub for a function
7513 bar might have a name like __fn_stub_bar, and might look like this:
7514
7515 mfc1 $4, $f13
7516 mfc1 $5, $f12
7517 mfc1 $6, $f15
7518 mfc1 $7, $f14
7519
7520 followed by (or interspersed with):
7521
7522 j bar
7523
7524 or:
7525
7526 lui $25, %hi(bar)
7527 addiu $25, $25, %lo(bar)
7528 jr $25
7529
7530 ($1 may be used in old code; for robustness we accept any register)
7531 or, in PIC code:
7532
7533 lui $28, %hi(_gp_disp)
7534 addiu $28, $28, %lo(_gp_disp)
7535 addu $28, $28, $25
7536 lw $25, %got(bar)
7537 addiu $25, $25, %lo(bar)
7538 jr $25
7539
7540 In the case of a __call_stub_bar stub, the sequence to set up
7541 arguments might look like this:
7542
7543 mtc1 $4, $f13
7544 mtc1 $5, $f12
7545 mtc1 $6, $f15
7546 mtc1 $7, $f14
7547
7548 followed by (or interspersed with) one of the jump sequences above.
7549
7550 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7551 of J or JR, respectively, followed by:
7552
7553 mfc1 $2, $f0
7554 mfc1 $3, $f1
7555 jr $18
7556
7557 We are at the beginning of the stub here, and scan down and extract
7558 the target address from the jump immediate instruction or, if a jump
7559 register instruction is used, from the register referred. Return
7560 the value of PC calculated or 0 if inconclusive.
7561
7562 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7563
7564static CORE_ADDR
7565mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7566{
7567 struct gdbarch *gdbarch = get_frame_arch (frame);
7568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7569 int addrreg = MIPS_ZERO_REGNUM;
7570 CORE_ADDR start_pc = pc;
7571 CORE_ADDR target_pc = 0;
7572 CORE_ADDR addr = 0;
7573 CORE_ADDR gp = 0;
7574 int status = 0;
7575 int i;
7576
7577 for (i = 0;
7578 status == 0 && target_pc == 0 && i < 20;
7579 i++, pc += MIPS_INSN32_SIZE)
7580 {
4cc0665f 7581 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7582 CORE_ADDR imm;
7583 int rt;
7584 int rs;
7585 int rd;
7586
7587 switch (itype_op (inst))
7588 {
7589 case 0: /* SPECIAL */
7590 switch (rtype_funct (inst))
7591 {
7592 case 8: /* JR */
7593 case 9: /* JALR */
7594 rs = rtype_rs (inst);
7595 if (rs == MIPS_GP_REGNUM)
7596 target_pc = gp; /* Hmm... */
7597 else if (rs == addrreg)
7598 target_pc = addr;
7599 break;
7600
7601 case 0x21: /* ADDU */
7602 rt = rtype_rt (inst);
7603 rs = rtype_rs (inst);
7604 rd = rtype_rd (inst);
7605 if (rd == MIPS_GP_REGNUM
7606 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7607 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7608 gp += start_pc;
7609 break;
7610 }
7611 break;
7612
7613 case 2: /* J */
7614 case 3: /* JAL */
7615 target_pc = jtype_target (inst) << 2;
7616 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7617 break;
7618
7619 case 9: /* ADDIU */
7620 rt = itype_rt (inst);
7621 rs = itype_rs (inst);
7622 if (rt == rs)
7623 {
7624 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7625 if (rt == MIPS_GP_REGNUM)
7626 gp += imm;
7627 else if (rt == addrreg)
7628 addr += imm;
7629 }
7630 break;
7631
7632 case 0xf: /* LUI */
7633 rt = itype_rt (inst);
7634 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7635 if (rt == MIPS_GP_REGNUM)
7636 gp = imm;
7637 else if (rt != MIPS_ZERO_REGNUM)
7638 {
7639 addrreg = rt;
7640 addr = imm;
7641 }
7642 break;
7643
7644 case 0x23: /* LW */
7645 rt = itype_rt (inst);
7646 rs = itype_rs (inst);
7647 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7648 if (gp != 0 && rs == MIPS_GP_REGNUM)
7649 {
7650 gdb_byte buf[4];
7651
7652 memset (buf, 0, sizeof (buf));
7653 status = target_read_memory (gp + imm, buf, sizeof (buf));
7654 addrreg = rt;
7655 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7656 }
7657 break;
7658 }
7659 }
7660
7661 return target_pc;
7662}
7663
7664/* If PC is in a MIPS16 call or return stub, return the address of the
7665 target PC, which is either the callee or the caller. There are several
c906108c
SS
7666 cases which must be handled:
7667
14132e89
MR
7668 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7669 and the target PC is in $31 ($ra).
c906108c 7670 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7671 and the target PC is in $2.
7672 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7673 i.e. before the JALR instruction, this is effectively a call stub
7674 and the target PC is in $2. Otherwise this is effectively
7675 a return stub and the target PC is in $18.
7676 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7677 JAL or JALR instruction, this is effectively a call stub and the
7678 target PC is buried in the instruction stream. Otherwise this
7679 is effectively a return stub and the target PC is in $18.
7680 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7681 stub and the target PC is buried in the instruction stream.
