2003-06-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
c906108c
SS
45
46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
c906108c 50
e0f7ec59
AC
51static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
52
dd824b04
DJ
53/* A useful bit in the CP0 status register (PS_REGNUM). */
54/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55#define ST0_FR (1 << 26)
56
b0069a17
AC
57/* The sizes of floating point registers. */
58
59enum
60{
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
63};
64
0dadbba0 65
2e4ebe70
DJ
66static const char *mips_abi_string;
67
68static const char *mips_abi_strings[] = {
69 "auto",
70 "n32",
71 "o32",
28d169de 72 "n64",
2e4ebe70
DJ
73 "o64",
74 "eabi32",
75 "eabi64",
76 NULL
77};
78
cce74817 79struct frame_extra_info
c5aa993b
JM
80 {
81 mips_extra_func_info_t proc_desc;
82 int num_args;
83 };
cce74817 84
d929b26f
AC
85/* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
87 them. */
88
53904c9e
AC
89static const char size_auto[] = "auto";
90static const char size_32[] = "32";
91static const char size_64[] = "64";
d929b26f 92
53904c9e 93static const char *size_enums[] = {
d929b26f
AC
94 size_auto,
95 size_32,
96 size_64,
a5ea2558
AC
97 0
98};
99
7a292a7a
SS
100/* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
c906108c
SS
103
104enum mips_fpu_type
c5aa993b
JM
105 {
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
109 };
c906108c
SS
110
111#ifndef MIPS_DEFAULT_FPU_TYPE
112#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
113#endif
114static int mips_fpu_type_auto = 1;
115static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 116
9ace0497 117static int mips_debug = 0;
7a292a7a 118
c2d11a7d
JM
119/* MIPS specific per-architecture information */
120struct gdbarch_tdep
121 {
122 /* from the elf header */
123 int elf_flags;
70f80edf 124
c2d11a7d 125 /* mips options */
0dadbba0 126 enum mips_abi mips_abi;
2e4ebe70 127 enum mips_abi found_abi;
c2d11a7d
JM
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
a5ea2558 131 int mips_default_saved_regsize;
c2d11a7d 132 int mips_fp_register_double;
d929b26f 133 int mips_default_stack_argsize;
5213ab06 134 int gdb_target_is_mips64;
4014092b 135 int default_mask_address_p;
c2d11a7d
JM
136 };
137
0dadbba0 138#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 140
c2d11a7d 141#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 142
c2d11a7d 143#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 144
c2d11a7d 145#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 146
d929b26f
AC
147/* Return the currently configured (or set) saved register size. */
148
a5ea2558 149#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 150
53904c9e 151static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
152
153#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
154
22540ece
AC
155/* Return the contents of register REGNUM as a signed integer. */
156
157static LONGEST
158read_signed_register (int regnum)
159{
160 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
161 deprecated_read_register_gen (regnum, buf);
162 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
163}
164
165static LONGEST
166read_signed_register_pid (int regnum, ptid_t ptid)
167{
168 ptid_t save_ptid;
169 LONGEST retval;
170
171 if (ptid_equal (ptid, inferior_ptid))
172 return read_signed_register (regnum);
173
174 save_ptid = inferior_ptid;
175
176 inferior_ptid = ptid;
177
178 retval = read_signed_register (regnum);
179
180 inferior_ptid = save_ptid;
181
182 return retval;
183}
184
d1973055
KB
185/* Return the MIPS ABI associated with GDBARCH. */
186enum mips_abi
187mips_abi (struct gdbarch *gdbarch)
188{
189 return gdbarch_tdep (gdbarch)->mips_abi;
190}
191
d929b26f 192static unsigned int
acdb74a0 193mips_saved_regsize (void)
d929b26f
AC
194{
195 if (mips_saved_regsize_string == size_auto)
196 return MIPS_DEFAULT_SAVED_REGSIZE;
197 else if (mips_saved_regsize_string == size_64)
198 return 8;
199 else /* if (mips_saved_regsize_string == size_32) */
200 return 4;
201}
202
71b8ef93 203/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
204 marks it as 16-bit function. The MSB of the minimal symbol's
205 "info" field is used for this purpose. This field is already
206 being used to store the symbol size, so the assumption is
207 that the symbol size cannot exceed 2^31.
208
209 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
210 i.e. refers to a 16-bit function, and sets a "special" bit in a
211 minimal symbol to mark it as a 16-bit function
212
213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
214 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
215 the "info" field with the "special" bit masked out */
216
5a89d8aa
MS
217static void
218mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219{
220 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
221 {
222 MSYMBOL_INFO (msym) = (char *)
223 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
224 SYMBOL_VALUE_ADDRESS (msym) |= 1;
225 }
226}
227
71b8ef93
MS
228static int
229msymbol_is_special (struct minimal_symbol *msym)
230{
231 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
232}
233
234static long
235msymbol_size (struct minimal_symbol *msym)
236{
237 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
238}
239
88658117
AC
240/* XFER a value from the big/little/left end of the register.
241 Depending on the size of the value it might occupy the entire
242 register or just part of it. Make an allowance for this, aligning
243 things accordingly. */
244
245static void
246mips_xfer_register (struct regcache *regcache, int reg_num, int length,
247 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
248 int buf_offset)
249{
d9d9c31f 250 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 251 int reg_offset = 0;
cb1d2653
AC
252 /* Need to transfer the left or right part of the register, based on
253 the targets byte order. */
88658117
AC
254 switch (endian)
255 {
256 case BFD_ENDIAN_BIG:
257 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
258 break;
259 case BFD_ENDIAN_LITTLE:
260 reg_offset = 0;
261 break;
262 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
263 reg_offset = 0;
264 break;
265 default:
266 internal_error (__FILE__, __LINE__, "bad switch");
267 }
268 if (mips_debug)
cb1d2653
AC
269 fprintf_unfiltered (gdb_stderr,
270 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
271 reg_num, reg_offset, buf_offset, length);
88658117
AC
272 if (mips_debug && out != NULL)
273 {
274 int i;
cb1d2653 275 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 276 for (i = 0; i < length; i++)
cb1d2653 277 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
278 }
279 if (in != NULL)
280 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
281 if (out != NULL)
282 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
283 if (mips_debug && in != NULL)
284 {
285 int i;
cb1d2653 286 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 287 for (i = 0; i < length; i++)
cb1d2653 288 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
289 }
290 if (mips_debug)
291 fprintf_unfiltered (gdb_stdlog, "\n");
292}
293
dd824b04
DJ
294/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
295 compatiblity mode. A return value of 1 means that we have
296 physical 64-bit registers, but should treat them as 32-bit registers. */
297
298static int
299mips2_fp_compat (void)
300{
301 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
302 meaningful. */
303 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
304 return 0;
305
306#if 0
307 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
308 in all the places we deal with FP registers. PR gdb/413. */
309 /* Otherwise check the FR bit in the status register - it controls
310 the FP compatiblity mode. If it is clear we are in compatibility
311 mode. */
312 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
313 return 1;
314#endif
361d1df0 315
dd824b04
DJ
316 return 0;
317}
318
c2d11a7d
JM
319/* Indicate that the ABI makes use of double-precision registers
320 provided by the FPU (rather than combining pairs of registers to
321 form double-precision values). Do not use "TARGET_IS_MIPS64" to
322 determine if the ABI is using double-precision registers. See also
323 MIPS_FPU_TYPE. */
c2d11a7d 324#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 325
d929b26f
AC
326/* The amount of space reserved on the stack for registers. This is
327 different to MIPS_SAVED_REGSIZE as it determines the alignment of
328 data allocated after the registers have run out. */
329
0dadbba0 330#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
331
332#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
333
53904c9e 334static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
335
336static unsigned int
337mips_stack_argsize (void)
338{
339 if (mips_stack_argsize_string == size_auto)
340 return MIPS_DEFAULT_STACK_ARGSIZE;
341 else if (mips_stack_argsize_string == size_64)
342 return 8;
343 else /* if (mips_stack_argsize_string == size_32) */
344 return 4;
345}
346
5213ab06 347#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 348
92e1c15c 349#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 350
7a292a7a 351#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 352
a14ed312 353int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 354
570b8f7c
AC
355static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
356 struct frame_info *, int);
c906108c 357
a14ed312 358static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 359
a14ed312 360static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 361
5a89d8aa 362static int mips_set_processor_type (char *);
c906108c 363
a14ed312 364static void mips_show_processor_type_command (char *, int);
c906108c 365
a14ed312 366static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 367
570b8f7c
AC
368static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
369 struct frame_info *next_frame,
370 int cur_frame);
c906108c 371
a14ed312
KB
372static CORE_ADDR after_prologue (CORE_ADDR pc,
373 mips_extra_func_info_t proc_desc);
c906108c 374
67b2c998
DJ
375static struct type *mips_float_register_type (void);
376static struct type *mips_double_register_type (void);
377
c906108c
SS
378/* This value is the model of MIPS in use. It is derived from the value
379 of the PrID register. */
380
381char *mips_processor_type;
382
383char *tmp_mips_processor_type;
384
acdb74a0
AC
385/* The list of available "set mips " and "show mips " commands */
386
387static struct cmd_list_element *setmipscmdlist = NULL;
388static struct cmd_list_element *showmipscmdlist = NULL;
389
c906108c
SS
390/* A set of original names, to be used when restoring back to generic
391 registers from a specific set. */
5e2e9765 392static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 393
5e2e9765
KB
394/* Integer registers 0 thru 31 are handled explicitly by
395 mips_register_name(). Processor specific registers 32 and above
396 are listed in the sets of register names assigned to
397 mips_processor_reg_names. */
398static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 399
5e2e9765 400/* Return the name of the register corresponding to REGNO. */
5a89d8aa 401static const char *
5e2e9765 402mips_register_name (int regno)
cce74817 403{
5e2e9765
KB
404 /* GPR names for all ABIs other than n32/n64. */
405 static char *mips_gpr_names[] = {
406 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
407 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
408 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
409 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
410 };
411
412 /* GPR names for n32 and n64 ABIs. */
413 static char *mips_n32_n64_gpr_names[] = {
414 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
415 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
416 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
417 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
418 };
419
420 enum mips_abi abi = mips_abi (current_gdbarch);
421
422 /* The MIPS integer registers are always mapped from 0 to 31. The
423 names of the registers (which reflects the conventions regarding
424 register use) vary depending on the ABI. */
425 if (0 <= regno && regno < 32)
426 {
427 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
428 return mips_n32_n64_gpr_names[regno];
429 else
430 return mips_gpr_names[regno];
431 }
b006a9e9 432 else if (32 <= regno && regno < NUM_REGS)
5e2e9765
KB
433 return mips_processor_reg_names[regno - 32];
434 else
435 internal_error (__FILE__, __LINE__,
436 "mips_register_name: bad register number %d", regno);
cce74817 437}
5e2e9765 438
9846de1b 439/* *INDENT-OFF* */
c906108c
SS
440/* Names of IDT R3041 registers. */
441
442char *mips_r3041_reg_names[] = {
c906108c
SS
443 "sr", "lo", "hi", "bad", "cause","pc",
444 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
445 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
446 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
447 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 448 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
449 "", "", "bus", "ccfg", "", "", "", "",
450 "", "", "port", "cmp", "", "", "epc", "prid",
451};
452
453/* Names of IDT R3051 registers. */
454
455char *mips_r3051_reg_names[] = {
c906108c
SS
456 "sr", "lo", "hi", "bad", "cause","pc",
457 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
458 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
459 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
460 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 461 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
462 "inx", "rand", "elo", "", "ctxt", "", "", "",
463 "", "", "ehi", "", "", "", "epc", "prid",
464};
465
466/* Names of IDT R3081 registers. */
467
468char *mips_r3081_reg_names[] = {
c906108c
SS
469 "sr", "lo", "hi", "bad", "cause","pc",
470 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
471 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
472 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
473 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 474 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
475 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
476 "", "", "ehi", "", "", "", "epc", "prid",
477};
478
479/* Names of LSI 33k registers. */
480
481char *mips_lsi33k_reg_names[] = {
c906108c
SS
482 "epc", "hi", "lo", "sr", "cause","badvaddr",
483 "dcic", "bpc", "bda", "", "", "", "", "",
484 "", "", "", "", "", "", "", "",
485 "", "", "", "", "", "", "", "",
486 "", "", "", "", "", "", "", "",
487 "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490};
491
492struct {
493 char *name;
494 char **regnames;
495} mips_processor_type_table[] = {
496 { "generic", mips_generic_reg_names },
497 { "r3041", mips_r3041_reg_names },
498 { "r3051", mips_r3051_reg_names },
499 { "r3071", mips_r3081_reg_names },
500 { "r3081", mips_r3081_reg_names },
501 { "lsi33k", mips_lsi33k_reg_names },
502 { NULL, NULL }
503};
9846de1b 504/* *INDENT-ON* */
c906108c 505
c5aa993b
JM
506
507
508
c906108c 509/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
510static int mips16_to_32_reg[8] =
511{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
512
513/* Heuristic_proc_start may hunt through the text section for a long
514 time across a 2400 baud serial line. Allows the user to limit this
515 search. */
516
517static unsigned int heuristic_fence_post = 0;
518
c5aa993b
JM
519#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
520#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
521#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
522#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
523#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
524#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
525#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
526#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
527#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
528#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
529/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
530 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
531#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
532#define _PROC_MAGIC_ 0x0F0F0F0F
533#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
534#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
535
536struct linked_proc_info
c5aa993b
JM
537 {
538 struct mips_extra_func_info info;
539 struct linked_proc_info *next;
540 }
541 *linked_proc_desc_table = NULL;
c906108c 542
cce74817 543void
acdb74a0 544mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
545{
546 if (fi
da50a4b7
AC
547 && get_frame_extra_info (fi)
548 && get_frame_extra_info (fi)->proc_desc
549 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 550 printf_filtered (" frame pointer is at %s+%s\n",
da50a4b7
AC
551 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
552 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
cce74817 553}
c906108c 554
46cd78fb
AC
555/* Number of bytes of storage in the actual machine representation for
556 register N. NOTE: This indirectly defines the register size
557 transfered by the GDB protocol. */
43e526b9
JM
558
559static int mips64_transfers_32bit_regs_p = 0;
560
f7ab6ec6 561static int
acdb74a0 562mips_register_raw_size (int reg_nr)
43e526b9
JM
563{
564 if (mips64_transfers_32bit_regs_p)
565 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
566 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
567 && FP_REGISTER_DOUBLE)
568 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
569 registers. */
570 return 8;
43e526b9
JM
571 else
572 return MIPS_REGSIZE;
573}
574
46cd78fb
AC
575/* Convert between RAW and VIRTUAL registers. The RAW register size
576 defines the remote-gdb packet. */
577
d05285fa 578static int
acdb74a0 579mips_register_convertible (int reg_nr)
43e526b9
JM
580{
581 if (mips64_transfers_32bit_regs_p)
582 return 0;
583 else
584 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
585}
586
d05285fa 587static void
acdb74a0
AC
588mips_register_convert_to_virtual (int n, struct type *virtual_type,
589 char *raw_buf, char *virt_buf)
43e526b9 590{
d7449b42 591 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
592 memcpy (virt_buf,
593 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
594 TYPE_LENGTH (virtual_type));
595 else
596 memcpy (virt_buf,
597 raw_buf,
598 TYPE_LENGTH (virtual_type));
599}
600
d05285fa 601static void
acdb74a0
AC
602mips_register_convert_to_raw (struct type *virtual_type, int n,
603 char *virt_buf, char *raw_buf)
43e526b9
JM
604{
605 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 606 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
607 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
608 virt_buf,
609 TYPE_LENGTH (virtual_type));
610 else
611 memcpy (raw_buf,
612 virt_buf,
613 TYPE_LENGTH (virtual_type));
614}
615
102182a9
MS
616void
617mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
618{
619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
620 && REGISTER_RAW_SIZE (regnum) == 4
621 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
622 && TYPE_CODE(type) == TYPE_CODE_FLT
623 && TYPE_LENGTH(type) == 8)
624 {
625 char temp[4];
626 memcpy (temp, ((char *)(buffer))+4, 4);
627 memcpy (((char *)(buffer))+4, (buffer), 4);
628 memcpy (((char *)(buffer)), temp, 4);
629 }
630}
631
632void
633mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
634{
635if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
636 && REGISTER_RAW_SIZE (regnum) == 4
637 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
638 && TYPE_CODE(type) == TYPE_CODE_FLT
639 && TYPE_LENGTH(type) == 8)
640 {
641 char temp[4];
642 memcpy (temp, ((char *)(buffer))+4, 4);
643 memcpy (((char *)(buffer))+4, (buffer), 4);
644 memcpy (((char *)(buffer)), temp, 4);
645 }
646}
647
78fde5f8
KB
648/* Return the GDB type object for the "standard" data type
649 of data in register REG.
650
651 Note: kevinb/2002-08-01: The definition below should faithfully
652 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
0ba6dca9
AC
653 definitions found in config/mips/tm-*.h. I'm concerned about the
654 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
655 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
78fde5f8
KB
656 that this code is correct for the 64-bit case. */
657
658static struct type *
659mips_register_virtual_type (int reg)
660{
661 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
662 {
663 /* Floating point registers... */
664 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
665 return builtin_type_ieee_double_big;
666 else
667 return builtin_type_ieee_double_little;
668 }
78fde5f8
KB
669 else if (reg == PS_REGNUM /* CR */)
670 return builtin_type_uint32;
671 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
672 return builtin_type_uint32;
673 else
674 {
a6425924
KB
675 /* Everything else...
676 Return type appropriate for width of register. */
677 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
678 return builtin_type_uint64;
78fde5f8 679 else
a6425924 680 return builtin_type_uint32;
78fde5f8
KB
681 }
682}
683
bcb0cc15
MS
684/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
685
686static CORE_ADDR
687mips_read_sp (void)
688{
e227b13c 689 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
690}
691
c906108c 692/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 693enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
694
695static int
696mips_mask_address_p (void)
697{
698 switch (mask_address_var)
699 {
7f19b9a2 700 case AUTO_BOOLEAN_TRUE:
4014092b 701 return 1;
7f19b9a2 702 case AUTO_BOOLEAN_FALSE:
4014092b
AC
703 return 0;
704 break;
7f19b9a2 705 case AUTO_BOOLEAN_AUTO:
92e1c15c 706 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 707 default:
8e65ff28
AC
708 internal_error (__FILE__, __LINE__,
709 "mips_mask_address_p: bad switch");
4014092b 710 return -1;
361d1df0 711 }
4014092b
AC
712}
713
714static void
e9e68a56 715show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
716{
717 switch (mask_address_var)
718 {
7f19b9a2 719 case AUTO_BOOLEAN_TRUE:
4014092b
AC
720 printf_filtered ("The 32 bit mips address mask is enabled\n");
721 break;
7f19b9a2 722 case AUTO_BOOLEAN_FALSE:
4014092b
AC
723 printf_filtered ("The 32 bit mips address mask is disabled\n");
724 break;
7f19b9a2 725 case AUTO_BOOLEAN_AUTO:
4014092b
AC
726 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
727 mips_mask_address_p () ? "enabled" : "disabled");
728 break;
729 default:
8e65ff28
AC
730 internal_error (__FILE__, __LINE__,
731 "show_mask_address: bad switch");
4014092b 732 break;
361d1df0 733 }
4014092b 734}
c906108c
SS
735
736/* Should call_function allocate stack space for a struct return? */
cb811fe7 737
f7ab6ec6 738static int
cb811fe7 739mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 740{
cb811fe7
MS
741 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
742}
743
f7ab6ec6 744static int
cb811fe7
MS
745mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
746{
b78bcb18 747 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
748}
749
f7ab6ec6 750static int
cb811fe7
MS
751mips_o32_use_struct_convention (int gcc_p, struct type *type)
752{
753 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
754}
755
8b389c40
MS
756/* Should call_function pass struct by reference?
