2002-09-05 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
2e4ebe70 64 MIPS_ABI_UNKNOWN = 0,
0dadbba0
AC
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
28d169de 67 MIPS_ABI_N64,
0dadbba0
AC
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
2e4ebe70
DJ
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
0dadbba0
AC
72 };
73
2e4ebe70
DJ
74static const char *mips_abi_string;
75
76static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
28d169de 80 "n64",
2e4ebe70
DJ
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85};
86
cce74817 87struct frame_extra_info
c5aa993b
JM
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
cce74817 92
d929b26f
AC
93/* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
53904c9e
AC
97static const char size_auto[] = "auto";
98static const char size_32[] = "32";
99static const char size_64[] = "64";
d929b26f 100
53904c9e 101static const char *size_enums[] = {
d929b26f
AC
102 size_auto,
103 size_32,
104 size_64,
a5ea2558
AC
105 0
106};
107
7a292a7a
SS
108/* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
c906108c
SS
111
112enum mips_fpu_type
c5aa993b
JM
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
c906108c
SS
118
119#ifndef MIPS_DEFAULT_FPU_TYPE
120#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121#endif
122static int mips_fpu_type_auto = 1;
123static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 124
9ace0497 125static int mips_debug = 0;
7a292a7a 126
c2d11a7d
JM
127/* MIPS specific per-architecture information */
128struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
70f80edf 132
c2d11a7d 133 /* mips options */
0dadbba0 134 enum mips_abi mips_abi;
2e4ebe70 135 enum mips_abi found_abi;
c2d11a7d
JM
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
a5ea2558 139 int mips_default_saved_regsize;
c2d11a7d 140 int mips_fp_register_double;
d929b26f 141 int mips_default_stack_argsize;
5213ab06 142 int gdb_target_is_mips64;
4014092b 143 int default_mask_address_p;
70f80edf
JT
144
145 enum gdb_osabi osabi;
c2d11a7d
JM
146 };
147
0dadbba0 148#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 150
c2d11a7d 151#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 152
c2d11a7d 153#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 154
c2d11a7d 155#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 156
d929b26f
AC
157/* Return the currently configured (or set) saved register size. */
158
a5ea2558 159#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
71b8ef93 176/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
181
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
185
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
189
5a89d8aa
MS
190static void
191mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
192{
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
194 {
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
198 }
199}
200
71b8ef93
MS
201static int
202msymbol_is_special (struct minimal_symbol *msym)
203{
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
205}
206
207static long
208msymbol_size (struct minimal_symbol *msym)
209{
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
211}
212
88658117
AC
213/* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
217
218static void
219mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
221 int buf_offset)
222{
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
224 int reg_offset = 0;
cb1d2653
AC
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
88658117
AC
227 switch (endian)
228 {
229 case BFD_ENDIAN_BIG:
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
231 break;
232 case BFD_ENDIAN_LITTLE:
233 reg_offset = 0;
234 break;
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
236 reg_offset = 0;
237 break;
238 default:
239 internal_error (__FILE__, __LINE__, "bad switch");
240 }
241 if (mips_debug)
cb1d2653
AC
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
88658117
AC
245 if (mips_debug && out != NULL)
246 {
247 int i;
cb1d2653 248 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 249 for (i = 0; i < length; i++)
cb1d2653 250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
251 }
252 if (in != NULL)
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
254 if (out != NULL)
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
257 {
258 int i;
cb1d2653 259 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 260 for (i = 0; i < length; i++)
cb1d2653 261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
262 }
263 if (mips_debug)
264 fprintf_unfiltered (gdb_stdlog, "\n");
265}
266
dd824b04
DJ
267/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
270
271static int
272mips2_fp_compat (void)
273{
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
275 meaningful. */
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
277 return 0;
278
279#if 0
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
284 mode. */
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
286 return 1;
287#endif
361d1df0 288
dd824b04
DJ
289 return 0;
290}
291
c2d11a7d
JM
292/* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
296 MIPS_FPU_TYPE. */
c2d11a7d 297#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 298
d929b26f
AC
299/* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
302
0dadbba0 303#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
304
305#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
306
53904c9e 307static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
308
309static unsigned int
310mips_stack_argsize (void)
311{
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
315 return 8;
316 else /* if (mips_stack_argsize_string == size_32) */
317 return 4;
318}
319
5213ab06 320#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 321
92e1c15c 322#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 323
7a292a7a 324#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 325
a14ed312 326int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 327
a14ed312 328static void mips_print_register (int, int);
c906108c
SS
329
330static mips_extra_func_info_t
479412cd 331heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 332
a14ed312 333static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 334
a14ed312 335static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 336
5a89d8aa 337static int mips_set_processor_type (char *);
c906108c 338
a14ed312 339static void mips_show_processor_type_command (char *, int);
c906108c 340
a14ed312 341static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
342
343static mips_extra_func_info_t
479412cd 344find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 345
a14ed312
KB
346static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
c906108c 348
dd824b04
DJ
349static void mips_read_fp_register_single (int regno, char *rare_buffer);
350static void mips_read_fp_register_double (int regno, char *rare_buffer);
351
67b2c998
DJ
352static struct type *mips_float_register_type (void);
353static struct type *mips_double_register_type (void);
354
c906108c
SS
355/* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
357
358char *mips_processor_type;
359
360char *tmp_mips_processor_type;
361
acdb74a0
AC
362/* The list of available "set mips " and "show mips " commands */
363
364static struct cmd_list_element *setmipscmdlist = NULL;
365static struct cmd_list_element *showmipscmdlist = NULL;
366
c906108c
SS
367/* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
369
cce74817
JM
370char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371char **mips_processor_reg_names = mips_generic_reg_names;
372
5a89d8aa 373static const char *
fba45db2 374mips_register_name (int i)
cce74817
JM
375{
376 return mips_processor_reg_names[i];
377}
9846de1b 378/* *INDENT-OFF* */
c906108c
SS
379/* Names of IDT R3041 registers. */
380
381char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
391 "fsr", "fir", "fp", "",
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
394};
395
396/* Names of IDT R3051 registers. */
397
398char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
408 "fsr", "fir", "fp", "",
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
411};
412
413/* Names of IDT R3081 registers. */
414
415char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
425 "fsr", "fir", "fp", "",
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
428};
429
430/* Names of LSI 33k registers. */
431
432char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
442 "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445};
446
447struct {
448 char *name;
449 char **regnames;
450} mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
457 { NULL, NULL }
458};
9846de1b 459/* *INDENT-ON* */
c906108c 460
c5aa993b
JM
461
462
463
c906108c 464/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
465static int mips16_to_32_reg[8] =
466{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
467
468/* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
470 search. */
471
472static unsigned int heuristic_fence_post = 0;
473
c5aa993b
JM
474#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
476#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
484/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
486#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487#define _PROC_MAGIC_ 0x0F0F0F0F
488#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
490
491struct linked_proc_info
c5aa993b
JM
492 {
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
495 }
496 *linked_proc_desc_table = NULL;
c906108c 497
cce74817 498void
acdb74a0 499mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
500{
501 if (fi
502 && fi->extra_info
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 505 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 508}
c906108c 509
46cd78fb
AC
510/* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
43e526b9
JM
513
514static int mips64_transfers_32bit_regs_p = 0;
515
f7ab6ec6 516static int
acdb74a0 517mips_register_raw_size (int reg_nr)
43e526b9
JM
518{
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
524 registers. */
525 return 8;
43e526b9
JM
526 else
527 return MIPS_REGSIZE;
528}
529
46cd78fb
AC
530/* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
532
d05285fa 533static int
acdb74a0 534mips_register_convertible (int reg_nr)
43e526b9
JM
535{
536 if (mips64_transfers_32bit_regs_p)
537 return 0;
538 else
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
540}
541
d05285fa 542static void
acdb74a0
AC
543mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
43e526b9 545{
d7449b42 546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
547 memcpy (virt_buf,
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
550 else
551 memcpy (virt_buf,
552 raw_buf,
553 TYPE_LENGTH (virtual_type));
554}
555
d05285fa 556static void
acdb74a0
AC
557mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
43e526b9
JM
559{
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
563 virt_buf,
564 TYPE_LENGTH (virtual_type));
565 else
566 memcpy (raw_buf,
567 virt_buf,
568 TYPE_LENGTH (virtual_type));
569}
570
102182a9
MS
571void
572mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
573{
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
579 {
580 char temp[4];
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
584 }
585}
586
587void
588mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
589{
590if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
595 {
596 char temp[4];
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
600 }
601}
602
78fde5f8
KB
603/* Return the GDB type object for the "standard" data type
604 of data in register REG.
605
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
612
613static struct type *
614mips_register_virtual_type (int reg)
615{
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
617 {
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
621 else
622 return builtin_type_ieee_double_little;
623 }
78fde5f8
KB
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
628 else
629 {
a6425924
KB
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
78fde5f8 634 else
a6425924 635 return builtin_type_uint32;
78fde5f8
KB
636 }
637}
638
bcb0cc15
MS
639/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
640
641static CORE_ADDR
642mips_read_sp (void)
643{
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
645}
646
c906108c 647/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 648enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
649
650static int
651mips_mask_address_p (void)
652{
653 switch (mask_address_var)
654 {
7f19b9a2 655 case AUTO_BOOLEAN_TRUE:
4014092b 656 return 1;
7f19b9a2 657 case AUTO_BOOLEAN_FALSE:
4014092b
AC
658 return 0;
659 break;
7f19b9a2 660 case AUTO_BOOLEAN_AUTO:
92e1c15c 661 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 662 default:
8e65ff28
AC
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
4014092b 665 return -1;
361d1df0 666 }
4014092b
AC
667}
668
669static void
e9e68a56 670show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
671{
672 switch (mask_address_var)
673 {
7f19b9a2 674 case AUTO_BOOLEAN_TRUE:
4014092b
AC
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
676 break;
7f19b9a2 677 case AUTO_BOOLEAN_FALSE:
4014092b
AC
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
679 break;
7f19b9a2 680 case AUTO_BOOLEAN_AUTO:
4014092b
AC
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
683 break;
684 default:
8e65ff28
AC
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
4014092b 687 break;
361d1df0 688 }
4014092b 689}
c906108c
SS
690
691/* Should call_function allocate stack space for a struct return? */
cb811fe7 692
f7ab6ec6 693static int
cb811fe7 694mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 695{
cb811fe7
MS
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
697}
698
f7ab6ec6 699static int
cb811fe7
MS
700mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
701{
b78bcb18 702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
703}
704
f7ab6ec6 705static int
cb811fe7
MS
706mips_o32_use_struct_convention (int gcc_p, struct type *type)
707{
708 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
709}
710
8b389c40
MS
711/* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
714
715static int
716mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
717{
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
720
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
723
724 return 0;
725}
726
727static int
728mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
729{
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
731}
732
f7ab6ec6 733static int
8b389c40
MS
734mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
735{
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
737}
738
c906108c
SS
739/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
740
741static int
742pc_is_mips16 (bfd_vma memaddr)
743{
744 struct minimal_symbol *sym;
745
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
748 return 1;
749
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
754 if (sym)
71b8ef93 755 return msymbol_is_special (sym);
c906108c
SS
756 else
757 return 0;
758}
759
6c997a34
AC
760/* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
762
763static CORE_ADDR
39f77062 764mips_read_pc (ptid_t ptid)
6c997a34 765{
39f77062 766 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 767}
c906108c
SS
768
769/* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
771
772static CORE_ADDR
acdb74a0
AC
773after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
c906108c
SS
775{
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
778
479412cd
DJ
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
783 right now. */
c906108c 784 if (!proc_desc)
479412cd 785 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
786
787 if (proc_desc)
788 {
789 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 790 strongly suspect that frameless always means prologueless... */
c906108c
SS
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
793 return 0;
794 }
795
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
798
799 sal = find_pc_line (func_addr, 0);
800
801 if (sal.end < func_end)
802 return sal.end;
803
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
806
807 return 0;
808}
809
810/* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
814
815static void
acdb74a0
AC
816mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
c906108c
SS
818{
819 int reg;
820
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
824 {
825 /* It might be possible to use the instruction to
c5aa993b
JM
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
c906108c
SS
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
832 }
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
836
837 {
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
840 }
841}
842
843/* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
847
848static void
acdb74a0 849mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 850{
c5aa993b 851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
852 {
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
855 }
c5aa993b 856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
857 {
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
860 }
c5aa993b 861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
864}
865
866
867/* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
869
870static t_inst
acdb74a0 871mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
872{
873 char buf[MIPS_INSTLEN];
874 int instlen;
875 int status;
876
877 if (pc_is_mips16 (addr))
878 {
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
881 }
882 else
c5aa993b 883 instlen = MIPS_INSTLEN;
c906108c
SS
884 status = read_memory_nobpt (addr, buf, instlen);
885 if (status)
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
888}
889
890
891/* These the fields of 32 bit mips instructions */
e135b889
DJ
892#define mips32_op(x) (x >> 26)
893#define itype_op(x) (x >> 26)
894#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 895#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 896#define itype_immediate(x) (x & 0xffff)
c906108c 897
e135b889
DJ
898#define jtype_op(x) (x >> 26)
899#define jtype_target(x) (x & 0x03ffffff)
c906108c 900
e135b889
DJ
901#define rtype_op(x) (x >> 26)
902#define rtype_rs(x) ((x >> 21) & 0x1f)
903#define rtype_rt(x) ((x >> 16) & 0x1f)
904#define rtype_rd(x) ((x >> 11) & 0x1f)
905#define rtype_shamt(x) ((x >> 6) & 0x1f)
906#define rtype_funct(x) (x & 0x3f)
c906108c
SS
907
908static CORE_ADDR
c5aa993b
JM
909mips32_relative_offset (unsigned long inst)
910{
911 long x;
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
c906108c 914 {
c5aa993b 915 x |= 0xffff0000; /* sign extension */
c906108c 916 }
c5aa993b
JM
917 x = x << 2;
918 return x;
c906108c
SS
919}
920
921/* Determine whate to set a single step breakpoint while considering
922 branch prediction */
5a89d8aa 923static CORE_ADDR
c5aa993b
JM
924mips32_next_pc (CORE_ADDR pc)
925{
926 unsigned long inst;
927 int op;
928 inst = mips_fetch_instruction (pc);
e135b889 929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 930 {
e135b889
DJ
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 933 {
e135b889 934 op = (itype_op (inst) & 0x03);
c906108c
SS
935 switch (op)
936 {
e135b889
DJ
937 case 0: /* BEQL */
938 goto equal_branch;
939 case 1: /* BNEL */
940 goto neq_branch;
941 case 2: /* BLEZL */
942 goto less_branch;
943 case 3: /* BGTZ */
944 goto greater_branch;
c5aa993b
JM
945 default:
946 pc += 4;
c906108c
SS
947 }
948 }
e135b889
DJ
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
951 {
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
956
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
959 else
960 pc += 8;
961 }
c5aa993b
JM
962 else
963 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
964 }
965 else
c5aa993b
JM
966 { /* This gets way messy */
967
c906108c 968 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 970 {
c5aa993b
JM
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
973 switch (op)
974 {
975 case 8: /* JR */
976 case 9: /* JALR */
6c997a34
AC
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
979 break;
980 default:
981 pc += 4;
982 }
983
e135b889 984 break; /* end SPECIAL */
c5aa993b 985 case 1: /* REGIMM */
c906108c 986 {
e135b889
DJ
987 op = itype_rt (inst); /* branch condition */
988 switch (op)
c906108c 989 {
c5aa993b 990 case 0: /* BLTZ */
e135b889
DJ
991 case 2: /* BLTZL */
992 case 16: /* BLTZAL */
c5aa993b 993 case 18: /* BLTZALL */
c906108c 994 less_branch:
6c997a34 995 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
996 pc += mips32_relative_offset (inst) + 4;
997 else
998 pc += 8; /* after the delay slot */
999 break;
e135b889 1000 case 1: /* BGEZ */
c5aa993b
JM
1001 case 3: /* BGEZL */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
c906108c 1004 greater_equal_branch:
6c997a34 1005 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1006 pc += mips32_relative_offset (inst) + 4;
1007 else
1008 pc += 8; /* after the delay slot */
1009 break;
e135b889 1010 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1011 default:
1012 pc += 4;
c906108c
SS
1013 }
1014 }
e135b889 1015 break; /* end REGIMM */
c5aa993b
JM
1016 case 2: /* J */
1017 case 3: /* JAL */
1018 {
1019 unsigned long reg;
1020 reg = jtype_target (inst) << 2;
e135b889 1021 /* Upper four bits get never changed... */
c5aa993b 1022 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1023 }
c5aa993b
JM
1024 break;
1025 /* FIXME case JALX : */
1026 {
1027 unsigned long reg;
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1031 }
c5aa993b 1032 break; /* The new PC will be alternate mode */
e135b889 1033 case 4: /* BEQ, BEQL */
c5aa993b 1034 equal_branch:
6c997a34
AC
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1037 pc += mips32_relative_offset (inst) + 4;
1038 else
1039 pc += 8;
1040 break;
e135b889 1041 case 5: /* BNE, BNEL */
c5aa993b 1042 neq_branch:
6c997a34 1043 if (read_signed_register (itype_rs (inst)) !=
e135b889 1044 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
e135b889 1049 case 6: /* BLEZ, BLEZL */
c906108c 1050 less_zero_branch:
6c997a34 1051 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1052 pc += mips32_relative_offset (inst) + 4;
1053 else
1054 pc += 8;
1055 break;
1056 case 7:
e135b889
DJ
1057 default:
1058 greater_branch: /* BGTZ, BGTZL */
6c997a34 1059 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8;
1063 break;
c5aa993b
JM
1064 } /* switch */
1065 } /* else */
1066 return pc;
1067} /* mips32_next_pc */
c906108c
SS
1068
1069/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1073 either.
c5aa993b 1074 */
c906108c
SS
1075
1076/* Lots of mips16 instruction formats */
1077/* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
c5aa993b 1079 */
c906108c
SS
1080enum mips16_inst_fmts
1081{
c5aa993b
JM
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1104};
12f02c2a
AC
1105/* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
c906108c 1107struct upk_mips16
c5aa993b 1108 {
12f02c2a 1109 CORE_ADDR offset;
c5aa993b
JM
1110 unsigned int regx; /* Function in i8 type */
1111 unsigned int regy;
1112 };
c906108c
SS
1113
1114
12f02c2a
AC
1115/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
c906108c 1117
12f02c2a
AC
1118static CORE_ADDR
1119extended_offset (unsigned int extension)
c906108c 1120{
12f02c2a 1121 CORE_ADDR value;
c5aa993b
JM
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1123 value = value << 6;
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1125 value = value << 5;
1126 value |= extension & 0x01f; /* extract 4:0 */
1127 return value;
c906108c
SS
1128}
1129
1130/* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
c5aa993b 1134 */
c906108c
SS
1135/* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1137
1138
12f02c2a 1139static unsigned int
c5aa993b 1140fetch_mips_16 (CORE_ADDR pc)
c906108c 1141{
c5aa993b
JM
1142 char buf[8];
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
c906108c
SS
1146}
1147
1148static void
c5aa993b 1149unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1150 unsigned int extension,
1151 unsigned int inst,
1152 enum mips16_inst_fmts insn_format,
c5aa993b 1153 struct upk_mips16 *upk)
c906108c 1154{
12f02c2a
AC
1155 CORE_ADDR offset;
1156 int regx;
1157 int regy;
1158 switch (insn_format)
c906108c 1159 {
c5aa993b 1160 case itype:
c906108c 1161 {
12f02c2a
AC
1162 CORE_ADDR value;
1163 if (extension)
c5aa993b
JM
1164 {
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
12f02c2a 1167 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1168 }
1169 else
c5aa993b 1170 {
12f02c2a 1171 value = inst & 0x7ff;
c5aa993b 1172 /* FIXME : Consider sign extension */
c906108c 1173 }
12f02c2a
AC
1174 offset = value;
1175 regx = -1;
1176 regy = -1;
c906108c 1177 }
c5aa993b
JM
1178 break;
1179 case ritype:
1180 case i8type:
1181 { /* A register identifier and an offset */
c906108c
SS
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
12f02c2a
AC
1184 CORE_ADDR value;
1185 if (extension)
c906108c 1186 {
c5aa993b
JM
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
12f02c2a
AC
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1192 {
1193 value &= ~0x3fff; /* remove the sign bit */
1194 value = -value;
c906108c
SS
1195 }
1196 }
c5aa993b
JM
1197 else
1198 {
12f02c2a
AC
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1203 {
1204 value &= 0xef; /* remove the sign bit */
1205 value = -value;
1206 }
c5aa993b 1207 }
12f02c2a
AC
1208 offset = value;
1209 regy = -1;
c5aa993b 1210 break;
c906108c 1211 }
c5aa993b 1212 case jalxtype:
c906108c 1213 {
c5aa993b 1214 unsigned long value;
12f02c2a
AC
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1219 value |= nexthalf;
12f02c2a
AC
1220 offset = value;
1221 regx = -1;
1222 regy = -1;
c5aa993b 1223 break;
c906108c
SS
1224 }
1225 default:
8e65ff28
AC
1226 internal_error (__FILE__, __LINE__,
1227 "bad switch");
c906108c 1228 }
12f02c2a
AC
1229 upk->offset = offset;
1230 upk->regx = regx;
1231 upk->regy = regy;
c906108c
SS
1232}
1233
1234
c5aa993b
JM
1235static CORE_ADDR
1236add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1237{
c5aa993b 1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1239}
1240
12f02c2a
AC
1241static CORE_ADDR
1242extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1244 unsigned int insn)
c906108c 1245{
12f02c2a
AC
1246 int op = (insn >> 11);
1247 switch (op)
c906108c 1248 {
12f02c2a
AC
1249 case 2: /* Branch */
1250 {
1251 CORE_ADDR offset;
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1255 if (offset & 0x800)
1256 {
1257 offset &= 0xeff;
1258 offset = -offset;
1259 }
1260 pc += (offset << 1) + 2;
1261 break;
1262 }
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1264 {
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1270 else
1271 pc |= 0x01;
1272 break;
1273 }
1274 case 4: /* beqz */
1275 {
1276 struct upk_mips16 upk;
1277 int reg;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1280 if (reg == 0)
1281 pc += (upk.offset << 1) + 2;
1282 else
1283 pc += 2;
1284 break;
1285 }
1286 case 5: /* bnez */
1287 {
1288 struct upk_mips16 upk;
1289 int reg;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1292 if (reg != 0)
1293 pc += (upk.offset << 1) + 2;
1294 else
1295 pc += 2;
1296 break;
1297 }
1298 case 12: /* I8 Formats btez btnez */
1299 {
1300 struct upk_mips16 upk;
1301 int reg;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1314 {
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1317 op = insn & 0x1f;
1318 if (op == 0)
c5aa993b 1319 {
12f02c2a
AC
1320 int reg;
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1323 switch (upk.regy)
c5aa993b 1324 {
12f02c2a
AC
1325 case 0:
1326 reg = upk.regx;
1327 break;
1328 case 1:
1329 reg = 31;
1330 break; /* Function return instruction */
1331 case 2:
1332 reg = upk.regx;
1333 break;
1334 default:
1335 reg = 31;
1336 break; /* BOGUS Guess */
c906108c 1337 }
12f02c2a 1338 pc = read_signed_register (reg);
c906108c 1339 }
12f02c2a 1340 else
c5aa993b 1341 pc += 2;
12f02c2a
AC
1342 break;
1343 }
1344 case 30:
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1347 that. */
1348 {
1349 pc += 2;
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1351 break;
1352 }
1353 default:
1354 {
1355 pc += 2;
1356 break;
1357 }
c906108c 1358 }
c5aa993b 1359 return pc;
12f02c2a 1360}
c906108c 1361
5a89d8aa 1362static CORE_ADDR
12f02c2a
AC
1363mips16_next_pc (CORE_ADDR pc)
1364{
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1367}
1368
1369/* The mips_next_pc function supports single_step when the remote
7e73cedf 1370 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1374CORE_ADDR
1375mips_next_pc (CORE_ADDR pc)
c906108c 1376{
c5aa993b
JM
1377 if (pc & 0x01)
1378 return mips16_next_pc (pc);
1379 else
1380 return mips32_next_pc (pc);
12f02c2a 1381}
c906108c
SS
1382
1383/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1384 NULL).
