* features/rs6000/powerpc-32.c, features/rs6000/powerpc-403.c,
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
5e2e9765 27#include "gdb_assert.h"
c906108c
SS
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
fe898f56 43#include "block.h"
a4b8ebc8 44#include "reggroups.h"
c906108c 45#include "opcode/mips.h"
c2d11a7d
JM
46#include "elf/mips.h"
47#include "elf-bfd.h"
2475bac3 48#include "symcat.h"
a4b8ebc8 49#include "sim-regno.h"
a89aa300 50#include "dis-asm.h"
edfae063
AC
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
7d9b040b 54#include "infcall.h"
fed7ba43 55#include "floatformat.h"
29709017
DJ
56#include "remote.h"
57#include "target-descriptions.h"
2bd0c3d7 58#include "dwarf2-frame.h"
f8b73d13 59#include "user-regs.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
1a69e1e4
DJ
77enum
78{
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81};
0dadbba0 82
2e4ebe70
DJ
83static const char *mips_abi_string;
84
85static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
28d169de 89 "n64",
2e4ebe70
DJ
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94};
95
f8b73d13
DJ
96/* The standard register names, and all the valid aliases for them. */
97struct register_alias
98{
99 const char *name;
100 int regnum;
101};
102
103/* Aliases for o32 and most other ABIs. */
104const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109};
110
111/* Aliases for n32 and n64. */
112const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117};
118
119/* Aliases for ABI-independent registers. */
120const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123#define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128#undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143};
144
7a292a7a 145/* Some MIPS boards don't support floating point while others only
ceae6e75 146 support single-precision floating-point operations. */
c906108c
SS
147
148enum mips_fpu_type
6d82d43b
AC
149{
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153};
c906108c
SS
154
155#ifndef MIPS_DEFAULT_FPU_TYPE
156#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157#endif
158static int mips_fpu_type_auto = 1;
159static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 160
9ace0497 161static int mips_debug = 0;
7a292a7a 162
29709017
DJ
163/* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165#define PROPERTY_GP32 "internal: transfers-32bit-registers"
166#define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
4eb0ad19
DJ
168struct target_desc *mips_tdesc_gp32;
169struct target_desc *mips_tdesc_gp64;
170
c2d11a7d
JM
171/* MIPS specific per-architecture information */
172struct gdbarch_tdep
6d82d43b
AC
173{
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
6d82d43b
AC
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
29709017
DJ
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
6d82d43b 200};
c2d11a7d 201
fed7ba43
JB
202static int
203n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 204 const void *from)
fed7ba43
JB
205{
206 return 1;
207}
208
209/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220static const struct floatformat floatformat_n32n64_long_double_big =
221{
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
8da61cc4 224 "floatformat_n32n64_long_double_big",
fed7ba43
JB
225 n32n64_floatformat_always_valid
226};
227
8da61cc4
DJ
228static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229{
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232};
233
56cea623
AC
234const struct mips_regnum *
235mips_regnum (struct gdbarch *gdbarch)
236{
237 return gdbarch_tdep (gdbarch)->regnum;
238}
239
240static int
241mips_fpa0_regnum (struct gdbarch *gdbarch)
242{
243 return mips_regnum (gdbarch)->fp0 + 12;
244}
245
0dadbba0 246#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 248
c2d11a7d 249#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 250
c2d11a7d 251#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 252
c2d11a7d 253#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 254
95404a3e
AC
255/* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258static CORE_ADDR
259is_mips16_addr (CORE_ADDR addr)
260{
261 return ((addr) & 1);
262}
263
95404a3e
AC
264static CORE_ADDR
265unmake_mips16_addr (CORE_ADDR addr)
266{
5b652102 267 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
268}
269
d1973055
KB
270/* Return the MIPS ABI associated with GDBARCH. */
271enum mips_abi
272mips_abi (struct gdbarch *gdbarch)
273{
274 return gdbarch_tdep (gdbarch)->mips_abi;
275}
276
4246e332 277int
1b13c4f6 278mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 279{
29709017
DJ
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
4246e332
AC
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289}
290
480d3dd2
AC
291/* Return the currently configured (or set) saved register size. */
292
e6bc2e8a 293unsigned int
13326b4e 294mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 295{
1a69e1e4
DJ
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
d929b26f
AC
311}
312
71b8ef93 313/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 314 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 315 "info" field is used for this purpose.
5a89d8aa 316
95f1da47 317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
f594e5e9 321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 322
5a89d8aa 323static void
6d82d43b
AC
324mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325{
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
5a89d8aa
MS
332}
333
71b8ef93
MS
334static int
335msymbol_is_special (struct minimal_symbol *msym)
336{
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338}
339
88658117
AC
340/* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345static void
346mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
88658117 349{
88658117 350 int reg_offset = 0;
72a155b4
UW
351 struct gdbarch *gdbarch = get_regcache_arch (regcache);
352
353 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
354 /* Need to transfer the left or right part of the register, based on
355 the targets byte order. */
88658117
AC
356 switch (endian)
357 {
358 case BFD_ENDIAN_BIG:
72a155b4 359 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
360 break;
361 case BFD_ENDIAN_LITTLE:
362 reg_offset = 0;
363 break;
6d82d43b 364 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
365 reg_offset = 0;
366 break;
367 default:
e2e0b3e5 368 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
369 }
370 if (mips_debug)
cb1d2653
AC
371 fprintf_unfiltered (gdb_stderr,
372 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
373 reg_num, reg_offset, buf_offset, length);
88658117
AC
374 if (mips_debug && out != NULL)
375 {
376 int i;
cb1d2653 377 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 378 for (i = 0; i < length; i++)
cb1d2653 379 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
380 }
381 if (in != NULL)
6d82d43b
AC
382 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
383 in + buf_offset);
88658117 384 if (out != NULL)
6d82d43b
AC
385 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
386 out + buf_offset);
88658117
AC
387 if (mips_debug && in != NULL)
388 {
389 int i;
cb1d2653 390 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 391 for (i = 0; i < length; i++)
cb1d2653 392 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
393 }
394 if (mips_debug)
395 fprintf_unfiltered (gdb_stdlog, "\n");
396}
397
dd824b04
DJ
398/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
399 compatiblity mode. A return value of 1 means that we have
400 physical 64-bit registers, but should treat them as 32-bit registers. */
401
402static int
9c9acae0 403mips2_fp_compat (struct frame_info *frame)
dd824b04 404{
72a155b4 405 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
406 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
407 meaningful. */
72a155b4 408 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
409 return 0;
410
411#if 0
412 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
413 in all the places we deal with FP registers. PR gdb/413. */
414 /* Otherwise check the FR bit in the status register - it controls
415 the FP compatiblity mode. If it is clear we are in compatibility
416 mode. */
9c9acae0 417 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
418 return 1;
419#endif
361d1df0 420
dd824b04
DJ
421 return 0;
422}
423
7a292a7a 424#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 425
a14ed312 426static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 427
a14ed312 428static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 429
67b2c998
DJ
430static struct type *mips_float_register_type (void);
431static struct type *mips_double_register_type (void);
432
acdb74a0
AC
433/* The list of available "set mips " and "show mips " commands */
434
435static struct cmd_list_element *setmipscmdlist = NULL;
436static struct cmd_list_element *showmipscmdlist = NULL;
437
5e2e9765
KB
438/* Integer registers 0 thru 31 are handled explicitly by
439 mips_register_name(). Processor specific registers 32 and above
8a9fc081 440 are listed in the following tables. */
691c0433 441
6d82d43b
AC
442enum
443{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
444
445/* Generic MIPS. */
446
447static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
448 "sr", "lo", "hi", "bad", "cause", "pc",
449 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
450 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
451 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
452 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
453 "fsr", "fir", "" /*"fp" */ , "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "", "", "", "", "",
691c0433
AC
456};
457
458/* Names of IDT R3041 registers. */
459
460static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
461 "sr", "lo", "hi", "bad", "cause", "pc",
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "fsr", "fir", "", /*"fp" */ "",
467 "", "", "bus", "ccfg", "", "", "", "",
468 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
469};
470
471/* Names of tx39 registers. */
472
473static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
474 "sr", "lo", "hi", "bad", "cause", "pc",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "", "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "", "",
480 "", "", "", "", "", "", "", "",
481 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
482};
483
484/* Names of IRIX registers. */
485static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
491};
492
cce74817 493
5e2e9765 494/* Return the name of the register corresponding to REGNO. */
5a89d8aa 495static const char *
5e2e9765 496mips_register_name (int regno)
cce74817 497{
691c0433 498 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
499 /* GPR names for all ABIs other than n32/n64. */
500 static char *mips_gpr_names[] = {
6d82d43b
AC
501 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
502 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
503 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
504 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
505 };
506
507 /* GPR names for n32 and n64 ABIs. */
508 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
509 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
510 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
511 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
512 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
513 };
514
515 enum mips_abi abi = mips_abi (current_gdbarch);
516
f57d151a
UW
517 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
518 but then don't make the raw register names visible. */
519 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
520 if (regno < gdbarch_num_regs (current_gdbarch))
a4b8ebc8
AC
521 return "";
522
5e2e9765
KB
523 /* The MIPS integer registers are always mapped from 0 to 31. The
524 names of the registers (which reflects the conventions regarding
525 register use) vary depending on the ABI. */
a4b8ebc8 526 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
527 {
528 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 529 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 530 else
a4b8ebc8 531 return mips_gpr_names[rawnum];
5e2e9765 532 }
f8b73d13
DJ
533 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
534 return tdesc_register_name (rawnum);
f57d151a 535 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
691c0433
AC
536 {
537 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
538 return tdep->mips_processor_reg_names[rawnum - 32];
539 }
5e2e9765
KB
540 else
541 internal_error (__FILE__, __LINE__,
e2e0b3e5 542 _("mips_register_name: bad register number %d"), rawnum);
cce74817 543}
5e2e9765 544
a4b8ebc8 545/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 546
a4b8ebc8
AC
547static int
548mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
549 struct reggroup *reggroup)
550{
551 int vector_p;
552 int float_p;
553 int raw_p;
72a155b4
UW
554 int rawnum = regnum % gdbarch_num_regs (gdbarch);
555 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
556 if (reggroup == all_reggroup)
557 return pseudo;
558 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
559 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
560 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
561 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
562 raw_p = rawnum < gdbarch_num_regs (gdbarch);
563 if (gdbarch_register_name (gdbarch, regnum) == NULL
564 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
565 return 0;
566 if (reggroup == float_reggroup)
567 return float_p && pseudo;
568 if (reggroup == vector_reggroup)
569 return vector_p && pseudo;
570 if (reggroup == general_reggroup)
571 return (!vector_p && !float_p) && pseudo;
572 /* Save the pseudo registers. Need to make certain that any code
573 extracting register values from a saved register cache also uses
574 pseudo registers. */
575 if (reggroup == save_reggroup)
576 return raw_p && pseudo;
577 /* Restore the same pseudo register. */
578 if (reggroup == restore_reggroup)
579 return raw_p && pseudo;
6d82d43b 580 return 0;
a4b8ebc8
AC
581}
582
f8b73d13
DJ
583/* Return the groups that a MIPS register can be categorised into.
584 This version is only used if we have a target description which
585 describes real registers (and their groups). */
586
587static int
588mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 struct reggroup *reggroup)
590{
591 int rawnum = regnum % gdbarch_num_regs (gdbarch);
592 int pseudo = regnum / gdbarch_num_regs (gdbarch);
593 int ret;
594
595 /* Only save, restore, and display the pseudo registers. Need to
596 make certain that any code extracting register values from a
597 saved register cache also uses pseudo registers.
598
599 Note: saving and restoring the pseudo registers is slightly
600 strange; if we have 64 bits, we should save and restore all
601 64 bits. But this is hard and has little benefit. */
602 if (!pseudo)
603 return 0;
604
605 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
606 if (ret != -1)
607 return ret;
608
609 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
610}
611
a4b8ebc8 612/* Map the symbol table registers which live in the range [1 *
f57d151a 613 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 614 registers. Take care of alignment and size problems. */
c5aa993b 615
a4b8ebc8
AC
616static void
617mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 618 int cookednum, gdb_byte *buf)
a4b8ebc8 619{
72a155b4
UW
620 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
621 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
622 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 623 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 624 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
625 else if (register_size (gdbarch, rawnum) >
626 register_size (gdbarch, cookednum))
47ebcfbe
AC
627 {
628 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 629 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
630 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
631 else
632 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
633 }
634 else
e2e0b3e5 635 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
636}
637
638static void
6d82d43b
AC
639mips_pseudo_register_write (struct gdbarch *gdbarch,
640 struct regcache *regcache, int cookednum,
47a35522 641 const gdb_byte *buf)
a4b8ebc8 642{
72a155b4
UW
643 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
644 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
645 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 646 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 647 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
648 else if (register_size (gdbarch, rawnum) >
649 register_size (gdbarch, cookednum))
47ebcfbe
AC
650 {
651 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 652 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
653 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
654 else
655 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
656 }
657 else
e2e0b3e5 658 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 659}
c5aa993b 660
c906108c 661/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 662static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
663
664/* Heuristic_proc_start may hunt through the text section for a long
665 time across a 2400 baud serial line. Allows the user to limit this
666 search. */
667
668static unsigned int heuristic_fence_post = 0;
669
46cd78fb 670/* Number of bytes of storage in the actual machine representation for
719ec221
AC
671 register N. NOTE: This defines the pseudo register type so need to
672 rebuild the architecture vector. */
43e526b9
JM
673
674static int mips64_transfers_32bit_regs_p = 0;
675
719ec221
AC
676static void
677set_mips64_transfers_32bit_regs (char *args, int from_tty,
678 struct cmd_list_element *c)
43e526b9 679{
719ec221
AC
680 struct gdbarch_info info;
681 gdbarch_info_init (&info);
682 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
683 instead of relying on globals. Doing that would let generic code
684 handle the search for this specific architecture. */
685 if (!gdbarch_update_p (info))
a4b8ebc8 686 {
719ec221 687 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 688 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 689 }
a4b8ebc8
AC
690}
691
47ebcfbe 692/* Convert to/from a register and the corresponding memory value. */
43e526b9 693
ff2e87ac
AC
694static int
695mips_convert_register_p (int regnum, struct type *type)
696{
4c6b5505 697 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
719ec221 698 && register_size (current_gdbarch, regnum) == 4
f57d151a
UW
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 >= mips_regnum (current_gdbarch)->fp0
701 && (regnum % gdbarch_num_regs (current_gdbarch))
702 < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 703 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
704}
705
42c466d7 706static void
ff2e87ac 707mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 708 struct type *type, gdb_byte *to)
102182a9 709{
47a35522
MK
710 get_frame_register (frame, regnum + 0, to + 4);
711 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
712}
713
42c466d7 714static void
ff2e87ac 715mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 716 struct type *type, const gdb_byte *from)
102182a9 717{
47a35522
MK
718 put_frame_register (frame, regnum + 0, from + 4);
719 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
720}
721
a4b8ebc8
AC
722/* Return the GDB type object for the "standard" data type of data in
723 register REG. */
78fde5f8
KB
724
725static struct type *
a4b8ebc8
AC
726mips_register_type (struct gdbarch *gdbarch, int regnum)
727{
72a155b4
UW
728 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
729 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
730 && (regnum % gdbarch_num_regs (gdbarch))
731 < mips_regnum (gdbarch)->fp0 + 32)
a6425924 732 {
5ef80fb0 733 /* The floating-point registers raw, or cooked, always match
1b13c4f6 734 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
735 if (mips_isa_regsize (gdbarch) == 4)
736 return builtin_type_ieee_single;
737 else
738 return builtin_type_ieee_double;
a6425924 739 }
72a155b4 740 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
741 {
742 /* The raw or ISA registers. These are all sized according to
743 the ISA regsize. */
744 if (mips_isa_regsize (gdbarch) == 4)
745 return builtin_type_int32;
746 else
747 return builtin_type_int64;
748 }
78fde5f8 749 else
d5ac5a39
AC
750 {
751 /* The cooked or ABI registers. These are sized according to
752 the ABI (with a few complications). */
72a155b4
UW
753 if (regnum >= (gdbarch_num_regs (gdbarch)
754 + mips_regnum (gdbarch)->fp_control_status)
755 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
78fde5f8
KB
772}
773
f8b73d13
DJ
774/* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779static struct type *
780mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781{
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826}
bcb0cc15 827
c906108c 828/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 829enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
830
831static int
480d3dd2 832mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
833{
834 switch (mask_address_var)
835 {
7f19b9a2 836 case AUTO_BOOLEAN_TRUE:
4014092b 837 return 1;
7f19b9a2 838 case AUTO_BOOLEAN_FALSE:
4014092b
AC
839 return 0;
840 break;
7f19b9a2 841 case AUTO_BOOLEAN_AUTO:
480d3dd2 842 return tdep->default_mask_address_p;
4014092b 843 default:
e2e0b3e5 844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 845 return -1;
361d1df0 846 }
4014092b
AC
847}
848
849static void
08546159
AC
850show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
4014092b 852{
480d3dd2 853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
854
855 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
856 switch (mask_address_var)
857 {
7f19b9a2 858 case AUTO_BOOLEAN_TRUE:
4014092b
AC
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
7f19b9a2 861 case AUTO_BOOLEAN_FALSE:
4014092b
AC
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
7f19b9a2 864 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
868 break;
869 default:
e2e0b3e5 870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 871 break;
361d1df0 872 }
4014092b 873}
c906108c 874
c906108c
SS
875/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
0fe7e7c8
AC
877int
878mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
879{
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 883 if (is_mips16_addr (memaddr))
c906108c
SS
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
71b8ef93 891 return msymbol_is_special (sym);
c906108c
SS
892 else
893 return 0;
894}
895
b2fa5097 896/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
897 all registers should be sign extended for simplicity? */
898
899static CORE_ADDR
61a1198a 900mips_read_pc (struct regcache *regcache)
6c997a34 901{
61a1198a
UW
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
b6cb9035
AC
906}
907
58dfe9ff
AC
908static CORE_ADDR
909mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910{
72a155b4
UW
911 return frame_unwind_register_signed
912 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
edfae063
AC
913}
914
30244cd8
UW
915static CORE_ADDR
916mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
917{
72a155b4
UW
918 return frame_unwind_register_signed
919 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
920}
921
edfae063
AC
922/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
923 dummy frame. The frame ID's base needs to match the TOS value
924 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
925 breakpoint. */
926
927static struct frame_id
928mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
929{
f57d151a
UW
930 return frame_id_build
931 (frame_unwind_register_signed (next_frame,
72a155b4 932 gdbarch_num_regs (gdbarch)
f57d151a
UW
933 + MIPS_SP_REGNUM),
934 frame_pc_unwind (next_frame));
58dfe9ff
AC
935}
936
b6cb9035 937static void
61a1198a 938mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 939{
61a1198a
UW
940 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
941 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 942}
c906108c 943
c906108c
SS
944/* Fetch and return instruction from the specified location. If the PC
945 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
946
d37cca3d 947static ULONGEST
acdb74a0 948mips_fetch_instruction (CORE_ADDR addr)
c906108c 949{
47a35522 950 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
951 int instlen;
952 int status;
953
0fe7e7c8 954 if (mips_pc_is_mips16 (addr))
c906108c 955 {
95ac2dcf 956 instlen = MIPS_INSN16_SIZE;
95404a3e 957 addr = unmake_mips16_addr (addr);
c906108c
SS
958 }
959 else
95ac2dcf 960 instlen = MIPS_INSN32_SIZE;
359a9262 961 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
962 if (status)
963 memory_error (status, addr);
964 return extract_unsigned_integer (buf, instlen);
965}
966
c906108c 967/* These the fields of 32 bit mips instructions */
e135b889
DJ
968#define mips32_op(x) (x >> 26)
969#define itype_op(x) (x >> 26)
970#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 971#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 972#define itype_immediate(x) (x & 0xffff)
c906108c 973
e135b889
DJ
974#define jtype_op(x) (x >> 26)
975#define jtype_target(x) (x & 0x03ffffff)
c906108c 976
e135b889
DJ
977#define rtype_op(x) (x >> 26)
978#define rtype_rs(x) ((x >> 21) & 0x1f)
979#define rtype_rt(x) ((x >> 16) & 0x1f)
980#define rtype_rd(x) ((x >> 11) & 0x1f)
981#define rtype_shamt(x) ((x >> 6) & 0x1f)
982#define rtype_funct(x) (x & 0x3f)
c906108c 983
06987e64
MK
984static LONGEST
985mips32_relative_offset (ULONGEST inst)
c5aa993b 986{
06987e64 987 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
988}
989
f49e4e6d
MS
990/* Determine where to set a single step breakpoint while considering
991 branch prediction. */
5a89d8aa 992static CORE_ADDR
0b1b3e42 993mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b
JM
994{
995 unsigned long inst;
996 int op;
997 inst = mips_fetch_instruction (pc);
e135b889 998 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 999 {
e135b889 1000 if (itype_op (inst) >> 2 == 5)
6d82d43b 1001 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1002 {
e135b889 1003 op = (itype_op (inst) & 0x03);
c906108c
SS
1004 switch (op)
1005 {
e135b889
DJ
1006 case 0: /* BEQL */
1007 goto equal_branch;
1008 case 1: /* BNEL */
1009 goto neq_branch;
1010 case 2: /* BLEZL */
1011 goto less_branch;
313628cc 1012 case 3: /* BGTZL */
e135b889 1013 goto greater_branch;
c5aa993b
JM
1014 default:
1015 pc += 4;
c906108c
SS
1016 }
1017 }
e135b889 1018 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1019 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
1020 {
1021 int tf = itype_rt (inst) & 0x01;
1022 int cnum = itype_rt (inst) >> 2;
6d82d43b 1023 int fcrcs =
72a155b4
UW
1024 get_frame_register_signed (frame,
1025 mips_regnum (get_frame_arch (frame))->
0b1b3e42 1026 fp_control_status);
e135b889
DJ
1027 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1028
1029 if (((cond >> cnum) & 0x01) == tf)
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 }
c5aa993b
JM
1034 else
1035 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1036 }
1037 else
c5aa993b
JM
1038 { /* This gets way messy */
1039
c906108c 1040 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1041 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1042 {
c5aa993b
JM
1043 case 0: /* SPECIAL */
1044 op = rtype_funct (inst);
1045 switch (op)
1046 {
1047 case 8: /* JR */
1048 case 9: /* JALR */
6c997a34 1049 /* Set PC to that address */
0b1b3e42 1050 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b
JM
1051 break;
1052 default:
1053 pc += 4;
1054 }
1055
6d82d43b 1056 break; /* end SPECIAL */
c5aa993b 1057 case 1: /* REGIMM */
c906108c 1058 {
e135b889
DJ
1059 op = itype_rt (inst); /* branch condition */
1060 switch (op)
c906108c 1061 {
c5aa993b 1062 case 0: /* BLTZ */
e135b889
DJ
1063 case 2: /* BLTZL */
1064 case 16: /* BLTZAL */
c5aa993b 1065 case 18: /* BLTZALL */
c906108c 1066 less_branch:
0b1b3e42 1067 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1068 pc += mips32_relative_offset (inst) + 4;
1069 else
1070 pc += 8; /* after the delay slot */
1071 break;
e135b889 1072 case 1: /* BGEZ */
c5aa993b
JM
1073 case 3: /* BGEZL */
1074 case 17: /* BGEZAL */
1075 case 19: /* BGEZALL */
0b1b3e42 1076 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1077 pc += mips32_relative_offset (inst) + 4;
1078 else
1079 pc += 8; /* after the delay slot */
1080 break;
e135b889 1081 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1082 default:
1083 pc += 4;
c906108c
SS
1084 }
1085 }
6d82d43b 1086 break; /* end REGIMM */
c5aa993b
JM
1087 case 2: /* J */
1088 case 3: /* JAL */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
e135b889 1092 /* Upper four bits get never changed... */
5b652102 1093 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1094 }
c5aa993b
JM
1095 break;
1096 /* FIXME case JALX : */
1097 {
1098 unsigned long reg;
1099 reg = jtype_target (inst) << 2;
5b652102 1100 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1101 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1102 }
c5aa993b 1103 break; /* The new PC will be alternate mode */
e135b889 1104 case 4: /* BEQ, BEQL */
c5aa993b 1105 equal_branch:
0b1b3e42
UW
1106 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1107 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
e135b889 1112 case 5: /* BNE, BNEL */
c5aa993b 1113 neq_branch:
0b1b3e42
UW
1114 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1115 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1116 pc += mips32_relative_offset (inst) + 4;
1117 else
1118 pc += 8;
1119 break;
e135b889 1120 case 6: /* BLEZ, BLEZL */
0b1b3e42 1121 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
1126 case 7:
e135b889
DJ
1127 default:
1128 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1129 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1130 pc += mips32_relative_offset (inst) + 4;
1131 else
1132 pc += 8;
1133 break;
c5aa993b
JM
1134 } /* switch */
1135 } /* else */
1136 return pc;
1137} /* mips32_next_pc */
c906108c
SS
1138
1139/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1140 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1141 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1142 We dont want to set a single step instruction on the extend instruction
1143 either.