757 For each architecture, structs are passed either by
758 value or by reference, depending on their size. */
759
760static int
761mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
762{
763 enum type_code typecode = TYPE_CODE (check_typedef (type));
764 int len = TYPE_LENGTH (check_typedef (type));
765
766 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
767 return (len > MIPS_SAVED_REGSIZE);
768
769 return 0;
770}
771
772static int
773mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
774{
775 return 0; /* Assumption: N32/N64 never passes struct by ref. */
776}
777
f7ab6ec6 778static int
8b389c40
MS
779mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
780{
781 return 0; /* Assumption: O32/O64 never passes struct by ref. */
782}
783
c906108c
SS
784/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
785
786static int
787pc_is_mips16 (bfd_vma memaddr)
788{
789 struct minimal_symbol *sym;
790
791 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
792 if (IS_MIPS16_ADDR (memaddr))
793 return 1;
794
795 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
796 the high bit of the info field. Use this to decide if the function is
797 MIPS16 or normal MIPS. */
798 sym = lookup_minimal_symbol_by_pc (memaddr);
799 if (sym)
71b8ef93 800 return msymbol_is_special (sym);
c906108c
SS
801 else
802 return 0;
803}
804
6c997a34
AC
805/* MIPS believes that the PC has a sign extended value. Perhaphs the
806 all registers should be sign extended for simplicity? */
807
808static CORE_ADDR
39f77062 809mips_read_pc (ptid_t ptid)
6c997a34 810{
39f77062 811 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 812}
c906108c
SS
813
814/* This returns the PC of the first inst after the prologue. If we can't
815 find the prologue, then return 0. */
816
817static CORE_ADDR
acdb74a0
AC
818after_prologue (CORE_ADDR pc,
819 mips_extra_func_info_t proc_desc)
c906108c
SS
820{
821 struct symtab_and_line sal;
822 CORE_ADDR func_addr, func_end;
823
479412cd
DJ
824 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
825 to read the stack pointer from the current machine state, because
826 the current machine state has nothing to do with the information
827 we need from the proc_desc; and the process may or may not exist
828 right now. */
c906108c 829 if (!proc_desc)
479412cd 830 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
831
832 if (proc_desc)
833 {
834 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 835 strongly suspect that frameless always means prologueless... */
c906108c
SS
836 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
837 && PROC_FRAME_OFFSET (proc_desc) == 0)
838 return 0;
839 }
840
841 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
842 return 0; /* Unknown */
843
844 sal = find_pc_line (func_addr, 0);
845
846 if (sal.end < func_end)
847 return sal.end;
848
849 /* The line after the prologue is after the end of the function. In this
850 case, tell the caller to find the prologue the hard way. */
851
852 return 0;
853}
854
855/* Decode a MIPS32 instruction that saves a register in the stack, and
856 set the appropriate bit in the general register mask or float register mask
857 to indicate which register is saved. This is a helper function
858 for mips_find_saved_regs. */
859
860static void
acdb74a0
AC
861mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
862 unsigned long *float_mask)
c906108c
SS
863{
864 int reg;
865
866 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
867 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
868 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
869 {
870 /* It might be possible to use the instruction to
c5aa993b
JM
871 find the offset, rather than the code below which
872 is based on things being in a certain order in the
873 frame, but figuring out what the instruction's offset
874 is relative to might be a little tricky. */
c906108c
SS
875 reg = (inst & 0x001f0000) >> 16;
876 *gen_mask |= (1 << reg);
877 }
878 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
879 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
880 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
881
882 {
883 reg = ((inst & 0x001f0000) >> 16);
884 *float_mask |= (1 << reg);
885 }
886}
887
888/* Decode a MIPS16 instruction that saves a register in the stack, and
889 set the appropriate bit in the general register or float register mask
890 to indicate which register is saved. This is a helper function
891 for mips_find_saved_regs. */
892
893static void
acdb74a0 894mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 895{
c5aa993b 896 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
897 {
898 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
899 *gen_mask |= (1 << reg);
900 }
c5aa993b 901 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
902 {
903 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
904 *gen_mask |= (1 << reg);
905 }
c5aa993b 906 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
907 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
908 *gen_mask |= (1 << RA_REGNUM);
909}
910
911
912/* Fetch and return instruction from the specified location. If the PC
913 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
914
915static t_inst
acdb74a0 916mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
917{
918 char buf[MIPS_INSTLEN];
919 int instlen;
920 int status;
921
922 if (pc_is_mips16 (addr))
923 {
924 instlen = MIPS16_INSTLEN;
925 addr = UNMAKE_MIPS16_ADDR (addr);
926 }
927 else
c5aa993b 928 instlen = MIPS_INSTLEN;
c906108c
SS
929 status = read_memory_nobpt (addr, buf, instlen);
930 if (status)
931 memory_error (status, addr);
932 return extract_unsigned_integer (buf, instlen);
933}
934
935
936/* These the fields of 32 bit mips instructions */
e135b889
DJ
937#define mips32_op(x) (x >> 26)
938#define itype_op(x) (x >> 26)
939#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 940#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 941#define itype_immediate(x) (x & 0xffff)
c906108c 942
e135b889
DJ
943#define jtype_op(x) (x >> 26)
944#define jtype_target(x) (x & 0x03ffffff)
c906108c 945
e135b889
DJ
946#define rtype_op(x) (x >> 26)
947#define rtype_rs(x) ((x >> 21) & 0x1f)
948#define rtype_rt(x) ((x >> 16) & 0x1f)
949#define rtype_rd(x) ((x >> 11) & 0x1f)
950#define rtype_shamt(x) ((x >> 6) & 0x1f)
951#define rtype_funct(x) (x & 0x3f)
c906108c
SS
952
953static CORE_ADDR
c5aa993b
JM
954mips32_relative_offset (unsigned long inst)
955{
956 long x;
957 x = itype_immediate (inst);
958 if (x & 0x8000) /* sign bit set */
c906108c 959 {
c5aa993b 960 x |= 0xffff0000; /* sign extension */
c906108c 961 }
c5aa993b
JM
962 x = x << 2;
963 return x;
c906108c
SS
964}
965
966/* Determine whate to set a single step breakpoint while considering
967 branch prediction */
5a89d8aa 968static CORE_ADDR
c5aa993b
JM
969mips32_next_pc (CORE_ADDR pc)
970{
971 unsigned long inst;
972 int op;
973 inst = mips_fetch_instruction (pc);
e135b889 974 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 975 {
e135b889
DJ
976 if (itype_op (inst) >> 2 == 5)
977 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 978 {
e135b889 979 op = (itype_op (inst) & 0x03);
c906108c
SS
980 switch (op)
981 {
e135b889
DJ
982 case 0: /* BEQL */
983 goto equal_branch;
984 case 1: /* BNEL */
985 goto neq_branch;
986 case 2: /* BLEZL */
987 goto less_branch;
988 case 3: /* BGTZ */
989 goto greater_branch;
c5aa993b
JM
990 default:
991 pc += 4;
c906108c
SS
992 }
993 }
e135b889
DJ
994 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
995 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
996 {
997 int tf = itype_rt (inst) & 0x01;
998 int cnum = itype_rt (inst) >> 2;
999 int fcrcs = read_signed_register (FCRCS_REGNUM);
1000 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1001
1002 if (((cond >> cnum) & 0x01) == tf)
1003 pc += mips32_relative_offset (inst) + 4;
1004 else
1005 pc += 8;
1006 }
c5aa993b
JM
1007 else
1008 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1009 }
1010 else
c5aa993b
JM
1011 { /* This gets way messy */
1012
c906108c 1013 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1014 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1015 {
c5aa993b
JM
1016 case 0: /* SPECIAL */
1017 op = rtype_funct (inst);
1018 switch (op)
1019 {
1020 case 8: /* JR */
1021 case 9: /* JALR */
6c997a34
AC
1022 /* Set PC to that address */
1023 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1024 break;
1025 default:
1026 pc += 4;
1027 }
1028
e135b889 1029 break; /* end SPECIAL */
c5aa993b 1030 case 1: /* REGIMM */
c906108c 1031 {
e135b889
DJ
1032 op = itype_rt (inst); /* branch condition */
1033 switch (op)
c906108c 1034 {
c5aa993b 1035 case 0: /* BLTZ */
e135b889
DJ
1036 case 2: /* BLTZL */
1037 case 16: /* BLTZAL */
c5aa993b 1038 case 18: /* BLTZALL */
c906108c 1039 less_branch:
6c997a34 1040 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1041 pc += mips32_relative_offset (inst) + 4;
1042 else
1043 pc += 8; /* after the delay slot */
1044 break;
e135b889 1045 case 1: /* BGEZ */
c5aa993b
JM
1046 case 3: /* BGEZL */
1047 case 17: /* BGEZAL */
1048 case 19: /* BGEZALL */
c906108c 1049 greater_equal_branch:
6c997a34 1050 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1051 pc += mips32_relative_offset (inst) + 4;
1052 else
1053 pc += 8; /* after the delay slot */
1054 break;
e135b889 1055 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1056 default:
1057 pc += 4;
c906108c
SS
1058 }
1059 }
e135b889 1060 break; /* end REGIMM */
c5aa993b
JM
1061 case 2: /* J */
1062 case 3: /* JAL */
1063 {
1064 unsigned long reg;
1065 reg = jtype_target (inst) << 2;
e135b889 1066 /* Upper four bits get never changed... */
c5aa993b 1067 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1068 }
c5aa993b
JM
1069 break;
1070 /* FIXME case JALX : */
1071 {
1072 unsigned long reg;
1073 reg = jtype_target (inst) << 2;
1074 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1075 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1076 }
c5aa993b 1077 break; /* The new PC will be alternate mode */
e135b889 1078 case 4: /* BEQ, BEQL */
c5aa993b 1079 equal_branch:
6c997a34
AC
1080 if (read_signed_register (itype_rs (inst)) ==
1081 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1082 pc += mips32_relative_offset (inst) + 4;
1083 else
1084 pc += 8;
1085 break;
e135b889 1086 case 5: /* BNE, BNEL */
c5aa993b 1087 neq_branch:
6c997a34 1088 if (read_signed_register (itype_rs (inst)) !=
e135b889 1089 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1090 pc += mips32_relative_offset (inst) + 4;
1091 else
1092 pc += 8;
1093 break;
e135b889 1094 case 6: /* BLEZ, BLEZL */
c906108c 1095 less_zero_branch:
6c997a34 1096 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1097 pc += mips32_relative_offset (inst) + 4;
1098 else
1099 pc += 8;
1100 break;
1101 case 7:
e135b889
DJ
1102 default:
1103 greater_branch: /* BGTZ, BGTZL */
6c997a34 1104 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1105 pc += mips32_relative_offset (inst) + 4;
1106 else
1107 pc += 8;
1108 break;
c5aa993b
JM
1109 } /* switch */
1110 } /* else */
1111 return pc;
1112} /* mips32_next_pc */
c906108c
SS
1113
1114/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1115 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1116 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1117 We dont want to set a single step instruction on the extend instruction
1118 either.
c5aa993b 1119 */
c906108c
SS
1120
1121/* Lots of mips16 instruction formats */
1122/* Predicting jumps requires itype,ritype,i8type
1123 and their extensions extItype,extritype,extI8type
c5aa993b 1124 */
c906108c
SS
1125enum mips16_inst_fmts
1126{
c5aa993b
JM
1127 itype, /* 0 immediate 5,10 */
1128 ritype, /* 1 5,3,8 */
1129 rrtype, /* 2 5,3,3,5 */
1130 rritype, /* 3 5,3,3,5 */
1131 rrrtype, /* 4 5,3,3,3,2 */
1132 rriatype, /* 5 5,3,3,1,4 */
1133 shifttype, /* 6 5,3,3,3,2 */
1134 i8type, /* 7 5,3,8 */
1135 i8movtype, /* 8 5,3,3,5 */
1136 i8mov32rtype, /* 9 5,3,5,3 */
1137 i64type, /* 10 5,3,8 */
1138 ri64type, /* 11 5,3,3,5 */
1139 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1140 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1141 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1142 extRRItype, /* 15 5,5,5,5,3,3,5 */
1143 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1144 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1145 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1146 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1147 extRi64type, /* 20 5,6,5,5,3,3,5 */
1148 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1149};
12f02c2a
AC
1150/* I am heaping all the fields of the formats into one structure and
1151 then, only the fields which are involved in instruction extension */
c906108c 1152struct upk_mips16
c5aa993b 1153 {
12f02c2a 1154 CORE_ADDR offset;
c5aa993b
JM
1155 unsigned int regx; /* Function in i8 type */
1156 unsigned int regy;
1157 };
c906108c
SS
1158
1159
12f02c2a
AC
1160/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1161 for the bits which make up the immediatate extension. */
c906108c 1162
12f02c2a
AC
1163static CORE_ADDR
1164extended_offset (unsigned int extension)
c906108c 1165{
12f02c2a 1166 CORE_ADDR value;
c5aa993b
JM
1167 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1168 value = value << 6;
1169 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1170 value = value << 5;
1171 value |= extension & 0x01f; /* extract 4:0 */
1172 return value;
c906108c
SS
1173}
1174
1175/* Only call this function if you know that this is an extendable
1176 instruction, It wont malfunction, but why make excess remote memory references?
1177 If the immediate operands get sign extended or somthing, do it after
1178 the extension is performed.
c5aa993b 1179 */
c906108c
SS
1180/* FIXME: Every one of these cases needs to worry about sign extension
1181 when the offset is to be used in relative addressing */
1182
1183
12f02c2a 1184static unsigned int
c5aa993b 1185fetch_mips_16 (CORE_ADDR pc)
c906108c 1186{
c5aa993b
JM
1187 char buf[8];
1188 pc &= 0xfffffffe; /* clear the low order bit */
1189 target_read_memory (pc, buf, 2);
1190 return extract_unsigned_integer (buf, 2);
c906108c
SS
1191}
1192
1193static void
c5aa993b 1194unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1195 unsigned int extension,
1196 unsigned int inst,
1197 enum mips16_inst_fmts insn_format,
c5aa993b 1198 struct upk_mips16 *upk)
c906108c 1199{
12f02c2a
AC
1200 CORE_ADDR offset;
1201 int regx;
1202 int regy;
1203 switch (insn_format)
c906108c 1204 {
c5aa993b 1205 case itype:
c906108c 1206 {
12f02c2a
AC
1207 CORE_ADDR value;
1208 if (extension)
c5aa993b
JM
1209 {
1210 value = extended_offset (extension);
1211 value = value << 11; /* rom for the original value */
12f02c2a 1212 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1213 }
1214 else
c5aa993b 1215 {
12f02c2a 1216 value = inst & 0x7ff;
c5aa993b 1217 /* FIXME : Consider sign extension */
c906108c 1218 }
12f02c2a
AC
1219 offset = value;
1220 regx = -1;
1221 regy = -1;
c906108c 1222 }
c5aa993b
JM
1223 break;
1224 case ritype:
1225 case i8type:
1226 { /* A register identifier and an offset */
c906108c
SS
1227 /* Most of the fields are the same as I type but the
1228 immediate value is of a different length */
12f02c2a
AC
1229 CORE_ADDR value;
1230 if (extension)
c906108c 1231 {
c5aa993b
JM
1232 value = extended_offset (extension);
1233 value = value << 8; /* from the original instruction */
12f02c2a
AC
1234 value |= inst & 0xff; /* eleven bits from instruction */
1235 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1236 if (value & 0x4000) /* test the sign bit , bit 26 */
1237 {
1238 value &= ~0x3fff; /* remove the sign bit */
1239 value = -value;
c906108c
SS
1240 }
1241 }
c5aa993b
JM
1242 else
1243 {
12f02c2a
AC
1244 value = inst & 0xff; /* 8 bits */
1245 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1246 /* FIXME: Do sign extension , this format needs it */
1247 if (value & 0x80) /* THIS CONFUSES ME */
1248 {
1249 value &= 0xef; /* remove the sign bit */
1250 value = -value;
1251 }
c5aa993b 1252 }
12f02c2a
AC
1253 offset = value;
1254 regy = -1;
c5aa993b 1255 break;
c906108c 1256 }
c5aa993b 1257 case jalxtype:
c906108c 1258 {
c5aa993b 1259 unsigned long value;
12f02c2a
AC
1260 unsigned int nexthalf;
1261 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1262 value = value << 16;
1263 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1264 value |= nexthalf;
12f02c2a
AC
1265 offset = value;
1266 regx = -1;
1267 regy = -1;
c5aa993b 1268 break;
c906108c
SS
1269 }
1270 default:
8e65ff28
AC
1271 internal_error (__FILE__, __LINE__,
1272 "bad switch");
c906108c 1273 }
12f02c2a
AC
1274 upk->offset = offset;
1275 upk->regx = regx;
1276 upk->regy = regy;
c906108c
SS
1277}
1278
1279
c5aa993b
JM
1280static CORE_ADDR
1281add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1282{
c5aa993b 1283 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1284}
1285
12f02c2a
AC
1286static CORE_ADDR
1287extended_mips16_next_pc (CORE_ADDR pc,
1288 unsigned int extension,
1289 unsigned int insn)
c906108c 1290{
12f02c2a
AC
1291 int op = (insn >> 11);
1292 switch (op)
c906108c 1293 {
12f02c2a
AC
1294 case 2: /* Branch */
1295 {
1296 CORE_ADDR offset;
1297 struct upk_mips16 upk;
1298 unpack_mips16 (pc, extension, insn, itype, &upk);
1299 offset = upk.offset;
1300 if (offset & 0x800)
1301 {
1302 offset &= 0xeff;
1303 offset = -offset;
1304 }
1305 pc += (offset << 1) + 2;
1306 break;
1307 }
1308 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1309 {
1310 struct upk_mips16 upk;
1311 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1312 pc = add_offset_16 (pc, upk.offset);
1313 if ((insn >> 10) & 0x01) /* Exchange mode */
1314 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1315 else
1316 pc |= 0x01;
1317 break;
1318 }
1319 case 4: /* beqz */
1320 {
1321 struct upk_mips16 upk;
1322 int reg;
1323 unpack_mips16 (pc, extension, insn, ritype, &upk);
1324 reg = read_signed_register (upk.regx);
1325 if (reg == 0)
1326 pc += (upk.offset << 1) + 2;
1327 else
1328 pc += 2;
1329 break;
1330 }
1331 case 5: /* bnez */
1332 {
1333 struct upk_mips16 upk;
1334 int reg;
1335 unpack_mips16 (pc, extension, insn, ritype, &upk);
1336 reg = read_signed_register (upk.regx);
1337 if (reg != 0)
1338 pc += (upk.offset << 1) + 2;
1339 else
1340 pc += 2;
1341 break;
1342 }
1343 case 12: /* I8 Formats btez btnez */
1344 {
1345 struct upk_mips16 upk;
1346 int reg;
1347 unpack_mips16 (pc, extension, insn, i8type, &upk);
1348 /* upk.regx contains the opcode */
1349 reg = read_signed_register (24); /* Test register is 24 */
1350 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1351 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1352 /* pc = add_offset_16(pc,upk.offset) ; */
1353 pc += (upk.offset << 1) + 2;
1354 else
1355 pc += 2;
1356 break;
1357 }
1358 case 29: /* RR Formats JR, JALR, JALR-RA */
1359 {
1360 struct upk_mips16 upk;
1361 /* upk.fmt = rrtype; */
1362 op = insn & 0x1f;
1363 if (op == 0)
c5aa993b 1364 {
12f02c2a
AC
1365 int reg;
1366 upk.regx = (insn >> 8) & 0x07;
1367 upk.regy = (insn >> 5) & 0x07;
1368 switch (upk.regy)
c5aa993b 1369 {
12f02c2a
AC
1370 case 0:
1371 reg = upk.regx;
1372 break;
1373 case 1:
1374 reg = 31;
1375 break; /* Function return instruction */
1376 case 2:
1377 reg = upk.regx;
1378 break;
1379 default:
1380 reg = 31;
1381 break; /* BOGUS Guess */
c906108c 1382 }
12f02c2a 1383 pc = read_signed_register (reg);
c906108c 1384 }
12f02c2a 1385 else
c5aa993b 1386 pc += 2;
12f02c2a
AC
1387 break;
1388 }
1389 case 30:
1390 /* This is an instruction extension. Fetch the real instruction
1391 (which follows the extension) and decode things based on
1392 that. */
1393 {
1394 pc += 2;
1395 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1396 break;
1397 }
1398 default:
1399 {
1400 pc += 2;
1401 break;
1402 }
c906108c 1403 }
c5aa993b 1404 return pc;
12f02c2a 1405}
c906108c 1406
5a89d8aa 1407static CORE_ADDR
12f02c2a
AC
1408mips16_next_pc (CORE_ADDR pc)
1409{
1410 unsigned int insn = fetch_mips_16 (pc);
1411 return extended_mips16_next_pc (pc, 0, insn);
1412}
1413
1414/* The mips_next_pc function supports single_step when the remote
7e73cedf 1415 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1416 It works by decoding the current instruction and predicting where a
1417 branch will go. This isnt hard because all the data is available.
1418 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1419CORE_ADDR
1420mips_next_pc (CORE_ADDR pc)
c906108c 1421{
c5aa993b
JM
1422 if (pc & 0x01)
1423 return mips16_next_pc (pc);
1424 else
1425 return mips32_next_pc (pc);
12f02c2a 1426}
c906108c 1427
e0f7ec59
AC
1428/* Set up the 'saved_regs' array. This is a data structure containing
1429 the addresses on the stack where each register has been saved, for
1430 each stack frame. Registers that have not been saved will have
1431 zero here. The stack pointer register is special: rather than the
1432 address where the stack register has been saved,
1433 saved_regs[SP_REGNUM] will have the actual value of the previous
1434 frame's stack register. */
c906108c 1435
d28e01f4 1436static void
acdb74a0 1437mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1438{
1439 int ireg;
c906108c
SS
1440 /* r0 bit means kernel trap */
1441 int kernel_trap;
1442 /* What registers have been saved? Bitmasks. */
1443 unsigned long gen_mask, float_mask;
1444 mips_extra_func_info_t proc_desc;
1445 t_inst inst;
e0f7ec59 1446 CORE_ADDR *saved_regs;
c906108c 1447
e0f7ec59
AC
1448 if (get_frame_saved_regs (fci) != NULL)
1449 return;
1450 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1451
1452 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1453 in a sigcontext structure somewhere on the stack. If the stack
1454 layout for sigtramp changes we might have to change these
1455 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1456#ifndef SIGFRAME_BASE
e0f7ec59
AC
1457 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1458 above the sigtramp frame. */
c906108c
SS
1459#define SIGFRAME_BASE MIPS_REGSIZE
1460/* FIXME! Are these correct?? */
1461#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1462#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1463#define SIGFRAME_FPREGSAVE_OFF \
1464 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1465#endif
1466#ifndef SIGFRAME_REG_SIZE
e0f7ec59 1467 /* FIXME! Is this correct?? */
c906108c
SS
1468#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1469#endif
5a203e44 1470 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1471 {
1472 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1473 {
e0f7ec59
AC
1474 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1475 + ireg * SIGFRAME_REG_SIZE);
1476 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1477 }
1478 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1479 {
e0f7ec59
AC
1480 CORE_ADDR reg_position = (get_frame_base (fci)
1481 + SIGFRAME_FPREGSAVE_OFF
1482 + ireg * SIGFRAME_REG_SIZE);
1483 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
c906108c 1484 }
e0f7ec59
AC
1485
1486 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1487 /* SP_REGNUM, contains the value and not the address. */
1488 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1489 return;
1490 }
1491
da50a4b7 1492 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1493 if (proc_desc == NULL)
e0f7ec59
AC
1494 /* I'm not sure how/whether this can happen. Normally when we
1495 can't find a proc_desc, we "synthesize" one using
1496 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1497 return;
1498
c5aa993b
JM
1499 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1500 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1501 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1502
e0f7ec59
AC
1503 if (/* In any frame other than the innermost or a frame interrupted
1504 by a signal, we assume that all registers have been saved.
1505 This assumes that all register saves in a function happen
1506 before the first function call. */
11c02a10
AC
1507 (get_next_frame (fci) == NULL
1508 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1509
e0f7ec59 1510 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1511 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1512
e0f7ec59
AC
1513 /* Don't bother unless we are inside a function prologue.
1514 Outside the prologue, we know where everything is. */
c906108c 1515
50abf9e5 1516 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1517
e0f7ec59
AC
1518 /* Not sure exactly what kernel_trap means, but if it means the
1519 kernel saves the registers without a prologue doing it, we
1520 better not examine the prologue to see whether registers
1521 have been saved yet. */
c5aa993b 1522 && !kernel_trap)
c906108c 1523 {
e0f7ec59
AC
1524 /* We need to figure out whether the registers that the
1525 proc_desc claims are saved have been saved yet. */
c906108c
SS
1526
1527 CORE_ADDR addr;
1528
1529 /* Bitmasks; set if we have found a save for the register. */
1530 unsigned long gen_save_found = 0;
1531 unsigned long float_save_found = 0;
1532 int instlen;
1533
1534 /* If the address is odd, assume this is MIPS16 code. */
1535 addr = PROC_LOW_ADDR (proc_desc);
1536 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1537
e0f7ec59
AC
1538 /* Scan through this function's instructions preceding the
1539 current PC, and look for those that save registers. */
50abf9e5 1540 while (addr < get_frame_pc (fci))
c906108c
SS
1541 {
1542 inst = mips_fetch_instruction (addr);
1543 if (pc_is_mips16 (addr))
1544 mips16_decode_reg_save (inst, &gen_save_found);
1545 else
1546 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1547 addr += instlen;
1548 }
1549 gen_mask = gen_save_found;
1550 float_mask = float_save_found;
1551 }
1552
e0f7ec59
AC
1553 /* Fill in the offsets for the registers which gen_mask says were
1554 saved. */
1555 {
1556 CORE_ADDR reg_position = (get_frame_base (fci)
1557 + PROC_REG_OFFSET (proc_desc));
1558 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1559 if (gen_mask & 0x80000000)
1560 {
1561 set_reg_offset (saved_regs, ireg, reg_position);
1562 reg_position -= MIPS_SAVED_REGSIZE;
1563 }
1564 }
c906108c 1565
e0f7ec59
AC
1566 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1567 order of that normally used by gcc. Therefore, we have to fetch
1568 the first instruction of the function, and if it's an entry
1569 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1570 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1571 {
1572 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1573 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1574 /* entry */
c906108c
SS
1575 {
1576 int reg;
1577 int sreg_count = (inst >> 6) & 3;
c5aa993b 1578
c906108c 1579 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1580 CORE_ADDR reg_position = (get_frame_base (fci)
1581 + PROC_REG_OFFSET (proc_desc));
c906108c 1582 if (inst & 0x20)
7a292a7a 1583 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1584
e0f7ec59
AC
1585 /* Check if the s0 and s1 registers were pushed on the
1586 stack. */
c5aa993b 1587 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1588 {
e0f7ec59 1589 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1590 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1591 }
1592 }
1593 }
1594
e0f7ec59
AC
1595 /* Fill in the offsets for the registers which float_mask says were
1596 saved. */
1597 {
1598 CORE_ADDR reg_position = (get_frame_base (fci)
1599 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1600
e0f7ec59
AC
1601 /* Apparently, the freg_offset gives the offset to the first 64
1602 bit saved.
6acdf5c7 1603
e0f7ec59
AC
1604 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1605 designates the first saved 64 bit register.
6acdf5c7 1606
e0f7ec59
AC
1607 When the ABI specifies 32 bit saved registers, the ``64 bit
1608 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1609 FREG_OFFSET, designates the address of the lower register of
1610 the register pair. Adjust the offset so that it designates the
1611 upper register of the pair -- i.e., the address of the first
1612 saved 32 bit register. */
c906108c 1613
e0f7ec59
AC
1614 if (MIPS_SAVED_REGSIZE == 4)
1615 reg_position += MIPS_SAVED_REGSIZE;
c906108c 1616
e0f7ec59
AC
1617 /* Fill in the offsets for the float registers which float_mask
1618 says were saved. */
1619 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1620 if (float_mask & 0x80000000)
1621 {
1622 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1623 reg_position -= MIPS_SAVED_REGSIZE;
1624 }
c906108c 1625
e0f7ec59
AC
1626 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1627 }
d28e01f4 1628
e0f7ec59
AC
1629 /* SP_REGNUM, contains the value and not the address. */
1630 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1631}
1632
c906108c 1633static CORE_ADDR
acdb74a0 1634read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1635{
64159455
AC
1636 int optimized;
1637 CORE_ADDR addr;
1638 int realnum;
1639 enum lval_type lval;
d9d9c31f 1640 char raw_buffer[MAX_REGISTER_SIZE];
f796e4be
KB
1641
1642 if (fi == NULL)
c906108c 1643 {
f796e4be
KB
1644 regcache_cooked_read (current_regcache, regno, raw_buffer);
1645 }
1646 else
1647 {
1648 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1649 raw_buffer);
1650 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1651 should have a pseudo register range that correspons to the ABI's,
1652 rather than the ISA's, view of registers. These registers would
1653 then implicitly describe their size and hence could be used
1654 without the below munging. */
1655 if (lval == lval_memory)
c906108c 1656 {
f796e4be
KB
1657 if (regno < 32)
1658 {
1659 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1660 saved. */
1661 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1662 }
c906108c
SS
1663 }
1664 }
64159455
AC
1665
1666 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1667}
1668
1669/* mips_addr_bits_remove - remove useless address bits */
1670
875e1767 1671static CORE_ADDR
acdb74a0 1672mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1673{
5213ab06
AC
1674 if (GDB_TARGET_IS_MIPS64)
1675 {
4014092b 1676 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1677 {
1678 /* This hack is a work-around for existing boards using
1679 PMON, the simulator, and any other 64-bit targets that
1680 doesn't have true 64-bit addressing. On these targets,
1681 the upper 32 bits of addresses are ignored by the
1682 hardware. Thus, the PC or SP are likely to have been
1683 sign extended to all 1s by instruction sequences that
1684 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1685 code that loads an address is this:
1686 lui $r2, <upper 16 bits>
1687 ori $r2, <lower 16 bits>
1688 But the lui sign-extends the value such that the upper 32
1689 bits may be all 1s. The workaround is simply to mask off
1690 these bits. In the future, gcc may be changed to support
1691 true 64-bit addressing, and this masking will have to be
1692 disabled. */
5213ab06
AC
1693 addr &= (CORE_ADDR) 0xffffffff;
1694 }
1695 }
4014092b 1696 else if (mips_mask_address_p ())
5213ab06 1697 {
4014092b
AC
1698 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1699 masking off bits, instead, the actual target should be asking
1700 for the address to be converted to a valid pointer. */
5213ab06
AC
1701 /* Even when GDB is configured for some 32-bit targets
1702 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1703 so CORE_ADDR is 64 bits. So we still have to mask off
1704 useless bits from addresses. */
c5aa993b 1705 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1706 }
c906108c
SS
1707 return addr;
1708}
1709
9022177c
DJ
1710/* mips_software_single_step() is called just before we want to resume
1711 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1712 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1713 the target of the coming instruction and breakpoint it.