7682
7683 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7684 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7685 gory details. */
c906108c 7686
757a7cc6 7687static CORE_ADDR
db5f024e 7688mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7689{
e17a4113 7690 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7691 CORE_ADDR start_addr;
14132e89
MR
7692 const char *name;
7693 size_t prefixlen;
c906108c
SS
7694
7695 /* Find the starting address and name of the function containing the PC. */
7696 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7697 return 0;
7698
14132e89
MR
7699 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7700 and the target PC is in $31 ($ra). */
7701 prefixlen = strlen (mips_str_mips16_ret_stub);
7702 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7703 && mips_is_stub_mode (name + prefixlen)
7704 && name[prefixlen + 2] == '\0')
7705 return get_frame_register_signed
7706 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7707
7708 /* If the PC is in __mips16_call_stub_*, this is one of the call
7709 call/return stubs. */
7710 prefixlen = strlen (mips_str_mips16_call_stub);
7711 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7712 {
7713 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7714 and the target PC is in $2. */
14132e89
MR
7715 if (mips_is_stub_suffix (name + prefixlen, 0))
7716 return get_frame_register_signed
7717 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7718
14132e89
MR
7719 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7720 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7721 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7722 a return stub and the target PC is in $18. */
14132e89
MR
7723 else if (mips_is_stub_mode (name + prefixlen)
7724 && name[prefixlen + 2] == '_'
7725 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7726 {
7727 if (pc == start_addr)
14132e89
MR
7728 /* This is the 'call' part of a call stub. The return
7729 address is in $2. */
7730 return get_frame_register_signed
7731 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7732 else
7733 /* This is the 'return' part of a call stub. The return
14132e89
MR
7734 address is in $18. */
7735 return get_frame_register_signed
7736 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7737 }
14132e89
MR
7738 else
7739 return 0; /* Not a stub. */
7740 }
7741
7742 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7743 compiler-generated call or call/return stubs. */
61012eef
GB
7744 if (startswith (name, mips_str_fn_stub)
7745 || startswith (name, mips_str_call_stub))
14132e89
MR
7746 {
7747 if (pc == start_addr)
7748 /* This is the 'call' part of a call stub. Call this helper
7749 to scan through this code for interesting instructions
7750 and determine the final PC. */
7751 return mips_get_mips16_fn_stub_pc (frame, pc);
7752 else
7753 /* This is the 'return' part of a call stub. The return address
7754 is in $18. */
7755 return get_frame_register_signed
7756 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7757 }
14132e89
MR
7758
7759 return 0; /* Not a stub. */
7760}
7761
7762/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7763 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7764
7765static int
7766mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7767{
7768 CORE_ADDR start_addr;
7769 size_t prefixlen;
7770
7771 /* Find the starting address of the function containing the PC. */
7772 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7773 return 0;
7774
7775 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7776 the start, i.e. after the JALR instruction, this is effectively
7777 a return stub. */
7778 prefixlen = strlen (mips_str_mips16_call_stub);
7779 if (pc != start_addr
7780 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7781 && mips_is_stub_mode (name + prefixlen)
7782 && name[prefixlen + 2] == '_'
7783 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7784 return 1;
7785
7786 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7787 the JAL or JALR instruction, this is effectively a return stub. */
7788 prefixlen = strlen (mips_str_call_fp_stub);
7789 if (pc != start_addr
7790 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7791 return 1;
7792
7793 /* Consume the .pic. prefix of any PIC stub, this function must return
7794 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7795 or the call stub path will trigger in handle_inferior_event causing
7796 it to go astray. */
7797 prefixlen = strlen (mips_str_pic);
7798 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7799 name += prefixlen;
7800
7801 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7802 prefixlen = strlen (mips_str_mips16_ret_stub);
7803 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7804 && mips_is_stub_mode (name + prefixlen)
7805 && name[prefixlen + 2] == '\0')
7806 return 1;
7807
7808 return 0; /* Not a stub. */
c906108c
SS
7809}
7810
db5f024e
DJ
7811/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7812 PC of the stub target. The stub just loads $t9 and jumps to it,
7813 so that $t9 has the correct value at function entry. */
7814
7815static CORE_ADDR
7816mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7817{
e17a4113
UW
7818 struct gdbarch *gdbarch = get_frame_arch (frame);
7819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7820 struct bound_minimal_symbol msym;
db5f024e
DJ
7821 int i;
7822 gdb_byte stub_code[16];
7823 int32_t stub_words[4];
7824
7825 /* The stub for foo is named ".pic.foo", and is either two
7826 instructions inserted before foo or a three instruction sequence
7827 which jumps to foo. */
7828 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7829 if (msym.minsym == NULL
77e371c0 7830 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6 7831 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
61012eef 7832 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
7833 return 0;
7834
7835 /* A two-instruction header. */
7cbd4a93 7836 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7837 return pc + 8;
7838
7839 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7840 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7841 {
7842 if (target_read_memory (pc, stub_code, 16) != 0)
7843 return 0;
7844 for (i = 0; i < 4; i++)
e17a4113
UW
7845 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7846 4, byte_order);
db5f024e
DJ
7847
7848 /* A stub contains these instructions:
7849 lui t9, %hi(target)
7850 j target
7851 addiu t9, t9, %lo(target)
7852 nop
7853
7854 This works even for N64, since stubs are only generated with
7855 -msym32. */
7856 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7857 && (stub_words[1] & 0xfc000000U) == 0x08000000
7858 && (stub_words[2] & 0xffff0000U) == 0x27390000
7859 && stub_words[3] == 0x00000000)
34b192ce
MR
7860 return ((((stub_words[0] & 0x0000ffff) << 16)
7861 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7862 }
7863
7864 /* Not a recognized stub. */
7865 return 0;
7866}
7867
7868static CORE_ADDR
7869mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7870{
14132e89 7871 CORE_ADDR requested_pc = pc;
db5f024e 7872 CORE_ADDR target_pc;
14132e89
MR
