* tui-hooks.c (tui_event_loop): New function.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
2e4ebe70 64 MIPS_ABI_UNKNOWN = 0,
0dadbba0
AC
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
28d169de 67 MIPS_ABI_N64,
0dadbba0
AC
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
2e4ebe70
DJ
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
0dadbba0
AC
72 };
73
2e4ebe70
DJ
74static const char *mips_abi_string;
75
76static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
28d169de 80 "n64",
2e4ebe70
DJ
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85};
86
cce74817 87struct frame_extra_info
c5aa993b
JM
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
cce74817 92
d929b26f
AC
93/* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
53904c9e
AC
97static const char size_auto[] = "auto";
98static const char size_32[] = "32";
99static const char size_64[] = "64";
d929b26f 100
53904c9e 101static const char *size_enums[] = {
d929b26f
AC
102 size_auto,
103 size_32,
104 size_64,
a5ea2558
AC
105 0
106};
107
7a292a7a
SS
108/* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
c906108c
SS
111
112enum mips_fpu_type
c5aa993b
JM
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
c906108c
SS
118
119#ifndef MIPS_DEFAULT_FPU_TYPE
120#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121#endif
122static int mips_fpu_type_auto = 1;
123static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 124
9ace0497 125static int mips_debug = 0;
7a292a7a 126
c2d11a7d
JM
127/* MIPS specific per-architecture information */
128struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
70f80edf 132
c2d11a7d 133 /* mips options */
0dadbba0 134 enum mips_abi mips_abi;
2e4ebe70 135 enum mips_abi found_abi;
c2d11a7d
JM
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
a5ea2558 139 int mips_default_saved_regsize;
c2d11a7d 140 int mips_fp_register_double;
d929b26f 141 int mips_default_stack_argsize;
5213ab06 142 int gdb_target_is_mips64;
4014092b 143 int default_mask_address_p;
70f80edf
JT
144
145 enum gdb_osabi osabi;
c2d11a7d
JM
146 };
147
0dadbba0 148#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 150
c2d11a7d 151#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 152
c2d11a7d 153#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 154
c2d11a7d 155#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 156
d929b26f
AC
157/* Return the currently configured (or set) saved register size. */
158
a5ea2558 159#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
71b8ef93 176/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
177 marks it as 16-bit function. The MSB of the minimal symbol's
178 "info" field is used for this purpose. This field is already
179 being used to store the symbol size, so the assumption is
180 that the symbol size cannot exceed 2^31.
181
182 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
183 i.e. refers to a 16-bit function, and sets a "special" bit in a
184 minimal symbol to mark it as a 16-bit function
185
186 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
187 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
188 the "info" field with the "special" bit masked out */
189
5a89d8aa
MS
190static void
191mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
192{
193 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
194 {
195 MSYMBOL_INFO (msym) = (char *)
196 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
197 SYMBOL_VALUE_ADDRESS (msym) |= 1;
198 }
199}
200
71b8ef93
MS
201static int
202msymbol_is_special (struct minimal_symbol *msym)
203{
204 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
205}
206
207static long
208msymbol_size (struct minimal_symbol *msym)
209{
210 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
211}
212
88658117
AC
213/* XFER a value from the big/little/left end of the register.
214 Depending on the size of the value it might occupy the entire
215 register or just part of it. Make an allowance for this, aligning
216 things accordingly. */
217
218static void
219mips_xfer_register (struct regcache *regcache, int reg_num, int length,
220 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
221 int buf_offset)
222{
223 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
224 int reg_offset = 0;
cb1d2653
AC
225 /* Need to transfer the left or right part of the register, based on
226 the targets byte order. */
88658117
AC
227 switch (endian)
228 {
229 case BFD_ENDIAN_BIG:
230 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
231 break;
232 case BFD_ENDIAN_LITTLE:
233 reg_offset = 0;
234 break;
235 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
236 reg_offset = 0;
237 break;
238 default:
239 internal_error (__FILE__, __LINE__, "bad switch");
240 }
241 if (mips_debug)
cb1d2653
AC
242 fprintf_unfiltered (gdb_stderr,
243 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
244 reg_num, reg_offset, buf_offset, length);
88658117
AC
245 if (mips_debug && out != NULL)
246 {
247 int i;
cb1d2653 248 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 249 for (i = 0; i < length; i++)
cb1d2653 250 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
251 }
252 if (in != NULL)
253 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
254 if (out != NULL)
255 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
256 if (mips_debug && in != NULL)
257 {
258 int i;
cb1d2653 259 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 260 for (i = 0; i < length; i++)
cb1d2653 261 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
262 }
263 if (mips_debug)
264 fprintf_unfiltered (gdb_stdlog, "\n");
265}
266
dd824b04
DJ
267/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
268 compatiblity mode. A return value of 1 means that we have
269 physical 64-bit registers, but should treat them as 32-bit registers. */
270
271static int
272mips2_fp_compat (void)
273{
274 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
275 meaningful. */
276 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
277 return 0;
278
279#if 0
280 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
281 in all the places we deal with FP registers. PR gdb/413. */
282 /* Otherwise check the FR bit in the status register - it controls
283 the FP compatiblity mode. If it is clear we are in compatibility
284 mode. */
285 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
286 return 1;
287#endif
361d1df0 288
dd824b04
DJ
289 return 0;
290}
291
c2d11a7d
JM
292/* Indicate that the ABI makes use of double-precision registers
293 provided by the FPU (rather than combining pairs of registers to
294 form double-precision values). Do not use "TARGET_IS_MIPS64" to
295 determine if the ABI is using double-precision registers. See also
296 MIPS_FPU_TYPE. */
c2d11a7d 297#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 298
d929b26f
AC
299/* The amount of space reserved on the stack for registers. This is
300 different to MIPS_SAVED_REGSIZE as it determines the alignment of
301 data allocated after the registers have run out. */
302
0dadbba0 303#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
304
305#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
306
53904c9e 307static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
308
309static unsigned int
310mips_stack_argsize (void)
311{
312 if (mips_stack_argsize_string == size_auto)
313 return MIPS_DEFAULT_STACK_ARGSIZE;
314 else if (mips_stack_argsize_string == size_64)
315 return 8;
316 else /* if (mips_stack_argsize_string == size_32) */
317 return 4;
318}
319
5213ab06 320#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 321
92e1c15c 322#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 323
7a292a7a 324#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 325
a14ed312 326int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 327
a14ed312 328static void mips_print_register (int, int);
c906108c
SS
329
330static mips_extra_func_info_t
479412cd 331heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 332
a14ed312 333static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 334
a14ed312 335static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 336
5a89d8aa 337static int mips_set_processor_type (char *);
c906108c 338
a14ed312 339static void mips_show_processor_type_command (char *, int);
c906108c 340
a14ed312 341static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
342
343static mips_extra_func_info_t
479412cd 344find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 345
a14ed312
KB
346static CORE_ADDR after_prologue (CORE_ADDR pc,
347 mips_extra_func_info_t proc_desc);
c906108c 348
dd824b04
DJ
349static void mips_read_fp_register_single (int regno, char *rare_buffer);
350static void mips_read_fp_register_double (int regno, char *rare_buffer);
351
67b2c998
DJ
352static struct type *mips_float_register_type (void);
353static struct type *mips_double_register_type (void);
354
c906108c
SS
355/* This value is the model of MIPS in use. It is derived from the value
356 of the PrID register. */
357
358char *mips_processor_type;
359
360char *tmp_mips_processor_type;
361
acdb74a0
AC
362/* The list of available "set mips " and "show mips " commands */
363
364static struct cmd_list_element *setmipscmdlist = NULL;
365static struct cmd_list_element *showmipscmdlist = NULL;
366
c906108c
SS
367/* A set of original names, to be used when restoring back to generic
368 registers from a specific set. */
369
cce74817
JM
370char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
371char **mips_processor_reg_names = mips_generic_reg_names;
372
5a89d8aa 373static const char *
fba45db2 374mips_register_name (int i)
cce74817
JM
375{
376 return mips_processor_reg_names[i];
377}
9846de1b 378/* *INDENT-OFF* */
c906108c
SS
379/* Names of IDT R3041 registers. */
380
381char *mips_r3041_reg_names[] = {
382 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
383 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
384 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
385 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
386 "sr", "lo", "hi", "bad", "cause","pc",
387 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
388 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
389 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
390 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
391 "fsr", "fir", "fp", "",
392 "", "", "bus", "ccfg", "", "", "", "",
393 "", "", "port", "cmp", "", "", "epc", "prid",
394};
395
396/* Names of IDT R3051 registers. */
397
398char *mips_r3051_reg_names[] = {
399 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
400 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
401 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
402 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
403 "sr", "lo", "hi", "bad", "cause","pc",
404 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
405 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
406 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
407 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
408 "fsr", "fir", "fp", "",
409 "inx", "rand", "elo", "", "ctxt", "", "", "",
410 "", "", "ehi", "", "", "", "epc", "prid",
411};
412
413/* Names of IDT R3081 registers. */
414
415char *mips_r3081_reg_names[] = {
416 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
417 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
418 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
419 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
420 "sr", "lo", "hi", "bad", "cause","pc",
421 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
422 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
423 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
424 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
425 "fsr", "fir", "fp", "",
426 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
427 "", "", "ehi", "", "", "", "epc", "prid",
428};
429
430/* Names of LSI 33k registers. */
431
432char *mips_lsi33k_reg_names[] = {
433 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
434 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
435 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
436 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
437 "epc", "hi", "lo", "sr", "cause","badvaddr",
438 "dcic", "bpc", "bda", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 "", "", "", "", "", "", "", "",
442 "", "", "", "",
443 "", "", "", "", "", "", "", "",
444 "", "", "", "", "", "", "", "",
445};
446
447struct {
448 char *name;
449 char **regnames;
450} mips_processor_type_table[] = {
451 { "generic", mips_generic_reg_names },
452 { "r3041", mips_r3041_reg_names },
453 { "r3051", mips_r3051_reg_names },
454 { "r3071", mips_r3081_reg_names },
455 { "r3081", mips_r3081_reg_names },
456 { "lsi33k", mips_lsi33k_reg_names },
457 { NULL, NULL }
458};
9846de1b 459/* *INDENT-ON* */
c906108c 460
c5aa993b
JM
461
462
463
c906108c 464/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
465static int mips16_to_32_reg[8] =
466{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
467
468/* Heuristic_proc_start may hunt through the text section for a long
469 time across a 2400 baud serial line. Allows the user to limit this
470 search. */
471
472static unsigned int heuristic_fence_post = 0;
473
c5aa993b
JM
474#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
475#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
476#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
477#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
478#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
479#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
480#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
481#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
482#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
483#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
484/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
485 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
486#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
487#define _PROC_MAGIC_ 0x0F0F0F0F
488#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
489#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
490
491struct linked_proc_info
c5aa993b
JM
492 {
493 struct mips_extra_func_info info;
494 struct linked_proc_info *next;
495 }
496 *linked_proc_desc_table = NULL;
c906108c 497
cce74817 498void
acdb74a0 499mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
500{
501 if (fi
502 && fi->extra_info
503 && fi->extra_info->proc_desc
504 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 505 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 506 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 507 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 508}
c906108c 509
46cd78fb
AC
510/* Number of bytes of storage in the actual machine representation for
511 register N. NOTE: This indirectly defines the register size
512 transfered by the GDB protocol. */
43e526b9
JM
513
514static int mips64_transfers_32bit_regs_p = 0;
515
f7ab6ec6 516static int
acdb74a0 517mips_register_raw_size (int reg_nr)
43e526b9
JM
518{
519 if (mips64_transfers_32bit_regs_p)
520 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
521 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
522 && FP_REGISTER_DOUBLE)
523 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
524 registers. */
525 return 8;
43e526b9
JM
526 else
527 return MIPS_REGSIZE;
528}
529
46cd78fb
AC
530/* Convert between RAW and VIRTUAL registers. The RAW register size
531 defines the remote-gdb packet. */
532
d05285fa 533static int
acdb74a0 534mips_register_convertible (int reg_nr)
43e526b9
JM
535{
536 if (mips64_transfers_32bit_regs_p)
537 return 0;
538 else
539 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
540}
541
d05285fa 542static void
acdb74a0
AC
543mips_register_convert_to_virtual (int n, struct type *virtual_type,
544 char *raw_buf, char *virt_buf)
43e526b9 545{
d7449b42 546 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
547 memcpy (virt_buf,
548 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
549 TYPE_LENGTH (virtual_type));
550 else
551 memcpy (virt_buf,
552 raw_buf,
553 TYPE_LENGTH (virtual_type));
554}
555
d05285fa 556static void
acdb74a0
AC
557mips_register_convert_to_raw (struct type *virtual_type, int n,
558 char *virt_buf, char *raw_buf)
43e526b9
JM
559{
560 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 561 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
562 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
563 virt_buf,
564 TYPE_LENGTH (virtual_type));
565 else
566 memcpy (raw_buf,
567 virt_buf,
568 TYPE_LENGTH (virtual_type));
569}
570
102182a9
MS
571void
572mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
573{
574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
575 && REGISTER_RAW_SIZE (regnum) == 4
576 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
577 && TYPE_CODE(type) == TYPE_CODE_FLT
578 && TYPE_LENGTH(type) == 8)
579 {
580 char temp[4];
581 memcpy (temp, ((char *)(buffer))+4, 4);
582 memcpy (((char *)(buffer))+4, (buffer), 4);
583 memcpy (((char *)(buffer)), temp, 4);
584 }
585}
586
587void
588mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
589{
590if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
591 && REGISTER_RAW_SIZE (regnum) == 4
592 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
593 && TYPE_CODE(type) == TYPE_CODE_FLT
594 && TYPE_LENGTH(type) == 8)
595 {
596 char temp[4];
597 memcpy (temp, ((char *)(buffer))+4, 4);
598 memcpy (((char *)(buffer))+4, (buffer), 4);
599 memcpy (((char *)(buffer)), temp, 4);
600 }
601}
602
78fde5f8
KB
603/* Return the GDB type object for the "standard" data type
604 of data in register REG.
605
606 Note: kevinb/2002-08-01: The definition below should faithfully
607 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
608 definitions found in config/mips/tm-*.h. I'm concerned about
609 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
610 though. In some cases FP_REGNUM is in this range, and I doubt
611 that this code is correct for the 64-bit case. */
612
613static struct type *
614mips_register_virtual_type (int reg)
615{
616 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
617 {
618 /* Floating point registers... */
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
620 return builtin_type_ieee_double_big;
621 else
622 return builtin_type_ieee_double_little;
623 }
78fde5f8
KB
624 else if (reg == PS_REGNUM /* CR */)
625 return builtin_type_uint32;
626 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
627 return builtin_type_uint32;
628 else
629 {
a6425924
KB
630 /* Everything else...
631 Return type appropriate for width of register. */
632 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
633 return builtin_type_uint64;
78fde5f8 634 else
a6425924 635 return builtin_type_uint32;
78fde5f8
KB
636 }
637}
638
bcb0cc15
MS
639/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
640
641static CORE_ADDR
642mips_read_sp (void)
643{
644 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
645}
646
c906108c 647/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 648enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
649
650static int
651mips_mask_address_p (void)
652{
653 switch (mask_address_var)
654 {
7f19b9a2 655 case AUTO_BOOLEAN_TRUE:
4014092b 656 return 1;
7f19b9a2 657 case AUTO_BOOLEAN_FALSE:
4014092b
AC
658 return 0;
659 break;
7f19b9a2 660 case AUTO_BOOLEAN_AUTO:
92e1c15c 661 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 662 default:
8e65ff28
AC
663 internal_error (__FILE__, __LINE__,
664 "mips_mask_address_p: bad switch");
4014092b 665 return -1;
361d1df0 666 }
4014092b
AC
667}
668
669static void
e9e68a56 670show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
671{
672 switch (mask_address_var)
673 {
7f19b9a2 674 case AUTO_BOOLEAN_TRUE:
4014092b
AC
675 printf_filtered ("The 32 bit mips address mask is enabled\n");
676 break;
7f19b9a2 677 case AUTO_BOOLEAN_FALSE:
4014092b
AC
678 printf_filtered ("The 32 bit mips address mask is disabled\n");
679 break;
7f19b9a2 680 case AUTO_BOOLEAN_AUTO:
4014092b
AC
681 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
682 mips_mask_address_p () ? "enabled" : "disabled");
683 break;
684 default:
8e65ff28
AC
685 internal_error (__FILE__, __LINE__,
686 "show_mask_address: bad switch");
4014092b 687 break;
361d1df0 688 }
4014092b 689}
c906108c
SS
690
691/* Should call_function allocate stack space for a struct return? */
cb811fe7 692
f7ab6ec6 693static int
cb811fe7 694mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 695{
cb811fe7
MS
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
697}
698
f7ab6ec6 699static int
cb811fe7
MS
700mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
701{
b78bcb18 702 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
703}
704
f7ab6ec6 705static int
cb811fe7
MS
706mips_o32_use_struct_convention (int gcc_p, struct type *type)
707{
708 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
709}
710
8b389c40
MS
711/* Should call_function pass struct by reference?
712 For each architecture, structs are passed either by
713 value or by reference, depending on their size. */
714
715static int
716mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
717{
718 enum type_code typecode = TYPE_CODE (check_typedef (type));
719 int len = TYPE_LENGTH (check_typedef (type));
720
721 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
722 return (len > MIPS_SAVED_REGSIZE);
723
724 return 0;
725}
726
727static int
728mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
729{
730 return 0; /* Assumption: N32/N64 never passes struct by ref. */
731}
732
f7ab6ec6 733static int
8b389c40
MS
734mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
735{
736 return 0; /* Assumption: O32/O64 never passes struct by ref. */
737}
738
c906108c
SS
739/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
740
741static int
742pc_is_mips16 (bfd_vma memaddr)
743{
744 struct minimal_symbol *sym;
745
746 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
747 if (IS_MIPS16_ADDR (memaddr))
748 return 1;
749
750 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
751 the high bit of the info field. Use this to decide if the function is
752 MIPS16 or normal MIPS. */
753 sym = lookup_minimal_symbol_by_pc (memaddr);
754 if (sym)
71b8ef93 755 return msymbol_is_special (sym);
c906108c
SS
756 else
757 return 0;
758}
759
6c997a34
AC
760/* MIPS believes that the PC has a sign extended value. Perhaphs the
761 all registers should be sign extended for simplicity? */
762
763static CORE_ADDR
39f77062 764mips_read_pc (ptid_t ptid)
6c997a34 765{
39f77062 766 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 767}
c906108c
SS
768
769/* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
771
772static CORE_ADDR
acdb74a0
AC
773after_prologue (CORE_ADDR pc,
774 mips_extra_func_info_t proc_desc)
c906108c
SS
775{
776 struct symtab_and_line sal;
777 CORE_ADDR func_addr, func_end;
778
479412cd
DJ
779 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
780 to read the stack pointer from the current machine state, because
781 the current machine state has nothing to do with the information
782 we need from the proc_desc; and the process may or may not exist
783 right now. */
c906108c 784 if (!proc_desc)
479412cd 785 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
786
787 if (proc_desc)
788 {
789 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 790 strongly suspect that frameless always means prologueless... */
c906108c
SS
791 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
792 && PROC_FRAME_OFFSET (proc_desc) == 0)
793 return 0;
794 }
795
796 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
797 return 0; /* Unknown */
798
799 sal = find_pc_line (func_addr, 0);
800
801 if (sal.end < func_end)
802 return sal.end;
803
804 /* The line after the prologue is after the end of the function. In this
805 case, tell the caller to find the prologue the hard way. */
806
807 return 0;
808}
809
810/* Decode a MIPS32 instruction that saves a register in the stack, and
811 set the appropriate bit in the general register mask or float register mask
812 to indicate which register is saved. This is a helper function
813 for mips_find_saved_regs. */
814
815static void
acdb74a0
AC
816mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
817 unsigned long *float_mask)
c906108c
SS
818{
819 int reg;
820
821 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
822 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
823 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
824 {
825 /* It might be possible to use the instruction to
c5aa993b
JM
826 find the offset, rather than the code below which
827 is based on things being in a certain order in the
828 frame, but figuring out what the instruction's offset
829 is relative to might be a little tricky. */
c906108c
SS
830 reg = (inst & 0x001f0000) >> 16;
831 *gen_mask |= (1 << reg);
832 }
833 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
834 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
835 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
836
837 {
838 reg = ((inst & 0x001f0000) >> 16);
839 *float_mask |= (1 << reg);
840 }
841}
842
843/* Decode a MIPS16 instruction that saves a register in the stack, and
844 set the appropriate bit in the general register or float register mask
845 to indicate which register is saved. This is a helper function
846 for mips_find_saved_regs. */
847
848static void
acdb74a0 849mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 850{
c5aa993b 851 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
852 {
853 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
854 *gen_mask |= (1 << reg);
855 }
c5aa993b 856 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
857 {
858 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
859 *gen_mask |= (1 << reg);
860 }
c5aa993b 861 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
862 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
863 *gen_mask |= (1 << RA_REGNUM);
864}
865
866
867/* Fetch and return instruction from the specified location. If the PC
868 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
869
870static t_inst
acdb74a0 871mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
872{
873 char buf[MIPS_INSTLEN];
874 int instlen;
875 int status;
876
877 if (pc_is_mips16 (addr))
878 {
879 instlen = MIPS16_INSTLEN;
880 addr = UNMAKE_MIPS16_ADDR (addr);
881 }
882 else
c5aa993b 883 instlen = MIPS_INSTLEN;
c906108c
SS
884 status = read_memory_nobpt (addr, buf, instlen);
885 if (status)
886 memory_error (status, addr);
887 return extract_unsigned_integer (buf, instlen);
888}
889
890
891/* These the fields of 32 bit mips instructions */
e135b889
DJ
892#define mips32_op(x) (x >> 26)
893#define itype_op(x) (x >> 26)
894#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 895#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 896#define itype_immediate(x) (x & 0xffff)
c906108c 897
e135b889
DJ
898#define jtype_op(x) (x >> 26)
899#define jtype_target(x) (x & 0x03ffffff)
c906108c 900
e135b889
DJ
901#define rtype_op(x) (x >> 26)
902#define rtype_rs(x) ((x >> 21) & 0x1f)
903#define rtype_rt(x) ((x >> 16) & 0x1f)
904#define rtype_rd(x) ((x >> 11) & 0x1f)
905#define rtype_shamt(x) ((x >> 6) & 0x1f)
906#define rtype_funct(x) (x & 0x3f)
c906108c
SS
907
908static CORE_ADDR
c5aa993b
JM
909mips32_relative_offset (unsigned long inst)
910{
911 long x;
912 x = itype_immediate (inst);
913 if (x & 0x8000) /* sign bit set */
c906108c 914 {
c5aa993b 915 x |= 0xffff0000; /* sign extension */
c906108c 916 }
c5aa993b
JM
917 x = x << 2;
918 return x;
c906108c
SS
919}
920
921/* Determine whate to set a single step breakpoint while considering
922 branch prediction */
5a89d8aa 923static CORE_ADDR
c5aa993b
JM
924mips32_next_pc (CORE_ADDR pc)
925{
926 unsigned long inst;
927 int op;
928 inst = mips_fetch_instruction (pc);
e135b889 929 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 930 {
e135b889
DJ
931 if (itype_op (inst) >> 2 == 5)
932 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 933 {
e135b889 934 op = (itype_op (inst) & 0x03);
c906108c
SS
935 switch (op)
936 {
e135b889
DJ
937 case 0: /* BEQL */
938 goto equal_branch;
939 case 1: /* BNEL */
940 goto neq_branch;
941 case 2: /* BLEZL */
942 goto less_branch;
943 case 3: /* BGTZ */
944 goto greater_branch;
c5aa993b
JM
945 default:
946 pc += 4;
c906108c
SS
947 }
948 }
e135b889
DJ
949 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
950 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
951 {
952 int tf = itype_rt (inst) & 0x01;
953 int cnum = itype_rt (inst) >> 2;
954 int fcrcs = read_signed_register (FCRCS_REGNUM);
955 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
956
957 if (((cond >> cnum) & 0x01) == tf)
958 pc += mips32_relative_offset (inst) + 4;
959 else
960 pc += 8;
961 }
c5aa993b
JM
962 else
963 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
964 }
965 else
c5aa993b
JM
966 { /* This gets way messy */
967
c906108c 968 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 969 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 970 {
c5aa993b
JM
971 case 0: /* SPECIAL */
972 op = rtype_funct (inst);
973 switch (op)
974 {
975 case 8: /* JR */
976 case 9: /* JALR */
6c997a34
AC
977 /* Set PC to that address */
978 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
979 break;
980 default:
981 pc += 4;
982 }
983
e135b889 984 break; /* end SPECIAL */
c5aa993b 985 case 1: /* REGIMM */
c906108c 986 {
e135b889
DJ
987 op = itype_rt (inst); /* branch condition */
988 switch (op)
c906108c 989 {
c5aa993b 990 case 0: /* BLTZ */
e135b889
DJ
991 case 2: /* BLTZL */
992 case 16: /* BLTZAL */
c5aa993b 993 case 18: /* BLTZALL */
c906108c 994 less_branch:
6c997a34 995 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
996 pc += mips32_relative_offset (inst) + 4;
997 else
998 pc += 8; /* after the delay slot */
999 break;
e135b889 1000 case 1: /* BGEZ */
c5aa993b
JM
1001 case 3: /* BGEZL */
1002 case 17: /* BGEZAL */
1003 case 19: /* BGEZALL */
c906108c 1004 greater_equal_branch:
6c997a34 1005 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1006 pc += mips32_relative_offset (inst) + 4;
1007 else
1008 pc += 8; /* after the delay slot */
1009 break;
e135b889 1010 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1011 default:
1012 pc += 4;
c906108c
SS
1013 }
1014 }
e135b889 1015 break; /* end REGIMM */
c5aa993b
JM
1016 case 2: /* J */
1017 case 3: /* JAL */
1018 {
1019 unsigned long reg;
1020 reg = jtype_target (inst) << 2;
e135b889 1021 /* Upper four bits get never changed... */
c5aa993b 1022 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1023 }
c5aa993b
JM
1024 break;
1025 /* FIXME case JALX : */
1026 {
1027 unsigned long reg;
1028 reg = jtype_target (inst) << 2;
1029 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1030 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1031 }
c5aa993b 1032 break; /* The new PC will be alternate mode */
e135b889 1033 case 4: /* BEQ, BEQL */
c5aa993b 1034 equal_branch:
6c997a34
AC
1035 if (read_signed_register (itype_rs (inst)) ==
1036 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1037 pc += mips32_relative_offset (inst) + 4;
1038 else
1039 pc += 8;
1040 break;
e135b889 1041 case 5: /* BNE, BNEL */
c5aa993b 1042 neq_branch:
6c997a34 1043 if (read_signed_register (itype_rs (inst)) !=
e135b889 1044 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
e135b889 1049 case 6: /* BLEZ, BLEZL */
c906108c 1050 less_zero_branch:
6c997a34 1051 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1052 pc += mips32_relative_offset (inst) + 4;
1053 else
1054 pc += 8;
1055 break;
1056 case 7:
e135b889
DJ
1057 default:
1058 greater_branch: /* BGTZ, BGTZL */
6c997a34 1059 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8;
1063 break;
c5aa993b
JM
1064 } /* switch */
1065 } /* else */
1066 return pc;
1067} /* mips32_next_pc */
c906108c
SS
1068
1069/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1070 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1071 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1072 We dont want to set a single step instruction on the extend instruction
1073 either.