1714
1715 single_step is also called just after the inferior stops. If we had
1716 set up a simulated single-step, we undo our damage. */
1717
1718void
1719mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1720{
1721 static CORE_ADDR next_pc;
1722 typedef char binsn_quantum[BREAKPOINT_MAX];
1723 static binsn_quantum break_mem;
1724 CORE_ADDR pc;
1725
1726 if (insert_breakpoints_p)
1727 {
1728 pc = read_register (PC_REGNUM);
1729 next_pc = mips_next_pc (pc);
1730
1731 target_insert_breakpoint (next_pc, break_mem);
1732 }
1733 else
1734 target_remove_breakpoint (next_pc, break_mem);
1735}
1736
97f46953 1737static CORE_ADDR
acdb74a0 1738mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1739{
1740 CORE_ADDR pc, tmp;
1741
11c02a10 1742 pc = ((fromleaf)
6913c89a 1743 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1744 : get_next_frame (prev)
8bedc050 1745 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1746 : read_pc ());
5a89d8aa 1747 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1748 return tmp ? tmp : pc;
c906108c
SS
1749}
1750
1751
f7ab6ec6 1752static CORE_ADDR
acdb74a0 1753mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1754{
1755 CORE_ADDR saved_pc;
da50a4b7 1756 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
c906108c
SS
1757 /* We have to get the saved pc from the sigcontext
1758 if it is a signal handler frame. */
5a203e44 1759 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
c5aa993b 1760 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1761
50abf9e5 1762 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1763 {
1764 LONGEST tmp;
1765 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1766 saved_pc = tmp;
1767 }
1768 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1e2330ba 1769 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1770 else
7a292a7a 1771 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1772
1773 return ADDR_BITS_REMOVE (saved_pc);
1774}
1775
1776static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1777
1778/* This hack will go away once the get_prev_frame() code has been
1779 modified to set the frame's type first. That is BEFORE init extra
1780 frame info et.al. is called. This is because it will become
1781 possible to skip the init extra info call for sigtramp and dummy
1782 frames. */
1783static CORE_ADDR *temp_saved_regs;
c906108c 1784
e0f7ec59
AC
1785/* Set a register's saved stack address in temp_saved_regs. If an
1786 address has already been set for this register, do nothing; this
1787 way we will only recognize the first save of a given register in a
1788 function prologue. */
c906108c
SS
1789
1790static void
e0f7ec59 1791set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1792{
e0f7ec59
AC
1793 if (saved_regs[regno] == 0)
1794 saved_regs[regno] = offset;
c906108c
SS
1795}
1796
1797
1798/* Test whether the PC points to the return instruction at the
1799 end of a function. */
1800
c5aa993b 1801static int
acdb74a0 1802mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1803{
1804 if (pc_is_mips16 (pc))
1805 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1806 generates a "jr $ra"; other times it generates code to load
1807 the return address from the stack to an accessible register (such
1808 as $a3), then a "jr" using that register. This second case
1809 is almost impossible to distinguish from an indirect jump
1810 used for switch statements, so we don't even try. */
1811 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1812 else
1813 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1814}
1815
1816
1817/* This fencepost looks highly suspicious to me. Removing it also
1818 seems suspicious as it could affect remote debugging across serial
1819 lines. */
1820
1821static CORE_ADDR
acdb74a0 1822heuristic_proc_start (CORE_ADDR pc)
c906108c 1823{
c5aa993b
JM
1824 CORE_ADDR start_pc;
1825 CORE_ADDR fence;
1826 int instlen;
1827 int seen_adjsp = 0;
c906108c 1828
c5aa993b
JM
1829 pc = ADDR_BITS_REMOVE (pc);
1830 start_pc = pc;
1831 fence = start_pc - heuristic_fence_post;
1832 if (start_pc == 0)
1833 return 0;
c906108c 1834
c5aa993b
JM
1835 if (heuristic_fence_post == UINT_MAX
1836 || fence < VM_MIN_ADDRESS)
1837 fence = VM_MIN_ADDRESS;
c906108c 1838
c5aa993b 1839 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1840
c5aa993b
JM
1841 /* search back for previous return */
1842 for (start_pc -= instlen;; start_pc -= instlen)
1843 if (start_pc < fence)
1844 {
1845 /* It's not clear to me why we reach this point when
c0236d92 1846 stop_soon, but with this test, at least we
c5aa993b
JM
1847 don't print out warnings for every child forked (eg, on
1848 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1849 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1850 {
c5aa993b
JM
1851 static int blurb_printed = 0;
1852
1853 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1854 paddr_nz (pc));
1855
1856 if (!blurb_printed)
c906108c 1857 {
c5aa993b
JM
1858 /* This actually happens frequently in embedded
1859 development, when you first connect to a board
1860 and your stack pointer and pc are nowhere in
1861 particular. This message needs to give people
1862 in that situation enough information to
1863 determine that it's no big deal. */
1864 printf_filtered ("\n\
cd0fc7c3
SS
1865 GDB is unable to find the start of the function at 0x%s\n\
1866and thus can't determine the size of that function's stack frame.\n\
1867This means that GDB may be unable to access that stack frame, or\n\
1868the frames below it.\n\
1869 This problem is most likely caused by an invalid program counter or\n\
1870stack pointer.\n\
1871 However, if you think GDB should simply search farther back\n\
1872from 0x%s for code which looks like the beginning of a\n\
1873function, you can increase the range of the search using the `set\n\
1874heuristic-fence-post' command.\n",
c5aa993b
JM
1875 paddr_nz (pc), paddr_nz (pc));
1876 blurb_printed = 1;
c906108c 1877 }
c906108c
SS
1878 }
1879
c5aa993b
JM
1880 return 0;
1881 }
1882 else if (pc_is_mips16 (start_pc))
1883 {
1884 unsigned short inst;
1885
1886 /* On MIPS16, any one of the following is likely to be the
1887 start of a function:
1888 entry
1889 addiu sp,-n
1890 daddiu sp,-n
1891 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1892 inst = mips_fetch_instruction (start_pc);
1893 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1894 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1895 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1896 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1897 break;
1898 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1899 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1900 seen_adjsp = 1;
1901 else
1902 seen_adjsp = 0;
1903 }
1904 else if (mips_about_to_return (start_pc))
1905 {
1906 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1907 break;
1908 }
1909
c5aa993b 1910 return start_pc;
c906108c
SS
1911}
1912
1913/* Fetch the immediate value from a MIPS16 instruction.
1914 If the previous instruction was an EXTEND, use it to extend
1915 the upper bits of the immediate value. This is a helper function
1916 for mips16_heuristic_proc_desc. */
1917
1918static int
acdb74a0
AC
1919mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1920 unsigned short inst, /* current instruction */
1921 int nbits, /* number of bits in imm field */
1922 int scale, /* scale factor to be applied to imm */
1923 int is_signed) /* is the imm field signed? */
c906108c
SS
1924{
1925 int offset;
1926
1927 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1928 {
1929 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1930 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1931 offset = 0 - (0x10000 - (offset & 0xffff));
1932 return offset | (inst & 0x1f);
1933 }
1934 else
1935 {
1936 int max_imm = 1 << nbits;
1937 int mask = max_imm - 1;
1938 int sign_bit = max_imm >> 1;
1939
1940 offset = inst & mask;
1941 if (is_signed && (offset & sign_bit))
1942 offset = 0 - (max_imm - offset);
1943 return offset * scale;
1944 }
1945}
1946
1947
1948/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1949 stream from start_pc to limit_pc. */
1950
1951static void
acdb74a0
AC
1952mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1953 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1954{
1955 CORE_ADDR cur_pc;
1956 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1957 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1958 unsigned inst = 0; /* current instruction */
1959 unsigned entry_inst = 0; /* the entry instruction */
1960 int reg, offset;
1961
c5aa993b
JM
1962 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1963 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1964
1965 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1966 {
1967 /* Save the previous instruction. If it's an EXTEND, we'll extract
1968 the immediate offset extension from it in mips16_get_imm. */
1969 prev_inst = inst;
1970
1971 /* Fetch and decode the instruction. */
1972 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1973 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1974 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1975 {
1976 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1977 if (offset < 0) /* negative stack adjustment? */
1978 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1979 else
1980 /* Exit loop if a positive stack adjustment is found, which
1981 usually means that the stack cleanup code in the function
1982 epilogue is reached. */
1983 break;
1984 }
1985 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1986 {
1987 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1988 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1989 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 1990 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
1991 }
1992 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1993 {
1994 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1995 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1996 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 1997 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
1998 }
1999 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2000 {
2001 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2002 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2003 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2004 }
2005 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2006 {
2007 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2008 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2009 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2010 }
c5aa993b 2011 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2012 {
2013 frame_addr = sp;
2014 PROC_FRAME_REG (&temp_proc_desc) = 17;
2015 }
2016 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2017 {
2018 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2019 frame_addr = sp + offset;
2020 PROC_FRAME_REG (&temp_proc_desc) = 17;
2021 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2022 }
2023 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2024 {
2025 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2026 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2027 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2028 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2029 }
2030 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2031 {
2032 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2033 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2034 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2035 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2036 }
c5aa993b
JM
2037 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2038 entry_inst = inst; /* save for later processing */
c906108c 2039 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2040 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2041 }
2042
c5aa993b
JM
2043 /* The entry instruction is typically the first instruction in a function,
2044 and it stores registers at offsets relative to the value of the old SP
2045 (before the prologue). But the value of the sp parameter to this
2046 function is the new SP (after the prologue has been executed). So we
2047 can't calculate those offsets until we've seen the entire prologue,
2048 and can calculate what the old SP must have been. */
2049 if (entry_inst != 0)
2050 {
2051 int areg_count = (entry_inst >> 8) & 7;
2052 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2053
c5aa993b
JM
2054 /* The entry instruction always subtracts 32 from the SP. */
2055 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2056
c5aa993b
JM
2057 /* Now we can calculate what the SP must have been at the
2058 start of the function prologue. */
2059 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2060
c5aa993b
JM
2061 /* Check if a0-a3 were saved in the caller's argument save area. */
2062 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2063 {
2064 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2065 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2066 offset += MIPS_SAVED_REGSIZE;
2067 }
c906108c 2068
c5aa993b
JM
2069 /* Check if the ra register was pushed on the stack. */
2070 offset = -4;
2071 if (entry_inst & 0x20)
2072 {
2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2074 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2075 offset -= MIPS_SAVED_REGSIZE;
2076 }
c906108c 2077
c5aa993b
JM
2078 /* Check if the s0 and s1 registers were pushed on the stack. */
2079 for (reg = 16; reg < sreg_count + 16; reg++)
2080 {
2081 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2082 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2083 offset -= MIPS_SAVED_REGSIZE;
2084 }
2085 }
c906108c
SS
2086}
2087
2088static void
fba45db2
KB
2089mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2090 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2091{
2092 CORE_ADDR cur_pc;
c5aa993b 2093 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2094restart:
fe29b929 2095 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2096 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2097 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2098 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2099 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2100 {
2101 unsigned long inst, high_word, low_word;
2102 int reg;
2103
2104 /* Fetch the instruction. */
2105 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2106
2107 /* Save some code by pre-extracting some useful fields. */
2108 high_word = (inst >> 16) & 0xffff;
2109 low_word = inst & 0xffff;
2110 reg = high_word & 0x1f;
2111
c5aa993b 2112 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2113 || high_word == 0x23bd /* addi $sp,$sp,-i */
2114 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2115 {
2116 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2117 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2118 else
2119 /* Exit loop if a positive stack adjustment is found, which
2120 usually means that the stack cleanup code in the function
2121 epilogue is reached. */
2122 break;
2123 }
2124 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2125 {
c5aa993b 2126 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2127 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2128 }
2129 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2130 {
2131 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2132 but the register size used is only 32 bits. Make the address
2133 for the saved register point to the lower 32 bits. */
c5aa993b 2134 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2135 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
c906108c 2136 }
c5aa993b 2137 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2138 {
2139 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2140 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2141 frame_addr = sp + low_word;
c906108c
SS
2142 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2143 {
2144 unsigned alloca_adjust;
2145 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2146 frame_addr = read_next_frame_reg (next_frame, 30);
2147 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2148 if (alloca_adjust > 0)
2149 {
2150 /* FP > SP + frame_size. This may be because
2151 * of an alloca or somethings similar.
2152 * Fix sp to "pre-alloca" value, and try again.
2153 */
2154 sp += alloca_adjust;
2155 goto restart;
2156 }
2157 }
2158 }
c5aa993b
JM
2159 /* move $30,$sp. With different versions of gas this will be either
2160 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2161 Accept any one of these. */
c906108c
SS
2162 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2163 {
2164 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2165 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2166 {
2167 unsigned alloca_adjust;
2168 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2169 frame_addr = read_next_frame_reg (next_frame, 30);
2170 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2171 if (alloca_adjust > 0)
2172 {
2173 /* FP > SP + frame_size. This may be because
2174 * of an alloca or somethings similar.
2175 * Fix sp to "pre-alloca" value, and try again.
2176 */
2177 sp += alloca_adjust;
2178 goto restart;
2179 }
2180 }
2181 }
c5aa993b 2182 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2183 {
c5aa993b 2184 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2185 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2186 }
2187 }
2188}
2189
2190static mips_extra_func_info_t
acdb74a0 2191heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2192 struct frame_info *next_frame, int cur_frame)
c906108c 2193{
479412cd
DJ
2194 CORE_ADDR sp;
2195
2196 if (cur_frame)
2197 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2198 else
2199 sp = 0;
c906108c 2200
c5aa993b
JM
2201 if (start_pc == 0)
2202 return NULL;
2203 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2204 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2205 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2206 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2207 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2208 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2209
2210 if (start_pc + 200 < limit_pc)
2211 limit_pc = start_pc + 200;
2212 if (pc_is_mips16 (start_pc))
2213 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2214 else
2215 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2216 return &temp_proc_desc;
2217}
2218
6c0d6680
DJ
2219struct mips_objfile_private
2220{
2221 bfd_size_type size;
2222 char *contents;
2223};
2224
2225/* Global used to communicate between non_heuristic_proc_desc and
2226 compare_pdr_entries within qsort (). */
2227static bfd *the_bfd;
2228
2229static int
2230compare_pdr_entries (const void *a, const void *b)
2231{
2232 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2233 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2234
2235 if (lhs < rhs)
2236 return -1;
2237 else if (lhs == rhs)
2238 return 0;
2239 else
2240 return 1;
2241}
2242
c906108c 2243static mips_extra_func_info_t
acdb74a0 2244non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2245{
2246 CORE_ADDR startaddr;
2247 mips_extra_func_info_t proc_desc;
c5aa993b 2248 struct block *b = block_for_pc (pc);
c906108c 2249 struct symbol *sym;
6c0d6680
DJ
2250 struct obj_section *sec;
2251 struct mips_objfile_private *priv;
2252
ae45cd16 2253 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2254 return NULL;
c906108c
SS
2255
2256 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2257 if (addrptr)
2258 *addrptr = startaddr;
6c0d6680
DJ
2259
2260 priv = NULL;
2261
2262 sec = find_pc_section (pc);
2263 if (sec != NULL)
c906108c 2264 {
6c0d6680
DJ
2265 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2266
2267 /* Search the ".pdr" section generated by GAS. This includes most of
2268 the information normally found in ECOFF PDRs. */
2269
2270 the_bfd = sec->objfile->obfd;
2271 if (priv == NULL
2272 && (the_bfd->format == bfd_object
2273 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2274 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2275 {
2276 /* Right now GAS only outputs the address as a four-byte sequence.
2277 This means that we should not bother with this method on 64-bit
2278 targets (until that is fixed). */
2279
2280 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2281 sizeof (struct mips_objfile_private));
2282 priv->size = 0;
2283 sec->objfile->obj_private = priv;
2284 }
2285 else if (priv == NULL)
2286 {
2287 asection *bfdsec;
2288
2289 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2290 sizeof (struct mips_objfile_private));
2291
2292 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2293 if (bfdsec != NULL)
2294 {
2295 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2296 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2297 priv->size);
2298 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2299 priv->contents, 0, priv->size);
2300
2301 /* In general, the .pdr section is sorted. However, in the
2302 presence of multiple code sections (and other corner cases)
2303 it can become unsorted. Sort it so that we can use a faster
2304 binary search. */
2305 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2306 }
2307 else
2308 priv->size = 0;
2309
2310 sec->objfile->obj_private = priv;
2311 }
2312 the_bfd = NULL;
2313
2314 if (priv->size != 0)
2315 {
2316 int low, mid, high;
2317 char *ptr;
2318
2319 low = 0;
2320 high = priv->size / 32;
2321
2322 do
2323 {
2324 CORE_ADDR pdr_pc;
2325
2326 mid = (low + high) / 2;
2327
2328 ptr = priv->contents + mid * 32;
2329 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2330 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2331 SECT_OFF_TEXT (sec->objfile));
2332 if (pdr_pc == startaddr)
2333 break;
2334 if (pdr_pc > startaddr)
2335 high = mid;
2336 else
2337 low = mid + 1;
2338 }
2339 while (low != high);
2340
2341 if (low != high)
2342 {
2343 struct symbol *sym = find_pc_function (pc);
2344
2345 /* Fill in what we need of the proc_desc. */
2346 proc_desc = (mips_extra_func_info_t)
2347 obstack_alloc (&sec->objfile->psymbol_obstack,
2348 sizeof (struct mips_extra_func_info));
2349 PROC_LOW_ADDR (proc_desc) = startaddr;
2350
2351 /* Only used for dummy frames. */
2352 PROC_HIGH_ADDR (proc_desc) = 0;
2353
2354 PROC_FRAME_OFFSET (proc_desc)
2355 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2356 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2357 ptr + 24);
2358 PROC_FRAME_ADJUST (proc_desc) = 0;
2359 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2360 ptr + 4);
2361 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2362 ptr + 12);
2363 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2364 ptr + 8);
2365 PROC_FREG_OFFSET (proc_desc)
2366 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2367 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2368 ptr + 28);
2369 proc_desc->pdr.isym = (long) sym;
2370
2371 return proc_desc;
2372 }
2373 }
c906108c
SS
2374 }
2375
6c0d6680
DJ
2376 if (b == NULL)
2377 return NULL;
2378
2379 if (startaddr > BLOCK_START (b))
2380 {
2381 /* This is the "pathological" case referred to in a comment in
2382 print_frame_info. It might be better to move this check into
2383 symbol reading. */
2384 return NULL;
2385 }
2386
176620f1 2387 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2388
c906108c
SS
2389 /* If we never found a PDR for this function in symbol reading, then
2390 examine prologues to find the information. */
2391 if (sym)
2392 {
2393 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2394 if (PROC_FRAME_REG (proc_desc) == -1)
2395 return NULL;
2396 else
2397 return proc_desc;
2398 }
2399 else
2400 return NULL;
2401}
2402
2403
2404static mips_extra_func_info_t
479412cd 2405find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2406{
2407 mips_extra_func_info_t proc_desc;
4e0df2df 2408 CORE_ADDR startaddr = 0;
c906108c
SS
2409
2410 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2411
2412 if (proc_desc)
2413 {
2414 /* IF this is the topmost frame AND
2415 * (this proc does not have debugging information OR
2416 * the PC is in the procedure prologue)
2417 * THEN create a "heuristic" proc_desc (by analyzing
2418 * the actual code) to replace the "official" proc_desc.
2419 */
2420 if (next_frame == NULL)
2421 {
2422 struct symtab_and_line val;
2423 struct symbol *proc_symbol =
c86b5b38 2424 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2425
2426 if (proc_symbol)
2427 {
2428 val = find_pc_line (BLOCK_START
c5aa993b 2429 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2430 0);
2431 val.pc = val.end ? val.end : pc;
2432 }
2433 if (!proc_symbol || pc < val.pc)
2434 {
2435 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2436 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2437 pc, next_frame, cur_frame);
c906108c
SS
2438 if (found_heuristic)
2439 proc_desc = found_heuristic;
2440 }
2441 }
2442 }
2443 else
2444 {
2445 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2446 by procedure call dummys. However, the procedures being called ought
2447 to have their own proc_descs, and even if they don't,
2448 heuristic_proc_desc knows how to create them! */
c906108c
SS
2449
2450 register struct linked_proc_info *link;
2451
2452 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2453 if (PROC_LOW_ADDR (&link->info) <= pc
2454 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2455 return &link->info;
2456
2457 if (startaddr == 0)
2458 startaddr = heuristic_proc_start (pc);
2459
2460 proc_desc =
479412cd 2461 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2462 }
2463 return proc_desc;
2464}
2465
2466static CORE_ADDR
acdb74a0
AC
2467get_frame_pointer (struct frame_info *frame,
2468 mips_extra_func_info_t proc_desc)
c906108c 2469{
e227b13c
AC
2470 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2471 + PROC_FRAME_OFFSET (proc_desc)
2472 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2473}
2474
5a89d8aa 2475static mips_extra_func_info_t cached_proc_desc;
c906108c 2476
f7ab6ec6 2477static CORE_ADDR
acdb74a0 2478mips_frame_chain (struct frame_info *frame)
c906108c
SS
2479{
2480 mips_extra_func_info_t proc_desc;
2481 CORE_ADDR tmp;
8bedc050 2482 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
2483
2484 if (saved_pc == 0 || inside_entry_file (saved_pc))
2485 return 0;
2486
2487 /* Check if the PC is inside a call stub. If it is, fetch the
2488 PC of the caller of that stub. */
5a89d8aa 2489 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2490 saved_pc = tmp;
2491
ae45cd16 2492 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2493 {
2494 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2495 is well, frame->frame the bottom of the current frame will
2496 contain that value. */
1e2330ba 2497 return get_frame_base (frame);
cedea778
AC
2498 }
2499
c906108c 2500 /* Look up the procedure descriptor for this PC. */
479412cd 2501 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2502 if (!proc_desc)
2503 return 0;
2504
2505 cached_proc_desc = proc_desc;
2506
2507 /* If no frame pointer and frame size is zero, we must be at end
2508 of stack (or otherwise hosed). If we don't check frame size,
2509 we loop forever if we see a zero size frame. */
2510 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2511 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2512 /* The previous frame from a sigtramp frame might be frameless
2513 and have frame size zero. */
5a203e44 2514 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2515 /* For a generic dummy frame, let get_frame_pointer() unwind a
2516 register value saved as part of the dummy frame call. */
50abf9e5 2517 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2518 return 0;
2519 else
2520 return get_frame_pointer (frame, proc_desc);
2521}
2522
f7ab6ec6 2523static void
acdb74a0 2524mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2525{
2526 int regnum;
f2c16bd6
KB
2527 mips_extra_func_info_t proc_desc;
2528
2529 if (get_frame_type (fci) == DUMMY_FRAME)
2530 return;
c906108c 2531
f796e4be
KB
2532 /* Use proc_desc calculated in frame_chain. When there is no
2533 next frame, i.e, get_next_frame (fci) == NULL, we call
2534 find_proc_desc () to calculate it, passing an explicit
2535 NULL as the frame parameter. */
f2c16bd6 2536 proc_desc =
11c02a10
AC
2537 get_next_frame (fci)
2538 ? cached_proc_desc
f796e4be
KB
2539 : find_proc_desc (get_frame_pc (fci),
2540 NULL /* i.e, get_next_frame (fci) */,
2541 1);
c906108c 2542
a00a19e9 2543 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2544
7b5849cc 2545 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2546 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2547 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2548 if (proc_desc)
2549 {
2550 /* Fixup frame-pointer - only needed for top frame */
2551 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2552 Get the value of the frame relative sp, procedure might have been
2553 interrupted by a signal at it's very start. */
50abf9e5 2554 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2555 && !PROC_DESC_IS_DUMMY (proc_desc))
11c02a10 2556 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
50abf9e5 2557 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2558 /* Do not ``fix'' fci->frame. It will have the value of the
2559 generic dummy frame's top-of-stack (since the draft
2560 fci->frame is obtained by returning the unwound stack
2561 pointer) and that is what we want. That way the fci->frame
2562 value will match the top-of-stack value that was saved as
2563 part of the dummy frames data. */
2564 /* Do nothing. */;
c906108c 2565 else
11c02a10 2566 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2567
2568 if (proc_desc == &temp_proc_desc)
2569 {
2570 char *name;
2571
2572 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2573 mips_find_saved_registers will do that for us. We can't
2574 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2575 yet set. */
2576 /* FIXME: cagney/2002-11-18: This problem will go away once
2577 frame.c:get_prev_frame() is modified to set the frame's
2578 type before calling functions like this. */
50abf9e5 2579 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2580 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2581 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2582 {
c5aa993b 2583 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2584 /* Set value of previous frame's stack pointer.