7873 CORE_ADDR new_pc;
7874
7875 do
7876 {
7877 target_pc = pc;
db5f024e 7878
14132e89
MR
7879 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7880 if (new_pc)
3e29f34a 7881 pc = new_pc;
db5f024e 7882
14132e89
MR
7883 new_pc = find_solib_trampoline_target (frame, pc);
7884 if (new_pc)
3e29f34a 7885 pc = new_pc;
db5f024e 7886
14132e89
MR
7887 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7888 if (new_pc)
3e29f34a 7889 pc = new_pc;
14132e89
MR
7890 }
7891 while (pc != target_pc);
db5f024e 7892
14132e89 7893 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7894}
7895
a4b8ebc8 7896/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7897 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7898
7899static int
d3f73121 7900mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7901{
a4b8ebc8 7902 int regnum;
2f38ef89 7903 if (num >= 0 && num < 32)
a4b8ebc8 7904 regnum = num;
2f38ef89 7905 else if (num >= 38 && num < 70)
d3f73121 7906 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7907 else if (num == 70)
d3f73121 7908 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7909 else if (num == 71)
d3f73121 7910 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7911 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7912 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7913 else
0fde2c53 7914 return -1;
d3f73121 7915 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7916}
7917
2f38ef89 7918
a4b8ebc8 7919/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7920 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7921
7922static int
d3f73121 7923mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7924{
a4b8ebc8 7925 int regnum;
2f38ef89 7926 if (num >= 0 && num < 32)
a4b8ebc8 7927 regnum = num;
2f38ef89 7928 else if (num >= 32 && num < 64)
d3f73121 7929 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7930 else if (num == 64)
d3f73121 7931 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7932 else if (num == 65)
d3f73121 7933 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7934 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7935 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7936 else
0fde2c53 7937 return -1;
d3f73121 7938 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7939}
7940
7941static int
e7faf938 7942mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7943{
7944 /* Only makes sense to supply raw registers. */
e7faf938 7945 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7946 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7947 decide if it is valid. Should instead define a standard sim/gdb
7948 register numbering scheme. */
e7faf938
MD
7949 if (gdbarch_register_name (gdbarch,
7950 gdbarch_num_regs (gdbarch) + regnum) != NULL
7951 && gdbarch_register_name (gdbarch,
025bb325
MS
7952 gdbarch_num_regs (gdbarch)
7953 + regnum)[0] != '\0')
a4b8ebc8
AC
7954 return regnum;
7955 else
6d82d43b 7956 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7957}
7958
2f38ef89 7959
4844f454
CV
7960/* Convert an integer into an address. Extracting the value signed
7961 guarantees a correctly sign extended address. */
fc0c74b1
AC
7962
7963static CORE_ADDR
79dd2d24 7964mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7965 struct type *type, const gdb_byte *buf)
fc0c74b1 7966{
e17a4113
UW
7967 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7968 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7969}
7970
82e91389
DJ
7971/* Dummy virtual frame pointer method. This is no more or less accurate
7972 than most other architectures; we just need to be explicit about it,
7973 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7974 an assertion failure. */
7975
7976static void
a54fba4c
MD
7977mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7978 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7979{
7980 *reg = MIPS_SP_REGNUM;
7981 *offset = 0;
7982}
7983
caaa3122
DJ
7984static void
7985mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7986{
7987 enum mips_abi *abip = (enum mips_abi *) obj;
7988 const char *name = bfd_get_section_name (abfd, sect);
7989
7990 if (*abip != MIPS_ABI_UNKNOWN)
7991 return;
7992
61012eef 7993 if (!startswith (name, ".mdebug."))
caaa3122
DJ
7994 return;
7995
7996 if (strcmp (name, ".mdebug.abi32") == 0)
7997 *abip = MIPS_ABI_O32;
7998 else if (strcmp (name, ".mdebug.abiN32") == 0)
7999 *abip = MIPS_ABI_N32;
62a49b2c 8000 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 8001 *abip = MIPS_ABI_N64;
caaa3122
DJ
8002 else if (strcmp (name, ".mdebug.abiO64") == 0)
8003 *abip = MIPS_ABI_O64;
8004 else if (strcmp (name, ".mdebug.eabi32") == 0)
8005 *abip = MIPS_ABI_EABI32;
8006 else if (strcmp (name, ".mdebug.eabi64") == 0)
8007 *abip = MIPS_ABI_EABI64;
8008 else
8a3fe4f8 8009 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
8010}
8011
22e47e37
FF
8012static void
8013mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8014{
8015 int *lbp = (int *) obj;
8016 const char *name = bfd_get_section_name (abfd, sect);
8017
61012eef 8018 if (startswith (name, ".gcc_compiled_long32"))
22e47e37 8019 *lbp = 32;
61012eef 8020 else if (startswith (name, ".gcc_compiled_long64"))
22e47e37 8021 *lbp = 64;
61012eef 8022 else if (startswith (name, ".gcc_compiled_long"))
22e47e37
FF
8023 warning (_("unrecognized .gcc_compiled_longXX"));
8024}
8025
2e4ebe70
DJ
8026static enum mips_abi
8027global_mips_abi (void)
8028{
8029 int i;
8030
8031 for (i = 0; mips_abi_strings[i] != NULL; i++)
8032 if (mips_abi_strings[i] == mips_abi_string)
8033 return (enum mips_abi) i;
8034
e2e0b3e5 8035 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8036}
8037
4cc0665f
MR
8038/* Return the default compressed instruction set, either of MIPS16
8039 or microMIPS, selected when none could have been determined from
8040 the ELF header of the binary being executed (or no binary has been
8041 selected. */
8042
8043static enum mips_isa
8044global_mips_compression (void)
8045{
8046 int i;
8047
8048 for (i = 0; mips_compression_strings[i] != NULL; i++)
8049 if (mips_compression_strings[i] == mips_compression_string)
8050 return (enum mips_isa) i;
8051
8052 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8053}
8054
29709017
DJ
8055static void
8056mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8057{
29709017
DJ
8058 /* If the size matches the set of 32-bit or 64-bit integer registers,
8059 assume that's what we've got. */
4eb0ad19
DJ
8060 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8061 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8062
8063 /* If the size matches the full set of registers GDB traditionally
8064 knows about, including floating point, for either 32-bit or
8065 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8066 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8067 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8068
8069 /* Otherwise we don't have a useful guess. */
8070}
8071
f8b73d13
DJ
8072static struct value *
8073value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8074{
19ba03f4 8075 const int *reg_p = (const int *) baton;
f8b73d13
DJ
8076 return value_of_register (*reg_p, frame);
8077}
8078
c2d11a7d 8079static struct gdbarch *