c5aa993b 1144 */
c906108c
SS
1145
1146/* Lots of mips16 instruction formats */
1147/* Predicting jumps requires itype,ritype,i8type
1148 and their extensions extItype,extritype,extI8type
c5aa993b 1149 */
c906108c
SS
1150enum mips16_inst_fmts
1151{
c5aa993b
JM
1152 itype, /* 0 immediate 5,10 */
1153 ritype, /* 1 5,3,8 */
1154 rrtype, /* 2 5,3,3,5 */
1155 rritype, /* 3 5,3,3,5 */
1156 rrrtype, /* 4 5,3,3,3,2 */
1157 rriatype, /* 5 5,3,3,1,4 */
1158 shifttype, /* 6 5,3,3,3,2 */
1159 i8type, /* 7 5,3,8 */
1160 i8movtype, /* 8 5,3,3,5 */
1161 i8mov32rtype, /* 9 5,3,5,3 */
1162 i64type, /* 10 5,3,8 */
1163 ri64type, /* 11 5,3,3,5 */
1164 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1165 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1166 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1167 extRRItype, /* 15 5,5,5,5,3,3,5 */
1168 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1169 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1170 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1171 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1172 extRi64type, /* 20 5,6,5,5,3,3,5 */
1173 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1174};
12f02c2a
AC
1175/* I am heaping all the fields of the formats into one structure and
1176 then, only the fields which are involved in instruction extension */
c906108c 1177struct upk_mips16
6d82d43b
AC
1178{
1179 CORE_ADDR offset;
1180 unsigned int regx; /* Function in i8 type */
1181 unsigned int regy;
1182};
c906108c
SS
1183
1184
12f02c2a
AC
1185/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1186 for the bits which make up the immediatate extension. */
c906108c 1187
12f02c2a
AC
1188static CORE_ADDR
1189extended_offset (unsigned int extension)
c906108c 1190{
12f02c2a 1191 CORE_ADDR value;
c5aa993b
JM
1192 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1193 value = value << 6;
1194 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1195 value = value << 5;
1196 value |= extension & 0x01f; /* extract 4:0 */
1197 return value;
c906108c
SS
1198}
1199
1200/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1201 instruction. It won't malfunction, but why make excess remote memory
1202 references? If the immediate operands get sign extended or something,
1203 do it after the extension is performed. */
c906108c 1204/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1205 when the offset is to be used in relative addressing. */
c906108c 1206
12f02c2a 1207static unsigned int
c5aa993b 1208fetch_mips_16 (CORE_ADDR pc)
c906108c 1209{
47a35522 1210 gdb_byte buf[8];
c5aa993b
JM
1211 pc &= 0xfffffffe; /* clear the low order bit */
1212 target_read_memory (pc, buf, 2);
1213 return extract_unsigned_integer (buf, 2);
c906108c
SS
1214}
1215
1216static void
c5aa993b 1217unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1218 unsigned int extension,
1219 unsigned int inst,
6d82d43b 1220 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1221{
12f02c2a
AC
1222 CORE_ADDR offset;
1223 int regx;
1224 int regy;
1225 switch (insn_format)
c906108c 1226 {
c5aa993b 1227 case itype:
c906108c 1228 {
12f02c2a
AC
1229 CORE_ADDR value;
1230 if (extension)
c5aa993b
JM
1231 {
1232 value = extended_offset (extension);
1233 value = value << 11; /* rom for the original value */
6d82d43b 1234 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1235 }
1236 else
c5aa993b 1237 {
12f02c2a 1238 value = inst & 0x7ff;
c5aa993b 1239 /* FIXME : Consider sign extension */
c906108c 1240 }
12f02c2a
AC
1241 offset = value;
1242 regx = -1;
1243 regy = -1;
c906108c 1244 }
c5aa993b
JM
1245 break;
1246 case ritype:
1247 case i8type:
1248 { /* A register identifier and an offset */
c906108c
SS
1249 /* Most of the fields are the same as I type but the
1250 immediate value is of a different length */
12f02c2a
AC
1251 CORE_ADDR value;
1252 if (extension)
c906108c 1253 {
c5aa993b
JM
1254 value = extended_offset (extension);
1255 value = value << 8; /* from the original instruction */
12f02c2a
AC
1256 value |= inst & 0xff; /* eleven bits from instruction */
1257 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1258 if (value & 0x4000) /* test the sign bit , bit 26 */
1259 {
1260 value &= ~0x3fff; /* remove the sign bit */
1261 value = -value;
c906108c
SS
1262 }
1263 }
c5aa993b
JM
1264 else
1265 {
12f02c2a
AC
1266 value = inst & 0xff; /* 8 bits */
1267 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1268 /* FIXME: Do sign extension , this format needs it */
1269 if (value & 0x80) /* THIS CONFUSES ME */
1270 {
1271 value &= 0xef; /* remove the sign bit */
1272 value = -value;
1273 }
c5aa993b 1274 }
12f02c2a
AC
1275 offset = value;
1276 regy = -1;
c5aa993b 1277 break;
c906108c 1278 }
c5aa993b 1279 case jalxtype:
c906108c 1280 {
c5aa993b 1281 unsigned long value;
12f02c2a
AC
1282 unsigned int nexthalf;
1283 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1284 value = value << 16;
1285 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 value |= nexthalf;
12f02c2a
AC
1287 offset = value;
1288 regx = -1;
1289 regy = -1;
c5aa993b 1290 break;
c906108c
SS
1291 }
1292 default:
e2e0b3e5 1293 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1294 }
12f02c2a
AC
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
c906108c
SS
1298}
1299
1300
c5aa993b
JM
1301static CORE_ADDR
1302add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1303{
5b652102 1304 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1305}
1306
12f02c2a 1307static CORE_ADDR
0b1b3e42 1308extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1309 unsigned int extension, unsigned int insn)
c906108c 1310{
12f02c2a
AC
1311 int op = (insn >> 11);
1312 switch (op)
c906108c 1313 {
6d82d43b 1314 case 2: /* Branch */
12f02c2a
AC
1315 {
1316 CORE_ADDR offset;
1317 struct upk_mips16 upk;
1318 unpack_mips16 (pc, extension, insn, itype, &upk);
1319 offset = upk.offset;
1320 if (offset & 0x800)
1321 {
1322 offset &= 0xeff;
1323 offset = -offset;
1324 }
1325 pc += (offset << 1) + 2;
1326 break;
1327 }
6d82d43b 1328 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1329 {
1330 struct upk_mips16 upk;
1331 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1332 pc = add_offset_16 (pc, upk.offset);
1333 if ((insn >> 10) & 0x01) /* Exchange mode */
1334 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1335 else
1336 pc |= 0x01;
1337 break;
1338 }
6d82d43b 1339 case 4: /* beqz */
12f02c2a
AC
1340 {
1341 struct upk_mips16 upk;
1342 int reg;
1343 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1344 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1345 if (reg == 0)
1346 pc += (upk.offset << 1) + 2;
1347 else
1348 pc += 2;
1349 break;
1350 }
6d82d43b 1351 case 5: /* bnez */
12f02c2a
AC
1352 {
1353 struct upk_mips16 upk;
1354 int reg;
1355 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1356 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1357 if (reg != 0)
1358 pc += (upk.offset << 1) + 2;
1359 else
1360 pc += 2;
1361 break;
1362 }
6d82d43b 1363 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1364 {
1365 struct upk_mips16 upk;
1366 int reg;
1367 unpack_mips16 (pc, extension, insn, i8type, &upk);
1368 /* upk.regx contains the opcode */
0b1b3e42 1369 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1370 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1371 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1372 /* pc = add_offset_16(pc,upk.offset) ; */
1373 pc += (upk.offset << 1) + 2;
1374 else
1375 pc += 2;
1376 break;
1377 }
6d82d43b 1378 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1379 {
1380 struct upk_mips16 upk;
1381 /* upk.fmt = rrtype; */
1382 op = insn & 0x1f;
1383 if (op == 0)
c5aa993b 1384 {
12f02c2a
AC
1385 int reg;
1386 upk.regx = (insn >> 8) & 0x07;
1387 upk.regy = (insn >> 5) & 0x07;
1388 switch (upk.regy)
c5aa993b 1389 {
12f02c2a
AC
1390 case 0:
1391 reg = upk.regx;
1392 break;
1393 case 1:
1394 reg = 31;
6d82d43b 1395 break; /* Function return instruction */
12f02c2a
AC
1396 case 2:
1397 reg = upk.regx;
1398 break;
1399 default:
1400 reg = 31;
6d82d43b 1401 break; /* BOGUS Guess */
c906108c 1402 }
0b1b3e42 1403 pc = get_frame_register_signed (frame, reg);
c906108c 1404 }
12f02c2a 1405 else
c5aa993b 1406 pc += 2;
12f02c2a
AC
1407 break;
1408 }
1409 case 30:
1410 /* This is an instruction extension. Fetch the real instruction
1411 (which follows the extension) and decode things based on
1412 that. */
1413 {
1414 pc += 2;
0b1b3e42 1415 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
12f02c2a
AC
1416 break;
1417 }
1418 default:
1419 {
1420 pc += 2;
1421 break;
1422 }
c906108c 1423 }
c5aa993b 1424 return pc;
12f02c2a 1425}
c906108c 1426
5a89d8aa 1427static CORE_ADDR
0b1b3e42 1428mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a
AC
1429{
1430 unsigned int insn = fetch_mips_16 (pc);
0b1b3e42 1431 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1432}
1433
1434/* The mips_next_pc function supports single_step when the remote
7e73cedf 1435 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1436 It works by decoding the current instruction and predicting where a
1437 branch will go. This isnt hard because all the data is available.
ce1f96de 1438 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1439static CORE_ADDR
0b1b3e42 1440mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1441{
ce1f96de 1442 if (is_mips16_addr (pc))
0b1b3e42 1443 return mips16_next_pc (frame, pc);
c5aa993b 1444 else
0b1b3e42 1445 return mips32_next_pc (frame, pc);
12f02c2a 1446}
c906108c 1447
edfae063
AC
1448struct mips_frame_cache
1449{
1450 CORE_ADDR base;
1451 struct trad_frame_saved_reg *saved_regs;
1452};
1453
29639122
JB
1454/* Set a register's saved stack address in temp_saved_regs. If an
1455 address has already been set for this register, do nothing; this
1456 way we will only recognize the first save of a given register in a
1457 function prologue.
eec63939 1458
f57d151a
UW
1459 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1460 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1461 Strictly speaking, only the second range is used as it is only second
1462 range (the ABI instead of ISA registers) that comes into play when finding
1463 saved registers in a frame. */
eec63939
AC
1464
1465static void
29639122
JB
1466set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1467 CORE_ADDR offset)
eec63939 1468{
29639122
JB
1469 if (this_cache != NULL
1470 && this_cache->saved_regs[regnum].addr == -1)
1471 {
f57d151a
UW
1472 this_cache->saved_regs[regnum
1473 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1474 = offset;
1475 this_cache->saved_regs[regnum
1476 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1477 = offset;
29639122 1478 }
eec63939
AC
1479}
1480
eec63939 1481
29639122
JB
1482/* Fetch the immediate value from a MIPS16 instruction.
1483 If the previous instruction was an EXTEND, use it to extend
1484 the upper bits of the immediate value. This is a helper function
1485 for mips16_scan_prologue. */
eec63939 1486
29639122
JB
1487static int
1488mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1489 unsigned short inst, /* current instruction */
1490 int nbits, /* number of bits in imm field */
1491 int scale, /* scale factor to be applied to imm */
1492 int is_signed) /* is the imm field signed? */
eec63939 1493{
29639122 1494 int offset;
eec63939 1495
29639122
JB
1496 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1497 {
1498 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1499 if (offset & 0x8000) /* check for negative extend */
1500 offset = 0 - (0x10000 - (offset & 0xffff));
1501 return offset | (inst & 0x1f);
1502 }
eec63939 1503 else
29639122
JB
1504 {
1505 int max_imm = 1 << nbits;
1506 int mask = max_imm - 1;
1507 int sign_bit = max_imm >> 1;
45c9dd44 1508
29639122
JB
1509 offset = inst & mask;
1510 if (is_signed && (offset & sign_bit))
1511 offset = 0 - (max_imm - offset);
1512 return offset * scale;
1513 }
1514}
eec63939 1515
65596487 1516
29639122
JB
1517/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1518 the associated FRAME_CACHE if not null.