1385
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1392 though.) */
c906108c 1393
d28e01f4 1394static void
acdb74a0 1395mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1396{
1397 int ireg;
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1400 int kernel_trap;
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1404 t_inst inst;
1405
1406 frame_saved_regs_zalloc (fci);
1407
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412#ifndef SIGFRAME_BASE
1413/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415#define SIGFRAME_BASE MIPS_REGSIZE
1416/* FIXME! Are these correct?? */
1417#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419#define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1421#endif
1422#ifndef SIGFRAME_REG_SIZE
1423/* FIXME! Is this correct?? */
1424#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1425#endif
1426 if (fci->signal_handler_caller)
1427 {
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1429 {
c5aa993b
JM
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1433 }
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1435 {
c5aa993b
JM
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1439 }
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1441 return;
1442 }
1443
cce74817 1444 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1449 return;
1450
c5aa993b
JM
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1454
c5aa993b
JM
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1460
c5aa993b
JM
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1463
c5aa993b
JM
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
c906108c 1466
c5aa993b 1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1468
c5aa993b
JM
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1473 && !kernel_trap)
c906108c
SS
1474 {
1475 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1476 claims are saved have been saved yet. */
c906108c
SS
1477
1478 CORE_ADDR addr;
1479
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1483 int instlen;
1484
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1488
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1492 {
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1496 else
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1498 addr += instlen;
1499 }
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1502 }
1503
1504 /* Fill in the offsets for the registers which gen_mask says
1505 were saved. */
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1508 if (gen_mask & 0x80000000)
1509 {
1510 fci->saved_regs[ireg] = reg_position;
7a292a7a 1511 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1512 }
1513
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1519 {
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1522 {
1523 int reg;
1524 int sreg_count = (inst >> 6) & 3;
c5aa993b 1525
c906108c
SS
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1528 if (inst & 0x20)
7a292a7a 1529 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1530
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1532 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1533 {
1534 fci->saved_regs[reg] = reg_position;
7a292a7a 1535 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1536 }
1537 }
1538 }
1539
1540 /* Fill in the offsets for the registers which float_mask says
1541 were saved. */
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1543
6acdf5c7
MS
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1545 saved.
1546
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1549
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1555 bit register. */
1556
1557 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1558 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1559
1560 /* Fill in the offsets for the float registers which float_mask says
1561 were saved. */
c5aa993b 1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1563 if (float_mask & 0x80000000)
1564 {
c5aa993b 1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1566 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1567 }
1568
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1570}
1571
d28e01f4
KB
1572/* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1578
1579static void
1580mips_frame_init_saved_regs (struct frame_info *frame)
1581{
1582 if (frame->saved_regs == NULL)
1583 {
1584 mips_find_saved_regs (frame);
1585 }
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1587}
1588
c906108c 1589static CORE_ADDR
acdb74a0 1590read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1591{
1592 for (; fi; fi = fi->next)
1593 {
1594 /* We have to get the saved sp from the sigcontext
c5aa993b 1595 if it is a signal handler frame. */
c906108c
SS
1596 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1597 return fi->frame;
1598 else
1599 {
1600 if (fi->saved_regs == NULL)
ffabd70d 1601 FRAME_INIT_SAVED_REGS (fi);
c906108c 1602 if (fi->saved_regs[regno])
2acceee2 1603 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1604 }
1605 }
6c997a34 1606 return read_signed_register (regno);
c906108c
SS
1607}
1608
1609/* mips_addr_bits_remove - remove useless address bits */
1610
875e1767 1611static CORE_ADDR
acdb74a0 1612mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1613{
5213ab06
AC
1614 if (GDB_TARGET_IS_MIPS64)
1615 {
4014092b 1616 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1617 {
1618 /* This hack is a work-around for existing boards using
1619 PMON, the simulator, and any other 64-bit targets that
1620 doesn't have true 64-bit addressing. On these targets,
1621 the upper 32 bits of addresses are ignored by the
1622 hardware. Thus, the PC or SP are likely to have been
1623 sign extended to all 1s by instruction sequences that
1624 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1625 code that loads an address is this:
1626 lui $r2, <upper 16 bits>
1627 ori $r2, <lower 16 bits>
1628 But the lui sign-extends the value such that the upper 32
1629 bits may be all 1s. The workaround is simply to mask off
1630 these bits. In the future, gcc may be changed to support
1631 true 64-bit addressing, and this masking will have to be
1632 disabled. */
5213ab06
AC
1633 addr &= (CORE_ADDR) 0xffffffff;
1634 }
1635 }
4014092b 1636 else if (mips_mask_address_p ())
5213ab06 1637 {
4014092b
AC
1638 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1639 masking off bits, instead, the actual target should be asking
1640 for the address to be converted to a valid pointer. */
5213ab06
AC
1641 /* Even when GDB is configured for some 32-bit targets
1642 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1643 so CORE_ADDR is 64 bits. So we still have to mask off
1644 useless bits from addresses. */
c5aa993b 1645 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1646 }
c906108c
SS
1647 return addr;
1648}
1649
9022177c
DJ
1650/* mips_software_single_step() is called just before we want to resume
1651 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1652 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1653 the target of the coming instruction and breakpoint it.
1654
1655 single_step is also called just after the inferior stops. If we had
1656 set up a simulated single-step, we undo our damage. */
1657
1658void
1659mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1660{
1661 static CORE_ADDR next_pc;
1662 typedef char binsn_quantum[BREAKPOINT_MAX];
1663 static binsn_quantum break_mem;
1664 CORE_ADDR pc;
1665
1666 if (insert_breakpoints_p)
1667 {
1668 pc = read_register (PC_REGNUM);
1669 next_pc = mips_next_pc (pc);
1670
1671 target_insert_breakpoint (next_pc, break_mem);
1672 }
1673 else
1674 target_remove_breakpoint (next_pc, break_mem);
1675}
1676
10312cc4 1677static void
acdb74a0 1678mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1679{
1680 CORE_ADDR pc, tmp;
1681
1682 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1683 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
5a89d8aa 1684 tmp = SKIP_TRAMPOLINE_CODE (pc);
c5aa993b 1685 prev->pc = tmp ? tmp : pc;
c906108c
SS
1686}
1687
1688
f7ab6ec6 1689static CORE_ADDR
acdb74a0 1690mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1691{
1692 CORE_ADDR saved_pc;
cce74817 1693 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1694 /* We have to get the saved pc from the sigcontext
1695 if it is a signal handler frame. */
1696 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1697 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1698
c5aa993b 1699 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1700 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1701 else
7a292a7a 1702 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1703
1704 return ADDR_BITS_REMOVE (saved_pc);
1705}
1706
1707static struct mips_extra_func_info temp_proc_desc;
cce74817 1708static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1709
1710/* Set a register's saved stack address in temp_saved_regs. If an address
1711 has already been set for this register, do nothing; this way we will
1712 only recognize the first save of a given register in a function prologue.
1713 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1714
1715static void
acdb74a0 1716set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1717{
cce74817
JM
1718 if (temp_saved_regs[regno] == 0)
1719 temp_saved_regs[regno] = offset;
c906108c
SS
1720}
1721
1722
1723/* Test whether the PC points to the return instruction at the
1724 end of a function. */
1725
c5aa993b 1726static int
acdb74a0 1727mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1728{
1729 if (pc_is_mips16 (pc))
1730 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1731 generates a "jr $ra"; other times it generates code to load
1732 the return address from the stack to an accessible register (such
1733 as $a3), then a "jr" using that register. This second case
1734 is almost impossible to distinguish from an indirect jump
1735 used for switch statements, so we don't even try. */
1736 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1737 else
1738 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1739}
1740
1741
1742/* This fencepost looks highly suspicious to me. Removing it also
1743 seems suspicious as it could affect remote debugging across serial
1744 lines. */
1745
1746static CORE_ADDR
acdb74a0 1747heuristic_proc_start (CORE_ADDR pc)
c906108c 1748{
c5aa993b
JM
1749 CORE_ADDR start_pc;
1750 CORE_ADDR fence;
1751 int instlen;
1752 int seen_adjsp = 0;
c906108c 1753
c5aa993b
JM
1754 pc = ADDR_BITS_REMOVE (pc);
1755 start_pc = pc;
1756 fence = start_pc - heuristic_fence_post;
1757 if (start_pc == 0)
1758 return 0;
c906108c 1759
c5aa993b
JM
1760 if (heuristic_fence_post == UINT_MAX
1761 || fence < VM_MIN_ADDRESS)
1762 fence = VM_MIN_ADDRESS;
c906108c 1763
c5aa993b 1764 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1765
c5aa993b
JM
1766 /* search back for previous return */
1767 for (start_pc -= instlen;; start_pc -= instlen)
1768 if (start_pc < fence)
1769 {
1770 /* It's not clear to me why we reach this point when
1771 stop_soon_quietly, but with this test, at least we
1772 don't print out warnings for every child forked (eg, on
1773 decstation). 22apr93 rich@cygnus.com. */
1774 if (!stop_soon_quietly)
c906108c 1775 {
c5aa993b
JM
1776 static int blurb_printed = 0;
1777
1778 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1779 paddr_nz (pc));
1780
1781 if (!blurb_printed)
c906108c 1782 {
c5aa993b
JM
1783 /* This actually happens frequently in embedded
1784 development, when you first connect to a board
1785 and your stack pointer and pc are nowhere in
1786 particular. This message needs to give people
1787 in that situation enough information to
1788 determine that it's no big deal. */
1789 printf_filtered ("\n\
cd0fc7c3
SS
1790 GDB is unable to find the start of the function at 0x%s\n\
1791and thus can't determine the size of that function's stack frame.\n\
1792This means that GDB may be unable to access that stack frame, or\n\
1793the frames below it.\n\
1794 This problem is most likely caused by an invalid program counter or\n\
1795stack pointer.\n\
1796 However, if you think GDB should simply search farther back\n\
1797from 0x%s for code which looks like the beginning of a\n\
1798function, you can increase the range of the search using the `set\n\
1799heuristic-fence-post' command.\n",
c5aa993b
JM
1800 paddr_nz (pc), paddr_nz (pc));
1801 blurb_printed = 1;
c906108c 1802 }
c906108c
SS
1803 }
1804
c5aa993b
JM
1805 return 0;
1806 }
1807 else if (pc_is_mips16 (start_pc))
1808 {
1809 unsigned short inst;
1810
1811 /* On MIPS16, any one of the following is likely to be the
1812 start of a function:
1813 entry
1814 addiu sp,-n
1815 daddiu sp,-n
1816 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1817 inst = mips_fetch_instruction (start_pc);
1818 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1819 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1820 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1821 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1822 break;
1823 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1824 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1825 seen_adjsp = 1;
1826 else
1827 seen_adjsp = 0;
1828 }
1829 else if (mips_about_to_return (start_pc))
1830 {
1831 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1832 break;
1833 }
1834
c5aa993b 1835 return start_pc;
c906108c
SS
1836}
1837
1838/* Fetch the immediate value from a MIPS16 instruction.
1839 If the previous instruction was an EXTEND, use it to extend
1840 the upper bits of the immediate value. This is a helper function
1841 for mips16_heuristic_proc_desc. */
1842
1843static int
acdb74a0
AC
1844mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1845 unsigned short inst, /* current instruction */
1846 int nbits, /* number of bits in imm field */
1847 int scale, /* scale factor to be applied to imm */
1848 int is_signed) /* is the imm field signed? */
c906108c
SS
1849{
1850 int offset;
1851
1852 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1853 {
1854 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1855 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1856 offset = 0 - (0x10000 - (offset & 0xffff));
1857 return offset | (inst & 0x1f);
1858 }
1859 else
1860 {
1861 int max_imm = 1 << nbits;
1862 int mask = max_imm - 1;
1863 int sign_bit = max_imm >> 1;
1864
1865 offset = inst & mask;
1866 if (is_signed && (offset & sign_bit))
1867 offset = 0 - (max_imm - offset);
1868 return offset * scale;
1869 }
1870}
1871
1872
1873/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1874 stream from start_pc to limit_pc. */
1875
1876static void
acdb74a0
AC
1877mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1878 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1879{
1880 CORE_ADDR cur_pc;
1881 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1882 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1883 unsigned inst = 0; /* current instruction */
1884 unsigned entry_inst = 0; /* the entry instruction */
1885 int reg, offset;
1886
c5aa993b
JM
1887 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1888 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1889
1890 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1891 {
1892 /* Save the previous instruction. If it's an EXTEND, we'll extract
1893 the immediate offset extension from it in mips16_get_imm. */
1894 prev_inst = inst;
1895
1896 /* Fetch and decode the instruction. */
1897 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1898 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1899 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1900 {
1901 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1902 if (offset < 0) /* negative stack adjustment? */
1903 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1904 else
1905 /* Exit loop if a positive stack adjustment is found, which
1906 usually means that the stack cleanup code in the function
1907 epilogue is reached. */
1908 break;
1909 }
1910 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1911 {
1912 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1913 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1914 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1915 set_reg_offset (reg, sp + offset);
1916 }
1917 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1918 {
1919 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1920 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1921 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1922 set_reg_offset (reg, sp + offset);
1923 }
1924 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1925 {
1926 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1927 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1928 set_reg_offset (RA_REGNUM, sp + offset);
1929 }
1930 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1931 {
1932 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1933 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1934 set_reg_offset (RA_REGNUM, sp + offset);
1935 }
c5aa993b 1936 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1937 {
1938 frame_addr = sp;
1939 PROC_FRAME_REG (&temp_proc_desc) = 17;
1940 }
1941 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1942 {
1943 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1944 frame_addr = sp + offset;
1945 PROC_FRAME_REG (&temp_proc_desc) = 17;
1946 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1947 }
1948 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1949 {
1950 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1951 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1952 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1953 set_reg_offset (reg, frame_addr + offset);
1954 }
1955 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1956 {
1957 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1958 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1959 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1960 set_reg_offset (reg, frame_addr + offset);
1961 }
c5aa993b
JM
1962 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1963 entry_inst = inst; /* save for later processing */
c906108c 1964 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1965 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1966 }
1967
c5aa993b
JM
1968 /* The entry instruction is typically the first instruction in a function,
1969 and it stores registers at offsets relative to the value of the old SP
1970 (before the prologue). But the value of the sp parameter to this
1971 function is the new SP (after the prologue has been executed). So we
1972 can't calculate those offsets until we've seen the entire prologue,
1973 and can calculate what the old SP must have been. */
1974 if (entry_inst != 0)
1975 {
1976 int areg_count = (entry_inst >> 8) & 7;
1977 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1978
c5aa993b
JM
1979 /* The entry instruction always subtracts 32 from the SP. */
1980 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1981
c5aa993b
JM
1982 /* Now we can calculate what the SP must have been at the
1983 start of the function prologue. */
1984 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1985
c5aa993b
JM
1986 /* Check if a0-a3 were saved in the caller's argument save area. */
1987 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1988 {
1989 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1990 set_reg_offset (reg, sp + offset);
1991 offset += MIPS_SAVED_REGSIZE;
1992 }
c906108c 1993
c5aa993b
JM
1994 /* Check if the ra register was pushed on the stack. */
1995 offset = -4;
1996 if (entry_inst & 0x20)
1997 {
1998 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1999 set_reg_offset (RA_REGNUM, sp + offset);
2000 offset -= MIPS_SAVED_REGSIZE;
2001 }
c906108c 2002
c5aa993b
JM
2003 /* Check if the s0 and s1 registers were pushed on the stack. */
2004 for (reg = 16; reg < sreg_count + 16; reg++)
2005 {
2006 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2007 set_reg_offset (reg, sp + offset);
2008 offset -= MIPS_SAVED_REGSIZE;
2009 }
2010 }
c906108c
SS
2011}
2012
2013static void
fba45db2
KB
2014mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2015 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2016{
2017 CORE_ADDR cur_pc;
c5aa993b 2018 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2019restart:
cce74817 2020 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2021 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2022 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2023 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2024 {
2025 unsigned long inst, high_word, low_word;
2026 int reg;
2027
2028 /* Fetch the instruction. */
2029 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2030
2031 /* Save some code by pre-extracting some useful fields. */
2032 high_word = (inst >> 16) & 0xffff;
2033 low_word = inst & 0xffff;
2034 reg = high_word & 0x1f;
2035
c5aa993b 2036 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2037 || high_word == 0x23bd /* addi $sp,$sp,-i */
2038 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2039 {
2040 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2041 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2042 else
2043 /* Exit loop if a positive stack adjustment is found, which
2044 usually means that the stack cleanup code in the function
2045 epilogue is reached. */
2046 break;
2047 }
2048 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2049 {
c5aa993b 2050 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2051 set_reg_offset (reg, sp + low_word);
2052 }
2053 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2054 {
2055 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2056 but the register size used is only 32 bits. Make the address
2057 for the saved register point to the lower 32 bits. */
c5aa993b 2058 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2059 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2060 }
c5aa993b 2061 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2062 {
2063 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2064 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2065 frame_addr = sp + low_word;
c906108c
SS
2066 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2067 {
2068 unsigned alloca_adjust;
2069 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2070 frame_addr = read_next_frame_reg (next_frame, 30);
2071 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2072 if (alloca_adjust > 0)
2073 {
2074 /* FP > SP + frame_size. This may be because
2075 * of an alloca or somethings similar.
2076 * Fix sp to "pre-alloca" value, and try again.
2077 */
2078 sp += alloca_adjust;
2079 goto restart;
2080 }
2081 }
2082 }
c5aa993b
JM
2083 /* move $30,$sp. With different versions of gas this will be either
2084 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2085 Accept any one of these. */
c906108c
SS
2086 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2087 {
2088 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2089 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2090 {
2091 unsigned alloca_adjust;
2092 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2093 frame_addr = read_next_frame_reg (next_frame, 30);
2094 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2095 if (alloca_adjust > 0)
2096 {
2097 /* FP > SP + frame_size. This may be because
2098 * of an alloca or somethings similar.
2099 * Fix sp to "pre-alloca" value, and try again.
2100 */
2101 sp += alloca_adjust;
2102 goto restart;
2103 }
2104 }
2105 }
c5aa993b 2106 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2107 {
c5aa993b 2108 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2109 set_reg_offset (reg, frame_addr + low_word);
2110 }
2111 }
2112}
2113
2114static mips_extra_func_info_t
acdb74a0 2115heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2116 struct frame_info *next_frame, int cur_frame)
c906108c 2117{
479412cd
DJ
2118 CORE_ADDR sp;
2119
2120 if (cur_frame)
2121 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2122 else
2123 sp = 0;
c906108c 2124
c5aa993b
JM
2125 if (start_pc == 0)
2126 return NULL;
2127 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 2128 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2129 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2130 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2131 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2132
2133 if (start_pc + 200 < limit_pc)
2134 limit_pc = start_pc + 200;
2135 if (pc_is_mips16 (start_pc))
2136 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2137 else
2138 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2139 return &temp_proc_desc;
2140}
2141
6c0d6680
DJ
2142struct mips_objfile_private
2143{
2144 bfd_size_type size;
2145 char *contents;
2146};
2147
2148/* Global used to communicate between non_heuristic_proc_desc and
2149 compare_pdr_entries within qsort (). */
2150static bfd *the_bfd;
2151
2152static int
2153compare_pdr_entries (const void *a, const void *b)
2154{
2155 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2156 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2157
2158 if (lhs < rhs)
2159 return -1;
2160 else if (lhs == rhs)
2161 return 0;
2162 else
2163 return 1;
2164}
2165
c906108c 2166static mips_extra_func_info_t
acdb74a0 2167non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2168{
2169 CORE_ADDR startaddr;
2170 mips_extra_func_info_t proc_desc;
c5aa993b 2171 struct block *b = block_for_pc (pc);
c906108c 2172 struct symbol *sym;
6c0d6680
DJ
2173 struct obj_section *sec;
2174 struct mips_objfile_private *priv;
2175
2176 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2177 return NULL;
c906108c
SS
2178
2179 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2180 if (addrptr)
2181 *addrptr = startaddr;
6c0d6680
DJ
2182
2183 priv = NULL;
2184
2185 sec = find_pc_section (pc);
2186 if (sec != NULL)
c906108c 2187 {
6c0d6680
DJ
2188 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2189
2190 /* Search the ".pdr" section generated by GAS. This includes most of
2191 the information normally found in ECOFF PDRs. */
2192
2193 the_bfd = sec->objfile->obfd;
2194 if (priv == NULL
2195 && (the_bfd->format == bfd_object
2196 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2197 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2198 {
2199 /* Right now GAS only outputs the address as a four-byte sequence.