6d82d43b 8080mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8081{
c2d11a7d
JM
8082 struct gdbarch *gdbarch;
8083 struct gdbarch_tdep *tdep;
8084 int elf_flags;
2e4ebe70 8085 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8086 int i, num_regs;
8d5838b5 8087 enum mips_fpu_type fpu_type;
f8b73d13 8088 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8089 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8090 const char **reg_names;
8091 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8092 enum mips_isa mips_isa;
1faeff08
MR
8093 int dspacc;
8094 int dspctl;
8095
8096 /* Fill in the OS dependent register numbers and names. */
de4bfa86 8097 if (info.osabi == GDB_OSABI_LINUX)
1faeff08
MR
8098 {
8099 mips_regnum.fp0 = 38;
8100 mips_regnum.pc = 37;
8101 mips_regnum.cause = 36;
8102 mips_regnum.badvaddr = 35;
8103 mips_regnum.hi = 34;
8104 mips_regnum.lo = 33;
8105 mips_regnum.fp_control_status = 70;
8106 mips_regnum.fp_implementation_revision = 71;
8107 mips_regnum.dspacc = -1;
8108 mips_regnum.dspctl = -1;
8109 dspacc = 72;
8110 dspctl = 78;
3877922e 8111 num_regs = 90;
1faeff08
MR
8112 reg_names = mips_linux_reg_names;
8113 }
8114 else
8115 {
8116 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8117 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8118 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8119 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8120 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8121 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8122 mips_regnum.fp_control_status = 70;
8123 mips_regnum.fp_implementation_revision = 71;
8124 mips_regnum.dspacc = dspacc = -1;
8125 mips_regnum.dspctl = dspctl = -1;
8126 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8127 if (info.bfd_arch_info != NULL
8128 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8129 reg_names = mips_tx39_reg_names;
8130 else
8131 reg_names = mips_generic_reg_names;
8132 }
f8b73d13
DJ
8133
8134 /* Check any target description for validity. */
8135 if (tdesc_has_registers (info.target_desc))
8136 {
8137 static const char *const mips_gprs[] = {
8138 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8139 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8140 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8141 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8142 };
8143 static const char *const mips_fprs[] = {
8144 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8145 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8146 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8147 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8148 };
8149
8150 const struct tdesc_feature *feature;
8151 int valid_p;
8152
8153 feature = tdesc_find_feature (info.target_desc,
8154 "org.gnu.gdb.mips.cpu");
8155 if (feature == NULL)
8156 return NULL;
8157
8158 tdesc_data = tdesc_data_alloc ();
8159
8160 valid_p = 1;
8161 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8162 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8163 mips_gprs[i]);
8164
8165
8166 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8167 mips_regnum.lo, "lo");
f8b73d13 8168 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8169 mips_regnum.hi, "hi");
f8b73d13 8170 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8171 mips_regnum.pc, "pc");
f8b73d13
DJ
8172
8173 if (!valid_p)
8174 {
8175 tdesc_data_cleanup (tdesc_data);
8176 return NULL;
8177 }
8178
8179 feature = tdesc_find_feature (info.target_desc,
8180 "org.gnu.gdb.mips.cp0");
8181 if (feature == NULL)
8182 {
8183 tdesc_data_cleanup (tdesc_data);
8184 return NULL;
8185 }
8186
8187 valid_p = 1;
8188 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8189 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
8190 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8191 MIPS_PS_REGNUM, "status");
8192 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8193 mips_regnum.cause, "cause");
f8b73d13
DJ
8194
8195 if (!valid_p)
8196 {
8197 tdesc_data_cleanup (tdesc_data);
8198 return NULL;
8199 }
8200
8201 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8202 backend is not prepared for that, though. */
8203 feature = tdesc_find_feature (info.target_desc,
8204 "org.gnu.gdb.mips.fpu");
8205 if (feature == NULL)
8206 {
8207 tdesc_data_cleanup (tdesc_data);
8208 return NULL;
8209 }
8210
8211 valid_p = 1;
8212 for (i = 0; i < 32; i++)
8213 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8214 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8215
8216 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8217 mips_regnum.fp_control_status,
8218 "fcsr");
8219 valid_p
8220 &= tdesc_numbered_register (feature, tdesc_data,
8221 mips_regnum.fp_implementation_revision,
8222 "fir");
f8b73d13
DJ
8223
8224 if (!valid_p)
8225 {
8226 tdesc_data_cleanup (tdesc_data);
8227 return NULL;
8228 }
8229
3877922e
MR
8230 num_regs = mips_regnum.fp_implementation_revision + 1;
8231
1faeff08
MR
8232 if (dspacc >= 0)
8233 {
8234 feature = tdesc_find_feature (info.target_desc,
8235 "org.gnu.gdb.mips.dsp");
8236 /* The DSP registers are optional; it's OK if they are absent. */
8237 if (feature != NULL)
8238 {
8239 i = 0;
8240 valid_p = 1;
8241 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8242 dspacc + i++, "hi1");
8243 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8244 dspacc + i++, "lo1");
8245 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8246 dspacc + i++, "hi2");
8247 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8248 dspacc + i++, "lo2");
8249 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8250 dspacc + i++, "hi3");
8251 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8252 dspacc + i++, "lo3");
8253
8254 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8255 dspctl, "dspctl");
8256
8257 if (!valid_p)
8258 {
8259 tdesc_data_cleanup (tdesc_data);
8260 return NULL;
8261 }
8262
8263 mips_regnum.dspacc = dspacc;
8264 mips_regnum.dspctl = dspctl;
3877922e
MR
8265
8266 num_regs = mips_regnum.dspctl + 1;
1faeff08
MR
8267 }
8268 }
8269
f8b73d13
DJ
8270 /* It would be nice to detect an attempt to use a 64-bit ABI
8271 when only 32-bit registers are provided. */
1faeff08 8272 reg_names = NULL;
f8b73d13 8273 }
c2d11a7d 8274
ec03c1ac
AC
8275 /* First of all, extract the elf_flags, if available. */
8276 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8277 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8278 else if (arches != NULL)
8279 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8280 else
8281 elf_flags = 0;
8282 if (gdbarch_debug)
8283 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8284 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8285
102182a9 8286 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8287 switch ((elf_flags & EF_MIPS_ABI))
8288 {
8289 case E_MIPS_ABI_O32:
ec03c1ac 8290 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8291 break;
8292 case E_MIPS_ABI_O64:
ec03c1ac 8293 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8294 break;
8295 case E_MIPS_ABI_EABI32:
ec03c1ac 8296 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8297 break;
8298 case E_MIPS_ABI_EABI64:
ec03c1ac 8299 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8300 break;
8301 default:
acdb74a0 8302 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8303 found_abi = MIPS_ABI_N32;
acdb74a0 8304 else
ec03c1ac 8305 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8306 break;
8307 }
acdb74a0 8308
caaa3122 8309 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8310 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8311 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8312
dc305454 8313 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8314 MIPS architecture (if there is one). */
8315 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8316 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8317
32a6503c 8318 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8319 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8320 && info.bfd_arch_info != NULL
8321 && info.bfd_arch_info->arch == bfd_arch_mips)
8322 {
8323 switch (info.bfd_arch_info->mach)
8324 {
8325 case bfd_mach_mips3900:
ec03c1ac 8326 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8327 break;
8328 case bfd_mach_mips4100:
8329 case bfd_mach_mips5000:
ec03c1ac 8330 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8331 break;
1d06468c
EZ
8332 case bfd_mach_mips8000:
8333 case bfd_mach_mips10000:
32a6503c
KB
8334 /* On Irix, ELF64 executables use the N64 ABI. The
8335 pseudo-sections which describe the ABI aren't present
8336 on IRIX. (Even for executables created by gcc.) */
e6c2f47b
PA
8337 if (info.abfd != NULL
8338 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
28d169de 8339 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8340 found_abi = MIPS_ABI_N64;
28d169de 8341 else
ec03c1ac 8342 found_abi = MIPS_ABI_N32;
1d06468c 8343 break;
bf64bfd6
AC
8344 }
8345 }
2e4ebe70 8346
26c53e50
DJ
8347 /* Default 64-bit objects to N64 instead of O32. */
8348 if (found_abi == MIPS_ABI_UNKNOWN
8349 && info.abfd != NULL
8350 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8351 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8352 found_abi = MIPS_ABI_N64;
8353
ec03c1ac
AC
8354 if (gdbarch_debug)
8355 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8356 found_abi);
8357
8358 /* What has the user specified from the command line? */
8359 wanted_abi = global_mips_abi ();
8360 if (gdbarch_debug)
8361 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8362 wanted_abi);
2e4ebe70
DJ
8363
8364 /* Now that we have found what the ABI for this binary would be,
8365 check whether the user is overriding it. */
2e4ebe70
DJ
8366 if (wanted_abi != MIPS_ABI_UNKNOWN)
8367 mips_abi = wanted_abi;
ec03c1ac
AC
8368 else if (found_abi != MIPS_ABI_UNKNOWN)
8369 mips_abi = found_abi;
8370 else
8371 mips_abi = MIPS_ABI_O32;
8372 if (gdbarch_debug)
8373 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8374 mips_abi);
2e4ebe70 8375
4cc0665f
MR
8376 /* Determine the default compressed ISA. */
8377 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8378 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8379 mips_isa = ISA_MICROMIPS;
8380 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8381 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8382 mips_isa = ISA_MIPS16;
8383 else
8384 mips_isa = global_mips_compression ();
8385 mips_compression_string = mips_compression_strings[mips_isa];
8386
ec03c1ac 8387 /* Also used when doing an architecture lookup. */
4b9b3959 8388 if (gdbarch_debug)
ec03c1ac 8389 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8390 "mips_gdbarch_init: "
8391 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8392 mips64_transfers_32bit_regs_p);
0dadbba0 8393
8d5838b5 8394 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8395#ifdef HAVE_ELF
8396 if (info.abfd
8397 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8398 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8399 Tag_GNU_MIPS_ABI_FP);
8400#endif /* HAVE_ELF */
8401
8d5838b5
AC
8402 if (!mips_fpu_type_auto)
8403 fpu_type = mips_fpu_type;
d929bc19 8404 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8405 {
8406 switch (elf_fpu_type)
8407 {
d929bc19 8408 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8409 fpu_type = MIPS_FPU_DOUBLE;
8410 break;
d929bc19 8411 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8412 fpu_type = MIPS_FPU_SINGLE;
8413 break;
d929bc19 8414 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8415 default:
8416 /* Soft float or unknown. */
8417 fpu_type = MIPS_FPU_NONE;
8418 break;
8419 }
8420 }
8d5838b5
AC
8421 else if (info.bfd_arch_info != NULL
8422 && info.bfd_arch_info->arch == bfd_arch_mips)
8423 switch (info.bfd_arch_info->mach)
8424 {
8425 case bfd_mach_mips3900:
8426 case bfd_mach_mips4100:
8427 case bfd_mach_mips4111:
a9d61c86 8428 case bfd_mach_mips4120:
8d5838b5
AC
8429 fpu_type = MIPS_FPU_NONE;
8430 break;
8431 case bfd_mach_mips4650:
8432 fpu_type = MIPS_FPU_SINGLE;
8433 break;
8434 default:
8435 fpu_type = MIPS_FPU_DOUBLE;
8436 break;
8437 }
8438 else if (arches != NULL)
8439 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8440 else
8441 fpu_type = MIPS_FPU_DOUBLE;
8442 if (gdbarch_debug)
8443 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8444 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8445
29709017
DJ
8446 /* Check for blatant incompatibilities. */
8447
8448 /* If we have only 32-bit registers, then we can't debug a 64-bit
8449 ABI. */
8450 if (info.target_desc
8451 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8452 && mips_abi != MIPS_ABI_EABI32
8453 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8454 {
8455 if (tdesc_data != NULL)
8456 tdesc_data_cleanup (tdesc_data);
8457 return NULL;
8458 }
29709017 8459
025bb325 8460 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8461 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8462 arches != NULL;
8463 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8464 {
d54398a7
MR
8465 /* MIPS needs to be pedantic about which ABI and the compressed
8466 ISA variation the object is using. */
9103eae0 8467 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8468 continue;
9103eae0 8469 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8470 continue;
d54398a7
MR
8471 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8472 continue;
719ec221
AC
8473 /* Need to be pedantic about which register virtual size is
8474 used. */
8475 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8476 != mips64_transfers_32bit_regs_p)
8477 continue;
8d5838b5
AC
8478 /* Be pedantic about which FPU is selected. */
8479 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8480 continue;
f8b73d13
DJ
8481
8482 if (tdesc_data != NULL)
8483 tdesc_data_cleanup (tdesc_data);
4be87837 8484 return arches->gdbarch;
c2d11a7d
JM
8485 }
8486
102182a9 8487 /* Need a new architecture. Fill in a target specific vector. */
8d749320 8488 tdep = XNEW (struct gdbarch_tdep);
c2d11a7d
JM
8489 gdbarch = gdbarch_alloc (&info, tdep);
8490 tdep->elf_flags = elf_flags;
719ec221 8491 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8492 tdep->found_abi = found_abi;
8493 tdep->mips_abi = mips_abi;
4cc0665f 8494 tdep->mips_isa = mips_isa;