c5aa993b 1074 */
c906108c
SS
1075
1076/* Lots of mips16 instruction formats */
1077/* Predicting jumps requires itype,ritype,i8type
1078 and their extensions extItype,extritype,extI8type
c5aa993b 1079 */
c906108c
SS
1080enum mips16_inst_fmts
1081{
c5aa993b
JM
1082 itype, /* 0 immediate 5,10 */
1083 ritype, /* 1 5,3,8 */
1084 rrtype, /* 2 5,3,3,5 */
1085 rritype, /* 3 5,3,3,5 */
1086 rrrtype, /* 4 5,3,3,3,2 */
1087 rriatype, /* 5 5,3,3,1,4 */
1088 shifttype, /* 6 5,3,3,3,2 */
1089 i8type, /* 7 5,3,8 */
1090 i8movtype, /* 8 5,3,3,5 */
1091 i8mov32rtype, /* 9 5,3,5,3 */
1092 i64type, /* 10 5,3,8 */
1093 ri64type, /* 11 5,3,3,5 */
1094 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1095 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1096 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1097 extRRItype, /* 15 5,5,5,5,3,3,5 */
1098 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1099 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1100 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1101 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1102 extRi64type, /* 20 5,6,5,5,3,3,5 */
1103 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1104};
12f02c2a
AC
1105/* I am heaping all the fields of the formats into one structure and
1106 then, only the fields which are involved in instruction extension */
c906108c 1107struct upk_mips16
c5aa993b 1108 {
12f02c2a 1109 CORE_ADDR offset;
c5aa993b
JM
1110 unsigned int regx; /* Function in i8 type */
1111 unsigned int regy;
1112 };
c906108c
SS
1113
1114
12f02c2a
AC
1115/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1116 for the bits which make up the immediatate extension. */
c906108c 1117
12f02c2a
AC
1118static CORE_ADDR
1119extended_offset (unsigned int extension)
c906108c 1120{
12f02c2a 1121 CORE_ADDR value;
c5aa993b
JM
1122 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1123 value = value << 6;
1124 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1125 value = value << 5;
1126 value |= extension & 0x01f; /* extract 4:0 */
1127 return value;
c906108c
SS
1128}
1129
1130/* Only call this function if you know that this is an extendable
1131 instruction, It wont malfunction, but why make excess remote memory references?
1132 If the immediate operands get sign extended or somthing, do it after
1133 the extension is performed.
c5aa993b 1134 */
c906108c
SS
1135/* FIXME: Every one of these cases needs to worry about sign extension
1136 when the offset is to be used in relative addressing */
1137
1138
12f02c2a 1139static unsigned int
c5aa993b 1140fetch_mips_16 (CORE_ADDR pc)
c906108c 1141{
c5aa993b
JM
1142 char buf[8];
1143 pc &= 0xfffffffe; /* clear the low order bit */
1144 target_read_memory (pc, buf, 2);
1145 return extract_unsigned_integer (buf, 2);
c906108c
SS
1146}
1147
1148static void
c5aa993b 1149unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1150 unsigned int extension,
1151 unsigned int inst,
1152 enum mips16_inst_fmts insn_format,
c5aa993b 1153 struct upk_mips16 *upk)
c906108c 1154{
12f02c2a
AC
1155 CORE_ADDR offset;
1156 int regx;
1157 int regy;
1158 switch (insn_format)
c906108c 1159 {
c5aa993b 1160 case itype:
c906108c 1161 {
12f02c2a
AC
1162 CORE_ADDR value;
1163 if (extension)
c5aa993b
JM
1164 {
1165 value = extended_offset (extension);
1166 value = value << 11; /* rom for the original value */
12f02c2a 1167 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1168 }
1169 else
c5aa993b 1170 {
12f02c2a 1171 value = inst & 0x7ff;
c5aa993b 1172 /* FIXME : Consider sign extension */
c906108c 1173 }
12f02c2a
AC
1174 offset = value;
1175 regx = -1;
1176 regy = -1;
c906108c 1177 }
c5aa993b
JM
1178 break;
1179 case ritype:
1180 case i8type:
1181 { /* A register identifier and an offset */
c906108c
SS
1182 /* Most of the fields are the same as I type but the
1183 immediate value is of a different length */
12f02c2a
AC
1184 CORE_ADDR value;
1185 if (extension)
c906108c 1186 {
c5aa993b
JM
1187 value = extended_offset (extension);
1188 value = value << 8; /* from the original instruction */
12f02c2a
AC
1189 value |= inst & 0xff; /* eleven bits from instruction */
1190 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1191 if (value & 0x4000) /* test the sign bit , bit 26 */
1192 {
1193 value &= ~0x3fff; /* remove the sign bit */
1194 value = -value;
c906108c
SS
1195 }
1196 }
c5aa993b
JM
1197 else
1198 {
12f02c2a
AC
1199 value = inst & 0xff; /* 8 bits */
1200 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1201 /* FIXME: Do sign extension , this format needs it */
1202 if (value & 0x80) /* THIS CONFUSES ME */
1203 {
1204 value &= 0xef; /* remove the sign bit */
1205 value = -value;
1206 }
c5aa993b 1207 }
12f02c2a
AC
1208 offset = value;
1209 regy = -1;
c5aa993b 1210 break;
c906108c 1211 }
c5aa993b 1212 case jalxtype:
c906108c 1213 {
c5aa993b 1214 unsigned long value;
12f02c2a
AC
1215 unsigned int nexthalf;
1216 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1217 value = value << 16;
1218 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1219 value |= nexthalf;
12f02c2a
AC
1220 offset = value;
1221 regx = -1;
1222 regy = -1;
c5aa993b 1223 break;
c906108c
SS
1224 }
1225 default:
8e65ff28
AC
1226 internal_error (__FILE__, __LINE__,
1227 "bad switch");
c906108c 1228 }
12f02c2a
AC
1229 upk->offset = offset;
1230 upk->regx = regx;
1231 upk->regy = regy;
c906108c
SS
1232}
1233
1234
c5aa993b
JM
1235static CORE_ADDR
1236add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1237{
c5aa993b 1238 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1239}
1240
12f02c2a
AC
1241static CORE_ADDR
1242extended_mips16_next_pc (CORE_ADDR pc,
1243 unsigned int extension,
1244 unsigned int insn)
c906108c 1245{
12f02c2a
AC
1246 int op = (insn >> 11);
1247 switch (op)
c906108c 1248 {
12f02c2a
AC
1249 case 2: /* Branch */
1250 {
1251 CORE_ADDR offset;
1252 struct upk_mips16 upk;
1253 unpack_mips16 (pc, extension, insn, itype, &upk);
1254 offset = upk.offset;
1255 if (offset & 0x800)
1256 {
1257 offset &= 0xeff;
1258 offset = -offset;
1259 }
1260 pc += (offset << 1) + 2;
1261 break;
1262 }
1263 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1264 {
1265 struct upk_mips16 upk;
1266 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1267 pc = add_offset_16 (pc, upk.offset);
1268 if ((insn >> 10) & 0x01) /* Exchange mode */
1269 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1270 else
1271 pc |= 0x01;
1272 break;
1273 }
1274 case 4: /* beqz */
1275 {
1276 struct upk_mips16 upk;
1277 int reg;
1278 unpack_mips16 (pc, extension, insn, ritype, &upk);
1279 reg = read_signed_register (upk.regx);
1280 if (reg == 0)
1281 pc += (upk.offset << 1) + 2;
1282 else
1283 pc += 2;
1284 break;
1285 }
1286 case 5: /* bnez */
1287 {
1288 struct upk_mips16 upk;
1289 int reg;
1290 unpack_mips16 (pc, extension, insn, ritype, &upk);
1291 reg = read_signed_register (upk.regx);
1292 if (reg != 0)
1293 pc += (upk.offset << 1) + 2;
1294 else
1295 pc += 2;
1296 break;
1297 }
1298 case 12: /* I8 Formats btez btnez */
1299 {
1300 struct upk_mips16 upk;
1301 int reg;
1302 unpack_mips16 (pc, extension, insn, i8type, &upk);
1303 /* upk.regx contains the opcode */
1304 reg = read_signed_register (24); /* Test register is 24 */
1305 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1306 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1307 /* pc = add_offset_16(pc,upk.offset) ; */
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
1313 case 29: /* RR Formats JR, JALR, JALR-RA */
1314 {
1315 struct upk_mips16 upk;
1316 /* upk.fmt = rrtype; */
1317 op = insn & 0x1f;
1318 if (op == 0)
c5aa993b 1319 {
12f02c2a
AC
1320 int reg;
1321 upk.regx = (insn >> 8) & 0x07;
1322 upk.regy = (insn >> 5) & 0x07;
1323 switch (upk.regy)
c5aa993b 1324 {
12f02c2a
AC
1325 case 0:
1326 reg = upk.regx;
1327 break;
1328 case 1:
1329 reg = 31;
1330 break; /* Function return instruction */
1331 case 2:
1332 reg = upk.regx;
1333 break;
1334 default:
1335 reg = 31;
1336 break; /* BOGUS Guess */
c906108c 1337 }
12f02c2a 1338 pc = read_signed_register (reg);
c906108c 1339 }
12f02c2a 1340 else
c5aa993b 1341 pc += 2;
12f02c2a
AC
1342 break;
1343 }
1344 case 30:
1345 /* This is an instruction extension. Fetch the real instruction
1346 (which follows the extension) and decode things based on
1347 that. */
1348 {
1349 pc += 2;
1350 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1351 break;
1352 }
1353 default:
1354 {
1355 pc += 2;
1356 break;
1357 }
c906108c 1358 }
c5aa993b 1359 return pc;
12f02c2a 1360}
c906108c 1361
5a89d8aa 1362static CORE_ADDR
12f02c2a
AC
1363mips16_next_pc (CORE_ADDR pc)
1364{
1365 unsigned int insn = fetch_mips_16 (pc);
1366 return extended_mips16_next_pc (pc, 0, insn);
1367}
1368
1369/* The mips_next_pc function supports single_step when the remote
7e73cedf 1370 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1371 It works by decoding the current instruction and predicting where a
1372 branch will go. This isnt hard because all the data is available.
1373 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1374CORE_ADDR
1375mips_next_pc (CORE_ADDR pc)
c906108c 1376{
c5aa993b
JM
1377 if (pc & 0x01)
1378 return mips16_next_pc (pc);
1379 else
1380 return mips32_next_pc (pc);
12f02c2a 1381}
c906108c
SS
1382
1383/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1384 NULL).
1385
1386 Note: kevinb/2002-08-09: The only caller of this function is (and
1387 should remain) mips_frame_init_saved_regs(). In fact,
1388 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1389 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1390 functions should really be combined and now that there is only one
1391 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1392 though.) */
c906108c 1393
d28e01f4 1394static void
acdb74a0 1395mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1396{
1397 int ireg;
1398 CORE_ADDR reg_position;
1399 /* r0 bit means kernel trap */
1400 int kernel_trap;
1401 /* What registers have been saved? Bitmasks. */
1402 unsigned long gen_mask, float_mask;
1403 mips_extra_func_info_t proc_desc;
1404 t_inst inst;
1405
1406 frame_saved_regs_zalloc (fci);
1407
1408 /* If it is the frame for sigtramp, the saved registers are located
1409 in a sigcontext structure somewhere on the stack.
1410 If the stack layout for sigtramp changes we might have to change these
1411 constants and the companion fixup_sigtramp in mdebugread.c */
1412#ifndef SIGFRAME_BASE
1413/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1414 above the sigtramp frame. */
1415#define SIGFRAME_BASE MIPS_REGSIZE
1416/* FIXME! Are these correct?? */
1417#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1418#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1419#define SIGFRAME_FPREGSAVE_OFF \
1420 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1421#endif
1422#ifndef SIGFRAME_REG_SIZE
1423/* FIXME! Is this correct?? */
1424#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1425#endif
1426 if (fci->signal_handler_caller)
1427 {
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1429 {
c5aa993b
JM
1430 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1433 }
1434 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1435 {
c5aa993b
JM
1436 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1437 + ireg * SIGFRAME_REG_SIZE;
1438 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1439 }
1440 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1441 return;
1442 }
1443
cce74817 1444 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1445 if (proc_desc == NULL)
1446 /* I'm not sure how/whether this can happen. Normally when we can't
1447 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1448 and set the saved_regs right away. */
1449 return;
1450
c5aa993b
JM
1451 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1452 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1453 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1454
c5aa993b
JM
1455 if ( /* In any frame other than the innermost or a frame interrupted by
1456 a signal, we assume that all registers have been saved.
1457 This assumes that all register saves in a function happen before
1458 the first function call. */
1459 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1460
c5aa993b
JM
1461 /* In a dummy frame we know exactly where things are saved. */
1462 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1463
c5aa993b
JM
1464 /* Don't bother unless we are inside a function prologue. Outside the
1465 prologue, we know where everything is. */
c906108c 1466
c5aa993b 1467 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1468
c5aa993b
JM
1469 /* Not sure exactly what kernel_trap means, but if it means
1470 the kernel saves the registers without a prologue doing it,
1471 we better not examine the prologue to see whether registers
1472 have been saved yet. */
1473 && !kernel_trap)
c906108c
SS
1474 {
1475 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1476 claims are saved have been saved yet. */
c906108c
SS
1477
1478 CORE_ADDR addr;
1479
1480 /* Bitmasks; set if we have found a save for the register. */
1481 unsigned long gen_save_found = 0;
1482 unsigned long float_save_found = 0;
1483 int instlen;
1484
1485 /* If the address is odd, assume this is MIPS16 code. */
1486 addr = PROC_LOW_ADDR (proc_desc);
1487 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1488
1489 /* Scan through this function's instructions preceding the current
1490 PC, and look for those that save registers. */
1491 while (addr < fci->pc)
1492 {
1493 inst = mips_fetch_instruction (addr);
1494 if (pc_is_mips16 (addr))
1495 mips16_decode_reg_save (inst, &gen_save_found);
1496 else
1497 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1498 addr += instlen;
1499 }
1500 gen_mask = gen_save_found;
1501 float_mask = float_save_found;
1502 }
1503
1504 /* Fill in the offsets for the registers which gen_mask says
1505 were saved. */
1506 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1507 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1508 if (gen_mask & 0x80000000)
1509 {
1510 fci->saved_regs[ireg] = reg_position;
7a292a7a 1511 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1512 }
1513
1514 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1515 of that normally used by gcc. Therefore, we have to fetch the first
1516 instruction of the function, and if it's an entry instruction that
1517 saves $s0 or $s1, correct their saved addresses. */
1518 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1519 {
1520 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1521 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1522 {
1523 int reg;
1524 int sreg_count = (inst >> 6) & 3;
c5aa993b 1525
c906108c
SS
1526 /* Check if the ra register was pushed on the stack. */
1527 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1528 if (inst & 0x20)
7a292a7a 1529 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1530
1531 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1532 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1533 {
1534 fci->saved_regs[reg] = reg_position;
7a292a7a 1535 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1536 }
1537 }
1538 }
1539
1540 /* Fill in the offsets for the registers which float_mask says
1541 were saved. */
1542 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1543
6acdf5c7
MS
1544 /* Apparently, the freg_offset gives the offset to the first 64 bit
1545 saved.
1546
1547 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1548 designates the first saved 64 bit register.
1549
1550 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1551 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1552 FREG_OFFSET, designates the address of the lower register of the
1553 register pair. Adjust the offset so that it designates the upper
1554 register of the pair -- i.e., the address of the first saved 32
1555 bit register. */
1556
1557 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1558 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1559
1560 /* Fill in the offsets for the float registers which float_mask says
1561 were saved. */
c5aa993b 1562 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1563 if (float_mask & 0x80000000)
1564 {
c5aa993b 1565 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1566 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1567 }
1568
1569 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1570}
1571
d28e01f4
KB
1572/* Set up the 'saved_regs' array. This is a data structure containing
1573 the addresses on the stack where each register has been saved, for
1574 each stack frame. Registers that have not been saved will have
1575 zero here. The stack pointer register is special: rather than the
1576 address where the stack register has been saved, saved_regs[SP_REGNUM]
1577 will have the actual value of the previous frame's stack register. */
1578
1579static void
1580mips_frame_init_saved_regs (struct frame_info *frame)
1581{
1582 if (frame->saved_regs == NULL)
1583 {
1584 mips_find_saved_regs (frame);
1585 }
1586 frame->saved_regs[SP_REGNUM] = frame->frame;
1587}
1588
c906108c 1589static CORE_ADDR
acdb74a0 1590read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1591{
1592 for (; fi; fi = fi->next)
1593 {
1594 /* We have to get the saved sp from the sigcontext
c5aa993b 1595 if it is a signal handler frame. */
c906108c
SS
1596 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1597 return fi->frame;
1598 else
1599 {
1600 if (fi->saved_regs == NULL)
ffabd70d 1601 FRAME_INIT_SAVED_REGS (fi);
c906108c 1602 if (fi->saved_regs[regno])
2acceee2 1603 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1604 }
1605 }
6c997a34 1606 return read_signed_register (regno);
c906108c
SS
1607}
1608
1609/* mips_addr_bits_remove - remove useless address bits */
1610
875e1767 1611static CORE_ADDR
acdb74a0 1612mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1613{
5213ab06
AC
1614 if (GDB_TARGET_IS_MIPS64)
1615 {
4014092b 1616 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1617 {
1618 /* This hack is a work-around for existing boards using
1619 PMON, the simulator, and any other 64-bit targets that
1620 doesn't have true 64-bit addressing. On these targets,
1621 the upper 32 bits of addresses are ignored by the
1622 hardware. Thus, the PC or SP are likely to have been
1623 sign extended to all 1s by instruction sequences that
1624 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1625 code that loads an address is this:
1626 lui $r2, <upper 16 bits>
1627 ori $r2, <lower 16 bits>
1628 But the lui sign-extends the value such that the upper 32
1629 bits may be all 1s. The workaround is simply to mask off
1630 these bits. In the future, gcc may be changed to support
1631 true 64-bit addressing, and this masking will have to be
1632 disabled. */
5213ab06
AC
1633 addr &= (CORE_ADDR) 0xffffffff;
1634 }
1635 }
4014092b 1636 else if (mips_mask_address_p ())
5213ab06 1637 {
4014092b
AC
1638 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1639 masking off bits, instead, the actual target should be asking
1640 for the address to be converted to a valid pointer. */
5213ab06
AC
1641 /* Even when GDB is configured for some 32-bit targets
1642 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1643 so CORE_ADDR is 64 bits. So we still have to mask off
1644 useless bits from addresses. */
c5aa993b 1645 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1646 }
c906108c
SS
1647 return addr;
1648}
1649
9022177c
DJ
1650/* mips_software_single_step() is called just before we want to resume
1651 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1652 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1653 the target of the coming instruction and breakpoint it.
1654
1655 single_step is also called just after the inferior stops. If we had
1656 set up a simulated single-step, we undo our damage. */
1657
1658void
1659mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1660{
1661 static CORE_ADDR next_pc;
1662 typedef char binsn_quantum[BREAKPOINT_MAX];
1663 static binsn_quantum break_mem;
1664 CORE_ADDR pc;
1665
1666 if (insert_breakpoints_p)
1667 {
1668 pc = read_register (PC_REGNUM);
1669 next_pc = mips_next_pc (pc);
1670
1671 target_insert_breakpoint (next_pc, break_mem);
1672 }
1673 else
1674 target_remove_breakpoint (next_pc, break_mem);
1675}
1676
10312cc4 1677static void
acdb74a0 1678mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1679{
1680 CORE_ADDR pc, tmp;
1681
1682 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1683 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
5a89d8aa 1684 tmp = SKIP_TRAMPOLINE_CODE (pc);
c5aa993b 1685 prev->pc = tmp ? tmp : pc;
c906108c
SS
1686}
1687
1688
f7ab6ec6 1689static CORE_ADDR
acdb74a0 1690mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1691{
1692 CORE_ADDR saved_pc;
cce74817 1693 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1694 /* We have to get the saved pc from the sigcontext
1695 if it is a signal handler frame. */
1696 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1697 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1698
c5aa993b 1699 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1700 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1701 else
7a292a7a 1702 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1703
1704 return ADDR_BITS_REMOVE (saved_pc);
1705}
1706
1707static struct mips_extra_func_info temp_proc_desc;
cce74817 1708static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1709
1710/* Set a register's saved stack address in temp_saved_regs. If an address
1711 has already been set for this register, do nothing; this way we will
1712 only recognize the first save of a given register in a function prologue.