2200 This means that we should not bother with this method on 64-bit
2201 targets (until that is fixed). */
2202
2203 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2204 sizeof (struct mips_objfile_private));
2205 priv->size = 0;
2206 sec->objfile->obj_private = priv;
2207 }
2208 else if (priv == NULL)
2209 {
2210 asection *bfdsec;
2211
2212 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2213 sizeof (struct mips_objfile_private));
2214
2215 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2216 if (bfdsec != NULL)
2217 {
2218 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2219 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2220 priv->size);
2221 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2222 priv->contents, 0, priv->size);
2223
2224 /* In general, the .pdr section is sorted. However, in the
2225 presence of multiple code sections (and other corner cases)
2226 it can become unsorted. Sort it so that we can use a faster
2227 binary search. */
2228 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2229 }
2230 else
2231 priv->size = 0;
2232
2233 sec->objfile->obj_private = priv;
2234 }
2235 the_bfd = NULL;
2236
2237 if (priv->size != 0)
2238 {
2239 int low, mid, high;
2240 char *ptr;
2241
2242 low = 0;
2243 high = priv->size / 32;
2244
2245 do
2246 {
2247 CORE_ADDR pdr_pc;
2248
2249 mid = (low + high) / 2;
2250
2251 ptr = priv->contents + mid * 32;
2252 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2253 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2254 SECT_OFF_TEXT (sec->objfile));
2255 if (pdr_pc == startaddr)
2256 break;
2257 if (pdr_pc > startaddr)
2258 high = mid;
2259 else
2260 low = mid + 1;
2261 }
2262 while (low != high);
2263
2264 if (low != high)
2265 {
2266 struct symbol *sym = find_pc_function (pc);
2267
2268 /* Fill in what we need of the proc_desc. */
2269 proc_desc = (mips_extra_func_info_t)
2270 obstack_alloc (&sec->objfile->psymbol_obstack,
2271 sizeof (struct mips_extra_func_info));
2272 PROC_LOW_ADDR (proc_desc) = startaddr;
2273
2274 /* Only used for dummy frames. */
2275 PROC_HIGH_ADDR (proc_desc) = 0;
2276
2277 PROC_FRAME_OFFSET (proc_desc)
2278 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2279 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2280 ptr + 24);
2281 PROC_FRAME_ADJUST (proc_desc) = 0;
2282 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2283 ptr + 4);
2284 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2285 ptr + 12);
2286 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2287 ptr + 8);
2288 PROC_FREG_OFFSET (proc_desc)
2289 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2290 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2291 ptr + 28);
2292 proc_desc->pdr.isym = (long) sym;
2293
2294 return proc_desc;
2295 }
2296 }
c906108c
SS
2297 }
2298
6c0d6680
DJ
2299 if (b == NULL)
2300 return NULL;
2301
2302 if (startaddr > BLOCK_START (b))
2303 {
2304 /* This is the "pathological" case referred to in a comment in
2305 print_frame_info. It might be better to move this check into
2306 symbol reading. */
2307 return NULL;
2308 }
2309
2310 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2311
c906108c
SS
2312 /* If we never found a PDR for this function in symbol reading, then
2313 examine prologues to find the information. */
2314 if (sym)
2315 {
2316 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2317 if (PROC_FRAME_REG (proc_desc) == -1)
2318 return NULL;
2319 else
2320 return proc_desc;
2321 }
2322 else
2323 return NULL;
2324}
2325
2326
2327static mips_extra_func_info_t
479412cd 2328find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2329{
2330 mips_extra_func_info_t proc_desc;
2331 CORE_ADDR startaddr;
2332
2333 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2334
2335 if (proc_desc)
2336 {
2337 /* IF this is the topmost frame AND
2338 * (this proc does not have debugging information OR
2339 * the PC is in the procedure prologue)
2340 * THEN create a "heuristic" proc_desc (by analyzing
2341 * the actual code) to replace the "official" proc_desc.
2342 */
2343 if (next_frame == NULL)
2344 {
2345 struct symtab_and_line val;
2346 struct symbol *proc_symbol =
c86b5b38 2347 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2348
2349 if (proc_symbol)
2350 {
2351 val = find_pc_line (BLOCK_START
c5aa993b 2352 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2353 0);
2354 val.pc = val.end ? val.end : pc;
2355 }
2356 if (!proc_symbol || pc < val.pc)
2357 {
2358 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2359 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2360 pc, next_frame, cur_frame);
c906108c
SS
2361 if (found_heuristic)
2362 proc_desc = found_heuristic;
2363 }
2364 }
2365 }
2366 else
2367 {
2368 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2369 by procedure call dummys. However, the procedures being called ought
2370 to have their own proc_descs, and even if they don't,
2371 heuristic_proc_desc knows how to create them! */
c906108c
SS
2372
2373 register struct linked_proc_info *link;
2374
2375 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2376 if (PROC_LOW_ADDR (&link->info) <= pc
2377 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2378 return &link->info;
2379
2380 if (startaddr == 0)
2381 startaddr = heuristic_proc_start (pc);
2382
2383 proc_desc =
479412cd 2384 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2385 }
2386 return proc_desc;
2387}
2388
2389static CORE_ADDR
acdb74a0
AC
2390get_frame_pointer (struct frame_info *frame,
2391 mips_extra_func_info_t proc_desc)
c906108c 2392{
c86b5b38
MS
2393 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2394 PROC_FRAME_REG (proc_desc)) +
2395 PROC_FRAME_OFFSET (proc_desc) -
2396 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2397}
2398
5a89d8aa 2399static mips_extra_func_info_t cached_proc_desc;
c906108c 2400
f7ab6ec6 2401static CORE_ADDR
acdb74a0 2402mips_frame_chain (struct frame_info *frame)
c906108c
SS
2403{
2404 mips_extra_func_info_t proc_desc;
2405 CORE_ADDR tmp;
c5aa993b 2406 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2407
2408 if (saved_pc == 0 || inside_entry_file (saved_pc))
2409 return 0;
2410
2411 /* Check if the PC is inside a call stub. If it is, fetch the
2412 PC of the caller of that stub. */
5a89d8aa 2413 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2414 saved_pc = tmp;
2415
2416 /* Look up the procedure descriptor for this PC. */
479412cd 2417 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2418 if (!proc_desc)
2419 return 0;
2420
2421 cached_proc_desc = proc_desc;
2422
2423 /* If no frame pointer and frame size is zero, we must be at end
2424 of stack (or otherwise hosed). If we don't check frame size,
2425 we loop forever if we see a zero size frame. */
2426 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2427 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2428 /* The previous frame from a sigtramp frame might be frameless
2429 and have frame size zero. */
2430 && !frame->signal_handler_caller
2431 /* Check if this is a call dummy frame. */
f7ab6ec6 2432 && frame->pc != CALL_DUMMY_ADDRESS ())
c906108c
SS
2433 return 0;
2434 else
2435 return get_frame_pointer (frame, proc_desc);
2436}
2437
f7ab6ec6 2438static void
acdb74a0 2439mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2440{
2441 int regnum;
2442
2443 /* Use proc_desc calculated in frame_chain */
2444 mips_extra_func_info_t proc_desc =
c86b5b38 2445 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2446
cce74817
JM
2447 fci->extra_info = (struct frame_extra_info *)
2448 frame_obstack_alloc (sizeof (struct frame_extra_info));
2449
c906108c 2450 fci->saved_regs = NULL;
cce74817 2451 fci->extra_info->proc_desc =
c906108c
SS
2452 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2453 if (proc_desc)
2454 {
2455 /* Fixup frame-pointer - only needed for top frame */
2456 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2457 Get the value of the frame relative sp, procedure might have been
2458 interrupted by a signal at it's very start. */
c906108c
SS
2459 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2460 && !PROC_DESC_IS_DUMMY (proc_desc))
2461 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2462 else
2463 fci->frame = get_frame_pointer (fci->next, proc_desc);
2464
2465 if (proc_desc == &temp_proc_desc)
2466 {
2467 char *name;
2468
2469 /* Do not set the saved registers for a sigtramp frame,
2470 mips_find_saved_registers will do that for us.
2471 We can't use fci->signal_handler_caller, it is not yet set. */
2472 find_pc_partial_function (fci->pc, &name,
c5aa993b 2473 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2474 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2475 {
c5aa993b 2476 frame_saved_regs_zalloc (fci);
cce74817 2477 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2478 fci->saved_regs[PC_REGNUM]
2479 = fci->saved_regs[RA_REGNUM];
ffabd70d
KB
2480 /* Set value of previous frame's stack pointer. Remember that
2481 saved_regs[SP_REGNUM] is special in that it contains the
2482 value of the stack pointer register. The other saved_regs
2483 values are addresses (in the inferior) at which a given
2484 register's value may be found. */
2485 fci->saved_regs[SP_REGNUM] = fci->frame;
c906108c
SS
2486 }
2487 }
2488
2489 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2490 /* assume we can't tell how many args for now */
2491 fci->extra_info->num_args = -1;
c906108c
SS
2492 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2493 {
c5aa993b 2494 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2495 {
cce74817 2496 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2497 break;
2498 }
c5aa993b 2499 }
c906108c
SS
2500 }
2501}
2502
2503/* MIPS stack frames are almost impenetrable. When execution stops,
2504 we basically have to look at symbol information for the function
2505 that we stopped in, which tells us *which* register (if any) is
2506 the base of the frame pointer, and what offset from that register
361d1df0 2507 the frame itself is at.
c906108c
SS
2508
2509 This presents a problem when trying to examine a stack in memory
2510 (that isn't executing at the moment), using the "frame" command. We
2511 don't have a PC, nor do we have any registers except SP.
2512
2513 This routine takes two arguments, SP and PC, and tries to make the
2514 cached frames look as if these two arguments defined a frame on the
2515 cache. This allows the rest of info frame to extract the important
2516 arguments without difficulty. */
2517
2518struct frame_info *
acdb74a0 2519setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2520{
2521 if (argc != 2)
2522 error ("MIPS frame specifications require two arguments: sp and pc");
2523
2524 return create_new_frame (argv[0], argv[1]);
2525}
2526
f09ded24
AC
2527/* According to the current ABI, should the type be passed in a
2528 floating-point register (assuming that there is space)? When there
2529 is no FPU, FP are not even considered as possibile candidates for
2530 FP registers and, consequently this returns false - forces FP
2531 arguments into integer registers. */
2532
2533static int
2534fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2535{
2536 return ((typecode == TYPE_CODE_FLT
2537 || (MIPS_EABI
2538 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2539 && TYPE_NFIELDS (arg_type) == 1
2540 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2541 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2542}
2543
49e790b0
DJ
2544/* On o32, argument passing in GPRs depends on the alignment of the type being
2545 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2546
2547static int
2548mips_type_needs_double_align (struct type *type)
2549{
2550 enum type_code typecode = TYPE_CODE (type);
361d1df0 2551
49e790b0
DJ
2552 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2553 return 1;
2554 else if (typecode == TYPE_CODE_STRUCT)
2555 {
2556 if (TYPE_NFIELDS (type) < 1)
2557 return 0;
2558 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2559 }
2560 else if (typecode == TYPE_CODE_UNION)
2561 {
361d1df0 2562 int i, n;
49e790b0
DJ
2563
2564 n = TYPE_NFIELDS (type);
2565 for (i = 0; i < n; i++)
2566 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2567 return 1;
2568 return 0;
2569 }
2570 return 0;
2571}
2572
cb3d25d1
MS
2573/* Macros to round N up or down to the next A boundary;
2574 A must be a power of two. */
2575
2576#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2577#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2578
f7ab6ec6 2579static CORE_ADDR
46e0f506
MS
2580mips_eabi_push_arguments (int nargs,
2581 struct value **args,
2582 CORE_ADDR sp,
2583 int struct_return,
2584 CORE_ADDR struct_addr)
c906108c
SS
2585{
2586 int argreg;
2587 int float_argreg;
2588 int argnum;
2589 int len = 0;
2590 int stack_offset = 0;
2591
c906108c 2592 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2593 are properly aligned. The stack has to be at least 64-bit
2594 aligned even on 32-bit machines, because doubles must be 64-bit
2595 aligned. For n32 and n64, stack frames need to be 128-bit
2596 aligned, so we round to this widest known alignment. */
2597
c906108c 2598 sp = ROUND_DOWN (sp, 16);
cce41527 2599 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2600
46e0f506 2601 /* Now make space on the stack for the args. We allocate more
c906108c 2602 than necessary for EABI, because the first few arguments are
46e0f506 2603 passed in registers, but that's OK. */
c906108c 2604 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2605 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2606 MIPS_STACK_ARGSIZE);
c906108c
SS
2607 sp -= ROUND_UP (len, 16);
2608
9ace0497 2609 if (mips_debug)
46e0f506
MS
2610 fprintf_unfiltered (gdb_stdlog,
2611 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2612 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2613
c906108c
SS
2614 /* Initialize the integer and float register pointers. */
2615 argreg = A0_REGNUM;
2616 float_argreg = FPA0_REGNUM;
2617
46e0f506 2618 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2619 if (struct_return)
9ace0497
AC
2620 {
2621 if (mips_debug)
2622 fprintf_unfiltered (gdb_stdlog,
46e0f506 2623 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2624 argreg, paddr_nz (struct_addr));
9ace0497
AC
2625 write_register (argreg++, struct_addr);
2626 }
c906108c
SS
2627
2628 /* Now load as many as possible of the first arguments into
2629 registers, and push the rest onto the stack. Loop thru args
2630 from first to last. */
2631 for (argnum = 0; argnum < nargs; argnum++)
2632 {
2633 char *val;
cb3d25d1 2634 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2635 struct value *arg = args[argnum];
c906108c
SS
2636 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2637 int len = TYPE_LENGTH (arg_type);
2638 enum type_code typecode = TYPE_CODE (arg_type);
2639
9ace0497
AC
2640 if (mips_debug)
2641 fprintf_unfiltered (gdb_stdlog,
46e0f506 2642 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2643 argnum + 1, len, (int) typecode);
9ace0497 2644
c906108c 2645 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2646 reference. */
2647 if (len > MIPS_SAVED_REGSIZE
9ace0497 2648 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2649 {
7a292a7a 2650 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2651 typecode = TYPE_CODE_PTR;
7a292a7a 2652 len = MIPS_SAVED_REGSIZE;
c906108c 2653 val = valbuf;
9ace0497
AC
2654 if (mips_debug)
2655 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2656 }
2657 else
c5aa993b 2658 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2659
2660 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2661 even-numbered floating point register. Round the FP register
2662 up before the check to see if there are any FP registers
46e0f506
MS
2663 left. Non MIPS_EABI targets also pass the FP in the integer
2664 registers so also round up normal registers. */
acdb74a0
AC
2665 if (!FP_REGISTER_DOUBLE
2666 && fp_register_arg_p (typecode, arg_type))
2667 {
2668 if ((float_argreg & 1))
2669 float_argreg++;
2670 }
c906108c
SS
2671
2672 /* Floating point arguments passed in registers have to be
2673 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2674 are passed in register pairs; the even register gets
2675 the low word, and the odd register gets the high word.
2676 On non-EABI processors, the first two floating point arguments are
2677 also copied to general registers, because MIPS16 functions
2678 don't use float registers for arguments. This duplication of
2679 arguments in general registers can't hurt non-MIPS16 functions
2680 because those registers are normally skipped. */
1012bd0e
EZ
2681 /* MIPS_EABI squeezes a struct that contains a single floating
2682 point value into an FP register instead of pushing it onto the
46e0f506 2683 stack. */
f09ded24
AC
2684 if (fp_register_arg_p (typecode, arg_type)
2685 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2686 {
2687 if (!FP_REGISTER_DOUBLE && len == 8)
2688 {
d7449b42 2689 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2690 unsigned long regval;
2691
2692 /* Write the low word of the double to the even register(s). */
c5aa993b 2693 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2694 if (mips_debug)
acdb74a0 2695 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2696 float_argreg, phex (regval, 4));
c906108c 2697 write_register (float_argreg++, regval);
c906108c
SS
2698
2699 /* Write the high word of the double to the odd register(s). */
c5aa993b 2700 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2701 if (mips_debug)
acdb74a0 2702 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2703 float_argreg, phex (regval, 4));
c906108c 2704 write_register (float_argreg++, regval);
c906108c
SS
2705 }
2706 else
2707 {
2708 /* This is a floating point value that fits entirely
2709 in a single register. */
53a5351d 2710 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2711 above to ensure that it is even register aligned. */
9ace0497
AC
2712 LONGEST regval = extract_unsigned_integer (val, len);
2713 if (mips_debug)
acdb74a0 2714 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2715 float_argreg, phex (regval, len));
c906108c 2716 write_register (float_argreg++, regval);
c906108c
SS
2717 }
2718 }
2719 else
2720 {
2721 /* Copy the argument to general registers or the stack in
2722 register-sized pieces. Large arguments are split between
2723 registers and stack. */
2724 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2725 are treated specially: Irix cc passes them in registers
2726 where gcc sometimes puts them on the stack. For maximum
2727 compatibility, we will put them in both places. */
c5aa993b 2728 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2729 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2730
f09ded24 2731 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2732 register are only written to memory. */
c906108c
SS
2733 while (len > 0)
2734 {
ebafbe83 2735 /* Remember if the argument was written to the stack. */
566f0f7a 2736 int stack_used_p = 0;
46e0f506
MS
2737 int partial_len =
2738 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2739
acdb74a0
AC
2740 if (mips_debug)
2741 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2742 partial_len);
2743
566f0f7a 2744 /* Write this portion of the argument to the stack. */
f09ded24
AC
2745 if (argreg > MIPS_LAST_ARG_REGNUM
2746 || odd_sized_struct
2747 || fp_register_arg_p (typecode, arg_type))
c906108c 2748 {
c906108c
SS
2749 /* Should shorter than int integer values be
2750 promoted to int before being stored? */
c906108c 2751 int longword_offset = 0;
9ace0497 2752 CORE_ADDR addr;
566f0f7a 2753 stack_used_p = 1;
d7449b42 2754 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2755 {
d929b26f 2756 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2757 (typecode == TYPE_CODE_INT ||
2758 typecode == TYPE_CODE_PTR ||
2759 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2760 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2761 else if ((typecode == TYPE_CODE_STRUCT ||
2762 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2763 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2764 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2765 }
c5aa993b 2766
9ace0497
AC
2767 if (mips_debug)
2768 {
cb3d25d1
MS
2769 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2770 paddr_nz (stack_offset));
2771 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2772 paddr_nz (longword_offset));
9ace0497 2773 }
361d1df0 2774
9ace0497
AC
2775 addr = sp + stack_offset + longword_offset;
2776
2777 if (mips_debug)
2778 {
2779 int i;
cb3d25d1
MS
2780 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2781 paddr_nz (addr));
9ace0497
AC
2782 for (i = 0; i < partial_len; i++)
2783 {
cb3d25d1
MS
2784 fprintf_unfiltered (gdb_stdlog, "%02x",
2785 val[i] & 0xff);
9ace0497
AC
2786 }
2787 }
2788 write_memory (addr, val, partial_len);
c906108c
SS
2789 }
2790
f09ded24
AC
2791 /* Note!!! This is NOT an else clause. Odd sized
2792 structs may go thru BOTH paths. Floating point
46e0f506 2793 arguments will not. */
566f0f7a 2794 /* Write this portion of the argument to a general
46e0f506 2795 purpose register. */
f09ded24
AC
2796 if (argreg <= MIPS_LAST_ARG_REGNUM
2797 && !fp_register_arg_p (typecode, arg_type))
c906108c 2798 {
9ace0497 2799 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2800
9ace0497 2801 if (mips_debug)
acdb74a0 2802 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2803 argreg,
2804 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2805 write_register (argreg, regval);
2806 argreg++;
c906108c 2807 }
c5aa993b 2808
c906108c
SS
2809 len -= partial_len;
2810 val += partial_len;
2811
566f0f7a
AC
2812 /* Compute the the offset into the stack at which we
2813 will copy the next parameter.
2814
566f0f7a 2815 In the new EABI (and the NABI32), the stack_offset
46e0f506 2816 only needs to be adjusted when it has been used. */
c906108c 2817
46e0f506 2818 if (stack_used_p)
d929b26f 2819 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2820 }
2821 }
9ace0497
AC
2822 if (mips_debug)
2823 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2824 }
2825
0f71a2f6
JM
2826 /* Return adjusted stack pointer. */
2827 return sp;
2828}
2829
ebafbe83
MS
2830/* N32/N64 version of push_arguments. */
2831
f7ab6ec6 2832static CORE_ADDR
cb3d25d1
MS
2833mips_n32n64_push_arguments (int nargs,
2834 struct value **args,
2835 CORE_ADDR sp,
2836 int struct_return,
2837 CORE_ADDR struct_addr)
2838{
2839 int argreg;
2840 int float_argreg;
2841 int argnum;
2842 int len = 0;
2843 int stack_offset = 0;
2844
2845 /* First ensure that the stack and structure return address (if any)
2846 are properly aligned. The stack has to be at least 64-bit
2847 aligned even on 32-bit machines, because doubles must be 64-bit
2848 aligned. For n32 and n64, stack frames need to be 128-bit
2849 aligned, so we round to this widest known alignment. */
2850
2851 sp = ROUND_DOWN (sp, 16);
2852 struct_addr = ROUND_DOWN (struct_addr, 16);
2853
2854 /* Now make space on the stack for the args. */
2855 for (argnum = 0; argnum < nargs; argnum++)
2856 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2857 MIPS_STACK_ARGSIZE);
2858 sp -= ROUND_UP (len, 16);
2859
2860 if (mips_debug)
2861 fprintf_unfiltered (gdb_stdlog,
2862 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2863 paddr_nz (sp), ROUND_UP (len, 16));
2864
2865 /* Initialize the integer and float register pointers. */
2866 argreg = A0_REGNUM;
2867 float_argreg = FPA0_REGNUM;
2868
46e0f506 2869 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2870 if (struct_return)
2871 {
2872 if (mips_debug)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2875 argreg, paddr_nz (struct_addr));
2876 write_register (argreg++, struct_addr);
2877 }
2878
2879 /* Now load as many as possible of the first arguments into
2880 registers, and push the rest onto the stack. Loop thru args
2881 from first to last. */
2882 for (argnum = 0; argnum < nargs; argnum++)
2883 {
2884 char *val;
2885 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2886 struct value *arg = args[argnum];
2887 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2888 int len = TYPE_LENGTH (arg_type);
2889 enum type_code typecode = TYPE_CODE (arg_type);
2890
2891 if (mips_debug)
2892 fprintf_unfiltered (gdb_stdlog,
2893 "mips_n32n64_push_arguments: %d len=%d type=%d",
2894 argnum + 1, len, (int) typecode);
2895
2896 val = (char *) VALUE_CONTENTS (arg);
2897
2898 if (fp_register_arg_p (typecode, arg_type)
2899 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2900 {
2901 /* This is a floating point value that fits entirely
2902 in a single register. */
2903 /* On 32 bit ABI's the float_argreg is further adjusted
2904 above to ensure that it is even register aligned. */
2905 LONGEST regval = extract_unsigned_integer (val, len);
2906 if (mips_debug)
2907 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2908 float_argreg, phex (regval, len));
2909 write_register (float_argreg++, regval);
2910
2911 if (mips_debug)
2912 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2913 argreg, phex (regval, len));
2914 write_register (argreg, regval);
2915 argreg += 1;
2916 }
2917 else
2918 {
2919 /* Copy the argument to general registers or the stack in
2920 register-sized pieces. Large arguments are split between
2921 registers and stack. */
2922 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2923 are treated specially: Irix cc passes them in registers
2924 where gcc sometimes puts them on the stack. For maximum
2925 compatibility, we will put them in both places. */
2926 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2927 (len % MIPS_SAVED_REGSIZE != 0));
2928 /* Note: Floating-point values that didn't fit into an FP
2929 register are only written to memory. */
2930 while (len > 0)
2931 {
2932 /* Rememer if the argument was written to the stack. */
2933 int stack_used_p = 0;
2934 int partial_len = len < MIPS_SAVED_REGSIZE ?