2585 Remember that saved_regs[SP_REGNUM] is special in
2586 that it contains the value of the stack pointer
2587 register. The other saved_regs values are addresses
2588 (in the inferior) at which a given register's value
2589 may be found. */
2590 set_reg_offset (temp_saved_regs, SP_REGNUM,
2591 get_frame_base (fci));
2592 set_reg_offset (temp_saved_regs, PC_REGNUM,
2593 temp_saved_regs[RA_REGNUM]);
2594 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2595 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2596 }
2597 }
2598
2599 /* hack: if argument regs are saved, guess these contain args */
cce74817 2600 /* assume we can't tell how many args for now */
da50a4b7 2601 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2602 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2603 {
c5aa993b 2604 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2605 {
da50a4b7 2606 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2607 break;
2608 }
c5aa993b 2609 }
c906108c
SS
2610 }
2611}
2612
2613/* MIPS stack frames are almost impenetrable. When execution stops,
2614 we basically have to look at symbol information for the function
2615 that we stopped in, which tells us *which* register (if any) is
2616 the base of the frame pointer, and what offset from that register
361d1df0 2617 the frame itself is at.
c906108c
SS
2618
2619 This presents a problem when trying to examine a stack in memory
2620 (that isn't executing at the moment), using the "frame" command. We
2621 don't have a PC, nor do we have any registers except SP.
2622
2623 This routine takes two arguments, SP and PC, and tries to make the
2624 cached frames look as if these two arguments defined a frame on the
2625 cache. This allows the rest of info frame to extract the important
2626 arguments without difficulty. */
2627
2628struct frame_info *
acdb74a0 2629setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2630{
2631 if (argc != 2)
2632 error ("MIPS frame specifications require two arguments: sp and pc");
2633
2634 return create_new_frame (argv[0], argv[1]);
2635}
2636
f09ded24
AC
2637/* According to the current ABI, should the type be passed in a
2638 floating-point register (assuming that there is space)? When there
2639 is no FPU, FP are not even considered as possibile candidates for
2640 FP registers and, consequently this returns false - forces FP
2641 arguments into integer registers. */
2642
2643static int
2644fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2645{
2646 return ((typecode == TYPE_CODE_FLT
2647 || (MIPS_EABI
2648 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2649 && TYPE_NFIELDS (arg_type) == 1
2650 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2651 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2652}
2653
49e790b0
DJ
2654/* On o32, argument passing in GPRs depends on the alignment of the type being
2655 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2656
2657static int
2658mips_type_needs_double_align (struct type *type)
2659{
2660 enum type_code typecode = TYPE_CODE (type);
361d1df0 2661
49e790b0
DJ
2662 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2663 return 1;
2664 else if (typecode == TYPE_CODE_STRUCT)
2665 {
2666 if (TYPE_NFIELDS (type) < 1)
2667 return 0;
2668 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2669 }
2670 else if (typecode == TYPE_CODE_UNION)
2671 {
361d1df0 2672 int i, n;
49e790b0
DJ
2673
2674 n = TYPE_NFIELDS (type);
2675 for (i = 0; i < n; i++)
2676 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2677 return 1;
2678 return 0;
2679 }
2680 return 0;
2681}
2682
cb3d25d1
MS
2683/* Macros to round N up or down to the next A boundary;
2684 A must be a power of two. */
2685
2686#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2687#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2688
dc604539
AC
2689/* Adjust the address downward (direction of stack growth) so that it
2690 is correctly aligned for a new stack frame. */
2691static CORE_ADDR
2692mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2693{
2694 return ROUND_DOWN (addr, 16);
2695}
2696
f7ab6ec6 2697static CORE_ADDR
25ab4790
AC
2698mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2699 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2700 struct value **args, CORE_ADDR sp, int struct_return,
2701 CORE_ADDR struct_addr)
c906108c
SS
2702{
2703 int argreg;
2704 int float_argreg;
2705 int argnum;
2706 int len = 0;
2707 int stack_offset = 0;
2708
25ab4790
AC
2709 /* For shared libraries, "t9" needs to point at the function
2710 address. */
2711 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2712
2713 /* Set the return address register to point to the entry point of
2714 the program, where a breakpoint lies in wait. */
2715 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2716
c906108c 2717 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2718 are properly aligned. The stack has to be at least 64-bit
2719 aligned even on 32-bit machines, because doubles must be 64-bit
2720 aligned. For n32 and n64, stack frames need to be 128-bit
2721 aligned, so we round to this widest known alignment. */
2722
c906108c 2723 sp = ROUND_DOWN (sp, 16);
cce41527 2724 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2725
46e0f506 2726 /* Now make space on the stack for the args. We allocate more
c906108c 2727 than necessary for EABI, because the first few arguments are
46e0f506 2728 passed in registers, but that's OK. */
c906108c 2729 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2730 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2731 MIPS_STACK_ARGSIZE);
c906108c
SS
2732 sp -= ROUND_UP (len, 16);
2733
9ace0497 2734 if (mips_debug)
46e0f506 2735 fprintf_unfiltered (gdb_stdlog,
25ab4790 2736 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1 2737 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2738
c906108c
SS
2739 /* Initialize the integer and float register pointers. */
2740 argreg = A0_REGNUM;
2741 float_argreg = FPA0_REGNUM;
2742
46e0f506 2743 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2744 if (struct_return)
9ace0497
AC
2745 {
2746 if (mips_debug)
2747 fprintf_unfiltered (gdb_stdlog,
25ab4790 2748 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2749 argreg, paddr_nz (struct_addr));
9ace0497
AC
2750 write_register (argreg++, struct_addr);
2751 }
c906108c
SS
2752
2753 /* Now load as many as possible of the first arguments into
2754 registers, and push the rest onto the stack. Loop thru args
2755 from first to last. */
2756 for (argnum = 0; argnum < nargs; argnum++)
2757 {
2758 char *val;
d9d9c31f 2759 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2760 struct value *arg = args[argnum];
c906108c
SS
2761 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2762 int len = TYPE_LENGTH (arg_type);
2763 enum type_code typecode = TYPE_CODE (arg_type);
2764
9ace0497
AC
2765 if (mips_debug)
2766 fprintf_unfiltered (gdb_stdlog,
25ab4790 2767 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2768 argnum + 1, len, (int) typecode);
9ace0497 2769
c906108c 2770 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2771 reference. */
2772 if (len > MIPS_SAVED_REGSIZE
9ace0497 2773 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2774 {
fbd9dcd3 2775 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2776 typecode = TYPE_CODE_PTR;
7a292a7a 2777 len = MIPS_SAVED_REGSIZE;
c906108c 2778 val = valbuf;
9ace0497
AC
2779 if (mips_debug)
2780 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2781 }
2782 else
c5aa993b 2783 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2784
2785 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2786 even-numbered floating point register. Round the FP register
2787 up before the check to see if there are any FP registers
46e0f506
MS
2788 left. Non MIPS_EABI targets also pass the FP in the integer
2789 registers so also round up normal registers. */
acdb74a0
AC
2790 if (!FP_REGISTER_DOUBLE
2791 && fp_register_arg_p (typecode, arg_type))
2792 {
2793 if ((float_argreg & 1))
2794 float_argreg++;
2795 }
c906108c
SS
2796
2797 /* Floating point arguments passed in registers have to be
2798 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2799 are passed in register pairs; the even register gets
2800 the low word, and the odd register gets the high word.
2801 On non-EABI processors, the first two floating point arguments are
2802 also copied to general registers, because MIPS16 functions
2803 don't use float registers for arguments. This duplication of
2804 arguments in general registers can't hurt non-MIPS16 functions
2805 because those registers are normally skipped. */
1012bd0e
EZ
2806 /* MIPS_EABI squeezes a struct that contains a single floating
2807 point value into an FP register instead of pushing it onto the
46e0f506 2808 stack. */
f09ded24
AC
2809 if (fp_register_arg_p (typecode, arg_type)
2810 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2811 {
2812 if (!FP_REGISTER_DOUBLE && len == 8)
2813 {
d7449b42 2814 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2815 unsigned long regval;
2816
2817 /* Write the low word of the double to the even register(s). */
c5aa993b 2818 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2819 if (mips_debug)
acdb74a0 2820 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2821 float_argreg, phex (regval, 4));
c906108c 2822 write_register (float_argreg++, regval);
c906108c
SS
2823
2824 /* Write the high word of the double to the odd register(s). */
c5aa993b 2825 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2826 if (mips_debug)
acdb74a0 2827 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2828 float_argreg, phex (regval, 4));
c906108c 2829 write_register (float_argreg++, regval);
c906108c
SS
2830 }
2831 else
2832 {
2833 /* This is a floating point value that fits entirely
2834 in a single register. */
53a5351d 2835 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2836 above to ensure that it is even register aligned. */
9ace0497
AC
2837 LONGEST regval = extract_unsigned_integer (val, len);
2838 if (mips_debug)
acdb74a0 2839 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2840 float_argreg, phex (regval, len));
c906108c 2841 write_register (float_argreg++, regval);
c906108c
SS
2842 }
2843 }
2844 else
2845 {
2846 /* Copy the argument to general registers or the stack in
2847 register-sized pieces. Large arguments are split between
2848 registers and stack. */
2849 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2850 are treated specially: Irix cc passes them in registers
2851 where gcc sometimes puts them on the stack. For maximum
2852 compatibility, we will put them in both places. */
c5aa993b 2853 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2854 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2855
f09ded24 2856 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2857 register are only written to memory. */
c906108c
SS
2858 while (len > 0)
2859 {
ebafbe83 2860 /* Remember if the argument was written to the stack. */
566f0f7a 2861 int stack_used_p = 0;
46e0f506
MS
2862 int partial_len =
2863 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2864
acdb74a0
AC
2865 if (mips_debug)
2866 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2867 partial_len);
2868
566f0f7a 2869 /* Write this portion of the argument to the stack. */
f09ded24
AC
2870 if (argreg > MIPS_LAST_ARG_REGNUM
2871 || odd_sized_struct
2872 || fp_register_arg_p (typecode, arg_type))
c906108c 2873 {
c906108c
SS
2874 /* Should shorter than int integer values be
2875 promoted to int before being stored? */
c906108c 2876 int longword_offset = 0;
9ace0497 2877 CORE_ADDR addr;
566f0f7a 2878 stack_used_p = 1;
d7449b42 2879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2880 {
d929b26f 2881 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2882 (typecode == TYPE_CODE_INT ||
2883 typecode == TYPE_CODE_PTR ||
2884 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2885 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2886 else if ((typecode == TYPE_CODE_STRUCT ||
2887 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2888 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2889 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2890 }
c5aa993b 2891
9ace0497
AC
2892 if (mips_debug)
2893 {
cb3d25d1
MS
2894 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2895 paddr_nz (stack_offset));
2896 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2897 paddr_nz (longword_offset));
9ace0497 2898 }
361d1df0 2899
9ace0497
AC
2900 addr = sp + stack_offset + longword_offset;
2901
2902 if (mips_debug)
2903 {
2904 int i;
cb3d25d1
MS
2905 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2906 paddr_nz (addr));
9ace0497
AC
2907 for (i = 0; i < partial_len; i++)
2908 {
cb3d25d1
MS
2909 fprintf_unfiltered (gdb_stdlog, "%02x",
2910 val[i] & 0xff);
9ace0497
AC
2911 }
2912 }
2913 write_memory (addr, val, partial_len);
c906108c
SS
2914 }
2915
f09ded24
AC
2916 /* Note!!! This is NOT an else clause. Odd sized
2917 structs may go thru BOTH paths. Floating point
46e0f506 2918 arguments will not. */
566f0f7a 2919 /* Write this portion of the argument to a general
46e0f506 2920 purpose register. */
f09ded24
AC
2921 if (argreg <= MIPS_LAST_ARG_REGNUM
2922 && !fp_register_arg_p (typecode, arg_type))
c906108c 2923 {
9ace0497 2924 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2925
9ace0497 2926 if (mips_debug)
acdb74a0 2927 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2928 argreg,
2929 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2930 write_register (argreg, regval);
2931 argreg++;
c906108c 2932 }
c5aa993b 2933
c906108c
SS
2934 len -= partial_len;
2935 val += partial_len;
2936
566f0f7a
AC
2937 /* Compute the the offset into the stack at which we
2938 will copy the next parameter.
2939
566f0f7a 2940 In the new EABI (and the NABI32), the stack_offset
46e0f506 2941 only needs to be adjusted when it has been used. */
c906108c 2942
46e0f506 2943 if (stack_used_p)
d929b26f 2944 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2945 }
2946 }
9ace0497
AC
2947 if (mips_debug)
2948 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2949 }
2950
0f71a2f6
JM
2951 /* Return adjusted stack pointer. */
2952 return sp;
2953}
2954
25ab4790 2955/* N32/N64 version of push_dummy_call. */
ebafbe83 2956
f7ab6ec6 2957static CORE_ADDR
25ab4790
AC
2958mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2959 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2960 struct value **args, CORE_ADDR sp, int struct_return,
2961 CORE_ADDR struct_addr)
cb3d25d1
MS
2962{
2963 int argreg;
2964 int float_argreg;
2965 int argnum;
2966 int len = 0;
2967 int stack_offset = 0;
2968
25ab4790
AC
2969 /* For shared libraries, "t9" needs to point at the function
2970 address. */
2971 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2972
2973 /* Set the return address register to point to the entry point of
2974 the program, where a breakpoint lies in wait. */
2975 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2976
cb3d25d1
MS
2977 /* First ensure that the stack and structure return address (if any)
2978 are properly aligned. The stack has to be at least 64-bit
2979 aligned even on 32-bit machines, because doubles must be 64-bit
2980 aligned. For n32 and n64, stack frames need to be 128-bit
2981 aligned, so we round to this widest known alignment. */
2982
2983 sp = ROUND_DOWN (sp, 16);
2984 struct_addr = ROUND_DOWN (struct_addr, 16);
2985
2986 /* Now make space on the stack for the args. */
2987 for (argnum = 0; argnum < nargs; argnum++)
2988 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2989 MIPS_STACK_ARGSIZE);
2990 sp -= ROUND_UP (len, 16);
2991
2992 if (mips_debug)
2993 fprintf_unfiltered (gdb_stdlog,
25ab4790 2994 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1
MS
2995 paddr_nz (sp), ROUND_UP (len, 16));
2996
2997 /* Initialize the integer and float register pointers. */
2998 argreg = A0_REGNUM;
2999 float_argreg = FPA0_REGNUM;
3000
46e0f506 3001 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3002 if (struct_return)
3003 {
3004 if (mips_debug)
3005 fprintf_unfiltered (gdb_stdlog,
25ab4790 3006 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3007 argreg, paddr_nz (struct_addr));
3008 write_register (argreg++, struct_addr);
3009 }
3010
3011 /* Now load as many as possible of the first arguments into
3012 registers, and push the rest onto the stack. Loop thru args
3013 from first to last. */
3014 for (argnum = 0; argnum < nargs; argnum++)
3015 {
3016 char *val;
d9d9c31f 3017 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3018 struct value *arg = args[argnum];
3019 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3020 int len = TYPE_LENGTH (arg_type);
3021 enum type_code typecode = TYPE_CODE (arg_type);
3022
3023 if (mips_debug)
3024 fprintf_unfiltered (gdb_stdlog,
25ab4790 3025 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3026 argnum + 1, len, (int) typecode);
3027
3028 val = (char *) VALUE_CONTENTS (arg);
3029
3030 if (fp_register_arg_p (typecode, arg_type)
3031 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3032 {
3033 /* This is a floating point value that fits entirely
3034 in a single register. */
3035 /* On 32 bit ABI's the float_argreg is further adjusted
3036 above to ensure that it is even register aligned. */
3037 LONGEST regval = extract_unsigned_integer (val, len);
3038 if (mips_debug)
3039 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3040 float_argreg, phex (regval, len));
3041 write_register (float_argreg++, regval);
3042
3043 if (mips_debug)
3044 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3045 argreg, phex (regval, len));
3046 write_register (argreg, regval);
3047 argreg += 1;
3048 }
3049 else
3050 {
3051 /* Copy the argument to general registers or the stack in
3052 register-sized pieces. Large arguments are split between
3053 registers and stack. */
3054 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3055 are treated specially: Irix cc passes them in registers
3056 where gcc sometimes puts them on the stack. For maximum
3057 compatibility, we will put them in both places. */
3058 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3059 (len % MIPS_SAVED_REGSIZE != 0));
3060 /* Note: Floating-point values that didn't fit into an FP
3061 register are only written to memory. */
3062 while (len > 0)
3063 {
3064 /* Rememer if the argument was written to the stack. */
3065 int stack_used_p = 0;
3066 int partial_len = len < MIPS_SAVED_REGSIZE ?
3067 len : MIPS_SAVED_REGSIZE;
3068
3069 if (mips_debug)
3070 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3071 partial_len);
3072
3073 /* Write this portion of the argument to the stack. */
3074 if (argreg > MIPS_LAST_ARG_REGNUM
3075 || odd_sized_struct
3076 || fp_register_arg_p (typecode, arg_type))
3077 {
3078 /* Should shorter than int integer values be
3079 promoted to int before being stored? */
3080 int longword_offset = 0;
3081 CORE_ADDR addr;
3082 stack_used_p = 1;
3083 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3084 {
3085 if (MIPS_STACK_ARGSIZE == 8 &&
3086 (typecode == TYPE_CODE_INT ||
3087 typecode == TYPE_CODE_PTR ||
3088 typecode == TYPE_CODE_FLT) && len <= 4)
3089 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3090 }
3091
3092 if (mips_debug)
3093 {
3094 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3095 paddr_nz (stack_offset));
3096 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3097 paddr_nz (longword_offset));
3098 }
3099
3100 addr = sp + stack_offset + longword_offset;
3101
3102 if (mips_debug)
3103 {
3104 int i;
3105 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3106 paddr_nz (addr));
3107 for (i = 0; i < partial_len; i++)
3108 {
3109 fprintf_unfiltered (gdb_stdlog, "%02x",
3110 val[i] & 0xff);
3111 }
3112 }
3113 write_memory (addr, val, partial_len);
3114 }
3115
3116 /* Note!!! This is NOT an else clause. Odd sized
3117 structs may go thru BOTH paths. Floating point
3118 arguments will not. */
3119 /* Write this portion of the argument to a general
3120 purpose register. */
3121 if (argreg <= MIPS_LAST_ARG_REGNUM
3122 && !fp_register_arg_p (typecode, arg_type))
3123 {
3124 LONGEST regval = extract_unsigned_integer (val, partial_len);
3125
3126 /* A non-floating-point argument being passed in a
3127 general register. If a struct or union, and if
3128 the remaining length is smaller than the register
3129 size, we have to adjust the register value on
3130 big endian targets.
3131
3132 It does not seem to be necessary to do the
3133 same for integral types.
3134
3135 cagney/2001-07-23: gdb/179: Also, GCC, when
3136 outputting LE O32 with sizeof (struct) <
3137 MIPS_SAVED_REGSIZE, generates a left shift as
3138 part of storing the argument in a register a
3139 register (the left shift isn't generated when
3140 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3141 is quite possible that this is GCC contradicting
3142 the LE/O32 ABI, GDB has not been adjusted to
3143 accommodate this. Either someone needs to
3144 demonstrate that the LE/O32 ABI specifies such a
3145 left shift OR this new ABI gets identified as
3146 such and GDB gets tweaked accordingly. */
3147
3148 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3149 && partial_len < MIPS_SAVED_REGSIZE
3150 && (typecode == TYPE_CODE_STRUCT ||
3151 typecode == TYPE_CODE_UNION))
3152 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3153 TARGET_CHAR_BIT);
3154
3155 if (mips_debug)
3156 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3157 argreg,
3158 phex (regval, MIPS_SAVED_REGSIZE));
3159 write_register (argreg, regval);
3160 argreg++;
3161 }
3162
3163 len -= partial_len;
3164 val += partial_len;
3165
3166 /* Compute the the offset into the stack at which we
3167 will copy the next parameter.
3168
3169 In N32 (N64?), the stack_offset only needs to be
3170 adjusted when it has been used. */
3171
3172 if (stack_used_p)
3173 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3174 }
3175 }
3176 if (mips_debug)
3177 fprintf_unfiltered (gdb_stdlog, "\n");
3178 }
3179
3180 /* Return adjusted stack pointer. */
3181 return sp;
3182}
3183
25ab4790 3184/* O32 version of push_dummy_call. */
ebafbe83 3185
46cac009 3186static CORE_ADDR
25ab4790
AC
3187mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3188 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3189 struct value **args, CORE_ADDR sp, int struct_return,
3190 CORE_ADDR struct_addr)
ebafbe83
MS
3191{
3192 int argreg;
3193 int float_argreg;
3194 int argnum;
3195 int len = 0;
3196 int stack_offset = 0;
ebafbe83 3197
25ab4790
AC
3198 /* For shared libraries, "t9" needs to point at the function
3199 address. */
3200 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3201
3202 /* Set the return address register to point to the entry point of
3203 the program, where a breakpoint lies in wait. */
3204 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3205
ebafbe83
MS
3206 /* First ensure that the stack and structure return address (if any)
3207 are properly aligned. The stack has to be at least 64-bit
3208 aligned even on 32-bit machines, because doubles must be 64-bit
3209 aligned. For n32 and n64, stack frames need to be 128-bit
3210 aligned, so we round to this widest known alignment. */
3211
3212 sp = ROUND_DOWN (sp, 16);
3213 struct_addr = ROUND_DOWN (struct_addr, 16);
3214
3215 /* Now make space on the stack for the args. */
3216 for (argnum = 0; argnum < nargs; argnum++)
3217 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3218 MIPS_STACK_ARGSIZE);
3219 sp -= ROUND_UP (len, 16);
3220
3221 if (mips_debug)
3222 fprintf_unfiltered (gdb_stdlog,
25ab4790 3223 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
ebafbe83
MS
3224 paddr_nz (sp), ROUND_UP (len, 16));
3225
3226 /* Initialize the integer and float register pointers. */
3227 argreg = A0_REGNUM;
3228 float_argreg = FPA0_REGNUM;
3229
bcb0cc15 3230 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3231 if (struct_return)
3232 {
3233 if (mips_debug)
3234 fprintf_unfiltered (gdb_stdlog,
25ab4790 3235 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3236 argreg, paddr_nz (struct_addr));
3237 write_register (argreg++, struct_addr);
3238 stack_offset += MIPS_STACK_ARGSIZE;
3239 }
3240
3241 /* Now load as many as possible of the first arguments into
3242 registers, and push the rest onto the stack. Loop thru args
3243 from first to last. */
3244 for (argnum = 0; argnum < nargs; argnum++)
3245 {
3246 char *val;
d9d9c31f 3247 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3248 struct value *arg = args[argnum];
3249 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3250 int len = TYPE_LENGTH (arg_type);
3251 enum type_code typecode = TYPE_CODE (arg_type);
3252
3253 if (mips_debug)
3254 fprintf_unfiltered (gdb_stdlog,
25ab4790 3255 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3256 argnum + 1, len, (int) typecode);
3257
3258 val = (char *) VALUE_CONTENTS (arg);
3259
3260 /* 32-bit ABIs always start floating point arguments in an
3261 even-numbered floating point register. Round the FP register
3262 up before the check to see if there are any FP registers
3263 left. O32/O64 targets also pass the FP in the integer
3264 registers so also round up normal registers. */
3265 if (!FP_REGISTER_DOUBLE
3266 && fp_register_arg_p (typecode, arg_type))
3267 {
3268 if ((float_argreg & 1))
3269 float_argreg++;
3270 }
3271
3272 /* Floating point arguments passed in registers have to be
3273 treated specially. On 32-bit architectures, doubles
3274 are passed in register pairs; the even register gets
3275 the low word, and the odd register gets the high word.