1713 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1714
1715static void
acdb74a0 1716set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1717{
cce74817
JM
1718 if (temp_saved_regs[regno] == 0)
1719 temp_saved_regs[regno] = offset;
c906108c
SS
1720}
1721
1722
1723/* Test whether the PC points to the return instruction at the
1724 end of a function. */
1725
c5aa993b 1726static int
acdb74a0 1727mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1728{
1729 if (pc_is_mips16 (pc))
1730 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1731 generates a "jr $ra"; other times it generates code to load
1732 the return address from the stack to an accessible register (such
1733 as $a3), then a "jr" using that register. This second case
1734 is almost impossible to distinguish from an indirect jump
1735 used for switch statements, so we don't even try. */
1736 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1737 else
1738 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1739}
1740
1741
1742/* This fencepost looks highly suspicious to me. Removing it also
1743 seems suspicious as it could affect remote debugging across serial
1744 lines. */
1745
1746static CORE_ADDR
acdb74a0 1747heuristic_proc_start (CORE_ADDR pc)
c906108c 1748{
c5aa993b
JM
1749 CORE_ADDR start_pc;
1750 CORE_ADDR fence;
1751 int instlen;
1752 int seen_adjsp = 0;
c906108c 1753
c5aa993b
JM
1754 pc = ADDR_BITS_REMOVE (pc);
1755 start_pc = pc;
1756 fence = start_pc - heuristic_fence_post;
1757 if (start_pc == 0)
1758 return 0;
c906108c 1759
c5aa993b
JM
1760 if (heuristic_fence_post == UINT_MAX
1761 || fence < VM_MIN_ADDRESS)
1762 fence = VM_MIN_ADDRESS;
c906108c 1763
c5aa993b 1764 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1765
c5aa993b
JM
1766 /* search back for previous return */
1767 for (start_pc -= instlen;; start_pc -= instlen)
1768 if (start_pc < fence)
1769 {
1770 /* It's not clear to me why we reach this point when
1771 stop_soon_quietly, but with this test, at least we
1772 don't print out warnings for every child forked (eg, on
1773 decstation). 22apr93 rich@cygnus.com. */
1774 if (!stop_soon_quietly)
c906108c 1775 {
c5aa993b
JM
1776 static int blurb_printed = 0;
1777
1778 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1779 paddr_nz (pc));
1780
1781 if (!blurb_printed)
c906108c 1782 {
c5aa993b
JM
1783 /* This actually happens frequently in embedded
1784 development, when you first connect to a board
1785 and your stack pointer and pc are nowhere in
1786 particular. This message needs to give people
1787 in that situation enough information to
1788 determine that it's no big deal. */
1789 printf_filtered ("\n\
cd0fc7c3
SS
1790 GDB is unable to find the start of the function at 0x%s\n\
1791and thus can't determine the size of that function's stack frame.\n\
1792This means that GDB may be unable to access that stack frame, or\n\
1793the frames below it.\n\
1794 This problem is most likely caused by an invalid program counter or\n\
1795stack pointer.\n\
1796 However, if you think GDB should simply search farther back\n\
1797from 0x%s for code which looks like the beginning of a\n\
1798function, you can increase the range of the search using the `set\n\
1799heuristic-fence-post' command.\n",
c5aa993b
JM
1800 paddr_nz (pc), paddr_nz (pc));
1801 blurb_printed = 1;
c906108c 1802 }
c906108c
SS
1803 }
1804
c5aa993b
JM
1805 return 0;
1806 }
1807 else if (pc_is_mips16 (start_pc))
1808 {
1809 unsigned short inst;
1810
1811 /* On MIPS16, any one of the following is likely to be the
1812 start of a function:
1813 entry
1814 addiu sp,-n
1815 daddiu sp,-n
1816 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1817 inst = mips_fetch_instruction (start_pc);
1818 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1819 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1820 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1821 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1822 break;
1823 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1824 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1825 seen_adjsp = 1;
1826 else
1827 seen_adjsp = 0;
1828 }
1829 else if (mips_about_to_return (start_pc))
1830 {
1831 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1832 break;
1833 }
1834
c5aa993b 1835 return start_pc;
c906108c
SS
1836}
1837
1838/* Fetch the immediate value from a MIPS16 instruction.
1839 If the previous instruction was an EXTEND, use it to extend
1840 the upper bits of the immediate value. This is a helper function
1841 for mips16_heuristic_proc_desc. */
1842
1843static int
acdb74a0
AC
1844mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1845 unsigned short inst, /* current instruction */
1846 int nbits, /* number of bits in imm field */
1847 int scale, /* scale factor to be applied to imm */
1848 int is_signed) /* is the imm field signed? */
c906108c
SS
1849{
1850 int offset;
1851
1852 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1853 {
1854 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1855 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1856 offset = 0 - (0x10000 - (offset & 0xffff));
1857 return offset | (inst & 0x1f);
1858 }
1859 else
1860 {
1861 int max_imm = 1 << nbits;
1862 int mask = max_imm - 1;
1863 int sign_bit = max_imm >> 1;
1864
1865 offset = inst & mask;
1866 if (is_signed && (offset & sign_bit))
1867 offset = 0 - (max_imm - offset);
1868 return offset * scale;
1869 }
1870}
1871
1872
1873/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1874 stream from start_pc to limit_pc. */
1875
1876static void
acdb74a0
AC
1877mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1878 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1879{
1880 CORE_ADDR cur_pc;
1881 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1882 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1883 unsigned inst = 0; /* current instruction */
1884 unsigned entry_inst = 0; /* the entry instruction */
1885 int reg, offset;
1886
c5aa993b
JM
1887 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1888 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1889
1890 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1891 {
1892 /* Save the previous instruction. If it's an EXTEND, we'll extract
1893 the immediate offset extension from it in mips16_get_imm. */
1894 prev_inst = inst;
1895
1896 /* Fetch and decode the instruction. */
1897 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1898 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1899 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1900 {
1901 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1902 if (offset < 0) /* negative stack adjustment? */
1903 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1904 else
1905 /* Exit loop if a positive stack adjustment is found, which
1906 usually means that the stack cleanup code in the function
1907 epilogue is reached. */
1908 break;
1909 }
1910 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1911 {
1912 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1913 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1914 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1915 set_reg_offset (reg, sp + offset);
1916 }
1917 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1918 {
1919 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1920 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1921 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1922 set_reg_offset (reg, sp + offset);
1923 }
1924 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1925 {
1926 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1927 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1928 set_reg_offset (RA_REGNUM, sp + offset);
1929 }
1930 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1931 {
1932 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1933 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1934 set_reg_offset (RA_REGNUM, sp + offset);
1935 }
c5aa993b 1936 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1937 {
1938 frame_addr = sp;
1939 PROC_FRAME_REG (&temp_proc_desc) = 17;
1940 }
1941 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1942 {
1943 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1944 frame_addr = sp + offset;
1945 PROC_FRAME_REG (&temp_proc_desc) = 17;
1946 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1947 }
1948 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1949 {
1950 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1951 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1952 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1953 set_reg_offset (reg, frame_addr + offset);
1954 }
1955 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1956 {
1957 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1958 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1959 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1960 set_reg_offset (reg, frame_addr + offset);
1961 }
c5aa993b
JM
1962 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1963 entry_inst = inst; /* save for later processing */
c906108c 1964 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1965 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1966 }
1967
c5aa993b
JM
1968 /* The entry instruction is typically the first instruction in a function,
1969 and it stores registers at offsets relative to the value of the old SP
1970 (before the prologue). But the value of the sp parameter to this
1971 function is the new SP (after the prologue has been executed). So we
1972 can't calculate those offsets until we've seen the entire prologue,
1973 and can calculate what the old SP must have been. */
1974 if (entry_inst != 0)
1975 {
1976 int areg_count = (entry_inst >> 8) & 7;
1977 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1978
c5aa993b
JM
1979 /* The entry instruction always subtracts 32 from the SP. */
1980 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1981
c5aa993b
JM
1982 /* Now we can calculate what the SP must have been at the
1983 start of the function prologue. */
1984 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1985
c5aa993b
JM
1986 /* Check if a0-a3 were saved in the caller's argument save area. */
1987 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1988 {
1989 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1990 set_reg_offset (reg, sp + offset);
1991 offset += MIPS_SAVED_REGSIZE;
1992 }
c906108c 1993
c5aa993b
JM
1994 /* Check if the ra register was pushed on the stack. */
1995 offset = -4;
1996 if (entry_inst & 0x20)
1997 {
1998 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1999 set_reg_offset (RA_REGNUM, sp + offset);
2000 offset -= MIPS_SAVED_REGSIZE;
2001 }
c906108c 2002
c5aa993b
JM
2003 /* Check if the s0 and s1 registers were pushed on the stack. */
2004 for (reg = 16; reg < sreg_count + 16; reg++)
2005 {
2006 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2007 set_reg_offset (reg, sp + offset);
2008 offset -= MIPS_SAVED_REGSIZE;
2009 }
2010 }
c906108c
SS
2011}
2012
2013static void
fba45db2
KB
2014mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2015 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2016{
2017 CORE_ADDR cur_pc;
c5aa993b 2018 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2019restart:
cce74817 2020 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2021 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2022 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2023 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2024 {
2025 unsigned long inst, high_word, low_word;
2026 int reg;
2027
2028 /* Fetch the instruction. */
2029 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2030
2031 /* Save some code by pre-extracting some useful fields. */
2032 high_word = (inst >> 16) & 0xffff;
2033 low_word = inst & 0xffff;
2034 reg = high_word & 0x1f;
2035
c5aa993b 2036 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2037 || high_word == 0x23bd /* addi $sp,$sp,-i */
2038 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2039 {
2040 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2041 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2042 else
2043 /* Exit loop if a positive stack adjustment is found, which
2044 usually means that the stack cleanup code in the function
2045 epilogue is reached. */
2046 break;
2047 }
2048 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2049 {
c5aa993b 2050 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2051 set_reg_offset (reg, sp + low_word);
2052 }
2053 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2054 {
2055 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2056 but the register size used is only 32 bits. Make the address
2057 for the saved register point to the lower 32 bits. */
c5aa993b 2058 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2059 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2060 }
c5aa993b 2061 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2062 {
2063 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2064 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2065 frame_addr = sp + low_word;
c906108c
SS
2066 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2067 {
2068 unsigned alloca_adjust;
2069 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2070 frame_addr = read_next_frame_reg (next_frame, 30);
2071 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2072 if (alloca_adjust > 0)
2073 {
2074 /* FP > SP + frame_size. This may be because
2075 * of an alloca or somethings similar.
2076 * Fix sp to "pre-alloca" value, and try again.
2077 */
2078 sp += alloca_adjust;
2079 goto restart;
2080 }
2081 }
2082 }
c5aa993b
JM
2083 /* move $30,$sp. With different versions of gas this will be either
2084 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2085 Accept any one of these. */
c906108c
SS
2086 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2087 {
2088 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2089 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2090 {
2091 unsigned alloca_adjust;
2092 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2093 frame_addr = read_next_frame_reg (next_frame, 30);
2094 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2095 if (alloca_adjust > 0)
2096 {
2097 /* FP > SP + frame_size. This may be because
2098 * of an alloca or somethings similar.
2099 * Fix sp to "pre-alloca" value, and try again.
2100 */
2101 sp += alloca_adjust;
2102 goto restart;
2103 }
2104 }
2105 }
c5aa993b 2106 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2107 {
c5aa993b 2108 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2109 set_reg_offset (reg, frame_addr + low_word);
2110 }
2111 }
2112}
2113
2114static mips_extra_func_info_t
acdb74a0 2115heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2116 struct frame_info *next_frame, int cur_frame)
c906108c 2117{
479412cd
DJ
2118 CORE_ADDR sp;
2119
2120 if (cur_frame)
2121 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2122 else
2123 sp = 0;
c906108c 2124
c5aa993b
JM
2125 if (start_pc == 0)
2126 return NULL;
2127 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 2128 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2129 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2130 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2131 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2132
2133 if (start_pc + 200 < limit_pc)
2134 limit_pc = start_pc + 200;
2135 if (pc_is_mips16 (start_pc))
2136 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2137 else
2138 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2139 return &temp_proc_desc;
2140}
2141
6c0d6680
DJ
2142struct mips_objfile_private
2143{
2144 bfd_size_type size;
2145 char *contents;
2146};
2147
2148/* Global used to communicate between non_heuristic_proc_desc and
2149 compare_pdr_entries within qsort (). */
2150static bfd *the_bfd;
2151
2152static int
2153compare_pdr_entries (const void *a, const void *b)
2154{
2155 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2156 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2157
2158 if (lhs < rhs)
2159 return -1;
2160 else if (lhs == rhs)
2161 return 0;
2162 else
2163 return 1;
2164}
2165
c906108c 2166static mips_extra_func_info_t
acdb74a0 2167non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2168{
2169 CORE_ADDR startaddr;
2170 mips_extra_func_info_t proc_desc;
c5aa993b 2171 struct block *b = block_for_pc (pc);
c906108c 2172 struct symbol *sym;
6c0d6680
DJ
2173 struct obj_section *sec;
2174 struct mips_objfile_private *priv;
2175
2176 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2177 return NULL;
c906108c
SS
2178
2179 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2180 if (addrptr)
2181 *addrptr = startaddr;
6c0d6680
DJ
2182
2183 priv = NULL;
2184
2185 sec = find_pc_section (pc);
2186 if (sec != NULL)
c906108c 2187 {
6c0d6680
DJ
2188 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2189
2190 /* Search the ".pdr" section generated by GAS. This includes most of
2191 the information normally found in ECOFF PDRs. */
2192
2193 the_bfd = sec->objfile->obfd;
2194 if (priv == NULL
2195 && (the_bfd->format == bfd_object
2196 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2197 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2198 {
2199 /* Right now GAS only outputs the address as a four-byte sequence.
2200 This means that we should not bother with this method on 64-bit
2201 targets (until that is fixed). */
2202
2203 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2204 sizeof (struct mips_objfile_private));
2205 priv->size = 0;
2206 sec->objfile->obj_private = priv;
2207 }
2208 else if (priv == NULL)
2209 {
2210 asection *bfdsec;
2211
2212 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2213 sizeof (struct mips_objfile_private));
2214
2215 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2216 if (bfdsec != NULL)
2217 {
2218 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2219 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2220 priv->size);
2221 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2222 priv->contents, 0, priv->size);
2223
2224 /* In general, the .pdr section is sorted. However, in the
2225 presence of multiple code sections (and other corner cases)
2226 it can become unsorted. Sort it so that we can use a faster
2227 binary search. */
2228 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2229 }
2230 else
2231 priv->size = 0;
2232
2233 sec->objfile->obj_private = priv;
2234 }
2235 the_bfd = NULL;
2236
2237 if (priv->size != 0)
2238 {
2239 int low, mid, high;
2240 char *ptr;
2241
2242 low = 0;
2243 high = priv->size / 32;
2244
2245 do
2246 {
2247 CORE_ADDR pdr_pc;
2248
2249 mid = (low + high) / 2;
2250
2251 ptr = priv->contents + mid * 32;
2252 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2253 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2254 SECT_OFF_TEXT (sec->objfile));
2255 if (pdr_pc == startaddr)
2256 break;
2257 if (pdr_pc > startaddr)
2258 high = mid;
2259 else
2260 low = mid + 1;
2261 }
2262 while (low != high);
2263
2264 if (low != high)
2265 {
2266 struct symbol *sym = find_pc_function (pc);
2267
2268 /* Fill in what we need of the proc_desc. */
2269 proc_desc = (mips_extra_func_info_t)
2270 obstack_alloc (&sec->objfile->psymbol_obstack,
2271 sizeof (struct mips_extra_func_info));
2272 PROC_LOW_ADDR (proc_desc) = startaddr;
2273
2274 /* Only used for dummy frames. */
2275 PROC_HIGH_ADDR (proc_desc) = 0;
2276
2277 PROC_FRAME_OFFSET (proc_desc)
2278 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2279 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2280 ptr + 24);
2281 PROC_FRAME_ADJUST (proc_desc) = 0;
2282 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2283 ptr + 4);
2284 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2285 ptr + 12);
2286 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2287 ptr + 8);
2288 PROC_FREG_OFFSET (proc_desc)
2289 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2290 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2291 ptr + 28);
2292 proc_desc->pdr.isym = (long) sym;
2293
2294 return proc_desc;
2295 }
2296 }
c906108c
SS
2297 }
2298
6c0d6680
DJ
2299 if (b == NULL)
2300 return NULL;
2301
2302 if (startaddr > BLOCK_START (b))
2303 {
2304 /* This is the "pathological" case referred to in a comment in
2305 print_frame_info. It might be better to move this check into
2306 symbol reading. */
2307 return NULL;
2308 }
2309
2310 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2311
c906108c
SS
2312 /* If we never found a PDR for this function in symbol reading, then
2313 examine prologues to find the information. */
2314 if (sym)
2315 {
2316 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2317 if (PROC_FRAME_REG (proc_desc) == -1)
2318 return NULL;
2319 else
2320 return proc_desc;
2321 }
2322 else
2323 return NULL;
2324}
2325
2326
2327static mips_extra_func_info_t
479412cd 2328find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2329{
2330 mips_extra_func_info_t proc_desc;
2331 CORE_ADDR startaddr;
2332
2333 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2334
2335 if (proc_desc)
2336 {
2337 /* IF this is the topmost frame AND
2338 * (this proc does not have debugging information OR
2339 * the PC is in the procedure prologue)
2340 * THEN create a "heuristic" proc_desc (by analyzing
2341 * the actual code) to replace the "official" proc_desc.
2342 */
2343 if (next_frame == NULL)
2344 {
2345 struct symtab_and_line val;
2346 struct symbol *proc_symbol =
c86b5b38 2347 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2348
2349 if (proc_symbol)
2350 {
2351 val = find_pc_line (BLOCK_START
c5aa993b 2352 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2353 0);
2354 val.pc = val.end ? val.end : pc;
2355 }
2356 if (!proc_symbol || pc < val.pc)
2357 {
2358 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2359 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2360 pc, next_frame, cur_frame);
c906108c
SS
2361 if (found_heuristic)
2362 proc_desc = found_heuristic;
2363 }
2364 }
2365 }
2366 else
2367 {
2368 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2369 by procedure call dummys. However, the procedures being called ought
2370 to have their own proc_descs, and even if they don't,
2371 heuristic_proc_desc knows how to create them! */
c906108c
SS
2372
2373 register struct linked_proc_info *link;
2374
2375 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2376 if (PROC_LOW_ADDR (&link->info) <= pc
2377 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2378 return &link->info;
2379
2380 if (startaddr == 0)
2381 startaddr = heuristic_proc_start (pc);
2382
2383 proc_desc =
479412cd 2384 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2385 }
2386 return proc_desc;
2387}
2388
2389static CORE_ADDR
acdb74a0
AC
2390get_frame_pointer (struct frame_info *frame,
2391 mips_extra_func_info_t proc_desc)
c906108c 2392{
c86b5b38
MS
2393 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2394 PROC_FRAME_REG (proc_desc)) +
2395 PROC_FRAME_OFFSET (proc_desc) -
2396 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2397}
2398
5a89d8aa 2399static mips_extra_func_info_t cached_proc_desc;
c906108c 2400
f7ab6ec6 2401static CORE_ADDR
acdb74a0 2402mips_frame_chain (struct frame_info *frame)
c906108c
SS
2403{
2404 mips_extra_func_info_t proc_desc;
2405 CORE_ADDR tmp;
c5aa993b 2406 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2407
2408 if (saved_pc == 0 || inside_entry_file (saved_pc))
2409 return 0;
2410
2411 /* Check if the PC is inside a call stub. If it is, fetch the
2412 PC of the caller of that stub. */
5a89d8aa 2413 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2414 saved_pc = tmp;
2415
2416 /* Look up the procedure descriptor for this PC. */
479412cd 2417 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2418 if (!proc_desc)
2419 return 0;
2420
2421 cached_proc_desc = proc_desc;
2422
2423 /* If no frame pointer and frame size is zero, we must be at end
2424 of stack (or otherwise hosed). If we don't check frame size,
2425 we loop forever if we see a zero size frame. */
2426 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2427 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2428 /* The previous frame from a sigtramp frame might be frameless
2429 and have frame size zero. */
2430 && !frame->signal_handler_caller
2431 /* Check if this is a call dummy frame. */
f7ab6ec6 2432 && frame->pc != CALL_DUMMY_ADDRESS ())
c906108c
SS
2433 return 0;
2434 else
2435 return get_frame_pointer (frame, proc_desc);
2436}
2437
f7ab6ec6 2438static void
acdb74a0 2439mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2440{
2441 int regnum;
2442
2443 /* Use proc_desc calculated in frame_chain */
2444 mips_extra_func_info_t proc_desc =
c86b5b38 2445 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2446
cce74817
JM
2447 fci->extra_info = (struct frame_extra_info *)
2448 frame_obstack_alloc (sizeof (struct frame_extra_info));
2449
c906108c 2450 fci->saved_regs = NULL;
cce74817 2451 fci->extra_info->proc_desc =
c906108c
SS
2452 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2453 if (proc_desc)
2454 {
2455 /* Fixup frame-pointer - only needed for top frame */
2456 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2457 Get the value of the frame relative sp, procedure might have been
2458 interrupted by a signal at it's very start. */
c906108c
SS
2459 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2460 && !PROC_DESC_IS_DUMMY (proc_desc))
2461 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2462 else
2463 fci->frame = get_frame_pointer (fci->next, proc_desc);
2464
2465 if (proc_desc == &temp_proc_desc)
2466 {
2467 char *name;
2468
2469 /* Do not set the saved registers for a sigtramp frame,
2470 mips_find_saved_registers will do that for us.
2471 We can't use fci->signal_handler_caller, it is not yet set. */
2472 find_pc_partial_function (fci->pc, &name,
c5aa993b 2473 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2474 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2475 {
c5aa993b 2476 frame_saved_regs_zalloc (fci);
cce74817 2477 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2478 fci->saved_regs[PC_REGNUM]
2479 = fci->saved_regs[RA_REGNUM];
ffabd70d
KB
2480 /* Set value of previous frame's stack pointer. Remember that
2481 saved_regs[SP_REGNUM] is special in that it contains the
2482 value of the stack pointer register. The other saved_regs
2483 values are addresses (in the inferior) at which a given
2484 register's value may be found. */
2485 fci->saved_regs[SP_REGNUM] = fci->frame;
c906108c
SS
2486 }
2487 }
2488
2489 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2490 /* assume we can't tell how many args for now */
2491 fci->extra_info->num_args = -1;
c906108c
SS
2492 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2493 {
c5aa993b 2494 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2495 {
cce74817 2496 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2497 break;
2498 }
c5aa993b 2499 }
c906108c
SS
2500 }
2501}
2502
2503/* MIPS stack frames are almost impenetrable. When execution stops,
2504 we basically have to look at symbol information for the function
2505 that we stopped in, which tells us *which* register (if any) is
2506 the base of the frame pointer, and what offset from that register
361d1df0 2507 the frame itself is at.
c906108c
SS
2508
2509 This presents a problem when trying to examine a stack in memory
2510 (that isn't executing at the moment), using the "frame" command. We
2511 don't have a PC, nor do we have any registers except SP.