1519 Return the address of the first instruction past the prologue. */
eec63939 1520
29639122
JB
1521static CORE_ADDR
1522mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1523 struct frame_info *next_frame,
1524 struct mips_frame_cache *this_cache)
1525{
1526 CORE_ADDR cur_pc;
1527 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1528 CORE_ADDR sp;
1529 long frame_offset = 0; /* Size of stack frame. */
1530 long frame_adjust = 0; /* Offset of FP from SP. */
1531 int frame_reg = MIPS_SP_REGNUM;
1532 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1533 unsigned inst = 0; /* current instruction */
1534 unsigned entry_inst = 0; /* the entry instruction */
1535 int reg, offset;
a343eb3c 1536
29639122
JB
1537 int extend_bytes = 0;
1538 int prev_extend_bytes;
1539 CORE_ADDR end_prologue_addr = 0;
72a155b4 1540 struct gdbarch *gdbarch = get_frame_arch (next_frame);
a343eb3c 1541
29639122
JB
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
d2ca4222 1545 sp = frame_unwind_register_signed (next_frame,
72a155b4 1546 gdbarch_num_regs (gdbarch)
d2ca4222 1547 + MIPS_SP_REGNUM);
29639122
JB
1548 else
1549 sp = 0;
eec63939 1550
29639122
JB
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
eec63939 1553
95ac2dcf 1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
eec63939 1559
29639122
JB
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1562
29639122
JB
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
95ac2dcf 1570 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1571 continue;
1572 }
eec63939 1573
29639122
JB
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
eec63939 1576
29639122
JB
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
eec63939 1654
29639122
JB
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1665
29639122
JB
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
72a155b4 1677 offset += mips_abi_regsize (gdbarch);
29639122
JB
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
4c7d22cb 1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 1685 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
72a155b4 1692 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
f57d151a 1699 (frame_unwind_register_signed (next_frame,
72a155b4 1700 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
1701 + frame_offset - frame_adjust);
1702 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1703 be able to get rid of the assignment below, evetually. But it's
1704 still needed for now. */
72a155b4
UW
1705 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1706 + mips_regnum (gdbarch)->pc]
1707 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
1708 }
1709
1710 /* If we didn't reach the end of the prologue when scanning the function
1711 instructions, then set end_prologue_addr to the address of the
1712 instruction immediately after the last one we scanned. */
1713 if (end_prologue_addr == 0)
1714 end_prologue_addr = cur_pc;
1715
1716 return end_prologue_addr;
eec63939
AC
1717}
1718
29639122
JB
1719/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1720 Procedures that use the 32-bit instruction set are handled by the
1721 mips_insn32 unwinder. */
1722
1723static struct mips_frame_cache *
1724mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1725{
29639122 1726 struct mips_frame_cache *cache;
eec63939
AC
1727
1728 if ((*this_cache) != NULL)
1729 return (*this_cache);
29639122
JB
1730 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1731 (*this_cache) = cache;
1732 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1733
29639122
JB
1734 /* Analyze the function prologue. */
1735 {
6de5b849
JB
1736 const CORE_ADDR pc =
1737 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1738 CORE_ADDR start_addr;
eec63939 1739
29639122
JB
1740 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1741 if (start_addr == 0)
1742 start_addr = heuristic_proc_start (pc);
1743 /* We can't analyze the prologue if we couldn't find the begining
1744 of the function. */
1745 if (start_addr == 0)
1746 return cache;
eec63939 1747
29639122
JB
1748 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1749 }
1750
3e8c568d 1751 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4
UW
1752 trad_frame_set_value (cache->saved_regs,
1753 gdbarch_num_regs (get_frame_arch (next_frame))
1754 + MIPS_SP_REGNUM,
1755 cache->base);
eec63939 1756
29639122 1757 return (*this_cache);
eec63939
AC
1758}
1759
1760static void
29639122
JB
1761mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
eec63939 1763{
29639122
JB
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
93d42b30
DJ
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1768}
1769
1770static void
29639122 1771mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1775 int *realnump, gdb_byte *valuep)
eec63939 1776{
29639122
JB
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1781}
1782
29639122 1783static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1784{
1785 NORMAL_FRAME,
29639122
JB
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
eec63939
AC
1788};
1789
1790static const struct frame_unwind *
29639122 1791mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1792{
6de5b849 1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1794 if (mips_pc_is_mips16 (pc))
29639122
JB
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
eec63939
AC
1797}
1798
1799static CORE_ADDR
29639122
JB
1800mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
eec63939 1802{
29639122
JB
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
eec63939
AC
1806}
1807
29639122 1808static const struct frame_base mips_insn16_frame_base =
eec63939 1809{
29639122
JB
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
eec63939
AC
1814};
1815
1816static const struct frame_base *
29639122 1817mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1818{
29639122
JB
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
eec63939
AC
1821 else
1822 return NULL;
edfae063
AC
1823}
1824
29639122
JB
1825/* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828void
1829reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1830{
29639122
JB
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
f57d151a 1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
29639122 1836 int i;
64159455 1837
29639122
JB
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
c906108c
SS
1843}
1844
29639122
JB
1845/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
c906108c 1848
875e1767 1849static CORE_ADDR
29639122
JB
1850mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
c906108c 1853{
29639122
JB
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1859
29639122
JB
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
72a155b4 1863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
8fa9cfa1 1864
29639122
JB
1865 /* Can be called when there's no process, and hence when there's no
1866 NEXT_FRAME. */
1867 if (next_frame != NULL)
d2ca4222 1868 sp = frame_unwind_register_signed (next_frame,
72a155b4 1869 gdbarch_num_regs (gdbarch)
d2ca4222 1870 + MIPS_SP_REGNUM);
8fa9cfa1 1871 else
29639122 1872 sp = 0;
9022177c 1873
29639122
JB
1874 if (limit_pc > start_pc + 200)
1875 limit_pc = start_pc + 200;
9022177c 1876
29639122 1877restart:
9022177c 1878
29639122 1879 frame_offset = 0;
95ac2dcf 1880 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1881 {
29639122
JB
1882 unsigned long inst, high_word, low_word;
1883 int reg;
9022177c 1884
29639122
JB
1885 /* Fetch the instruction. */
1886 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1887
29639122
JB
1888 /* Save some code by pre-extracting some useful fields. */
1889 high_word = (inst >> 16) & 0xffff;
1890 low_word = inst & 0xffff;
1891 reg = high_word & 0x1f;
fe29b929 1892
29639122
JB
1893 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1894 || high_word == 0x23bd /* addi $sp,$sp,-i */
1895 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1896 {
1897 if (low_word & 0x8000) /* negative stack adjustment? */
1898 frame_offset += 0x10000 - low_word;
1899 else
1900 /* Exit loop if a positive stack adjustment is found, which
1901 usually means that the stack cleanup code in the function
1902 epilogue is reached. */
1903 break;
1904 seen_sp_adjust = 1;
1905 }
1906 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1907 {
1908 set_reg_offset (this_cache, reg, sp + low_word);
1909 }
1910 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1911 {
1912 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1913 set_reg_offset (this_cache, reg, sp + low_word);
1914 }
1915 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1916 {
1917 /* Old gcc frame, r30 is virtual frame pointer. */
1918 if ((long) low_word != frame_offset)
1919 frame_addr = sp + low_word;
d2ca4222 1920 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1921 {
1922 unsigned alloca_adjust;
a4b8ebc8 1923
29639122 1924 frame_reg = 30;
d2ca4222 1925 frame_addr = frame_unwind_register_signed
72a155b4 1926 (next_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1927
29639122
JB
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
d2ca4222 1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1951 {
1952 unsigned alloca_adjust;
c906108c 1953
29639122 1954 frame_reg = 30;
d2ca4222 1955 frame_addr = frame_unwind_register_signed
72a155b4 1956 (next_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1957
29639122
JB
1958 alloca_adjust = (unsigned) (frame_addr - sp);
1959 if (alloca_adjust > 0)
1960 {
1961 /* FP > SP + frame_size. This may be because of
1962 an alloca or somethings similar. Fix sp to
1963 "pre-alloca" value, and try again. */
1964 sp = frame_addr;
1965 /* Need to reset the status of all registers. Otherwise,
1966 we will hit a guard that prevents the new address
1967 for each register to be recomputed during the second
1968 pass. */
1969 reset_saved_regs (this_cache);
1970 goto restart;
1971 }
1972 }
1973 }
1974 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1975 {
1976 set_reg_offset (this_cache, reg, frame_addr + low_word);
1977 }
1978 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1979 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1980 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1981 || high_word == 0x3c1c /* lui $gp,n */
1982 || high_word == 0x279c /* addiu $gp,$gp,n */
1983 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1984 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1985 )
1986 {
1987 /* These instructions are part of the prologue, but we don't
1988 need to do anything special to handle them. */
1989 }
1990 /* The instructions below load $at or $t0 with an immediate
1991 value in preparation for a stack adjustment via
1992 subu $sp,$sp,[$at,$t0]. These instructions could also
1993 initialize a local variable, so we accept them only before
1994 a stack adjustment instruction was seen. */
1995 else if (!seen_sp_adjust
1996 && (high_word == 0x3c01 /* lui $at,n */
1997 || high_word == 0x3c08 /* lui $t0,n */
1998 || high_word == 0x3421 /* ori $at,$at,n */
1999 || high_word == 0x3508 /* ori $t0,$t0,n */
2000 || high_word == 0x3401 /* ori $at,$zero,n */
2001 || high_word == 0x3408 /* ori $t0,$zero,n */
2002 ))
2003 {
95ac2dcf 2004 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2005 }
2006 else
2007 {
2008 /* This instruction is not an instruction typically found
2009 in a prologue, so we must have reached the end of the
2010 prologue. */
2011 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2012 loop now? Why would we need to continue scanning the function
2013 instructions? */
2014 if (end_prologue_addr == 0)
2015 end_prologue_addr = cur_pc;
2016 }
a4b8ebc8 2017 }
c906108c 2018
29639122
JB
2019 if (this_cache != NULL)
2020 {
2021 this_cache->base =
f57d151a 2022 (frame_unwind_register_signed (next_frame,
72a155b4 2023 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
2024 + frame_offset);
2025 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2026 this assignment below, eventually. But it's still needed
2027 for now. */
72a155b4
UW
2028 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2029 + mips_regnum (gdbarch)->pc]
2030 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 2031 + MIPS_RA_REGNUM];
29639122 2032 }
c906108c 2033
29639122
JB
2034 /* If we didn't reach the end of the prologue when scanning the function
2035 instructions, then set end_prologue_addr to the address of the
2036 instruction immediately after the last one we scanned. */
2037 /* brobecker/2004-10-10: I don't think this would ever happen, but
2038 we may as well be careful and do our best if we have a null
2039 end_prologue_addr. */
2040 if (end_prologue_addr == 0)
2041 end_prologue_addr = cur_pc;
2042
2043 /* In a frameless function, we might have incorrectly
2044 skipped some load immediate instructions. Undo the skipping
2045 if the load immediate was not followed by a stack adjustment. */
2046 if (load_immediate_bytes && !seen_sp_adjust)
2047 end_prologue_addr -= load_immediate_bytes;
c906108c 2048
29639122 2049 return end_prologue_addr;
c906108c
SS
2050}
2051
29639122
JB
2052/* Heuristic unwinder for procedures using 32-bit instructions (covers
2053 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2054 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2055 unwinder. */
c906108c 2056
29639122
JB
2057static struct mips_frame_cache *
2058mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 2059{
29639122 2060 struct mips_frame_cache *cache;
c906108c 2061
29639122
JB
2062 if ((*this_cache) != NULL)
2063 return (*this_cache);
c5aa993b 2064
29639122
JB
2065 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2066 (*this_cache) = cache;
2067 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 2068
29639122
JB
2069 /* Analyze the function prologue. */
2070 {
6de5b849
JB
2071 const CORE_ADDR pc =
2072 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 2073 CORE_ADDR start_addr;
c906108c 2074
29639122
JB
2075 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2076 if (start_addr == 0)
2077 start_addr = heuristic_proc_start (pc);
2078 /* We can't analyze the prologue if we couldn't find the begining
2079 of the function. */
2080 if (start_addr == 0)
2081 return cache;
c5aa993b 2082
29639122
JB
2083 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2084 }
2085
3e8c568d 2086 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 2087 trad_frame_set_value (cache->saved_regs,
72a155b4
UW
2088 gdbarch_num_regs (get_frame_arch (next_frame))
2089 + MIPS_SP_REGNUM,
f57d151a 2090 cache->base);
c5aa993b 2091
29639122 2092 return (*this_cache);
c906108c
SS
2093}
2094
29639122
JB
2095static void
2096mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2097 struct frame_id *this_id)
c906108c 2098{
29639122
JB
2099 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2100 this_cache);
93d42b30
DJ
2101 (*this_id) = frame_id_build (info->base,
2102 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 2103}
c906108c 2104
29639122
JB
2105static void
2106mips_insn32_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2110 int *realnump, gdb_byte *valuep)
29639122
JB
2111{
2112 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2113 this_cache);
2114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2116}
2117
29639122
JB
2118static const struct frame_unwind mips_insn32_frame_unwind =
2119{
2120 NORMAL_FRAME,
2121 mips_insn32_frame_this_id,
2122 mips_insn32_frame_prev_register
2123};
c906108c 2124
29639122
JB
2125static const struct frame_unwind *
2126mips_insn32_frame_sniffer (struct frame_info *next_frame)
2127{
6de5b849 2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2129 if (! mips_pc_is_mips16 (pc))
29639122
JB
2130 return &mips_insn32_frame_unwind;
2131 return NULL;
2132}
c906108c 2133
1c645fec 2134static CORE_ADDR
29639122
JB
2135mips_insn32_frame_base_address (struct frame_info *next_frame,
2136 void **this_cache)
c906108c 2137{
29639122
JB
2138 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2139 this_cache);
2140 return info->base;
2141}
c906108c 2142
29639122
JB
2143static const struct frame_base mips_insn32_frame_base =
2144{
2145 &mips_insn32_frame_unwind,
2146 mips_insn32_frame_base_address,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address
2149};
1c645fec 2150
29639122
JB
2151static const struct frame_base *
2152mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2153{
2154 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2155 return &mips_insn32_frame_base;
a65bbe44 2156 else
29639122
JB
2157 return NULL;
2158}
a65bbe44 2159
29639122
JB
2160static struct trad_frame_cache *
2161mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2162{
2163 CORE_ADDR pc;
2164 CORE_ADDR start_addr;
2165 CORE_ADDR stack_addr;
2166 struct trad_frame_cache *this_trad_cache;
72a155b4 2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
c906108c 2168
29639122
JB
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
1c645fec 2173
29639122 2174 /* The return address is in the link register. */
3e8c568d 2175 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4
UW
2176 gdbarch_pc_regnum (gdbarch),
2177 (gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM));
1c645fec 2178
29639122
JB
2179 /* Frame ID, since it's a frameless / stackless function, no stack
2180 space is allocated and SP on entry is the current SP. */
2181 pc = frame_pc_unwind (next_frame);
2182 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2183 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
aa6c981f 2184 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 2185
29639122
JB
2186 /* Assume that the frame's base is the same as the
2187 stack-pointer. */
2188 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2189
29639122
JB
2190 return this_trad_cache;
2191}
c906108c 2192
29639122
JB
2193static void
2194mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2195 struct frame_id *this_id)
2196{
2197 struct trad_frame_cache *this_trad_cache
2198 = mips_stub_frame_cache (next_frame, this_cache);
2199 trad_frame_get_id (this_trad_cache, this_id);
2200}
c906108c 2201
29639122
JB
2202static void
2203mips_stub_frame_prev_register (struct frame_info *next_frame,
2204 void **this_cache,
2205 int regnum, int *optimizedp,
2206 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2207 int *realnump, gdb_byte *valuep)
29639122
JB
2208{
2209 struct trad_frame_cache *this_trad_cache
2210 = mips_stub_frame_cache (next_frame, this_cache);
2211 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2212 lvalp, addrp, realnump, valuep);
2213}
c906108c 2214
29639122
JB
2215static const struct frame_unwind mips_stub_frame_unwind =
2216{
2217 NORMAL_FRAME,
2218 mips_stub_frame_this_id,
2219 mips_stub_frame_prev_register
2220};
c906108c 2221
29639122
JB
2222static const struct frame_unwind *
2223mips_stub_frame_sniffer (struct frame_info *next_frame)
2224{
aa6c981f 2225 gdb_byte dummy[4];
979b38e0 2226 struct obj_section *s;
93d42b30 2227 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2228
aa6c981f
DJ
2229 /* Use the stub unwinder for unreadable code. */
2230 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2231 return &mips_stub_frame_unwind;
2232
29639122
JB
2233 if (in_plt_section (pc, NULL))
2234 return &mips_stub_frame_unwind;
979b38e0
DJ
2235
2236 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2237 s = find_pc_section (pc);
2238
2239 if (s != NULL
2240 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2241 ".MIPS.stubs") == 0)
2242 return &mips_stub_frame_unwind;
2243
2244 return NULL;
29639122 2245}
c906108c 2246
29639122
JB
2247static CORE_ADDR
2248mips_stub_frame_base_address (struct frame_info *next_frame,
2249 void **this_cache)
2250{
2251 struct trad_frame_cache *this_trad_cache
2252 = mips_stub_frame_cache (next_frame, this_cache);
2253 return trad_frame_get_this_base (this_trad_cache);
2254}
0fce0821 2255
29639122
JB
2256static const struct frame_base mips_stub_frame_base =
2257{
2258 &mips_stub_frame_unwind,
2259 mips_stub_frame_base_address,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address
2262};
2263
2264static const struct frame_base *
2265mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2266{
2267 if (mips_stub_frame_sniffer (next_frame) != NULL)
2268 return &mips_stub_frame_base;
2269 else
2270 return NULL;
2271}
2272
29639122 2273/* mips_addr_bits_remove - remove useless address bits */
65596487 2274
29639122
JB
2275static CORE_ADDR
2276mips_addr_bits_remove (CORE_ADDR addr)
65596487 2277{
29639122
JB
2278 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2279 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2280 /* This hack is a work-around for existing boards using PMON, the
2281 simulator, and any other 64-bit targets that doesn't have true
2282 64-bit addressing. On these targets, the upper 32 bits of
2283 addresses are ignored by the hardware. Thus, the PC or SP are
2284 likely to have been sign extended to all 1s by instruction
2285 sequences that load 32-bit addresses. For example, a typical
2286 piece of code that loads an address is this:
65596487 2287
29639122
JB
2288 lui $r2, <upper 16 bits>
2289 ori $r2, <lower 16 bits>
65596487 2290
29639122
JB
2291 But the lui sign-extends the value such that the upper 32 bits
2292 may be all 1s. The workaround is simply to mask off these
2293 bits. In the future, gcc may be changed to support true 64-bit
2294 addressing, and this masking will have to be disabled. */
2295 return addr &= 0xffffffffUL;
2296 else
2297 return addr;
65596487
JB
2298}
2299
29639122
JB
2300/* mips_software_single_step() is called just before we want to resume
2301 the inferior, if we want to single-step it but there is no hardware
2302 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2303 the target of the coming instruction and breakpoint it. */
29639122 2304
e6590a1b 2305int
0b1b3e42 2306mips_software_single_step (struct frame_info *frame)
c906108c 2307{
8181d85f 2308 CORE_ADDR pc, next_pc;
65596487 2309
0b1b3e42
UW
2310 pc = get_frame_pc (frame);
2311 next_pc = mips_next_pc (frame, pc);
e6590a1b 2312
e0cd558a 2313 insert_single_step_breakpoint (next_pc);
e6590a1b 2314 return 1;
29639122 2315}
a65bbe44 2316
29639122
JB
2317/* Test whether the PC points to the return instruction at the
2318 end of a function. */
65596487 2319
29639122
JB
2320static int
2321mips_about_to_return (CORE_ADDR pc)
2322{
0fe7e7c8 2323 if (mips_pc_is_mips16 (pc))
29639122
JB
2324 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2325 generates a "jr $ra"; other times it generates code to load
2326 the return address from the stack to an accessible register (such
2327 as $a3), then a "jr" using that register. This second case
2328 is almost impossible to distinguish from an indirect jump
2329 used for switch statements, so we don't even try. */
2330 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2331 else
2332 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2333}
c906108c 2334
c906108c 2335
29639122
JB
2336/* This fencepost looks highly suspicious to me. Removing it also
2337 seems suspicious as it could affect remote debugging across serial
2338 lines. */
c906108c 2339
29639122
JB
2340static CORE_ADDR
2341heuristic_proc_start (CORE_ADDR pc)
2342{
2343 CORE_ADDR start_pc;
2344 CORE_ADDR fence;
2345 int instlen;
2346 int seen_adjsp = 0;
65596487 2347
bf6ae464 2348 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
29639122
JB
2349 start_pc = pc;
2350 fence = start_pc - heuristic_fence_post;
2351 if (start_pc == 0)
2352 return 0;
65596487 2353
29639122
JB
2354 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2355 fence = VM_MIN_ADDRESS;
65596487 2356
95ac2dcf 2357 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2358
29639122
JB
2359 /* search back for previous return */
2360 for (start_pc -= instlen;; start_pc -= instlen)
2361 if (start_pc < fence)
2362 {
2363 /* It's not clear to me why we reach this point when
2364 stop_soon, but with this test, at least we
2365 don't print out warnings for every child forked (eg, on
2366 decstation). 22apr93 rich@cygnus.com. */
2367 if (stop_soon == NO_STOP_QUIETLY)
2368 {
2369 static int blurb_printed = 0;
98b4dd94 2370
8a3fe4f8 2371 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2372 paddr_nz (pc));
2373
2374 if (!blurb_printed)
2375 {
2376 /* This actually happens frequently in embedded
2377 development, when you first connect to a board
2378 and your stack pointer and pc are nowhere in
2379 particular. This message needs to give people
2380 in that situation enough information to
2381 determine that it's no big deal. */
2382 printf_filtered ("\n\
2383 GDB is unable to find the start of the function at 0x%s\n\
2384and thus can't determine the size of that function's stack frame.\n\
2385This means that GDB may be unable to access that stack frame, or\n\
2386the frames below it.\n\
2387 This problem is most likely caused by an invalid program counter or\n\
2388stack pointer.\n\
2389 However, if you think GDB should simply search farther back\n\
2390from 0x%s for code which looks like the beginning of a\n\
2391function, you can increase the range of the search using the `set\n\
2392heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2393 blurb_printed = 1;
2394 }
2395 }
2396
2397 return 0;
2398 }
0fe7e7c8 2399 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2400 {
2401 unsigned short inst;
2402
2403 /* On MIPS16, any one of the following is likely to be the
2404 start of a function:
193774b3
MR
2405 extend save
2406 save
29639122
JB
2407 entry
2408 addiu sp,-n
2409 daddiu sp,-n
2410 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2411 inst = mips_fetch_instruction (start_pc);
193774b3
MR
2412 if ((inst & 0xff80) == 0x6480) /* save */
2413 {
2414 if (start_pc - instlen >= fence)
2415 {
2416 inst = mips_fetch_instruction (start_pc - instlen);
2417 if ((inst & 0xf800) == 0xf000) /* extend */
2418 start_pc -= instlen;
2419 }
2420 break;
2421 }
2422 else if (((inst & 0xf81f) == 0xe809
2423 && (inst & 0x700) != 0x700) /* entry */
2424 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2425 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2426 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
2427 break;
2428 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2429 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2430 seen_adjsp = 1;
2431 else
2432 seen_adjsp = 0;
2433 }
2434 else if (mips_about_to_return (start_pc))
2435 {
4c7d22cb 2436 /* Skip return and its delay slot. */
95ac2dcf 2437 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2438 break;
2439 }
2440
2441 return start_pc;
c906108c
SS
2442}
2443
6c0d6680
DJ
2444struct mips_objfile_private
2445{
2446 bfd_size_type size;
2447 char *contents;
2448};
2449
f09ded24
AC
2450/* According to the current ABI, should the type be passed in a
2451 floating-point register (assuming that there is space)? When there
a1f5b845 2452 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2453 FP registers and, consequently this returns false - forces FP
2454 arguments into integer registers. */
2455
2456static int
2457fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2458{
2459 return ((typecode == TYPE_CODE_FLT
2460 || (MIPS_EABI
6d82d43b
AC
2461 && (typecode == TYPE_CODE_STRUCT
2462 || typecode == TYPE_CODE_UNION)
f09ded24 2463 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2464 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2465 == TYPE_CODE_FLT))
c86b5b38 2466 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2467}
2468
49e790b0
DJ
2469/* On o32, argument passing in GPRs depends on the alignment of the type being
2470 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2471
2472static int
2473mips_type_needs_double_align (struct type *type)
2474{
2475 enum type_code typecode = TYPE_CODE (type);
361d1df0 2476
49e790b0
DJ
2477 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2478 return 1;
2479 else if (typecode == TYPE_CODE_STRUCT)
2480 {
2481 if (TYPE_NFIELDS (type) < 1)
2482 return 0;
2483 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2484 }
2485 else if (typecode == TYPE_CODE_UNION)
2486 {
361d1df0 2487 int i, n;
49e790b0
DJ
2488
2489 n = TYPE_NFIELDS (type);
2490 for (i = 0; i < n; i++)
2491 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2492 return 1;
2493 return 0;
2494 }
2495 return 0;
2496}
2497
dc604539
AC
2498/* Adjust the address downward (direction of stack growth) so that it
2499 is correctly aligned for a new stack frame. */
2500static CORE_ADDR
2501mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2502{
5b03f266 2503 return align_down (addr, 16);
dc604539
AC
2504}
2505
f7ab6ec6 2506static CORE_ADDR
7d9b040b 2507mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2508 struct regcache *regcache, CORE_ADDR bp_addr,
2509 int nargs, struct value **args, CORE_ADDR sp,
2510 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2511{
2512 int argreg;
2513 int float_argreg;
2514 int argnum;
2515 int len = 0;
2516 int stack_offset = 0;
480d3dd2 2517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2518 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2519 int regsize = mips_abi_regsize (gdbarch);
c906108c 2520
25ab4790
AC
2521 /* For shared libraries, "t9" needs to point at the function
2522 address. */
4c7d22cb 2523 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2524
2525 /* Set the return address register to point to the entry point of
2526 the program, where a breakpoint lies in wait. */
4c7d22cb 2527 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2528
c906108c 2529 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2530 are properly aligned. The stack has to be at least 64-bit
2531 aligned even on 32-bit machines, because doubles must be 64-bit
2532 aligned. For n32 and n64, stack frames need to be 128-bit
2533 aligned, so we round to this widest known alignment. */
2534
5b03f266
AC
2535 sp = align_down (sp, 16);
2536 struct_addr = align_down (struct_addr, 16);
c5aa993b 2537
46e0f506 2538 /* Now make space on the stack for the args. We allocate more
c906108c 2539 than necessary for EABI, because the first few arguments are
46e0f506 2540 passed in registers, but that's OK. */
c906108c 2541 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2542 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2543 sp -= align_up (len, 16);
c906108c 2544
9ace0497 2545 if (mips_debug)
6d82d43b 2546 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2547 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2548 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2549
c906108c 2550 /* Initialize the integer and float register pointers. */
4c7d22cb 2551 argreg = MIPS_A0_REGNUM;
72a155b4 2552 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 2553
46e0f506 2554 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2555 if (struct_return)
9ace0497
AC
2556 {
2557 if (mips_debug)
2558 fprintf_unfiltered (gdb_stdlog,
25ab4790 2559 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2560 argreg, paddr_nz (struct_addr));
9c9acae0 2561 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2562 }
c906108c
SS
2563
2564 /* Now load as many as possible of the first arguments into
2565 registers, and push the rest onto the stack. Loop thru args
2566 from first to last. */
2567 for (argnum = 0; argnum < nargs; argnum++)
2568 {
47a35522
MK
2569 const gdb_byte *val;
2570 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2571 struct value *arg = args[argnum];
4991999e 2572 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2573 int len = TYPE_LENGTH (arg_type);
2574 enum type_code typecode = TYPE_CODE (arg_type);
2575
9ace0497
AC
2576 if (mips_debug)
2577 fprintf_unfiltered (gdb_stdlog,
25ab4790 2578 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2579 argnum + 1, len, (int) typecode);
9ace0497 2580
c906108c 2581 /* The EABI passes structures that do not fit in a register by
46e0f506 2582 reference. */
1a69e1e4 2583 if (len > regsize
9ace0497 2584 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2585 {
1a69e1e4 2586 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
c906108c 2587 typecode = TYPE_CODE_PTR;
1a69e1e4 2588 len = regsize;
c906108c 2589 val = valbuf;
9ace0497
AC
2590 if (mips_debug)
2591 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2592 }
2593 else
47a35522 2594 val = value_contents (arg);
c906108c
SS
2595
2596 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2597 even-numbered floating point register. Round the FP register
2598 up before the check to see if there are any FP registers
46e0f506
MS
2599 left. Non MIPS_EABI targets also pass the FP in the integer
2600 registers so also round up normal registers. */
1a69e1e4 2601 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2602 {
2603 if ((float_argreg & 1))
2604 float_argreg++;
2605 }
c906108c
SS
2606
2607 /* Floating point arguments passed in registers have to be
2608 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2609 are passed in register pairs; the even register gets
2610 the low word, and the odd register gets the high word.