2935 len : MIPS_SAVED_REGSIZE;
2936
2937 if (mips_debug)
2938 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2939 partial_len);
2940
2941 /* Write this portion of the argument to the stack. */
2942 if (argreg > MIPS_LAST_ARG_REGNUM
2943 || odd_sized_struct
2944 || fp_register_arg_p (typecode, arg_type))
2945 {
2946 /* Should shorter than int integer values be
2947 promoted to int before being stored? */
2948 int longword_offset = 0;
2949 CORE_ADDR addr;
2950 stack_used_p = 1;
2951 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2952 {
2953 if (MIPS_STACK_ARGSIZE == 8 &&
2954 (typecode == TYPE_CODE_INT ||
2955 typecode == TYPE_CODE_PTR ||
2956 typecode == TYPE_CODE_FLT) && len <= 4)
2957 longword_offset = MIPS_STACK_ARGSIZE - len;
2958 else if ((typecode == TYPE_CODE_STRUCT ||
2959 typecode == TYPE_CODE_UNION) &&
2960 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2961 longword_offset = MIPS_STACK_ARGSIZE - len;
2962 }
2963
2964 if (mips_debug)
2965 {
2966 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2967 paddr_nz (stack_offset));
2968 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2969 paddr_nz (longword_offset));
2970 }
2971
2972 addr = sp + stack_offset + longword_offset;
2973
2974 if (mips_debug)
2975 {
2976 int i;
2977 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2978 paddr_nz (addr));
2979 for (i = 0; i < partial_len; i++)
2980 {
2981 fprintf_unfiltered (gdb_stdlog, "%02x",
2982 val[i] & 0xff);
2983 }
2984 }
2985 write_memory (addr, val, partial_len);
2986 }
2987
2988 /* Note!!! This is NOT an else clause. Odd sized
2989 structs may go thru BOTH paths. Floating point
2990 arguments will not. */
2991 /* Write this portion of the argument to a general
2992 purpose register. */
2993 if (argreg <= MIPS_LAST_ARG_REGNUM
2994 && !fp_register_arg_p (typecode, arg_type))
2995 {
2996 LONGEST regval = extract_unsigned_integer (val, partial_len);
2997
2998 /* A non-floating-point argument being passed in a
2999 general register. If a struct or union, and if
3000 the remaining length is smaller than the register
3001 size, we have to adjust the register value on
3002 big endian targets.
3003
3004 It does not seem to be necessary to do the
3005 same for integral types.
3006
3007 cagney/2001-07-23: gdb/179: Also, GCC, when
3008 outputting LE O32 with sizeof (struct) <
3009 MIPS_SAVED_REGSIZE, generates a left shift as
3010 part of storing the argument in a register a
3011 register (the left shift isn't generated when
3012 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3013 is quite possible that this is GCC contradicting
3014 the LE/O32 ABI, GDB has not been adjusted to
3015 accommodate this. Either someone needs to
3016 demonstrate that the LE/O32 ABI specifies such a
3017 left shift OR this new ABI gets identified as
3018 such and GDB gets tweaked accordingly. */
3019
3020 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3021 && partial_len < MIPS_SAVED_REGSIZE
3022 && (typecode == TYPE_CODE_STRUCT ||
3023 typecode == TYPE_CODE_UNION))
3024 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3025 TARGET_CHAR_BIT);
3026
3027 if (mips_debug)
3028 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3029 argreg,
3030 phex (regval, MIPS_SAVED_REGSIZE));
3031 write_register (argreg, regval);
3032 argreg++;
3033 }
3034
3035 len -= partial_len;
3036 val += partial_len;
3037
3038 /* Compute the the offset into the stack at which we
3039 will copy the next parameter.
3040
3041 In N32 (N64?), the stack_offset only needs to be
3042 adjusted when it has been used. */
3043
3044 if (stack_used_p)
3045 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3046 }
3047 }
3048 if (mips_debug)
3049 fprintf_unfiltered (gdb_stdlog, "\n");
3050 }
3051
3052 /* Return adjusted stack pointer. */
3053 return sp;
3054}
3055
46cac009 3056/* O32 version of push_arguments. */
ebafbe83 3057
46cac009
AC
3058static CORE_ADDR
3059mips_o32_push_arguments (int nargs,
3060 struct value **args,
3061 CORE_ADDR sp,
3062 int struct_return,
3063 CORE_ADDR struct_addr)
ebafbe83
MS
3064{
3065 int argreg;
3066 int float_argreg;
3067 int argnum;
3068 int len = 0;
3069 int stack_offset = 0;
ebafbe83
MS
3070
3071 /* First ensure that the stack and structure return address (if any)
3072 are properly aligned. The stack has to be at least 64-bit
3073 aligned even on 32-bit machines, because doubles must be 64-bit
3074 aligned. For n32 and n64, stack frames need to be 128-bit
3075 aligned, so we round to this widest known alignment. */
3076
3077 sp = ROUND_DOWN (sp, 16);
3078 struct_addr = ROUND_DOWN (struct_addr, 16);
3079
3080 /* Now make space on the stack for the args. */
3081 for (argnum = 0; argnum < nargs; argnum++)
3082 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3083 MIPS_STACK_ARGSIZE);
3084 sp -= ROUND_UP (len, 16);
3085
3086 if (mips_debug)
3087 fprintf_unfiltered (gdb_stdlog,
46cac009 3088 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3089 paddr_nz (sp), ROUND_UP (len, 16));
3090
3091 /* Initialize the integer and float register pointers. */
3092 argreg = A0_REGNUM;
3093 float_argreg = FPA0_REGNUM;
3094
bcb0cc15 3095 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3096 if (struct_return)
3097 {
3098 if (mips_debug)
3099 fprintf_unfiltered (gdb_stdlog,
46cac009 3100 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3101 argreg, paddr_nz (struct_addr));
3102 write_register (argreg++, struct_addr);
3103 stack_offset += MIPS_STACK_ARGSIZE;
3104 }
3105
3106 /* Now load as many as possible of the first arguments into
3107 registers, and push the rest onto the stack. Loop thru args
3108 from first to last. */
3109 for (argnum = 0; argnum < nargs; argnum++)
3110 {
3111 char *val;
3112 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3113 struct value *arg = args[argnum];
3114 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3115 int len = TYPE_LENGTH (arg_type);
3116 enum type_code typecode = TYPE_CODE (arg_type);
3117
3118 if (mips_debug)
3119 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3120 "mips_o32_push_arguments: %d len=%d type=%d",
3121 argnum + 1, len, (int) typecode);
3122
3123 val = (char *) VALUE_CONTENTS (arg);
3124
3125 /* 32-bit ABIs always start floating point arguments in an
3126 even-numbered floating point register. Round the FP register
3127 up before the check to see if there are any FP registers
3128 left. O32/O64 targets also pass the FP in the integer
3129 registers so also round up normal registers. */
3130 if (!FP_REGISTER_DOUBLE
3131 && fp_register_arg_p (typecode, arg_type))
3132 {
3133 if ((float_argreg & 1))
3134 float_argreg++;
3135 }
3136
3137 /* Floating point arguments passed in registers have to be
3138 treated specially. On 32-bit architectures, doubles
3139 are passed in register pairs; the even register gets
3140 the low word, and the odd register gets the high word.
3141 On O32/O64, the first two floating point arguments are
3142 also copied to general registers, because MIPS16 functions
3143 don't use float registers for arguments. This duplication of
3144 arguments in general registers can't hurt non-MIPS16 functions
3145 because those registers are normally skipped. */
3146
3147 if (fp_register_arg_p (typecode, arg_type)
3148 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3149 {
3150 if (!FP_REGISTER_DOUBLE && len == 8)
3151 {
3152 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3153 unsigned long regval;
3154
3155 /* Write the low word of the double to the even register(s). */
3156 regval = extract_unsigned_integer (val + low_offset, 4);
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3159 float_argreg, phex (regval, 4));
3160 write_register (float_argreg++, regval);
3161 if (mips_debug)
3162 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3163 argreg, phex (regval, 4));
3164 write_register (argreg++, regval);
3165
3166 /* Write the high word of the double to the odd register(s). */
3167 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3168 if (mips_debug)
3169 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3170 float_argreg, phex (regval, 4));
3171 write_register (float_argreg++, regval);
3172
3173 if (mips_debug)
3174 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3175 argreg, phex (regval, 4));
3176 write_register (argreg++, regval);
3177 }
3178 else
3179 {
3180 /* This is a floating point value that fits entirely
3181 in a single register. */
3182 /* On 32 bit ABI's the float_argreg is further adjusted
3183 above to ensure that it is even register aligned. */
3184 LONGEST regval = extract_unsigned_integer (val, len);
3185 if (mips_debug)
3186 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3187 float_argreg, phex (regval, len));
3188 write_register (float_argreg++, regval);
3189 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3190 registers for each argument. The below is (my
3191 guess) to ensure that the corresponding integer
3192 register has reserved the same space. */
3193 if (mips_debug)
3194 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3195 argreg, phex (regval, len));
3196 write_register (argreg, regval);
3197 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3198 }
3199 /* Reserve space for the FP register. */
3200 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3201 }
3202 else
3203 {
3204 /* Copy the argument to general registers or the stack in
3205 register-sized pieces. Large arguments are split between
3206 registers and stack. */
3207 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3208 are treated specially: Irix cc passes them in registers
3209 where gcc sometimes puts them on the stack. For maximum
3210 compatibility, we will put them in both places. */
3211 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3212 (len % MIPS_SAVED_REGSIZE != 0));
3213 /* Structures should be aligned to eight bytes (even arg registers)
3214 on MIPS_ABI_O32, if their first member has double precision. */
3215 if (MIPS_SAVED_REGSIZE < 8
3216 && mips_type_needs_double_align (arg_type))
3217 {
3218 if ((argreg & 1))
3219 argreg++;
3220 }
3221 /* Note: Floating-point values that didn't fit into an FP
3222 register are only written to memory. */
3223 while (len > 0)
3224 {
3225 /* Remember if the argument was written to the stack. */
3226 int stack_used_p = 0;
3227 int partial_len =
3228 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3229
3230 if (mips_debug)
3231 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3232 partial_len);
3233
3234 /* Write this portion of the argument to the stack. */
3235 if (argreg > MIPS_LAST_ARG_REGNUM
3236 || odd_sized_struct
3237 || fp_register_arg_p (typecode, arg_type))
3238 {
3239 /* Should shorter than int integer values be
3240 promoted to int before being stored? */
3241 int longword_offset = 0;
3242 CORE_ADDR addr;
3243 stack_used_p = 1;
3244 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3245 {
3246 if (MIPS_STACK_ARGSIZE == 8 &&
3247 (typecode == TYPE_CODE_INT ||
3248 typecode == TYPE_CODE_PTR ||
3249 typecode == TYPE_CODE_FLT) && len <= 4)
3250 longword_offset = MIPS_STACK_ARGSIZE - len;
3251 }
3252
3253 if (mips_debug)
3254 {
3255 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3256 paddr_nz (stack_offset));
3257 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3258 paddr_nz (longword_offset));
3259 }
3260
3261 addr = sp + stack_offset + longword_offset;
3262
3263 if (mips_debug)
3264 {
3265 int i;
3266 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3267 paddr_nz (addr));
3268 for (i = 0; i < partial_len; i++)
3269 {
3270 fprintf_unfiltered (gdb_stdlog, "%02x",
3271 val[i] & 0xff);
3272 }
3273 }
3274 write_memory (addr, val, partial_len);
3275 }
3276
3277 /* Note!!! This is NOT an else clause. Odd sized
3278 structs may go thru BOTH paths. Floating point
3279 arguments will not. */
3280 /* Write this portion of the argument to a general
3281 purpose register. */
3282 if (argreg <= MIPS_LAST_ARG_REGNUM
3283 && !fp_register_arg_p (typecode, arg_type))
3284 {
3285 LONGEST regval = extract_signed_integer (val, partial_len);
3286 /* Value may need to be sign extended, because
3287 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3288
3289 /* A non-floating-point argument being passed in a
3290 general register. If a struct or union, and if
3291 the remaining length is smaller than the register
3292 size, we have to adjust the register value on
3293 big endian targets.
3294
3295 It does not seem to be necessary to do the
3296 same for integral types.
3297
3298 Also don't do this adjustment on O64 binaries.
3299
3300 cagney/2001-07-23: gdb/179: Also, GCC, when
3301 outputting LE O32 with sizeof (struct) <
3302 MIPS_SAVED_REGSIZE, generates a left shift as
3303 part of storing the argument in a register a
3304 register (the left shift isn't generated when
3305 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3306 is quite possible that this is GCC contradicting
3307 the LE/O32 ABI, GDB has not been adjusted to
3308 accommodate this. Either someone needs to
3309 demonstrate that the LE/O32 ABI specifies such a
3310 left shift OR this new ABI gets identified as
3311 such and GDB gets tweaked accordingly. */
3312
3313 if (MIPS_SAVED_REGSIZE < 8
3314 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3315 && partial_len < MIPS_SAVED_REGSIZE
3316 && (typecode == TYPE_CODE_STRUCT ||
3317 typecode == TYPE_CODE_UNION))
3318 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3319 TARGET_CHAR_BIT);
3320
3321 if (mips_debug)
3322 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3323 argreg,
3324 phex (regval, MIPS_SAVED_REGSIZE));
3325 write_register (argreg, regval);
3326 argreg++;
3327
3328 /* Prevent subsequent floating point arguments from
3329 being passed in floating point registers. */
3330 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3331 }
3332
3333 len -= partial_len;
3334 val += partial_len;
3335
3336 /* Compute the the offset into the stack at which we
3337 will copy the next parameter.
3338
3339 In older ABIs, the caller reserved space for
3340 registers that contained arguments. This was loosely
3341 refered to as their "home". Consequently, space is
3342 always allocated. */
3343
3344 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3345 }
3346 }
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stdlog, "\n");
3349 }
3350
3351 /* Return adjusted stack pointer. */
3352 return sp;
3353}
3354
3355/* O64 version of push_arguments. */
3356
3357static CORE_ADDR
3358mips_o64_push_arguments (int nargs,
3359 struct value **args,
3360 CORE_ADDR sp,
3361 int struct_return,
3362 CORE_ADDR struct_addr)
3363{
3364 int argreg;
3365 int float_argreg;
3366 int argnum;
3367 int len = 0;
3368 int stack_offset = 0;
3369
3370 /* First ensure that the stack and structure return address (if any)
3371 are properly aligned. The stack has to be at least 64-bit
3372 aligned even on 32-bit machines, because doubles must be 64-bit
3373 aligned. For n32 and n64, stack frames need to be 128-bit
3374 aligned, so we round to this widest known alignment. */
3375
3376 sp = ROUND_DOWN (sp, 16);
3377 struct_addr = ROUND_DOWN (struct_addr, 16);
3378
3379 /* Now make space on the stack for the args. */
3380 for (argnum = 0; argnum < nargs; argnum++)
3381 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3382 MIPS_STACK_ARGSIZE);
3383 sp -= ROUND_UP (len, 16);
3384
3385 if (mips_debug)
3386 fprintf_unfiltered (gdb_stdlog,
3387 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3388 paddr_nz (sp), ROUND_UP (len, 16));
3389
3390 /* Initialize the integer and float register pointers. */
3391 argreg = A0_REGNUM;
3392 float_argreg = FPA0_REGNUM;
3393
3394 /* The struct_return pointer occupies the first parameter-passing reg. */
3395 if (struct_return)
3396 {
3397 if (mips_debug)
3398 fprintf_unfiltered (gdb_stdlog,
3399 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3400 argreg, paddr_nz (struct_addr));
3401 write_register (argreg++, struct_addr);
3402 stack_offset += MIPS_STACK_ARGSIZE;
3403 }
3404
3405 /* Now load as many as possible of the first arguments into
3406 registers, and push the rest onto the stack. Loop thru args
3407 from first to last. */
3408 for (argnum = 0; argnum < nargs; argnum++)
3409 {
3410 char *val;
3411 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3412 struct value *arg = args[argnum];
3413 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3414 int len = TYPE_LENGTH (arg_type);
3415 enum type_code typecode = TYPE_CODE (arg_type);
3416
3417 if (mips_debug)
3418 fprintf_unfiltered (gdb_stdlog,
3419 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3420 argnum + 1, len, (int) typecode);
3421
3422 val = (char *) VALUE_CONTENTS (arg);
3423
3424 /* 32-bit ABIs always start floating point arguments in an
3425 even-numbered floating point register. Round the FP register
3426 up before the check to see if there are any FP registers
3427 left. O32/O64 targets also pass the FP in the integer
3428 registers so also round up normal registers. */
3429 if (!FP_REGISTER_DOUBLE
3430 && fp_register_arg_p (typecode, arg_type))
3431 {
3432 if ((float_argreg & 1))
3433 float_argreg++;
3434 }
3435
3436 /* Floating point arguments passed in registers have to be
3437 treated specially. On 32-bit architectures, doubles
3438 are passed in register pairs; the even register gets
3439 the low word, and the odd register gets the high word.
3440 On O32/O64, the first two floating point arguments are
3441 also copied to general registers, because MIPS16 functions
3442 don't use float registers for arguments. This duplication of
3443 arguments in general registers can't hurt non-MIPS16 functions
3444 because those registers are normally skipped. */
3445
3446 if (fp_register_arg_p (typecode, arg_type)
3447 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3448 {
3449 if (!FP_REGISTER_DOUBLE && len == 8)
3450 {
3451 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3452 unsigned long regval;
3453
3454 /* Write the low word of the double to the even register(s). */
3455 regval = extract_unsigned_integer (val + low_offset, 4);
3456 if (mips_debug)
3457 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3458 float_argreg, phex (regval, 4));
3459 write_register (float_argreg++, regval);
3460 if (mips_debug)
3461 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3462 argreg, phex (regval, 4));
3463 write_register (argreg++, regval);
3464
3465 /* Write the high word of the double to the odd register(s). */
3466 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3467 if (mips_debug)
3468 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3469 float_argreg, phex (regval, 4));
3470 write_register (float_argreg++, regval);
3471
3472 if (mips_debug)
3473 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3474 argreg, phex (regval, 4));
3475 write_register (argreg++, regval);
3476 }
3477 else
3478 {
3479 /* This is a floating point value that fits entirely
3480 in a single register. */
3481 /* On 32 bit ABI's the float_argreg is further adjusted
3482 above to ensure that it is even register aligned. */
3483 LONGEST regval = extract_unsigned_integer (val, len);
3484 if (mips_debug)
3485 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3486 float_argreg, phex (regval, len));
3487 write_register (float_argreg++, regval);
3488 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3489 registers for each argument. The below is (my
3490 guess) to ensure that the corresponding integer
3491 register has reserved the same space. */
3492 if (mips_debug)
3493 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3494 argreg, phex (regval, len));
3495 write_register (argreg, regval);
3496 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3497 }
3498 /* Reserve space for the FP register. */
3499 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3500 }
3501 else
3502 {
3503 /* Copy the argument to general registers or the stack in
3504 register-sized pieces. Large arguments are split between
3505 registers and stack. */
3506 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3507 are treated specially: Irix cc passes them in registers
3508 where gcc sometimes puts them on the stack. For maximum
3509 compatibility, we will put them in both places. */
3510 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3511 (len % MIPS_SAVED_REGSIZE != 0));
3512 /* Structures should be aligned to eight bytes (even arg registers)
3513 on MIPS_ABI_O32, if their first member has double precision. */
3514 if (MIPS_SAVED_REGSIZE < 8
3515 && mips_type_needs_double_align (arg_type))
3516 {
3517 if ((argreg & 1))
3518 argreg++;
3519 }
3520 /* Note: Floating-point values that didn't fit into an FP
3521 register are only written to memory. */
3522 while (len > 0)
3523 {
3524 /* Remember if the argument was written to the stack. */
3525 int stack_used_p = 0;
3526 int partial_len =
3527 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3528
3529 if (mips_debug)
3530 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3531 partial_len);
3532
3533 /* Write this portion of the argument to the stack. */
3534 if (argreg > MIPS_LAST_ARG_REGNUM
3535 || odd_sized_struct
3536 || fp_register_arg_p (typecode, arg_type))
3537 {
3538 /* Should shorter than int integer values be
3539 promoted to int before being stored? */
3540 int longword_offset = 0;
3541 CORE_ADDR addr;
3542 stack_used_p = 1;
3543 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3544 {
3545 if (MIPS_STACK_ARGSIZE == 8 &&
3546 (typecode == TYPE_CODE_INT ||
3547 typecode == TYPE_CODE_PTR ||
3548 typecode == TYPE_CODE_FLT) && len <= 4)
3549 longword_offset = MIPS_STACK_ARGSIZE - len;
3550 }
3551
3552 if (mips_debug)
3553 {
3554 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3555 paddr_nz (stack_offset));
3556 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3557 paddr_nz (longword_offset));
3558 }
3559
3560 addr = sp + stack_offset + longword_offset;
3561
3562 if (mips_debug)
3563 {
3564 int i;
3565 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3566 paddr_nz (addr));
3567 for (i = 0; i < partial_len; i++)
3568 {
3569 fprintf_unfiltered (gdb_stdlog, "%02x",
3570 val[i] & 0xff);
3571 }
3572 }
3573 write_memory (addr, val, partial_len);
3574 }
3575
3576 /* Note!!! This is NOT an else clause. Odd sized
3577 structs may go thru BOTH paths. Floating point
3578 arguments will not. */
3579 /* Write this portion of the argument to a general
3580 purpose register. */
3581 if (argreg <= MIPS_LAST_ARG_REGNUM
3582 && !fp_register_arg_p (typecode, arg_type))
3583 {
3584 LONGEST regval = extract_signed_integer (val, partial_len);
3585 /* Value may need to be sign extended, because
3586 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3587
3588 /* A non-floating-point argument being passed in a
3589 general register. If a struct or union, and if
3590 the remaining length is smaller than the register
3591 size, we have to adjust the register value on
3592 big endian targets.