2512
2513 This routine takes two arguments, SP and PC, and tries to make the
2514 cached frames look as if these two arguments defined a frame on the
2515 cache. This allows the rest of info frame to extract the important
2516 arguments without difficulty. */
2517
2518struct frame_info *
acdb74a0 2519setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2520{
2521 if (argc != 2)
2522 error ("MIPS frame specifications require two arguments: sp and pc");
2523
2524 return create_new_frame (argv[0], argv[1]);
2525}
2526
f09ded24
AC
2527/* According to the current ABI, should the type be passed in a
2528 floating-point register (assuming that there is space)? When there
2529 is no FPU, FP are not even considered as possibile candidates for
2530 FP registers and, consequently this returns false - forces FP
2531 arguments into integer registers. */
2532
2533static int
2534fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2535{
2536 return ((typecode == TYPE_CODE_FLT
2537 || (MIPS_EABI
2538 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2539 && TYPE_NFIELDS (arg_type) == 1
2540 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2541 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2542}
2543
49e790b0
DJ
2544/* On o32, argument passing in GPRs depends on the alignment of the type being
2545 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2546
2547static int
2548mips_type_needs_double_align (struct type *type)
2549{
2550 enum type_code typecode = TYPE_CODE (type);
361d1df0 2551
49e790b0
DJ
2552 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2553 return 1;
2554 else if (typecode == TYPE_CODE_STRUCT)
2555 {
2556 if (TYPE_NFIELDS (type) < 1)
2557 return 0;
2558 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2559 }
2560 else if (typecode == TYPE_CODE_UNION)
2561 {
361d1df0 2562 int i, n;
49e790b0
DJ
2563
2564 n = TYPE_NFIELDS (type);
2565 for (i = 0; i < n; i++)
2566 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2567 return 1;
2568 return 0;
2569 }
2570 return 0;
2571}
2572
cb3d25d1
MS
2573/* Macros to round N up or down to the next A boundary;
2574 A must be a power of two. */
2575
2576#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2577#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2578
f7ab6ec6 2579static CORE_ADDR
46e0f506
MS
2580mips_eabi_push_arguments (int nargs,
2581 struct value **args,
2582 CORE_ADDR sp,
2583 int struct_return,
2584 CORE_ADDR struct_addr)
c906108c
SS
2585{
2586 int argreg;
2587 int float_argreg;
2588 int argnum;
2589 int len = 0;
2590 int stack_offset = 0;
2591
c906108c 2592 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2593 are properly aligned. The stack has to be at least 64-bit
2594 aligned even on 32-bit machines, because doubles must be 64-bit
2595 aligned. For n32 and n64, stack frames need to be 128-bit
2596 aligned, so we round to this widest known alignment. */
2597
c906108c 2598 sp = ROUND_DOWN (sp, 16);
cce41527 2599 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2600
46e0f506 2601 /* Now make space on the stack for the args. We allocate more
c906108c 2602 than necessary for EABI, because the first few arguments are
46e0f506 2603 passed in registers, but that's OK. */
c906108c 2604 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2605 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2606 MIPS_STACK_ARGSIZE);
c906108c
SS
2607 sp -= ROUND_UP (len, 16);
2608
9ace0497 2609 if (mips_debug)
46e0f506
MS
2610 fprintf_unfiltered (gdb_stdlog,
2611 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2612 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2613
c906108c
SS
2614 /* Initialize the integer and float register pointers. */
2615 argreg = A0_REGNUM;
2616 float_argreg = FPA0_REGNUM;
2617
46e0f506 2618 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2619 if (struct_return)
9ace0497
AC
2620 {
2621 if (mips_debug)
2622 fprintf_unfiltered (gdb_stdlog,
46e0f506 2623 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2624 argreg, paddr_nz (struct_addr));
9ace0497
AC
2625 write_register (argreg++, struct_addr);
2626 }
c906108c
SS
2627
2628 /* Now load as many as possible of the first arguments into
2629 registers, and push the rest onto the stack. Loop thru args
2630 from first to last. */
2631 for (argnum = 0; argnum < nargs; argnum++)
2632 {
2633 char *val;
cb3d25d1 2634 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2635 struct value *arg = args[argnum];
c906108c
SS
2636 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2637 int len = TYPE_LENGTH (arg_type);
2638 enum type_code typecode = TYPE_CODE (arg_type);
2639
9ace0497
AC
2640 if (mips_debug)
2641 fprintf_unfiltered (gdb_stdlog,
46e0f506 2642 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2643 argnum + 1, len, (int) typecode);
9ace0497 2644
c906108c 2645 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2646 reference. */
2647 if (len > MIPS_SAVED_REGSIZE
9ace0497 2648 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2649 {
7a292a7a 2650 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2651 typecode = TYPE_CODE_PTR;
7a292a7a 2652 len = MIPS_SAVED_REGSIZE;
c906108c 2653 val = valbuf;
9ace0497
AC
2654 if (mips_debug)
2655 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2656 }
2657 else
c5aa993b 2658 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2659
2660 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2661 even-numbered floating point register. Round the FP register
2662 up before the check to see if there are any FP registers
46e0f506
MS
2663 left. Non MIPS_EABI targets also pass the FP in the integer
2664 registers so also round up normal registers. */
acdb74a0
AC
2665 if (!FP_REGISTER_DOUBLE
2666 && fp_register_arg_p (typecode, arg_type))
2667 {
2668 if ((float_argreg & 1))
2669 float_argreg++;
2670 }
c906108c
SS
2671
2672 /* Floating point arguments passed in registers have to be
2673 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2674 are passed in register pairs; the even register gets
2675 the low word, and the odd register gets the high word.
2676 On non-EABI processors, the first two floating point arguments are
2677 also copied to general registers, because MIPS16 functions
2678 don't use float registers for arguments. This duplication of
2679 arguments in general registers can't hurt non-MIPS16 functions
2680 because those registers are normally skipped. */
1012bd0e
EZ
2681 /* MIPS_EABI squeezes a struct that contains a single floating
2682 point value into an FP register instead of pushing it onto the
46e0f506 2683 stack. */
f09ded24
AC
2684 if (fp_register_arg_p (typecode, arg_type)
2685 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2686 {
2687 if (!FP_REGISTER_DOUBLE && len == 8)
2688 {
d7449b42 2689 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2690 unsigned long regval;
2691
2692 /* Write the low word of the double to the even register(s). */
c5aa993b 2693 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2694 if (mips_debug)
acdb74a0 2695 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2696 float_argreg, phex (regval, 4));
c906108c 2697 write_register (float_argreg++, regval);
c906108c
SS
2698
2699 /* Write the high word of the double to the odd register(s). */
c5aa993b 2700 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2701 if (mips_debug)
acdb74a0 2702 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2703 float_argreg, phex (regval, 4));
c906108c 2704 write_register (float_argreg++, regval);
c906108c
SS
2705 }
2706 else
2707 {
2708 /* This is a floating point value that fits entirely
2709 in a single register. */
53a5351d 2710 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2711 above to ensure that it is even register aligned. */
9ace0497
AC
2712 LONGEST regval = extract_unsigned_integer (val, len);
2713 if (mips_debug)
acdb74a0 2714 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2715 float_argreg, phex (regval, len));
c906108c 2716 write_register (float_argreg++, regval);
c906108c
SS
2717 }
2718 }
2719 else
2720 {
2721 /* Copy the argument to general registers or the stack in
2722 register-sized pieces. Large arguments are split between
2723 registers and stack. */
2724 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2725 are treated specially: Irix cc passes them in registers
2726 where gcc sometimes puts them on the stack. For maximum
2727 compatibility, we will put them in both places. */
c5aa993b 2728 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2729 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2730
f09ded24 2731 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2732 register are only written to memory. */
c906108c
SS
2733 while (len > 0)
2734 {
ebafbe83 2735 /* Remember if the argument was written to the stack. */
566f0f7a 2736 int stack_used_p = 0;
46e0f506
MS
2737 int partial_len =
2738 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2739
acdb74a0
AC
2740 if (mips_debug)
2741 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2742 partial_len);
2743
566f0f7a 2744 /* Write this portion of the argument to the stack. */
f09ded24
AC
2745 if (argreg > MIPS_LAST_ARG_REGNUM
2746 || odd_sized_struct
2747 || fp_register_arg_p (typecode, arg_type))
c906108c 2748 {
c906108c
SS
2749 /* Should shorter than int integer values be
2750 promoted to int before being stored? */
c906108c 2751 int longword_offset = 0;
9ace0497 2752 CORE_ADDR addr;
566f0f7a 2753 stack_used_p = 1;
d7449b42 2754 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2755 {
d929b26f 2756 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2757 (typecode == TYPE_CODE_INT ||
2758 typecode == TYPE_CODE_PTR ||
2759 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2760 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2761 else if ((typecode == TYPE_CODE_STRUCT ||
2762 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2763 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2764 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2765 }
c5aa993b 2766
9ace0497
AC
2767 if (mips_debug)
2768 {
cb3d25d1
MS
2769 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2770 paddr_nz (stack_offset));
2771 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2772 paddr_nz (longword_offset));
9ace0497 2773 }
361d1df0 2774
9ace0497
AC
2775 addr = sp + stack_offset + longword_offset;
2776
2777 if (mips_debug)
2778 {
2779 int i;
cb3d25d1
MS
2780 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2781 paddr_nz (addr));
9ace0497
AC
2782 for (i = 0; i < partial_len; i++)
2783 {
cb3d25d1
MS
2784 fprintf_unfiltered (gdb_stdlog, "%02x",
2785 val[i] & 0xff);
9ace0497
AC
2786 }
2787 }
2788 write_memory (addr, val, partial_len);
c906108c
SS
2789 }
2790
f09ded24
AC
2791 /* Note!!! This is NOT an else clause. Odd sized
2792 structs may go thru BOTH paths. Floating point
46e0f506 2793 arguments will not. */
566f0f7a 2794 /* Write this portion of the argument to a general
46e0f506 2795 purpose register. */
f09ded24
AC
2796 if (argreg <= MIPS_LAST_ARG_REGNUM
2797 && !fp_register_arg_p (typecode, arg_type))
c906108c 2798 {
9ace0497 2799 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2800
9ace0497 2801 if (mips_debug)
acdb74a0 2802 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2803 argreg,
2804 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2805 write_register (argreg, regval);
2806 argreg++;
c906108c 2807 }
c5aa993b 2808
c906108c
SS
2809 len -= partial_len;
2810 val += partial_len;
2811
566f0f7a
AC
2812 /* Compute the the offset into the stack at which we
2813 will copy the next parameter.
2814
566f0f7a 2815 In the new EABI (and the NABI32), the stack_offset
46e0f506 2816 only needs to be adjusted when it has been used. */
c906108c 2817
46e0f506 2818 if (stack_used_p)
d929b26f 2819 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2820 }
2821 }
9ace0497
AC
2822 if (mips_debug)
2823 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2824 }
2825
0f71a2f6
JM
2826 /* Return adjusted stack pointer. */
2827 return sp;
2828}
2829
ebafbe83
MS
2830/* N32/N64 version of push_arguments. */
2831
f7ab6ec6 2832static CORE_ADDR
cb3d25d1
MS
2833mips_n32n64_push_arguments (int nargs,
2834 struct value **args,
2835 CORE_ADDR sp,
2836 int struct_return,
2837 CORE_ADDR struct_addr)
2838{
2839 int argreg;
2840 int float_argreg;
2841 int argnum;
2842 int len = 0;
2843 int stack_offset = 0;
2844
2845 /* First ensure that the stack and structure return address (if any)
2846 are properly aligned. The stack has to be at least 64-bit
2847 aligned even on 32-bit machines, because doubles must be 64-bit
2848 aligned. For n32 and n64, stack frames need to be 128-bit
2849 aligned, so we round to this widest known alignment. */
2850
2851 sp = ROUND_DOWN (sp, 16);
2852 struct_addr = ROUND_DOWN (struct_addr, 16);
2853
2854 /* Now make space on the stack for the args. */
2855 for (argnum = 0; argnum < nargs; argnum++)
2856 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2857 MIPS_STACK_ARGSIZE);
2858 sp -= ROUND_UP (len, 16);
2859
2860 if (mips_debug)
2861 fprintf_unfiltered (gdb_stdlog,
2862 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2863 paddr_nz (sp), ROUND_UP (len, 16));
2864
2865 /* Initialize the integer and float register pointers. */
2866 argreg = A0_REGNUM;
2867 float_argreg = FPA0_REGNUM;
2868
46e0f506 2869 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2870 if (struct_return)
2871 {
2872 if (mips_debug)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2875 argreg, paddr_nz (struct_addr));
2876 write_register (argreg++, struct_addr);
2877 }
2878
2879 /* Now load as many as possible of the first arguments into
2880 registers, and push the rest onto the stack. Loop thru args
2881 from first to last. */
2882 for (argnum = 0; argnum < nargs; argnum++)
2883 {
2884 char *val;
2885 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2886 struct value *arg = args[argnum];
2887 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2888 int len = TYPE_LENGTH (arg_type);
2889 enum type_code typecode = TYPE_CODE (arg_type);
2890
2891 if (mips_debug)
2892 fprintf_unfiltered (gdb_stdlog,
2893 "mips_n32n64_push_arguments: %d len=%d type=%d",
2894 argnum + 1, len, (int) typecode);
2895
2896 val = (char *) VALUE_CONTENTS (arg);
2897
2898 if (fp_register_arg_p (typecode, arg_type)
2899 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2900 {
2901 /* This is a floating point value that fits entirely
2902 in a single register. */
2903 /* On 32 bit ABI's the float_argreg is further adjusted
2904 above to ensure that it is even register aligned. */
2905 LONGEST regval = extract_unsigned_integer (val, len);
2906 if (mips_debug)
2907 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2908 float_argreg, phex (regval, len));
2909 write_register (float_argreg++, regval);
2910
2911 if (mips_debug)
2912 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2913 argreg, phex (regval, len));
2914 write_register (argreg, regval);
2915 argreg += 1;
2916 }
2917 else
2918 {
2919 /* Copy the argument to general registers or the stack in
2920 register-sized pieces. Large arguments are split between
2921 registers and stack. */
2922 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2923 are treated specially: Irix cc passes them in registers
2924 where gcc sometimes puts them on the stack. For maximum
2925 compatibility, we will put them in both places. */
2926 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2927 (len % MIPS_SAVED_REGSIZE != 0));
2928 /* Note: Floating-point values that didn't fit into an FP
2929 register are only written to memory. */
2930 while (len > 0)
2931 {
2932 /* Rememer if the argument was written to the stack. */
2933 int stack_used_p = 0;
2934 int partial_len = len < MIPS_SAVED_REGSIZE ?
2935 len : MIPS_SAVED_REGSIZE;
2936
2937 if (mips_debug)
2938 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2939 partial_len);
2940
2941 /* Write this portion of the argument to the stack. */
2942 if (argreg > MIPS_LAST_ARG_REGNUM
2943 || odd_sized_struct
2944 || fp_register_arg_p (typecode, arg_type))
2945 {
2946 /* Should shorter than int integer values be
2947 promoted to int before being stored? */
2948 int longword_offset = 0;
2949 CORE_ADDR addr;
2950 stack_used_p = 1;
2951 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2952 {
2953 if (MIPS_STACK_ARGSIZE == 8 &&
2954 (typecode == TYPE_CODE_INT ||
2955 typecode == TYPE_CODE_PTR ||
2956 typecode == TYPE_CODE_FLT) && len <= 4)
2957 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
2958 }
2959
2960 if (mips_debug)
2961 {
2962 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2963 paddr_nz (stack_offset));
2964 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2965 paddr_nz (longword_offset));
2966 }
2967
2968 addr = sp + stack_offset + longword_offset;
2969
2970 if (mips_debug)
2971 {
2972 int i;
2973 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2974 paddr_nz (addr));
2975 for (i = 0; i < partial_len; i++)
2976 {
2977 fprintf_unfiltered (gdb_stdlog, "%02x",
2978 val[i] & 0xff);
2979 }
2980 }
2981 write_memory (addr, val, partial_len);
2982 }
2983
2984 /* Note!!! This is NOT an else clause. Odd sized
2985 structs may go thru BOTH paths. Floating point
2986 arguments will not. */
2987 /* Write this portion of the argument to a general
2988 purpose register. */
2989 if (argreg <= MIPS_LAST_ARG_REGNUM
2990 && !fp_register_arg_p (typecode, arg_type))
2991 {
2992 LONGEST regval = extract_unsigned_integer (val, partial_len);
2993
2994 /* A non-floating-point argument being passed in a
2995 general register. If a struct or union, and if
2996 the remaining length is smaller than the register
2997 size, we have to adjust the register value on
2998 big endian targets.
2999
3000 It does not seem to be necessary to do the
3001 same for integral types.
3002
3003 cagney/2001-07-23: gdb/179: Also, GCC, when
3004 outputting LE O32 with sizeof (struct) <
3005 MIPS_SAVED_REGSIZE, generates a left shift as
3006 part of storing the argument in a register a
3007 register (the left shift isn't generated when
3008 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3009 is quite possible that this is GCC contradicting
3010 the LE/O32 ABI, GDB has not been adjusted to
3011 accommodate this. Either someone needs to
3012 demonstrate that the LE/O32 ABI specifies such a
3013 left shift OR this new ABI gets identified as
3014 such and GDB gets tweaked accordingly. */
3015
3016 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3017 && partial_len < MIPS_SAVED_REGSIZE
3018 && (typecode == TYPE_CODE_STRUCT ||
3019 typecode == TYPE_CODE_UNION))
3020 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3021 TARGET_CHAR_BIT);
3022
3023 if (mips_debug)
3024 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3025 argreg,
3026 phex (regval, MIPS_SAVED_REGSIZE));
3027 write_register (argreg, regval);
3028 argreg++;
3029 }
3030
3031 len -= partial_len;
3032 val += partial_len;
3033
3034 /* Compute the the offset into the stack at which we
3035 will copy the next parameter.
3036
3037 In N32 (N64?), the stack_offset only needs to be
3038 adjusted when it has been used. */
3039
3040 if (stack_used_p)
3041 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3042 }
3043 }
3044 if (mips_debug)
3045 fprintf_unfiltered (gdb_stdlog, "\n");
3046 }
3047
3048 /* Return adjusted stack pointer. */
3049 return sp;
3050}
3051
46cac009 3052/* O32 version of push_arguments. */
ebafbe83 3053
46cac009
AC
3054static CORE_ADDR
3055mips_o32_push_arguments (int nargs,
3056 struct value **args,
3057 CORE_ADDR sp,
3058 int struct_return,
3059 CORE_ADDR struct_addr)
ebafbe83
MS
3060{
3061 int argreg;
3062 int float_argreg;
3063 int argnum;
3064 int len = 0;
3065 int stack_offset = 0;
ebafbe83
MS
3066
3067 /* First ensure that the stack and structure return address (if any)
3068 are properly aligned. The stack has to be at least 64-bit
3069 aligned even on 32-bit machines, because doubles must be 64-bit
3070 aligned. For n32 and n64, stack frames need to be 128-bit
3071 aligned, so we round to this widest known alignment. */
3072
3073 sp = ROUND_DOWN (sp, 16);
3074 struct_addr = ROUND_DOWN (struct_addr, 16);
3075
3076 /* Now make space on the stack for the args. */
3077 for (argnum = 0; argnum < nargs; argnum++)
3078 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3079 MIPS_STACK_ARGSIZE);
3080 sp -= ROUND_UP (len, 16);
3081
3082 if (mips_debug)
3083 fprintf_unfiltered (gdb_stdlog,
46cac009 3084 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
3085 paddr_nz (sp), ROUND_UP (len, 16));
3086
3087 /* Initialize the integer and float register pointers. */
3088 argreg = A0_REGNUM;
3089 float_argreg = FPA0_REGNUM;
3090
bcb0cc15 3091 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3092 if (struct_return)
3093 {
3094 if (mips_debug)
3095 fprintf_unfiltered (gdb_stdlog,
46cac009 3096 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3097 argreg, paddr_nz (struct_addr));
3098 write_register (argreg++, struct_addr);
3099 stack_offset += MIPS_STACK_ARGSIZE;
3100 }
3101
3102 /* Now load as many as possible of the first arguments into
3103 registers, and push the rest onto the stack. Loop thru args
3104 from first to last. */
3105 for (argnum = 0; argnum < nargs; argnum++)
3106 {
3107 char *val;
3108 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3109 struct value *arg = args[argnum];
3110 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3111 int len = TYPE_LENGTH (arg_type);
3112 enum type_code typecode = TYPE_CODE (arg_type);
3113
3114 if (mips_debug)
3115 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3116 "mips_o32_push_arguments: %d len=%d type=%d",
3117 argnum + 1, len, (int) typecode);
3118
3119 val = (char *) VALUE_CONTENTS (arg);
3120
3121 /* 32-bit ABIs always start floating point arguments in an
3122 even-numbered floating point register. Round the FP register
3123 up before the check to see if there are any FP registers
3124 left. O32/O64 targets also pass the FP in the integer
3125 registers so also round up normal registers. */
3126 if (!FP_REGISTER_DOUBLE
3127 && fp_register_arg_p (typecode, arg_type))
3128 {
3129 if ((float_argreg & 1))
3130 float_argreg++;
3131 }
3132
3133 /* Floating point arguments passed in registers have to be
3134 treated specially. On 32-bit architectures, doubles
3135 are passed in register pairs; the even register gets
3136 the low word, and the odd register gets the high word.
3137 On O32/O64, the first two floating point arguments are
3138 also copied to general registers, because MIPS16 functions
3139 don't use float registers for arguments. This duplication of
3140 arguments in general registers can't hurt non-MIPS16 functions
3141 because those registers are normally skipped. */
3142
3143 if (fp_register_arg_p (typecode, arg_type)
3144 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3145 {
3146 if (!FP_REGISTER_DOUBLE && len == 8)
3147 {
3148 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3149 unsigned long regval;
3150
3151 /* Write the low word of the double to the even register(s). */
3152 regval = extract_unsigned_integer (val + low_offset, 4);
3153 if (mips_debug)
3154 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3155 float_argreg, phex (regval, 4));
3156 write_register (float_argreg++, regval);
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3159 argreg, phex (regval, 4));
3160 write_register (argreg++, regval);
3161
3162 /* Write the high word of the double to the odd register(s). */
3163 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3166 float_argreg, phex (regval, 4));
3167 write_register (float_argreg++, regval);
3168
3169 if (mips_debug)
3170 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3171 argreg, phex (regval, 4));
3172 write_register (argreg++, regval);
3173 }
3174 else
3175 {
3176 /* This is a floating point value that fits entirely
3177 in a single register. */
3178 /* On 32 bit ABI's the float_argreg is further adjusted
3179 above to ensure that it is even register aligned. */
3180 LONGEST regval = extract_unsigned_integer (val, len);
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3183 float_argreg, phex (regval, len));
3184 write_register (float_argreg++, regval);
3185 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3186 registers for each argument. The below is (my
3187 guess) to ensure that the corresponding integer
3188 register has reserved the same space. */
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3191 argreg, phex (regval, len));
3192 write_register (argreg, regval);
3193 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3194 }
3195 /* Reserve space for the FP register. */
3196 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3197 }
3198 else
3199 {
3200 /* Copy the argument to general registers or the stack in
3201 register-sized pieces. Large arguments are split between
3202 registers and stack. */
3203 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3204 are treated specially: Irix cc passes them in registers
3205 where gcc sometimes puts them on the stack. For maximum
3206 compatibility, we will put them in both places. */
3207 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3208 (len % MIPS_SAVED_REGSIZE != 0));
3209 /* Structures should be aligned to eight bytes (even arg registers)
3210 on MIPS_ABI_O32, if their first member has double precision. */
3211 if (MIPS_SAVED_REGSIZE < 8
3212 && mips_type_needs_double_align (arg_type))
3213 {
3214 if ((argreg & 1))
3215 argreg++;
3216 }
3217 /* Note: Floating-point values that didn't fit into an FP
3218 register are only written to memory. */
3219 while (len > 0)
3220 {
3221 /* Remember if the argument was written to the stack. */
3222 int stack_used_p = 0;
3223 int partial_len =
3224 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3225
3226 if (mips_debug)
3227 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3228 partial_len);
3229
3230 /* Write this portion of the argument to the stack. */
3231 if (argreg > MIPS_LAST_ARG_REGNUM
3232 || odd_sized_struct
3233 || fp_register_arg_p (typecode, arg_type))
3234 {
3235 /* Should shorter than int integer values be
3236 promoted to int before being stored? */
3237 int longword_offset = 0;
3238 CORE_ADDR addr;
3239 stack_used_p = 1;
3240 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3241 {
3242 if (MIPS_STACK_ARGSIZE == 8 &&
3243 (typecode == TYPE_CODE_INT ||
3244 typecode == TYPE_CODE_PTR ||
3245 typecode == TYPE_CODE_FLT) && len <= 4)
3246 longword_offset = MIPS_STACK_ARGSIZE - len;
3247 }
3248
3249 if (mips_debug)
3250 {
3251 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3252 paddr_nz (stack_offset));
3253 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3254 paddr_nz (longword_offset));
3255 }
3256
3257 addr = sp + stack_offset + longword_offset;
3258
3259 if (mips_debug)
3260 {
3261 int i;
3262 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3263 paddr_nz (addr));
3264 for (i = 0; i < partial_len; i++)
3265 {
3266 fprintf_unfiltered (gdb_stdlog, "%02x",
3267 val[i] & 0xff);
3268 }
3269 }
3270 write_memory (addr, val, partial_len);
3271 }
3272
3273 /* Note!!! This is NOT an else clause. Odd sized
3274 structs may go thru BOTH paths. Floating point
3275 arguments will not. */
3276 /* Write this portion of the argument to a general
3277 purpose register. */
3278 if (argreg <= MIPS_LAST_ARG_REGNUM
3279 && !fp_register_arg_p (typecode, arg_type))
3280 {
3281 LONGEST regval = extract_signed_integer (val, partial_len);
3282 /* Value may need to be sign extended, because
3283 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3284
3285 /* A non-floating-point argument being passed in a
3286 general register. If a struct or union, and if
3287 the remaining length is smaller than the register
3288 size, we have to adjust the register value on
3289 big endian targets.
3290
3291 It does not seem to be necessary to do the
3292 same for integral types.