3276 On O32/O64, the first two floating point arguments are
3277 also copied to general registers, because MIPS16 functions
3278 don't use float registers for arguments. This duplication of
3279 arguments in general registers can't hurt non-MIPS16 functions
3280 because those registers are normally skipped. */
3281
3282 if (fp_register_arg_p (typecode, arg_type)
3283 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3284 {
3285 if (!FP_REGISTER_DOUBLE && len == 8)
3286 {
3287 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3288 unsigned long regval;
3289
3290 /* Write the low word of the double to the even register(s). */
3291 regval = extract_unsigned_integer (val + low_offset, 4);
3292 if (mips_debug)
3293 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3294 float_argreg, phex (regval, 4));
3295 write_register (float_argreg++, regval);
3296 if (mips_debug)
3297 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3298 argreg, phex (regval, 4));
3299 write_register (argreg++, regval);
3300
3301 /* Write the high word of the double to the odd register(s). */
3302 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3303 if (mips_debug)
3304 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3305 float_argreg, phex (regval, 4));
3306 write_register (float_argreg++, regval);
3307
3308 if (mips_debug)
3309 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3310 argreg, phex (regval, 4));
3311 write_register (argreg++, regval);
3312 }
3313 else
3314 {
3315 /* This is a floating point value that fits entirely
3316 in a single register. */
3317 /* On 32 bit ABI's the float_argreg is further adjusted
3318 above to ensure that it is even register aligned. */
3319 LONGEST regval = extract_unsigned_integer (val, len);
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3322 float_argreg, phex (regval, len));
3323 write_register (float_argreg++, regval);
3324 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3325 registers for each argument. The below is (my
3326 guess) to ensure that the corresponding integer
3327 register has reserved the same space. */
3328 if (mips_debug)
3329 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3330 argreg, phex (regval, len));
3331 write_register (argreg, regval);
3332 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3333 }
3334 /* Reserve space for the FP register. */
3335 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3336 }
3337 else
3338 {
3339 /* Copy the argument to general registers or the stack in
3340 register-sized pieces. Large arguments are split between
3341 registers and stack. */
3342 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3343 are treated specially: Irix cc passes them in registers
3344 where gcc sometimes puts them on the stack. For maximum
3345 compatibility, we will put them in both places. */
3346 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3347 (len % MIPS_SAVED_REGSIZE != 0));
3348 /* Structures should be aligned to eight bytes (even arg registers)
3349 on MIPS_ABI_O32, if their first member has double precision. */
3350 if (MIPS_SAVED_REGSIZE < 8
3351 && mips_type_needs_double_align (arg_type))
3352 {
3353 if ((argreg & 1))
3354 argreg++;
3355 }
3356 /* Note: Floating-point values that didn't fit into an FP
3357 register are only written to memory. */
3358 while (len > 0)
3359 {
3360 /* Remember if the argument was written to the stack. */
3361 int stack_used_p = 0;
3362 int partial_len =
3363 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3364
3365 if (mips_debug)
3366 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3367 partial_len);
3368
3369 /* Write this portion of the argument to the stack. */
3370 if (argreg > MIPS_LAST_ARG_REGNUM
3371 || odd_sized_struct
3372 || fp_register_arg_p (typecode, arg_type))
3373 {
3374 /* Should shorter than int integer values be
3375 promoted to int before being stored? */
3376 int longword_offset = 0;
3377 CORE_ADDR addr;
3378 stack_used_p = 1;
3379 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3380 {
3381 if (MIPS_STACK_ARGSIZE == 8 &&
3382 (typecode == TYPE_CODE_INT ||
3383 typecode == TYPE_CODE_PTR ||
3384 typecode == TYPE_CODE_FLT) && len <= 4)
3385 longword_offset = MIPS_STACK_ARGSIZE - len;
3386 }
3387
3388 if (mips_debug)
3389 {
3390 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3391 paddr_nz (stack_offset));
3392 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3393 paddr_nz (longword_offset));
3394 }
3395
3396 addr = sp + stack_offset + longword_offset;
3397
3398 if (mips_debug)
3399 {
3400 int i;
3401 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3402 paddr_nz (addr));
3403 for (i = 0; i < partial_len; i++)
3404 {
3405 fprintf_unfiltered (gdb_stdlog, "%02x",
3406 val[i] & 0xff);
3407 }
3408 }
3409 write_memory (addr, val, partial_len);
3410 }
3411
3412 /* Note!!! This is NOT an else clause. Odd sized
3413 structs may go thru BOTH paths. Floating point
3414 arguments will not. */
3415 /* Write this portion of the argument to a general
3416 purpose register. */
3417 if (argreg <= MIPS_LAST_ARG_REGNUM
3418 && !fp_register_arg_p (typecode, arg_type))
3419 {
3420 LONGEST regval = extract_signed_integer (val, partial_len);
3421 /* Value may need to be sign extended, because
3422 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3423
3424 /* A non-floating-point argument being passed in a
3425 general register. If a struct or union, and if
3426 the remaining length is smaller than the register
3427 size, we have to adjust the register value on
3428 big endian targets.
3429
3430 It does not seem to be necessary to do the
3431 same for integral types.
3432
3433 Also don't do this adjustment on O64 binaries.
3434
3435 cagney/2001-07-23: gdb/179: Also, GCC, when
3436 outputting LE O32 with sizeof (struct) <
3437 MIPS_SAVED_REGSIZE, generates a left shift as
3438 part of storing the argument in a register a
3439 register (the left shift isn't generated when
3440 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3441 is quite possible that this is GCC contradicting
3442 the LE/O32 ABI, GDB has not been adjusted to
3443 accommodate this. Either someone needs to
3444 demonstrate that the LE/O32 ABI specifies such a
3445 left shift OR this new ABI gets identified as
3446 such and GDB gets tweaked accordingly. */
3447
3448 if (MIPS_SAVED_REGSIZE < 8
3449 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3450 && partial_len < MIPS_SAVED_REGSIZE
3451 && (typecode == TYPE_CODE_STRUCT ||
3452 typecode == TYPE_CODE_UNION))
3453 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3454 TARGET_CHAR_BIT);
3455
3456 if (mips_debug)
3457 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3458 argreg,
3459 phex (regval, MIPS_SAVED_REGSIZE));
3460 write_register (argreg, regval);
3461 argreg++;
3462
3463 /* Prevent subsequent floating point arguments from
3464 being passed in floating point registers. */
3465 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3466 }
3467
3468 len -= partial_len;
3469 val += partial_len;
3470
3471 /* Compute the the offset into the stack at which we
3472 will copy the next parameter.
3473
3474 In older ABIs, the caller reserved space for
3475 registers that contained arguments. This was loosely
3476 refered to as their "home". Consequently, space is
3477 always allocated. */
3478
3479 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3480 }
3481 }
3482 if (mips_debug)
3483 fprintf_unfiltered (gdb_stdlog, "\n");
3484 }
3485
3486 /* Return adjusted stack pointer. */
3487 return sp;
3488}
3489
25ab4790 3490/* O64 version of push_dummy_call. */
46cac009
AC
3491
3492static CORE_ADDR
25ab4790
AC
3493mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3494 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3495 struct value **args, CORE_ADDR sp, int struct_return,
3496 CORE_ADDR struct_addr)
46cac009
AC
3497{
3498 int argreg;
3499 int float_argreg;
3500 int argnum;
3501 int len = 0;
3502 int stack_offset = 0;
3503
25ab4790
AC
3504 /* For shared libraries, "t9" needs to point at the function
3505 address. */
3506 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3507
3508 /* Set the return address register to point to the entry point of
3509 the program, where a breakpoint lies in wait. */
3510 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3511
46cac009
AC
3512 /* First ensure that the stack and structure return address (if any)
3513 are properly aligned. The stack has to be at least 64-bit
3514 aligned even on 32-bit machines, because doubles must be 64-bit
3515 aligned. For n32 and n64, stack frames need to be 128-bit
3516 aligned, so we round to this widest known alignment. */
3517
3518 sp = ROUND_DOWN (sp, 16);
3519 struct_addr = ROUND_DOWN (struct_addr, 16);
3520
3521 /* Now make space on the stack for the args. */
3522 for (argnum = 0; argnum < nargs; argnum++)
3523 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3524 MIPS_STACK_ARGSIZE);
3525 sp -= ROUND_UP (len, 16);
3526
3527 if (mips_debug)
3528 fprintf_unfiltered (gdb_stdlog,
25ab4790 3529 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
46cac009
AC
3530 paddr_nz (sp), ROUND_UP (len, 16));
3531
3532 /* Initialize the integer and float register pointers. */
3533 argreg = A0_REGNUM;
3534 float_argreg = FPA0_REGNUM;
3535
3536 /* The struct_return pointer occupies the first parameter-passing reg. */
3537 if (struct_return)
3538 {
3539 if (mips_debug)
3540 fprintf_unfiltered (gdb_stdlog,
25ab4790 3541 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3542 argreg, paddr_nz (struct_addr));
3543 write_register (argreg++, struct_addr);
3544 stack_offset += MIPS_STACK_ARGSIZE;
3545 }
3546
3547 /* Now load as many as possible of the first arguments into
3548 registers, and push the rest onto the stack. Loop thru args
3549 from first to last. */
3550 for (argnum = 0; argnum < nargs; argnum++)
3551 {
3552 char *val;
d9d9c31f 3553 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3554 struct value *arg = args[argnum];
3555 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3556 int len = TYPE_LENGTH (arg_type);
3557 enum type_code typecode = TYPE_CODE (arg_type);
3558
3559 if (mips_debug)
3560 fprintf_unfiltered (gdb_stdlog,
25ab4790 3561 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3562 argnum + 1, len, (int) typecode);
3563
3564 val = (char *) VALUE_CONTENTS (arg);
3565
3566 /* 32-bit ABIs always start floating point arguments in an
3567 even-numbered floating point register. Round the FP register
3568 up before the check to see if there are any FP registers
3569 left. O32/O64 targets also pass the FP in the integer
3570 registers so also round up normal registers. */
3571 if (!FP_REGISTER_DOUBLE
3572 && fp_register_arg_p (typecode, arg_type))
3573 {
3574 if ((float_argreg & 1))
3575 float_argreg++;
3576 }
3577
3578 /* Floating point arguments passed in registers have to be
3579 treated specially. On 32-bit architectures, doubles
3580 are passed in register pairs; the even register gets
3581 the low word, and the odd register gets the high word.
3582 On O32/O64, the first two floating point arguments are
3583 also copied to general registers, because MIPS16 functions
3584 don't use float registers for arguments. This duplication of
3585 arguments in general registers can't hurt non-MIPS16 functions
3586 because those registers are normally skipped. */
3587
3588 if (fp_register_arg_p (typecode, arg_type)
3589 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3590 {
3591 if (!FP_REGISTER_DOUBLE && len == 8)
3592 {
3593 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3594 unsigned long regval;
3595
3596 /* Write the low word of the double to the even register(s). */
3597 regval = extract_unsigned_integer (val + low_offset, 4);
3598 if (mips_debug)
3599 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3600 float_argreg, phex (regval, 4));
3601 write_register (float_argreg++, regval);
3602 if (mips_debug)
3603 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3604 argreg, phex (regval, 4));
3605 write_register (argreg++, regval);
3606
3607 /* Write the high word of the double to the odd register(s). */
3608 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3609 if (mips_debug)
3610 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3611 float_argreg, phex (regval, 4));
3612 write_register (float_argreg++, regval);
3613
3614 if (mips_debug)
3615 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3616 argreg, phex (regval, 4));
3617 write_register (argreg++, regval);
3618 }
3619 else
3620 {
3621 /* This is a floating point value that fits entirely
3622 in a single register. */
3623 /* On 32 bit ABI's the float_argreg is further adjusted
3624 above to ensure that it is even register aligned. */
3625 LONGEST regval = extract_unsigned_integer (val, len);
3626 if (mips_debug)
3627 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3628 float_argreg, phex (regval, len));
3629 write_register (float_argreg++, regval);
3630 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3631 registers for each argument. The below is (my
3632 guess) to ensure that the corresponding integer
3633 register has reserved the same space. */
3634 if (mips_debug)
3635 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3636 argreg, phex (regval, len));
3637 write_register (argreg, regval);
3638 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3639 }
3640 /* Reserve space for the FP register. */
3641 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3642 }
3643 else
3644 {
3645 /* Copy the argument to general registers or the stack in
3646 register-sized pieces. Large arguments are split between
3647 registers and stack. */
3648 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3649 are treated specially: Irix cc passes them in registers
3650 where gcc sometimes puts them on the stack. For maximum
3651 compatibility, we will put them in both places. */
3652 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3653 (len % MIPS_SAVED_REGSIZE != 0));
3654 /* Structures should be aligned to eight bytes (even arg registers)
3655 on MIPS_ABI_O32, if their first member has double precision. */
3656 if (MIPS_SAVED_REGSIZE < 8
3657 && mips_type_needs_double_align (arg_type))
3658 {
3659 if ((argreg & 1))
3660 argreg++;
3661 }
3662 /* Note: Floating-point values that didn't fit into an FP
3663 register are only written to memory. */
3664 while (len > 0)
3665 {
3666 /* Remember if the argument was written to the stack. */
3667 int stack_used_p = 0;
3668 int partial_len =
3669 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3670
3671 if (mips_debug)
3672 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3673 partial_len);
3674
3675 /* Write this portion of the argument to the stack. */
3676 if (argreg > MIPS_LAST_ARG_REGNUM
3677 || odd_sized_struct
3678 || fp_register_arg_p (typecode, arg_type))
3679 {
3680 /* Should shorter than int integer values be
3681 promoted to int before being stored? */
3682 int longword_offset = 0;
3683 CORE_ADDR addr;
3684 stack_used_p = 1;
3685 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3686 {
3687 if (MIPS_STACK_ARGSIZE == 8 &&
3688 (typecode == TYPE_CODE_INT ||
3689 typecode == TYPE_CODE_PTR ||
3690 typecode == TYPE_CODE_FLT) && len <= 4)
3691 longword_offset = MIPS_STACK_ARGSIZE - len;
3692 }
3693
3694 if (mips_debug)
3695 {
3696 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3697 paddr_nz (stack_offset));
3698 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3699 paddr_nz (longword_offset));
3700 }
3701
3702 addr = sp + stack_offset + longword_offset;
3703
3704 if (mips_debug)
3705 {
3706 int i;
3707 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3708 paddr_nz (addr));
3709 for (i = 0; i < partial_len; i++)
3710 {
3711 fprintf_unfiltered (gdb_stdlog, "%02x",
3712 val[i] & 0xff);
3713 }
3714 }
3715 write_memory (addr, val, partial_len);
3716 }
3717
3718 /* Note!!! This is NOT an else clause. Odd sized
3719 structs may go thru BOTH paths. Floating point
3720 arguments will not. */
3721 /* Write this portion of the argument to a general
3722 purpose register. */
3723 if (argreg <= MIPS_LAST_ARG_REGNUM
3724 && !fp_register_arg_p (typecode, arg_type))
3725 {
3726 LONGEST regval = extract_signed_integer (val, partial_len);
3727 /* Value may need to be sign extended, because
3728 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3729
3730 /* A non-floating-point argument being passed in a
3731 general register. If a struct or union, and if
3732 the remaining length is smaller than the register
3733 size, we have to adjust the register value on
3734 big endian targets.
3735
3736 It does not seem to be necessary to do the
3737 same for integral types.
3738
3739 Also don't do this adjustment on O64 binaries.
3740
3741 cagney/2001-07-23: gdb/179: Also, GCC, when
3742 outputting LE O32 with sizeof (struct) <
3743 MIPS_SAVED_REGSIZE, generates a left shift as
3744 part of storing the argument in a register a
3745 register (the left shift isn't generated when
3746 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3747 is quite possible that this is GCC contradicting
3748 the LE/O32 ABI, GDB has not been adjusted to
3749 accommodate this. Either someone needs to
3750 demonstrate that the LE/O32 ABI specifies such a
3751 left shift OR this new ABI gets identified as
3752 such and GDB gets tweaked accordingly. */
3753
3754 if (MIPS_SAVED_REGSIZE < 8
3755 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3756 && partial_len < MIPS_SAVED_REGSIZE
3757 && (typecode == TYPE_CODE_STRUCT ||
3758 typecode == TYPE_CODE_UNION))
3759 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3760 TARGET_CHAR_BIT);
3761
3762 if (mips_debug)
3763 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3764 argreg,
3765 phex (regval, MIPS_SAVED_REGSIZE));
3766 write_register (argreg, regval);
3767 argreg++;
3768
3769 /* Prevent subsequent floating point arguments from
3770 being passed in floating point registers. */
3771 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3772 }
3773
3774 len -= partial_len;
3775 val += partial_len;
3776
3777 /* Compute the the offset into the stack at which we
3778 will copy the next parameter.
3779
3780 In older ABIs, the caller reserved space for
3781 registers that contained arguments. This was loosely
3782 refered to as their "home". Consequently, space is
3783 always allocated. */
3784
3785 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3786 }
3787 }
3788 if (mips_debug)
3789 fprintf_unfiltered (gdb_stdlog, "\n");
3790 }
3791
3792 /* Return adjusted stack pointer. */
3793 return sp;
3794}
3795
f7ab6ec6 3796static void
acdb74a0 3797mips_pop_frame (void)
c906108c
SS
3798{
3799 register int regnum;
3800 struct frame_info *frame = get_current_frame ();
c193f6ac 3801 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3802 mips_extra_func_info_t proc_desc;
c906108c 3803
50abf9e5 3804 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3805 {
3806 generic_pop_dummy_frame ();
3807 flush_cached_frames ();
3808 return;
3809 }
3810
e227b13c 3811 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3812 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3813 mips_find_saved_regs (frame);
c906108c 3814 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3815 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3816 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3817 {
3818 /* Floating point registers must not be sign extended,
3819 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3820
3821 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3822 write_register (regnum,
b2fb4676 3823 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3824 MIPS_SAVED_REGSIZE));
3825 else
3826 write_register (regnum,
b2fb4676 3827 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3828 MIPS_SAVED_REGSIZE));
3829 }
757a7cc6 3830
c906108c
SS
3831 write_register (SP_REGNUM, new_sp);
3832 flush_cached_frames ();
3833
c5aa993b 3834 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3835 {
3836 struct linked_proc_info *pi_ptr, *prev_ptr;
3837
3838 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3839 pi_ptr != NULL;
3840 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3841 {
3842 if (&pi_ptr->info == proc_desc)
3843 break;
3844 }
3845
3846 if (pi_ptr == NULL)
3847 error ("Can't locate dummy extra frame info\n");
3848
3849 if (prev_ptr != NULL)
3850 prev_ptr->next = pi_ptr->next;
3851 else
3852 linked_proc_desc_table = pi_ptr->next;
3853
b8c9b27d 3854 xfree (pi_ptr);
c906108c
SS
3855
3856 write_register (HI_REGNUM,
c5aa993b 3857 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3858 MIPS_SAVED_REGSIZE));
c906108c 3859 write_register (LO_REGNUM,
c5aa993b 3860 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3861 MIPS_SAVED_REGSIZE));
c906108c
SS
3862 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3863 write_register (FCRCS_REGNUM,
c5aa993b 3864 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3865 MIPS_SAVED_REGSIZE));
c906108c
SS
3866 }
3867}
3868
dd824b04
DJ
3869/* Floating point register management.
3870
3871 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3872 64bit operations, these early MIPS cpus treat fp register pairs
3873 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3874 registers and offer a compatibility mode that emulates the MIPS2 fp
3875 model. When operating in MIPS2 fp compat mode, later cpu's split
3876 double precision floats into two 32-bit chunks and store them in
3877 consecutive fp regs. To display 64-bit floats stored in this
3878 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3879 Throw in user-configurable endianness and you have a real mess.
3880
3881 The way this works is:
3882 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3883 double-precision value will be split across two logical registers.
3884 The lower-numbered logical register will hold the low-order bits,
3885 regardless of the processor's endianness.
3886 - If we are on a 64-bit processor, and we are looking for a
3887 single-precision value, it will be in the low ordered bits
3888 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3889 save slot in memory.
3890 - If we are in 64-bit mode, everything is straightforward.
3891
3892 Note that this code only deals with "live" registers at the top of the
3893 stack. We will attempt to deal with saved registers later, when
3894 the raw/cooked register interface is in place. (We need a general
3895 interface that can deal with dynamic saved register sizes -- fp
3896 regs could be 32 bits wide in one frame and 64 on the frame above
3897 and below). */
3898
67b2c998
DJ
3899static struct type *
3900mips_float_register_type (void)
3901{
361d1df0 3902 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3903 return builtin_type_ieee_single_big;
3904 else
3905 return builtin_type_ieee_single_little;
3906}
3907
3908static struct type *
3909mips_double_register_type (void)
3910{
361d1df0 3911 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3912 return builtin_type_ieee_double_big;
3913 else
3914 return builtin_type_ieee_double_little;
3915}
3916
dd824b04
DJ
3917/* Copy a 32-bit single-precision value from the current frame
3918 into rare_buffer. */
3919
3920static void
e11c53d2
AC
3921mips_read_fp_register_single (struct frame_info *frame, int regno,
3922 char *rare_buffer)
dd824b04
DJ
3923{
3924 int raw_size = REGISTER_RAW_SIZE (regno);
3925 char *raw_buffer = alloca (raw_size);
3926
e11c53d2 3927 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3928 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3929 if (raw_size == 8)
3930 {
3931 /* We have a 64-bit value for this register. Find the low-order
3932 32 bits. */
3933 int offset;
3934
3935 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3936 offset = 4;
3937 else
3938 offset = 0;
3939
3940 memcpy (rare_buffer, raw_buffer + offset, 4);
3941 }
3942 else
3943 {
3944 memcpy (rare_buffer, raw_buffer, 4);
3945 }
3946}
3947
3948/* Copy a 64-bit double-precision value from the current frame into
3949 rare_buffer. This may include getting half of it from the next
3950 register. */
3951
3952static void
e11c53d2
AC
3953mips_read_fp_register_double (struct frame_info *frame, int regno,
3954 char *rare_buffer)
dd824b04
DJ
3955{
3956 int raw_size = REGISTER_RAW_SIZE (regno);
3957
3958 if (raw_size == 8 && !mips2_fp_compat ())
3959 {
3960 /* We have a 64-bit value for this register, and we should use
3961 all 64 bits. */
e11c53d2 3962 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
3963 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3964 }
3965 else
3966 {
3967 if ((regno - FP0_REGNUM) & 1)
3968 internal_error (__FILE__, __LINE__,
3969 "mips_read_fp_register_double: bad access to "
3970 "odd-numbered FP register");
3971
3972 /* mips_read_fp_register_single will find the correct 32 bits from
3973 each register. */
3974 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3975 {
e11c53d2
AC
3976 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3977 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3978 }
361d1df0 3979 else
dd824b04 3980 {
e11c53d2
AC
3981 mips_read_fp_register_single (frame, regno, rare_buffer);
3982 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3983 }
3984 }
3985}
3986
c906108c 3987static void
e11c53d2
AC
3988mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3989 int regnum)
c5aa993b 3990{ /* do values for FP (float) regs */
dd824b04 3991 char *raw_buffer;
c906108c 3992 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 3993 int inv1, inv2, namelen;
c5aa993b 3994
dd824b04 3995 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 3996
e11c53d2
AC
3997 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3998 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3999 "");
f0ef6b29 4000
dd824b04 4001 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4002 {
f0ef6b29
KB
4003 /* 4-byte registers: Print hex and floating. Also print even
4004 numbered registers as doubles. */
e11c53d2 4005 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4006 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4007
e11c53d2 4008 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4009
e11c53d2 4010 fprintf_filtered (file, " flt: ");
1adad886 4011 if (inv1)
e11c53d2 4012 fprintf_filtered (file, " <invalid float> ");
1adad886 4013 else
e11c53d2 4014 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4015
f0ef6b29
KB
4016 if (regnum % 2 == 0)
4017 {
e11c53d2 4018 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4019 doub = unpack_double (mips_double_register_type (), raw_buffer,
4020 &inv2);
1adad886 4021
e11c53d2 4022 fprintf_filtered (file, " dbl: ");
f0ef6b29 4023 if (inv2)
e11c53d2 4024 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4025 else
e11c53d2 4026 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4027 }
c906108c
SS
4028 }
4029 else
dd824b04 4030 {
f0ef6b29 4031 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4032 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4033 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4034
e11c53d2 4035 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4036 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4037
361d1df0 4038
e11c53d2 4039 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4040
e11c53d2 4041 fprintf_filtered (file, " flt: ");
1adad886 4042 if (inv1)
e11c53d2 4043 fprintf_filtered (file, "<invalid float>");
1adad886 4044 else
e11c53d2 4045 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4046
e11c53d2 4047 fprintf_filtered (file, " dbl: ");
f0ef6b29 4048 if (inv2)
e11c53d2 4049 fprintf_filtered (file, "<invalid double>");
1adad886 4050 else
e11c53d2 4051 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4052 }
4053}
4054
4055static void
e11c53d2
AC
4056mips_print_register (struct ui_file *file, struct frame_info *frame,
4057 int regnum, int all)
f0ef6b29 4058{
d9d9c31f 4059 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4060 int offset;
1adad886 4061
f0ef6b29
KB
4062 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4063 {
e11c53d2 4064 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4065 return;
4066 }
4067
4068 /* Get the data in raw format. */
e11c53d2 4069 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4070 {
e11c53d2 4071 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4072 return;
c906108c 4073 }
f0ef6b29 4074
e11c53d2 4075 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4076
4077 /* The problem with printing numeric register names (r26, etc.) is that
4078 the user can't use them on input. Probably the best solution is to
4079 fix it so that either the numeric or the funky (a2, etc.) names
4080 are accepted on input. */
4081 if (regnum < MIPS_NUMREGS)
e11c53d2 4082 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4083 else
e11c53d2 4084 fprintf_filtered (file, ": ");
f0ef6b29
KB
4085
4086 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4087 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4088 else
4089 offset = 0;
4090
4091 print_scalar_formatted (raw_buffer + offset,
4092 REGISTER_VIRTUAL_TYPE (regnum),
e11c53d2 4093 'x', 0, file);
c906108c
SS
4094}
4095
f0ef6b29
KB
4096/* Replacement for generic do_registers_info.