2611 On non-EABI processors, the first two floating point arguments are
2612 also copied to general registers, because MIPS16 functions
2613 don't use float registers for arguments. This duplication of
2614 arguments in general registers can't hurt non-MIPS16 functions
2615 because those registers are normally skipped. */
1012bd0e
EZ
2616 /* MIPS_EABI squeezes a struct that contains a single floating
2617 point value into an FP register instead of pushing it onto the
46e0f506 2618 stack. */
f09ded24
AC
2619 if (fp_register_arg_p (typecode, arg_type)
2620 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2621 {
6da397e0
KB
2622 /* EABI32 will pass doubles in consecutive registers, even on
2623 64-bit cores. At one time, we used to check the size of
2624 `float_argreg' to determine whether or not to pass doubles
2625 in consecutive registers, but this is not sufficient for
2626 making the ABI determination. */
2627 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2628 {
72a155b4 2629 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 2630 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2631 unsigned long regval;
2632
2633 /* Write the low word of the double to the even register(s). */
c5aa993b 2634 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2635 if (mips_debug)
acdb74a0 2636 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2637 float_argreg, phex (regval, 4));
9c9acae0 2638 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2639
2640 /* Write the high word of the double to the odd register(s). */
c5aa993b 2641 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2642 if (mips_debug)
acdb74a0 2643 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2644 float_argreg, phex (regval, 4));
9c9acae0 2645 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2646 }
2647 else
2648 {
2649 /* This is a floating point value that fits entirely
2650 in a single register. */
53a5351d 2651 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2652 above to ensure that it is even register aligned. */
9ace0497
AC
2653 LONGEST regval = extract_unsigned_integer (val, len);
2654 if (mips_debug)
acdb74a0 2655 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2656 float_argreg, phex (regval, len));
9c9acae0 2657 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2658 }
2659 }
2660 else
2661 {
2662 /* Copy the argument to general registers or the stack in
2663 register-sized pieces. Large arguments are split between
2664 registers and stack. */
1a69e1e4
DJ
2665 /* Note: structs whose size is not a multiple of regsize
2666 are treated specially: Irix cc passes
d5ac5a39
AC
2667 them in registers where gcc sometimes puts them on the
2668 stack. For maximum compatibility, we will put them in
2669 both places. */
1a69e1e4 2670 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2671
f09ded24 2672 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2673 register are only written to memory. */
c906108c
SS
2674 while (len > 0)
2675 {
ebafbe83 2676 /* Remember if the argument was written to the stack. */
566f0f7a 2677 int stack_used_p = 0;
1a69e1e4 2678 int partial_len = (len < regsize ? len : regsize);
c906108c 2679
acdb74a0
AC
2680 if (mips_debug)
2681 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2682 partial_len);
2683
566f0f7a 2684 /* Write this portion of the argument to the stack. */
f09ded24
AC
2685 if (argreg > MIPS_LAST_ARG_REGNUM
2686 || odd_sized_struct
2687 || fp_register_arg_p (typecode, arg_type))
c906108c 2688 {
c906108c
SS
2689 /* Should shorter than int integer values be
2690 promoted to int before being stored? */
c906108c 2691 int longword_offset = 0;
9ace0497 2692 CORE_ADDR addr;
566f0f7a 2693 stack_used_p = 1;
72a155b4 2694 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2695 {
1a69e1e4 2696 if (regsize == 8
480d3dd2
AC
2697 && (typecode == TYPE_CODE_INT
2698 || typecode == TYPE_CODE_PTR
6d82d43b 2699 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2700 longword_offset = regsize - len;
480d3dd2
AC
2701 else if ((typecode == TYPE_CODE_STRUCT
2702 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2703 && TYPE_LENGTH (arg_type) < regsize)
2704 longword_offset = regsize - len;
7a292a7a 2705 }
c5aa993b 2706
9ace0497
AC
2707 if (mips_debug)
2708 {
cb3d25d1
MS
2709 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2710 paddr_nz (stack_offset));
2711 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2712 paddr_nz (longword_offset));
9ace0497 2713 }
361d1df0 2714
9ace0497
AC
2715 addr = sp + stack_offset + longword_offset;
2716
2717 if (mips_debug)
2718 {
2719 int i;
6d82d43b 2720 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2721 paddr_nz (addr));
9ace0497
AC
2722 for (i = 0; i < partial_len; i++)
2723 {
6d82d43b 2724 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2725 val[i] & 0xff);
9ace0497
AC
2726 }
2727 }
2728 write_memory (addr, val, partial_len);
c906108c
SS
2729 }
2730
f09ded24
AC
2731 /* Note!!! This is NOT an else clause. Odd sized
2732 structs may go thru BOTH paths. Floating point
46e0f506 2733 arguments will not. */
566f0f7a 2734 /* Write this portion of the argument to a general
6d82d43b 2735 purpose register. */
f09ded24
AC
2736 if (argreg <= MIPS_LAST_ARG_REGNUM
2737 && !fp_register_arg_p (typecode, arg_type))
c906108c 2738 {
6d82d43b
AC
2739 LONGEST regval =
2740 extract_unsigned_integer (val, partial_len);
c906108c 2741
9ace0497 2742 if (mips_debug)
acdb74a0 2743 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2744 argreg,
1a69e1e4 2745 phex (regval, regsize));
9c9acae0 2746 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2747 argreg++;
c906108c 2748 }
c5aa993b 2749
c906108c
SS
2750 len -= partial_len;
2751 val += partial_len;
2752
566f0f7a 2753 /* Compute the the offset into the stack at which we
6d82d43b 2754 will copy the next parameter.
566f0f7a 2755
566f0f7a 2756 In the new EABI (and the NABI32), the stack_offset
46e0f506 2757 only needs to be adjusted when it has been used. */
c906108c 2758
46e0f506 2759 if (stack_used_p)
1a69e1e4 2760 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2761 }
2762 }
9ace0497
AC
2763 if (mips_debug)
2764 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2765 }
2766
f10683bb 2767 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2768
0f71a2f6
JM
2769 /* Return adjusted stack pointer. */
2770 return sp;
2771}
2772
a1f5b845 2773/* Determine the return value convention being used. */
6d82d43b 2774
9c8fdbfa
AC
2775static enum return_value_convention
2776mips_eabi_return_value (struct gdbarch *gdbarch,
2777 struct type *type, struct regcache *regcache,
47a35522 2778 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2779{
9c8fdbfa
AC
2780 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2781 return RETURN_VALUE_STRUCT_CONVENTION;
2782 if (readbuf)
2783 memset (readbuf, 0, TYPE_LENGTH (type));
2784 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2785}
2786
6d82d43b
AC
2787
2788/* N32/N64 ABI stuff. */
ebafbe83 2789
8d26208a
DJ
2790/* Search for a naturally aligned double at OFFSET inside a struct
2791 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2792 registers. */
2793
2794static int
2795mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2796{
2797 int i;
2798
2799 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2800 return 0;
2801
2802 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2803 return 0;
2804
2805 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2806 return 0;
2807
2808 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2809 {
2810 int pos;
2811 struct type *field_type;
2812
2813 /* We're only looking at normal fields. */
2814 if (TYPE_FIELD_STATIC (arg_type, i)
2815 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2816 continue;
2817
2818 /* If we have gone past the offset, there is no double to pass. */
2819 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2820 if (pos > offset)
2821 return 0;
2822
2823 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2824
2825 /* If this field is entirely before the requested offset, go
2826 on to the next one. */
2827 if (pos + TYPE_LENGTH (field_type) <= offset)
2828 continue;
2829
2830 /* If this is our special aligned double, we can stop. */
2831 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2832 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2833 return 1;
2834
2835 /* This field starts at or before the requested offset, and
2836 overlaps it. If it is a structure, recurse inwards. */
2837 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2838 }
2839
2840 return 0;
2841}
2842
f7ab6ec6 2843static CORE_ADDR
7d9b040b 2844mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2845 struct regcache *regcache, CORE_ADDR bp_addr,
2846 int nargs, struct value **args, CORE_ADDR sp,
2847 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2848{
2849 int argreg;
2850 int float_argreg;
2851 int argnum;
2852 int len = 0;
2853 int stack_offset = 0;
480d3dd2 2854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2855 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2856
25ab4790
AC
2857 /* For shared libraries, "t9" needs to point at the function
2858 address. */
4c7d22cb 2859 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2860
2861 /* Set the return address register to point to the entry point of
2862 the program, where a breakpoint lies in wait. */
4c7d22cb 2863 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2864
cb3d25d1
MS
2865 /* First ensure that the stack and structure return address (if any)
2866 are properly aligned. The stack has to be at least 64-bit
2867 aligned even on 32-bit machines, because doubles must be 64-bit
2868 aligned. For n32 and n64, stack frames need to be 128-bit
2869 aligned, so we round to this widest known alignment. */
2870
5b03f266
AC
2871 sp = align_down (sp, 16);
2872 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2873
2874 /* Now make space on the stack for the args. */
2875 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2876 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 2877 sp -= align_up (len, 16);
cb3d25d1
MS
2878
2879 if (mips_debug)
6d82d43b 2880 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2881 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2882 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2883
2884 /* Initialize the integer and float register pointers. */
4c7d22cb 2885 argreg = MIPS_A0_REGNUM;
72a155b4 2886 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 2887
46e0f506 2888 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2889 if (struct_return)
2890 {
2891 if (mips_debug)
2892 fprintf_unfiltered (gdb_stdlog,
25ab4790 2893 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2894 argreg, paddr_nz (struct_addr));
9c9acae0 2895 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
2896 }
2897
2898 /* Now load as many as possible of the first arguments into
2899 registers, and push the rest onto the stack. Loop thru args
2900 from first to last. */
2901 for (argnum = 0; argnum < nargs; argnum++)
2902 {
47a35522 2903 const gdb_byte *val;
cb3d25d1 2904 struct value *arg = args[argnum];
4991999e 2905 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2906 int len = TYPE_LENGTH (arg_type);
2907 enum type_code typecode = TYPE_CODE (arg_type);
2908
2909 if (mips_debug)
2910 fprintf_unfiltered (gdb_stdlog,
25ab4790 2911 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2912 argnum + 1, len, (int) typecode);
2913
47a35522 2914 val = value_contents (arg);
cb3d25d1
MS
2915
2916 if (fp_register_arg_p (typecode, arg_type)
8d26208a 2917 && argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2918 {
2919 /* This is a floating point value that fits entirely
2920 in a single register. */
cb3d25d1
MS
2921 LONGEST regval = extract_unsigned_integer (val, len);
2922 if (mips_debug)
2923 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2924 float_argreg, phex (regval, len));
8d26208a 2925 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
2926
2927 if (mips_debug)
2928 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2929 argreg, phex (regval, len));
9c9acae0 2930 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
2931 float_argreg++;
2932 argreg++;
cb3d25d1
MS
2933 }
2934 else
2935 {
2936 /* Copy the argument to general registers or the stack in
2937 register-sized pieces. Large arguments are split between
2938 registers and stack. */
ab2e1992
MR
2939 /* For N32/N64, structs, unions, or other composite types are
2940 treated as a sequence of doublewords, and are passed in integer
2941 or floating point registers as though they were simple scalar
2942 parameters to the extent that they fit, with any excess on the
2943 stack packed according to the normal memory layout of the
2944 object.
2945 The caller does not reserve space for the register arguments;
2946 the callee is responsible for reserving it if required. */
cb3d25d1 2947 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2948 register are only written to memory. */
cb3d25d1
MS
2949 while (len > 0)
2950 {
ad018eee 2951 /* Remember if the argument was written to the stack. */
cb3d25d1 2952 int stack_used_p = 0;
1a69e1e4 2953 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
2954
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2957 partial_len);
2958
8d26208a
DJ
2959 if (fp_register_arg_p (typecode, arg_type))
2960 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2961
cb3d25d1 2962 /* Write this portion of the argument to the stack. */
ab2e1992 2963 if (argreg > MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2964 {
2965 /* Should shorter than int integer values be
2966 promoted to int before being stored? */
2967 int longword_offset = 0;
2968 CORE_ADDR addr;
2969 stack_used_p = 1;
72a155b4 2970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 2971 {
1a69e1e4
DJ
2972 if ((typecode == TYPE_CODE_INT
2973 || typecode == TYPE_CODE_PTR
2974 || typecode == TYPE_CODE_FLT)
2975 && len <= 4)
2976 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
2977 }
2978
2979 if (mips_debug)
2980 {
2981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2982 paddr_nz (stack_offset));
2983 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2984 paddr_nz (longword_offset));
2985 }
2986
2987 addr = sp + stack_offset + longword_offset;
2988
2989 if (mips_debug)
2990 {
2991 int i;
6d82d43b 2992 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2993 paddr_nz (addr));
2994 for (i = 0; i < partial_len; i++)
2995 {
6d82d43b 2996 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2997 val[i] & 0xff);
2998 }
2999 }
3000 write_memory (addr, val, partial_len);
3001 }
3002
3003 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 3004 structs may go thru BOTH paths. */
cb3d25d1 3005 /* Write this portion of the argument to a general
6d82d43b 3006 purpose register. */
8d26208a 3007 if (argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1 3008 {
6d82d43b
AC
3009 LONGEST regval =
3010 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
3011
3012 /* A non-floating-point argument being passed in a
3013 general register. If a struct or union, and if
3014 the remaining length is smaller than the register
3015 size, we have to adjust the register value on
3016 big endian targets.
3017
3018 It does not seem to be necessary to do the
1a69e1e4 3019 same for integral types. */
cb3d25d1 3020
72a155b4 3021 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3022 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3023 && (typecode == TYPE_CODE_STRUCT
3024 || typecode == TYPE_CODE_UNION))
1a69e1e4 3025 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3026 * TARGET_CHAR_BIT);
cb3d25d1
MS
3027
3028 if (mips_debug)
3029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3030 argreg,
1a69e1e4 3031 phex (regval, MIPS64_REGSIZE));
9c9acae0 3032 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3033
3034 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3035 TYPE_LENGTH (arg_type) - len))
3036 {
3037 if (mips_debug)
3038 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3039 float_argreg,
3040 phex (regval, MIPS64_REGSIZE));
3041 regcache_cooked_write_unsigned (regcache, float_argreg,
3042 regval);
3043 }
3044
3045 float_argreg++;
cb3d25d1
MS
3046 argreg++;
3047 }
3048
3049 len -= partial_len;
3050 val += partial_len;
3051
3052 /* Compute the the offset into the stack at which we
6d82d43b 3053 will copy the next parameter.
cb3d25d1
MS
3054
3055 In N32 (N64?), the stack_offset only needs to be
3056 adjusted when it has been used. */
3057
3058 if (stack_used_p)
1a69e1e4 3059 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
3060 }
3061 }
3062 if (mips_debug)
3063 fprintf_unfiltered (gdb_stdlog, "\n");
3064 }
3065
f10683bb 3066 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3067
cb3d25d1
MS
3068 /* Return adjusted stack pointer. */
3069 return sp;
3070}
3071
6d82d43b
AC
3072static enum return_value_convention
3073mips_n32n64_return_value (struct gdbarch *gdbarch,
3074 struct type *type, struct regcache *regcache,
47a35522 3075 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 3076{
72a155b4 3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
3078
3079 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3080
3081 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3082 if needed), as appropriate for the type. Composite results (struct,
3083 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3084 following rules:
3085
3086 * A struct with only one or two floating point fields is returned in $f0
3087 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3088 case.
3089
3090 * Any other struct or union results of at most 128 bits are returned in
3091 $2 (first 64 bits) and $3 (remainder, if necessary).
3092
3093 * Larger composite results are handled by converting the function to a
3094 procedure with an implicit first parameter, which is a pointer to an area
3095 reserved by the caller to receive the result. [The o32-bit ABI requires
3096 that all composite results be handled by conversion to implicit first
3097 parameters. The MIPS/SGI Fortran implementation has always made a
3098 specific exception to return COMPLEX results in the floating point
3099 registers.] */
3100
3101 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 3102 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 3103 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
3104 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3105 && TYPE_LENGTH (type) == 16
3106 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3107 {
3108 /* A 128-bit floating-point value fills both $f0 and $f2. The
3109 two registers are used in the same as memory order, so the
3110 eight bytes with the lower memory address are in $f0. */
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3113 mips_xfer_register (regcache,
72a155b4
UW
3114 gdbarch_num_regs (gdbarch)
3115 + mips_regnum (gdbarch)->fp0,
3116 8, gdbarch_byte_order (gdbarch),
4c6b5505 3117 readbuf, writebuf, 0);
d05f6826 3118 mips_xfer_register (regcache,
72a155b4
UW
3119 gdbarch_num_regs (gdbarch)
3120 + mips_regnum (gdbarch)->fp0 + 2,
3121 8, gdbarch_byte_order (gdbarch),
4c6b5505 3122 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3123 writebuf ? writebuf + 8 : writebuf, 0);
3124 return RETURN_VALUE_REGISTER_CONVENTION;
3125 }
6d82d43b
AC
3126 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3127 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3128 {
59aa1faa 3129 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
3130 if (mips_debug)
3131 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3132 mips_xfer_register (regcache,
72a155b4
UW
3133 gdbarch_num_regs (gdbarch)
3134 + mips_regnum (gdbarch)->fp0,
6d82d43b 3135 TYPE_LENGTH (type),
72a155b4 3136 gdbarch_byte_order (gdbarch),
4c6b5505 3137 readbuf, writebuf, 0);
6d82d43b
AC
3138 return RETURN_VALUE_REGISTER_CONVENTION;
3139 }
3140 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3141 && TYPE_NFIELDS (type) <= 2
3142 && TYPE_NFIELDS (type) >= 1
3143 && ((TYPE_NFIELDS (type) == 1
b18bb924 3144 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
3145 == TYPE_CODE_FLT))
3146 || (TYPE_NFIELDS (type) == 2
b18bb924 3147 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 3148 == TYPE_CODE_FLT)
b18bb924 3149 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
6d82d43b
AC
3150 == TYPE_CODE_FLT)))
3151 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3152 {
3153 /* A struct that contains one or two floats. Each value is part
3154 in the least significant part of their floating point
3155 register.. */
6d82d43b
AC
3156 int regnum;
3157 int field;
72a155b4 3158 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3159 field < TYPE_NFIELDS (type); field++, regnum += 2)
3160 {
3161 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3162 / TARGET_CHAR_BIT);
3163 if (mips_debug)
3164 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3165 offset);
72a155b4 3166 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch)
f57d151a 3167 + regnum,
6d82d43b 3168 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3169 gdbarch_byte_order (gdbarch),
4c6b5505 3170 readbuf, writebuf, offset);
6d82d43b
AC
3171 }
3172 return RETURN_VALUE_REGISTER_CONVENTION;
3173 }
3174 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3175 || TYPE_CODE (type) == TYPE_CODE_UNION)
3176 {
3177 /* A structure or union. Extract the left justified value,
3178 regardless of the byte order. I.e. DO NOT USE
3179 mips_xfer_lower. */
3180 int offset;
3181 int regnum;
4c7d22cb 3182 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3183 offset < TYPE_LENGTH (type);
72a155b4 3184 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3185 {
72a155b4 3186 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3187 if (offset + xfer > TYPE_LENGTH (type))
3188 xfer = TYPE_LENGTH (type) - offset;
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3191 offset, xfer, regnum);
72a155b4
UW
3192 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch) + regnum,
3193 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3194 offset);
6d82d43b
AC
3195 }
3196 return RETURN_VALUE_REGISTER_CONVENTION;
3197 }
3198 else
3199 {
3200 /* A scalar extract each part but least-significant-byte
3201 justified. */
3202 int offset;
3203 int regnum;
4c7d22cb 3204 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3205 offset < TYPE_LENGTH (type);
72a155b4 3206 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3207 {
72a155b4 3208 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3209 if (offset + xfer > TYPE_LENGTH (type))
3210 xfer = TYPE_LENGTH (type) - offset;
3211 if (mips_debug)
3212 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3213 offset, xfer, regnum);
72a155b4
UW
3214 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch) + regnum,
3215 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 3216 readbuf, writebuf, offset);
6d82d43b
AC
3217 }
3218 return RETURN_VALUE_REGISTER_CONVENTION;
3219 }
3220}
3221
3222/* O32 ABI stuff. */
3223
3224static CORE_ADDR
7d9b040b 3225mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3226 struct regcache *regcache, CORE_ADDR bp_addr,
3227 int nargs, struct value **args, CORE_ADDR sp,
3228 int struct_return, CORE_ADDR struct_addr)
3229{
3230 int argreg;
3231 int float_argreg;
3232 int argnum;
3233 int len = 0;
3234 int stack_offset = 0;
3235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3236 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3237
3238 /* For shared libraries, "t9" needs to point at the function
3239 address. */
4c7d22cb 3240 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3241
3242 /* Set the return address register to point to the entry point of
3243 the program, where a breakpoint lies in wait. */
4c7d22cb 3244 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3245
3246 /* First ensure that the stack and structure return address (if any)
3247 are properly aligned. The stack has to be at least 64-bit
3248 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3249 aligned. For n32 and n64, stack frames need to be 128-bit
3250 aligned, so we round to this widest known alignment. */
3251
5b03f266
AC
3252 sp = align_down (sp, 16);
3253 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3254
3255 /* Now make space on the stack for the args. */
3256 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3257 {
3258 struct type *arg_type = check_typedef (value_type (args[argnum]));
3259 int arglen = TYPE_LENGTH (arg_type);
3260
3261 /* Align to double-word if necessary. */
2afd3f0a 3262 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3263 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3264 /* Allocate space on the stack. */
1a69e1e4 3265 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3266 }
5b03f266 3267 sp -= align_up (len, 16);
ebafbe83
MS
3268
3269 if (mips_debug)
6d82d43b 3270 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3271 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3272 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3273
3274 /* Initialize the integer and float register pointers. */
4c7d22cb 3275 argreg = MIPS_A0_REGNUM;
72a155b4 3276 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 3277
bcb0cc15 3278 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3279 if (struct_return)
3280 {
3281 if (mips_debug)
3282 fprintf_unfiltered (gdb_stdlog,
25ab4790 3283 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83 3284 argreg, paddr_nz (struct_addr));
9c9acae0 3285 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3286 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3287 }
3288
3289 /* Now load as many as possible of the first arguments into
3290 registers, and push the rest onto the stack. Loop thru args
3291 from first to last. */
3292 for (argnum = 0; argnum < nargs; argnum++)
3293 {
47a35522 3294 const gdb_byte *val;
ebafbe83 3295 struct value *arg = args[argnum];
4991999e 3296 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3297 int len = TYPE_LENGTH (arg_type);
3298 enum type_code typecode = TYPE_CODE (arg_type);
3299
3300 if (mips_debug)
3301 fprintf_unfiltered (gdb_stdlog,
25ab4790 3302 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3303 argnum + 1, len, (int) typecode);
3304
47a35522 3305 val = value_contents (arg);
46cac009
AC
3306
3307 /* 32-bit ABIs always start floating point arguments in an
3308 even-numbered floating point register. Round the FP register
3309 up before the check to see if there are any FP registers
3310 left. O32/O64 targets also pass the FP in the integer
3311 registers so also round up normal registers. */
2afd3f0a 3312 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3313 {
3314 if ((float_argreg & 1))
3315 float_argreg++;
3316 }
3317
3318 /* Floating point arguments passed in registers have to be
3319 treated specially. On 32-bit architectures, doubles
3320 are passed in register pairs; the even register gets
3321 the low word, and the odd register gets the high word.