3293
3294 Also don't do this adjustment on O64 binaries.
3295
3296 cagney/2001-07-23: gdb/179: Also, GCC, when
3297 outputting LE O32 with sizeof (struct) <
3298 MIPS_SAVED_REGSIZE, generates a left shift as
3299 part of storing the argument in a register a
3300 register (the left shift isn't generated when
3301 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3302 is quite possible that this is GCC contradicting
3303 the LE/O32 ABI, GDB has not been adjusted to
3304 accommodate this. Either someone needs to
3305 demonstrate that the LE/O32 ABI specifies such a
3306 left shift OR this new ABI gets identified as
3307 such and GDB gets tweaked accordingly. */
3308
3309 if (MIPS_SAVED_REGSIZE < 8
3310 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3311 && partial_len < MIPS_SAVED_REGSIZE
3312 && (typecode == TYPE_CODE_STRUCT ||
3313 typecode == TYPE_CODE_UNION))
3314 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3315 TARGET_CHAR_BIT);
3316
3317 if (mips_debug)
3318 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3319 argreg,
3320 phex (regval, MIPS_SAVED_REGSIZE));
3321 write_register (argreg, regval);
3322 argreg++;
3323
3324 /* Prevent subsequent floating point arguments from
3325 being passed in floating point registers. */
3326 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3327 }
3328
3329 len -= partial_len;
3330 val += partial_len;
3331
3332 /* Compute the the offset into the stack at which we
3333 will copy the next parameter.
3334
3335 In older ABIs, the caller reserved space for
3336 registers that contained arguments. This was loosely
3337 refered to as their "home". Consequently, space is
3338 always allocated. */
3339
3340 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3341 }
3342 }
3343 if (mips_debug)
3344 fprintf_unfiltered (gdb_stdlog, "\n");
3345 }
3346
3347 /* Return adjusted stack pointer. */
3348 return sp;
3349}
3350
3351/* O64 version of push_arguments. */
3352
3353static CORE_ADDR
3354mips_o64_push_arguments (int nargs,
3355 struct value **args,
3356 CORE_ADDR sp,
3357 int struct_return,
3358 CORE_ADDR struct_addr)
3359{
3360 int argreg;
3361 int float_argreg;
3362 int argnum;
3363 int len = 0;
3364 int stack_offset = 0;
3365
3366 /* First ensure that the stack and structure return address (if any)
3367 are properly aligned. The stack has to be at least 64-bit
3368 aligned even on 32-bit machines, because doubles must be 64-bit
3369 aligned. For n32 and n64, stack frames need to be 128-bit
3370 aligned, so we round to this widest known alignment. */
3371
3372 sp = ROUND_DOWN (sp, 16);
3373 struct_addr = ROUND_DOWN (struct_addr, 16);
3374
3375 /* Now make space on the stack for the args. */
3376 for (argnum = 0; argnum < nargs; argnum++)
3377 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3378 MIPS_STACK_ARGSIZE);
3379 sp -= ROUND_UP (len, 16);
3380
3381 if (mips_debug)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3384 paddr_nz (sp), ROUND_UP (len, 16));
3385
3386 /* Initialize the integer and float register pointers. */
3387 argreg = A0_REGNUM;
3388 float_argreg = FPA0_REGNUM;
3389
3390 /* The struct_return pointer occupies the first parameter-passing reg. */
3391 if (struct_return)
3392 {
3393 if (mips_debug)
3394 fprintf_unfiltered (gdb_stdlog,
3395 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3396 argreg, paddr_nz (struct_addr));
3397 write_register (argreg++, struct_addr);
3398 stack_offset += MIPS_STACK_ARGSIZE;
3399 }
3400
3401 /* Now load as many as possible of the first arguments into
3402 registers, and push the rest onto the stack. Loop thru args
3403 from first to last. */
3404 for (argnum = 0; argnum < nargs; argnum++)
3405 {
3406 char *val;
3407 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3408 struct value *arg = args[argnum];
3409 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3410 int len = TYPE_LENGTH (arg_type);
3411 enum type_code typecode = TYPE_CODE (arg_type);
3412
3413 if (mips_debug)
3414 fprintf_unfiltered (gdb_stdlog,
3415 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3416 argnum + 1, len, (int) typecode);
3417
3418 val = (char *) VALUE_CONTENTS (arg);
3419
3420 /* 32-bit ABIs always start floating point arguments in an
3421 even-numbered floating point register. Round the FP register
3422 up before the check to see if there are any FP registers
3423 left. O32/O64 targets also pass the FP in the integer
3424 registers so also round up normal registers. */
3425 if (!FP_REGISTER_DOUBLE
3426 && fp_register_arg_p (typecode, arg_type))
3427 {
3428 if ((float_argreg & 1))
3429 float_argreg++;
3430 }
3431
3432 /* Floating point arguments passed in registers have to be
3433 treated specially. On 32-bit architectures, doubles
3434 are passed in register pairs; the even register gets
3435 the low word, and the odd register gets the high word.
3436 On O32/O64, the first two floating point arguments are
3437 also copied to general registers, because MIPS16 functions
3438 don't use float registers for arguments. This duplication of
3439 arguments in general registers can't hurt non-MIPS16 functions
3440 because those registers are normally skipped. */
3441
3442 if (fp_register_arg_p (typecode, arg_type)
3443 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3444 {
3445 if (!FP_REGISTER_DOUBLE && len == 8)
3446 {
3447 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3448 unsigned long regval;
3449
3450 /* Write the low word of the double to the even register(s). */
3451 regval = extract_unsigned_integer (val + low_offset, 4);
3452 if (mips_debug)
3453 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3454 float_argreg, phex (regval, 4));
3455 write_register (float_argreg++, regval);
3456 if (mips_debug)
3457 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3458 argreg, phex (regval, 4));
3459 write_register (argreg++, regval);
3460
3461 /* Write the high word of the double to the odd register(s). */
3462 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3463 if (mips_debug)
3464 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3465 float_argreg, phex (regval, 4));
3466 write_register (float_argreg++, regval);
3467
3468 if (mips_debug)
3469 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3470 argreg, phex (regval, 4));
3471 write_register (argreg++, regval);
3472 }
3473 else
3474 {
3475 /* This is a floating point value that fits entirely
3476 in a single register. */
3477 /* On 32 bit ABI's the float_argreg is further adjusted
3478 above to ensure that it is even register aligned. */
3479 LONGEST regval = extract_unsigned_integer (val, len);
3480 if (mips_debug)
3481 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3482 float_argreg, phex (regval, len));
3483 write_register (float_argreg++, regval);
3484 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3485 registers for each argument. The below is (my
3486 guess) to ensure that the corresponding integer
3487 register has reserved the same space. */
3488 if (mips_debug)
3489 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3490 argreg, phex (regval, len));
3491 write_register (argreg, regval);
3492 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3493 }
3494 /* Reserve space for the FP register. */
3495 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3496 }
3497 else
3498 {
3499 /* Copy the argument to general registers or the stack in
3500 register-sized pieces. Large arguments are split between
3501 registers and stack. */
3502 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3503 are treated specially: Irix cc passes them in registers
3504 where gcc sometimes puts them on the stack. For maximum
3505 compatibility, we will put them in both places. */
3506 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3507 (len % MIPS_SAVED_REGSIZE != 0));
3508 /* Structures should be aligned to eight bytes (even arg registers)
3509 on MIPS_ABI_O32, if their first member has double precision. */
3510 if (MIPS_SAVED_REGSIZE < 8
3511 && mips_type_needs_double_align (arg_type))
3512 {
3513 if ((argreg & 1))
3514 argreg++;
3515 }
3516 /* Note: Floating-point values that didn't fit into an FP
3517 register are only written to memory. */
3518 while (len > 0)
3519 {
3520 /* Remember if the argument was written to the stack. */
3521 int stack_used_p = 0;
3522 int partial_len =
3523 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3524
3525 if (mips_debug)
3526 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3527 partial_len);
3528
3529 /* Write this portion of the argument to the stack. */
3530 if (argreg > MIPS_LAST_ARG_REGNUM
3531 || odd_sized_struct
3532 || fp_register_arg_p (typecode, arg_type))
3533 {
3534 /* Should shorter than int integer values be
3535 promoted to int before being stored? */
3536 int longword_offset = 0;
3537 CORE_ADDR addr;
3538 stack_used_p = 1;
3539 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3540 {
3541 if (MIPS_STACK_ARGSIZE == 8 &&
3542 (typecode == TYPE_CODE_INT ||
3543 typecode == TYPE_CODE_PTR ||
3544 typecode == TYPE_CODE_FLT) && len <= 4)
3545 longword_offset = MIPS_STACK_ARGSIZE - len;
3546 }
3547
3548 if (mips_debug)
3549 {
3550 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3551 paddr_nz (stack_offset));
3552 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3553 paddr_nz (longword_offset));
3554 }
3555
3556 addr = sp + stack_offset + longword_offset;
3557
3558 if (mips_debug)
3559 {
3560 int i;
3561 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3562 paddr_nz (addr));
3563 for (i = 0; i < partial_len; i++)
3564 {
3565 fprintf_unfiltered (gdb_stdlog, "%02x",
3566 val[i] & 0xff);
3567 }
3568 }
3569 write_memory (addr, val, partial_len);
3570 }
3571
3572 /* Note!!! This is NOT an else clause. Odd sized
3573 structs may go thru BOTH paths. Floating point
3574 arguments will not. */
3575 /* Write this portion of the argument to a general
3576 purpose register. */
3577 if (argreg <= MIPS_LAST_ARG_REGNUM
3578 && !fp_register_arg_p (typecode, arg_type))
3579 {
3580 LONGEST regval = extract_signed_integer (val, partial_len);
3581 /* Value may need to be sign extended, because
3582 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3583
3584 /* A non-floating-point argument being passed in a
3585 general register. If a struct or union, and if
3586 the remaining length is smaller than the register
3587 size, we have to adjust the register value on
3588 big endian targets.
3589
3590 It does not seem to be necessary to do the
3591 same for integral types.
3592
3593 Also don't do this adjustment on O64 binaries.
3594
3595 cagney/2001-07-23: gdb/179: Also, GCC, when
3596 outputting LE O32 with sizeof (struct) <
3597 MIPS_SAVED_REGSIZE, generates a left shift as
3598 part of storing the argument in a register a
3599 register (the left shift isn't generated when
3600 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3601 is quite possible that this is GCC contradicting
3602 the LE/O32 ABI, GDB has not been adjusted to
3603 accommodate this. Either someone needs to
3604 demonstrate that the LE/O32 ABI specifies such a
3605 left shift OR this new ABI gets identified as
3606 such and GDB gets tweaked accordingly. */
3607
3608 if (MIPS_SAVED_REGSIZE < 8
3609 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3610 && partial_len < MIPS_SAVED_REGSIZE
3611 && (typecode == TYPE_CODE_STRUCT ||
3612 typecode == TYPE_CODE_UNION))
3613 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3614 TARGET_CHAR_BIT);
3615
3616 if (mips_debug)
3617 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3618 argreg,
3619 phex (regval, MIPS_SAVED_REGSIZE));
3620 write_register (argreg, regval);
3621 argreg++;
3622
3623 /* Prevent subsequent floating point arguments from
3624 being passed in floating point registers. */
3625 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3626 }
3627
3628 len -= partial_len;
3629 val += partial_len;
3630
3631 /* Compute the the offset into the stack at which we
3632 will copy the next parameter.
3633
3634 In older ABIs, the caller reserved space for
3635 registers that contained arguments. This was loosely
3636 refered to as their "home". Consequently, space is
3637 always allocated. */
3638
3639 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3640 }
3641 }
3642 if (mips_debug)
3643 fprintf_unfiltered (gdb_stdlog, "\n");
3644 }
3645
3646 /* Return adjusted stack pointer. */
3647 return sp;
3648}
3649
f7ab6ec6 3650static CORE_ADDR
acdb74a0 3651mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3652{
c906108c
SS
3653 /* Set the return address register to point to the entry
3654 point of the program, where a breakpoint lies in wait. */
c5aa993b 3655 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3656 return sp;
3657}
3658
3659static void
c5aa993b 3660mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3661{
cb3d25d1 3662 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3663 int regsize;
3664 int offset;
3665 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3666 {
3667 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3668 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3669 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3670 : 0);
3671 }
3672 else
3673 {
3674 regsize = REGISTER_RAW_SIZE (regno);
3675 offset = 0;
3676 }
c906108c
SS
3677 *sp -= regsize;
3678 read_register_gen (regno, buffer);
7a292a7a 3679 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3680}
3681
3682/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3683#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3684
f7ab6ec6 3685static void
acdb74a0 3686mips_push_dummy_frame (void)
c906108c
SS
3687{
3688 int ireg;
c5aa993b
JM
3689 struct linked_proc_info *link = (struct linked_proc_info *)
3690 xmalloc (sizeof (struct linked_proc_info));
c906108c 3691 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3692 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3693 CORE_ADDR old_sp = sp;
3694 link->next = linked_proc_desc_table;
3695 linked_proc_desc_table = link;
3696
3697/* FIXME! are these correct ? */
c5aa993b 3698#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3699#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3700#define FLOAT_REG_SAVE_MASK MASK(0,19)
3701#define FLOAT_SINGLE_REG_SAVE_MASK \
3702 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3703 /*
3704 * The registers we must save are all those not preserved across
3705 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3706 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3707 * and FP Control/Status registers.
361d1df0 3708 *
c906108c
SS
3709 *
3710 * Dummy frame layout:
3711 * (high memory)
c5aa993b
JM
3712 * Saved PC
3713 * Saved MMHI, MMLO, FPC_CSR
3714 * Saved R31
3715 * Saved R28
3716 * ...
3717 * Saved R1
c906108c
SS
3718 * Saved D18 (i.e. F19, F18)
3719 * ...
3720 * Saved D0 (i.e. F1, F0)
c5aa993b 3721 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3722 * (low memory)
3723 */
3724
3725 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3726 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3727 PROC_FRAME_OFFSET (proc_desc) = 0;
3728 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3729 mips_push_register (&sp, PC_REGNUM);
3730 mips_push_register (&sp, HI_REGNUM);
3731 mips_push_register (&sp, LO_REGNUM);
3732 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3733
3734 /* Save general CPU registers */
c5aa993b 3735 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3736 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3737 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3738 for (ireg = 32; --ireg >= 0;)
3739 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3740 mips_push_register (&sp, ireg);
3741
3742 /* Save floating point registers starting with high order word */
c5aa993b 3743 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3744 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3745 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3746 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3747 from FP. */
c5aa993b
JM
3748 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3749 for (ireg = 32; --ireg >= 0;)
3750 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3751 mips_push_register (&sp, ireg + FP0_REGNUM);
3752
3753 /* Update the frame pointer for the call dummy and the stack pointer.
3754 Set the procedure's starting and ending addresses to point to the
3755 call dummy address at the entry point. */
3756 write_register (PUSH_FP_REGNUM, old_sp);
3757 write_register (SP_REGNUM, sp);
c5aa993b
JM
3758 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3759 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3760 SET_PROC_DESC_IS_DUMMY (proc_desc);
3761 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3762}
3763
f7ab6ec6 3764static void
acdb74a0 3765mips_pop_frame (void)
c906108c
SS
3766{
3767 register int regnum;
3768 struct frame_info *frame = get_current_frame ();
3769 CORE_ADDR new_sp = FRAME_FP (frame);
3770
cce74817 3771 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 3772
c5aa993b 3773 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c 3774 if (frame->saved_regs == NULL)
ffabd70d 3775 FRAME_INIT_SAVED_REGS (frame);
c906108c 3776 for (regnum = 0; regnum < NUM_REGS; regnum++)
e41b17f0
MS
3777 {
3778 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3779 && frame->saved_regs[regnum])
3780 write_register (regnum,
3781 read_memory_integer (frame->saved_regs[regnum],
3782 MIPS_SAVED_REGSIZE));
3783 }
757a7cc6 3784
c906108c
SS
3785 write_register (SP_REGNUM, new_sp);
3786 flush_cached_frames ();
3787
c5aa993b 3788 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3789 {
3790 struct linked_proc_info *pi_ptr, *prev_ptr;
3791
3792 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3793 pi_ptr != NULL;
3794 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3795 {
3796 if (&pi_ptr->info == proc_desc)
3797 break;
3798 }
3799
3800 if (pi_ptr == NULL)
3801 error ("Can't locate dummy extra frame info\n");
3802
3803 if (prev_ptr != NULL)
3804 prev_ptr->next = pi_ptr->next;
3805 else
3806 linked_proc_desc_table = pi_ptr->next;
3807
b8c9b27d 3808 xfree (pi_ptr);
c906108c
SS
3809
3810 write_register (HI_REGNUM,
c5aa993b 3811 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3812 MIPS_SAVED_REGSIZE));
c906108c 3813 write_register (LO_REGNUM,
c5aa993b 3814 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3815 MIPS_SAVED_REGSIZE));
c906108c
SS
3816 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3817 write_register (FCRCS_REGNUM,
c5aa993b 3818 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3819 MIPS_SAVED_REGSIZE));
c906108c
SS
3820 }
3821}
3822
f7ab6ec6
MS
3823static void
3824mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3825 struct value **args, struct type *type, int gcc_p)
3826{
3827 write_register(T9_REGNUM, fun);
3828}
3829
dd824b04
DJ
3830/* Floating point register management.
3831
3832 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3833 64bit operations, these early MIPS cpus treat fp register pairs
3834 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3835 registers and offer a compatibility mode that emulates the MIPS2 fp
3836 model. When operating in MIPS2 fp compat mode, later cpu's split
3837 double precision floats into two 32-bit chunks and store them in
3838 consecutive fp regs. To display 64-bit floats stored in this
3839 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3840 Throw in user-configurable endianness and you have a real mess.
3841
3842 The way this works is:
3843 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3844 double-precision value will be split across two logical registers.
3845 The lower-numbered logical register will hold the low-order bits,
3846 regardless of the processor's endianness.
3847 - If we are on a 64-bit processor, and we are looking for a
3848 single-precision value, it will be in the low ordered bits
3849 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3850 save slot in memory.
3851 - If we are in 64-bit mode, everything is straightforward.
3852
3853 Note that this code only deals with "live" registers at the top of the
3854 stack. We will attempt to deal with saved registers later, when
3855 the raw/cooked register interface is in place. (We need a general
3856 interface that can deal with dynamic saved register sizes -- fp
3857 regs could be 32 bits wide in one frame and 64 on the frame above
3858 and below). */
3859
67b2c998
DJ
3860static struct type *
3861mips_float_register_type (void)
3862{
361d1df0 3863 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3864 return builtin_type_ieee_single_big;
3865 else
3866 return builtin_type_ieee_single_little;
3867}
3868
3869static struct type *
3870mips_double_register_type (void)
3871{
361d1df0 3872 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3873 return builtin_type_ieee_double_big;
3874 else
3875 return builtin_type_ieee_double_little;
3876}
3877
dd824b04
DJ
3878/* Copy a 32-bit single-precision value from the current frame
3879 into rare_buffer. */
3880
3881static void
3882mips_read_fp_register_single (int regno, char *rare_buffer)
3883{
3884 int raw_size = REGISTER_RAW_SIZE (regno);
3885 char *raw_buffer = alloca (raw_size);
3886
cda5a58a 3887 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
3888 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3889 if (raw_size == 8)
3890 {
3891 /* We have a 64-bit value for this register. Find the low-order
3892 32 bits. */
3893 int offset;
3894
3895 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3896 offset = 4;
3897 else
3898 offset = 0;
3899
3900 memcpy (rare_buffer, raw_buffer + offset, 4);
3901 }
3902 else
3903 {
3904 memcpy (rare_buffer, raw_buffer, 4);
3905 }
3906}
3907
3908/* Copy a 64-bit double-precision value from the current frame into
3909 rare_buffer. This may include getting half of it from the next
3910 register. */
3911
3912static void
3913mips_read_fp_register_double (int regno, char *rare_buffer)
3914{
3915 int raw_size = REGISTER_RAW_SIZE (regno);
3916
3917 if (raw_size == 8 && !mips2_fp_compat ())
3918 {
3919 /* We have a 64-bit value for this register, and we should use
3920 all 64 bits. */
cda5a58a 3921 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
3922 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3923 }
3924 else
3925 {
3926 if ((regno - FP0_REGNUM) & 1)
3927 internal_error (__FILE__, __LINE__,
3928 "mips_read_fp_register_double: bad access to "
3929 "odd-numbered FP register");
3930
3931 /* mips_read_fp_register_single will find the correct 32 bits from
3932 each register. */
3933 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3934 {
3935 mips_read_fp_register_single (regno, rare_buffer + 4);
3936 mips_read_fp_register_single (regno + 1, rare_buffer);
3937 }
361d1df0 3938 else
dd824b04
DJ
3939 {
3940 mips_read_fp_register_single (regno, rare_buffer);
3941 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3942 }
3943 }
3944}
3945
c906108c 3946static void
acdb74a0 3947mips_print_register (int regnum, int all)
c906108c 3948{
119d55d8 3949 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
3950
3951 /* Get the data in raw format. */
cda5a58a 3952 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
3953 {
3954 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3955 return;
3956 }
3957
dd824b04
DJ
3958 /* If we have a actual 32-bit floating point register (or we are in
3959 32-bit compatibility mode), and the register is even-numbered,
3960 also print it as a double (spanning two registers). */
c906108c 3961 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
3962 && (REGISTER_RAW_SIZE (regnum) == 4
3963 || mips2_fp_compat ())
c5aa993b 3964 && !((regnum - FP0_REGNUM) & 1))
dd824b04 3965 {
cb3d25d1 3966 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 3967
dd824b04 3968 mips_read_fp_register_double (regnum, dbuffer);
c906108c 3969
dd824b04 3970 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 3971 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
3972 gdb_stdout, 0, 1, 0, Val_pretty_default);
3973 printf_filtered ("); ");
3974 }
c906108c
SS
3975 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3976
3977 /* The problem with printing numeric register names (r26, etc.) is that
3978 the user can't use them on input. Probably the best solution is to
3979 fix it so that either the numeric or the funky (a2, etc.) names
3980 are accepted on input. */
3981 if (regnum < MIPS_NUMREGS)
3982 printf_filtered ("(r%d): ", regnum);
3983 else
3984 printf_filtered (": ");
3985
3986 /* If virtual format is floating, print it that way. */
3987 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
3988 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
3989 {
3990 /* We have a meaningful 64-bit value in this register. Show
3991 it as a 32-bit float and a 64-bit double. */
d7449b42 3992 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
3993
3994 printf_filtered (" (float) ");
67b2c998 3995 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
3996 gdb_stdout, 0, 1, 0, Val_pretty_default);
3997 printf_filtered (", (double) ");
67b2c998 3998 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
3999 gdb_stdout, 0, 1, 0, Val_pretty_default);
4000 }
4001 else
4002 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4003 gdb_stdout, 0, 1, 0, Val_pretty_default);
4004 /* Else print as integer in hex. */
4005 else
ed9a39eb
JM
4006 {
4007 int offset;
4008
d7449b42 4009 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
4010 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4011 else
4012 offset = 0;
361d1df0 4013
ed9a39eb
JM
4014 print_scalar_formatted (raw_buffer + offset,
4015 REGISTER_VIRTUAL_TYPE (regnum),
4016 'x', 0, gdb_stdout);
4017 }
c906108c
SS
4018}
4019
361d1df0 4020/* Replacement for generic do_registers_info.