4097 Print regs in pretty columns. */
4098
4099static int
e11c53d2
AC
4100print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4101 int regnum)
f0ef6b29 4102{
e11c53d2
AC
4103 fprintf_filtered (file, " ");
4104 mips_print_fp_register (file, frame, regnum);
4105 fprintf_filtered (file, "\n");
f0ef6b29
KB
4106 return regnum + 1;
4107}
4108
4109
c906108c
SS
4110/* Print a row's worth of GP (int) registers, with name labels above */
4111
4112static int
e11c53d2
AC
4113print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4114 int regnum)
c906108c
SS
4115{
4116 /* do values for GP (int) regs */
d9d9c31f 4117 char raw_buffer[MAX_REGISTER_SIZE];
c906108c
SS
4118 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4119 int col, byte;
4120 int start_regnum = regnum;
4121 int numregs = NUM_REGS;
4122
4123
4124 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4125 fprintf_filtered (file, " ");
c906108c
SS
4126 for (col = 0; col < ncols && regnum < numregs; regnum++)
4127 {
4128 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4129 continue; /* unused register */
c906108c 4130 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4131 break; /* end the row: reached FP register */
e11c53d2
AC
4132 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4133 REGISTER_NAME (regnum));
c906108c
SS
4134 col++;
4135 }
e11c53d2
AC
4136 fprintf_filtered (file,
4137 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4138 start_regnum); /* print the R0 to R31 names */
c906108c
SS
4139
4140 regnum = start_regnum; /* go back to start of row */
4141 /* now print the values in hex, 4 or 8 to the row */
4142 for (col = 0; col < ncols && regnum < numregs; regnum++)
4143 {
4144 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4145 continue; /* unused register */
c906108c 4146 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4147 break; /* end row: reached FP register */
c906108c 4148 /* OK: get the data in raw format. */
e11c53d2 4149 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4150 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4151 /* pad small registers */
43e526b9 4152 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4153 printf_filtered (" ");
4154 /* Now print the register value in hex, endian order. */
d7449b42 4155 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4156 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4157 byte < REGISTER_RAW_SIZE (regnum);
4158 byte++)
e11c53d2 4159 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4160 else
43e526b9
JM
4161 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4162 byte >= 0;
4163 byte--)
e11c53d2
AC
4164 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4165 fprintf_filtered (file, " ");
c906108c
SS
4166 col++;
4167 }
c5aa993b 4168 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4169 fprintf_filtered (file, "\n");
c906108c
SS
4170
4171 return regnum;
4172}
4173
4174/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4175
bf1f5b4c 4176static void
e11c53d2
AC
4177mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4178 struct frame_info *frame, int regnum, int all)
c906108c 4179{
c5aa993b 4180 if (regnum != -1) /* do one specified register */
c906108c
SS
4181 {
4182 if (*(REGISTER_NAME (regnum)) == '\0')
4183 error ("Not a valid register for the current processor type");
4184
e11c53d2
AC
4185 mips_print_register (file, frame, regnum, 0);
4186 fprintf_filtered (file, "\n");
c906108c 4187 }
c5aa993b
JM
4188 else
4189 /* do all (or most) registers */
c906108c
SS
4190 {
4191 regnum = 0;
4192 while (regnum < NUM_REGS)
4193 {
c5aa993b 4194 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4195 {
4196 if (all) /* true for "INFO ALL-REGISTERS" command */
4197 regnum = print_fp_register_row (file, frame, regnum);
4198 else
4199 regnum += MIPS_NUMREGS; /* skip floating point regs */
4200 }
c906108c 4201 else
e11c53d2 4202 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4203 }
4204 }
4205}
4206
c906108c
SS
4207/* Is this a branch with a delay slot? */
4208
a14ed312 4209static int is_delayed (unsigned long);
c906108c
SS
4210
4211static int
acdb74a0 4212is_delayed (unsigned long insn)
c906108c
SS
4213{
4214 int i;
4215 for (i = 0; i < NUMOPCODES; ++i)
4216 if (mips_opcodes[i].pinfo != INSN_MACRO
4217 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4218 break;
4219 return (i < NUMOPCODES
4220 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4221 | INSN_COND_BRANCH_DELAY
4222 | INSN_COND_BRANCH_LIKELY)));
4223}
4224
4225int
acdb74a0 4226mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4227{
4228 char buf[MIPS_INSTLEN];
4229
4230 /* There is no branch delay slot on MIPS16. */
4231 if (pc_is_mips16 (pc))
4232 return 0;
4233
4234 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4235 /* If error reading memory, guess that it is not a delayed branch. */
4236 return 0;
c5aa993b 4237 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4238}
4239
4240
4241/* Skip the PC past function prologue instructions (32-bit version).
4242 This is a helper function for mips_skip_prologue. */
4243
4244static CORE_ADDR
f7b9e9fc 4245mips32_skip_prologue (CORE_ADDR pc)
c906108c 4246{
c5aa993b
JM
4247 t_inst inst;
4248 CORE_ADDR end_pc;
4249 int seen_sp_adjust = 0;
4250 int load_immediate_bytes = 0;
4251
4252 /* Skip the typical prologue instructions. These are the stack adjustment
4253 instruction and the instructions that save registers on the stack
4254 or in the gcc frame. */
4255 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4256 {
4257 unsigned long high_word;
c906108c 4258
c5aa993b
JM
4259 inst = mips_fetch_instruction (pc);
4260 high_word = (inst >> 16) & 0xffff;
c906108c 4261
c5aa993b
JM
4262 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4263 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4264 seen_sp_adjust = 1;
4265 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4266 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4267 seen_sp_adjust = 1;
4268 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4269 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4270 && (inst & 0x001F0000)) /* reg != $zero */
4271 continue;
4272
4273 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4274 continue;
4275 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4276 /* sx reg,n($s8) */
4277 continue; /* reg != $zero */
4278
4279 /* move $s8,$sp. With different versions of gas this will be either
4280 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4281 Accept any one of these. */
4282 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4283 continue;
4284
4285 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4286 continue;
4287 else if (high_word == 0x3c1c) /* lui $gp,n */
4288 continue;
4289 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4290 continue;
4291 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4292 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4293 continue;
4294 /* The following instructions load $at or $t0 with an immediate
4295 value in preparation for a stack adjustment via
4296 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4297 a local variable, so we accept them only before a stack adjustment
4298 instruction was seen. */
4299 else if (!seen_sp_adjust)
4300 {
4301 if (high_word == 0x3c01 || /* lui $at,n */
4302 high_word == 0x3c08) /* lui $t0,n */
4303 {
4304 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4305 continue;
4306 }
4307 else if (high_word == 0x3421 || /* ori $at,$at,n */
4308 high_word == 0x3508 || /* ori $t0,$t0,n */
4309 high_word == 0x3401 || /* ori $at,$zero,n */
4310 high_word == 0x3408) /* ori $t0,$zero,n */
4311 {
4312 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4313 continue;
4314 }
4315 else
4316 break;
4317 }
4318 else
4319 break;
c906108c
SS
4320 }
4321
c5aa993b
JM
4322 /* In a frameless function, we might have incorrectly
4323 skipped some load immediate instructions. Undo the skipping
4324 if the load immediate was not followed by a stack adjustment. */
4325 if (load_immediate_bytes && !seen_sp_adjust)
4326 pc -= load_immediate_bytes;
4327 return pc;
c906108c
SS
4328}
4329
4330/* Skip the PC past function prologue instructions (16-bit version).
4331 This is a helper function for mips_skip_prologue. */
4332
4333static CORE_ADDR
f7b9e9fc 4334mips16_skip_prologue (CORE_ADDR pc)
c906108c 4335{
c5aa993b
JM
4336 CORE_ADDR end_pc;
4337 int extend_bytes = 0;
4338 int prev_extend_bytes;
c906108c 4339
c5aa993b
JM
4340 /* Table of instructions likely to be found in a function prologue. */
4341 static struct
c906108c
SS
4342 {
4343 unsigned short inst;
4344 unsigned short mask;
c5aa993b
JM
4345 }
4346 table[] =
4347 {
c906108c 4348 {
c5aa993b
JM
4349 0x6300, 0xff00
4350 }
4351 , /* addiu $sp,offset */
4352 {
4353 0xfb00, 0xff00
4354 }
4355 , /* daddiu $sp,offset */
4356 {
4357 0xd000, 0xf800
4358 }
4359 , /* sw reg,n($sp) */
4360 {
4361 0xf900, 0xff00
4362 }
4363 , /* sd reg,n($sp) */
4364 {
4365 0x6200, 0xff00
4366 }
4367 , /* sw $ra,n($sp) */
4368 {
4369 0xfa00, 0xff00
4370 }
4371 , /* sd $ra,n($sp) */
4372 {
4373 0x673d, 0xffff
4374 }
4375 , /* move $s1,sp */
4376 {
4377 0xd980, 0xff80
4378 }
4379 , /* sw $a0-$a3,n($s1) */
4380 {
4381 0x6704, 0xff1c
4382 }
4383 , /* move reg,$a0-$a3 */
4384 {
4385 0xe809, 0xf81f
4386 }
4387 , /* entry pseudo-op */
4388 {
4389 0x0100, 0xff00
4390 }
4391 , /* addiu $s1,$sp,n */
4392 {
4393 0, 0
4394 } /* end of table marker */
4395 };
4396
4397 /* Skip the typical prologue instructions. These are the stack adjustment
4398 instruction and the instructions that save registers on the stack
4399 or in the gcc frame. */
4400 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4401 {
4402 unsigned short inst;
4403 int i;
c906108c 4404
c5aa993b 4405 inst = mips_fetch_instruction (pc);
c906108c 4406
c5aa993b
JM
4407 /* Normally we ignore an extend instruction. However, if it is
4408 not followed by a valid prologue instruction, we must adjust
4409 the pc back over the extend so that it won't be considered
4410 part of the prologue. */
4411 if ((inst & 0xf800) == 0xf000) /* extend */
4412 {
4413 extend_bytes = MIPS16_INSTLEN;
4414 continue;
4415 }
4416 prev_extend_bytes = extend_bytes;
4417 extend_bytes = 0;
c906108c 4418
c5aa993b
JM
4419 /* Check for other valid prologue instructions besides extend. */
4420 for (i = 0; table[i].mask != 0; i++)
4421 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4422 break;
4423 if (table[i].mask != 0) /* it was in table? */
4424 continue; /* ignore it */
4425 else
4426 /* non-prologue */
4427 {
4428 /* Return the current pc, adjusted backwards by 2 if
4429 the previous instruction was an extend. */
4430 return pc - prev_extend_bytes;
4431 }
c906108c
SS
4432 }
4433 return pc;
4434}
4435
4436/* To skip prologues, I use this predicate. Returns either PC itself
4437 if the code at PC does not look like a function prologue; otherwise
4438 returns an address that (if we're lucky) follows the prologue. If
4439 LENIENT, then we must skip everything which is involved in setting
4440 up the frame (it's OK to skip more, just so long as we don't skip
4441 anything which might clobber the registers which are being saved.
4442 We must skip more in the case where part of the prologue is in the
4443 delay slot of a non-prologue instruction). */
4444
f7ab6ec6 4445static CORE_ADDR
f7b9e9fc 4446mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4447{
4448 /* See if we can determine the end of the prologue via the symbol table.
4449 If so, then return either PC, or the PC after the prologue, whichever
4450 is greater. */
4451
4452 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4453
4454 if (post_prologue_pc != 0)
4455 return max (pc, post_prologue_pc);
4456
4457 /* Can't determine prologue from the symbol table, need to examine
4458 instructions. */
4459
4460 if (pc_is_mips16 (pc))
f7b9e9fc 4461 return mips16_skip_prologue (pc);
c906108c 4462 else
f7b9e9fc 4463 return mips32_skip_prologue (pc);
c906108c 4464}
c906108c 4465
7a292a7a
SS
4466/* Determine how a return value is stored within the MIPS register
4467 file, given the return type `valtype'. */
4468
4469struct return_value_word
4470{
4471 int len;
4472 int reg;
4473 int reg_offset;
4474 int buf_offset;
4475};
4476
7a292a7a 4477static void
acdb74a0
AC
4478return_value_location (struct type *valtype,
4479 struct return_value_word *hi,
4480 struct return_value_word *lo)
7a292a7a
SS
4481{
4482 int len = TYPE_LENGTH (valtype);
c5aa993b 4483
7a292a7a
SS
4484 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4485 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4486 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4487 {
4488 if (!FP_REGISTER_DOUBLE && len == 8)
4489 {
4490 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4491 spread them across a floating-point register pair. */
d7449b42
AC
4492 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4493 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4494 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4495 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4496 ? 4 : 0);
4497 hi->reg_offset = lo->reg_offset;
4498 lo->reg = FP0_REGNUM + 0;
4499 hi->reg = FP0_REGNUM + 1;
4500 lo->len = 4;
4501 hi->len = 4;
4502 }
4503 else
4504 {
4505 /* The floating point value fits in a single floating-point
c5aa993b 4506 register. */
d7449b42 4507 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4508 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4509 && len == 4)
4510 ? 4 : 0);
4511 lo->reg = FP0_REGNUM;
4512 lo->len = len;
4513 lo->buf_offset = 0;
4514 hi->len = 0;
4515 hi->reg_offset = 0;
4516 hi->buf_offset = 0;
4517 hi->reg = 0;
4518 }
4519 }
4520 else
4521 {
4522 /* Locate a result possibly spread across two registers. */
4523 int regnum = 2;
4524 lo->reg = regnum + 0;
4525 hi->reg = regnum + 1;
d7449b42 4526 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4527 && len < MIPS_SAVED_REGSIZE)
4528 {
bf1f5b4c
MS
4529 /* "un-left-justify" the value in the low register */
4530 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4531 lo->len = len;
bf1f5b4c 4532 hi->reg_offset = 0;
7a292a7a
SS
4533 hi->len = 0;
4534 }
d7449b42 4535 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4536 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4537 && len < MIPS_SAVED_REGSIZE * 2
4538 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4539 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4540 {
4541 /* "un-left-justify" the value spread across two registers. */
4542 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4543 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4544 hi->reg_offset = 0;
4545 hi->len = len - lo->len;
4546 }
4547 else
4548 {
4549 /* Only perform a partial copy of the second register. */
4550 lo->reg_offset = 0;
4551 hi->reg_offset = 0;
4552 if (len > MIPS_SAVED_REGSIZE)
4553 {
4554 lo->len = MIPS_SAVED_REGSIZE;
4555 hi->len = len - MIPS_SAVED_REGSIZE;
4556 }
4557 else
4558 {
4559 lo->len = len;
4560 hi->len = 0;
4561 }
4562 }
d7449b42 4563 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4564 && REGISTER_RAW_SIZE (regnum) == 8
4565 && MIPS_SAVED_REGSIZE == 4)
4566 {
4567 /* Account for the fact that only the least-signficant part
c5aa993b 4568 of the register is being used */
7a292a7a
SS
4569 lo->reg_offset += 4;
4570 hi->reg_offset += 4;
4571 }
4572 lo->buf_offset = 0;
4573 hi->buf_offset = lo->len;
4574 }
4575}
4576
4577/* Given a return value in `regbuf' with a type `valtype', extract and
4578 copy its value into `valbuf'. */
4579
46cac009
AC
4580static void
4581mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4582 char regbuf[],
46cac009
AC
4583 char *valbuf)
4584{
4585 struct return_value_word lo;
4586 struct return_value_word hi;
4587 return_value_location (valtype, &hi, &lo);
4588
4589 memcpy (valbuf + lo.buf_offset,
4590 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4591 lo.len);
4592
4593 if (hi.len > 0)
4594 memcpy (valbuf + hi.buf_offset,
4595 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4596 hi.len);
4597}
4598
46cac009
AC
4599static void
4600mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4601 char regbuf[],
46cac009
AC
4602 char *valbuf)
4603{
4604 struct return_value_word lo;
4605 struct return_value_word hi;
4606 return_value_location (valtype, &hi, &lo);
4607
4608 memcpy (valbuf + lo.buf_offset,
4609 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4610 lo.len);
4611
4612 if (hi.len > 0)
4613 memcpy (valbuf + hi.buf_offset,
4614 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4615 hi.len);
4616}
4617
7a292a7a
SS
4618/* Given a return value in `valbuf' with a type `valtype', write it's
4619 value into the appropriate register. */
4620
46cac009
AC
4621static void
4622mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4623{
d9d9c31f 4624 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4625 struct return_value_word lo;
4626 struct return_value_word hi;
4627 return_value_location (valtype, &hi, &lo);
4628
4629 memset (raw_buffer, 0, sizeof (raw_buffer));
4630 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4631 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4632 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4633
4634 if (hi.len > 0)
4635 {
4636 memset (raw_buffer, 0, sizeof (raw_buffer));
4637 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4638 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4639 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4640 }
4641}
4642
4643static void
cb1d2653 4644mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4645{
d9d9c31f 4646 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4647 struct return_value_word lo;
4648 struct return_value_word hi;
4649 return_value_location (valtype, &hi, &lo);
4650
4651 memset (raw_buffer, 0, sizeof (raw_buffer));
4652 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4653 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4654 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4655
4656 if (hi.len > 0)
4657 {
4658 memset (raw_buffer, 0, sizeof (raw_buffer));
4659 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4660 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4661 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4662 }
4663}
4664
cb1d2653
AC
4665/* O32 ABI stuff. */
4666
46cac009 4667static void
cb1d2653
AC
4668mips_o32_xfer_return_value (struct type *type,
4669 struct regcache *regcache,
4670 bfd_byte *in, const bfd_byte *out)
46cac009 4671{
cb1d2653
AC
4672 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4673 if (TYPE_CODE (type) == TYPE_CODE_FLT
4674 && TYPE_LENGTH (type) == 4
4675 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4676 {
cb1d2653
AC
4677 /* A single-precision floating-point value. It fits in the
4678 least significant part of FP0. */
4679 if (mips_debug)
4680 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4681 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4682 TARGET_BYTE_ORDER, in, out, 0);
4683 }
4684 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4685 && TYPE_LENGTH (type) == 8
4686 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4687 {
4688 /* A double-precision floating-point value. It fits in the
4689 least significant part of FP0/FP1 but with byte ordering
4690 based on the target (???). */
4691 if (mips_debug)
4692 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4693 switch (TARGET_BYTE_ORDER)
4694 {
4695 case BFD_ENDIAN_LITTLE:
4696 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4697 TARGET_BYTE_ORDER, in, out, 0);
4698 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4699 TARGET_BYTE_ORDER, in, out, 4);
4700 break;
4701 case BFD_ENDIAN_BIG:
4702 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4703 TARGET_BYTE_ORDER, in, out, 0);
4704 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4705 TARGET_BYTE_ORDER, in, out, 4);
4706 break;
4707 default:
4708 internal_error (__FILE__, __LINE__, "bad switch");
4709 }
4710 }
4711#if 0
4712 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4713 && TYPE_NFIELDS (type) <= 2
4714 && TYPE_NFIELDS (type) >= 1
4715 && ((TYPE_NFIELDS (type) == 1
4716 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4717 == TYPE_CODE_FLT))
4718 || (TYPE_NFIELDS (type) == 2
4719 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4720 == TYPE_CODE_FLT)
4721 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4722 == TYPE_CODE_FLT)))
4723 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4724 {
4725 /* A struct that contains one or two floats. Each value is part
4726 in the least significant part of their floating point
4727 register.. */
d9d9c31f 4728 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4729 int regnum;
4730 int field;
4731 for (field = 0, regnum = FP0_REGNUM;
4732 field < TYPE_NFIELDS (type);
4733 field++, regnum += 2)
4734 {
4735 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4736 / TARGET_CHAR_BIT);
4737 if (mips_debug)
4738 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4739 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4740 TARGET_BYTE_ORDER, in, out, offset);
4741 }
4742 }
4743#endif
4744#if 0
4745 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4746 || TYPE_CODE (type) == TYPE_CODE_UNION)
4747 {
4748 /* A structure or union. Extract the left justified value,
4749 regardless of the byte order. I.e. DO NOT USE
4750 mips_xfer_lower. */
4751 int offset;
4752 int regnum;
4753 for (offset = 0, regnum = V0_REGNUM;
4754 offset < TYPE_LENGTH (type);
4755 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4756 {
4757 int xfer = REGISTER_RAW_SIZE (regnum);
4758 if (offset + xfer > TYPE_LENGTH (type))
4759 xfer = TYPE_LENGTH (type) - offset;
4760 if (mips_debug)
4761 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4762 offset, xfer, regnum);
4763 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4764 in, out, offset);
4765 }
4766 }
4767#endif
4768 else
4769 {
4770 /* A scalar extract each part but least-significant-byte
4771 justified. o32 thinks registers are 4 byte, regardless of
4772 the ISA. mips_stack_argsize controls this. */
4773 int offset;
4774 int regnum;
4775 for (offset = 0, regnum = V0_REGNUM;
4776 offset < TYPE_LENGTH (type);
4777 offset += mips_stack_argsize (), regnum++)
4778 {