3322 On O32/O64, the first two floating point arguments are
3323 also copied to general registers, because MIPS16 functions
3324 don't use float registers for arguments. This duplication of
3325 arguments in general registers can't hurt non-MIPS16 functions
3326 because those registers are normally skipped. */
3327
3328 if (fp_register_arg_p (typecode, arg_type)
3329 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3330 {
8b07f6d8 3331 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3332 {
72a155b4 3333 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 3334 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3335 unsigned long regval;
3336
3337 /* Write the low word of the double to the even register(s). */
3338 regval = extract_unsigned_integer (val + low_offset, 4);
3339 if (mips_debug)
3340 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3341 float_argreg, phex (regval, 4));
9c9acae0 3342 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3343 if (mips_debug)
3344 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3345 argreg, phex (regval, 4));
9c9acae0 3346 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3347
3348 /* Write the high word of the double to the odd register(s). */
3349 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3350 if (mips_debug)
3351 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3352 float_argreg, phex (regval, 4));
9c9acae0 3353 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3354
3355 if (mips_debug)
3356 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3357 argreg, phex (regval, 4));
9c9acae0 3358 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3359 }
3360 else
3361 {
3362 /* This is a floating point value that fits entirely
3363 in a single register. */
3364 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3365 above to ensure that it is even register aligned. */
46cac009
AC
3366 LONGEST regval = extract_unsigned_integer (val, len);
3367 if (mips_debug)
3368 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3369 float_argreg, phex (regval, len));
9c9acae0 3370 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009 3371 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3372 registers for each argument. The below is (my
3373 guess) to ensure that the corresponding integer
3374 register has reserved the same space. */
46cac009
AC
3375 if (mips_debug)
3376 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3377 argreg, phex (regval, len));
9c9acae0 3378 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3379 argreg += 2;
46cac009
AC
3380 }
3381 /* Reserve space for the FP register. */
1a69e1e4 3382 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3383 }
3384 else
3385 {
3386 /* Copy the argument to general registers or the stack in
3387 register-sized pieces. Large arguments are split between
3388 registers and stack. */
1a69e1e4
DJ
3389 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3390 are treated specially: Irix cc passes
d5ac5a39
AC
3391 them in registers where gcc sometimes puts them on the
3392 stack. For maximum compatibility, we will put them in
3393 both places. */
1a69e1e4
DJ
3394 int odd_sized_struct = (len > MIPS32_REGSIZE
3395 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3396 /* Structures should be aligned to eight bytes (even arg registers)
3397 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3398 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3399 {
3400 if ((argreg & 1))
968b5391
MR
3401 {
3402 argreg++;
1a69e1e4 3403 stack_offset += MIPS32_REGSIZE;
968b5391 3404 }
46cac009 3405 }
46cac009
AC
3406 while (len > 0)
3407 {
3408 /* Remember if the argument was written to the stack. */
3409 int stack_used_p = 0;
1a69e1e4 3410 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3411
3412 if (mips_debug)
3413 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3414 partial_len);
3415
3416 /* Write this portion of the argument to the stack. */
3417 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3418 || odd_sized_struct)
46cac009
AC
3419 {
3420 /* Should shorter than int integer values be
3421 promoted to int before being stored? */
3422 int longword_offset = 0;
3423 CORE_ADDR addr;
3424 stack_used_p = 1;
46cac009
AC
3425
3426 if (mips_debug)
3427 {
3428 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3429 paddr_nz (stack_offset));
3430 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3431 paddr_nz (longword_offset));
3432 }
3433
3434 addr = sp + stack_offset + longword_offset;
3435
3436 if (mips_debug)
3437 {
3438 int i;
6d82d43b 3439 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3440 paddr_nz (addr));
3441 for (i = 0; i < partial_len; i++)
3442 {
6d82d43b 3443 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3444 val[i] & 0xff);
3445 }
3446 }
3447 write_memory (addr, val, partial_len);
3448 }
3449
3450 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3451 structs may go thru BOTH paths. */
46cac009 3452 /* Write this portion of the argument to a general
6d82d43b 3453 purpose register. */
968b5391 3454 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3455 {
3456 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3457 /* Value may need to be sign extended, because
1b13c4f6 3458 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3459
3460 /* A non-floating-point argument being passed in a
3461 general register. If a struct or union, and if
3462 the remaining length is smaller than the register
3463 size, we have to adjust the register value on
3464 big endian targets.
3465
3466 It does not seem to be necessary to do the
3467 same for integral types.
3468
3469 Also don't do this adjustment on O64 binaries.
3470
3471 cagney/2001-07-23: gdb/179: Also, GCC, when
3472 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3473 mips_abi_regsize(), generates a left shift
3474 as part of storing the argument in a register
3475 (the left shift isn't generated when
1b13c4f6 3476 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3477 it is quite possible that this is GCC
3478 contradicting the LE/O32 ABI, GDB has not been
3479 adjusted to accommodate this. Either someone
3480 needs to demonstrate that the LE/O32 ABI
3481 specifies such a left shift OR this new ABI gets
3482 identified as such and GDB gets tweaked
3483 accordingly. */
3484
72a155b4 3485 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3486 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3487 && (typecode == TYPE_CODE_STRUCT
3488 || typecode == TYPE_CODE_UNION))
1a69e1e4 3489 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3490 * TARGET_CHAR_BIT);
46cac009
AC
3491
3492 if (mips_debug)
3493 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3494 argreg,
1a69e1e4 3495 phex (regval, MIPS32_REGSIZE));
9c9acae0 3496 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3497 argreg++;
3498
3499 /* Prevent subsequent floating point arguments from
3500 being passed in floating point registers. */
3501 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3502 }
3503
3504 len -= partial_len;
3505 val += partial_len;
3506
3507 /* Compute the the offset into the stack at which we
6d82d43b 3508 will copy the next parameter.
46cac009 3509
6d82d43b
AC
3510 In older ABIs, the caller reserved space for
3511 registers that contained arguments. This was loosely
3512 refered to as their "home". Consequently, space is
3513 always allocated. */
46cac009 3514
1a69e1e4 3515 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3516 }
3517 }
3518 if (mips_debug)
3519 fprintf_unfiltered (gdb_stdlog, "\n");
3520 }
3521
f10683bb 3522 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3523
46cac009
AC
3524 /* Return adjusted stack pointer. */
3525 return sp;
3526}
3527
6d82d43b
AC
3528static enum return_value_convention
3529mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3530 struct regcache *regcache,
47a35522 3531 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3532{
72a155b4 3533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6d82d43b
AC
3534
3535 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3536 || TYPE_CODE (type) == TYPE_CODE_UNION
3537 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3538 return RETURN_VALUE_STRUCT_CONVENTION;
3539 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3540 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3541 {
3542 /* A single-precision floating-point value. It fits in the
3543 least significant part of FP0. */
3544 if (mips_debug)
3545 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3546 mips_xfer_register (regcache,
72a155b4
UW
3547 gdbarch_num_regs (gdbarch)
3548 + mips_regnum (gdbarch)->fp0,
6d82d43b 3549 TYPE_LENGTH (type),
72a155b4 3550 gdbarch_byte_order (gdbarch),
4c6b5505 3551 readbuf, writebuf, 0);
6d82d43b
AC
3552 return RETURN_VALUE_REGISTER_CONVENTION;
3553 }
3554 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3555 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3556 {
3557 /* A double-precision floating-point value. The most
3558 significant part goes in FP1, and the least significant in
3559 FP0. */
3560 if (mips_debug)
3561 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
72a155b4 3562 switch (gdbarch_byte_order (gdbarch))
6d82d43b
AC
3563 {
3564 case BFD_ENDIAN_LITTLE:
3565 mips_xfer_register (regcache,
72a155b4
UW
3566 gdbarch_num_regs (gdbarch)
3567 + mips_regnum (gdbarch)->fp0 +
3568 0, 4, gdbarch_byte_order (gdbarch),
4c6b5505 3569 readbuf, writebuf, 0);
6d82d43b 3570 mips_xfer_register (regcache,
72a155b4
UW
3571 gdbarch_num_regs (gdbarch)
3572 + mips_regnum (gdbarch)->fp0 + 1,
3573 4, gdbarch_byte_order (gdbarch),
4c6b5505 3574 readbuf, writebuf, 4);
6d82d43b
AC
3575 break;
3576 case BFD_ENDIAN_BIG:
3577 mips_xfer_register (regcache,
72a155b4
UW
3578 gdbarch_num_regs (gdbarch)
3579 + mips_regnum (gdbarch)->fp0 + 1,
3580 4, gdbarch_byte_order (gdbarch),
4c6b5505 3581 readbuf, writebuf, 0);
6d82d43b 3582 mips_xfer_register (regcache,
72a155b4
UW
3583 gdbarch_num_regs (gdbarch)
3584 + mips_regnum (gdbarch)->fp0 + 0,
3585 4, gdbarch_byte_order (gdbarch),
4c6b5505 3586 readbuf, writebuf, 4);
6d82d43b
AC
3587 break;
3588 default:
e2e0b3e5 3589 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3590 }
3591 return RETURN_VALUE_REGISTER_CONVENTION;
3592 }
3593#if 0
3594 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3595 && TYPE_NFIELDS (type) <= 2
3596 && TYPE_NFIELDS (type) >= 1
3597 && ((TYPE_NFIELDS (type) == 1
3598 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3599 == TYPE_CODE_FLT))
3600 || (TYPE_NFIELDS (type) == 2
3601 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3602 == TYPE_CODE_FLT)
3603 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3604 == TYPE_CODE_FLT)))
3605 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3606 {
3607 /* A struct that contains one or two floats. Each value is part
3608 in the least significant part of their floating point
3609 register.. */
870cd05e 3610 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3611 int regnum;
3612 int field;
72a155b4 3613 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3614 field < TYPE_NFIELDS (type); field++, regnum += 2)
3615 {
3616 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3617 / TARGET_CHAR_BIT);
3618 if (mips_debug)
3619 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3620 offset);
72a155b4 3621 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch)
f57d151a 3622 + regnum,
6d82d43b 3623 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3624 gdbarch_byte_order (gdbarch),
4c6b5505 3625 readbuf, writebuf, offset);
6d82d43b
AC
3626 }
3627 return RETURN_VALUE_REGISTER_CONVENTION;
3628 }
3629#endif
3630#if 0
3631 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3632 || TYPE_CODE (type) == TYPE_CODE_UNION)
3633 {
3634 /* A structure or union. Extract the left justified value,
3635 regardless of the byte order. I.e. DO NOT USE
3636 mips_xfer_lower. */
3637 int offset;
3638 int regnum;
4c7d22cb 3639 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3640 offset < TYPE_LENGTH (type);
72a155b4 3641 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3642 {
72a155b4 3643 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3644 if (offset + xfer > TYPE_LENGTH (type))
3645 xfer = TYPE_LENGTH (type) - offset;
3646 if (mips_debug)
3647 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3648 offset, xfer, regnum);
72a155b4 3649 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch)
f57d151a 3650 + regnum, xfer,
6d82d43b
AC
3651 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3652 }
3653 return RETURN_VALUE_REGISTER_CONVENTION;
3654 }
3655#endif
3656 else
3657 {
3658 /* A scalar extract each part but least-significant-byte
3659 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3660 the ISA. */
6d82d43b
AC
3661 int offset;
3662 int regnum;
4c7d22cb 3663 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3664 offset < TYPE_LENGTH (type);
1a69e1e4 3665 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3666 {
1a69e1e4 3667 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3668 if (offset + xfer > TYPE_LENGTH (type))
3669 xfer = TYPE_LENGTH (type) - offset;
3670 if (mips_debug)
3671 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3672 offset, xfer, regnum);
72a155b4 3673 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch)
f57d151a 3674 + regnum, xfer,
72a155b4 3675 gdbarch_byte_order (gdbarch),
4c6b5505 3676 readbuf, writebuf, offset);
6d82d43b
AC
3677 }
3678 return RETURN_VALUE_REGISTER_CONVENTION;
3679 }
3680}
3681
3682/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3683 ABI. */
46cac009
AC
3684
3685static CORE_ADDR
7d9b040b 3686mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3687 struct regcache *regcache, CORE_ADDR bp_addr,
3688 int nargs,
3689 struct value **args, CORE_ADDR sp,
3690 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3691{
3692 int argreg;
3693 int float_argreg;
3694 int argnum;
3695 int len = 0;
3696 int stack_offset = 0;
480d3dd2 3697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3698 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3699
25ab4790
AC
3700 /* For shared libraries, "t9" needs to point at the function
3701 address. */
4c7d22cb 3702 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3703
3704 /* Set the return address register to point to the entry point of
3705 the program, where a breakpoint lies in wait. */
4c7d22cb 3706 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3707
46cac009
AC
3708 /* First ensure that the stack and structure return address (if any)
3709 are properly aligned. The stack has to be at least 64-bit
3710 aligned even on 32-bit machines, because doubles must be 64-bit
3711 aligned. For n32 and n64, stack frames need to be 128-bit
3712 aligned, so we round to this widest known alignment. */
3713
5b03f266
AC
3714 sp = align_down (sp, 16);
3715 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3716
3717 /* Now make space on the stack for the args. */
3718 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3719 {
3720 struct type *arg_type = check_typedef (value_type (args[argnum]));
3721 int arglen = TYPE_LENGTH (arg_type);
3722
968b5391 3723 /* Allocate space on the stack. */
1a69e1e4 3724 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 3725 }
5b03f266 3726 sp -= align_up (len, 16);
46cac009
AC
3727
3728 if (mips_debug)
6d82d43b 3729 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3730 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3731 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3732
3733 /* Initialize the integer and float register pointers. */
4c7d22cb 3734 argreg = MIPS_A0_REGNUM;
72a155b4 3735 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
3736
3737 /* The struct_return pointer occupies the first parameter-passing reg. */
3738 if (struct_return)
3739 {
3740 if (mips_debug)
3741 fprintf_unfiltered (gdb_stdlog,
25ab4790 3742 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009 3743 argreg, paddr_nz (struct_addr));
9c9acae0 3744 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3745 stack_offset += MIPS64_REGSIZE;
46cac009
AC
3746 }
3747
3748 /* Now load as many as possible of the first arguments into
3749 registers, and push the rest onto the stack. Loop thru args
3750 from first to last. */
3751 for (argnum = 0; argnum < nargs; argnum++)
3752 {
47a35522 3753 const gdb_byte *val;
46cac009 3754 struct value *arg = args[argnum];
4991999e 3755 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3756 int len = TYPE_LENGTH (arg_type);
3757 enum type_code typecode = TYPE_CODE (arg_type);
3758
3759 if (mips_debug)
3760 fprintf_unfiltered (gdb_stdlog,
25ab4790 3761 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3762 argnum + 1, len, (int) typecode);
3763
47a35522 3764 val = value_contents (arg);
ebafbe83 3765
ebafbe83
MS
3766 /* Floating point arguments passed in registers have to be
3767 treated specially. On 32-bit architectures, doubles
3768 are passed in register pairs; the even register gets
3769 the low word, and the odd register gets the high word.
3770 On O32/O64, the first two floating point arguments are
3771 also copied to general registers, because MIPS16 functions
3772 don't use float registers for arguments. This duplication of
3773 arguments in general registers can't hurt non-MIPS16 functions
3774 because those registers are normally skipped. */
3775
3776 if (fp_register_arg_p (typecode, arg_type)
3777 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3778 {
2afd3f0a
MR
3779 LONGEST regval = extract_unsigned_integer (val, len);
3780 if (mips_debug)
3781 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3782 float_argreg, phex (regval, len));
9c9acae0 3783 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
3784 if (mips_debug)
3785 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3786 argreg, phex (regval, len));
9c9acae0 3787 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3788 argreg++;
ebafbe83 3789 /* Reserve space for the FP register. */
1a69e1e4 3790 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
3791 }
3792 else
3793 {
3794 /* Copy the argument to general registers or the stack in
3795 register-sized pieces. Large arguments are split between
3796 registers and stack. */
1a69e1e4 3797 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
3798 are treated specially: Irix cc passes them in registers
3799 where gcc sometimes puts them on the stack. For maximum
3800 compatibility, we will put them in both places. */
1a69e1e4
DJ
3801 int odd_sized_struct = (len > MIPS64_REGSIZE
3802 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
3803 while (len > 0)
3804 {
3805 /* Remember if the argument was written to the stack. */
3806 int stack_used_p = 0;
1a69e1e4 3807 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
3808
3809 if (mips_debug)
3810 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3811 partial_len);
3812
3813 /* Write this portion of the argument to the stack. */
3814 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3815 || odd_sized_struct)
ebafbe83
MS
3816 {
3817 /* Should shorter than int integer values be
3818 promoted to int before being stored? */
3819 int longword_offset = 0;
3820 CORE_ADDR addr;
3821 stack_used_p = 1;
72a155b4 3822 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 3823 {
1a69e1e4
DJ
3824 if ((typecode == TYPE_CODE_INT
3825 || typecode == TYPE_CODE_PTR
3826 || typecode == TYPE_CODE_FLT)
3827 && len <= 4)
3828 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
3829 }
3830
3831 if (mips_debug)
3832 {
3833 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3834 paddr_nz (stack_offset));
3835 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3836 paddr_nz (longword_offset));
3837 }
3838
3839 addr = sp + stack_offset + longword_offset;
3840
3841 if (mips_debug)
3842 {
3843 int i;
6d82d43b 3844 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3845 paddr_nz (addr));
3846 for (i = 0; i < partial_len; i++)
3847 {
6d82d43b 3848 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3849 val[i] & 0xff);
3850 }
3851 }
3852 write_memory (addr, val, partial_len);
3853 }
3854
3855 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3856 structs may go thru BOTH paths. */
ebafbe83 3857 /* Write this portion of the argument to a general
6d82d43b 3858 purpose register. */
968b5391 3859 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3860 {
3861 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3862 /* Value may need to be sign extended, because
1b13c4f6 3863 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3864
3865 /* A non-floating-point argument being passed in a
3866 general register. If a struct or union, and if
3867 the remaining length is smaller than the register
3868 size, we have to adjust the register value on
3869 big endian targets.