8d5838b5 8495 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8496 tdep->register_size_valid_p = 0;
8497 tdep->register_size = 0;
8498
8499 if (info.target_desc)
8500 {
8501 /* Some useful properties can be inferred from the target. */
8502 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8503 {
8504 tdep->register_size_valid_p = 1;
8505 tdep->register_size = 4;
8506 }
8507 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8508 {
8509 tdep->register_size_valid_p = 1;
8510 tdep->register_size = 8;
8511 }
8512 }
c2d11a7d 8513
102182a9 8514 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8515 set_gdbarch_short_bit (gdbarch, 16);
8516 set_gdbarch_int_bit (gdbarch, 32);
8517 set_gdbarch_float_bit (gdbarch, 32);
8518 set_gdbarch_double_bit (gdbarch, 64);
8519 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8520 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8521 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8522 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8523
175ff332
HZ
8524 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8525 mips_ax_pseudo_register_collect);
8526 set_gdbarch_ax_pseudo_register_push_stack
8527 (gdbarch, mips_ax_pseudo_register_push_stack);
8528
6d82d43b 8529 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8530 mips_elf_make_msymbol_special);
3e29f34a
MR
8531 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8532 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8533 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8534
1faeff08
MR
8535 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8536 *regnum = mips_regnum;
1faeff08
MR
8537 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8538 set_gdbarch_num_regs (gdbarch, num_regs);
8539 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8540 set_gdbarch_register_name (gdbarch, mips_register_name);
8541 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8542 tdep->mips_processor_reg_names = reg_names;
8543 tdep->regnum = regnum;
fe29b929 8544
0dadbba0 8545 switch (mips_abi)
c2d11a7d 8546 {
0dadbba0 8547 case MIPS_ABI_O32:
25ab4790 8548 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8549 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8550 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8551 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8552 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8553 set_gdbarch_long_bit (gdbarch, 32);
8554 set_gdbarch_ptr_bit (gdbarch, 32);
8555 set_gdbarch_long_long_bit (gdbarch, 64);
8556 break;
0dadbba0 8557 case MIPS_ABI_O64:
25ab4790 8558 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8559 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8560 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8561 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8562 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8563 set_gdbarch_long_bit (gdbarch, 32);
8564 set_gdbarch_ptr_bit (gdbarch, 32);
8565 set_gdbarch_long_long_bit (gdbarch, 64);
8566 break;
0dadbba0 8567 case MIPS_ABI_EABI32:
25ab4790 8568 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8569 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8570 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8571 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8572 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8573 set_gdbarch_long_bit (gdbarch, 32);
8574 set_gdbarch_ptr_bit (gdbarch, 32);
8575 set_gdbarch_long_long_bit (gdbarch, 64);
8576 break;
0dadbba0 8577 case MIPS_ABI_EABI64:
25ab4790 8578 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8579 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8580 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8581 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8582 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8583 set_gdbarch_long_bit (gdbarch, 64);
8584 set_gdbarch_ptr_bit (gdbarch, 64);
8585 set_gdbarch_long_long_bit (gdbarch, 64);
8586 break;
0dadbba0 8587 case MIPS_ABI_N32:
25ab4790 8588 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8589 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8590 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8591 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8592 tdep->default_mask_address_p = 0;
0dadbba0
AC
8593 set_gdbarch_long_bit (gdbarch, 32);
8594 set_gdbarch_ptr_bit (gdbarch, 32);
8595 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8596 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8597 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8598 break;
8599 case MIPS_ABI_N64:
25ab4790 8600 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8601 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8602 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8603 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8604 tdep->default_mask_address_p = 0;
8605 set_gdbarch_long_bit (gdbarch, 64);
8606 set_gdbarch_ptr_bit (gdbarch, 64);
8607 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8608 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8609 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8610 break;
c2d11a7d 8611 default:
e2e0b3e5 8612 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8613 }
8614
22e47e37
FF
8615 /* GCC creates a pseudo-section whose name specifies the size of
8616 longs, since -mlong32 or -mlong64 may be used independent of
8617 other options. How those options affect pointer sizes is ABI and
8618 architecture dependent, so use them to override the default sizes
8619 set by the ABI. This table shows the relationship between ABI,
8620 -mlongXX, and size of pointers:
8621
8622 ABI -mlongXX ptr bits
8623 --- -------- --------
8624 o32 32 32
8625 o32 64 32
8626 n32 32 32
8627 n32 64 64
8628 o64 32 32
8629 o64 64 64
8630 n64 32 32
8631 n64 64 64
8632 eabi32 32 32
8633 eabi32 64 32
8634 eabi64 32 32
8635 eabi64 64 64
8636
8637 Note that for o32 and eabi32, pointers are always 32 bits
8638 regardless of any -mlongXX option. For all others, pointers and
025bb325 8639 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8640
8641 if (info.abfd != NULL)
8642 {
8643 int long_bit = 0;
8644
8645 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8646 if (long_bit)
8647 {
8648 set_gdbarch_long_bit (gdbarch, long_bit);
8649 switch (mips_abi)
8650 {
8651 case MIPS_ABI_O32:
8652 case MIPS_ABI_EABI32:
8653 break;
8654 case MIPS_ABI_N32:
8655 case MIPS_ABI_O64:
8656 case MIPS_ABI_N64:
8657 case MIPS_ABI_EABI64:
8658 set_gdbarch_ptr_bit (gdbarch, long_bit);
8659 break;
8660 default:
8661 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8662 }
8663 }
8664 }
8665
a5ea2558
AC
8666 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8667 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8668 comment:
8669
8670 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8671 flag in object files because to do so would make it impossible to
102182a9 8672 link with libraries compiled without "-gp32". This is
a5ea2558 8673 unnecessarily restrictive.
361d1df0 8674
a5ea2558
AC
8675 We could solve this problem by adding "-gp32" multilibs to gcc,
8676 but to set this flag before gcc is built with such multilibs will
8677 break too many systems.''