4779 int xfer = mips_stack_argsize ();
4780 int pos = 0;
4781 if (offset + xfer > TYPE_LENGTH (type))
4782 xfer = TYPE_LENGTH (type) - offset;
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4785 offset, xfer, regnum);
4786 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4787 in, out, offset);
4788 }
46cac009
AC
4789 }
4790}
4791
cb1d2653
AC
4792static void
4793mips_o32_extract_return_value (struct type *type,
4794 struct regcache *regcache,
ebba8386 4795 void *valbuf)
cb1d2653
AC
4796{
4797 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4798}
4799
4800static void
4801mips_o32_store_return_value (struct type *type, char *valbuf)
4802{
4803 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4804}
4805
4806/* N32/N44 ABI stuff. */
4807
46cac009 4808static void
88658117
AC
4809mips_n32n64_xfer_return_value (struct type *type,
4810 struct regcache *regcache,
4811 bfd_byte *in, const bfd_byte *out)
c906108c 4812{
88658117
AC
4813 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4814 if (TYPE_CODE (type) == TYPE_CODE_FLT
4815 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4816 {
88658117
AC
4817 /* A floating-point value belongs in the least significant part
4818 of FP0. */
4819 if (mips_debug)
4820 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4821 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4822 TARGET_BYTE_ORDER, in, out, 0);
4823 }
4824 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4825 && TYPE_NFIELDS (type) <= 2
4826 && TYPE_NFIELDS (type) >= 1
4827 && ((TYPE_NFIELDS (type) == 1
4828 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4829 == TYPE_CODE_FLT))
4830 || (TYPE_NFIELDS (type) == 2
4831 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4832 == TYPE_CODE_FLT)
4833 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4834 == TYPE_CODE_FLT)))
4835 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4836 {
4837 /* A struct that contains one or two floats. Each value is part
4838 in the least significant part of their floating point
4839 register.. */
d9d9c31f 4840 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4841 int regnum;
4842 int field;
4843 for (field = 0, regnum = FP0_REGNUM;
4844 field < TYPE_NFIELDS (type);
4845 field++, regnum += 2)
4846 {
4847 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4848 / TARGET_CHAR_BIT);
4849 if (mips_debug)
4850 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4851 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4852 TARGET_BYTE_ORDER, in, out, offset);
4853 }
7a292a7a 4854 }
88658117
AC
4855 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4856 || TYPE_CODE (type) == TYPE_CODE_UNION)
4857 {
4858 /* A structure or union. Extract the left justified value,
4859 regardless of the byte order. I.e. DO NOT USE
4860 mips_xfer_lower. */
4861 int offset;
4862 int regnum;
4863 for (offset = 0, regnum = V0_REGNUM;
4864 offset < TYPE_LENGTH (type);
4865 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4866 {
4867 int xfer = REGISTER_RAW_SIZE (regnum);
4868 if (offset + xfer > TYPE_LENGTH (type))
4869 xfer = TYPE_LENGTH (type) - offset;
4870 if (mips_debug)
4871 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4872 offset, xfer, regnum);
4873 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4874 in, out, offset);
4875 }
4876 }
4877 else
4878 {
4879 /* A scalar extract each part but least-significant-byte
4880 justified. */
4881 int offset;
4882 int regnum;
4883 for (offset = 0, regnum = V0_REGNUM;
4884 offset < TYPE_LENGTH (type);
4885 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4886 {
4887 int xfer = REGISTER_RAW_SIZE (regnum);
4888 int pos = 0;
4889 if (offset + xfer > TYPE_LENGTH (type))
4890 xfer = TYPE_LENGTH (type) - offset;
4891 if (mips_debug)
4892 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4893 offset, xfer, regnum);
4894 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4895 in, out, offset);
4896 }
4897 }
4898}
4899
4900static void
4901mips_n32n64_extract_return_value (struct type *type,
4902 struct regcache *regcache,
ebba8386 4903 void *valbuf)
88658117
AC
4904{
4905 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4906}
4907
4908static void
4909mips_n32n64_store_return_value (struct type *type, char *valbuf)
4910{
4911 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4912}
4913
2f1488ce 4914static CORE_ADDR
6672060b 4915mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4916{
4917 /* FIXME: This will only work at random. The caller passes the
4918 struct_return address in V0, but it is not preserved. It may
4919 still be there, or this may be a random value. */
77d8f2b4
MS
4920 LONGEST val;
4921
4922 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4923 return val;
2f1488ce
MS
4924}
4925
c906108c
SS
4926/* Exported procedure: Is PC in the signal trampoline code */
4927
102182a9
MS
4928static int
4929mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4930{
4931 if (sigtramp_address == 0)
4932 fixup_sigtramp ();
4933 return (pc >= sigtramp_address && pc < sigtramp_end);
4934}
4935
a5ea2558
AC
4936/* Root of all "set mips "/"show mips " commands. This will eventually be
4937 used for all MIPS-specific commands. */
4938
a5ea2558 4939static void
acdb74a0 4940show_mips_command (char *args, int from_tty)
a5ea2558
AC
4941{
4942 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4943}
4944
a5ea2558 4945static void
acdb74a0 4946set_mips_command (char *args, int from_tty)
a5ea2558
AC
4947{
4948 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4949 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4950}
4951
c906108c
SS
4952/* Commands to show/set the MIPS FPU type. */
4953
c906108c 4954static void
acdb74a0 4955show_mipsfpu_command (char *args, int from_tty)
c906108c 4956{
c906108c
SS
4957 char *fpu;
4958 switch (MIPS_FPU_TYPE)
4959 {
4960 case MIPS_FPU_SINGLE:
4961 fpu = "single-precision";
4962 break;
4963 case MIPS_FPU_DOUBLE:
4964 fpu = "double-precision";
4965 break;
4966 case MIPS_FPU_NONE:
4967 fpu = "absent (none)";
4968 break;
93d56215
AC
4969 default:
4970 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4971 }
4972 if (mips_fpu_type_auto)
4973 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4974 fpu);
4975 else
4976 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4977 fpu);
4978}
4979
4980
c906108c 4981static void
acdb74a0 4982set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
4983{
4984 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4985 show_mipsfpu_command (args, from_tty);
4986}
4987
c906108c 4988static void
acdb74a0 4989set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
4990{
4991 mips_fpu_type = MIPS_FPU_SINGLE;
4992 mips_fpu_type_auto = 0;
9e364162 4993 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
4994}
4995
c906108c 4996static void
acdb74a0 4997set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
4998{
4999 mips_fpu_type = MIPS_FPU_DOUBLE;
5000 mips_fpu_type_auto = 0;
9e364162 5001 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5002}
5003
c906108c 5004static void
acdb74a0 5005set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5006{
5007 mips_fpu_type = MIPS_FPU_NONE;
5008 mips_fpu_type_auto = 0;
9e364162 5009 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5010}
5011
c906108c 5012static void
acdb74a0 5013set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5014{
5015 mips_fpu_type_auto = 1;
5016}
5017
5018/* Command to set the processor type. */
5019
5020void
acdb74a0 5021mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5022{
5023 int i;
5024
5025 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5026 {
5027 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5028 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5029 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5030
5031 /* Restore the value. */
4fcf66da 5032 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5033
5034 return;
5035 }
c5aa993b 5036
c906108c
SS
5037 if (!mips_set_processor_type (tmp_mips_processor_type))
5038 {
5039 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5040 /* Restore its value. */
4fcf66da 5041 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5042 }
5043}
5044
5045static void
acdb74a0 5046mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5047{
5048}
5049
5050/* Modify the actual processor type. */
5051
5a89d8aa 5052static int
acdb74a0 5053mips_set_processor_type (char *str)
c906108c 5054{
1012bd0e 5055 int i;
c906108c
SS
5056
5057 if (str == NULL)
5058 return 0;
5059
5060 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5061 {
5062 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5063 {
5064 mips_processor_type = str;
cce74817 5065 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5066 return 1;
c906108c
SS
5067 /* FIXME tweak fpu flag too */
5068 }
5069 }
5070
5071 return 0;
5072}
5073
5074/* Attempt to identify the particular processor model by reading the
5075 processor id. */
5076
5077char *
acdb74a0 5078mips_read_processor_type (void)
c906108c
SS
5079{
5080 CORE_ADDR prid;
5081
5082 prid = read_register (PRID_REGNUM);
5083
5084 if ((prid & ~0xf) == 0x700)
c5aa993b 5085 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5086
5087 return NULL;
5088}
5089
5090/* Just like reinit_frame_cache, but with the right arguments to be
5091 callable as an sfunc. */
5092
5093static void
acdb74a0
AC
5094reinit_frame_cache_sfunc (char *args, int from_tty,
5095 struct cmd_list_element *c)
c906108c
SS
5096{
5097 reinit_frame_cache ();
5098}
5099
5100int
acdb74a0 5101gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5102{
5103 mips_extra_func_info_t proc_desc;
5104
5105 /* Search for the function containing this address. Set the low bit
5106 of the address when searching, in case we were given an even address
5107 that is the start of a 16-bit function. If we didn't do this,
5108 the search would fail because the symbol table says the function
5109 starts at an odd address, i.e. 1 byte past the given address. */
5110 memaddr = ADDR_BITS_REMOVE (memaddr);
5111 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5112
5113 /* Make an attempt to determine if this is a 16-bit function. If
5114 the procedure descriptor exists and the address therein is odd,
5115 it's definitely a 16-bit function. Otherwise, we have to just
5116 guess that if the address passed in is odd, it's 16-bits. */
5117 if (proc_desc)
361d1df0 5118 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 5119 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 5120 else
361d1df0 5121 info->mach = pc_is_mips16 (memaddr) ?
65c11066 5122 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
5123
5124 /* Round down the instruction address to the appropriate boundary. */
65c11066 5125 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5126
c906108c 5127 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5128 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5129 return print_insn_big_mips (memaddr, info);
5130 else
5131 return print_insn_little_mips (memaddr, info);
5132}
5133
c906108c
SS
5134/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5135 counter value to determine whether a 16- or 32-bit breakpoint should be
5136 used. It returns a pointer to a string of bytes that encode a breakpoint
5137 instruction, stores the length of the string to *lenptr, and adjusts pc
5138 (if necessary) to point to the actual memory location where the
5139 breakpoint should be inserted. */
5140
f7ab6ec6 5141static const unsigned char *
acdb74a0 5142mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5143{
d7449b42 5144 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5145 {
5146 if (pc_is_mips16 (*pcptr))
5147 {
aaab4dba 5148 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
c906108c 5149 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5150 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5151 return mips16_big_breakpoint;
5152 }
5153 else
5154 {
aaab4dba
AC
5155 /* The IDT board uses an unusual breakpoint value, and
5156 sometimes gets confused when it sees the usual MIPS
5157 breakpoint instruction. */
5158 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5159 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5160 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5161
c5aa993b 5162 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5163
5164 if (strcmp (target_shortname, "mips") == 0)
5165 return idt_big_breakpoint;
5166 else if (strcmp (target_shortname, "ddb") == 0
5167 || strcmp (target_shortname, "pmon") == 0
5168 || strcmp (target_shortname, "lsi") == 0)
5169 return pmon_big_breakpoint;
5170 else
5171 return big_breakpoint;
5172 }
5173 }
5174 else
5175 {
5176 if (pc_is_mips16 (*pcptr))
5177 {
aaab4dba 5178 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
c906108c 5179 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 5180 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5181 return mips16_little_breakpoint;
5182 }
5183 else
5184 {
aaab4dba
AC
5185 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5186 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5187 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5188
c5aa993b 5189 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5190
5191 if (strcmp (target_shortname, "mips") == 0)
5192 return idt_little_breakpoint;
5193 else if (strcmp (target_shortname, "ddb") == 0
5194 || strcmp (target_shortname, "pmon") == 0
5195 || strcmp (target_shortname, "lsi") == 0)
5196 return pmon_little_breakpoint;
5197 else
5198 return little_breakpoint;
5199 }
5200 }
5201}
5202
5203/* If PC is in a mips16 call or return stub, return the address of the target
5204 PC, which is either the callee or the caller. There are several
5205 cases which must be handled:
5206
5207 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5208 target PC is in $31 ($ra).
c906108c 5209 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5210 and the target PC is in $2.
c906108c 5211 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5212 before the jal instruction, this is effectively a call stub
5213 and the the target PC is in $2. Otherwise this is effectively
5214 a return stub and the target PC is in $18.
c906108c
SS
5215
5216 See the source code for the stubs in gcc/config/mips/mips16.S for
5217 gory details.
5218
5219 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5220 */
c906108c 5221
757a7cc6 5222static CORE_ADDR
acdb74a0 5223mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5224{
5225 char *name;
5226 CORE_ADDR start_addr;
5227
5228 /* Find the starting address and name of the function containing the PC. */
5229 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5230 return 0;
5231
5232 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5233 target PC is in $31 ($ra). */
5234 if (strcmp (name, "__mips16_ret_sf") == 0
5235 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5236 return read_signed_register (RA_REGNUM);
c906108c
SS
5237
5238 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5239 {
5240 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5241 and the target PC is in $2. */
5242 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5243 return read_signed_register (2);
c906108c
SS
5244
5245 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5246 before the jal instruction, this is effectively a call stub
5247 and the the target PC is in $2. Otherwise this is effectively
5248 a return stub and the target PC is in $18. */
c906108c
SS
5249 else if (name[19] == 's' || name[19] == 'd')
5250 {
5251 if (pc == start_addr)
5252 {
5253 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5254 stub. Such a stub for a function bar might have a name
5255 like __fn_stub_bar, and might look like this:
5256 mfc1 $4,$f13
5257 mfc1 $5,$f12
5258 mfc1 $6,$f15
5259 mfc1 $7,$f14
5260 la $1,bar (becomes a lui/addiu pair)
5261 jr $1
5262 So scan down to the lui/addi and extract the target
5263 address from those two instructions. */
c906108c 5264
6c997a34 5265 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5266 t_inst inst;
5267 int i;
5268
5269 /* See if the name of the target function is __fn_stub_*. */
5270 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5271 return target_pc;
5272 if (strncmp (name, "__fn_stub_", 10) != 0
5273 && strcmp (name, "etext") != 0
5274 && strcmp (name, "_etext") != 0)
5275 return target_pc;
5276
5277 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5278 The limit on the search is arbitrarily set to 20
5279 instructions. FIXME. */
c906108c
SS
5280 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5281 {
c5aa993b
JM
5282 inst = mips_fetch_instruction (target_pc);
5283 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5284 pc = (inst << 16) & 0xffff0000; /* high word */
5285 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5286 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5287 }
5288
5289 /* Couldn't find the lui/addui pair, so return stub address. */
5290 return target_pc;
5291 }
5292 else
5293 /* This is the 'return' part of a call stub. The return
5294 address is in $r18. */
6c997a34 5295 return read_signed_register (18);
c906108c
SS
5296 }
5297 }
c5aa993b 5298 return 0; /* not a stub */
c906108c
SS
5299}
5300
5301
5302/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5303 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5304
757a7cc6 5305static int
acdb74a0 5306mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5307{
5308 CORE_ADDR start_addr;
5309
5310 /* Find the starting address of the function containing the PC. If the
5311 caller didn't give us a name, look it up at the same time. */
5312 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5313 return 0;
5314
5315 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5316 {
5317 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5318 if (name[19] >= '0' && name[19] <= '9')
5319 return 1;
5320 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5321 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5322 else if (name[19] == 's' || name[19] == 'd')
5323 return pc == start_addr;
5324 }
5325
c5aa993b 5326 return 0; /* not a stub */
c906108c
SS
5327}
5328
5329
5330/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5331 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5332
e41b17f0 5333static int
acdb74a0 5334mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5335{
5336 CORE_ADDR start_addr;
5337
5338 /* Find the starting address of the function containing the PC. */
5339 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5340 return 0;
5341
5342 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5343 if (strcmp (name, "__mips16_ret_sf") == 0
5344 || strcmp (name, "__mips16_ret_df") == 0)
5345 return 1;
5346
5347 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5348 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5349 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5350 && (name[19] == 's' || name[19] == 'd')
5351 && pc != start_addr)
5352 return 1;
5353
c5aa993b 5354 return 0; /* not a stub */
c906108c
SS
5355}
5356
5357
5358/* Return non-zero if the PC is in a library helper function that should
5359 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5360
5361int
acdb74a0 5362mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5363{
5364 char *name;
5365
5366 /* Find the starting address and name of the function containing the PC. */
5367 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5368 return 0;
5369
5370 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5371 that we want to ignore. */
5372 return (strcmp (name, "__mips16_ret_sf") == 0
5373 || strcmp (name, "__mips16_ret_df") == 0);
5374}
5375
5376
5377/* Return a location where we can set a breakpoint that will be hit
5378 when an inferior function call returns. This is normally the
5379 program's entry point. Executables that don't have an entry
5380 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5381 whose address is the location where the breakpoint should be placed. */
5382
f7ab6ec6 5383static CORE_ADDR
acdb74a0 5384mips_call_dummy_address (void)
c906108c
SS
5385{
5386 struct minimal_symbol *sym;
5387
5388 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5389 if (sym)
5390 return SYMBOL_VALUE_ADDRESS (sym);
5391 else
5392 return entry_point_address ();
5393}
5394
5395
47a8d4ba
AC
5396/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5397 the register stored on the stack (32) is different to its real raw
5398 size (64). The below ensures that registers are fetched from the
5399 stack using their ABI size and then stored into the RAW_BUFFER
5400 using their raw size.
5401
5402 The alternative to adding this function would be to add an ABI
5403 macro - REGISTER_STACK_SIZE(). */
5404
5405static void
acdb74a0 5406mips_get_saved_register (char *raw_buffer,
795e1e11 5407 int *optimizedp,
acdb74a0
AC
5408 CORE_ADDR *addrp,
5409 struct frame_info *frame,
5410 int regnum,
795e1e11 5411 enum lval_type *lvalp)
47a8d4ba 5412{
795e1e11
AC
5413 CORE_ADDR addrx;
5414 enum lval_type lvalx;
5415 int optimizedx;
47a8d4ba
AC
5416
5417 if (!target_has_registers)
5418 error ("No registers.");
5419
795e1e11
AC
5420 /* Make certain that all needed parameters are present. */
5421 if (addrp == NULL)
5422 addrp = &addrx;
5423 if (lvalp == NULL)
5424 lvalp = &lvalx;
5425 if (optimizedp == NULL)
5426 optimizedp = &optimizedx;
f796e4be
KB
5427 generic_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5428 regnum, lvalp);
795e1e11
AC
5429 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5430 have a pseudo register range that correspons to the ABI's, rather
5431 than the ISA's, view of registers. These registers would then
5432 implicitly describe their size and hence could be used without
5433 the below munging. */
5434 if ((*lvalp) == lval_memory)
47a8d4ba 5435 {
47a8d4ba
AC
5436 if (raw_buffer != NULL)
5437 {
47a8d4ba 5438 if (regnum < 32)
795e1e11
AC
5439 {
5440 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5441 saved. */
5442 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
fbd9dcd3 5443 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
795e1e11 5444 }
47a8d4ba
AC
5445 }
5446 }
47a8d4ba 5447}
2acceee2 5448
f7b9e9fc
AC
5449/* Immediately after a function call, return the saved pc.