3593
3594 It does not seem to be necessary to do the
3595 same for integral types.
3596
3597 Also don't do this adjustment on O64 binaries.
3598
3599 cagney/2001-07-23: gdb/179: Also, GCC, when
3600 outputting LE O32 with sizeof (struct) <
3601 MIPS_SAVED_REGSIZE, generates a left shift as
3602 part of storing the argument in a register a
3603 register (the left shift isn't generated when
3604 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3605 is quite possible that this is GCC contradicting
3606 the LE/O32 ABI, GDB has not been adjusted to
3607 accommodate this. Either someone needs to
3608 demonstrate that the LE/O32 ABI specifies such a
3609 left shift OR this new ABI gets identified as
3610 such and GDB gets tweaked accordingly. */
3611
3612 if (MIPS_SAVED_REGSIZE < 8
3613 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3614 && partial_len < MIPS_SAVED_REGSIZE
3615 && (typecode == TYPE_CODE_STRUCT ||
3616 typecode == TYPE_CODE_UNION))
3617 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3618 TARGET_CHAR_BIT);
3619
3620 if (mips_debug)
3621 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3622 argreg,
3623 phex (regval, MIPS_SAVED_REGSIZE));
3624 write_register (argreg, regval);
3625 argreg++;
3626
3627 /* Prevent subsequent floating point arguments from
3628 being passed in floating point registers. */
3629 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3630 }
3631
3632 len -= partial_len;
3633 val += partial_len;
3634
3635 /* Compute the the offset into the stack at which we
3636 will copy the next parameter.
3637
3638 In older ABIs, the caller reserved space for
3639 registers that contained arguments. This was loosely
3640 refered to as their "home". Consequently, space is
3641 always allocated. */
3642
3643 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3644 }
3645 }
3646 if (mips_debug)
3647 fprintf_unfiltered (gdb_stdlog, "\n");
3648 }
3649
3650 /* Return adjusted stack pointer. */
3651 return sp;
3652}
3653
f7ab6ec6 3654static CORE_ADDR
acdb74a0 3655mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3656{
c906108c
SS
3657 /* Set the return address register to point to the entry
3658 point of the program, where a breakpoint lies in wait. */
c5aa993b 3659 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3660 return sp;
3661}
3662
3663static void
c5aa993b 3664mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3665{
cb3d25d1 3666 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3667 int regsize;
3668 int offset;
3669 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3670 {
3671 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3672 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3673 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3674 : 0);
3675 }
3676 else
3677 {
3678 regsize = REGISTER_RAW_SIZE (regno);
3679 offset = 0;
3680 }
c906108c
SS
3681 *sp -= regsize;
3682 read_register_gen (regno, buffer);
7a292a7a 3683 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3684}
3685
3686/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3687#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3688
f7ab6ec6 3689static void
acdb74a0 3690mips_push_dummy_frame (void)
c906108c
SS
3691{
3692 int ireg;
c5aa993b
JM
3693 struct linked_proc_info *link = (struct linked_proc_info *)
3694 xmalloc (sizeof (struct linked_proc_info));
c906108c 3695 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3696 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3697 CORE_ADDR old_sp = sp;
3698 link->next = linked_proc_desc_table;
3699 linked_proc_desc_table = link;
3700
3701/* FIXME! are these correct ? */
c5aa993b 3702#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3703#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3704#define FLOAT_REG_SAVE_MASK MASK(0,19)
3705#define FLOAT_SINGLE_REG_SAVE_MASK \
3706 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3707 /*
3708 * The registers we must save are all those not preserved across
3709 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3710 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3711 * and FP Control/Status registers.
361d1df0 3712 *
c906108c
SS
3713 *
3714 * Dummy frame layout:
3715 * (high memory)
c5aa993b
JM
3716 * Saved PC
3717 * Saved MMHI, MMLO, FPC_CSR
3718 * Saved R31
3719 * Saved R28
3720 * ...
3721 * Saved R1
c906108c
SS
3722 * Saved D18 (i.e. F19, F18)
3723 * ...
3724 * Saved D0 (i.e. F1, F0)
c5aa993b 3725 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3726 * (low memory)
3727 */
3728
3729 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3730 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3731 PROC_FRAME_OFFSET (proc_desc) = 0;
3732 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3733 mips_push_register (&sp, PC_REGNUM);
3734 mips_push_register (&sp, HI_REGNUM);
3735 mips_push_register (&sp, LO_REGNUM);
3736 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3737
3738 /* Save general CPU registers */
c5aa993b 3739 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3740 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3741 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3742 for (ireg = 32; --ireg >= 0;)
3743 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3744 mips_push_register (&sp, ireg);
3745
3746 /* Save floating point registers starting with high order word */
c5aa993b 3747 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3748 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3749 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3750 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3751 from FP. */
c5aa993b
JM
3752 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3753 for (ireg = 32; --ireg >= 0;)
3754 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3755 mips_push_register (&sp, ireg + FP0_REGNUM);
3756
3757 /* Update the frame pointer for the call dummy and the stack pointer.
3758 Set the procedure's starting and ending addresses to point to the
3759 call dummy address at the entry point. */
3760 write_register (PUSH_FP_REGNUM, old_sp);
3761 write_register (SP_REGNUM, sp);
c5aa993b
JM
3762 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3763 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3764 SET_PROC_DESC_IS_DUMMY (proc_desc);
3765 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3766}
3767
f7ab6ec6 3768static void
acdb74a0 3769mips_pop_frame (void)
c906108c
SS
3770{
3771 register int regnum;
3772 struct frame_info *frame = get_current_frame ();
3773 CORE_ADDR new_sp = FRAME_FP (frame);
3774
cce74817 3775 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 3776
c5aa993b 3777 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c 3778 if (frame->saved_regs == NULL)
ffabd70d 3779 FRAME_INIT_SAVED_REGS (frame);
c906108c 3780 for (regnum = 0; regnum < NUM_REGS; regnum++)
e41b17f0
MS
3781 {
3782 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3783 && frame->saved_regs[regnum])
3784 write_register (regnum,
3785 read_memory_integer (frame->saved_regs[regnum],
3786 MIPS_SAVED_REGSIZE));
3787 }
757a7cc6 3788
c906108c
SS
3789 write_register (SP_REGNUM, new_sp);
3790 flush_cached_frames ();
3791
c5aa993b 3792 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3793 {
3794 struct linked_proc_info *pi_ptr, *prev_ptr;
3795
3796 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3797 pi_ptr != NULL;
3798 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3799 {
3800 if (&pi_ptr->info == proc_desc)
3801 break;
3802 }
3803
3804 if (pi_ptr == NULL)
3805 error ("Can't locate dummy extra frame info\n");
3806
3807 if (prev_ptr != NULL)
3808 prev_ptr->next = pi_ptr->next;
3809 else
3810 linked_proc_desc_table = pi_ptr->next;
3811
b8c9b27d 3812 xfree (pi_ptr);
c906108c
SS
3813
3814 write_register (HI_REGNUM,
c5aa993b 3815 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3816 MIPS_SAVED_REGSIZE));
c906108c 3817 write_register (LO_REGNUM,
c5aa993b 3818 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3819 MIPS_SAVED_REGSIZE));
c906108c
SS
3820 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3821 write_register (FCRCS_REGNUM,
c5aa993b 3822 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3823 MIPS_SAVED_REGSIZE));
c906108c
SS
3824 }
3825}
3826
f7ab6ec6
MS
3827static void
3828mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3829 struct value **args, struct type *type, int gcc_p)
3830{
3831 write_register(T9_REGNUM, fun);
3832}
3833
dd824b04
DJ
3834/* Floating point register management.
3835
3836 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3837 64bit operations, these early MIPS cpus treat fp register pairs
3838 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3839 registers and offer a compatibility mode that emulates the MIPS2 fp
3840 model. When operating in MIPS2 fp compat mode, later cpu's split
3841 double precision floats into two 32-bit chunks and store them in
3842 consecutive fp regs. To display 64-bit floats stored in this
3843 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3844 Throw in user-configurable endianness and you have a real mess.
3845
3846 The way this works is:
3847 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3848 double-precision value will be split across two logical registers.
3849 The lower-numbered logical register will hold the low-order bits,
3850 regardless of the processor's endianness.
3851 - If we are on a 64-bit processor, and we are looking for a
3852 single-precision value, it will be in the low ordered bits
3853 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3854 save slot in memory.
3855 - If we are in 64-bit mode, everything is straightforward.
3856
3857 Note that this code only deals with "live" registers at the top of the
3858 stack. We will attempt to deal with saved registers later, when
3859 the raw/cooked register interface is in place. (We need a general
3860 interface that can deal with dynamic saved register sizes -- fp
3861 regs could be 32 bits wide in one frame and 64 on the frame above
3862 and below). */
3863
67b2c998
DJ
3864static struct type *
3865mips_float_register_type (void)
3866{
361d1df0 3867 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3868 return builtin_type_ieee_single_big;
3869 else
3870 return builtin_type_ieee_single_little;
3871}
3872
3873static struct type *
3874mips_double_register_type (void)
3875{
361d1df0 3876 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3877 return builtin_type_ieee_double_big;
3878 else
3879 return builtin_type_ieee_double_little;
3880}
3881
dd824b04
DJ
3882/* Copy a 32-bit single-precision value from the current frame
3883 into rare_buffer. */
3884
3885static void
3886mips_read_fp_register_single (int regno, char *rare_buffer)
3887{
3888 int raw_size = REGISTER_RAW_SIZE (regno);
3889 char *raw_buffer = alloca (raw_size);
3890
cda5a58a 3891 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
3892 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3893 if (raw_size == 8)
3894 {
3895 /* We have a 64-bit value for this register. Find the low-order
3896 32 bits. */
3897 int offset;
3898
3899 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3900 offset = 4;
3901 else
3902 offset = 0;
3903
3904 memcpy (rare_buffer, raw_buffer + offset, 4);
3905 }
3906 else
3907 {
3908 memcpy (rare_buffer, raw_buffer, 4);
3909 }
3910}
3911
3912/* Copy a 64-bit double-precision value from the current frame into
3913 rare_buffer. This may include getting half of it from the next
3914 register. */
3915
3916static void
3917mips_read_fp_register_double (int regno, char *rare_buffer)
3918{
3919 int raw_size = REGISTER_RAW_SIZE (regno);
3920
3921 if (raw_size == 8 && !mips2_fp_compat ())
3922 {
3923 /* We have a 64-bit value for this register, and we should use
3924 all 64 bits. */
cda5a58a 3925 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
3926 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3927 }
3928 else
3929 {
3930 if ((regno - FP0_REGNUM) & 1)
3931 internal_error (__FILE__, __LINE__,
3932 "mips_read_fp_register_double: bad access to "
3933 "odd-numbered FP register");
3934
3935 /* mips_read_fp_register_single will find the correct 32 bits from
3936 each register. */
3937 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3938 {
3939 mips_read_fp_register_single (regno, rare_buffer + 4);
3940 mips_read_fp_register_single (regno + 1, rare_buffer);
3941 }
361d1df0 3942 else
dd824b04
DJ
3943 {
3944 mips_read_fp_register_single (regno, rare_buffer);
3945 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3946 }
3947 }
3948}
3949
c906108c 3950static void
acdb74a0 3951mips_print_register (int regnum, int all)
c906108c 3952{
119d55d8 3953 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
3954
3955 /* Get the data in raw format. */
cda5a58a 3956 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
3957 {
3958 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3959 return;
3960 }
3961
dd824b04
DJ
3962 /* If we have a actual 32-bit floating point register (or we are in
3963 32-bit compatibility mode), and the register is even-numbered,
3964 also print it as a double (spanning two registers). */
c906108c 3965 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
3966 && (REGISTER_RAW_SIZE (regnum) == 4
3967 || mips2_fp_compat ())
c5aa993b 3968 && !((regnum - FP0_REGNUM) & 1))
dd824b04 3969 {
cb3d25d1 3970 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 3971
dd824b04 3972 mips_read_fp_register_double (regnum, dbuffer);
c906108c 3973
dd824b04 3974 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 3975 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
3976 gdb_stdout, 0, 1, 0, Val_pretty_default);
3977 printf_filtered ("); ");
3978 }
c906108c
SS
3979 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3980
3981 /* The problem with printing numeric register names (r26, etc.) is that
3982 the user can't use them on input. Probably the best solution is to
3983 fix it so that either the numeric or the funky (a2, etc.) names
3984 are accepted on input. */
3985 if (regnum < MIPS_NUMREGS)
3986 printf_filtered ("(r%d): ", regnum);
3987 else
3988 printf_filtered (": ");
3989
3990 /* If virtual format is floating, print it that way. */
3991 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
3992 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
3993 {
3994 /* We have a meaningful 64-bit value in this register. Show
3995 it as a 32-bit float and a 64-bit double. */
d7449b42 3996 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
3997
3998 printf_filtered (" (float) ");
67b2c998 3999 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
4000 gdb_stdout, 0, 1, 0, Val_pretty_default);
4001 printf_filtered (", (double) ");
67b2c998 4002 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
4003 gdb_stdout, 0, 1, 0, Val_pretty_default);
4004 }
4005 else
4006 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4007 gdb_stdout, 0, 1, 0, Val_pretty_default);
4008 /* Else print as integer in hex. */
4009 else
ed9a39eb
JM
4010 {
4011 int offset;
4012
d7449b42 4013 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
4014 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4015 else
4016 offset = 0;
361d1df0 4017
ed9a39eb
JM
4018 print_scalar_formatted (raw_buffer + offset,
4019 REGISTER_VIRTUAL_TYPE (regnum),
4020 'x', 0, gdb_stdout);
4021 }
c906108c
SS
4022}
4023
361d1df0 4024/* Replacement for generic do_registers_info.
c906108c
SS
4025 Print regs in pretty columns. */
4026
4027static int
acdb74a0 4028do_fp_register_row (int regnum)
c5aa993b 4029{ /* do values for FP (float) regs */
dd824b04 4030 char *raw_buffer;
c906108c
SS
4031 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4032 int inv1, inv2, inv3;
c5aa993b 4033
dd824b04 4034 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4035
dd824b04 4036 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4037 {
dd824b04
DJ
4038 /* 4-byte registers: we can fit two registers per row. */
4039 /* Also print every pair of 4-byte regs as an 8-byte double. */
4040 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4041 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4042
dd824b04 4043 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 4044 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
4045
4046 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4047 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4048
1adad886
AC
4049 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4050 if (inv1)
4051 printf_filtered (": <invalid float>");
4052 else
4053 printf_filtered ("%-17.9g", flt1);
4054
4055 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4056 if (inv2)
4057 printf_filtered (": <invalid float>");
4058 else
4059 printf_filtered ("%-17.9g", flt2);
4060
4061 printf_filtered (" dbl: ");
4062 if (inv3)
4063 printf_filtered ("<invalid double>");
4064 else
4065 printf_filtered ("%-24.17g", doub);
4066 printf_filtered ("\n");
4067
c906108c 4068 /* may want to do hex display here (future enhancement) */
c5aa993b 4069 regnum += 2;
c906108c
SS
4070 }
4071 else
dd824b04
DJ
4072 {
4073 /* Eight byte registers: print each one as float AND as double. */
4074 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4075 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 4076
dd824b04 4077 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4078 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4079
1adad886
AC
4080 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4081 if (inv1)
4082 printf_filtered ("<invalid float>");
4083 else
4084 printf_filtered ("flt: %-17.9g", flt1);
4085
4086 printf_filtered (" dbl: ");
4087 if (inv3)
4088 printf_filtered ("<invalid double>");
4089 else
4090 printf_filtered ("%-24.17g", doub);
4091
4092 printf_filtered ("\n");
c906108c
SS
4093 /* may want to do hex display here (future enhancement) */
4094 regnum++;
4095 }
4096 return regnum;
4097}
4098
4099/* Print a row's worth of GP (int) registers, with name labels above */
4100
4101static int
acdb74a0 4102do_gp_register_row (int regnum)
c906108c
SS
4103{
4104 /* do values for GP (int) regs */
cb3d25d1 4105 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4106 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4107 int col, byte;
4108 int start_regnum = regnum;
4109 int numregs = NUM_REGS;
4110
4111
4112 /* For GP registers, we print a separate row of names above the vals */
4113 printf_filtered (" ");
4114 for (col = 0; col < ncols && regnum < numregs; regnum++)
4115 {
4116 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4117 continue; /* unused register */
c906108c 4118 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4119 break; /* end the row: reached FP register */
4120 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4121 REGISTER_NAME (regnum));
4122 col++;
4123 }
c5aa993b 4124 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4125 start_regnum); /* print the R0 to R31 names */
4126
4127 regnum = start_regnum; /* go back to start of row */
4128 /* now print the values in hex, 4 or 8 to the row */
4129 for (col = 0; col < ncols && regnum < numregs; regnum++)
4130 {
4131 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4132 continue; /* unused register */
c906108c 4133 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4134 break; /* end row: reached FP register */
c906108c 4135 /* OK: get the data in raw format. */
cda5a58a 4136 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
4137 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4138 /* pad small registers */
43e526b9 4139 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4140 printf_filtered (" ");
4141 /* Now print the register value in hex, endian order. */
d7449b42 4142 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4143 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4144 byte < REGISTER_RAW_SIZE (regnum);
4145 byte++)
c906108c
SS
4146 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4147 else
43e526b9
JM
4148 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4149 byte >= 0;
4150 byte--)
c906108c
SS
4151 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4152 printf_filtered (" ");
4153 col++;
4154 }
c5aa993b 4155 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4156 printf_filtered ("\n");
4157
4158 return regnum;
4159}
4160
4161/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4162
bf1f5b4c 4163static void
acdb74a0 4164mips_do_registers_info (int regnum, int fpregs)
c906108c 4165{
c5aa993b 4166 if (regnum != -1) /* do one specified register */
c906108c
SS
4167 {
4168 if (*(REGISTER_NAME (regnum)) == '\0')
4169 error ("Not a valid register for the current processor type");
4170
4171 mips_print_register (regnum, 0);
4172 printf_filtered ("\n");
4173 }
c5aa993b
JM
4174 else
4175 /* do all (or most) registers */
c906108c
SS
4176 {
4177 regnum = 0;
4178 while (regnum < NUM_REGS)
4179 {
c5aa993b
JM
4180 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4181 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4182 regnum = do_fp_register_row (regnum); /* FP regs */
4183 else
4184 regnum += MIPS_NUMREGS; /* skip floating point regs */
4185 else
4186 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4187 }
4188 }
4189}
4190
c906108c
SS
4191/* Is this a branch with a delay slot? */
4192
a14ed312 4193static int is_delayed (unsigned long);
c906108c
SS
4194
4195static int
acdb74a0 4196is_delayed (unsigned long insn)
c906108c
SS
4197{
4198 int i;
4199 for (i = 0; i < NUMOPCODES; ++i)
4200 if (mips_opcodes[i].pinfo != INSN_MACRO
4201 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4202 break;
4203 return (i < NUMOPCODES
4204 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4205 | INSN_COND_BRANCH_DELAY
4206 | INSN_COND_BRANCH_LIKELY)));
4207}
4208
4209int
acdb74a0 4210mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4211{
4212 char buf[MIPS_INSTLEN];
4213
4214 /* There is no branch delay slot on MIPS16. */
4215 if (pc_is_mips16 (pc))
4216 return 0;
4217
4218 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4219 /* If error reading memory, guess that it is not a delayed branch. */
4220 return 0;
c5aa993b 4221 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4222}
4223
4224
4225/* Skip the PC past function prologue instructions (32-bit version).
4226 This is a helper function for mips_skip_prologue. */
4227
4228static CORE_ADDR
f7b9e9fc 4229mips32_skip_prologue (CORE_ADDR pc)
c906108c 4230{
c5aa993b
JM
4231 t_inst inst;
4232 CORE_ADDR end_pc;
4233 int seen_sp_adjust = 0;
4234 int load_immediate_bytes = 0;
4235
4236 /* Skip the typical prologue instructions. These are the stack adjustment
4237 instruction and the instructions that save registers on the stack
4238 or in the gcc frame. */
4239 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4240 {
4241 unsigned long high_word;
c906108c 4242
c5aa993b
JM
4243 inst = mips_fetch_instruction (pc);
4244 high_word = (inst >> 16) & 0xffff;
c906108c 4245
c5aa993b
JM
4246 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4247 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4248 seen_sp_adjust = 1;
4249 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4250 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4251 seen_sp_adjust = 1;
4252 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4253 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4254 && (inst & 0x001F0000)) /* reg != $zero */
4255 continue;
4256
4257 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4258 continue;
4259 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4260 /* sx reg,n($s8) */
4261 continue; /* reg != $zero */
4262
4263 /* move $s8,$sp. With different versions of gas this will be either
4264 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4265 Accept any one of these. */
4266 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4267 continue;
4268
4269 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4270 continue;
4271 else if (high_word == 0x3c1c) /* lui $gp,n */
4272 continue;
4273 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4274 continue;
4275 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4276 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4277 continue;
4278 /* The following instructions load $at or $t0 with an immediate
4279 value in preparation for a stack adjustment via
4280 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4281 a local variable, so we accept them only before a stack adjustment
4282 instruction was seen. */
4283 else if (!seen_sp_adjust)
4284 {
4285 if (high_word == 0x3c01 || /* lui $at,n */
4286 high_word == 0x3c08) /* lui $t0,n */
4287 {
4288 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4289 continue;
4290 }
4291 else if (high_word == 0x3421 || /* ori $at,$at,n */
4292 high_word == 0x3508 || /* ori $t0,$t0,n */
4293 high_word == 0x3401 || /* ori $at,$zero,n */
4294 high_word == 0x3408) /* ori $t0,$zero,n */
4295 {
4296 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4297 continue;
4298 }
4299 else
4300 break;
4301 }
4302 else
4303 break;
c906108c
SS
4304 }
4305
c5aa993b
JM
4306 /* In a frameless function, we might have incorrectly
4307 skipped some load immediate instructions. Undo the skipping
4308 if the load immediate was not followed by a stack adjustment. */
4309 if (load_immediate_bytes && !seen_sp_adjust)
4310 pc -= load_immediate_bytes;
4311 return pc;
c906108c
SS
4312}
4313
4314/* Skip the PC past function prologue instructions (16-bit version).