3870
3871 It does not seem to be necessary to do the
401835eb 3872 same for integral types. */
480d3dd2 3873
72a155b4 3874 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3875 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3876 && (typecode == TYPE_CODE_STRUCT
3877 || typecode == TYPE_CODE_UNION))
1a69e1e4 3878 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3879 * TARGET_CHAR_BIT);
ebafbe83
MS
3880
3881 if (mips_debug)
3882 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3883 argreg,
1a69e1e4 3884 phex (regval, MIPS64_REGSIZE));
9c9acae0 3885 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
3886 argreg++;
3887
3888 /* Prevent subsequent floating point arguments from
3889 being passed in floating point registers. */
3890 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3891 }
3892
3893 len -= partial_len;
3894 val += partial_len;
3895
3896 /* Compute the the offset into the stack at which we
6d82d43b 3897 will copy the next parameter.
ebafbe83 3898
6d82d43b
AC
3899 In older ABIs, the caller reserved space for
3900 registers that contained arguments. This was loosely
3901 refered to as their "home". Consequently, space is
3902 always allocated. */
ebafbe83 3903
1a69e1e4 3904 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
3905 }
3906 }
3907 if (mips_debug)
3908 fprintf_unfiltered (gdb_stdlog, "\n");
3909 }
3910
f10683bb 3911 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3912
ebafbe83
MS
3913 /* Return adjusted stack pointer. */
3914 return sp;
3915}
3916
9c8fdbfa
AC
3917static enum return_value_convention
3918mips_o64_return_value (struct gdbarch *gdbarch,
3919 struct type *type, struct regcache *regcache,
47a35522 3920 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3921{
72a155b4 3922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a076fd2
FF
3923
3924 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3925 || TYPE_CODE (type) == TYPE_CODE_UNION
3926 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3927 return RETURN_VALUE_STRUCT_CONVENTION;
3928 else if (fp_register_arg_p (TYPE_CODE (type), type))
3929 {
3930 /* A floating-point value. It fits in the least significant
3931 part of FP0. */
3932 if (mips_debug)
3933 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3934 mips_xfer_register (regcache,
72a155b4
UW
3935 gdbarch_num_regs (gdbarch)
3936 + mips_regnum (gdbarch)->fp0,
7a076fd2 3937 TYPE_LENGTH (type),
72a155b4 3938 gdbarch_byte_order (gdbarch),
4c6b5505 3939 readbuf, writebuf, 0);
7a076fd2
FF
3940 return RETURN_VALUE_REGISTER_CONVENTION;
3941 }
3942 else
3943 {
3944 /* A scalar extract each part but least-significant-byte
3945 justified. */
3946 int offset;
3947 int regnum;
3948 for (offset = 0, regnum = MIPS_V0_REGNUM;
3949 offset < TYPE_LENGTH (type);
1a69e1e4 3950 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 3951 {
1a69e1e4 3952 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
3953 if (offset + xfer > TYPE_LENGTH (type))
3954 xfer = TYPE_LENGTH (type) - offset;
3955 if (mips_debug)
3956 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3957 offset, xfer, regnum);
72a155b4
UW
3958 mips_xfer_register (regcache, gdbarch_num_regs (gdbarch) + regnum,
3959 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 3960 readbuf, writebuf, offset);
7a076fd2
FF
3961 }
3962 return RETURN_VALUE_REGISTER_CONVENTION;
3963 }
6d82d43b
AC
3964}
3965
dd824b04
DJ
3966/* Floating point register management.
3967
3968 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3969 64bit operations, these early MIPS cpus treat fp register pairs
3970 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3971 registers and offer a compatibility mode that emulates the MIPS2 fp
3972 model. When operating in MIPS2 fp compat mode, later cpu's split
3973 double precision floats into two 32-bit chunks and store them in
3974 consecutive fp regs. To display 64-bit floats stored in this
3975 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3976 Throw in user-configurable endianness and you have a real mess.
3977
3978 The way this works is:
3979 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3980 double-precision value will be split across two logical registers.
3981 The lower-numbered logical register will hold the low-order bits,
3982 regardless of the processor's endianness.
3983 - If we are on a 64-bit processor, and we are looking for a
3984 single-precision value, it will be in the low ordered bits
3985 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3986 save slot in memory.
3987 - If we are in 64-bit mode, everything is straightforward.
3988
3989 Note that this code only deals with "live" registers at the top of the
3990 stack. We will attempt to deal with saved registers later, when
3991 the raw/cooked register interface is in place. (We need a general
3992 interface that can deal with dynamic saved register sizes -- fp
3993 regs could be 32 bits wide in one frame and 64 on the frame above
3994 and below). */
3995
67b2c998
DJ
3996static struct type *
3997mips_float_register_type (void)
3998{
8da61cc4 3999 return builtin_type_ieee_single;
67b2c998
DJ
4000}
4001
4002static struct type *
4003mips_double_register_type (void)
4004{
8da61cc4 4005 return builtin_type_ieee_double;
67b2c998
DJ
4006}
4007
dd824b04
DJ
4008/* Copy a 32-bit single-precision value from the current frame
4009 into rare_buffer. */
4010
4011static void
e11c53d2 4012mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 4013 gdb_byte *rare_buffer)
dd824b04 4014{
72a155b4
UW
4015 struct gdbarch *gdbarch = get_frame_arch (frame);
4016 int raw_size = register_size (gdbarch, regno);
47a35522 4017 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 4018
e11c53d2 4019 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572 4020 error (_("can't read register %d (%s)"),
72a155b4 4021 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4022 if (raw_size == 8)
4023 {
4024 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 4025 32 bits. */
dd824b04
DJ
4026 int offset;
4027
72a155b4 4028 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
4029 offset = 4;
4030 else
4031 offset = 0;
4032
4033 memcpy (rare_buffer, raw_buffer + offset, 4);
4034 }
4035 else
4036 {
4037 memcpy (rare_buffer, raw_buffer, 4);
4038 }
4039}
4040
4041/* Copy a 64-bit double-precision value from the current frame into
4042 rare_buffer. This may include getting half of it from the next
4043 register. */
4044
4045static void
e11c53d2 4046mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 4047 gdb_byte *rare_buffer)
dd824b04 4048{
72a155b4
UW
4049 struct gdbarch *gdbarch = get_frame_arch (frame);
4050 int raw_size = register_size (gdbarch, regno);
dd824b04 4051
9c9acae0 4052 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
4053 {
4054 /* We have a 64-bit value for this register, and we should use
6d82d43b 4055 all 64 bits. */
e11c53d2 4056 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572 4057 error (_("can't read register %d (%s)"),
72a155b4 4058 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4059 }
4060 else
4061 {
72a155b4 4062 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 4063
72a155b4 4064 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 4065 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
4066 _("mips_read_fp_register_double: bad access to "
4067 "odd-numbered FP register"));
dd824b04
DJ
4068
4069 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 4070 each register. */
72a155b4 4071 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 4072 {
e11c53d2
AC
4073 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4074 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4075 }
361d1df0 4076 else
dd824b04 4077 {
e11c53d2
AC
4078 mips_read_fp_register_single (frame, regno, rare_buffer);
4079 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4080 }
4081 }
4082}
4083
c906108c 4084static void
e11c53d2
AC
4085mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4086 int regnum)
c5aa993b 4087{ /* do values for FP (float) regs */
72a155b4 4088 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4089 gdb_byte *raw_buffer;
3903d437
AC
4090 double doub, flt1; /* doubles extracted from raw hex data */
4091 int inv1, inv2;
c5aa993b 4092
72a155b4 4093 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
c906108c 4094
72a155b4 4095 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 4096 fprintf_filtered (file, "%*s",
72a155b4 4097 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 4098 "");
f0ef6b29 4099
72a155b4 4100 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 4101 {
f0ef6b29
KB
4102 /* 4-byte registers: Print hex and floating. Also print even
4103 numbered registers as doubles. */
e11c53d2 4104 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4105 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4106
6d82d43b
AC
4107 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4108 file);
dd824b04 4109
e11c53d2 4110 fprintf_filtered (file, " flt: ");
1adad886 4111 if (inv1)
e11c53d2 4112 fprintf_filtered (file, " <invalid float> ");
1adad886 4113 else
e11c53d2 4114 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4115
72a155b4 4116 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 4117 {
e11c53d2 4118 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 4119 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 4120 &inv2);
1adad886 4121
e11c53d2 4122 fprintf_filtered (file, " dbl: ");
f0ef6b29 4123 if (inv2)
e11c53d2 4124 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4125 else
e11c53d2 4126 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4127 }
c906108c
SS
4128 }
4129 else
dd824b04 4130 {
f0ef6b29 4131 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4132 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4133 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4134
e11c53d2 4135 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4136 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4137
361d1df0 4138
6d82d43b
AC
4139 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4140 file);
f0ef6b29 4141
e11c53d2 4142 fprintf_filtered (file, " flt: ");
1adad886 4143 if (inv1)
e11c53d2 4144 fprintf_filtered (file, "<invalid float>");
1adad886 4145 else
e11c53d2 4146 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4147
e11c53d2 4148 fprintf_filtered (file, " dbl: ");
f0ef6b29 4149 if (inv2)
e11c53d2 4150 fprintf_filtered (file, "<invalid double>");
1adad886 4151 else
e11c53d2 4152 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4153 }
4154}
4155
4156static void
e11c53d2 4157mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4158 int regnum)
f0ef6b29 4159{
a4b8ebc8 4160 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4161 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4162 int offset;
1adad886 4163
7b9ee6a8 4164 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4165 {
e11c53d2 4166 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4167 return;
4168 }
4169
4170 /* Get the data in raw format. */
e11c53d2 4171 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4172 {
c9f4d572 4173 fprintf_filtered (file, "%s: [Invalid]",
72a155b4 4174 gdbarch_register_name (gdbarch, regnum));
f0ef6b29 4175 return;
c906108c 4176 }
f0ef6b29 4177
72a155b4 4178 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
4179
4180 /* The problem with printing numeric register names (r26, etc.) is that
4181 the user can't use them on input. Probably the best solution is to
4182 fix it so that either the numeric or the funky (a2, etc.) names
4183 are accepted on input. */
4184 if (regnum < MIPS_NUMREGS)
e11c53d2 4185 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4186 else
e11c53d2 4187 fprintf_filtered (file, ": ");
f0ef6b29 4188
72a155b4 4189 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4190 offset =
72a155b4 4191 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
f0ef6b29
KB
4192 else
4193 offset = 0;
4194
6d82d43b 4195 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4196 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4197 file);
c906108c
SS
4198}
4199
f0ef6b29
KB
4200/* Replacement for generic do_registers_info.
4201 Print regs in pretty columns. */
4202
4203static int
e11c53d2
AC
4204print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4205 int regnum)
f0ef6b29 4206{
e11c53d2
AC
4207 fprintf_filtered (file, " ");
4208 mips_print_fp_register (file, frame, regnum);
4209 fprintf_filtered (file, "\n");
f0ef6b29
KB
4210 return regnum + 1;
4211}
4212
4213
c906108c
SS
4214/* Print a row's worth of GP (int) registers, with name labels above */
4215
4216static int
e11c53d2 4217print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4218 int start_regnum)
c906108c 4219{
a4b8ebc8 4220 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4221 /* do values for GP (int) regs */
47a35522 4222 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4223 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4224 int col, byte;
a4b8ebc8 4225 int regnum;
c906108c
SS
4226
4227 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4228 for (col = 0, regnum = start_regnum;
72a155b4
UW
4229 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4230 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4231 regnum++)
c906108c 4232 {
72a155b4 4233 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4234 continue; /* unused register */
7b9ee6a8 4235 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4236 TYPE_CODE_FLT)
c5aa993b 4237 break; /* end the row: reached FP register */
0cc93a06 4238 /* Large registers are handled separately. */
72a155b4 4239 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4240 {
4241 if (col > 0)
4242 break; /* End the row before this register. */
4243
4244 /* Print this register on a row by itself. */
4245 mips_print_register (file, frame, regnum);
4246 fprintf_filtered (file, "\n");
4247 return regnum + 1;
4248 }
d05f6826
DJ
4249 if (col == 0)
4250 fprintf_filtered (file, " ");
6d82d43b 4251 fprintf_filtered (file,
72a155b4
UW
4252 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4253 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
4254 col++;
4255 }
d05f6826
DJ
4256
4257 if (col == 0)
4258 return regnum;
4259
a4b8ebc8 4260 /* print the R0 to R31 names */
72a155b4 4261 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 4262 fprintf_filtered (file, "\n R%-4d",
72a155b4 4263 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
4264 else
4265 fprintf_filtered (file, "\n ");
c906108c 4266
c906108c 4267 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4268 for (col = 0, regnum = start_regnum;
72a155b4
UW
4269 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4270 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4271 regnum++)
c906108c 4272 {
72a155b4 4273 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4274 continue; /* unused register */
7b9ee6a8 4275 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4276 TYPE_CODE_FLT)
c5aa993b 4277 break; /* end row: reached FP register */
72a155b4 4278 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4279 break; /* End row: large register. */
4280
c906108c 4281 /* OK: get the data in raw format. */
e11c53d2 4282 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 4283 error (_("can't read register %d (%s)"),
72a155b4 4284 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 4285 /* pad small registers */
4246e332 4286 for (byte = 0;
72a155b4
UW
4287 byte < (mips_abi_regsize (gdbarch)
4288 - register_size (gdbarch, regnum)); byte++)
c906108c
SS
4289 printf_filtered (" ");
4290 /* Now print the register value in hex, endian order. */
72a155b4 4291 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4292 for (byte =
72a155b4
UW
4293 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4294 byte < register_size (gdbarch, regnum); byte++)
47a35522 4295 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4296 else
72a155b4 4297 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 4298 byte >= 0; byte--)
47a35522 4299 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4300 fprintf_filtered (file, " ");
c906108c
SS
4301 col++;
4302 }
c5aa993b 4303 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4304 fprintf_filtered (file, "\n");
c906108c
SS
4305
4306 return regnum;
4307}
4308
4309/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4310
bf1f5b4c 4311static void
e11c53d2
AC
4312mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4313 struct frame_info *frame, int regnum, int all)
c906108c 4314{
c5aa993b 4315 if (regnum != -1) /* do one specified register */
c906108c 4316 {
72a155b4
UW
4317 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4318 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 4319 error (_("Not a valid register for the current processor type"));
c906108c 4320
0cc93a06 4321 mips_print_register (file, frame, regnum);
e11c53d2 4322 fprintf_filtered (file, "\n");
c906108c 4323 }
c5aa993b
JM
4324 else
4325 /* do all (or most) registers */
c906108c 4326 {
72a155b4
UW
4327 regnum = gdbarch_num_regs (gdbarch);
4328 while (regnum < gdbarch_num_regs (gdbarch)
4329 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 4330 {
7b9ee6a8 4331 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4332 TYPE_CODE_FLT)
e11c53d2
AC
4333 {
4334 if (all) /* true for "INFO ALL-REGISTERS" command */
4335 regnum = print_fp_register_row (file, frame, regnum);
4336 else
4337 regnum += MIPS_NUMREGS; /* skip floating point regs */
4338 }
c906108c 4339 else
e11c53d2 4340 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4341 }
4342 }
4343}
4344
c906108c
SS
4345/* Is this a branch with a delay slot? */
4346
c906108c 4347static int
acdb74a0 4348is_delayed (unsigned long insn)
c906108c
SS
4349{
4350 int i;
4351 for (i = 0; i < NUMOPCODES; ++i)
4352 if (mips_opcodes[i].pinfo != INSN_MACRO
4353 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4354 break;
4355 return (i < NUMOPCODES
4356 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4357 | INSN_COND_BRANCH_DELAY
4358 | INSN_COND_BRANCH_LIKELY)));
4359}
4360
4361int
3352ef37
AC
4362mips_single_step_through_delay (struct gdbarch *gdbarch,
4363 struct frame_info *frame)
c906108c 4364{
3352ef37 4365 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4366 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4367
4368 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4369 if (mips_pc_is_mips16 (pc))
c906108c
SS
4370 return 0;
4371
06648491
MK
4372 if (!breakpoint_here_p (pc + 4))
4373 return 0;
4374
3352ef37
AC
4375 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4376 /* If error reading memory, guess that it is not a delayed
4377 branch. */
c906108c 4378 return 0;
4c7d22cb 4379 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4380}
4381
6d82d43b
AC
4382/* To skip prologues, I use this predicate. Returns either PC itself
4383 if the code at PC does not look like a function prologue; otherwise
4384 returns an address that (if we're lucky) follows the prologue. If
4385 LENIENT, then we must skip everything which is involved in setting
4386 up the frame (it's OK to skip more, just so long as we don't skip
4387 anything which might clobber the registers which are being saved.
4388 We must skip more in the case where part of the prologue is in the
4389 delay slot of a non-prologue instruction). */
4390
4391static CORE_ADDR
4392mips_skip_prologue (CORE_ADDR pc)
4393{
8b622e6a
AC
4394 CORE_ADDR limit_pc;
4395 CORE_ADDR func_addr;
4396
6d82d43b
AC
4397 /* See if we can determine the end of the prologue via the symbol table.
4398 If so, then return either PC, or the PC after the prologue, whichever
4399 is greater. */
8b622e6a
AC
4400 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4401 {
4402 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4403 if (post_prologue_pc != 0)
4404 return max (pc, post_prologue_pc);
4405 }
6d82d43b
AC
4406
4407 /* Can't determine prologue from the symbol table, need to examine
4408 instructions. */
4409
98b4dd94
JB
4410 /* Find an upper limit on the function prologue using the debug
4411 information. If the debug information could not be used to provide
4412 that bound, then use an arbitrary large number as the upper bound. */
4413 limit_pc = skip_prologue_using_sal (pc);
4414 if (limit_pc == 0)
4415 limit_pc = pc + 100; /* Magic. */
4416
0fe7e7c8 4417 if (mips_pc_is_mips16 (pc))
a65bbe44 4418 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4419 else
a65bbe44 4420 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4421}
4422
97ab0fdd
MR
4423/* Check whether the PC is in a function epilogue (32-bit version).
4424 This is a helper function for mips_in_function_epilogue_p. */
4425static int
4426mips32_in_function_epilogue_p (CORE_ADDR pc)
4427{
4428 CORE_ADDR func_addr = 0, func_end = 0;
4429
4430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4431 {
4432 /* The MIPS epilogue is max. 12 bytes long. */
4433 CORE_ADDR addr = func_end - 12;
4434
4435 if (addr < func_addr + 4)
4436 addr = func_addr + 4;
4437 if (pc < addr)
4438 return 0;
4439
4440 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4441 {
4442 unsigned long high_word;
4443 unsigned long inst;
4444
4445 inst = mips_fetch_instruction (pc);
4446 high_word = (inst >> 16) & 0xffff;
4447
4448 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4449 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4450 && inst != 0x03e00008 /* jr $ra */
4451 && inst != 0x00000000) /* nop */
4452 return 0;
4453 }
4454
4455 return 1;
4456 }
4457
4458 return 0;
4459}
4460
4461/* Check whether the PC is in a function epilogue (16-bit version).