c906108c
SS
4021 Print regs in pretty columns. */
4022
4023static int
acdb74a0 4024do_fp_register_row (int regnum)
c5aa993b 4025{ /* do values for FP (float) regs */
dd824b04 4026 char *raw_buffer;
c906108c
SS
4027 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4028 int inv1, inv2, inv3;
c5aa993b 4029
dd824b04 4030 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4031
dd824b04 4032 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4033 {
dd824b04
DJ
4034 /* 4-byte registers: we can fit two registers per row. */
4035 /* Also print every pair of 4-byte regs as an 8-byte double. */
4036 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4037 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4038
dd824b04 4039 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 4040 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
4041
4042 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4043 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4044
1adad886
AC
4045 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4046 if (inv1)
4047 printf_filtered (": <invalid float>");
4048 else
4049 printf_filtered ("%-17.9g", flt1);
4050
4051 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4052 if (inv2)
4053 printf_filtered (": <invalid float>");
4054 else
4055 printf_filtered ("%-17.9g", flt2);
4056
4057 printf_filtered (" dbl: ");
4058 if (inv3)
4059 printf_filtered ("<invalid double>");
4060 else
4061 printf_filtered ("%-24.17g", doub);
4062 printf_filtered ("\n");
4063
c906108c 4064 /* may want to do hex display here (future enhancement) */
c5aa993b 4065 regnum += 2;
c906108c
SS
4066 }
4067 else
dd824b04
DJ
4068 {
4069 /* Eight byte registers: print each one as float AND as double. */
4070 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 4071 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 4072
dd824b04 4073 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 4074 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 4075
1adad886
AC
4076 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4077 if (inv1)
4078 printf_filtered ("<invalid float>");
4079 else
4080 printf_filtered ("flt: %-17.9g", flt1);
4081
4082 printf_filtered (" dbl: ");
4083 if (inv3)
4084 printf_filtered ("<invalid double>");
4085 else
4086 printf_filtered ("%-24.17g", doub);
4087
4088 printf_filtered ("\n");
c906108c
SS
4089 /* may want to do hex display here (future enhancement) */
4090 regnum++;
4091 }
4092 return regnum;
4093}
4094
4095/* Print a row's worth of GP (int) registers, with name labels above */
4096
4097static int
acdb74a0 4098do_gp_register_row (int regnum)
c906108c
SS
4099{
4100 /* do values for GP (int) regs */
cb3d25d1 4101 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4102 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4103 int col, byte;
4104 int start_regnum = regnum;
4105 int numregs = NUM_REGS;
4106
4107
4108 /* For GP registers, we print a separate row of names above the vals */
4109 printf_filtered (" ");
4110 for (col = 0; col < ncols && regnum < numregs; regnum++)
4111 {
4112 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4113 continue; /* unused register */
c906108c 4114 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4115 break; /* end the row: reached FP register */
4116 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4117 REGISTER_NAME (regnum));
4118 col++;
4119 }
c5aa993b 4120 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4121 start_regnum); /* print the R0 to R31 names */
4122
4123 regnum = start_regnum; /* go back to start of row */
4124 /* now print the values in hex, 4 or 8 to the row */
4125 for (col = 0; col < ncols && regnum < numregs; regnum++)
4126 {
4127 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4128 continue; /* unused register */
c906108c 4129 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4130 break; /* end row: reached FP register */
c906108c 4131 /* OK: get the data in raw format. */
cda5a58a 4132 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
4133 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4134 /* pad small registers */
43e526b9 4135 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4136 printf_filtered (" ");
4137 /* Now print the register value in hex, endian order. */
d7449b42 4138 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4139 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4140 byte < REGISTER_RAW_SIZE (regnum);
4141 byte++)
c906108c
SS
4142 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4143 else
43e526b9
JM
4144 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4145 byte >= 0;
4146 byte--)
c906108c
SS
4147 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4148 printf_filtered (" ");
4149 col++;
4150 }
c5aa993b 4151 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4152 printf_filtered ("\n");
4153
4154 return regnum;
4155}
4156
4157/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4158
bf1f5b4c 4159static void
acdb74a0 4160mips_do_registers_info (int regnum, int fpregs)
c906108c 4161{
c5aa993b 4162 if (regnum != -1) /* do one specified register */
c906108c
SS
4163 {
4164 if (*(REGISTER_NAME (regnum)) == '\0')
4165 error ("Not a valid register for the current processor type");
4166
4167 mips_print_register (regnum, 0);
4168 printf_filtered ("\n");
4169 }
c5aa993b
JM
4170 else
4171 /* do all (or most) registers */
c906108c
SS
4172 {
4173 regnum = 0;
4174 while (regnum < NUM_REGS)
4175 {
c5aa993b
JM
4176 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4177 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4178 regnum = do_fp_register_row (regnum); /* FP regs */
4179 else
4180 regnum += MIPS_NUMREGS; /* skip floating point regs */
4181 else
4182 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4183 }
4184 }
4185}
4186
c906108c
SS
4187/* Is this a branch with a delay slot? */
4188
a14ed312 4189static int is_delayed (unsigned long);
c906108c
SS
4190
4191static int
acdb74a0 4192is_delayed (unsigned long insn)
c906108c
SS
4193{
4194 int i;
4195 for (i = 0; i < NUMOPCODES; ++i)
4196 if (mips_opcodes[i].pinfo != INSN_MACRO
4197 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4198 break;
4199 return (i < NUMOPCODES
4200 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4201 | INSN_COND_BRANCH_DELAY
4202 | INSN_COND_BRANCH_LIKELY)));
4203}
4204
4205int
acdb74a0 4206mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4207{
4208 char buf[MIPS_INSTLEN];
4209
4210 /* There is no branch delay slot on MIPS16. */
4211 if (pc_is_mips16 (pc))
4212 return 0;
4213
4214 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4215 /* If error reading memory, guess that it is not a delayed branch. */
4216 return 0;
c5aa993b 4217 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4218}
4219
4220
4221/* Skip the PC past function prologue instructions (32-bit version).
4222 This is a helper function for mips_skip_prologue. */
4223
4224static CORE_ADDR
f7b9e9fc 4225mips32_skip_prologue (CORE_ADDR pc)
c906108c 4226{
c5aa993b
JM
4227 t_inst inst;
4228 CORE_ADDR end_pc;
4229 int seen_sp_adjust = 0;
4230 int load_immediate_bytes = 0;
4231
4232 /* Skip the typical prologue instructions. These are the stack adjustment
4233 instruction and the instructions that save registers on the stack
4234 or in the gcc frame. */
4235 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4236 {
4237 unsigned long high_word;
c906108c 4238
c5aa993b
JM
4239 inst = mips_fetch_instruction (pc);
4240 high_word = (inst >> 16) & 0xffff;
c906108c 4241
c5aa993b
JM
4242 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4243 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4244 seen_sp_adjust = 1;
4245 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4246 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4247 seen_sp_adjust = 1;
4248 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4249 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4250 && (inst & 0x001F0000)) /* reg != $zero */
4251 continue;
4252
4253 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4254 continue;
4255 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4256 /* sx reg,n($s8) */
4257 continue; /* reg != $zero */
4258
4259 /* move $s8,$sp. With different versions of gas this will be either
4260 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4261 Accept any one of these. */
4262 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4263 continue;
4264
4265 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4266 continue;
4267 else if (high_word == 0x3c1c) /* lui $gp,n */
4268 continue;
4269 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4270 continue;
4271 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4272 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4273 continue;
4274 /* The following instructions load $at or $t0 with an immediate
4275 value in preparation for a stack adjustment via
4276 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4277 a local variable, so we accept them only before a stack adjustment
4278 instruction was seen. */
4279 else if (!seen_sp_adjust)
4280 {
4281 if (high_word == 0x3c01 || /* lui $at,n */
4282 high_word == 0x3c08) /* lui $t0,n */
4283 {
4284 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4285 continue;
4286 }
4287 else if (high_word == 0x3421 || /* ori $at,$at,n */
4288 high_word == 0x3508 || /* ori $t0,$t0,n */
4289 high_word == 0x3401 || /* ori $at,$zero,n */
4290 high_word == 0x3408) /* ori $t0,$zero,n */
4291 {
4292 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4293 continue;
4294 }
4295 else
4296 break;
4297 }
4298 else
4299 break;
c906108c
SS
4300 }
4301
c5aa993b
JM
4302 /* In a frameless function, we might have incorrectly
4303 skipped some load immediate instructions. Undo the skipping
4304 if the load immediate was not followed by a stack adjustment. */
4305 if (load_immediate_bytes && !seen_sp_adjust)
4306 pc -= load_immediate_bytes;
4307 return pc;
c906108c
SS
4308}
4309
4310/* Skip the PC past function prologue instructions (16-bit version).
4311 This is a helper function for mips_skip_prologue. */
4312
4313static CORE_ADDR
f7b9e9fc 4314mips16_skip_prologue (CORE_ADDR pc)
c906108c 4315{
c5aa993b
JM
4316 CORE_ADDR end_pc;
4317 int extend_bytes = 0;
4318 int prev_extend_bytes;
c906108c 4319
c5aa993b
JM
4320 /* Table of instructions likely to be found in a function prologue. */
4321 static struct
c906108c
SS
4322 {
4323 unsigned short inst;
4324 unsigned short mask;
c5aa993b
JM
4325 }
4326 table[] =
4327 {
c906108c 4328 {
c5aa993b
JM
4329 0x6300, 0xff00
4330 }
4331 , /* addiu $sp,offset */
4332 {
4333 0xfb00, 0xff00
4334 }
4335 , /* daddiu $sp,offset */
4336 {
4337 0xd000, 0xf800
4338 }
4339 , /* sw reg,n($sp) */
4340 {
4341 0xf900, 0xff00
4342 }
4343 , /* sd reg,n($sp) */
4344 {
4345 0x6200, 0xff00
4346 }
4347 , /* sw $ra,n($sp) */
4348 {
4349 0xfa00, 0xff00
4350 }
4351 , /* sd $ra,n($sp) */
4352 {
4353 0x673d, 0xffff
4354 }
4355 , /* move $s1,sp */
4356 {
4357 0xd980, 0xff80
4358 }
4359 , /* sw $a0-$a3,n($s1) */
4360 {
4361 0x6704, 0xff1c
4362 }
4363 , /* move reg,$a0-$a3 */
4364 {
4365 0xe809, 0xf81f
4366 }
4367 , /* entry pseudo-op */
4368 {
4369 0x0100, 0xff00
4370 }
4371 , /* addiu $s1,$sp,n */
4372 {
4373 0, 0
4374 } /* end of table marker */
4375 };
4376
4377 /* Skip the typical prologue instructions. These are the stack adjustment
4378 instruction and the instructions that save registers on the stack
4379 or in the gcc frame. */
4380 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4381 {
4382 unsigned short inst;
4383 int i;
c906108c 4384
c5aa993b 4385 inst = mips_fetch_instruction (pc);
c906108c 4386
c5aa993b
JM
4387 /* Normally we ignore an extend instruction. However, if it is
4388 not followed by a valid prologue instruction, we must adjust
4389 the pc back over the extend so that it won't be considered
4390 part of the prologue. */
4391 if ((inst & 0xf800) == 0xf000) /* extend */
4392 {
4393 extend_bytes = MIPS16_INSTLEN;
4394 continue;
4395 }
4396 prev_extend_bytes = extend_bytes;
4397 extend_bytes = 0;
c906108c 4398
c5aa993b
JM
4399 /* Check for other valid prologue instructions besides extend. */
4400 for (i = 0; table[i].mask != 0; i++)
4401 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4402 break;
4403 if (table[i].mask != 0) /* it was in table? */
4404 continue; /* ignore it */
4405 else
4406 /* non-prologue */
4407 {
4408 /* Return the current pc, adjusted backwards by 2 if
4409 the previous instruction was an extend. */
4410 return pc - prev_extend_bytes;
4411 }
c906108c
SS
4412 }
4413 return pc;
4414}
4415
4416/* To skip prologues, I use this predicate. Returns either PC itself
4417 if the code at PC does not look like a function prologue; otherwise
4418 returns an address that (if we're lucky) follows the prologue. If
4419 LENIENT, then we must skip everything which is involved in setting
4420 up the frame (it's OK to skip more, just so long as we don't skip
4421 anything which might clobber the registers which are being saved.
4422 We must skip more in the case where part of the prologue is in the
4423 delay slot of a non-prologue instruction). */
4424
f7ab6ec6 4425static CORE_ADDR
f7b9e9fc 4426mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4427{
4428 /* See if we can determine the end of the prologue via the symbol table.
4429 If so, then return either PC, or the PC after the prologue, whichever
4430 is greater. */
4431
4432 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4433
4434 if (post_prologue_pc != 0)
4435 return max (pc, post_prologue_pc);
4436
4437 /* Can't determine prologue from the symbol table, need to examine
4438 instructions. */
4439
4440 if (pc_is_mips16 (pc))
f7b9e9fc 4441 return mips16_skip_prologue (pc);
c906108c 4442 else
f7b9e9fc 4443 return mips32_skip_prologue (pc);
c906108c 4444}
c906108c 4445
7a292a7a
SS
4446/* Determine how a return value is stored within the MIPS register
4447 file, given the return type `valtype'. */
4448
4449struct return_value_word
4450{
4451 int len;
4452 int reg;
4453 int reg_offset;
4454 int buf_offset;
4455};
4456
7a292a7a 4457static void
acdb74a0
AC
4458return_value_location (struct type *valtype,
4459 struct return_value_word *hi,
4460 struct return_value_word *lo)
7a292a7a
SS
4461{
4462 int len = TYPE_LENGTH (valtype);
c5aa993b 4463
7a292a7a
SS
4464 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4465 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4466 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4467 {
4468 if (!FP_REGISTER_DOUBLE && len == 8)
4469 {
4470 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4471 spread them across a floating-point register pair. */
d7449b42
AC
4472 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4473 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4474 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4475 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4476 ? 4 : 0);
4477 hi->reg_offset = lo->reg_offset;
4478 lo->reg = FP0_REGNUM + 0;
4479 hi->reg = FP0_REGNUM + 1;
4480 lo->len = 4;
4481 hi->len = 4;
4482 }
4483 else
4484 {
4485 /* The floating point value fits in a single floating-point
c5aa993b 4486 register. */
d7449b42 4487 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4488 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4489 && len == 4)
4490 ? 4 : 0);
4491 lo->reg = FP0_REGNUM;
4492 lo->len = len;
4493 lo->buf_offset = 0;
4494 hi->len = 0;
4495 hi->reg_offset = 0;
4496 hi->buf_offset = 0;
4497 hi->reg = 0;
4498 }
4499 }
4500 else
4501 {
4502 /* Locate a result possibly spread across two registers. */
4503 int regnum = 2;
4504 lo->reg = regnum + 0;
4505 hi->reg = regnum + 1;
d7449b42 4506 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4507 && len < MIPS_SAVED_REGSIZE)
4508 {
bf1f5b4c
MS
4509 /* "un-left-justify" the value in the low register */
4510 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4511 lo->len = len;
bf1f5b4c 4512 hi->reg_offset = 0;
7a292a7a
SS
4513 hi->len = 0;
4514 }
d7449b42 4515 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4516 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4517 && len < MIPS_SAVED_REGSIZE * 2
4518 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4519 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4520 {
4521 /* "un-left-justify" the value spread across two registers. */
4522 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4523 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4524 hi->reg_offset = 0;
4525 hi->len = len - lo->len;
4526 }
4527 else
4528 {
4529 /* Only perform a partial copy of the second register. */
4530 lo->reg_offset = 0;
4531 hi->reg_offset = 0;
4532 if (len > MIPS_SAVED_REGSIZE)
4533 {
4534 lo->len = MIPS_SAVED_REGSIZE;
4535 hi->len = len - MIPS_SAVED_REGSIZE;
4536 }
4537 else
4538 {
4539 lo->len = len;
4540 hi->len = 0;
4541 }
4542 }
d7449b42 4543 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4544 && REGISTER_RAW_SIZE (regnum) == 8
4545 && MIPS_SAVED_REGSIZE == 4)
4546 {
4547 /* Account for the fact that only the least-signficant part
c5aa993b 4548 of the register is being used */
7a292a7a
SS
4549 lo->reg_offset += 4;
4550 hi->reg_offset += 4;
4551 }
4552 lo->buf_offset = 0;
4553 hi->buf_offset = lo->len;
4554 }
4555}
4556
4557/* Given a return value in `regbuf' with a type `valtype', extract and
4558 copy its value into `valbuf'. */
4559
46cac009
AC
4560static void
4561mips_eabi_extract_return_value (struct type *valtype,
4562 char regbuf[REGISTER_BYTES],
4563 char *valbuf)
4564{
4565 struct return_value_word lo;
4566 struct return_value_word hi;
4567 return_value_location (valtype, &hi, &lo);
4568
4569 memcpy (valbuf + lo.buf_offset,
4570 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4571 lo.len);
4572
4573 if (hi.len > 0)
4574 memcpy (valbuf + hi.buf_offset,
4575 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4576 hi.len);
4577}
4578
46cac009
AC
4579static void
4580mips_o64_extract_return_value (struct type *valtype,
4581 char regbuf[REGISTER_BYTES],
4582 char *valbuf)
4583{
4584 struct return_value_word lo;
4585 struct return_value_word hi;
4586 return_value_location (valtype, &hi, &lo);
4587
4588 memcpy (valbuf + lo.buf_offset,
4589 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4590 lo.len);
4591
4592 if (hi.len > 0)
4593 memcpy (valbuf + hi.buf_offset,
4594 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4595 hi.len);
4596}
4597
7a292a7a
SS
4598/* Given a return value in `valbuf' with a type `valtype', write it's
4599 value into the appropriate register. */
4600
46cac009
AC
4601static void
4602mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4603{
4604 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4605 struct return_value_word lo;
4606 struct return_value_word hi;
4607 return_value_location (valtype, &hi, &lo);
4608
4609 memset (raw_buffer, 0, sizeof (raw_buffer));
4610 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4611 write_register_bytes (REGISTER_BYTE (lo.reg),
4612 raw_buffer,
4613 REGISTER_RAW_SIZE (lo.reg));
4614
4615 if (hi.len > 0)
4616 {
4617 memset (raw_buffer, 0, sizeof (raw_buffer));
4618 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4619 write_register_bytes (REGISTER_BYTE (hi.reg),
4620 raw_buffer,
4621 REGISTER_RAW_SIZE (hi.reg));
4622 }
4623}
4624
4625static void
cb1d2653 4626mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009
AC
4627{
4628 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4629 struct return_value_word lo;
4630 struct return_value_word hi;
4631 return_value_location (valtype, &hi, &lo);
4632
4633 memset (raw_buffer, 0, sizeof (raw_buffer));
4634 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4635 write_register_bytes (REGISTER_BYTE (lo.reg),
4636 raw_buffer,
4637 REGISTER_RAW_SIZE (lo.reg));
4638
4639 if (hi.len > 0)
4640 {
4641 memset (raw_buffer, 0, sizeof (raw_buffer));
4642 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4643 write_register_bytes (REGISTER_BYTE (hi.reg),
4644 raw_buffer,
4645 REGISTER_RAW_SIZE (hi.reg));
4646 }
4647}
4648
cb1d2653
AC
4649/* O32 ABI stuff. */
4650
46cac009 4651static void
cb1d2653
AC
4652mips_o32_xfer_return_value (struct type *type,
4653 struct regcache *regcache,
4654 bfd_byte *in, const bfd_byte *out)
46cac009 4655{
cb1d2653
AC
4656 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4657 if (TYPE_CODE (type) == TYPE_CODE_FLT
4658 && TYPE_LENGTH (type) == 4
4659 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4660 {
cb1d2653
AC
4661 /* A single-precision floating-point value. It fits in the
4662 least significant part of FP0. */
4663 if (mips_debug)
4664 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4665 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4666 TARGET_BYTE_ORDER, in, out, 0);
4667 }
4668 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4669 && TYPE_LENGTH (type) == 8
4670 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4671 {
4672 /* A double-precision floating-point value. It fits in the
4673 least significant part of FP0/FP1 but with byte ordering
4674 based on the target (???). */
4675 if (mips_debug)
4676 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4677 switch (TARGET_BYTE_ORDER)
4678 {
4679 case BFD_ENDIAN_LITTLE:
4680 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4681 TARGET_BYTE_ORDER, in, out, 0);
4682 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4683 TARGET_BYTE_ORDER, in, out, 4);
4684 break;
4685 case BFD_ENDIAN_BIG:
4686 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4687 TARGET_BYTE_ORDER, in, out, 0);
4688 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4689 TARGET_BYTE_ORDER, in, out, 4);
4690 break;
4691 default:
4692 internal_error (__FILE__, __LINE__, "bad switch");
4693 }
4694 }
4695#if 0
4696 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4697 && TYPE_NFIELDS (type) <= 2
4698 && TYPE_NFIELDS (type) >= 1
4699 && ((TYPE_NFIELDS (type) == 1
4700 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4701 == TYPE_CODE_FLT))
4702 || (TYPE_NFIELDS (type) == 2
4703 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4704 == TYPE_CODE_FLT)
4705 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4706 == TYPE_CODE_FLT)))
4707 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4708 {
4709 /* A struct that contains one or two floats. Each value is part
4710 in the least significant part of their floating point
4711 register.. */
4712 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4713 int regnum;
4714 int field;
4715 for (field = 0, regnum = FP0_REGNUM;
4716 field < TYPE_NFIELDS (type);
4717 field++, regnum += 2)
4718 {
4719 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4720 / TARGET_CHAR_BIT);
4721 if (mips_debug)
4722 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4723 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4724 TARGET_BYTE_ORDER, in, out, offset);
4725 }
4726 }
4727#endif
4728#if 0
4729 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4730 || TYPE_CODE (type) == TYPE_CODE_UNION)
4731 {
4732 /* A structure or union. Extract the left justified value,
4733 regardless of the byte order. I.e. DO NOT USE
4734 mips_xfer_lower. */
4735 int offset;
4736 int regnum;
4737 for (offset = 0, regnum = V0_REGNUM;
4738 offset < TYPE_LENGTH (type);
4739 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4740 {
4741 int xfer = REGISTER_RAW_SIZE (regnum);
4742 if (offset + xfer > TYPE_LENGTH (type))
4743 xfer = TYPE_LENGTH (type) - offset;
4744 if (mips_debug)
4745 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4746 offset, xfer, regnum);
4747 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4748 in, out, offset);
4749 }
4750 }
4751#endif
4752 else
4753 {
4754 /* A scalar extract each part but least-significant-byte
4755 justified. o32 thinks registers are 4 byte, regardless of
4756 the ISA. mips_stack_argsize controls this. */
4757 int offset;
4758 int regnum;
4759 for (offset = 0, regnum = V0_REGNUM;
4760 offset < TYPE_LENGTH (type);
4761 offset += mips_stack_argsize (), regnum++)
4762 {
4763 int xfer = mips_stack_argsize ();
4764 int pos = 0;
4765 if (offset + xfer > TYPE_LENGTH (type))
4766 xfer = TYPE_LENGTH (type) - offset;
4767 if (mips_debug)
4768 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4769 offset, xfer, regnum);
4770 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4771 in, out, offset);
4772 }
46cac009
AC
4773 }
4774}
4775
cb1d2653
AC
4776static void
4777mips_o32_extract_return_value (struct type *type,
4778 struct regcache *regcache,
ebba8386 4779 void *valbuf)
cb1d2653
AC
4780{
4781 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4782}
4783
4784static void
4785mips_o32_store_return_value (struct type *type, char *valbuf)
4786{
4787 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4788}
4789
4790/* N32/N44 ABI stuff. */
4791
46cac009 4792static void
88658117
AC
4793mips_n32n64_xfer_return_value (struct type *type,
4794 struct regcache *regcache,
4795 bfd_byte *in, const bfd_byte *out)
c906108c 4796{
88658117
AC
4797 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4798 if (TYPE_CODE (type) == TYPE_CODE_FLT
4799 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4800 {
88658117
AC
4801 /* A floating-point value belongs in the least significant part
4802 of FP0. */
4803 if (mips_debug)
4804 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4805 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4806 TARGET_BYTE_ORDER, in, out, 0);
4807 }
4808 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4809 && TYPE_NFIELDS (type) <= 2
4810 && TYPE_NFIELDS (type) >= 1
4811 && ((TYPE_NFIELDS (type) == 1
4812 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4813 == TYPE_CODE_FLT))
4814 || (TYPE_NFIELDS (type) == 2
4815 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4816 == TYPE_CODE_FLT)
4817 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4818 == TYPE_CODE_FLT)))
4819 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4820 {
4821 /* A struct that contains one or two floats. Each value is part
4822 in the least significant part of their floating point
4823 register.. */
4824 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4825 int regnum;
4826 int field;
4827 for (field = 0, regnum = FP0_REGNUM;
4828 field < TYPE_NFIELDS (type);
4829 field++, regnum += 2)
4830 {
4831 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4832 / TARGET_CHAR_BIT);
4833 if (mips_debug)
4834 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4835 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4836 TARGET_BYTE_ORDER, in, out, offset);
4837 }
7a292a7a 4838 }
88658117
AC
4839 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4840 || TYPE_CODE (type) == TYPE_CODE_UNION)
4841 {
4842 /* A structure or union. Extract the left justified value,
4843 regardless of the byte order. I.e. DO NOT USE
4844 mips_xfer_lower. */
4845 int offset;
4846 int regnum;
4847 for (offset = 0, regnum = V0_REGNUM;
4848 offset < TYPE_LENGTH (type);
4849 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4850 {
4851 int xfer = REGISTER_RAW_SIZE (regnum);
4852 if (offset + xfer > TYPE_LENGTH (type))
4853 xfer = TYPE_LENGTH (type) - offset;
4854 if (mips_debug)
4855 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4856 offset, xfer, regnum);
4857 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4858 in, out, offset);
4859 }
4860 }
4861 else
4862 {
4863 /* A scalar extract each part but least-significant-byte
4864 justified. */
4865 int offset;
4866 int regnum;
4867 for (offset = 0, regnum = V0_REGNUM;
4868 offset < TYPE_LENGTH (type);
4869 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4870 {
4871 int xfer = REGISTER_RAW_SIZE (regnum);
4872 int pos = 0;
4873 if (offset + xfer > TYPE_LENGTH (type))
4874 xfer = TYPE_LENGTH (type) - offset;
4875 if (mips_debug)
4876 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4877 offset, xfer, regnum);
4878 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4879 in, out, offset);
4880 }
4881 }
4882}
4883
4884static void
4885mips_n32n64_extract_return_value (struct type *type,
4886 struct regcache *regcache,
ebba8386 4887 void *valbuf)
88658117
AC
4888{
4889 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4890}
4891
4892static void
4893mips_n32n64_store_return_value (struct type *type, char *valbuf)
4894{
4895 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4896}
4897
2f1488ce
MS
4898static void
4899mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4900{
4901 /* Nothing to do -- push_arguments does all the work. */
4902}
4903
4904static CORE_ADDR
6672060b 4905mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4906{
4907 /* FIXME: This will only work at random. The caller passes the
4908 struct_return address in V0, but it is not preserved. It may
4909 still be there, or this may be a random value. */
6672060b
MS
4910 CORE_ADDR val;
4911 regcache_cooked_read_unsigned (regcache, V0_REGNUM, &val);
4912 return val;
2f1488ce
MS
4913}
4914
c906108c
SS
4915/* Exported procedure: Is PC in the signal trampoline code */
4916
102182a9
MS
4917static int
4918mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4919{
4920 if (sigtramp_address == 0)
4921 fixup_sigtramp ();
4922 return (pc >= sigtramp_address && pc < sigtramp_end);
4923}
4924
a5ea2558
AC
4925/* Root of all "set mips "/"show mips " commands. This will eventually be
4926 used for all MIPS-specific commands. */
4927
a5ea2558 4928static void
acdb74a0 4929show_mips_command (char *args, int from_tty)
a5ea2558
AC
4930{
4931 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4932}
4933
a5ea2558 4934static void
acdb74a0 4935set_mips_command (char *args, int from_tty)
a5ea2558
AC
4936{
4937 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4938 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4939}
4940
c906108c
SS
4941/* Commands to show/set the MIPS FPU type. */
4942
c906108c 4943static void
acdb74a0 4944show_mipsfpu_command (char *args, int from_tty)
c906108c 4945{
c906108c
SS
4946 char *fpu;
4947 switch (MIPS_FPU_TYPE)
4948 {
4949 case MIPS_FPU_SINGLE:
4950 fpu = "single-precision";
4951 break;
4952 case MIPS_FPU_DOUBLE:
4953 fpu = "double-precision";
4954 break;
4955 case MIPS_FPU_NONE:
4956 fpu = "absent (none)";
4957 break;
93d56215
AC
4958 default:
4959 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4960 }
4961 if (mips_fpu_type_auto)
4962 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4963 fpu);
4964 else
4965 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4966 fpu);
4967}
4968
4969
c906108c 4970static void
acdb74a0 4971set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
4972{
4973 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4974 show_mipsfpu_command (args, from_tty);
4975}
4976
c906108c 4977static void
acdb74a0 4978set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
4979{
4980 mips_fpu_type = MIPS_FPU_SINGLE;
4981 mips_fpu_type_auto = 0;
9e364162 4982 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
4983}
4984
c906108c 4985static void
acdb74a0 4986set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
4987{
4988 mips_fpu_type = MIPS_FPU_DOUBLE;
4989 mips_fpu_type_auto = 0;
9e364162 4990 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
4991}
4992
c906108c 4993static void
acdb74a0 4994set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
4995{
4996 mips_fpu_type = MIPS_FPU_NONE;
4997 mips_fpu_type_auto = 0;
9e364162 4998 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
4999}
5000
c906108c 5001static void
acdb74a0 5002set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5003{
5004 mips_fpu_type_auto = 1;
5005}
5006
5007/* Command to set the processor type. */
5008
5009void
acdb74a0 5010mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5011{
5012 int i;
5013
5014 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5015 {
5016 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5017 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5018 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5019
5020 /* Restore the value. */
4fcf66da 5021 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5022
5023 return;
5024 }
c5aa993b 5025
c906108c
SS
5026 if (!mips_set_processor_type (tmp_mips_processor_type))
5027 {
5028 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5029 /* Restore its value. */
4fcf66da 5030 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5031 }
5032}
5033
5034static void
acdb74a0 5035mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5036{
5037}
5038
5039/* Modify the actual processor type. */
5040
5a89d8aa 5041static int
acdb74a0 5042mips_set_processor_type (char *str)
c906108c 5043{
1012bd0e 5044 int i;
c906108c
SS
5045
5046 if (str == NULL)
5047 return 0;
5048
5049 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5050 {
5051 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5052 {
5053 mips_processor_type = str;
cce74817 5054 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5055 return 1;
c906108c
SS
5056 /* FIXME tweak fpu flag too */
5057 }
5058 }
5059
5060 return 0;
5061}
5062
5063/* Attempt to identify the particular processor model by reading the
5064 processor id. */
5065
5066char *
acdb74a0 5067mips_read_processor_type (void)
c906108c
SS
5068{
5069 CORE_ADDR prid;
5070
5071 prid = read_register (PRID_REGNUM);
5072
5073 if ((prid & ~0xf) == 0x700)
c5aa993b 5074 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5075
5076 return NULL;
5077}
5078
5079/* Just like reinit_frame_cache, but with the right arguments to be
5080 callable as an sfunc. */
5081
5082static void
acdb74a0
AC
5083reinit_frame_cache_sfunc (char *args, int from_tty,
5084 struct cmd_list_element *c)
c906108c
SS
5085{
5086 reinit_frame_cache ();
5087}
5088
5089int
acdb74a0 5090gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5091{
5092 mips_extra_func_info_t proc_desc;
5093
5094 /* Search for the function containing this address. Set the low bit
5095 of the address when searching, in case we were given an even address
5096 that is the start of a 16-bit function. If we didn't do this,
5097 the search would fail because the symbol table says the function
5098 starts at an odd address, i.e. 1 byte past the given address. */
5099 memaddr = ADDR_BITS_REMOVE (memaddr);
5100 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5101
5102 /* Make an attempt to determine if this is a 16-bit function. If
5103 the procedure descriptor exists and the address therein is odd,
5104 it's definitely a 16-bit function. Otherwise, we have to just
5105 guess that if the address passed in is odd, it's 16-bits. */
5106 if (proc_desc)
361d1df0 5107 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5108 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5109 else
361d1df0 5110 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5111 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5112
5113 /* Round down the instruction address to the appropriate boundary. */
65c11066 5114 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5115
c906108c 5116 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5117 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5118 return print_insn_big_mips (memaddr, info);
5119 else
5120 return print_insn_little_mips (memaddr, info);
5121}
5122
5123/* Old-style breakpoint macros.