4315 This is a helper function for mips_skip_prologue. */
4316
4317static CORE_ADDR
f7b9e9fc 4318mips16_skip_prologue (CORE_ADDR pc)
c906108c 4319{
c5aa993b
JM
4320 CORE_ADDR end_pc;
4321 int extend_bytes = 0;
4322 int prev_extend_bytes;
c906108c 4323
c5aa993b
JM
4324 /* Table of instructions likely to be found in a function prologue. */
4325 static struct
c906108c
SS
4326 {
4327 unsigned short inst;
4328 unsigned short mask;
c5aa993b
JM
4329 }
4330 table[] =
4331 {
c906108c 4332 {
c5aa993b
JM
4333 0x6300, 0xff00
4334 }
4335 , /* addiu $sp,offset */
4336 {
4337 0xfb00, 0xff00
4338 }
4339 , /* daddiu $sp,offset */
4340 {
4341 0xd000, 0xf800
4342 }
4343 , /* sw reg,n($sp) */
4344 {
4345 0xf900, 0xff00
4346 }
4347 , /* sd reg,n($sp) */
4348 {
4349 0x6200, 0xff00
4350 }
4351 , /* sw $ra,n($sp) */
4352 {
4353 0xfa00, 0xff00
4354 }
4355 , /* sd $ra,n($sp) */
4356 {
4357 0x673d, 0xffff
4358 }
4359 , /* move $s1,sp */
4360 {
4361 0xd980, 0xff80
4362 }
4363 , /* sw $a0-$a3,n($s1) */
4364 {
4365 0x6704, 0xff1c
4366 }
4367 , /* move reg,$a0-$a3 */
4368 {
4369 0xe809, 0xf81f
4370 }
4371 , /* entry pseudo-op */
4372 {
4373 0x0100, 0xff00
4374 }
4375 , /* addiu $s1,$sp,n */
4376 {
4377 0, 0
4378 } /* end of table marker */
4379 };
4380
4381 /* Skip the typical prologue instructions. These are the stack adjustment
4382 instruction and the instructions that save registers on the stack
4383 or in the gcc frame. */
4384 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4385 {
4386 unsigned short inst;
4387 int i;
c906108c 4388
c5aa993b 4389 inst = mips_fetch_instruction (pc);
c906108c 4390
c5aa993b
JM
4391 /* Normally we ignore an extend instruction. However, if it is
4392 not followed by a valid prologue instruction, we must adjust
4393 the pc back over the extend so that it won't be considered
4394 part of the prologue. */
4395 if ((inst & 0xf800) == 0xf000) /* extend */
4396 {
4397 extend_bytes = MIPS16_INSTLEN;
4398 continue;
4399 }
4400 prev_extend_bytes = extend_bytes;
4401 extend_bytes = 0;
c906108c 4402
c5aa993b
JM
4403 /* Check for other valid prologue instructions besides extend. */
4404 for (i = 0; table[i].mask != 0; i++)
4405 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4406 break;
4407 if (table[i].mask != 0) /* it was in table? */
4408 continue; /* ignore it */
4409 else
4410 /* non-prologue */
4411 {
4412 /* Return the current pc, adjusted backwards by 2 if
4413 the previous instruction was an extend. */
4414 return pc - prev_extend_bytes;
4415 }
c906108c
SS
4416 }
4417 return pc;
4418}
4419
4420/* To skip prologues, I use this predicate. Returns either PC itself
4421 if the code at PC does not look like a function prologue; otherwise
4422 returns an address that (if we're lucky) follows the prologue. If
4423 LENIENT, then we must skip everything which is involved in setting
4424 up the frame (it's OK to skip more, just so long as we don't skip
4425 anything which might clobber the registers which are being saved.
4426 We must skip more in the case where part of the prologue is in the
4427 delay slot of a non-prologue instruction). */
4428
f7ab6ec6 4429static CORE_ADDR
f7b9e9fc 4430mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4431{
4432 /* See if we can determine the end of the prologue via the symbol table.
4433 If so, then return either PC, or the PC after the prologue, whichever
4434 is greater. */
4435
4436 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4437
4438 if (post_prologue_pc != 0)
4439 return max (pc, post_prologue_pc);
4440
4441 /* Can't determine prologue from the symbol table, need to examine
4442 instructions. */
4443
4444 if (pc_is_mips16 (pc))
f7b9e9fc 4445 return mips16_skip_prologue (pc);
c906108c 4446 else
f7b9e9fc 4447 return mips32_skip_prologue (pc);
c906108c 4448}
c906108c 4449
7a292a7a
SS
4450/* Determine how a return value is stored within the MIPS register
4451 file, given the return type `valtype'. */
4452
4453struct return_value_word
4454{
4455 int len;
4456 int reg;
4457 int reg_offset;
4458 int buf_offset;
4459};
4460
7a292a7a 4461static void
acdb74a0
AC
4462return_value_location (struct type *valtype,
4463 struct return_value_word *hi,
4464 struct return_value_word *lo)
7a292a7a
SS
4465{
4466 int len = TYPE_LENGTH (valtype);
c5aa993b 4467
7a292a7a
SS
4468 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4469 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4470 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4471 {
4472 if (!FP_REGISTER_DOUBLE && len == 8)
4473 {
4474 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4475 spread them across a floating-point register pair. */
d7449b42
AC
4476 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4477 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4478 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4479 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4480 ? 4 : 0);
4481 hi->reg_offset = lo->reg_offset;
4482 lo->reg = FP0_REGNUM + 0;
4483 hi->reg = FP0_REGNUM + 1;
4484 lo->len = 4;
4485 hi->len = 4;
4486 }
4487 else
4488 {
4489 /* The floating point value fits in a single floating-point
c5aa993b 4490 register. */
d7449b42 4491 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4492 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4493 && len == 4)
4494 ? 4 : 0);
4495 lo->reg = FP0_REGNUM;
4496 lo->len = len;
4497 lo->buf_offset = 0;
4498 hi->len = 0;
4499 hi->reg_offset = 0;
4500 hi->buf_offset = 0;
4501 hi->reg = 0;
4502 }
4503 }
4504 else
4505 {
4506 /* Locate a result possibly spread across two registers. */
4507 int regnum = 2;
4508 lo->reg = regnum + 0;
4509 hi->reg = regnum + 1;
d7449b42 4510 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4511 && len < MIPS_SAVED_REGSIZE)
4512 {
bf1f5b4c
MS
4513 /* "un-left-justify" the value in the low register */
4514 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4515 lo->len = len;
bf1f5b4c 4516 hi->reg_offset = 0;
7a292a7a
SS
4517 hi->len = 0;
4518 }
d7449b42 4519 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4520 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4521 && len < MIPS_SAVED_REGSIZE * 2
4522 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4523 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4524 {
4525 /* "un-left-justify" the value spread across two registers. */
4526 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4527 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4528 hi->reg_offset = 0;
4529 hi->len = len - lo->len;
4530 }
4531 else
4532 {
4533 /* Only perform a partial copy of the second register. */
4534 lo->reg_offset = 0;
4535 hi->reg_offset = 0;
4536 if (len > MIPS_SAVED_REGSIZE)
4537 {
4538 lo->len = MIPS_SAVED_REGSIZE;
4539 hi->len = len - MIPS_SAVED_REGSIZE;
4540 }
4541 else
4542 {
4543 lo->len = len;
4544 hi->len = 0;
4545 }
4546 }
d7449b42 4547 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4548 && REGISTER_RAW_SIZE (regnum) == 8
4549 && MIPS_SAVED_REGSIZE == 4)
4550 {
4551 /* Account for the fact that only the least-signficant part
c5aa993b 4552 of the register is being used */
7a292a7a
SS
4553 lo->reg_offset += 4;
4554 hi->reg_offset += 4;
4555 }
4556 lo->buf_offset = 0;
4557 hi->buf_offset = lo->len;
4558 }
4559}
4560
4561/* Given a return value in `regbuf' with a type `valtype', extract and
4562 copy its value into `valbuf'. */
4563
46cac009
AC
4564static void
4565mips_eabi_extract_return_value (struct type *valtype,
4566 char regbuf[REGISTER_BYTES],
4567 char *valbuf)
4568{
4569 struct return_value_word lo;
4570 struct return_value_word hi;
4571 return_value_location (valtype, &hi, &lo);
4572
4573 memcpy (valbuf + lo.buf_offset,
4574 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4575 lo.len);
4576
4577 if (hi.len > 0)
4578 memcpy (valbuf + hi.buf_offset,
4579 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4580 hi.len);
4581}
4582
46cac009
AC
4583static void
4584mips_o64_extract_return_value (struct type *valtype,
4585 char regbuf[REGISTER_BYTES],
4586 char *valbuf)
4587{
4588 struct return_value_word lo;
4589 struct return_value_word hi;
4590 return_value_location (valtype, &hi, &lo);
4591
4592 memcpy (valbuf + lo.buf_offset,
4593 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4594 lo.len);
4595
4596 if (hi.len > 0)
4597 memcpy (valbuf + hi.buf_offset,
4598 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4599 hi.len);
4600}
4601
7a292a7a
SS
4602/* Given a return value in `valbuf' with a type `valtype', write it's
4603 value into the appropriate register. */
4604
46cac009
AC
4605static void
4606mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4607{
4608 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4609 struct return_value_word lo;
4610 struct return_value_word hi;
4611 return_value_location (valtype, &hi, &lo);
4612
4613 memset (raw_buffer, 0, sizeof (raw_buffer));
4614 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4615 write_register_bytes (REGISTER_BYTE (lo.reg),
4616 raw_buffer,
4617 REGISTER_RAW_SIZE (lo.reg));
4618
4619 if (hi.len > 0)
4620 {
4621 memset (raw_buffer, 0, sizeof (raw_buffer));
4622 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4623 write_register_bytes (REGISTER_BYTE (hi.reg),
4624 raw_buffer,
4625 REGISTER_RAW_SIZE (hi.reg));
4626 }
4627}
4628
4629static void
cb1d2653 4630mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009
AC
4631{
4632 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4633 struct return_value_word lo;
4634 struct return_value_word hi;
4635 return_value_location (valtype, &hi, &lo);
4636
4637 memset (raw_buffer, 0, sizeof (raw_buffer));
4638 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4639 write_register_bytes (REGISTER_BYTE (lo.reg),
4640 raw_buffer,
4641 REGISTER_RAW_SIZE (lo.reg));
4642
4643 if (hi.len > 0)
4644 {
4645 memset (raw_buffer, 0, sizeof (raw_buffer));
4646 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4647 write_register_bytes (REGISTER_BYTE (hi.reg),
4648 raw_buffer,
4649 REGISTER_RAW_SIZE (hi.reg));
4650 }
4651}
4652
cb1d2653
AC
4653/* O32 ABI stuff. */
4654
46cac009 4655static void
cb1d2653
AC
4656mips_o32_xfer_return_value (struct type *type,
4657 struct regcache *regcache,
4658 bfd_byte *in, const bfd_byte *out)
46cac009 4659{
cb1d2653
AC
4660 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4661 if (TYPE_CODE (type) == TYPE_CODE_FLT
4662 && TYPE_LENGTH (type) == 4
4663 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4664 {
cb1d2653
AC
4665 /* A single-precision floating-point value. It fits in the
4666 least significant part of FP0. */
4667 if (mips_debug)
4668 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4669 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4670 TARGET_BYTE_ORDER, in, out, 0);
4671 }
4672 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4673 && TYPE_LENGTH (type) == 8
4674 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4675 {
4676 /* A double-precision floating-point value. It fits in the
4677 least significant part of FP0/FP1 but with byte ordering
4678 based on the target (???). */
4679 if (mips_debug)
4680 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4681 switch (TARGET_BYTE_ORDER)
4682 {
4683 case BFD_ENDIAN_LITTLE:
4684 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4685 TARGET_BYTE_ORDER, in, out, 0);
4686 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4687 TARGET_BYTE_ORDER, in, out, 4);
4688 break;
4689 case BFD_ENDIAN_BIG:
4690 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4691 TARGET_BYTE_ORDER, in, out, 0);
4692 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4693 TARGET_BYTE_ORDER, in, out, 4);
4694 break;
4695 default:
4696 internal_error (__FILE__, __LINE__, "bad switch");
4697 }
4698 }
4699#if 0
4700 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4701 && TYPE_NFIELDS (type) <= 2
4702 && TYPE_NFIELDS (type) >= 1
4703 && ((TYPE_NFIELDS (type) == 1
4704 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4705 == TYPE_CODE_FLT))
4706 || (TYPE_NFIELDS (type) == 2
4707 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4708 == TYPE_CODE_FLT)
4709 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4710 == TYPE_CODE_FLT)))
4711 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4712 {
4713 /* A struct that contains one or two floats. Each value is part
4714 in the least significant part of their floating point
4715 register.. */
4716 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4717 int regnum;
4718 int field;
4719 for (field = 0, regnum = FP0_REGNUM;
4720 field < TYPE_NFIELDS (type);
4721 field++, regnum += 2)
4722 {
4723 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4724 / TARGET_CHAR_BIT);
4725 if (mips_debug)
4726 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4727 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4728 TARGET_BYTE_ORDER, in, out, offset);
4729 }
4730 }
4731#endif
4732#if 0
4733 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4734 || TYPE_CODE (type) == TYPE_CODE_UNION)
4735 {
4736 /* A structure or union. Extract the left justified value,
4737 regardless of the byte order. I.e. DO NOT USE
4738 mips_xfer_lower. */
4739 int offset;
4740 int regnum;
4741 for (offset = 0, regnum = V0_REGNUM;
4742 offset < TYPE_LENGTH (type);
4743 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4744 {
4745 int xfer = REGISTER_RAW_SIZE (regnum);
4746 if (offset + xfer > TYPE_LENGTH (type))
4747 xfer = TYPE_LENGTH (type) - offset;
4748 if (mips_debug)
4749 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4750 offset, xfer, regnum);
4751 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4752 in, out, offset);
4753 }
4754 }
4755#endif
4756 else
4757 {
4758 /* A scalar extract each part but least-significant-byte
4759 justified. o32 thinks registers are 4 byte, regardless of
4760 the ISA. mips_stack_argsize controls this. */
4761 int offset;
4762 int regnum;
4763 for (offset = 0, regnum = V0_REGNUM;
4764 offset < TYPE_LENGTH (type);
4765 offset += mips_stack_argsize (), regnum++)
4766 {
4767 int xfer = mips_stack_argsize ();
4768 int pos = 0;
4769 if (offset + xfer > TYPE_LENGTH (type))
4770 xfer = TYPE_LENGTH (type) - offset;
4771 if (mips_debug)
4772 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4773 offset, xfer, regnum);
4774 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4775 in, out, offset);
4776 }
46cac009
AC
4777 }
4778}
4779
cb1d2653
AC
4780static void
4781mips_o32_extract_return_value (struct type *type,
4782 struct regcache *regcache,
ebba8386 4783 void *valbuf)
cb1d2653
AC
4784{
4785 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4786}
4787
4788static void
4789mips_o32_store_return_value (struct type *type, char *valbuf)
4790{
4791 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4792}
4793
4794/* N32/N44 ABI stuff. */
4795
46cac009 4796static void
88658117
AC
4797mips_n32n64_xfer_return_value (struct type *type,
4798 struct regcache *regcache,
4799 bfd_byte *in, const bfd_byte *out)
c906108c 4800{
88658117
AC
4801 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4802 if (TYPE_CODE (type) == TYPE_CODE_FLT
4803 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4804 {
88658117
AC
4805 /* A floating-point value belongs in the least significant part
4806 of FP0. */
4807 if (mips_debug)
4808 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4809 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4810 TARGET_BYTE_ORDER, in, out, 0);
4811 }
4812 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4813 && TYPE_NFIELDS (type) <= 2
4814 && TYPE_NFIELDS (type) >= 1
4815 && ((TYPE_NFIELDS (type) == 1
4816 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4817 == TYPE_CODE_FLT))
4818 || (TYPE_NFIELDS (type) == 2
4819 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4820 == TYPE_CODE_FLT)
4821 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4822 == TYPE_CODE_FLT)))
4823 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4824 {
4825 /* A struct that contains one or two floats. Each value is part
4826 in the least significant part of their floating point
4827 register.. */
4828 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4829 int regnum;
4830 int field;
4831 for (field = 0, regnum = FP0_REGNUM;
4832 field < TYPE_NFIELDS (type);
4833 field++, regnum += 2)
4834 {
4835 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4836 / TARGET_CHAR_BIT);
4837 if (mips_debug)
4838 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4839 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4840 TARGET_BYTE_ORDER, in, out, offset);
4841 }
7a292a7a 4842 }
88658117
AC
4843 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4844 || TYPE_CODE (type) == TYPE_CODE_UNION)
4845 {
4846 /* A structure or union. Extract the left justified value,
4847 regardless of the byte order. I.e. DO NOT USE
4848 mips_xfer_lower. */
4849 int offset;
4850 int regnum;
4851 for (offset = 0, regnum = V0_REGNUM;
4852 offset < TYPE_LENGTH (type);
4853 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4854 {
4855 int xfer = REGISTER_RAW_SIZE (regnum);
4856 if (offset + xfer > TYPE_LENGTH (type))
4857 xfer = TYPE_LENGTH (type) - offset;
4858 if (mips_debug)
4859 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4860 offset, xfer, regnum);
4861 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4862 in, out, offset);
4863 }
4864 }
4865 else
4866 {
4867 /* A scalar extract each part but least-significant-byte
4868 justified. */
4869 int offset;
4870 int regnum;
4871 for (offset = 0, regnum = V0_REGNUM;
4872 offset < TYPE_LENGTH (type);
4873 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4874 {
4875 int xfer = REGISTER_RAW_SIZE (regnum);
4876 int pos = 0;
4877 if (offset + xfer > TYPE_LENGTH (type))
4878 xfer = TYPE_LENGTH (type) - offset;
4879 if (mips_debug)
4880 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4881 offset, xfer, regnum);
4882 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4883 in, out, offset);
4884 }
4885 }
4886}
4887
4888static void
4889mips_n32n64_extract_return_value (struct type *type,
4890 struct regcache *regcache,
ebba8386 4891 void *valbuf)
88658117
AC
4892{
4893 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4894}
4895
4896static void
4897mips_n32n64_store_return_value (struct type *type, char *valbuf)
4898{
4899 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4900}
4901
2f1488ce
MS
4902static void
4903mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4904{
4905 /* Nothing to do -- push_arguments does all the work. */
4906}
4907
4908static CORE_ADDR
4909mips_extract_struct_value_address (struct regcache *ignore)
4910{
4911 /* FIXME: This will only work at random. The caller passes the
4912 struct_return address in V0, but it is not preserved. It may
4913 still be there, or this may be a random value. */
4914 return read_register (V0_REGNUM);
4915}
4916
c906108c
SS
4917/* Exported procedure: Is PC in the signal trampoline code */
4918
102182a9
MS
4919static int
4920mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4921{
4922 if (sigtramp_address == 0)
4923 fixup_sigtramp ();
4924 return (pc >= sigtramp_address && pc < sigtramp_end);
4925}
4926
a5ea2558
AC
4927/* Root of all "set mips "/"show mips " commands. This will eventually be
4928 used for all MIPS-specific commands. */
4929
a5ea2558 4930static void
acdb74a0 4931show_mips_command (char *args, int from_tty)
a5ea2558
AC
4932{
4933 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4934}
4935
a5ea2558 4936static void
acdb74a0 4937set_mips_command (char *args, int from_tty)
a5ea2558
AC
4938{
4939 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4940 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4941}
4942
c906108c
SS
4943/* Commands to show/set the MIPS FPU type. */
4944
c906108c 4945static void
acdb74a0 4946show_mipsfpu_command (char *args, int from_tty)
c906108c 4947{
c906108c
SS
4948 char *fpu;
4949 switch (MIPS_FPU_TYPE)
4950 {
4951 case MIPS_FPU_SINGLE:
4952 fpu = "single-precision";
4953 break;
4954 case MIPS_FPU_DOUBLE:
4955 fpu = "double-precision";
4956 break;
4957 case MIPS_FPU_NONE:
4958 fpu = "absent (none)";
4959 break;
93d56215
AC
4960 default:
4961 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4962 }
4963 if (mips_fpu_type_auto)
4964 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4965 fpu);
4966 else
4967 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4968 fpu);
4969}
4970
4971
c906108c 4972static void
acdb74a0 4973set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
4974{
4975 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4976 show_mipsfpu_command (args, from_tty);
4977}
4978
c906108c 4979static void
acdb74a0 4980set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
4981{
4982 mips_fpu_type = MIPS_FPU_SINGLE;
4983 mips_fpu_type_auto = 0;
9e364162 4984 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
4985}
4986
c906108c 4987static void
acdb74a0 4988set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
4989{
4990 mips_fpu_type = MIPS_FPU_DOUBLE;
4991 mips_fpu_type_auto = 0;
9e364162 4992 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
4993}
4994
c906108c 4995static void
acdb74a0 4996set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
4997{
4998 mips_fpu_type = MIPS_FPU_NONE;
4999 mips_fpu_type_auto = 0;
9e364162 5000 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5001}
5002
c906108c 5003static void
acdb74a0 5004set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5005{
5006 mips_fpu_type_auto = 1;
5007}
5008
5009/* Command to set the processor type. */
5010
5011void
acdb74a0 5012mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5013{
5014 int i;
5015
5016 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5017 {
5018 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5019 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5020 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5021
5022 /* Restore the value. */
4fcf66da 5023 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5024
5025 return;
5026 }
c5aa993b 5027
c906108c
SS
5028 if (!mips_set_processor_type (tmp_mips_processor_type))
5029 {
5030 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5031 /* Restore its value. */
4fcf66da 5032 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5033 }
5034}
5035
5036static void
acdb74a0 5037mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5038{
5039}
5040
5041/* Modify the actual processor type. */
5042
5a89d8aa 5043static int
acdb74a0 5044mips_set_processor_type (char *str)
c906108c 5045{
1012bd0e 5046 int i;
c906108c
SS
5047
5048 if (str == NULL)
5049 return 0;
5050
5051 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5052 {
5053 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5054 {
5055 mips_processor_type = str;
cce74817 5056 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5057 return 1;
c906108c
SS
5058 /* FIXME tweak fpu flag too */
5059 }
5060 }
5061
5062 return 0;
5063}
5064
5065/* Attempt to identify the particular processor model by reading the
5066 processor id. */
5067
5068char *
acdb74a0 5069mips_read_processor_type (void)
c906108c
SS
5070{
5071 CORE_ADDR prid;
5072
5073 prid = read_register (PRID_REGNUM);
5074
5075 if ((prid & ~0xf) == 0x700)
c5aa993b 5076 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5077
5078 return NULL;
5079}
5080
5081/* Just like reinit_frame_cache, but with the right arguments to be
5082 callable as an sfunc. */
5083
5084static void
acdb74a0
AC
5085reinit_frame_cache_sfunc (char *args, int from_tty,
5086 struct cmd_list_element *c)
c906108c
SS
5087{
5088 reinit_frame_cache ();
5089}
5090
5091int
acdb74a0 5092gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5093{
5094 mips_extra_func_info_t proc_desc;
5095
5096 /* Search for the function containing this address. Set the low bit
5097 of the address when searching, in case we were given an even address
5098 that is the start of a 16-bit function. If we didn't do this,
5099 the search would fail because the symbol table says the function
5100 starts at an odd address, i.e. 1 byte past the given address. */
5101 memaddr = ADDR_BITS_REMOVE (memaddr);
5102 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5103
5104 /* Make an attempt to determine if this is a 16-bit function. If
5105 the procedure descriptor exists and the address therein is odd,
5106 it's definitely a 16-bit function. Otherwise, we have to just
5107 guess that if the address passed in is odd, it's 16-bits. */
5108 if (proc_desc)
361d1df0 5109 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5110 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5111 else
361d1df0 5112 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5113 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5114
5115 /* Round down the instruction address to the appropriate boundary. */
65c11066 5116 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5117
c906108c 5118 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5119 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5120 return print_insn_big_mips (memaddr, info);
5121 else
5122 return print_insn_little_mips (memaddr, info);
5123}
5124
5125/* Old-style breakpoint macros.