4462 This is a helper function for mips_in_function_epilogue_p. */
4463static int
4464mips16_in_function_epilogue_p (CORE_ADDR pc)
4465{
4466 CORE_ADDR func_addr = 0, func_end = 0;
4467
4468 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4469 {
4470 /* The MIPS epilogue is max. 12 bytes long. */
4471 CORE_ADDR addr = func_end - 12;
4472
4473 if (addr < func_addr + 4)
4474 addr = func_addr + 4;
4475 if (pc < addr)
4476 return 0;
4477
4478 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4479 {
4480 unsigned short inst;
4481
4482 inst = mips_fetch_instruction (pc);
4483
4484 if ((inst & 0xf800) == 0xf000) /* extend */
4485 continue;
4486
4487 if (inst != 0x6300 /* addiu $sp,offset */
4488 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4489 && inst != 0xe820 /* jr $ra */
4490 && inst != 0xe8a0 /* jrc $ra */
4491 && inst != 0x6500) /* nop */
4492 return 0;
4493 }
4494
4495 return 1;
4496 }
4497
4498 return 0;
4499}
4500
4501/* The epilogue is defined here as the area at the end of a function,
4502 after an instruction which destroys the function's stack frame. */
4503static int
4504mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4505{
4506 if (mips_pc_is_mips16 (pc))
4507 return mips16_in_function_epilogue_p (pc);
4508 else
4509 return mips32_in_function_epilogue_p (pc);
4510}
4511
a5ea2558
AC
4512/* Root of all "set mips "/"show mips " commands. This will eventually be
4513 used for all MIPS-specific commands. */
4514
a5ea2558 4515static void
acdb74a0 4516show_mips_command (char *args, int from_tty)
a5ea2558
AC
4517{
4518 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4519}
4520
a5ea2558 4521static void
acdb74a0 4522set_mips_command (char *args, int from_tty)
a5ea2558 4523{
6d82d43b
AC
4524 printf_unfiltered
4525 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4526 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4527}
4528
c906108c
SS
4529/* Commands to show/set the MIPS FPU type. */
4530
c906108c 4531static void
acdb74a0 4532show_mipsfpu_command (char *args, int from_tty)
c906108c 4533{
c906108c
SS
4534 char *fpu;
4535 switch (MIPS_FPU_TYPE)
4536 {
4537 case MIPS_FPU_SINGLE:
4538 fpu = "single-precision";
4539 break;
4540 case MIPS_FPU_DOUBLE:
4541 fpu = "double-precision";
4542 break;
4543 case MIPS_FPU_NONE:
4544 fpu = "absent (none)";
4545 break;
93d56215 4546 default:
e2e0b3e5 4547 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4548 }
4549 if (mips_fpu_type_auto)
6d82d43b
AC
4550 printf_unfiltered
4551 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4552 fpu);
c906108c 4553 else
6d82d43b
AC
4554 printf_unfiltered
4555 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4556}
4557
4558
c906108c 4559static void
acdb74a0 4560set_mipsfpu_command (char *args, int from_tty)
c906108c 4561{
6d82d43b
AC
4562 printf_unfiltered
4563 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4564 show_mipsfpu_command (args, from_tty);
4565}
4566
c906108c 4567static void
acdb74a0 4568set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4569{
8d5838b5
AC
4570 struct gdbarch_info info;
4571 gdbarch_info_init (&info);
c906108c
SS
4572 mips_fpu_type = MIPS_FPU_SINGLE;
4573 mips_fpu_type_auto = 0;
8d5838b5
AC
4574 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4575 instead of relying on globals. Doing that would let generic code
4576 handle the search for this specific architecture. */
4577 if (!gdbarch_update_p (info))
e2e0b3e5 4578 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4579}
4580
c906108c 4581static void
acdb74a0 4582set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4583{
8d5838b5
AC
4584 struct gdbarch_info info;
4585 gdbarch_info_init (&info);
c906108c
SS
4586 mips_fpu_type = MIPS_FPU_DOUBLE;
4587 mips_fpu_type_auto = 0;
8d5838b5
AC
4588 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4589 instead of relying on globals. Doing that would let generic code
4590 handle the search for this specific architecture. */
4591 if (!gdbarch_update_p (info))
e2e0b3e5 4592 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4593}
4594
c906108c 4595static void
acdb74a0 4596set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4597{
8d5838b5
AC
4598 struct gdbarch_info info;
4599 gdbarch_info_init (&info);
c906108c
SS
4600 mips_fpu_type = MIPS_FPU_NONE;
4601 mips_fpu_type_auto = 0;
8d5838b5
AC
4602 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4603 instead of relying on globals. Doing that would let generic code
4604 handle the search for this specific architecture. */
4605 if (!gdbarch_update_p (info))
e2e0b3e5 4606 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4607}
4608
c906108c 4609static void
acdb74a0 4610set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4611{
4612 mips_fpu_type_auto = 1;
4613}
4614
c906108c 4615/* Attempt to identify the particular processor model by reading the
691c0433
AC
4616 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4617 the relevant processor still exists (it dates back to '94) and
4618 secondly this is not the way to do this. The processor type should
4619 be set by forcing an architecture change. */
c906108c 4620
691c0433
AC
4621void
4622deprecated_mips_set_processor_regs_hack (void)
c906108c 4623{
691c0433 4624 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a9614958 4625 ULONGEST prid;
c906108c 4626
594f7785 4627 regcache_cooked_read_unsigned (get_current_regcache (),
a9614958 4628 MIPS_PRID_REGNUM, &prid);
c906108c 4629 if ((prid & ~0xf) == 0x700)
691c0433 4630 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4631}
4632
4633/* Just like reinit_frame_cache, but with the right arguments to be
4634 callable as an sfunc. */
4635
4636static void
acdb74a0
AC
4637reinit_frame_cache_sfunc (char *args, int from_tty,
4638 struct cmd_list_element *c)
c906108c
SS
4639{
4640 reinit_frame_cache ();
4641}
4642
a89aa300
AC
4643static int
4644gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4645{
e5ab0dce 4646 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4647
d31431ed
AC
4648 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4649 disassembler needs to be able to locally determine the ISA, and
4650 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4651 work. */
ec4045ea
AC
4652 if (mips_pc_is_mips16 (memaddr))
4653 info->mach = bfd_mach_mips16;
c906108c
SS
4654
4655 /* Round down the instruction address to the appropriate boundary. */
65c11066 4656 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4657
e5ab0dce 4658 /* Set the disassembler options. */
6d82d43b 4659 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4660 {
4661 /* Set up the disassembler info, so that we get the right
6d82d43b 4662 register names from libopcodes. */
e5ab0dce
AC
4663 if (tdep->mips_abi == MIPS_ABI_N32)
4664 info->disassembler_options = "gpr-names=n32";
4665 else
4666 info->disassembler_options = "gpr-names=64";
4667 info->flavour = bfd_target_elf_flavour;
4668 }
4669 else
4670 /* This string is not recognized explicitly by the disassembler,
4671 but it tells the disassembler to not try to guess the ABI from
4672 the bfd elf headers, such that, if the user overrides the ABI
4673 of a program linked as NewABI, the disassembly will follow the
4674 register naming conventions specified by the user. */
4675 info->disassembler_options = "gpr-names=32";
4676
c906108c 4677 /* Call the appropriate disassembler based on the target endian-ness. */
4c6b5505 4678 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
4679 return print_insn_big_mips (memaddr, info);
4680 else
4681 return print_insn_little_mips (memaddr, info);
4682}
4683
3b3b875c
UW
4684/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4685 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4686 It returns a pointer to a string of bytes that encode a breakpoint
4687 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4688 necessary) to point to the actual memory location where the breakpoint
4689 should be inserted. */
c906108c 4690
47a35522 4691static const gdb_byte *
6d82d43b 4692mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4693{
4c6b5505 4694 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 4695 {
0fe7e7c8 4696 if (mips_pc_is_mips16 (*pcptr))
c906108c 4697 {
47a35522 4698 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4699 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4700 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4701 return mips16_big_breakpoint;
4702 }
4703 else
4704 {
aaab4dba
AC
4705 /* The IDT board uses an unusual breakpoint value, and
4706 sometimes gets confused when it sees the usual MIPS
4707 breakpoint instruction. */
47a35522
MK
4708 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4709 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4710 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4711
c5aa993b 4712 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4713
4714 if (strcmp (target_shortname, "mips") == 0)
4715 return idt_big_breakpoint;
4716 else if (strcmp (target_shortname, "ddb") == 0
4717 || strcmp (target_shortname, "pmon") == 0
4718 || strcmp (target_shortname, "lsi") == 0)
4719 return pmon_big_breakpoint;
4720 else
4721 return big_breakpoint;
4722 }
4723 }
4724 else
4725 {
0fe7e7c8 4726 if (mips_pc_is_mips16 (*pcptr))
c906108c 4727 {
47a35522 4728 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4729 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4730 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4731 return mips16_little_breakpoint;
4732 }
4733 else
4734 {
47a35522
MK
4735 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4736 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4737 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4738
c5aa993b 4739 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4740
4741 if (strcmp (target_shortname, "mips") == 0)
4742 return idt_little_breakpoint;
4743 else if (strcmp (target_shortname, "ddb") == 0
4744 || strcmp (target_shortname, "pmon") == 0
4745 || strcmp (target_shortname, "lsi") == 0)
4746 return pmon_little_breakpoint;
4747 else
4748 return little_breakpoint;
4749 }
4750 }
4751}
4752
4753/* If PC is in a mips16 call or return stub, return the address of the target
4754 PC, which is either the callee or the caller. There are several
4755 cases which must be handled:
4756
4757 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4758 target PC is in $31 ($ra).
c906108c 4759 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4760 and the target PC is in $2.
c906108c 4761 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4762 before the jal instruction, this is effectively a call stub
4763 and the the target PC is in $2. Otherwise this is effectively
4764 a return stub and the target PC is in $18.
c906108c
SS
4765
4766 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4767 gory details. */
c906108c 4768
757a7cc6 4769static CORE_ADDR
52f729a7 4770mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
4771{
4772 char *name;
4773 CORE_ADDR start_addr;
4774
4775 /* Find the starting address and name of the function containing the PC. */
4776 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4777 return 0;
4778
4779 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4780 target PC is in $31 ($ra). */
4781 if (strcmp (name, "__mips16_ret_sf") == 0
4782 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 4783 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
4784
4785 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4786 {
4787 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4788 and the target PC is in $2. */
4789 if (name[19] >= '0' && name[19] <= '9')
52f729a7 4790 return get_frame_register_signed (frame, 2);
c906108c
SS
4791
4792 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4793 before the jal instruction, this is effectively a call stub
4794 and the the target PC is in $2. Otherwise this is effectively
4795 a return stub and the target PC is in $18. */
c906108c
SS
4796 else if (name[19] == 's' || name[19] == 'd')
4797 {
4798 if (pc == start_addr)
4799 {
4800 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4801 stub. Such a stub for a function bar might have a name
4802 like __fn_stub_bar, and might look like this:
4803 mfc1 $4,$f13
4804 mfc1 $5,$f12
4805 mfc1 $6,$f15
4806 mfc1 $7,$f14
4807 la $1,bar (becomes a lui/addiu pair)
4808 jr $1
4809 So scan down to the lui/addi and extract the target
4810 address from those two instructions. */
c906108c 4811
52f729a7 4812 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 4813 ULONGEST inst;
c906108c
SS
4814 int i;
4815
4816 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4817 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4818 0)
c906108c
SS
4819 return target_pc;
4820 if (strncmp (name, "__fn_stub_", 10) != 0
4821 && strcmp (name, "etext") != 0
4822 && strcmp (name, "_etext") != 0)
4823 return target_pc;
4824
4825 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4826 The limit on the search is arbitrarily set to 20
4827 instructions. FIXME. */
95ac2dcf 4828 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4829 {
c5aa993b
JM
4830 inst = mips_fetch_instruction (target_pc);
4831 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4832 pc = (inst << 16) & 0xffff0000; /* high word */
4833 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4834 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4835 }
4836
4837 /* Couldn't find the lui/addui pair, so return stub address. */
4838 return target_pc;
4839 }
4840 else
4841 /* This is the 'return' part of a call stub. The return
4842 address is in $r18. */
52f729a7 4843 return get_frame_register_signed (frame, 18);
c906108c
SS
4844 }
4845 }
c5aa993b 4846 return 0; /* not a stub */
c906108c
SS
4847}
4848
a4b8ebc8 4849/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 4850 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4851
4852static int
4853mips_stab_reg_to_regnum (int num)
4854{
a4b8ebc8 4855 int regnum;
2f38ef89 4856 if (num >= 0 && num < 32)
a4b8ebc8 4857 regnum = num;
2f38ef89 4858 else if (num >= 38 && num < 70)
56cea623 4859 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4860 else if (num == 70)
56cea623 4861 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4862 else if (num == 71)
56cea623 4863 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4864 else
a4b8ebc8
AC
4865 /* This will hopefully (eventually) provoke a warning. Should
4866 we be calling complaint() here? */
f57d151a
UW
4867 return gdbarch_num_regs (current_gdbarch)
4868 + gdbarch_num_pseudo_regs (current_gdbarch);
4869 return gdbarch_num_regs (current_gdbarch) + regnum;
88c72b7d
AC
4870}
4871
2f38ef89 4872
a4b8ebc8 4873/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 4874 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4875
4876static int
2f38ef89 4877mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4878{
a4b8ebc8 4879 int regnum;
2f38ef89 4880 if (num >= 0 && num < 32)
a4b8ebc8 4881 regnum = num;
2f38ef89 4882 else if (num >= 32 && num < 64)
56cea623 4883 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4884 else if (num == 64)
56cea623 4885 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4886 else if (num == 65)
56cea623 4887 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4888 else
a4b8ebc8
AC
4889 /* This will hopefully (eventually) provoke a warning. Should we
4890 be calling complaint() here? */
f57d151a
UW
4891 return gdbarch_num_regs (current_gdbarch)
4892 + gdbarch_num_pseudo_regs (current_gdbarch);
4893 return gdbarch_num_regs (current_gdbarch) + regnum;
a4b8ebc8
AC
4894}
4895
4896static int
4897mips_register_sim_regno (int regnum)
4898{
4899 /* Only makes sense to supply raw registers. */
f57d151a 4900 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
a4b8ebc8
AC
4901 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4902 decide if it is valid. Should instead define a standard sim/gdb
4903 register numbering scheme. */
c9f4d572
UW
4904 if (gdbarch_register_name (current_gdbarch,
4905 gdbarch_num_regs
4906 (current_gdbarch) + regnum) != NULL
4907 && gdbarch_register_name (current_gdbarch,
4908 gdbarch_num_regs
4909 (current_gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
4910 return regnum;
4911 else
6d82d43b 4912 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4913}
4914
2f38ef89 4915
4844f454
CV
4916/* Convert an integer into an address. Extracting the value signed
4917 guarantees a correctly sign extended address. */
fc0c74b1
AC
4918
4919static CORE_ADDR
79dd2d24 4920mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4921 struct type *type, const gdb_byte *buf)
fc0c74b1 4922{
4844f454 4923 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4924}
4925
82e91389
DJ
4926/* Dummy virtual frame pointer method. This is no more or less accurate
4927 than most other architectures; we just need to be explicit about it,
4928 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
4929 an assertion failure. */
4930
4931static void
4932mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
4933{
4934 *reg = MIPS_SP_REGNUM;
4935 *offset = 0;
4936}
4937
caaa3122
DJ
4938static void
4939mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4940{
4941 enum mips_abi *abip = (enum mips_abi *) obj;
4942 const char *name = bfd_get_section_name (abfd, sect);
4943
4944 if (*abip != MIPS_ABI_UNKNOWN)
4945 return;
4946
4947 if (strncmp (name, ".mdebug.", 8) != 0)
4948 return;
4949
4950 if (strcmp (name, ".mdebug.abi32") == 0)
4951 *abip = MIPS_ABI_O32;
4952 else if (strcmp (name, ".mdebug.abiN32") == 0)
4953 *abip = MIPS_ABI_N32;
62a49b2c 4954 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4955 *abip = MIPS_ABI_N64;
caaa3122
DJ
4956 else if (strcmp (name, ".mdebug.abiO64") == 0)
4957 *abip = MIPS_ABI_O64;
4958 else if (strcmp (name, ".mdebug.eabi32") == 0)
4959 *abip = MIPS_ABI_EABI32;
4960 else if (strcmp (name, ".mdebug.eabi64") == 0)
4961 *abip = MIPS_ABI_EABI64;
4962 else
8a3fe4f8 4963 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4964}
4965
22e47e37
FF
4966static void
4967mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4968{
4969 int *lbp = (int *) obj;
4970 const char *name = bfd_get_section_name (abfd, sect);
4971
4972 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4973 *lbp = 32;
4974 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4975 *lbp = 64;
4976 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4977 warning (_("unrecognized .gcc_compiled_longXX"));
4978}
4979
2e4ebe70
DJ
4980static enum mips_abi
4981global_mips_abi (void)
4982{
4983 int i;
4984
4985 for (i = 0; mips_abi_strings[i] != NULL; i++)
4986 if (mips_abi_strings[i] == mips_abi_string)
4987 return (enum mips_abi) i;
4988
e2e0b3e5 4989 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4990}
4991
29709017
DJ
4992static void
4993mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4994{
29709017
DJ
4995 /* If the size matches the set of 32-bit or 64-bit integer registers,
4996 assume that's what we've got. */
4eb0ad19
DJ
4997 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
4998 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
4999
5000 /* If the size matches the full set of registers GDB traditionally
5001 knows about, including floating point, for either 32-bit or
5002 64-bit, assume that's what we've got. */
4eb0ad19
DJ
5003 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5004 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
5005
5006 /* Otherwise we don't have a useful guess. */
5007}
5008
f8b73d13
DJ
5009static struct value *
5010value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5011{
5012 const int *reg_p = baton;
5013 return value_of_register (*reg_p, frame);
5014}
5015
c2d11a7d 5016static struct gdbarch *
6d82d43b 5017mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 5018{
c2d11a7d
JM
5019 struct gdbarch *gdbarch;
5020 struct gdbarch_tdep *tdep;
5021 int elf_flags;
2e4ebe70 5022 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 5023 int i, num_regs;
8d5838b5 5024 enum mips_fpu_type fpu_type;
f8b73d13 5025 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 5026 int elf_fpu_type = 0;
f8b73d13
DJ
5027
5028 /* Check any target description for validity. */
5029 if (tdesc_has_registers (info.target_desc))
5030 {
5031 static const char *const mips_gprs[] = {
5032 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5033 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5034 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5035 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5036 };
5037 static const char *const mips_fprs[] = {
5038 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5039 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5040 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5041 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5042 };
5043
5044 const struct tdesc_feature *feature;
5045 int valid_p;
5046
5047 feature = tdesc_find_feature (info.target_desc,
5048 "org.gnu.gdb.mips.cpu");
5049 if (feature == NULL)
5050 return NULL;
5051
5052 tdesc_data = tdesc_data_alloc ();
5053
5054 valid_p = 1;
5055 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5056 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5057 mips_gprs[i]);
5058
5059
5060 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5061 MIPS_EMBED_LO_REGNUM, "lo");
5062 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5063 MIPS_EMBED_HI_REGNUM, "hi");
5064 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5065 MIPS_EMBED_PC_REGNUM, "pc");
5066
5067 if (!valid_p)
5068 {
5069 tdesc_data_cleanup (tdesc_data);
5070 return NULL;
5071 }
5072
5073 feature = tdesc_find_feature (info.target_desc,
5074 "org.gnu.gdb.mips.cp0");
5075 if (feature == NULL)
5076 {
5077 tdesc_data_cleanup (tdesc_data);
5078 return NULL;
5079 }
5080
5081 valid_p = 1;
5082 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5083 MIPS_EMBED_BADVADDR_REGNUM,
5084 "badvaddr");
5085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5086 MIPS_PS_REGNUM, "status");
5087 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5088 MIPS_EMBED_CAUSE_REGNUM, "cause");
5089
5090 if (!valid_p)
5091 {
5092 tdesc_data_cleanup (tdesc_data);
5093 return NULL;
5094 }
5095
5096 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5097 backend is not prepared for that, though. */
5098 feature = tdesc_find_feature (info.target_desc,
5099 "org.gnu.gdb.mips.fpu");
5100 if (feature == NULL)
5101 {
5102 tdesc_data_cleanup (tdesc_data);
5103 return NULL;
5104 }
5105
5106 valid_p = 1;
5107 for (i = 0; i < 32; i++)
5108 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5109 i + MIPS_EMBED_FP0_REGNUM,
5110 mips_fprs[i]);
5111
5112 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5113 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5114 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5115 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5116
5117 if (!valid_p)
5118 {
5119 tdesc_data_cleanup (tdesc_data);
5120 return NULL;
5121 }
5122
5123 /* It would be nice to detect an attempt to use a 64-bit ABI
5124 when only 32-bit registers are provided. */
5125 }
c2d11a7d 5126
ec03c1ac
AC
5127 /* First of all, extract the elf_flags, if available. */
5128 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5129 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5130 else if (arches != NULL)
5131 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5132 else
5133 elf_flags = 0;
5134 if (gdbarch_debug)
5135 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5136 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 5137
102182a9 5138 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5139 switch ((elf_flags & EF_MIPS_ABI))
5140 {
5141 case E_MIPS_ABI_O32:
ec03c1ac 5142 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5143 break;
5144 case E_MIPS_ABI_O64:
ec03c1ac 5145 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5146 break;
5147 case E_MIPS_ABI_EABI32:
ec03c1ac 5148 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5149 break;
5150 case E_MIPS_ABI_EABI64:
ec03c1ac 5151 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5152 break;
5153 default:
acdb74a0 5154 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5155 found_abi = MIPS_ABI_N32;
acdb74a0 5156 else
ec03c1ac 5157 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5158 break;
5159 }
acdb74a0 5160
caaa3122 5161 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5162 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5163 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5164
dc305454 5165 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
5166 MIPS architecture (if there is one). */
5167 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5168 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5169
32a6503c 5170 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5171 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5172 && info.bfd_arch_info != NULL
5173 && info.bfd_arch_info->arch == bfd_arch_mips)
5174 {
5175 switch (info.bfd_arch_info->mach)
5176 {
5177 case bfd_mach_mips3900:
ec03c1ac 5178 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5179 break;
5180 case bfd_mach_mips4100:
5181 case bfd_mach_mips5000:
ec03c1ac 5182 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5183 break;
1d06468c
EZ
5184 case bfd_mach_mips8000:
5185 case bfd_mach_mips10000:
32a6503c
KB
5186 /* On Irix, ELF64 executables use the N64 ABI. The
5187 pseudo-sections which describe the ABI aren't present
5188 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5189 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5190 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5191 found_abi = MIPS_ABI_N64;
28d169de 5192 else
ec03c1ac 5193 found_abi = MIPS_ABI_N32;
1d06468c 5194 break;
bf64bfd6
AC
5195 }
5196 }
2e4ebe70 5197
26c53e50
DJ
5198 /* Default 64-bit objects to N64 instead of O32. */
5199 if (found_abi == MIPS_ABI_UNKNOWN
5200 && info.abfd != NULL
5201 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5202 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5203 found_abi = MIPS_ABI_N64;
5204
ec03c1ac
AC
5205 if (gdbarch_debug)
5206 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5207 found_abi);
5208
5209 /* What has the user specified from the command line? */
5210 wanted_abi = global_mips_abi ();
5211 if (gdbarch_debug)
5212 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5213 wanted_abi);
2e4ebe70
DJ
5214
5215 /* Now that we have found what the ABI for this binary would be,
5216 check whether the user is overriding it. */
2e4ebe70
DJ
5217 if (wanted_abi != MIPS_ABI_UNKNOWN)
5218 mips_abi = wanted_abi;
ec03c1ac
AC
5219 else if (found_abi != MIPS_ABI_UNKNOWN)
5220 mips_abi = found_abi;
5221 else
5222 mips_abi = MIPS_ABI_O32;
5223 if (gdbarch_debug)
5224 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5225 mips_abi);
2e4ebe70 5226
ec03c1ac 5227 /* Also used when doing an architecture lookup. */
4b9b3959 5228 if (gdbarch_debug)
ec03c1ac
AC
5229 fprintf_unfiltered (gdb_stdlog,