5124 The IDT board uses an unusual breakpoint value, and sometimes gets
5125 confused when it sees the usual MIPS breakpoint instruction. */
5126
5127#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5128#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5129#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5130#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5131#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5132#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5133#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5134#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5135
5136/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5137 counter value to determine whether a 16- or 32-bit breakpoint should be
5138 used. It returns a pointer to a string of bytes that encode a breakpoint
5139 instruction, stores the length of the string to *lenptr, and adjusts pc
5140 (if necessary) to point to the actual memory location where the
5141 breakpoint should be inserted. */
5142
f7ab6ec6 5143static const unsigned char *
acdb74a0 5144mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5145{
d7449b42 5146 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5147 {
5148 if (pc_is_mips16 (*pcptr))
5149 {
1012bd0e
EZ
5150 static unsigned char mips16_big_breakpoint[] =
5151 MIPS16_BIG_BREAKPOINT;
c906108c 5152 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5153 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5154 return mips16_big_breakpoint;
5155 }
5156 else
5157 {
1012bd0e
EZ
5158 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5159 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5160 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 5161
c5aa993b 5162 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5163
5164 if (strcmp (target_shortname, "mips") == 0)
5165 return idt_big_breakpoint;
5166 else if (strcmp (target_shortname, "ddb") == 0
5167 || strcmp (target_shortname, "pmon") == 0
5168 || strcmp (target_shortname, "lsi") == 0)
5169 return pmon_big_breakpoint;
5170 else
5171 return big_breakpoint;
5172 }
5173 }
5174 else
5175 {
5176 if (pc_is_mips16 (*pcptr))
5177 {
1012bd0e
EZ
5178 static unsigned char mips16_little_breakpoint[] =
5179 MIPS16_LITTLE_BREAKPOINT;
c906108c 5180 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5181 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5182 return mips16_little_breakpoint;
5183 }
5184 else
5185 {
1012bd0e
EZ
5186 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5187 static unsigned char pmon_little_breakpoint[] =
5188 PMON_LITTLE_BREAKPOINT;
5189 static unsigned char idt_little_breakpoint[] =
5190 IDT_LITTLE_BREAKPOINT;
c906108c 5191
c5aa993b 5192 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5193
5194 if (strcmp (target_shortname, "mips") == 0)
5195 return idt_little_breakpoint;
5196 else if (strcmp (target_shortname, "ddb") == 0
5197 || strcmp (target_shortname, "pmon") == 0
5198 || strcmp (target_shortname, "lsi") == 0)
5199 return pmon_little_breakpoint;
5200 else
5201 return little_breakpoint;
5202 }
5203 }
5204}
5205
5206/* If PC is in a mips16 call or return stub, return the address of the target
5207 PC, which is either the callee or the caller. There are several
5208 cases which must be handled:
5209
5210 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5211 target PC is in $31 ($ra).
c906108c 5212 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5213 and the target PC is in $2.
c906108c 5214 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5215 before the jal instruction, this is effectively a call stub
5216 and the the target PC is in $2. Otherwise this is effectively
5217 a return stub and the target PC is in $18.
c906108c
SS
5218
5219 See the source code for the stubs in gcc/config/mips/mips16.S for
5220 gory details.
5221
5222 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5223 */
c906108c 5224
757a7cc6 5225static CORE_ADDR
acdb74a0 5226mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5227{
5228 char *name;
5229 CORE_ADDR start_addr;
5230
5231 /* Find the starting address and name of the function containing the PC. */
5232 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5233 return 0;
5234
5235 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5236 target PC is in $31 ($ra). */
5237 if (strcmp (name, "__mips16_ret_sf") == 0
5238 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5239 return read_signed_register (RA_REGNUM);
c906108c
SS
5240
5241 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5242 {
5243 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5244 and the target PC is in $2. */
5245 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5246 return read_signed_register (2);
c906108c
SS
5247
5248 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5249 before the jal instruction, this is effectively a call stub
5250 and the the target PC is in $2. Otherwise this is effectively
5251 a return stub and the target PC is in $18. */
c906108c
SS
5252 else if (name[19] == 's' || name[19] == 'd')
5253 {
5254 if (pc == start_addr)
5255 {
5256 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5257 stub. Such a stub for a function bar might have a name
5258 like __fn_stub_bar, and might look like this:
5259 mfc1 $4,$f13
5260 mfc1 $5,$f12
5261 mfc1 $6,$f15
5262 mfc1 $7,$f14
5263 la $1,bar (becomes a lui/addiu pair)
5264 jr $1
5265 So scan down to the lui/addi and extract the target
5266 address from those two instructions. */
c906108c 5267
6c997a34 5268 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5269 t_inst inst;
5270 int i;
5271
5272 /* See if the name of the target function is __fn_stub_*. */
5273 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5274 return target_pc;
5275 if (strncmp (name, "__fn_stub_", 10) != 0
5276 && strcmp (name, "etext") != 0
5277 && strcmp (name, "_etext") != 0)
5278 return target_pc;
5279
5280 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5281 The limit on the search is arbitrarily set to 20
5282 instructions. FIXME. */
c906108c
SS
5283 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5284 {
c5aa993b
JM
5285 inst = mips_fetch_instruction (target_pc);
5286 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5287 pc = (inst << 16) & 0xffff0000; /* high word */
5288 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5289 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5290 }
5291
5292 /* Couldn't find the lui/addui pair, so return stub address. */
5293 return target_pc;
5294 }
5295 else
5296 /* This is the 'return' part of a call stub. The return
5297 address is in $r18. */
6c997a34 5298 return read_signed_register (18);
c906108c
SS
5299 }
5300 }
c5aa993b 5301 return 0; /* not a stub */
c906108c
SS
5302}
5303
5304
5305/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5306 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5307
757a7cc6 5308static int
acdb74a0 5309mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5310{
5311 CORE_ADDR start_addr;
5312
5313 /* Find the starting address of the function containing the PC. If the
5314 caller didn't give us a name, look it up at the same time. */
5315 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5316 return 0;
5317
5318 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5319 {
5320 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5321 if (name[19] >= '0' && name[19] <= '9')
5322 return 1;
5323 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5324 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5325 else if (name[19] == 's' || name[19] == 'd')
5326 return pc == start_addr;
5327 }
5328
c5aa993b 5329 return 0; /* not a stub */
c906108c
SS
5330}
5331
5332
5333/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5334 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5335
e41b17f0 5336static int
acdb74a0 5337mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5338{
5339 CORE_ADDR start_addr;
5340
5341 /* Find the starting address of the function containing the PC. */
5342 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5343 return 0;
5344
5345 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5346 if (strcmp (name, "__mips16_ret_sf") == 0
5347 || strcmp (name, "__mips16_ret_df") == 0)
5348 return 1;
5349
5350 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5351 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5352 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5353 && (name[19] == 's' || name[19] == 'd')
5354 && pc != start_addr)
5355 return 1;
5356
c5aa993b 5357 return 0; /* not a stub */
c906108c
SS
5358}
5359
5360
5361/* Return non-zero if the PC is in a library helper function that should
5362 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5363
5364int
acdb74a0 5365mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5366{
5367 char *name;
5368
5369 /* Find the starting address and name of the function containing the PC. */
5370 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5371 return 0;
5372
5373 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5374 that we want to ignore. */
5375 return (strcmp (name, "__mips16_ret_sf") == 0
5376 || strcmp (name, "__mips16_ret_df") == 0);
5377}
5378
5379
5380/* Return a location where we can set a breakpoint that will be hit
5381 when an inferior function call returns. This is normally the
5382 program's entry point. Executables that don't have an entry
5383 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5384 whose address is the location where the breakpoint should be placed. */
5385
f7ab6ec6 5386static CORE_ADDR
acdb74a0 5387mips_call_dummy_address (void)
c906108c
SS
5388{
5389 struct minimal_symbol *sym;
5390
5391 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5392 if (sym)
5393 return SYMBOL_VALUE_ADDRESS (sym);
5394 else
5395 return entry_point_address ();
5396}
5397
5398
9dcb560c 5399/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
5400 information for float parameters, both prototyped and unprototyped, then
5401 define this macro. This forces gdb to always assume that floats are
5402 passed as doubles and then converted in the callee.
5403
5404 For the mips chip, it appears that the debug info marks the parameters as
5405 floats regardless of whether the function is prototyped, but the actual
5406 values are passed as doubles for the non-prototyped case and floats for
5407 the prototyped case. Thus we choose to make the non-prototyped case work
5408 for C and break the prototyped case, since the non-prototyped case is
5409 probably much more common. (FIXME). */
5410
5411static int
5412mips_coerce_float_to_double (struct type *formal, struct type *actual)
5413{
5414 return current_language->la_language == language_c;
5415}
5416
47a8d4ba
AC
5417/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5418 the register stored on the stack (32) is different to its real raw
5419 size (64). The below ensures that registers are fetched from the
5420 stack using their ABI size and then stored into the RAW_BUFFER
5421 using their raw size.
5422
5423 The alternative to adding this function would be to add an ABI
5424 macro - REGISTER_STACK_SIZE(). */
5425
5426static void
acdb74a0
AC
5427mips_get_saved_register (char *raw_buffer,
5428 int *optimized,
5429 CORE_ADDR *addrp,
5430 struct frame_info *frame,
5431 int regnum,
5432 enum lval_type *lval)
47a8d4ba
AC
5433{
5434 CORE_ADDR addr;
5435
5436 if (!target_has_registers)
5437 error ("No registers.");
5438
5439 /* Normal systems don't optimize out things with register numbers. */
5440 if (optimized != NULL)
5441 *optimized = 0;
5442 addr = find_saved_register (frame, regnum);
5443 if (addr != 0)
5444 {
5445 if (lval != NULL)
5446 *lval = lval_memory;
5447 if (regnum == SP_REGNUM)
5448 {
5449 if (raw_buffer != NULL)
5450 {
5451 /* Put it back in target format. */
5452 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
5453 (LONGEST) addr);
5454 }
5455 if (addrp != NULL)
5456 *addrp = 0;
5457 return;
5458 }
5459 if (raw_buffer != NULL)
5460 {
5461 LONGEST val;
5462 if (regnum < 32)
5463 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5464 saved. */
5465 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
5466 else
5467 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
5468 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5469 }
5470 }
5471 else
5472 {
5473 if (lval != NULL)
5474 *lval = lval_register;
5475 addr = REGISTER_BYTE (regnum);
5476 if (raw_buffer != NULL)
5477 read_register_gen (regnum, raw_buffer);
5478 }
5479 if (addrp != NULL)
5480 *addrp = addr;
5481}
2acceee2 5482
f7b9e9fc
AC
5483/* Immediately after a function call, return the saved pc.
5484 Can't always go through the frames for this because on some machines
5485 the new frame is not set up until the new function executes
5486 some instructions. */
5487
5488static CORE_ADDR
5489mips_saved_pc_after_call (struct frame_info *frame)
5490{
6c997a34 5491 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5492}
5493
5494
88c72b7d
AC
5495/* Convert a dbx stab register number (from `r' declaration) to a gdb
5496 REGNUM */
5497
5498static int
5499mips_stab_reg_to_regnum (int num)
5500{
5501 if (num < 32)
5502 return num;
361d1df0 5503 else
88c72b7d
AC
5504 return num + FP0_REGNUM - 38;
5505}
5506
5507/* Convert a ecoff register number to a gdb REGNUM */
5508
5509static int
5510mips_ecoff_reg_to_regnum (int num)
5511{
5512 if (num < 32)
5513 return num;
5514 else
5515 return num + FP0_REGNUM - 32;
5516}
5517
fc0c74b1
AC
5518/* Convert an integer into an address. By first converting the value
5519 into a pointer and then extracting it signed, the address is
5520 guarenteed to be correctly sign extended. */
5521
5522static CORE_ADDR
5523mips_integer_to_address (struct type *type, void *buf)
5524{
5525 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5526 LONGEST val = unpack_long (type, buf);
5527 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5528 return extract_signed_integer (tmp,
5529 TYPE_LENGTH (builtin_type_void_data_ptr));
5530}
5531
caaa3122
DJ
5532static void
5533mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5534{
5535 enum mips_abi *abip = (enum mips_abi *) obj;
5536 const char *name = bfd_get_section_name (abfd, sect);
5537
5538 if (*abip != MIPS_ABI_UNKNOWN)
5539 return;
5540
5541 if (strncmp (name, ".mdebug.", 8) != 0)
5542 return;
5543
5544 if (strcmp (name, ".mdebug.abi32") == 0)
5545 *abip = MIPS_ABI_O32;
5546 else if (strcmp (name, ".mdebug.abiN32") == 0)
5547 *abip = MIPS_ABI_N32;
e3bddbfa
KB
5548 else if (strcmp (name, ".mdebug.abiN64") == 0)
5549 *abip = MIPS_ABI_N64;
caaa3122
DJ
5550 else if (strcmp (name, ".mdebug.abiO64") == 0)
5551 *abip = MIPS_ABI_O64;
5552 else if (strcmp (name, ".mdebug.eabi32") == 0)
5553 *abip = MIPS_ABI_EABI32;
5554 else if (strcmp (name, ".mdebug.eabi64") == 0)
5555 *abip = MIPS_ABI_EABI64;
5556 else
5557 warning ("unsupported ABI %s.", name + 8);
5558}
5559
2e4ebe70
DJ
5560static enum mips_abi
5561global_mips_abi (void)
5562{
5563 int i;
5564
5565 for (i = 0; mips_abi_strings[i] != NULL; i++)
5566 if (mips_abi_strings[i] == mips_abi_string)
5567 return (enum mips_abi) i;
5568
5569 internal_error (__FILE__, __LINE__,
5570 "unknown ABI string");
5571}
5572
c2d11a7d 5573static struct gdbarch *
acdb74a0
AC
5574mips_gdbarch_init (struct gdbarch_info info,
5575 struct gdbarch_list *arches)
c2d11a7d
JM
5576{
5577 static LONGEST mips_call_dummy_words[] =
5578 {0};
5579 struct gdbarch *gdbarch;
5580 struct gdbarch_tdep *tdep;
5581 int elf_flags;
2e4ebe70 5582 enum mips_abi mips_abi, found_abi, wanted_abi;
70f80edf 5583 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 5584
1d06468c
EZ
5585 /* Reset the disassembly info, in case it was set to something
5586 non-default. */
5587 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5588 tm_print_insn_info.arch = bfd_arch_unknown;
5589 tm_print_insn_info.mach = 0;
5590
70f80edf
JT
5591 elf_flags = 0;
5592
5593 if (info.abfd)
5594 {
5595 /* First of all, extract the elf_flags, if available. */
5596 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5597 elf_flags = elf_elfheader (info.abfd)->e_flags;
5598
5599 /* Try to determine the OS ABI of the object we are loading. If
5600 we end up with `unknown', just leave it that way. */
5601 osabi = gdbarch_lookup_osabi (info.abfd);
5602 }
c2d11a7d 5603
102182a9 5604 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5605 switch ((elf_flags & EF_MIPS_ABI))
5606 {
5607 case E_MIPS_ABI_O32:
5608 mips_abi = MIPS_ABI_O32;
5609 break;
5610 case E_MIPS_ABI_O64:
5611 mips_abi = MIPS_ABI_O64;
5612 break;
5613 case E_MIPS_ABI_EABI32:
5614 mips_abi = MIPS_ABI_EABI32;
5615 break;
5616 case E_MIPS_ABI_EABI64:
4a7f7ba8 5617 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5618 break;
5619 default:
acdb74a0
AC
5620 if ((elf_flags & EF_MIPS_ABI2))
5621 mips_abi = MIPS_ABI_N32;
5622 else
5623 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5624 break;
5625 }
acdb74a0 5626
caaa3122
DJ
5627 /* GCC creates a pseudo-section whose name describes the ABI. */
5628 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5629 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5630
2e4ebe70
DJ
5631 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5632 Use the ABI from the last architecture if there is one. */
5633 if (info.abfd == NULL && arches != NULL)
5634 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5635
32a6503c 5636 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5637 if (mips_abi == MIPS_ABI_UNKNOWN
5638 && info.bfd_arch_info != NULL
5639 && info.bfd_arch_info->arch == bfd_arch_mips)
5640 {
5641 switch (info.bfd_arch_info->mach)
5642 {
5643 case bfd_mach_mips3900:
5644 mips_abi = MIPS_ABI_EABI32;
5645 break;
5646 case bfd_mach_mips4100:
5647 case bfd_mach_mips5000:
5648 mips_abi = MIPS_ABI_EABI64;
5649 break;
1d06468c
EZ
5650 case bfd_mach_mips8000:
5651 case bfd_mach_mips10000:
32a6503c
KB
5652 /* On Irix, ELF64 executables use the N64 ABI. The
5653 pseudo-sections which describe the ABI aren't present
5654 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5655 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5656 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5657 mips_abi = MIPS_ABI_N64;
5658 else
5659 mips_abi = MIPS_ABI_N32;
1d06468c 5660 break;
bf64bfd6
AC
5661 }
5662 }
2e4ebe70 5663
2e4ebe70
DJ
5664 if (mips_abi == MIPS_ABI_UNKNOWN)
5665 mips_abi = MIPS_ABI_O32;
5666
5667 /* Now that we have found what the ABI for this binary would be,
5668 check whether the user is overriding it. */
5669 found_abi = mips_abi;
5670 wanted_abi = global_mips_abi ();
5671 if (wanted_abi != MIPS_ABI_UNKNOWN)
5672 mips_abi = wanted_abi;
5673
4b9b3959
AC
5674 if (gdbarch_debug)
5675 {
5676 fprintf_unfiltered (gdb_stdlog,
9ace0497 5677 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5678 elf_flags);
4b9b3959
AC
5679 fprintf_unfiltered (gdb_stdlog,
5680 "mips_gdbarch_init: mips_abi = %d\n",
5681 mips_abi);
2e4ebe70
DJ
5682 fprintf_unfiltered (gdb_stdlog,
5683 "mips_gdbarch_init: found_mips_abi = %d\n",
5684 found_abi);
4b9b3959 5685 }
0dadbba0 5686
c2d11a7d
JM
5687 /* try to find a pre-existing architecture */
5688 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5689 arches != NULL;
5690 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5691 {
5692 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5693 using. */
9103eae0 5694 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5695 continue;
9103eae0 5696 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5697 continue;
70f80edf
JT
5698 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5699 return arches->gdbarch;
c2d11a7d
JM
5700 }
5701
102182a9 5702 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5703 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5704 gdbarch = gdbarch_alloc (&info, tdep);
5705 tdep->elf_flags = elf_flags;
70f80edf 5706 tdep->osabi = osabi;
c2d11a7d 5707
102182a9 5708 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5709 set_gdbarch_short_bit (gdbarch, 16);
5710 set_gdbarch_int_bit (gdbarch, 32);
5711 set_gdbarch_float_bit (gdbarch, 32);
5712 set_gdbarch_double_bit (gdbarch, 64);
5713 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5714 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
d05285fa
MS
5715 set_gdbarch_max_register_raw_size (gdbarch, 8);
5716 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5717 tdep->found_abi = found_abi;
0dadbba0 5718 tdep->mips_abi = mips_abi;
1d06468c 5719
f7ab6ec6
MS
5720 set_gdbarch_elf_make_msymbol_special (gdbarch,
5721 mips_elf_make_msymbol_special);
5722
0dadbba0 5723 switch (mips_abi)
c2d11a7d 5724 {
0dadbba0 5725 case MIPS_ABI_O32:
46cac009 5726 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
ebba8386 5727 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5728 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5729 tdep->mips_default_saved_regsize = 4;
0dadbba0 5730 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5731 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5732 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5733 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5734 tdep->gdb_target_is_mips64 = 0;
4014092b 5735 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5736 set_gdbarch_long_bit (gdbarch, 32);
5737 set_gdbarch_ptr_bit (gdbarch, 32);
5738 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5739 set_gdbarch_reg_struct_has_addr (gdbarch,
5740 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5741 set_gdbarch_use_struct_convention (gdbarch,
5742 mips_o32_use_struct_convention);
c2d11a7d 5743 break;
0dadbba0 5744 case MIPS_ABI_O64:
46cac009 5745 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
ebba8386 5746 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5747 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5748 tdep->mips_default_saved_regsize = 8;
0dadbba0 5749 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5750 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5751 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5752 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5753 tdep->gdb_target_is_mips64 = 1;
361d1df0 5754 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5755 set_gdbarch_long_bit (gdbarch, 32);
5756 set_gdbarch_ptr_bit (gdbarch, 32);
5757 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5758 set_gdbarch_reg_struct_has_addr (gdbarch,
5759 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5760 set_gdbarch_use_struct_convention (gdbarch,
5761 mips_o32_use_struct_convention);
c2d11a7d 5762 break;
0dadbba0 5763 case MIPS_ABI_EABI32:
46e0f506 5764 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5765 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5766 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5767 tdep->mips_default_saved_regsize = 4;
0dadbba0 5768 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5769 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5770 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5771 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5772 tdep->gdb_target_is_mips64 = 0;
4014092b 5773 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5774 set_gdbarch_long_bit (gdbarch, 32);
5775 set_gdbarch_ptr_bit (gdbarch, 32);
5776 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5777 set_gdbarch_reg_struct_has_addr (gdbarch,
5778 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5779 set_gdbarch_use_struct_convention (gdbarch,
5780 mips_eabi_use_struct_convention);
c2d11a7d 5781 break;
0dadbba0 5782 case MIPS_ABI_EABI64:
46e0f506 5783 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
ebba8386 5784 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5785 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5786 tdep->mips_default_saved_regsize = 8;
0dadbba0 5787 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5788 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5789 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5790 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5791 tdep->gdb_target_is_mips64 = 1;
4014092b 5792 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5793 set_gdbarch_long_bit (gdbarch, 64);
5794 set_gdbarch_ptr_bit (gdbarch, 64);
5795 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5796 set_gdbarch_reg_struct_has_addr (gdbarch,
5797 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5798 set_gdbarch_use_struct_convention (gdbarch,
5799 mips_eabi_use_struct_convention);
c2d11a7d 5800 break;
0dadbba0 5801 case MIPS_ABI_N32:
cb3d25d1 5802 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5803 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5804 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5805 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5806 tdep->mips_default_stack_argsize = 8;
5807 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5808 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5809 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5810 tdep->gdb_target_is_mips64 = 1;
4014092b 5811 tdep->default_mask_address_p = 0;
0dadbba0
AC
5812 set_gdbarch_long_bit (gdbarch, 32);
5813 set_gdbarch_ptr_bit (gdbarch, 32);
5814 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5815
5816 /* Set up the disassembler info, so that we get the right
28d169de
KB
5817 register names from libopcodes. */
5818 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5819 tm_print_insn_info.arch = bfd_arch_mips;
5820 if (info.bfd_arch_info != NULL
5821 && info.bfd_arch_info->arch == bfd_arch_mips
5822 && info.bfd_arch_info->mach)
5823 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5824 else
5825 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5826
5827 set_gdbarch_use_struct_convention (gdbarch,
5828 mips_n32n64_use_struct_convention);
8b389c40
MS
5829 set_gdbarch_reg_struct_has_addr (gdbarch,
5830 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5831 break;
5832 case MIPS_ABI_N64:
cb3d25d1 5833 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
ebba8386 5834 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5835 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5836 tdep->mips_default_saved_regsize = 8;
5837 tdep->mips_default_stack_argsize = 8;
5838 tdep->mips_fp_register_double = 1;
5839 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5840 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5841 tdep->gdb_target_is_mips64 = 1;
5842 tdep->default_mask_address_p = 0;
5843 set_gdbarch_long_bit (gdbarch, 64);
5844 set_gdbarch_ptr_bit (gdbarch, 64);
5845 set_gdbarch_long_long_bit (gdbarch, 64);
5846
5847 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5848 register names from libopcodes. */
5849 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5850 tm_print_insn_info.arch = bfd_arch_mips;
5851 if (info.bfd_arch_info != NULL
5852 && info.bfd_arch_info->arch == bfd_arch_mips
5853 && info.bfd_arch_info->mach)
5854 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5855 else
5856 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5857
5858 set_gdbarch_use_struct_convention (gdbarch,
5859 mips_n32n64_use_struct_convention);
8b389c40
MS
5860 set_gdbarch_reg_struct_has_addr (gdbarch,
5861 mips_n32n64_reg_struct_has_addr);
0dadbba0 5862 break;
c2d11a7d 5863 default:
2e4ebe70
DJ
5864 internal_error (__FILE__, __LINE__,
5865 "unknown ABI in switch");
c2d11a7d
JM
5866 }
5867
a5ea2558
AC
5868 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5869 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5870 comment:
5871
5872 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5873 flag in object files because to do so would make it impossible to
102182a9 5874 link with libraries compiled without "-gp32". This is
a5ea2558 5875 unnecessarily restrictive.