5126 The IDT board uses an unusual breakpoint value, and sometimes gets
5127 confused when it sees the usual MIPS breakpoint instruction. */
5128
5129#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5130#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5131#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5132#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5133#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5134#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5135#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5136#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5137
5138/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5139 counter value to determine whether a 16- or 32-bit breakpoint should be
5140 used. It returns a pointer to a string of bytes that encode a breakpoint
5141 instruction, stores the length of the string to *lenptr, and adjusts pc
5142 (if necessary) to point to the actual memory location where the
5143 breakpoint should be inserted. */
5144
f7ab6ec6 5145static const unsigned char *
acdb74a0 5146mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5147{
d7449b42 5148 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5149 {
5150 if (pc_is_mips16 (*pcptr))
5151 {
1012bd0e
EZ
5152 static unsigned char mips16_big_breakpoint[] =
5153 MIPS16_BIG_BREAKPOINT;
c906108c 5154 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5155 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5156 return mips16_big_breakpoint;
5157 }
5158 else
5159 {
1012bd0e
EZ
5160 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5161 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5162 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5163
c5aa993b 5164 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5165
5166 if (strcmp (target_shortname, "mips") == 0)
5167 return idt_big_breakpoint;
5168 else if (strcmp (target_shortname, "ddb") == 0
5169 || strcmp (target_shortname, "pmon") == 0
5170 || strcmp (target_shortname, "lsi") == 0)
5171 return pmon_big_breakpoint;
5172 else
5173 return big_breakpoint;
5174 }
5175 }
5176 else
5177 {
5178 if (pc_is_mips16 (*pcptr))
5179 {
1012bd0e
EZ
5180 static unsigned char mips16_little_breakpoint[] =
5181 MIPS16_LITTLE_BREAKPOINT;
c906108c 5182 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5183 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5184 return mips16_little_breakpoint;
5185 }
5186 else
5187 {
1012bd0e
EZ
5188 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5189 static unsigned char pmon_little_breakpoint[] =
5190 PMON_LITTLE_BREAKPOINT;
5191 static unsigned char idt_little_breakpoint[] =
5192 IDT_LITTLE_BREAKPOINT;
c906108c 5193
c5aa993b 5194 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5195
5196 if (strcmp (target_shortname, "mips") == 0)
5197 return idt_little_breakpoint;
5198 else if (strcmp (target_shortname, "ddb") == 0
5199 || strcmp (target_shortname, "pmon") == 0
5200 || strcmp (target_shortname, "lsi") == 0)
5201 return pmon_little_breakpoint;
5202 else
5203 return little_breakpoint;
5204 }
5205 }
5206}
5207
5208/* If PC is in a mips16 call or return stub, return the address of the target
5209 PC, which is either the callee or the caller. There are several
5210 cases which must be handled:
5211
5212 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5213 target PC is in $31 ($ra).
c906108c 5214 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5215 and the target PC is in $2.
c906108c 5216 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5217 before the jal instruction, this is effectively a call stub
5218 and the the target PC is in $2. Otherwise this is effectively
5219 a return stub and the target PC is in $18.
c906108c
SS
5220
5221 See the source code for the stubs in gcc/config/mips/mips16.S for
5222 gory details.
5223
5224 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5225 */
c906108c 5226
757a7cc6 5227static CORE_ADDR
acdb74a0 5228mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5229{
5230 char *name;
5231 CORE_ADDR start_addr;
5232
5233 /* Find the starting address and name of the function containing the PC. */
5234 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5235 return 0;
5236
5237 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5238 target PC is in $31 ($ra). */
5239 if (strcmp (name, "__mips16_ret_sf") == 0
5240 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5241 return read_signed_register (RA_REGNUM);
c906108c
SS
5242
5243 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5244 {
5245 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5246 and the target PC is in $2. */
5247 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5248 return read_signed_register (2);
c906108c
SS
5249
5250 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5251 before the jal instruction, this is effectively a call stub
5252 and the the target PC is in $2. Otherwise this is effectively
5253 a return stub and the target PC is in $18. */
c906108c
SS
5254 else if (name[19] == 's' || name[19] == 'd')
5255 {
5256 if (pc == start_addr)
5257 {
5258 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5259 stub. Such a stub for a function bar might have a name
5260 like __fn_stub_bar, and might look like this:
5261 mfc1 $4,$f13
5262 mfc1 $5,$f12
5263 mfc1 $6,$f15
5264 mfc1 $7,$f14
5265 la $1,bar (becomes a lui/addiu pair)
5266 jr $1
5267 So scan down to the lui/addi and extract the target
5268 address from those two instructions. */
c906108c 5269
6c997a34 5270 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5271 t_inst inst;
5272 int i;
5273
5274 /* See if the name of the target function is __fn_stub_*. */
5275 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5276 return target_pc;
5277 if (strncmp (name, "__fn_stub_", 10) != 0
5278 && strcmp (name, "etext") != 0
5279 && strcmp (name, "_etext") != 0)
5280 return target_pc;
5281
5282 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5283 The limit on the search is arbitrarily set to 20
5284 instructions. FIXME. */
c906108c
SS
5285 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5286 {
c5aa993b
JM
5287 inst = mips_fetch_instruction (target_pc);
5288 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5289 pc = (inst << 16) & 0xffff0000; /* high word */
5290 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5291 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5292 }
5293
5294 /* Couldn't find the lui/addui pair, so return stub address. */
5295 return target_pc;
5296 }
5297 else
5298 /* This is the 'return' part of a call stub. The return
5299 address is in $r18. */
6c997a34 5300 return read_signed_register (18);
c906108c
SS
5301 }
5302 }
c5aa993b 5303 return 0; /* not a stub */
c906108c
SS
5304}
5305
5306
5307/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5308 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5309
757a7cc6 5310static int
acdb74a0 5311mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5312{
5313 CORE_ADDR start_addr;
5314
5315 /* Find the starting address of the function containing the PC. If the
5316 caller didn't give us a name, look it up at the same time. */
5317 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5318 return 0;
5319
5320 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5321 {
5322 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5323 if (name[19] >= '0' && name[19] <= '9')
5324 return 1;
5325 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5326 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5327 else if (name[19] == 's' || name[19] == 'd')
5328 return pc == start_addr;
5329 }
5330
c5aa993b 5331 return 0; /* not a stub */
c906108c
SS
5332}
5333
5334
5335/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5336 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5337
e41b17f0 5338static int
acdb74a0 5339mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5340{
5341 CORE_ADDR start_addr;
5342
5343 /* Find the starting address of the function containing the PC. */
5344 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5345 return 0;
5346
5347 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5348 if (strcmp (name, "__mips16_ret_sf") == 0
5349 || strcmp (name, "__mips16_ret_df") == 0)
5350 return 1;
5351
5352 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5353 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5354 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5355 && (name[19] == 's' || name[19] == 'd')
5356 && pc != start_addr)
5357 return 1;
5358
c5aa993b 5359 return 0; /* not a stub */
c906108c
SS
5360}
5361
5362
5363/* Return non-zero if the PC is in a library helper function that should
5364 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5365
5366int
acdb74a0 5367mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5368{
5369 char *name;
5370
5371 /* Find the starting address and name of the function containing the PC. */
5372 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5373 return 0;
5374
5375 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5376 that we want to ignore. */
5377 return (strcmp (name, "__mips16_ret_sf") == 0
5378 || strcmp (name, "__mips16_ret_df") == 0);
5379}
5380
5381
5382/* Return a location where we can set a breakpoint that will be hit
5383 when an inferior function call returns. This is normally the
5384 program's entry point. Executables that don't have an entry
5385 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5386 whose address is the location where the breakpoint should be placed. */
5387
f7ab6ec6 5388static CORE_ADDR
acdb74a0 5389mips_call_dummy_address (void)
c906108c
SS
5390{
5391 struct minimal_symbol *sym;
5392
5393 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5394 if (sym)
5395 return SYMBOL_VALUE_ADDRESS (sym);
5396 else
5397 return entry_point_address ();
5398}
5399
5400
9dcb560c 5401/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
5402 information for float parameters, both prototyped and unprototyped, then
5403 define this macro. This forces gdb to always assume that floats are
5404 passed as doubles and then converted in the callee.
5405
5406 For the mips chip, it appears that the debug info marks the parameters as
5407 floats regardless of whether the function is prototyped, but the actual
5408 values are passed as doubles for the non-prototyped case and floats for
5409 the prototyped case. Thus we choose to make the non-prototyped case work
5410 for C and break the prototyped case, since the non-prototyped case is
5411 probably much more common. (FIXME). */
5412
5413static int
5414mips_coerce_float_to_double (struct type *formal, struct type *actual)
5415{
5416 return current_language->la_language == language_c;
5417}
5418
47a8d4ba
AC
5419/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5420 the register stored on the stack (32) is different to its real raw
5421 size (64). The below ensures that registers are fetched from the
5422 stack using their ABI size and then stored into the RAW_BUFFER
5423 using their raw size.
5424
5425 The alternative to adding this function would be to add an ABI
5426 macro - REGISTER_STACK_SIZE(). */
5427
5428static void
acdb74a0
AC
5429mips_get_saved_register (char *raw_buffer,
5430 int *optimized,
5431 CORE_ADDR *addrp,
5432 struct frame_info *frame,
5433 int regnum,
5434 enum lval_type *lval)
47a8d4ba
AC
5435{
5436 CORE_ADDR addr;
5437
5438 if (!target_has_registers)
5439 error ("No registers.");
5440
5441 /* Normal systems don't optimize out things with register numbers. */
5442 if (optimized != NULL)
5443 *optimized = 0;
5444 addr = find_saved_register (frame, regnum);
5445 if (addr != 0)
5446 {
5447 if (lval != NULL)
5448 *lval = lval_memory;
5449 if (regnum == SP_REGNUM)
5450 {
5451 if (raw_buffer != NULL)
5452 {
5453 /* Put it back in target format. */
5454 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
5455 (LONGEST) addr);
5456 }
5457 if (addrp != NULL)
5458 *addrp = 0;
5459 return;
5460 }
5461 if (raw_buffer != NULL)
5462 {
5463 LONGEST val;
5464 if (regnum < 32)
5465 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5466 saved. */
5467 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
5468 else
5469 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
5470 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5471 }
5472 }
5473 else
5474 {
5475 if (lval != NULL)
5476 *lval = lval_register;
5477 addr = REGISTER_BYTE (regnum);
5478 if (raw_buffer != NULL)
5479 read_register_gen (regnum, raw_buffer);
5480 }
5481 if (addrp != NULL)
5482 *addrp = addr;
5483}
2acceee2 5484
f7b9e9fc
AC
5485/* Immediately after a function call, return the saved pc.
5486 Can't always go through the frames for this because on some machines
5487 the new frame is not set up until the new function executes
5488 some instructions. */
5489
5490static CORE_ADDR
5491mips_saved_pc_after_call (struct frame_info *frame)
5492{
6c997a34 5493 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5494}
5495
5496
88c72b7d
AC
5497/* Convert a dbx stab register number (from `r' declaration) to a gdb
5498 REGNUM */
5499
5500static int
5501mips_stab_reg_to_regnum (int num)
5502{
5503 if (num < 32)
5504 return num;
361d1df0 5505 else
88c72b7d
AC
5506 return num + FP0_REGNUM - 38;
5507}
5508
5509/* Convert a ecoff register number to a gdb REGNUM */
5510
5511static int
5512mips_ecoff_reg_to_regnum (int num)
5513{
5514 if (num < 32)
5515 return num;
5516 else
5517 return num + FP0_REGNUM - 32;
5518}
5519
fc0c74b1
AC
5520/* Convert an integer into an address. By first converting the value
5521 into a pointer and then extracting it signed, the address is
5522 guarenteed to be correctly sign extended. */
5523
5524static CORE_ADDR
5525mips_integer_to_address (struct type *type, void *buf)
5526{
5527 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5528 LONGEST val = unpack_long (type, buf);
5529 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5530 return extract_signed_integer (tmp,
5531 TYPE_LENGTH (builtin_type_void_data_ptr));
5532}
5533
caaa3122
DJ
5534static void
5535mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5536{
5537 enum mips_abi *abip = (enum mips_abi *) obj;
5538 const char *name = bfd_get_section_name (abfd, sect);
5539
5540 if (*abip != MIPS_ABI_UNKNOWN)
5541 return;
5542
5543 if (strncmp (name, ".mdebug.", 8) != 0)
5544 return;
5545
5546 if (strcmp (name, ".mdebug.abi32") == 0)
5547 *abip = MIPS_ABI_O32;
5548 else if (strcmp (name, ".mdebug.abiN32") == 0)
5549 *abip = MIPS_ABI_N32;
e3bddbfa
KB
5550 else if (strcmp (name, ".mdebug.abiN64") == 0)
5551 *abip = MIPS_ABI_N64;
caaa3122
DJ
5552 else if (strcmp (name, ".mdebug.abiO64") == 0)
5553 *abip = MIPS_ABI_O64;
5554 else if (strcmp (name, ".mdebug.eabi32") == 0)
5555 *abip = MIPS_ABI_EABI32;
5556 else if (strcmp (name, ".mdebug.eabi64") == 0)
5557 *abip = MIPS_ABI_EABI64;
5558 else
5559 warning ("unsupported ABI %s.", name + 8);
5560}
5561
2e4ebe70
DJ
5562static enum mips_abi
5563global_mips_abi (void)
5564{
5565 int i;
5566
5567 for (i = 0; mips_abi_strings[i] != NULL; i++)
5568 if (mips_abi_strings[i] == mips_abi_string)
5569 return (enum mips_abi) i;
5570
5571 internal_error (__FILE__, __LINE__,
5572 "unknown ABI string");
5573}
5574
c2d11a7d 5575static struct gdbarch *
acdb74a0
AC
5576mips_gdbarch_init (struct gdbarch_info info,
5577 struct gdbarch_list *arches)
c2d11a7d
JM
5578{
5579 static LONGEST mips_call_dummy_words[] =
5580 {0};
5581 struct gdbarch *gdbarch;
5582 struct gdbarch_tdep *tdep;
5583 int elf_flags;
2e4ebe70 5584 enum mips_abi mips_abi, found_abi, wanted_abi;
70f80edf 5585 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 5586
1d06468c
EZ
5587 /* Reset the disassembly info, in case it was set to something
5588 non-default. */
5589 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5590 tm_print_insn_info.arch = bfd_arch_unknown;
5591 tm_print_insn_info.mach = 0;
5592
70f80edf
JT
5593 elf_flags = 0;
5594
5595 if (info.abfd)
5596 {
5597 /* First of all, extract the elf_flags, if available. */
5598 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5599 elf_flags = elf_elfheader (info.abfd)->e_flags;
5600
5601 /* Try to determine the OS ABI of the object we are loading. If
5602 we end up with `unknown', just leave it that way. */
5603 osabi = gdbarch_lookup_osabi (info.abfd);
5604 }
c2d11a7d 5605
102182a9 5606 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5607 switch ((elf_flags & EF_MIPS_ABI))
5608 {
5609 case E_MIPS_ABI_O32:
5610 mips_abi = MIPS_ABI_O32;
5611 break;
5612 case E_MIPS_ABI_O64:
5613 mips_abi = MIPS_ABI_O64;
5614 break;
5615 case E_MIPS_ABI_EABI32:
5616 mips_abi = MIPS_ABI_EABI32;
5617 break;
5618 case E_MIPS_ABI_EABI64:
4a7f7ba8 5619 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5620 break;
5621 default:
acdb74a0
AC
5622 if ((elf_flags & EF_MIPS_ABI2))
5623 mips_abi = MIPS_ABI_N32;
5624 else
5625 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5626 break;
5627 }
acdb74a0 5628
caaa3122
DJ
5629 /* GCC creates a pseudo-section whose name describes the ABI. */
5630 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5631 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5632
2e4ebe70
DJ
5633 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5634 Use the ABI from the last architecture if there is one. */
5635 if (info.abfd == NULL && arches != NULL)
5636 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5637
32a6503c 5638 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5639 if (mips_abi == MIPS_ABI_UNKNOWN
5640 && info.bfd_arch_info != NULL
5641 && info.bfd_arch_info->arch == bfd_arch_mips)
5642 {
5643 switch (info.bfd_arch_info->mach)
5644 {
5645 case bfd_mach_mips3900:
5646 mips_abi = MIPS_ABI_EABI32;
5647 break;
5648 case bfd_mach_mips4100:
5649 case bfd_mach_mips5000:
5650 mips_abi = MIPS_ABI_EABI64;
5651 break;
1d06468c
EZ
5652 case bfd_mach_mips8000:
5653 case bfd_mach_mips10000:
32a6503c
KB
5654 /* On Irix, ELF64 executables use the N64 ABI. The
5655 pseudo-sections which describe the ABI aren't present
5656 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5657 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5658 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5659 mips_abi = MIPS_ABI_N64;
5660 else
5661 mips_abi = MIPS_ABI_N32;
1d06468c 5662 break;
bf64bfd6
AC
5663 }
5664 }
2e4ebe70 5665
2e4ebe70
DJ
5666 if (mips_abi == MIPS_ABI_UNKNOWN)
5667 mips_abi = MIPS_ABI_O32;
5668
5669 /* Now that we have found what the ABI for this binary would be,
5670 check whether the user is overriding it. */
5671 found_abi = mips_abi;
5672 wanted_abi = global_mips_abi ();
5673 if (wanted_abi != MIPS_ABI_UNKNOWN)
5674 mips_abi = wanted_abi;
5675
4b9b3959
AC
5676 if (gdbarch_debug)
5677 {
5678 fprintf_unfiltered (gdb_stdlog,
9ace0497 5679 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5680 elf_flags);
4b9b3959
AC
5681 fprintf_unfiltered (gdb_stdlog,
5682 "mips_gdbarch_init: mips_abi = %d\n",
5683 mips_abi);
2e4ebe70
DJ
5684 fprintf_unfiltered (gdb_stdlog,
5685 "mips_gdbarch_init: found_mips_abi = %d\n",
5686 found_abi);
4b9b3959 5687 }
0dadbba0 5688
c2d11a7d
JM
5689 /* try to find a pre-existing architecture */
5690 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5691 arches != NULL;
5692 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5693 {
5694 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5695 using. */
9103eae0 5696 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5697 continue;
9103eae0 5698 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5699 continue;
70f80edf
JT
5700 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5701 return arches->gdbarch;
c2d11a7d
JM
5702 }
5703
102182a9 5704 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5705 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5706 gdbarch = gdbarch_alloc (&info, tdep);
5707 tdep->elf_flags = elf_flags;
70f80edf 5708 tdep->osabi = osabi;
c2d11a7d 5709
102182a9 5710 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5711 set_gdbarch_short_bit (gdbarch, 16);
5712 set_gdbarch_int_bit (gdbarch, 32);
5713 set_gdbarch_float_bit (gdbarch, 32);
5714 set_gdbarch_double_bit (gdbarch, 64);
5715 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5716 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
d05285fa
MS
5717 set_gdbarch_max_register_raw_size (gdbarch, 8);
5718 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5719 tdep->found_abi = found_abi;
0dadbba0 5720 tdep->mips_abi = mips_abi;
1d06468c 5721
f7ab6ec6
MS
5722 set_gdbarch_elf_make_msymbol_special (gdbarch,
5723 mips_elf_make_msymbol_special);
5724
0dadbba0 5725 switch (mips_abi)
c2d11a7d 5726 {
0dadbba0 5727 case MIPS_ABI_O32:
46cac009 5728 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5729 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5730 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5731 tdep->mips_default_saved_regsize = 4;
0dadbba0 5732 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5733 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5734 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5735 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5736 tdep->gdb_target_is_mips64 = 0;
4014092b 5737 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5738 set_gdbarch_long_bit (gdbarch, 32);
5739 set_gdbarch_ptr_bit (gdbarch, 32);
5740 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5741 set_gdbarch_reg_struct_has_addr (gdbarch,
5742 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5743 set_gdbarch_use_struct_convention (gdbarch,
5744 mips_o32_use_struct_convention);
c2d11a7d 5745 break;
0dadbba0 5746 case MIPS_ABI_O64:
46cac009 5747 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5748 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5749 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5750 tdep->mips_default_saved_regsize = 8;
0dadbba0 5751 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5752 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5753 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5754 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5755 tdep->gdb_target_is_mips64 = 1;
361d1df0 5756 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5757 set_gdbarch_long_bit (gdbarch, 32);
5758 set_gdbarch_ptr_bit (gdbarch, 32);
5759 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5760 set_gdbarch_reg_struct_has_addr (gdbarch,
5761 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5762 set_gdbarch_use_struct_convention (gdbarch,
5763 mips_o32_use_struct_convention);
c2d11a7d 5764 break;
0dadbba0 5765 case MIPS_ABI_EABI32:
46e0f506 5766 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5767 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5768 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5769 tdep->mips_default_saved_regsize = 4;
0dadbba0 5770 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5771 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5772 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5773 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5774 tdep->gdb_target_is_mips64 = 0;
4014092b 5775 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5776 set_gdbarch_long_bit (gdbarch, 32);
5777 set_gdbarch_ptr_bit (gdbarch, 32);
5778 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5779 set_gdbarch_reg_struct_has_addr (gdbarch,
5780 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5781 set_gdbarch_use_struct_convention (gdbarch,
5782 mips_eabi_use_struct_convention);
c2d11a7d 5783 break;
0dadbba0 5784 case MIPS_ABI_EABI64:
46e0f506 5785 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5786 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5787 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5788 tdep->mips_default_saved_regsize = 8;
0dadbba0 5789 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5790 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5791 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5792 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5793 tdep->gdb_target_is_mips64 = 1;
4014092b 5794 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5795 set_gdbarch_long_bit (gdbarch, 64);
5796 set_gdbarch_ptr_bit (gdbarch, 64);
5797 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5798 set_gdbarch_reg_struct_has_addr (gdbarch,
5799 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5800 set_gdbarch_use_struct_convention (gdbarch,
5801 mips_eabi_use_struct_convention);
c2d11a7d 5802 break;
0dadbba0 5803 case MIPS_ABI_N32:
cb3d25d1 5804 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5805 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5806 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5807 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5808 tdep->mips_default_stack_argsize = 8;
5809 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5810 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5811 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5812 tdep->gdb_target_is_mips64 = 1;
4014092b 5813 tdep->default_mask_address_p = 0;
0dadbba0
AC
5814 set_gdbarch_long_bit (gdbarch, 32);
5815 set_gdbarch_ptr_bit (gdbarch, 32);
5816 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5817
5818 /* Set up the disassembler info, so that we get the right
28d169de
KB
5819 register names from libopcodes. */
5820 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5821 tm_print_insn_info.arch = bfd_arch_mips;
5822 if (info.bfd_arch_info != NULL
5823 && info.bfd_arch_info->arch == bfd_arch_mips
5824 && info.bfd_arch_info->mach)
5825 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5826 else
5827 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5828
5829 set_gdbarch_use_struct_convention (gdbarch,
5830 mips_n32n64_use_struct_convention);
8b389c40
MS
5831 set_gdbarch_reg_struct_has_addr (gdbarch,
5832 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5833 break;
5834 case MIPS_ABI_N64:
cb3d25d1 5835 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5836 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5837 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5838 tdep->mips_default_saved_regsize = 8;
5839 tdep->mips_default_stack_argsize = 8;
5840 tdep->mips_fp_register_double = 1;
5841 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5842 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5843 tdep->gdb_target_is_mips64 = 1;
5844 tdep->default_mask_address_p = 0;
5845 set_gdbarch_long_bit (gdbarch, 64);
5846 set_gdbarch_ptr_bit (gdbarch, 64);
5847 set_gdbarch_long_long_bit (gdbarch, 64);
5848
5849 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5850 register names from libopcodes. */
5851 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5852 tm_print_insn_info.arch = bfd_arch_mips;
5853 if (info.bfd_arch_info != NULL
5854 && info.bfd_arch_info->arch == bfd_arch_mips
5855 && info.bfd_arch_info->mach)
5856 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5857 else
5858 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5859
5860 set_gdbarch_use_struct_convention (gdbarch,
5861 mips_n32n64_use_struct_convention);
8b389c40
MS
5862 set_gdbarch_reg_struct_has_addr (gdbarch,
5863 mips_n32n64_reg_struct_has_addr);
0dadbba0 5864 break;
c2d11a7d 5865 default:
2e4ebe70
DJ
5866 internal_error (__FILE__, __LINE__,
5867 "unknown ABI in switch");
c2d11a7d
JM
5868 }
5869
a5ea2558
AC
5870 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5871 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5872 comment:
5873
5874 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5875 flag in object files because to do so would make it impossible to
102182a9 5876 link with libraries compiled without "-gp32". This is
a5ea2558 5877 unnecessarily restrictive.