8678
8679 But even more unhelpfully, the default linker output target for
8680 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8681 for 64-bit programs - you need to change the ABI to change this,
102182a9 8682 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8683 this flag to detect 32-bit mode would do the wrong thing given
8684 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8685 as 32-bit programs by default. */
a5ea2558 8686
6c997a34 8687 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8688 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8689
102182a9
MS
8690 /* Add/remove bits from an address. The MIPS needs be careful to
8691 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8692 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8693
58dfe9ff
AC
8694 /* Unwind the frame. */
8695 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8696 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8697 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8698
102182a9 8699 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8700 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8701 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8702 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8703 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8704 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8705 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8706
025bb325 8707 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8708
2c76a0c7
JB
8709 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8710 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8711 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8712
1bab7383
YQ
8713 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8714
87783b8b
AC
8715 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8716 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8717 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8718
f7b9e9fc 8719 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
598cc9dc 8720 SET_GDBARCH_BREAKPOINT_MANIPULATION (mips);
c8cef75f
MR
8721 set_gdbarch_adjust_breakpoint_address (gdbarch,
8722 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8723
8724 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8725
c9cf6e20 8726 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
97ab0fdd 8727
fc0c74b1
AC
8728 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8729 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8730 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8731
a4b8ebc8 8732 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8733
e11c53d2 8734 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8735
9dae60cc
UW
8736 if (mips_abi == MIPS_ABI_N32)
8737 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8738 else if (mips_abi == MIPS_ABI_N64)
8739 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8740 else
8741 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8742
d92524f1
PM
8743 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8744 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8745 need to all be folded into the target vector. Since they are
d92524f1
PM
8746 being used as guards for target_stopped_by_watchpoint, why not have
8747 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8748 is sitting on? */
8749 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8750
e7d6a6d2 8751 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8752
14132e89
MR
8753 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8754 to support MIPS16. This is a bad thing. Make sure not to do it
8755 if we have an OS ABI that actually supports shared libraries, since
8756 shared library support is more important. If we have an OS someday
8757 that supports both shared libraries and MIPS16, we'll have to find
8758 a better place for these.
8759 macro/2012-04-25: But that applies to return trampolines only and
8760 currently no MIPS OS ABI uses shared libraries that have them. */
8761 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8762
025bb325
MS
8763 set_gdbarch_single_step_through_delay (gdbarch,
8764 mips_single_step_through_delay);
3352ef37 8765
0d5de010
DJ
8766 /* Virtual tables. */
8767 set_gdbarch_vbit_in_delta (gdbarch, 1);
8768
29709017
DJ
8769 mips_register_g_packet_guesses (gdbarch);
8770
6de918a6 8771 /* Hook in OS ABI-specific overrides, if they have been registered. */
ede5f151 8772 info.tdep_info = tdesc_data;
6de918a6 8773 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8774
9aac7884
MR
8775 /* The hook may have adjusted num_regs, fetch the final value and
8776 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8777 num_regs = gdbarch_num_regs (gdbarch);
8778 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8779 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8780
5792a79b 8781 /* Unwind the frame. */
b8a22b94
DJ
8782 dwarf2_append_unwinders (gdbarch);
8783 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8784 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8785 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8786 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8787 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8788 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8789 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8790 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8791 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8792
f8b73d13
DJ
8793 if (tdesc_data)
8794 {
8795 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8796 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8797
8798 /* Override the normal target description methods to handle our
8799 dual real and pseudo registers. */
8800 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8801 set_gdbarch_register_reggroup_p (gdbarch,
8802 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8803
8804 num_regs = gdbarch_num_regs (gdbarch);
8805 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8806 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8807 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8808 }
8809
8810 /* Add ABI-specific aliases for the registers. */
8811 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8812 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8813 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8814 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8815 else
8816 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8817 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8818 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8819
8820 /* Add some other standard aliases. */
8821 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8822 user_reg_add (gdbarch, mips_register_aliases[i].name,
8823 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8824
865093a3
AR
8825 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8826 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8827 value_of_mips_user_reg,
8828 &mips_numeric_register_aliases[i].regnum);
8829
4b9b3959
AC
8830 return gdbarch;
8831}
8832
2e4ebe70 8833static void
6d82d43b 8834mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8835{
8836 struct gdbarch_info info;
8837
8838 /* Force the architecture to update, and (if it's a MIPS architecture)
8839 mips_gdbarch_init will take care of the rest. */
8840 gdbarch_info_init (&info);
8841 gdbarch_update_p (info);
8842}
8843
ad188201
KB
8844/* Print out which MIPS ABI is in use. */
8845
8846static void
1f8ca57c
JB
8847show_mips_abi (struct ui_file *file,
8848 int from_tty,
8849 struct cmd_list_element *ignored_cmd,
8850 const char *ignored_value)
ad188201 8851{
f5656ead 8852 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8853 fprintf_filtered
8854 (file,
8855 "The MIPS ABI is unknown because the current architecture "
8856 "is not MIPS.\n");
ad188201
KB
8857 else
8858 {
8859 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8860 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8861 const char *actual_abi_str = mips_abi_strings[actual_abi];
8862
8863 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8864 fprintf_filtered
8865 (file,
8866 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8867 actual_abi_str);
ad188201 8868 else if (global_abi == actual_abi)
1f8ca57c
JB
8869 fprintf_filtered
8870 (file,
8871 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8872 actual_abi_str);
ad188201
KB
8873 else
8874 {
8875 /* Probably shouldn't happen... */
025bb325
MS
8876 fprintf_filtered (file,
8877 "The (auto detected) MIPS ABI \"%s\" is in use "
8878 "even though the user setting was \"%s\".\n",
6d82d43b 8879 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8880 }
8881 }
8882}
8883
4cc0665f
MR
8884/* Print out which MIPS compressed ISA encoding is used. */
8885
8886static void
8887show_mips_compression (struct ui_file *file, int from_tty,
8888 struct cmd_list_element *c, const char *value)
8889{
8890 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8891 value);
8892}