361d1df0 5876
a5ea2558
AC
5877 We could solve this problem by adding "-gp32" multilibs to gcc,
5878 but to set this flag before gcc is built with such multilibs will
5879 break too many systems.''
5880
5881 But even more unhelpfully, the default linker output target for
5882 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5883 for 64-bit programs - you need to change the ABI to change this,
102182a9 5884 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5885 this flag to detect 32-bit mode would do the wrong thing given
5886 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5887 as 32-bit programs by default. */
a5ea2558 5888
c2d11a7d
JM
5889 /* enable/disable the MIPS FPU */
5890 if (!mips_fpu_type_auto)
5891 tdep->mips_fpu_type = mips_fpu_type;
5892 else if (info.bfd_arch_info != NULL
5893 && info.bfd_arch_info->arch == bfd_arch_mips)
5894 switch (info.bfd_arch_info->mach)
5895 {
b0069a17 5896 case bfd_mach_mips3900:
c2d11a7d 5897 case bfd_mach_mips4100:
ed9a39eb 5898 case bfd_mach_mips4111:
c2d11a7d
JM
5899 tdep->mips_fpu_type = MIPS_FPU_NONE;
5900 break;
bf64bfd6
AC
5901 case bfd_mach_mips4650:
5902 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5903 break;
c2d11a7d
JM
5904 default:
5905 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5906 break;
5907 }
5908 else
5909 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5910
5911 /* MIPS version of register names. NOTE: At present the MIPS
5912 register name management is part way between the old -
5913 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5914 Further work on it is required. */
18f81521
MS
5915 /* NOTE: many targets (esp. embedded) do not go thru the
5916 gdbarch_register_name vector at all, instead bypassing it
5917 by defining REGISTER_NAMES. */
c2d11a7d 5918 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5919 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
5920 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5921 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
bcb0cc15 5922 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d
JM
5923 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5924
102182a9
MS
5925 /* Add/remove bits from an address. The MIPS needs be careful to
5926 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5927 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5928
10312cc4
AC
5929 /* There's a mess in stack frame creation. See comments in
5930 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5931 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 5932 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5933
102182a9 5934 /* Map debug register numbers onto internal register numbers. */
88c72b7d
AC
5935 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5936 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5937
c2d11a7d
JM
5938 /* Initialize a frame */
5939 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
d28e01f4 5940 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
c2d11a7d
JM
5941
5942 /* MIPS version of CALL_DUMMY */
5943
5944 set_gdbarch_call_dummy_p (gdbarch, 1);
5945 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5946 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5947 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5948 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
f7ab6ec6
MS
5949 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5950 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
5951 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
c2d11a7d
JM
5952 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5953 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5954 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5955 set_gdbarch_call_dummy_length (gdbarch, 0);
f7ab6ec6 5956 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
c2d11a7d
JM
5957 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5958 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5959 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5960 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
bf1f5b4c 5961 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5962 set_gdbarch_register_convert_to_virtual (gdbarch,
5963 mips_register_convert_to_virtual);
5964 set_gdbarch_register_convert_to_raw (gdbarch,
5965 mips_register_convert_to_raw);
5966
b9a8e3bf 5967 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 5968
b5d1566e 5969 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
c4093a6a 5970 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
b5d1566e
MS
5971 set_gdbarch_frameless_function_invocation (gdbarch,
5972 generic_frameless_function_invocation_not);
5973 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5974 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
5975 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
5976 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5977 set_gdbarch_frame_args_skip (gdbarch, 0);
5978
47a8d4ba 5979 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5980
f7b9e9fc
AC
5981 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5982 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5983 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5984
5985 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5986 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5987
fc0c74b1
AC
5988 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5989 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5990 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5991
102182a9
MS
5992 set_gdbarch_function_start_offset (gdbarch, 0);
5993
32a6503c
KB
5994 /* There are MIPS targets which do not yet use this since they still
5995 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 5996 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 5997 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 5998
bf1f5b4c 5999 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 6000 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 6001
70f80edf
JT
6002 /* Hook in OS ABI-specific overrides, if they have been registered. */
6003 gdbarch_init_osabi (info, gdbarch, osabi);
6004
2f1488ce
MS
6005 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6006 set_gdbarch_extract_struct_value_address (gdbarch,
6007 mips_extract_struct_value_address);
757a7cc6
MS
6008
6009 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6010
6011 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 6012 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 6013
4b9b3959
AC
6014 return gdbarch;
6015}
6016
2e4ebe70
DJ
6017static void
6018mips_abi_update (char *ignore_args, int from_tty,
6019 struct cmd_list_element *c)
6020{
6021 struct gdbarch_info info;
6022
6023 /* Force the architecture to update, and (if it's a MIPS architecture)
6024 mips_gdbarch_init will take care of the rest. */
6025 gdbarch_info_init (&info);
6026 gdbarch_update_p (info);
6027}
6028
4b9b3959
AC
6029static void
6030mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6031{
6032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6033 if (tdep != NULL)
c2d11a7d 6034 {
acdb74a0
AC
6035 int ef_mips_arch;
6036 int ef_mips_32bitmode;
6037 /* determine the ISA */
6038 switch (tdep->elf_flags & EF_MIPS_ARCH)
6039 {
6040 case E_MIPS_ARCH_1:
6041 ef_mips_arch = 1;
6042 break;
6043 case E_MIPS_ARCH_2:
6044 ef_mips_arch = 2;
6045 break;
6046 case E_MIPS_ARCH_3:
6047 ef_mips_arch = 3;
6048 break;
6049 case E_MIPS_ARCH_4:
93d56215 6050 ef_mips_arch = 4;
acdb74a0
AC
6051 break;
6052 default:
93d56215 6053 ef_mips_arch = 0;
acdb74a0
AC
6054 break;
6055 }
6056 /* determine the size of a pointer */
6057 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6058 fprintf_unfiltered (file,
6059 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6060 tdep->elf_flags);
4b9b3959 6061 fprintf_unfiltered (file,
acdb74a0
AC
6062 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6063 ef_mips_32bitmode);
6064 fprintf_unfiltered (file,
6065 "mips_dump_tdep: ef_mips_arch = %d\n",
6066 ef_mips_arch);
6067 fprintf_unfiltered (file,
6068 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6069 tdep->mips_abi,
2e4ebe70 6070 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6071 fprintf_unfiltered (file,
6072 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6073 mips_mask_address_p (),
6074 tdep->default_mask_address_p);
c2d11a7d 6075 }
4b9b3959
AC
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6078 FP_REGISTER_DOUBLE);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6081 MIPS_DEFAULT_FPU_TYPE,
6082 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6083 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6084 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6085 : "???"));
6086 fprintf_unfiltered (file,
6087 "mips_dump_tdep: MIPS_EABI = %d\n",
6088 MIPS_EABI);
6089 fprintf_unfiltered (file,
acdb74a0
AC
6090 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6091 MIPS_LAST_FP_ARG_REGNUM,
6092 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6095 MIPS_FPU_TYPE,
6096 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6097 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6098 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6099 : "???"));
6100 fprintf_unfiltered (file,
6101 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6102 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6105 FP_REGISTER_DOUBLE);
4b9b3959
AC
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6108 MIPS_DEFAULT_STACK_ARGSIZE);
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6111 MIPS_STACK_ARGSIZE);
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6114 MIPS_REGSIZE);
2475bac3
AC
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: A0_REGNUM = %d\n",
6117 A0_REGNUM);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6120 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6123 XSTRING (ATTACH_DETACH));
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6126 BADVADDR_REGNUM);
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6129 fprintf_unfiltered (file,
6130 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6131 CAUSE_REGNUM);
6132 fprintf_unfiltered (file,
6133 "mips_dump_tdep: CPLUS_MARKER = %c\n",
6134 CPLUS_MARKER);
2475bac3
AC
6135 fprintf_unfiltered (file,
6136 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
6137 XSTRING (DO_REGISTERS_INFO));
6138 fprintf_unfiltered (file,
6139 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6140 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6141 fprintf_unfiltered (file,
6142 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6143 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6144 fprintf_unfiltered (file,
6145 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6146 FCRCS_REGNUM);
6147 fprintf_unfiltered (file,
6148 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6149 FCRIR_REGNUM);
6150 fprintf_unfiltered (file,
6151 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6152 FIRST_EMBED_REGNUM);
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6155 FPA0_REGNUM);
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6158 GDB_TARGET_IS_MIPS64);
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6161 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6164 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6167 GEN_REG_SAVE_MASK);
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6170 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: HI_REGNUM = %d\n",
6173 HI_REGNUM);
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6180 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6183 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6186 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6191 LAST_EMBED_REGNUM);
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LO_REGNUM = %d\n",
6196 LO_REGNUM);
6197#ifdef MACHINE_CPROC_FP_OFFSET
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6200 MACHINE_CPROC_FP_OFFSET);
6201#endif
6202#ifdef MACHINE_CPROC_PC_OFFSET
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6205 MACHINE_CPROC_PC_OFFSET);
6206#endif
6207#ifdef MACHINE_CPROC_SP_OFFSET
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6210 MACHINE_CPROC_SP_OFFSET);
6211#endif
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6218 MIPS16_INSTLEN);
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6227 MIPS_INSTLEN);
6228 fprintf_unfiltered (file,
acdb74a0
AC
6229 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6230 MIPS_LAST_ARG_REGNUM,
6231 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6234 MIPS_NUMREGS);
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6239 MIPS_SAVED_REGSIZE);
2475bac3
AC
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: OP_LDFPR = used?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: OP_LDGPR = used?\n");
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: PRID_REGNUM = %d\n",
6250 PRID_REGNUM);
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6253 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_PC_REG = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PS_REGNUM = %d\n",
6280 PS_REGNUM);
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6283 PUSH_FP_REGNUM);
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: RA_REGNUM = %d\n",
6286 RA_REGNUM);
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6289 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6292 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: ROUND_DOWN = function?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: ROUND_UP = function?\n");
6299#ifdef SAVED_BYTES
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SAVED_BYTES = %d\n",
6302 SAVED_BYTES);
6303#endif
6304#ifdef SAVED_FP
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SAVED_FP = %d\n",
6307 SAVED_FP);
6308#endif
6309#ifdef SAVED_PC
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SAVED_PC = %d\n",
6312 SAVED_PC);
6313#endif
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6316 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6321 SIGFRAME_BASE);
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6324 SIGFRAME_FPREGSAVE_OFF);
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6327 SIGFRAME_PC_OFF);
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6330 SIGFRAME_REGSAVE_OFF);
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6333 SIGFRAME_REG_SIZE);
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6336 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6339 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6340 fprintf_unfiltered (file,
b0ed3589
AC
6341 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6342 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6345 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6346#ifdef STACK_END_ADDR
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6349 STACK_END_ADDR);
6350#endif
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6353 XSTRING (STEP_SKIPS_DELAY (PC)));
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6356 STEP_SKIPS_DELAY_P);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6359 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: T9_REGNUM = %d\n",
6362 T9_REGNUM);
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6367 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6370 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: TARGET_MIPS = used?\n");
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6375 XSTRING (TM_PRINT_INSN_MACH));
6376#ifdef TRACE_CLEAR
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6379 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6380#endif
6381#ifdef TRACE_FLAVOR
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6384 TRACE_FLAVOR);
6385#endif
6386#ifdef TRACE_FLAVOR_SIZE
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6389 TRACE_FLAVOR_SIZE);
6390#endif
6391#ifdef TRACE_SET
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TRACE_SET # %s\n",
6394 XSTRING (TRACE_SET (X,STATE)));
6395#endif
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6398#ifdef UNUSED_REGNUM
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6401 UNUSED_REGNUM);
6402#endif
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: V0_REGNUM = %d\n",
6405 V0_REGNUM);
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6408 (long) VM_MIN_ADDRESS);
6409#ifdef VX_NUM_REGS
6410 fprintf_unfiltered (file,
6411 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6412 VX_NUM_REGS);
6413#endif
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6416 ZERO_REGNUM);
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6419 _PROC_MAGIC_);
70f80edf
JT
6420
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: OS ABI = %s\n",
6423 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
6424}
6425
c906108c 6426void
acdb74a0 6427_initialize_mips_tdep (void)
c906108c
SS
6428{
6429 static struct cmd_list_element *mipsfpulist = NULL;
6430 struct cmd_list_element *c;
6431
2e4ebe70
DJ
6432 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6433 if (MIPS_ABI_LAST + 1
6434 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6435 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6436
4b9b3959 6437 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6438 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6439 tm_print_insn = gdb_print_insn_mips;
6440
a5ea2558
AC
6441 /* Add root prefix command for all "set mips"/"show mips" commands */
6442 add_prefix_cmd ("mips", no_class, set_mips_command,
6443 "Various MIPS specific commands.",
6444 &setmipscmdlist, "set mips ", 0, &setlist);
6445
6446 add_prefix_cmd ("mips", no_class, show_mips_command,
6447 "Various MIPS specific commands.",
6448 &showmipscmdlist, "show mips ", 0, &showlist);
6449
6450 /* Allow the user to override the saved register size. */
6451 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6452 class_obscure,
6453 size_enums,
6454 &mips_saved_regsize_string, "\
a5ea2558
AC
6455Set size of general purpose registers saved on the stack.\n\
6456This option can be set to one of:\n\
6457 32 - Force GDB to treat saved GP registers as 32-bit\n\
6458 64 - Force GDB to treat saved GP registers as 64-bit\n\
6459 auto - Allow GDB to use the target's default setting or autodetect the\n\
6460 saved GP register size from information contained in the executable.\n\
6461 (default: auto)",
1ed2a135 6462 &setmipscmdlist),
a5ea2558
AC
6463 &showmipscmdlist);
6464
d929b26f
AC
6465 /* Allow the user to override the argument stack size. */
6466 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6467 class_obscure,
6468 size_enums,
1ed2a135 6469 &mips_stack_argsize_string, "\
d929b26f
AC
6470Set the amount of stack space reserved for each argument.\n\
6471This option can be set to one of:\n\
6472 32 - Force GDB to allocate 32-bit chunks per argument\n\
6473 64 - Force GDB to allocate 64-bit chunks per argument\n\
6474 auto - Allow GDB to determine the correct setting from the current\n\
6475 target and executable (default)",
6476 &setmipscmdlist),
6477 &showmipscmdlist);
6478
2e4ebe70
DJ
6479 /* Allow the user to override the ABI. */
6480 c = add_set_enum_cmd
6481 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6482 "Set the ABI used by this program.\n"
6483 "This option can be set to one of:\n"
6484 " auto - the default ABI associated with the current binary\n"
6485 " o32\n"
6486 " o64\n"
6487 " n32\n"
f3a7b3a5 6488 " n64\n"
2e4ebe70
DJ
6489 " eabi32\n"
6490 " eabi64",
6491 &setmipscmdlist);
6492 add_show_from_set (c, &showmipscmdlist);
6493 set_cmd_sfunc (c, mips_abi_update);
6494
c906108c
SS
6495 /* Let the user turn off floating point and set the fence post for
6496 heuristic_proc_start. */
6497
6498 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6499 "Set use of MIPS floating-point coprocessor.",
6500 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6501 add_cmd ("single", class_support, set_mipsfpu_single_command,
6502 "Select single-precision MIPS floating-point coprocessor.",
6503 &mipsfpulist);
6504 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6505 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6506 &mipsfpulist);
6507 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6508 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6509 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6510 add_cmd ("none", class_support, set_mipsfpu_none_command,
6511 "Select no MIPS floating-point coprocessor.",
6512 &mipsfpulist);
6513 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6514 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6515 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6516 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6517 "Select MIPS floating-point coprocessor automatically.",
6518 &mipsfpulist);
6519 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6520 "Show current use of MIPS floating-point coprocessor target.",
6521 &showlist);
6522
c906108c
SS
6523 /* We really would like to have both "0" and "unlimited" work, but
6524 command.c doesn't deal with that. So make it a var_zinteger
6525 because the user can always use "999999" or some such for unlimited. */
6526 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6527 (char *) &heuristic_fence_post,
6528 "\
6529Set the distance searched for the start of a function.\n\
6530If you are debugging a stripped executable, GDB needs to search through the\n\
6531program for the start of a function. This command sets the distance of the\n\
6532search. The only need to set it is when debugging a stripped executable.",
6533 &setlist);
6534 /* We need to throw away the frame cache when we set this, since it
6535 might change our ability to get backtraces. */
9f60d481 6536 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6537 add_show_from_set (c, &showlist);
6538
6539 /* Allow the user to control whether the upper bits of 64-bit
6540 addresses should be zeroed. */
e9e68a56
AC
6541 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6542Set zeroing of upper 32 bits of 64-bit addresses.\n\
6543Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6544allow GDB to determine the correct value.\n", "\
6545Show zeroing of upper 32 bits of 64-bit addresses.",
6546 NULL, show_mask_address,
6547 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6548
6549 /* Allow the user to control the size of 32 bit registers within the
6550 raw remote packet. */
6551 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6552 class_obscure,
6553 var_boolean,
6554 (char *)&mips64_transfers_32bit_regs_p, "\
6555Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6556Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6557that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
655864 bits for others. Use \"off\" to disable compatibility mode",
6559 &setlist),
6560 &showlist);
9ace0497
AC
6561
6562 /* Debug this files internals. */
6563 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6564 &mips_debug, "Set mips debugging.\n\
6565When non-zero, mips specific debugging is enabled.", &setdebuglist),
6566 &showdebuglist);
c906108c 6567}
This page took 0.656821 seconds and 4 git commands to generate.