361d1df0 5878
a5ea2558
AC
5879 We could solve this problem by adding "-gp32" multilibs to gcc,
5880 but to set this flag before gcc is built with such multilibs will
5881 break too many systems.''
5882
5883 But even more unhelpfully, the default linker output target for
5884 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5885 for 64-bit programs - you need to change the ABI to change this,
102182a9 5886 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5887 this flag to detect 32-bit mode would do the wrong thing given
5888 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5889 as 32-bit programs by default. */
a5ea2558 5890
c2d11a7d
JM
5891 /* enable/disable the MIPS FPU */
5892 if (!mips_fpu_type_auto)
5893 tdep->mips_fpu_type = mips_fpu_type;
5894 else if (info.bfd_arch_info != NULL
5895 && info.bfd_arch_info->arch == bfd_arch_mips)
5896 switch (info.bfd_arch_info->mach)
5897 {
b0069a17 5898 case bfd_mach_mips3900:
c2d11a7d 5899 case bfd_mach_mips4100:
ed9a39eb 5900 case bfd_mach_mips4111:
c2d11a7d
JM
5901 tdep->mips_fpu_type = MIPS_FPU_NONE;
5902 break;
bf64bfd6
AC
5903 case bfd_mach_mips4650:
5904 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5905 break;
c2d11a7d
JM
5906 default:
5907 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5908 break;
5909 }
5910 else
5911 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5912
5913 /* MIPS version of register names. NOTE: At present the MIPS
5914 register name management is part way between the old -
5915 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5916 Further work on it is required. */
18f81521
MS
5917 /* NOTE: many targets (esp. embedded) do not go thru the
5918 gdbarch_register_name vector at all, instead bypassing it
5919 by defining REGISTER_NAMES. */
c2d11a7d 5920 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5921 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
5922 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5923 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
bcb0cc15 5924 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d
JM
5925 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5926
102182a9
MS
5927 /* Add/remove bits from an address. The MIPS needs be careful to
5928 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5929 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5930
10312cc4
AC
5931 /* There's a mess in stack frame creation. See comments in
5932 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5933 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 5934 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5935
102182a9 5936 /* Map debug register numbers onto internal register numbers. */
88c72b7d
AC
5937 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5938 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5939
c2d11a7d
JM
5940 /* Initialize a frame */
5941 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
d28e01f4 5942 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
c2d11a7d
JM
5943
5944 /* MIPS version of CALL_DUMMY */
5945
5946 set_gdbarch_call_dummy_p (gdbarch, 1);
5947 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5948 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5949 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5950 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
f7ab6ec6
MS
5951 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5952 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
5953 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
c2d11a7d
JM
5954 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5955 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5956 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5957 set_gdbarch_call_dummy_length (gdbarch, 0);
f7ab6ec6 5958 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
c2d11a7d
JM
5959 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5960 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5961 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5962 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
bf1f5b4c 5963 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5964 set_gdbarch_register_convert_to_virtual (gdbarch,
5965 mips_register_convert_to_virtual);
5966 set_gdbarch_register_convert_to_raw (gdbarch,
5967 mips_register_convert_to_raw);
5968
b9a8e3bf 5969 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 5970
b5d1566e 5971 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
c4093a6a 5972 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
b5d1566e
MS
5973 set_gdbarch_frameless_function_invocation (gdbarch,
5974 generic_frameless_function_invocation_not);
5975 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5976 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
5977 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
5978 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5979 set_gdbarch_frame_args_skip (gdbarch, 0);
5980
47a8d4ba 5981 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5982
f7b9e9fc
AC
5983 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5984 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5985 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5986
5987 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5988 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5989
fc0c74b1
AC
5990 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5991 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5992 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5993
102182a9
MS
5994 set_gdbarch_function_start_offset (gdbarch, 0);
5995
32a6503c
KB
5996 /* There are MIPS targets which do not yet use this since they still
5997 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 5998 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 5999 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 6000
bf1f5b4c 6001 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 6002 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6003
70f80edf
JT
6004 /* Hook in OS ABI-specific overrides, if they have been registered. */
6005 gdbarch_init_osabi (info, gdbarch, osabi);
6006
2f1488ce
MS
6007 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6008 set_gdbarch_extract_struct_value_address (gdbarch,
6009 mips_extract_struct_value_address);
757a7cc6
MS
6010
6011 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6012
6013 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6014 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6015
4b9b3959
AC
6016 return gdbarch;
6017}
6018
2e4ebe70
DJ
6019static void
6020mips_abi_update (char *ignore_args, int from_tty,
6021 struct cmd_list_element *c)
6022{
6023 struct gdbarch_info info;
6024
6025 /* Force the architecture to update, and (if it's a MIPS architecture)
6026 mips_gdbarch_init will take care of the rest. */
6027 gdbarch_info_init (&info);
6028 gdbarch_update_p (info);
6029}
6030
4b9b3959
AC
6031static void
6032mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6033{
6034 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6035 if (tdep != NULL)
c2d11a7d 6036 {
acdb74a0
AC
6037 int ef_mips_arch;
6038 int ef_mips_32bitmode;
6039 /* determine the ISA */
6040 switch (tdep->elf_flags & EF_MIPS_ARCH)
6041 {
6042 case E_MIPS_ARCH_1:
6043 ef_mips_arch = 1;
6044 break;
6045 case E_MIPS_ARCH_2:
6046 ef_mips_arch = 2;
6047 break;
6048 case E_MIPS_ARCH_3:
6049 ef_mips_arch = 3;
6050 break;
6051 case E_MIPS_ARCH_4:
93d56215 6052 ef_mips_arch = 4;
acdb74a0
AC
6053 break;
6054 default:
93d56215 6055 ef_mips_arch = 0;
acdb74a0
AC
6056 break;
6057 }
6058 /* determine the size of a pointer */
6059 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6060 fprintf_unfiltered (file,
6061 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6062 tdep->elf_flags);
4b9b3959 6063 fprintf_unfiltered (file,
acdb74a0
AC
6064 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6065 ef_mips_32bitmode);
6066 fprintf_unfiltered (file,
6067 "mips_dump_tdep: ef_mips_arch = %d\n",
6068 ef_mips_arch);
6069 fprintf_unfiltered (file,
6070 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6071 tdep->mips_abi,
2e4ebe70 6072 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6073 fprintf_unfiltered (file,
6074 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6075 mips_mask_address_p (),
6076 tdep->default_mask_address_p);
c2d11a7d 6077 }
4b9b3959
AC
6078 fprintf_unfiltered (file,
6079 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6080 FP_REGISTER_DOUBLE);
6081 fprintf_unfiltered (file,
6082 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6083 MIPS_DEFAULT_FPU_TYPE,
6084 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6085 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6086 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6087 : "???"));
6088 fprintf_unfiltered (file,
6089 "mips_dump_tdep: MIPS_EABI = %d\n",
6090 MIPS_EABI);
6091 fprintf_unfiltered (file,
acdb74a0
AC
6092 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6093 MIPS_LAST_FP_ARG_REGNUM,
6094 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6095 fprintf_unfiltered (file,
6096 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6097 MIPS_FPU_TYPE,
6098 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6099 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6100 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6101 : "???"));
6102 fprintf_unfiltered (file,
6103 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6104 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6107 FP_REGISTER_DOUBLE);
4b9b3959
AC
6108 fprintf_unfiltered (file,
6109 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6110 MIPS_DEFAULT_STACK_ARGSIZE);
6111 fprintf_unfiltered (file,
6112 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6113 MIPS_STACK_ARGSIZE);
6114 fprintf_unfiltered (file,
6115 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6116 MIPS_REGSIZE);
2475bac3
AC
6117 fprintf_unfiltered (file,
6118 "mips_dump_tdep: A0_REGNUM = %d\n",
6119 A0_REGNUM);
6120 fprintf_unfiltered (file,
6121 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6122 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6125 XSTRING (ATTACH_DETACH));
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6128 BADVADDR_REGNUM);
6129 fprintf_unfiltered (file,
6130 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6133 CAUSE_REGNUM);
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: CPLUS_MARKER = %c\n",
6136 CPLUS_MARKER);
2475bac3
AC
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
6139 XSTRING (DO_REGISTERS_INFO));
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6142 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6145 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6146 fprintf_unfiltered (file,
6147 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6148 FCRCS_REGNUM);
6149 fprintf_unfiltered (file,
6150 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6151 FCRIR_REGNUM);
6152 fprintf_unfiltered (file,
6153 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6154 FIRST_EMBED_REGNUM);
6155 fprintf_unfiltered (file,
6156 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6157 FPA0_REGNUM);
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6160 GDB_TARGET_IS_MIPS64);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6163 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6166 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6169 GEN_REG_SAVE_MASK);
6170 fprintf_unfiltered (file,
6171 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6172 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6173 fprintf_unfiltered (file,
6174 "mips_dump_tdep: HI_REGNUM = %d\n",
6175 HI_REGNUM);
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6182 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6185 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6188 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6193 LAST_EMBED_REGNUM);
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: LO_REGNUM = %d\n",
6198 LO_REGNUM);
6199#ifdef MACHINE_CPROC_FP_OFFSET
6200 fprintf_unfiltered (file,
6201 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6202 MACHINE_CPROC_FP_OFFSET);
6203#endif
6204#ifdef MACHINE_CPROC_PC_OFFSET
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6207 MACHINE_CPROC_PC_OFFSET);
6208#endif
6209#ifdef MACHINE_CPROC_SP_OFFSET
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6212 MACHINE_CPROC_SP_OFFSET);
6213#endif
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6220 MIPS16_INSTLEN);
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6229 MIPS_INSTLEN);
6230 fprintf_unfiltered (file,
acdb74a0
AC
6231 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6232 MIPS_LAST_ARG_REGNUM,
6233 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6236 MIPS_NUMREGS);
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6241 MIPS_SAVED_REGSIZE);
2475bac3
AC
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: OP_LDFPR = used?\n");
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: OP_LDGPR = used?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: PRID_REGNUM = %d\n",
6252 PRID_REGNUM);
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6255 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_PC_REG = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: PS_REGNUM = %d\n",
6282 PS_REGNUM);
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6285 PUSH_FP_REGNUM);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: RA_REGNUM = %d\n",
6288 RA_REGNUM);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6291 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6294 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: ROUND_DOWN = function?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: ROUND_UP = function?\n");
6301#ifdef SAVED_BYTES
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: SAVED_BYTES = %d\n",
6304 SAVED_BYTES);
6305#endif
6306#ifdef SAVED_FP
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: SAVED_FP = %d\n",
6309 SAVED_FP);
6310#endif
6311#ifdef SAVED_PC
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: SAVED_PC = %d\n",
6314 SAVED_PC);
6315#endif
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6318 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6323 SIGFRAME_BASE);
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6326 SIGFRAME_FPREGSAVE_OFF);
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6329 SIGFRAME_PC_OFF);
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6332 SIGFRAME_REGSAVE_OFF);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6335 SIGFRAME_REG_SIZE);
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6338 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6341 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6342 fprintf_unfiltered (file,
b0ed3589
AC
6343 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6344 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6347 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6348#ifdef STACK_END_ADDR
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6351 STACK_END_ADDR);
6352#endif
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6355 XSTRING (STEP_SKIPS_DELAY (PC)));
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6358 STEP_SKIPS_DELAY_P);
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6361 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: T9_REGNUM = %d\n",
6364 T9_REGNUM);
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6369 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6372 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: TARGET_MIPS = used?\n");
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6377 XSTRING (TM_PRINT_INSN_MACH));
6378#ifdef TRACE_CLEAR
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6381 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6382#endif
6383#ifdef TRACE_FLAVOR
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6386 TRACE_FLAVOR);
6387#endif
6388#ifdef TRACE_FLAVOR_SIZE
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6391 TRACE_FLAVOR_SIZE);
6392#endif
6393#ifdef TRACE_SET
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: TRACE_SET # %s\n",
6396 XSTRING (TRACE_SET (X,STATE)));
6397#endif
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6400#ifdef UNUSED_REGNUM
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6403 UNUSED_REGNUM);
6404#endif
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: V0_REGNUM = %d\n",
6407 V0_REGNUM);
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6410 (long) VM_MIN_ADDRESS);
6411#ifdef VX_NUM_REGS
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6414 VX_NUM_REGS);
6415#endif
6416 fprintf_unfiltered (file,
6417 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6418 ZERO_REGNUM);
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6421 _PROC_MAGIC_);
70f80edf
JT
6422
6423 fprintf_unfiltered (file,
6424 "mips_dump_tdep: OS ABI = %s\n",
6425 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
6426}
6427
c906108c 6428void
acdb74a0 6429_initialize_mips_tdep (void)
c906108c
SS
6430{
6431 static struct cmd_list_element *mipsfpulist = NULL;
6432 struct cmd_list_element *c;
6433
2e4ebe70
DJ
6434 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6435 if (MIPS_ABI_LAST + 1
6436 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6437 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6438
4b9b3959 6439 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6440 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6441 tm_print_insn = gdb_print_insn_mips;
6442
a5ea2558
AC
6443 /* Add root prefix command for all "set mips"/"show mips" commands */
6444 add_prefix_cmd ("mips", no_class, set_mips_command,
6445 "Various MIPS specific commands.",
6446 &setmipscmdlist, "set mips ", 0, &setlist);
6447
6448 add_prefix_cmd ("mips", no_class, show_mips_command,
6449 "Various MIPS specific commands.",
6450 &showmipscmdlist, "show mips ", 0, &showlist);
6451
6452 /* Allow the user to override the saved register size. */
6453 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6454 class_obscure,
6455 size_enums,
6456 &mips_saved_regsize_string, "\
a5ea2558
AC
6457Set size of general purpose registers saved on the stack.\n\
6458This option can be set to one of:\n\
6459 32 - Force GDB to treat saved GP registers as 32-bit\n\
6460 64 - Force GDB to treat saved GP registers as 64-bit\n\
6461 auto - Allow GDB to use the target's default setting or autodetect the\n\
6462 saved GP register size from information contained in the executable.\n\
6463 (default: auto)",
1ed2a135 6464 &setmipscmdlist),
a5ea2558
AC
6465 &showmipscmdlist);
6466
d929b26f
AC
6467 /* Allow the user to override the argument stack size. */
6468 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6469 class_obscure,
6470 size_enums,
1ed2a135 6471 &mips_stack_argsize_string, "\
d929b26f
AC
6472Set the amount of stack space reserved for each argument.\n\
6473This option can be set to one of:\n\
6474 32 - Force GDB to allocate 32-bit chunks per argument\n\
6475 64 - Force GDB to allocate 64-bit chunks per argument\n\
6476 auto - Allow GDB to determine the correct setting from the current\n\
6477 target and executable (default)",
6478 &setmipscmdlist),
6479 &showmipscmdlist);
6480
2e4ebe70
DJ
6481 /* Allow the user to override the ABI. */
6482 c = add_set_enum_cmd
6483 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6484 "Set the ABI used by this program.\n"
6485 "This option can be set to one of:\n"
6486 " auto - the default ABI associated with the current binary\n"
6487 " o32\n"
6488 " o64\n"
6489 " n32\n"
f3a7b3a5 6490 " n64\n"
2e4ebe70
DJ
6491 " eabi32\n"
6492 " eabi64",
6493 &setmipscmdlist);
6494 add_show_from_set (c, &showmipscmdlist);
6495 set_cmd_sfunc (c, mips_abi_update);
6496
c906108c
SS
6497 /* Let the user turn off floating point and set the fence post for
6498 heuristic_proc_start. */
6499
6500 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6501 "Set use of MIPS floating-point coprocessor.",
6502 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6503 add_cmd ("single", class_support, set_mipsfpu_single_command,
6504 "Select single-precision MIPS floating-point coprocessor.",
6505 &mipsfpulist);
6506 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6507 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6508 &mipsfpulist);
6509 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6510 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6511 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6512 add_cmd ("none", class_support, set_mipsfpu_none_command,
6513 "Select no MIPS floating-point coprocessor.",
6514 &mipsfpulist);
6515 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6516 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6517 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6518 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6519 "Select MIPS floating-point coprocessor automatically.",
6520 &mipsfpulist);
6521 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6522 "Show current use of MIPS floating-point coprocessor target.",
6523 &showlist);
6524
c906108c
SS
6525 /* We really would like to have both "0" and "unlimited" work, but
6526 command.c doesn't deal with that. So make it a var_zinteger
6527 because the user can always use "999999" or some such for unlimited. */
6528 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6529 (char *) &heuristic_fence_post,
6530 "\
6531Set the distance searched for the start of a function.\n\
6532If you are debugging a stripped executable, GDB needs to search through the\n\
6533program for the start of a function. This command sets the distance of the\n\
6534search. The only need to set it is when debugging a stripped executable.",
6535 &setlist);
6536 /* We need to throw away the frame cache when we set this, since it
6537 might change our ability to get backtraces. */
9f60d481 6538 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6539 add_show_from_set (c, &showlist);
6540
6541 /* Allow the user to control whether the upper bits of 64-bit
6542 addresses should be zeroed. */
e9e68a56
AC
6543 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6544Set zeroing of upper 32 bits of 64-bit addresses.\n\
6545Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6546allow GDB to determine the correct value.\n", "\
6547Show zeroing of upper 32 bits of 64-bit addresses.",
6548 NULL, show_mask_address,
6549 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6550
6551 /* Allow the user to control the size of 32 bit registers within the
6552 raw remote packet. */
6553 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6554 class_obscure,
6555 var_boolean,
6556 (char *)&mips64_transfers_32bit_regs_p, "\
6557Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6558Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6559that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
656064 bits for others. Use \"off\" to disable compatibility mode",
6561 &setlist),
6562 &showlist);
9ace0497
AC
6563
6564 /* Debug this files internals. */
6565 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6566 &mips_debug, "Set mips debugging.\n\
6567When non-zero, mips specific debugging is enabled.", &setdebuglist),
6568 &showdebuglist);
c906108c 6569}
This page took 0.602463 seconds and 4 git commands to generate.