8893
4b9b3959 8894static void
72a155b4 8895mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8896{
72a155b4 8897 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8898 if (tdep != NULL)
c2d11a7d 8899 {
acdb74a0
AC
8900 int ef_mips_arch;
8901 int ef_mips_32bitmode;
f49e4e6d 8902 /* Determine the ISA. */
acdb74a0
AC
8903 switch (tdep->elf_flags & EF_MIPS_ARCH)
8904 {
8905 case E_MIPS_ARCH_1:
8906 ef_mips_arch = 1;
8907 break;
8908 case E_MIPS_ARCH_2:
8909 ef_mips_arch = 2;
8910 break;
8911 case E_MIPS_ARCH_3:
8912 ef_mips_arch = 3;
8913 break;
8914 case E_MIPS_ARCH_4:
93d56215 8915 ef_mips_arch = 4;
acdb74a0
AC
8916 break;
8917 default:
93d56215 8918 ef_mips_arch = 0;
acdb74a0
AC
8919 break;
8920 }
f49e4e6d 8921 /* Determine the size of a pointer. */
acdb74a0 8922 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8923 fprintf_unfiltered (file,
8924 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8925 tdep->elf_flags);
4b9b3959 8926 fprintf_unfiltered (file,
acdb74a0
AC
8927 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8928 ef_mips_32bitmode);
8929 fprintf_unfiltered (file,
8930 "mips_dump_tdep: ef_mips_arch = %d\n",
8931 ef_mips_arch);
8932 fprintf_unfiltered (file,
8933 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8934 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8935 fprintf_unfiltered (file,
025bb325
MS
8936 "mips_dump_tdep: "
8937 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8938 mips_mask_address_p (tdep),
4014092b 8939 tdep->default_mask_address_p);
c2d11a7d 8940 }
4b9b3959
AC
8941 fprintf_unfiltered (file,
8942 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8943 MIPS_DEFAULT_FPU_TYPE,
8944 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8945 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8946 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8947 : "???"));
74ed0bb4
MD
8948 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8949 MIPS_EABI (gdbarch));
4b9b3959
AC
8950 fprintf_unfiltered (file,
8951 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4
MD
8952 MIPS_FPU_TYPE (gdbarch),
8953 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8954 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8955 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
4b9b3959 8956 : "???"));
c2d11a7d
JM
8957}
8958
025bb325 8959extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 8960
c906108c 8961void
acdb74a0 8962_initialize_mips_tdep (void)
c906108c
SS
8963{
8964 static struct cmd_list_element *mipsfpulist = NULL;
8965 struct cmd_list_element *c;
8966
6d82d43b 8967 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8968 if (MIPS_ABI_LAST + 1
8969 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8970 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8971
4b9b3959 8972 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8973
8d5f9dcb
DJ
8974 mips_pdr_data = register_objfile_data ();
8975
4eb0ad19
DJ
8976 /* Create feature sets with the appropriate properties. The values
8977 are not important. */
8978 mips_tdesc_gp32 = allocate_target_description ();
8979 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8980
8981 mips_tdesc_gp64 = allocate_target_description ();
8982 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8983
025bb325 8984 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8985 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8986 _("Various MIPS specific commands."),
a5ea2558
AC
8987 &setmipscmdlist, "set mips ", 0, &setlist);
8988
8989 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 8990 _("Various MIPS specific commands."),
a5ea2558
AC
8991 &showmipscmdlist, "show mips ", 0, &showlist);
8992
025bb325 8993 /* Allow the user to override the ABI. */
7ab04401
AC
8994 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8995 &mips_abi_string, _("\
8996Set the MIPS ABI used by this program."), _("\
8997Show the MIPS ABI used by this program."), _("\
8998This option can be set to one of:\n\
8999 auto - the default ABI associated with the current binary\n\
9000 o32\n\
9001 o64\n\
9002 n32\n\
9003 n64\n\
9004 eabi32\n\
9005 eabi64"),
9006 mips_abi_update,
9007 show_mips_abi,
9008 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9009
4cc0665f
MR
9010 /* Allow the user to set the ISA to assume for compressed code if ELF
9011 file flags don't tell or there is no program file selected. This
9012 setting is updated whenever unambiguous ELF file flags are interpreted,
9013 and carried over to subsequent sessions. */
9014 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9015 &mips_compression_string, _("\
9016Set the compressed ISA encoding used by MIPS code."), _("\
9017Show the compressed ISA encoding used by MIPS code."), _("\
9018Select the compressed ISA encoding used in functions that have no symbol\n\
9019information available. The encoding can be set to either of:\n\
9020 mips16\n\
9021 micromips\n\
9022and is updated automatically from ELF file flags if available."),
9023 mips_abi_update,
9024 show_mips_compression,
9025 &setmipscmdlist, &showmipscmdlist);
9026
c906108c
SS
9027 /* Let the user turn off floating point and set the fence post for
9028 heuristic_proc_start. */
9029
9030 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9031 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9032 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9033 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9034 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9035 &mipsfpulist);
9036 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9037 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9038 &mipsfpulist);
9039 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9040 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9041 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9042 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9043 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9044 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9045 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9046 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9047 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9048 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9049 &mipsfpulist);
9050 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9051 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9052 &showlist);
9053
c906108c
SS
9054 /* We really would like to have both "0" and "unlimited" work, but
9055 command.c doesn't deal with that. So make it a var_zinteger
9056 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9057 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9058 &heuristic_fence_post, _("\
9059Set the distance searched for the start of a function."), _("\
9060Show the distance searched for the start of a function."), _("\
c906108c
SS
9061If you are debugging a stripped executable, GDB needs to search through the\n\
9062program for the start of a function. This command sets the distance of the\n\
7915a72c 9063search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9064 reinit_frame_cache_sfunc,
025bb325
MS
9065 NULL, /* FIXME: i18n: The distance searched for
9066 the start of a function is %s. */
6bcadd06 9067 &setlist, &showlist);
c906108c
SS
9068
9069 /* Allow the user to control whether the upper bits of 64-bit
9070 addresses should be zeroed. */
7915a72c
AC
9071 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9072 &mask_address_var, _("\
9073Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9074Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9075Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9076allow GDB to determine the correct value."),
08546159
AC
9077 NULL, show_mask_address,
9078 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9079
9080 /* Allow the user to control the size of 32 bit registers within the
9081 raw remote packet. */
b3f42336 9082 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9083 &mips64_transfers_32bit_regs_p, _("\
9084Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9085 _("\
9086Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9087 _("\
719ec221
AC
9088Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9089that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 909064 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9091 set_mips64_transfers_32bit_regs,
025bb325
MS
9092 NULL, /* FIXME: i18n: Compatibility with 64-bit
9093 MIPS target that transfers 32-bit
9094 quantities is %s. */
7915a72c 9095 &setlist, &showlist);
9ace0497 9096
025bb325 9097 /* Debug this files internals. */
ccce17b0
YQ
9098 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9099 &mips_debug, _("\
7915a72c
AC
9100Set mips debugging."), _("\
9101Show mips debugging."), _("\
9102When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9103 NULL,
9104 NULL, /* FIXME: i18n: Mips debugging is
9105 currently %s. */
9106 &setdebuglist, &showdebuglist);
c906108c 9107}
This page took 2.472582 seconds and 4 git commands to generate.