5230 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5231 mips64_transfers_32bit_regs_p);
0dadbba0 5232
8d5838b5 5233 /* Determine the MIPS FPU type. */
609ca2b9
DJ
5234#ifdef HAVE_ELF
5235 if (info.abfd
5236 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5237 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5238 Tag_GNU_MIPS_ABI_FP);
5239#endif /* HAVE_ELF */
5240
8d5838b5
AC
5241 if (!mips_fpu_type_auto)
5242 fpu_type = mips_fpu_type;
609ca2b9
DJ
5243 else if (elf_fpu_type != 0)
5244 {
5245 switch (elf_fpu_type)
5246 {
5247 case 1:
5248 fpu_type = MIPS_FPU_DOUBLE;
5249 break;
5250 case 2:
5251 fpu_type = MIPS_FPU_SINGLE;
5252 break;
5253 case 3:
5254 default:
5255 /* Soft float or unknown. */
5256 fpu_type = MIPS_FPU_NONE;
5257 break;
5258 }
5259 }
8d5838b5
AC
5260 else if (info.bfd_arch_info != NULL
5261 && info.bfd_arch_info->arch == bfd_arch_mips)
5262 switch (info.bfd_arch_info->mach)
5263 {
5264 case bfd_mach_mips3900:
5265 case bfd_mach_mips4100:
5266 case bfd_mach_mips4111:
a9d61c86 5267 case bfd_mach_mips4120:
8d5838b5
AC
5268 fpu_type = MIPS_FPU_NONE;
5269 break;
5270 case bfd_mach_mips4650:
5271 fpu_type = MIPS_FPU_SINGLE;
5272 break;
5273 default:
5274 fpu_type = MIPS_FPU_DOUBLE;
5275 break;
5276 }
5277 else if (arches != NULL)
5278 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5279 else
5280 fpu_type = MIPS_FPU_DOUBLE;
5281 if (gdbarch_debug)
5282 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5283 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5284
29709017
DJ
5285 /* Check for blatant incompatibilities. */
5286
5287 /* If we have only 32-bit registers, then we can't debug a 64-bit
5288 ABI. */
5289 if (info.target_desc
5290 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5291 && mips_abi != MIPS_ABI_EABI32
5292 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5293 {
5294 if (tdesc_data != NULL)
5295 tdesc_data_cleanup (tdesc_data);
5296 return NULL;
5297 }
29709017 5298
c2d11a7d
JM
5299 /* try to find a pre-existing architecture */
5300 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5301 arches != NULL;
5302 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5303 {
5304 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5305 using. */
9103eae0 5306 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5307 continue;
9103eae0 5308 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5309 continue;
719ec221
AC
5310 /* Need to be pedantic about which register virtual size is
5311 used. */
5312 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5313 != mips64_transfers_32bit_regs_p)
5314 continue;
8d5838b5
AC
5315 /* Be pedantic about which FPU is selected. */
5316 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5317 continue;
f8b73d13
DJ
5318
5319 if (tdesc_data != NULL)
5320 tdesc_data_cleanup (tdesc_data);
4be87837 5321 return arches->gdbarch;
c2d11a7d
JM
5322 }
5323
102182a9 5324 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5325 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5326 gdbarch = gdbarch_alloc (&info, tdep);
5327 tdep->elf_flags = elf_flags;
719ec221 5328 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5329 tdep->found_abi = found_abi;
5330 tdep->mips_abi = mips_abi;
8d5838b5 5331 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5332 tdep->register_size_valid_p = 0;
5333 tdep->register_size = 0;
5334
5335 if (info.target_desc)
5336 {
5337 /* Some useful properties can be inferred from the target. */
5338 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5339 {
5340 tdep->register_size_valid_p = 1;
5341 tdep->register_size = 4;
5342 }
5343 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5344 {
5345 tdep->register_size_valid_p = 1;
5346 tdep->register_size = 8;
5347 }
5348 }
c2d11a7d 5349
102182a9 5350 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5351 set_gdbarch_short_bit (gdbarch, 16);
5352 set_gdbarch_int_bit (gdbarch, 32);
5353 set_gdbarch_float_bit (gdbarch, 32);
5354 set_gdbarch_double_bit (gdbarch, 64);
5355 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5356 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5357 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5358 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5359
6d82d43b 5360 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5361 mips_elf_make_msymbol_special);
5362
16e109ca 5363 /* Fill in the OS dependant register numbers and names. */
56cea623 5364 {
16e109ca 5365 const char **reg_names;
56cea623
AC
5366 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5367 struct mips_regnum);
f8b73d13
DJ
5368 if (tdesc_has_registers (info.target_desc))
5369 {
5370 regnum->lo = MIPS_EMBED_LO_REGNUM;
5371 regnum->hi = MIPS_EMBED_HI_REGNUM;
5372 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5373 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5374 regnum->pc = MIPS_EMBED_PC_REGNUM;
5375 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5376 regnum->fp_control_status = 70;
5377 regnum->fp_implementation_revision = 71;
5378 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5379 reg_names = NULL;
5380 }
5381 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5382 {
5383 regnum->fp0 = 32;
5384 regnum->pc = 64;
5385 regnum->cause = 65;
5386 regnum->badvaddr = 66;
5387 regnum->hi = 67;
5388 regnum->lo = 68;
5389 regnum->fp_control_status = 69;
5390 regnum->fp_implementation_revision = 70;
5391 num_regs = 71;
16e109ca 5392 reg_names = mips_irix_reg_names;
56cea623
AC
5393 }
5394 else
5395 {
5396 regnum->lo = MIPS_EMBED_LO_REGNUM;
5397 regnum->hi = MIPS_EMBED_HI_REGNUM;
5398 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5399 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5400 regnum->pc = MIPS_EMBED_PC_REGNUM;
5401 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5402 regnum->fp_control_status = 70;
5403 regnum->fp_implementation_revision = 71;
5404 num_regs = 90;
16e109ca
AC
5405 if (info.bfd_arch_info != NULL
5406 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5407 reg_names = mips_tx39_reg_names;
5408 else
5409 reg_names = mips_generic_reg_names;
56cea623 5410 }
3e8c568d 5411 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
56cea623 5412 replaced by read_pc? */
f10683bb
MH
5413 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5414 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5415 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5416 set_gdbarch_num_regs (gdbarch, num_regs);
5417 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca 5418 set_gdbarch_register_name (gdbarch, mips_register_name);
82e91389 5419 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
16e109ca
AC
5420 tdep->mips_processor_reg_names = reg_names;
5421 tdep->regnum = regnum;
56cea623 5422 }
fe29b929 5423
0dadbba0 5424 switch (mips_abi)
c2d11a7d 5425 {
0dadbba0 5426 case MIPS_ABI_O32:
25ab4790 5427 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5428 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5429 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5430 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5431 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5432 set_gdbarch_long_bit (gdbarch, 32);
5433 set_gdbarch_ptr_bit (gdbarch, 32);
5434 set_gdbarch_long_long_bit (gdbarch, 64);
5435 break;
0dadbba0 5436 case MIPS_ABI_O64:
25ab4790 5437 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5438 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5439 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5440 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5441 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5442 set_gdbarch_long_bit (gdbarch, 32);
5443 set_gdbarch_ptr_bit (gdbarch, 32);
5444 set_gdbarch_long_long_bit (gdbarch, 64);
5445 break;
0dadbba0 5446 case MIPS_ABI_EABI32:
25ab4790 5447 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5448 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5449 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5450 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5451 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5452 set_gdbarch_long_bit (gdbarch, 32);
5453 set_gdbarch_ptr_bit (gdbarch, 32);
5454 set_gdbarch_long_long_bit (gdbarch, 64);
5455 break;
0dadbba0 5456 case MIPS_ABI_EABI64:
25ab4790 5457 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5458 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5459 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5460 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5461 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5462 set_gdbarch_long_bit (gdbarch, 64);
5463 set_gdbarch_ptr_bit (gdbarch, 64);
5464 set_gdbarch_long_long_bit (gdbarch, 64);
5465 break;
0dadbba0 5466 case MIPS_ABI_N32:
25ab4790 5467 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5468 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5469 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5470 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5471 tdep->default_mask_address_p = 0;
0dadbba0
AC
5472 set_gdbarch_long_bit (gdbarch, 32);
5473 set_gdbarch_ptr_bit (gdbarch, 32);
5474 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5475 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5476 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5477 break;
5478 case MIPS_ABI_N64:
25ab4790 5479 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5480 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5481 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5482 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5483 tdep->default_mask_address_p = 0;
5484 set_gdbarch_long_bit (gdbarch, 64);
5485 set_gdbarch_ptr_bit (gdbarch, 64);
5486 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5487 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5488 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5489 break;
c2d11a7d 5490 default:
e2e0b3e5 5491 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5492 }
5493
22e47e37
FF
5494 /* GCC creates a pseudo-section whose name specifies the size of
5495 longs, since -mlong32 or -mlong64 may be used independent of
5496 other options. How those options affect pointer sizes is ABI and
5497 architecture dependent, so use them to override the default sizes
5498 set by the ABI. This table shows the relationship between ABI,
5499 -mlongXX, and size of pointers:
5500
5501 ABI -mlongXX ptr bits
5502 --- -------- --------
5503 o32 32 32
5504 o32 64 32
5505 n32 32 32
5506 n32 64 64
5507 o64 32 32
5508 o64 64 64
5509 n64 32 32
5510 n64 64 64
5511 eabi32 32 32
5512 eabi32 64 32
5513 eabi64 32 32
5514 eabi64 64 64
5515
5516 Note that for o32 and eabi32, pointers are always 32 bits
5517 regardless of any -mlongXX option. For all others, pointers and
5518 longs are the same, as set by -mlongXX or set by defaults.
5519 */
5520
5521 if (info.abfd != NULL)
5522 {
5523 int long_bit = 0;
5524
5525 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5526 if (long_bit)
5527 {
5528 set_gdbarch_long_bit (gdbarch, long_bit);
5529 switch (mips_abi)
5530 {
5531 case MIPS_ABI_O32:
5532 case MIPS_ABI_EABI32:
5533 break;
5534 case MIPS_ABI_N32:
5535 case MIPS_ABI_O64:
5536 case MIPS_ABI_N64:
5537 case MIPS_ABI_EABI64:
5538 set_gdbarch_ptr_bit (gdbarch, long_bit);
5539 break;
5540 default:
5541 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5542 }
5543 }
5544 }
5545
a5ea2558
AC
5546 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5547 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5548 comment:
5549
5550 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5551 flag in object files because to do so would make it impossible to
102182a9 5552 link with libraries compiled without "-gp32". This is
a5ea2558 5553 unnecessarily restrictive.
361d1df0 5554
a5ea2558
AC
5555 We could solve this problem by adding "-gp32" multilibs to gcc,
5556 but to set this flag before gcc is built with such multilibs will
5557 break too many systems.''
5558
5559 But even more unhelpfully, the default linker output target for
5560 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5561 for 64-bit programs - you need to change the ABI to change this,
102182a9 5562 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5563 this flag to detect 32-bit mode would do the wrong thing given
5564 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5565 as 32-bit programs by default. */
a5ea2558 5566
6c997a34 5567 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5568 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5569
102182a9
MS
5570 /* Add/remove bits from an address. The MIPS needs be careful to
5571 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5572 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5573
58dfe9ff
AC
5574 /* Unwind the frame. */
5575 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5576 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
edfae063 5577 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5578
102182a9 5579 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5580 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5581 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5582 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5583 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5584 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5585 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5586 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5587 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5588
c2d11a7d
JM
5589 /* MIPS version of CALL_DUMMY */
5590
9710e734
AC
5591 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5592 replaced by a command, and all targets will default to on stack
5593 (regardless of the stack's execute status). */
5594 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5595 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5596
87783b8b
AC
5597 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5598 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5599 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5600
f7b9e9fc
AC
5601 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5602 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5603
5604 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5605
97ab0fdd
MR
5606 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5607
fc0c74b1
AC
5608 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5609 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5610 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5611
a4b8ebc8 5612 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5613
e11c53d2 5614 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5615
e5ab0dce
AC
5616 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5617
3a3bc038
AC
5618 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5619 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5620 need to all be folded into the target vector. Since they are
5621 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5622 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5623 is sitting on? */
5624 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5625
e7d6a6d2 5626 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5627
3352ef37
AC
5628 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5629
0d5de010
DJ
5630 /* Virtual tables. */
5631 set_gdbarch_vbit_in_delta (gdbarch, 1);
5632
29709017
DJ
5633 mips_register_g_packet_guesses (gdbarch);
5634
6de918a6 5635 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 5636 info.tdep_info = (void *) tdesc_data;
6de918a6 5637 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5638
5792a79b 5639 /* Unwind the frame. */
2bd0c3d7 5640 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eec63939 5641 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5642 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5643 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
2bd0c3d7 5644 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 5645 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5646 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5647 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5648
f8b73d13
DJ
5649 if (tdesc_data)
5650 {
5651 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5652 tdesc_use_registers (gdbarch, tdesc_data);
5653
5654 /* Override the normal target description methods to handle our
5655 dual real and pseudo registers. */
5656 set_gdbarch_register_name (gdbarch, mips_register_name);
5657 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5658
5659 num_regs = gdbarch_num_regs (gdbarch);
5660 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5661 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5662 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5663 }
5664
5665 /* Add ABI-specific aliases for the registers. */
5666 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5667 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5668 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5669 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5670 else
5671 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5672 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5673 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5674
5675 /* Add some other standard aliases. */
5676 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5677 user_reg_add (gdbarch, mips_register_aliases[i].name,
5678 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5679
4b9b3959
AC
5680 return gdbarch;
5681}
5682
2e4ebe70 5683static void
6d82d43b 5684mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5685{
5686 struct gdbarch_info info;
5687
5688 /* Force the architecture to update, and (if it's a MIPS architecture)
5689 mips_gdbarch_init will take care of the rest. */
5690 gdbarch_info_init (&info);
5691 gdbarch_update_p (info);
5692}
5693
ad188201
KB
5694/* Print out which MIPS ABI is in use. */
5695
5696static void
1f8ca57c
JB
5697show_mips_abi (struct ui_file *file,
5698 int from_tty,
5699 struct cmd_list_element *ignored_cmd,
5700 const char *ignored_value)
ad188201
KB
5701{
5702 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5703 fprintf_filtered
5704 (file,
5705 "The MIPS ABI is unknown because the current architecture "
5706 "is not MIPS.\n");
ad188201
KB
5707 else
5708 {
5709 enum mips_abi global_abi = global_mips_abi ();
5710 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5711 const char *actual_abi_str = mips_abi_strings[actual_abi];
5712
5713 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5714 fprintf_filtered
5715 (file,
5716 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5717 actual_abi_str);
ad188201 5718 else if (global_abi == actual_abi)
1f8ca57c
JB
5719 fprintf_filtered
5720 (file,
5721 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5722 actual_abi_str);
ad188201
KB
5723 else
5724 {
5725 /* Probably shouldn't happen... */
1f8ca57c
JB
5726 fprintf_filtered
5727 (file,
5728 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5729 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5730 }
5731 }
5732}
5733
4b9b3959 5734static void
72a155b4 5735mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 5736{
72a155b4 5737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 5738 if (tdep != NULL)
c2d11a7d 5739 {
acdb74a0
AC
5740 int ef_mips_arch;
5741 int ef_mips_32bitmode;
f49e4e6d 5742 /* Determine the ISA. */
acdb74a0
AC
5743 switch (tdep->elf_flags & EF_MIPS_ARCH)
5744 {
5745 case E_MIPS_ARCH_1:
5746 ef_mips_arch = 1;
5747 break;
5748 case E_MIPS_ARCH_2:
5749 ef_mips_arch = 2;
5750 break;
5751 case E_MIPS_ARCH_3:
5752 ef_mips_arch = 3;
5753 break;
5754 case E_MIPS_ARCH_4:
93d56215 5755 ef_mips_arch = 4;
acdb74a0
AC
5756 break;
5757 default:
93d56215 5758 ef_mips_arch = 0;
acdb74a0
AC
5759 break;
5760 }
f49e4e6d 5761 /* Determine the size of a pointer. */
acdb74a0 5762 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5763 fprintf_unfiltered (file,
5764 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5765 tdep->elf_flags);
4b9b3959 5766 fprintf_unfiltered (file,
acdb74a0
AC
5767 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5768 ef_mips_32bitmode);
5769 fprintf_unfiltered (file,
5770 "mips_dump_tdep: ef_mips_arch = %d\n",
5771 ef_mips_arch);
5772 fprintf_unfiltered (file,
5773 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5774 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5775 fprintf_unfiltered (file,
5776 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5777 mips_mask_address_p (tdep),
4014092b 5778 tdep->default_mask_address_p);
c2d11a7d 5779 }
4b9b3959
AC
5780 fprintf_unfiltered (file,
5781 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5782 MIPS_DEFAULT_FPU_TYPE,
5783 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5784 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5785 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5786 : "???"));
6d82d43b 5787 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5788 fprintf_unfiltered (file,
5789 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5790 MIPS_FPU_TYPE,
5791 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5792 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5793 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5794 : "???"));
c2d11a7d
JM
5795}
5796
6d82d43b 5797extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5798
c906108c 5799void
acdb74a0 5800_initialize_mips_tdep (void)
c906108c
SS
5801{
5802 static struct cmd_list_element *mipsfpulist = NULL;
5803 struct cmd_list_element *c;
5804
6d82d43b 5805 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5806 if (MIPS_ABI_LAST + 1
5807 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5808 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5809
4b9b3959 5810 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5811
8d5f9dcb
DJ
5812 mips_pdr_data = register_objfile_data ();
5813
4eb0ad19
DJ
5814 /* Create feature sets with the appropriate properties. The values
5815 are not important. */
5816 mips_tdesc_gp32 = allocate_target_description ();
5817 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5818
5819 mips_tdesc_gp64 = allocate_target_description ();
5820 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5821
a5ea2558
AC
5822 /* Add root prefix command for all "set mips"/"show mips" commands */
5823 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5824 _("Various MIPS specific commands."),
a5ea2558
AC
5825 &setmipscmdlist, "set mips ", 0, &setlist);
5826
5827 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5828 _("Various MIPS specific commands."),
a5ea2558
AC
5829 &showmipscmdlist, "show mips ", 0, &showlist);
5830
2e4ebe70 5831 /* Allow the user to override the ABI. */
7ab04401
AC
5832 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5833 &mips_abi_string, _("\
5834Set the MIPS ABI used by this program."), _("\
5835Show the MIPS ABI used by this program."), _("\
5836This option can be set to one of:\n\
5837 auto - the default ABI associated with the current binary\n\
5838 o32\n\
5839 o64\n\
5840 n32\n\
5841 n64\n\
5842 eabi32\n\
5843 eabi64"),
5844 mips_abi_update,
5845 show_mips_abi,
5846 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5847
c906108c
SS
5848 /* Let the user turn off floating point and set the fence post for
5849 heuristic_proc_start. */
5850
5851 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5852 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5853 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5854 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5855 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5856 &mipsfpulist);
5857 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5858 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5859 &mipsfpulist);
5860 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5861 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5862 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5863 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5864 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5865 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5866 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5867 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5868 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5869 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5870 &mipsfpulist);
5871 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5872 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5873 &showlist);
5874
c906108c
SS
5875 /* We really would like to have both "0" and "unlimited" work, but
5876 command.c doesn't deal with that. So make it a var_zinteger
5877 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5878 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5879 &heuristic_fence_post, _("\
5880Set the distance searched for the start of a function."), _("\
5881Show the distance searched for the start of a function."), _("\
c906108c
SS
5882If you are debugging a stripped executable, GDB needs to search through the\n\
5883program for the start of a function. This command sets the distance of the\n\
7915a72c 5884search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5885 reinit_frame_cache_sfunc,
7915a72c 5886 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5887 &setlist, &showlist);
c906108c
SS
5888
5889 /* Allow the user to control whether the upper bits of 64-bit
5890 addresses should be zeroed. */
7915a72c
AC
5891 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5892 &mask_address_var, _("\
5893Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5894Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5895Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5896allow GDB to determine the correct value."),
08546159
AC
5897 NULL, show_mask_address,
5898 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5899
5900 /* Allow the user to control the size of 32 bit registers within the
5901 raw remote packet. */
b3f42336 5902 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5903 &mips64_transfers_32bit_regs_p, _("\
5904Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5905 _("\
5906Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5907 _("\
719ec221
AC
5908Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5909that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 591064 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5911 set_mips64_transfers_32bit_regs,
7915a72c 5912 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5913 &setlist, &showlist);
9ace0497
AC
5914
5915 /* Debug this files internals. */
6bcadd06 5916 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5917 &mips_debug, _("\
5918Set mips debugging."), _("\
5919Show mips debugging."), _("\
5920When non-zero, mips specific debugging is enabled."),
2c5b56ce 5921 NULL,
7915a72c 5922 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5923 &setdebuglist, &showdebuglist);
c906108c 5924}
This page took 1.481804 seconds and 4 git commands to generate.