5450 Can't always go through the frames for this because on some machines
5451 the new frame is not set up until the new function executes
5452 some instructions. */
5453
5454static CORE_ADDR
5455mips_saved_pc_after_call (struct frame_info *frame)
5456{
6c997a34 5457 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5458}
5459
5460
88c72b7d
AC
5461/* Convert a dbx stab register number (from `r' declaration) to a gdb
5462 REGNUM */
5463
5464static int
5465mips_stab_reg_to_regnum (int num)
5466{
2f38ef89 5467 if (num >= 0 && num < 32)
88c72b7d 5468 return num;
2f38ef89 5469 else if (num >= 38 && num < 70)
88c72b7d 5470 return num + FP0_REGNUM - 38;
040b99fd
KB
5471 else if (num == 70)
5472 return HI_REGNUM;
5473 else if (num == 71)
5474 return LO_REGNUM;
2f38ef89
KB
5475 else
5476 {
5477 /* This will hopefully (eventually) provoke a warning. Should
5478 we be calling complaint() here? */
5479 return NUM_REGS + NUM_PSEUDO_REGS;
5480 }
88c72b7d
AC
5481}
5482
2f38ef89
KB
5483
5484/* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
88c72b7d
AC
5485
5486static int
2f38ef89 5487mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5488{
2f38ef89 5489 if (num >= 0 && num < 32)
88c72b7d 5490 return num;
2f38ef89 5491 else if (num >= 32 && num < 64)
88c72b7d 5492 return num + FP0_REGNUM - 32;
040b99fd
KB
5493 else if (num == 64)
5494 return HI_REGNUM;
5495 else if (num == 65)
5496 return LO_REGNUM;
2f38ef89
KB
5497 else
5498 {
5499 /* This will hopefully (eventually) provoke a warning. Should
5500 we be calling complaint() here? */
5501 return NUM_REGS + NUM_PSEUDO_REGS;
5502 }
88c72b7d
AC
5503}
5504
2f38ef89 5505
fc0c74b1
AC
5506/* Convert an integer into an address. By first converting the value
5507 into a pointer and then extracting it signed, the address is
5508 guarenteed to be correctly sign extended. */
5509
5510static CORE_ADDR
5511mips_integer_to_address (struct type *type, void *buf)
5512{
5513 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5514 LONGEST val = unpack_long (type, buf);
5515 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5516 return extract_signed_integer (tmp,
5517 TYPE_LENGTH (builtin_type_void_data_ptr));
5518}
5519
caaa3122
DJ
5520static void
5521mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5522{
5523 enum mips_abi *abip = (enum mips_abi *) obj;
5524 const char *name = bfd_get_section_name (abfd, sect);
5525
5526 if (*abip != MIPS_ABI_UNKNOWN)
5527 return;
5528
5529 if (strncmp (name, ".mdebug.", 8) != 0)
5530 return;
5531
5532 if (strcmp (name, ".mdebug.abi32") == 0)
5533 *abip = MIPS_ABI_O32;
5534 else if (strcmp (name, ".mdebug.abiN32") == 0)
5535 *abip = MIPS_ABI_N32;
62a49b2c 5536 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5537 *abip = MIPS_ABI_N64;
caaa3122
DJ
5538 else if (strcmp (name, ".mdebug.abiO64") == 0)
5539 *abip = MIPS_ABI_O64;
5540 else if (strcmp (name, ".mdebug.eabi32") == 0)
5541 *abip = MIPS_ABI_EABI32;
5542 else if (strcmp (name, ".mdebug.eabi64") == 0)
5543 *abip = MIPS_ABI_EABI64;
5544 else
5545 warning ("unsupported ABI %s.", name + 8);
5546}
5547
2e4ebe70
DJ
5548static enum mips_abi
5549global_mips_abi (void)
5550{
5551 int i;
5552
5553 for (i = 0; mips_abi_strings[i] != NULL; i++)
5554 if (mips_abi_strings[i] == mips_abi_string)
5555 return (enum mips_abi) i;
5556
5557 internal_error (__FILE__, __LINE__,
5558 "unknown ABI string");
5559}
5560
c2d11a7d 5561static struct gdbarch *
acdb74a0
AC
5562mips_gdbarch_init (struct gdbarch_info info,
5563 struct gdbarch_list *arches)
c2d11a7d 5564{
c2d11a7d
JM
5565 struct gdbarch *gdbarch;
5566 struct gdbarch_tdep *tdep;
5567 int elf_flags;
2e4ebe70 5568 enum mips_abi mips_abi, found_abi, wanted_abi;
c2d11a7d 5569
1d06468c
EZ
5570 /* Reset the disassembly info, in case it was set to something
5571 non-default. */
810ecf9f
AC
5572 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5573 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5574 deprecated_tm_print_insn_info.mach = 0;
1d06468c 5575
70f80edf
JT
5576 elf_flags = 0;
5577
5578 if (info.abfd)
5579 {
5580 /* First of all, extract the elf_flags, if available. */
5581 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5582 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5583 }
c2d11a7d 5584
102182a9 5585 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5586 switch ((elf_flags & EF_MIPS_ABI))
5587 {
5588 case E_MIPS_ABI_O32:
5589 mips_abi = MIPS_ABI_O32;
5590 break;
5591 case E_MIPS_ABI_O64:
5592 mips_abi = MIPS_ABI_O64;
5593 break;
5594 case E_MIPS_ABI_EABI32:
5595 mips_abi = MIPS_ABI_EABI32;
5596 break;
5597 case E_MIPS_ABI_EABI64:
4a7f7ba8 5598 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5599 break;
5600 default:
acdb74a0
AC
5601 if ((elf_flags & EF_MIPS_ABI2))
5602 mips_abi = MIPS_ABI_N32;
5603 else
5604 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5605 break;
5606 }
acdb74a0 5607
caaa3122
DJ
5608 /* GCC creates a pseudo-section whose name describes the ABI. */
5609 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5610 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5611
2e4ebe70
DJ
5612 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5613 Use the ABI from the last architecture if there is one. */
5614 if (info.abfd == NULL && arches != NULL)
5615 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5616
32a6503c 5617 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5618 if (mips_abi == MIPS_ABI_UNKNOWN
5619 && info.bfd_arch_info != NULL
5620 && info.bfd_arch_info->arch == bfd_arch_mips)
5621 {
5622 switch (info.bfd_arch_info->mach)
5623 {
5624 case bfd_mach_mips3900:
5625 mips_abi = MIPS_ABI_EABI32;
5626 break;
5627 case bfd_mach_mips4100:
5628 case bfd_mach_mips5000:
5629 mips_abi = MIPS_ABI_EABI64;
5630 break;
1d06468c
EZ
5631 case bfd_mach_mips8000:
5632 case bfd_mach_mips10000:
32a6503c
KB
5633 /* On Irix, ELF64 executables use the N64 ABI. The
5634 pseudo-sections which describe the ABI aren't present
5635 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5636 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5637 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5638 mips_abi = MIPS_ABI_N64;
5639 else
5640 mips_abi = MIPS_ABI_N32;
1d06468c 5641 break;
bf64bfd6
AC
5642 }
5643 }
2e4ebe70 5644
2e4ebe70
DJ
5645 if (mips_abi == MIPS_ABI_UNKNOWN)
5646 mips_abi = MIPS_ABI_O32;
5647
5648 /* Now that we have found what the ABI for this binary would be,
5649 check whether the user is overriding it. */
5650 found_abi = mips_abi;
5651 wanted_abi = global_mips_abi ();
5652 if (wanted_abi != MIPS_ABI_UNKNOWN)
5653 mips_abi = wanted_abi;
5654
810ecf9f 5655 /* We have to set deprecated_tm_print_insn_info before looking for a
2252e863
AO
5656 pre-existing architecture, otherwise we may return before we get
5657 a chance to set it up. */
5658 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5659 {
5660 /* Set up the disassembler info, so that we get the right
5661 register names from libopcodes. */
5662 if (mips_abi == MIPS_ABI_N32)
810ecf9f 5663 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
2252e863 5664 else
810ecf9f
AC
5665 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5666 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5667 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
2252e863
AO
5668 if (info.bfd_arch_info != NULL
5669 && info.bfd_arch_info->arch == bfd_arch_mips
5670 && info.bfd_arch_info->mach)
810ecf9f 5671 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
2252e863 5672 else
810ecf9f 5673 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
2252e863
AO
5674 }
5675 else
5676 /* This string is not recognized explicitly by the disassembler,
5677 but it tells the disassembler to not try to guess the ABI from
5678 the bfd elf headers, such that, if the user overrides the ABI
5679 of a program linked as NewABI, the disassembly will follow the
5680 register naming conventions specified by the user. */
810ecf9f 5681 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
2252e863 5682
4b9b3959
AC
5683 if (gdbarch_debug)
5684 {
5685 fprintf_unfiltered (gdb_stdlog,
9ace0497 5686 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5687 elf_flags);
4b9b3959
AC
5688 fprintf_unfiltered (gdb_stdlog,
5689 "mips_gdbarch_init: mips_abi = %d\n",
5690 mips_abi);
2e4ebe70
DJ
5691 fprintf_unfiltered (gdb_stdlog,
5692 "mips_gdbarch_init: found_mips_abi = %d\n",
5693 found_abi);
4b9b3959 5694 }
0dadbba0 5695
c2d11a7d
JM
5696 /* try to find a pre-existing architecture */
5697 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5698 arches != NULL;
5699 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5700 {
5701 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5702 using. */
9103eae0 5703 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5704 continue;
9103eae0 5705 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5706 continue;
4be87837 5707 return arches->gdbarch;
c2d11a7d
JM
5708 }
5709
102182a9 5710 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5711 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5712 gdbarch = gdbarch_alloc (&info, tdep);
5713 tdep->elf_flags = elf_flags;
5714
102182a9 5715 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5716 set_gdbarch_short_bit (gdbarch, 16);
5717 set_gdbarch_int_bit (gdbarch, 32);
5718 set_gdbarch_float_bit (gdbarch, 32);
5719 set_gdbarch_double_bit (gdbarch, 64);
5720 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5721 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
2e4ebe70 5722 tdep->found_abi = found_abi;
0dadbba0 5723 tdep->mips_abi = mips_abi;
1d06468c 5724
f7ab6ec6
MS
5725 set_gdbarch_elf_make_msymbol_special (gdbarch,
5726 mips_elf_make_msymbol_special);
5727
4be87837 5728 if (info.osabi == GDB_OSABI_IRIX)
fe29b929
KB
5729 set_gdbarch_num_regs (gdbarch, 71);
5730 else
5731 set_gdbarch_num_regs (gdbarch, 90);
5732
0dadbba0 5733 switch (mips_abi)
c2d11a7d 5734 {
0dadbba0 5735 case MIPS_ABI_O32:
25ab4790 5736 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
ebba8386 5737 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5738 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5739 tdep->mips_default_saved_regsize = 4;
0dadbba0 5740 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5741 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5742 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5743 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5744 tdep->gdb_target_is_mips64 = 0;
4014092b 5745 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5746 set_gdbarch_long_bit (gdbarch, 32);
5747 set_gdbarch_ptr_bit (gdbarch, 32);
5748 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5749 set_gdbarch_reg_struct_has_addr (gdbarch,
5750 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5751 set_gdbarch_use_struct_convention (gdbarch,
5752 mips_o32_use_struct_convention);
c2d11a7d 5753 break;
0dadbba0 5754 case MIPS_ABI_O64:
25ab4790 5755 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5756 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5757 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5758 tdep->mips_default_saved_regsize = 8;
0dadbba0 5759 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5760 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5761 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5762 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5763 tdep->gdb_target_is_mips64 = 1;
361d1df0 5764 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5765 set_gdbarch_long_bit (gdbarch, 32);
5766 set_gdbarch_ptr_bit (gdbarch, 32);
5767 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5768 set_gdbarch_reg_struct_has_addr (gdbarch,
5769 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5770 set_gdbarch_use_struct_convention (gdbarch,
5771 mips_o32_use_struct_convention);
c2d11a7d 5772 break;
0dadbba0 5773 case MIPS_ABI_EABI32:
25ab4790 5774 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5775 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5776 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5777 tdep->mips_default_saved_regsize = 4;
0dadbba0 5778 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5779 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5780 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5781 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5782 tdep->gdb_target_is_mips64 = 0;
4014092b 5783 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5784 set_gdbarch_long_bit (gdbarch, 32);
5785 set_gdbarch_ptr_bit (gdbarch, 32);
5786 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5787 set_gdbarch_reg_struct_has_addr (gdbarch,
5788 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5789 set_gdbarch_use_struct_convention (gdbarch,
5790 mips_eabi_use_struct_convention);
c2d11a7d 5791 break;
0dadbba0 5792 case MIPS_ABI_EABI64:
25ab4790 5793 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5794 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5795 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5796 tdep->mips_default_saved_regsize = 8;
0dadbba0 5797 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5798 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5799 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5800 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5801 tdep->gdb_target_is_mips64 = 1;
4014092b 5802 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5803 set_gdbarch_long_bit (gdbarch, 64);
5804 set_gdbarch_ptr_bit (gdbarch, 64);
5805 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5806 set_gdbarch_reg_struct_has_addr (gdbarch,
5807 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5808 set_gdbarch_use_struct_convention (gdbarch,
5809 mips_eabi_use_struct_convention);
c2d11a7d 5810 break;
0dadbba0 5811 case MIPS_ABI_N32:
25ab4790 5812 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5813 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5814 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5815 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5816 tdep->mips_default_stack_argsize = 8;
5817 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5818 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5819 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5820 tdep->gdb_target_is_mips64 = 1;
4014092b 5821 tdep->default_mask_address_p = 0;
0dadbba0
AC
5822 set_gdbarch_long_bit (gdbarch, 32);
5823 set_gdbarch_ptr_bit (gdbarch, 32);
5824 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5825 set_gdbarch_use_struct_convention (gdbarch,
5826 mips_n32n64_use_struct_convention);
8b389c40
MS
5827 set_gdbarch_reg_struct_has_addr (gdbarch,
5828 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5829 break;
5830 case MIPS_ABI_N64:
25ab4790 5831 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5832 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5833 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5834 tdep->mips_default_saved_regsize = 8;
5835 tdep->mips_default_stack_argsize = 8;
5836 tdep->mips_fp_register_double = 1;
5837 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5838 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5839 tdep->gdb_target_is_mips64 = 1;
5840 tdep->default_mask_address_p = 0;
5841 set_gdbarch_long_bit (gdbarch, 64);
5842 set_gdbarch_ptr_bit (gdbarch, 64);
5843 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5844 set_gdbarch_use_struct_convention (gdbarch,
5845 mips_n32n64_use_struct_convention);
8b389c40
MS
5846 set_gdbarch_reg_struct_has_addr (gdbarch,
5847 mips_n32n64_reg_struct_has_addr);
0dadbba0 5848 break;
c2d11a7d 5849 default:
2e4ebe70
DJ
5850 internal_error (__FILE__, __LINE__,
5851 "unknown ABI in switch");
c2d11a7d
JM
5852 }
5853
a5ea2558
AC
5854 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5855 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5856 comment:
5857
5858 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5859 flag in object files because to do so would make it impossible to
102182a9 5860 link with libraries compiled without "-gp32". This is
a5ea2558 5861 unnecessarily restrictive.
361d1df0 5862
a5ea2558
AC
5863 We could solve this problem by adding "-gp32" multilibs to gcc,
5864 but to set this flag before gcc is built with such multilibs will
5865 break too many systems.''
5866
5867 But even more unhelpfully, the default linker output target for
5868 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5869 for 64-bit programs - you need to change the ABI to change this,
102182a9 5870 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5871 this flag to detect 32-bit mode would do the wrong thing given
5872 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5873 as 32-bit programs by default. */
a5ea2558 5874
c2d11a7d
JM
5875 /* enable/disable the MIPS FPU */
5876 if (!mips_fpu_type_auto)
5877 tdep->mips_fpu_type = mips_fpu_type;
5878 else if (info.bfd_arch_info != NULL
5879 && info.bfd_arch_info->arch == bfd_arch_mips)
5880 switch (info.bfd_arch_info->mach)
5881 {
b0069a17 5882 case bfd_mach_mips3900:
c2d11a7d 5883 case bfd_mach_mips4100:
ed9a39eb 5884 case bfd_mach_mips4111:
c2d11a7d
JM
5885 tdep->mips_fpu_type = MIPS_FPU_NONE;
5886 break;
bf64bfd6
AC
5887 case bfd_mach_mips4650:
5888 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5889 break;
c2d11a7d
JM
5890 default:
5891 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5892 break;
5893 }
5894 else
5895 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5896
5897 /* MIPS version of register names. NOTE: At present the MIPS
5898 register name management is part way between the old -
5899 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5900 Further work on it is required. */
18f81521
MS
5901 /* NOTE: many targets (esp. embedded) do not go thru the
5902 gdbarch_register_name vector at all, instead bypassing it
5903 by defining REGISTER_NAMES. */
c2d11a7d 5904 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5905 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5906 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5907 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5908 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6c0e89ed 5909 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
c2d11a7d 5910
102182a9
MS
5911 /* Add/remove bits from an address. The MIPS needs be careful to
5912 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5913 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5914
10312cc4 5915 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5916 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5917 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 5918 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5919
102182a9 5920 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5921 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
5922 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5923 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5924 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
88c72b7d 5925
c2d11a7d 5926 /* Initialize a frame */
e0f7ec59 5927 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 5928 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
5929
5930 /* MIPS version of CALL_DUMMY */
5931
c2d11a7d 5932 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
749b82f6 5933 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 5934 set_gdbarch_frame_align (gdbarch, mips_frame_align);
cedea778 5935 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
bf1f5b4c 5936 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5937 set_gdbarch_register_convert_to_virtual (gdbarch,
5938 mips_register_convert_to_virtual);
5939 set_gdbarch_register_convert_to_raw (gdbarch,
5940 mips_register_convert_to_raw);
5941
618ce49f 5942 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
5943 set_gdbarch_frameless_function_invocation (gdbarch,
5944 generic_frameless_function_invocation_not);
8bedc050 5945 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
5946 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5947 set_gdbarch_frame_args_skip (gdbarch, 0);
5948
129c1cd6 5949 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5950
f7b9e9fc
AC
5951 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5952 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5953 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5954
5955 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 5956 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 5957
fc0c74b1
AC
5958 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5959 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5960 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5961
102182a9
MS
5962 set_gdbarch_function_start_offset (gdbarch, 0);
5963
32a6503c
KB
5964 /* There are MIPS targets which do not yet use this since they still
5965 define REGISTER_VIRTUAL_TYPE. */
78fde5f8
KB
5966 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5967
e11c53d2 5968 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 5969 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 5970
70f80edf 5971 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 5972 gdbarch_init_osabi (info, gdbarch);
70f80edf 5973
2f1488ce
MS
5974 set_gdbarch_extract_struct_value_address (gdbarch,
5975 mips_extract_struct_value_address);
757a7cc6
MS
5976
5977 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5978
5979 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 5980 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 5981
4b9b3959
AC
5982 return gdbarch;
5983}
5984
2e4ebe70
DJ
5985static void
5986mips_abi_update (char *ignore_args, int from_tty,
5987 struct cmd_list_element *c)
5988{
5989 struct gdbarch_info info;
5990
5991 /* Force the architecture to update, and (if it's a MIPS architecture)
5992 mips_gdbarch_init will take care of the rest. */
5993 gdbarch_info_init (&info);
5994 gdbarch_update_p (info);
5995}
5996
ad188201
KB
5997/* Print out which MIPS ABI is in use. */
5998
5999static void
6000show_mips_abi (char *ignore_args, int from_tty)
6001{
6002 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6003 printf_filtered (
6004 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6005 else
6006 {
6007 enum mips_abi global_abi = global_mips_abi ();
6008 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6009 const char *actual_abi_str = mips_abi_strings[actual_abi];
6010
6011 if (global_abi == MIPS_ABI_UNKNOWN)
6012 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6013 actual_abi_str);
6014 else if (global_abi == actual_abi)
6015 printf_filtered (
6016 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6017 actual_abi_str);
6018 else
6019 {
6020 /* Probably shouldn't happen... */
6021 printf_filtered (
6022 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6023 actual_abi_str,
6024 mips_abi_strings[global_abi]);
6025 }
6026 }
6027}
6028
4b9b3959
AC
6029static void
6030mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6031{
6032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6033 if (tdep != NULL)
c2d11a7d 6034 {
acdb74a0
AC
6035 int ef_mips_arch;
6036 int ef_mips_32bitmode;
6037 /* determine the ISA */
6038 switch (tdep->elf_flags & EF_MIPS_ARCH)
6039 {
6040 case E_MIPS_ARCH_1:
6041 ef_mips_arch = 1;
6042 break;
6043 case E_MIPS_ARCH_2:
6044 ef_mips_arch = 2;
6045 break;
6046 case E_MIPS_ARCH_3:
6047 ef_mips_arch = 3;
6048 break;
6049 case E_MIPS_ARCH_4:
93d56215 6050 ef_mips_arch = 4;
acdb74a0
AC
6051 break;
6052 default:
93d56215 6053 ef_mips_arch = 0;
acdb74a0
AC
6054 break;
6055 }
6056 /* determine the size of a pointer */
6057 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6058 fprintf_unfiltered (file,
6059 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6060 tdep->elf_flags);
4b9b3959 6061 fprintf_unfiltered (file,
acdb74a0
AC
6062 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6063 ef_mips_32bitmode);
6064 fprintf_unfiltered (file,
6065 "mips_dump_tdep: ef_mips_arch = %d\n",
6066 ef_mips_arch);
6067 fprintf_unfiltered (file,
6068 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6069 tdep->mips_abi,
2e4ebe70 6070 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6071 fprintf_unfiltered (file,
6072 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6073 mips_mask_address_p (),
6074 tdep->default_mask_address_p);
c2d11a7d 6075 }
4b9b3959
AC
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6078 FP_REGISTER_DOUBLE);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6081 MIPS_DEFAULT_FPU_TYPE,
6082 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6083 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6084 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6085 : "???"));
6086 fprintf_unfiltered (file,
6087 "mips_dump_tdep: MIPS_EABI = %d\n",
6088 MIPS_EABI);
6089 fprintf_unfiltered (file,
acdb74a0
AC
6090 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6091 MIPS_LAST_FP_ARG_REGNUM,
6092 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6095 MIPS_FPU_TYPE,
6096 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6097 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6098 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6099 : "???"));
6100 fprintf_unfiltered (file,
6101 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6102 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6105 FP_REGISTER_DOUBLE);
4b9b3959
AC
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6108 MIPS_DEFAULT_STACK_ARGSIZE);
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6111 MIPS_STACK_ARGSIZE);
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6114 MIPS_REGSIZE);
2475bac3
AC
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: A0_REGNUM = %d\n",
6117 A0_REGNUM);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6120 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6123 XSTRING (ATTACH_DETACH));
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6126 BADVADDR_REGNUM);
2475bac3
AC
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6129 CAUSE_REGNUM);
2475bac3
AC
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6132 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6135 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6138 FCRCS_REGNUM);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6141 FCRIR_REGNUM);
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6144 FIRST_EMBED_REGNUM);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6147 FPA0_REGNUM);
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6150 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6153 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: HI_REGNUM = %d\n",
6156 HI_REGNUM);
2475bac3
AC
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6159 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6162 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6165 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6170 LAST_EMBED_REGNUM);
2475bac3
AC
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: LO_REGNUM = %d\n",
6173 LO_REGNUM);
6174#ifdef MACHINE_CPROC_FP_OFFSET
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6177 MACHINE_CPROC_FP_OFFSET);
6178#endif
6179#ifdef MACHINE_CPROC_PC_OFFSET
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6182 MACHINE_CPROC_PC_OFFSET);
6183#endif
6184#ifdef MACHINE_CPROC_SP_OFFSET
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6187 MACHINE_CPROC_SP_OFFSET);
6188#endif
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
2475bac3
AC
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6193 MIPS16_INSTLEN);
2475bac3
AC
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6200 MIPS_INSTLEN);
6201 fprintf_unfiltered (file,
acdb74a0
AC
6202 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6203 MIPS_LAST_ARG_REGNUM,
6204 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6207 MIPS_NUMREGS);
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6212 MIPS_SAVED_REGSIZE);
2475bac3
AC
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: OP_LDFPR = used?\n");
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: OP_LDGPR = used?\n");
2475bac3
AC
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: PRID_REGNUM = %d\n",
6219 PRID_REGNUM);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6222 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: PROC_PC_REG = function?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PS_REGNUM = %d\n",
6249 PS_REGNUM);
2475bac3
AC
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: RA_REGNUM = %d\n",
6252 RA_REGNUM);
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6255 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6258 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: ROUND_DOWN = function?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: ROUND_UP = function?\n");
6265#ifdef SAVED_BYTES
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: SAVED_BYTES = %d\n",
6268 SAVED_BYTES);
6269#endif
6270#ifdef SAVED_FP
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: SAVED_FP = %d\n",
6273 SAVED_FP);
6274#endif
6275#ifdef SAVED_PC
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: SAVED_PC = %d\n",
6278 SAVED_PC);
6279#endif
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6282 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6287 SIGFRAME_BASE);
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6290 SIGFRAME_FPREGSAVE_OFF);
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6293 SIGFRAME_PC_OFF);
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6296 SIGFRAME_REGSAVE_OFF);
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6299 SIGFRAME_REG_SIZE);
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6302 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6305 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6306 fprintf_unfiltered (file,
b0ed3589
AC
6307 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6308 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6311 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6312#ifdef STACK_END_ADDR
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6315 STACK_END_ADDR);
6316#endif
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6319 XSTRING (STEP_SKIPS_DELAY (PC)));
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6322 STEP_SKIPS_DELAY_P);
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6325 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: T9_REGNUM = %d\n",
6328 T9_REGNUM);
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6333 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6336 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: TARGET_MIPS = used?\n");
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6341 XSTRING (TM_PRINT_INSN_MACH));
6342#ifdef TRACE_CLEAR
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6345 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6346#endif
6347#ifdef TRACE_FLAVOR
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6350 TRACE_FLAVOR);
6351#endif
6352#ifdef TRACE_FLAVOR_SIZE
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6355 TRACE_FLAVOR_SIZE);
6356#endif
6357#ifdef TRACE_SET
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: TRACE_SET # %s\n",
6360 XSTRING (TRACE_SET (X,STATE)));
6361#endif
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6364#ifdef UNUSED_REGNUM
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6367 UNUSED_REGNUM);
6368#endif
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: V0_REGNUM = %d\n",
6371 V0_REGNUM);
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6374 (long) VM_MIN_ADDRESS);
6375#ifdef VX_NUM_REGS
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6378 VX_NUM_REGS);
6379#endif
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6382 ZERO_REGNUM);
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6385 _PROC_MAGIC_);
c2d11a7d
JM
6386}
6387
c906108c 6388void
acdb74a0 6389_initialize_mips_tdep (void)
c906108c
SS
6390{
6391 static struct cmd_list_element *mipsfpulist = NULL;
6392 struct cmd_list_element *c;
6393
2e4ebe70
DJ
6394 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6395 if (MIPS_ABI_LAST + 1
6396 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6397 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6398
4b9b3959 6399 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
d7a27068
AC
6400 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6401 deprecated_tm_print_insn = gdb_print_insn_mips;
c906108c 6402
a5ea2558
AC
6403 /* Add root prefix command for all "set mips"/"show mips" commands */
6404 add_prefix_cmd ("mips", no_class, set_mips_command,
6405 "Various MIPS specific commands.",
6406 &setmipscmdlist, "set mips ", 0, &setlist);
6407
6408 add_prefix_cmd ("mips", no_class, show_mips_command,
6409 "Various MIPS specific commands.",
6410 &showmipscmdlist, "show mips ", 0, &showlist);
6411
6412 /* Allow the user to override the saved register size. */
6413 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6414 class_obscure,
6415 size_enums,
6416 &mips_saved_regsize_string, "\
a5ea2558
AC
6417Set size of general purpose registers saved on the stack.\n\
6418This option can be set to one of:\n\
6419 32 - Force GDB to treat saved GP registers as 32-bit\n\
6420 64 - Force GDB to treat saved GP registers as 64-bit\n\
6421 auto - Allow GDB to use the target's default setting or autodetect the\n\
6422 saved GP register size from information contained in the executable.\n\
6423 (default: auto)",
1ed2a135 6424 &setmipscmdlist),
a5ea2558
AC
6425 &showmipscmdlist);
6426
d929b26f
AC
6427 /* Allow the user to override the argument stack size. */
6428 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6429 class_obscure,
6430 size_enums,
1ed2a135 6431 &mips_stack_argsize_string, "\
d929b26f
AC
6432Set the amount of stack space reserved for each argument.\n\
6433This option can be set to one of:\n\
6434 32 - Force GDB to allocate 32-bit chunks per argument\n\
6435 64 - Force GDB to allocate 64-bit chunks per argument\n\
6436 auto - Allow GDB to determine the correct setting from the current\n\
6437 target and executable (default)",
6438 &setmipscmdlist),
6439 &showmipscmdlist);
6440
2e4ebe70
DJ
6441 /* Allow the user to override the ABI. */
6442 c = add_set_enum_cmd
6443 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6444 "Set the ABI used by this program.\n"
6445 "This option can be set to one of:\n"
6446 " auto - the default ABI associated with the current binary\n"
6447 " o32\n"
6448 " o64\n"
6449 " n32\n"
f3a7b3a5 6450 " n64\n"
2e4ebe70
DJ
6451 " eabi32\n"
6452 " eabi64",
6453 &setmipscmdlist);
2e4ebe70 6454 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6455 add_cmd ("abi", class_obscure, show_mips_abi,
6456 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6457
c906108c
SS
6458 /* Let the user turn off floating point and set the fence post for
6459 heuristic_proc_start. */
6460
6461 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6462 "Set use of MIPS floating-point coprocessor.",
6463 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6464 add_cmd ("single", class_support, set_mipsfpu_single_command,
6465 "Select single-precision MIPS floating-point coprocessor.",
6466 &mipsfpulist);
6467 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6468 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6469 &mipsfpulist);
6470 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6471 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6472 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6473 add_cmd ("none", class_support, set_mipsfpu_none_command,
6474 "Select no MIPS floating-point coprocessor.",
6475 &mipsfpulist);
6476 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6477 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6478 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6479 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6480 "Select MIPS floating-point coprocessor automatically.",
6481 &mipsfpulist);
6482 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6483 "Show current use of MIPS floating-point coprocessor target.",
6484 &showlist);
6485
c906108c
SS
6486 /* We really would like to have both "0" and "unlimited" work, but
6487 command.c doesn't deal with that. So make it a var_zinteger
6488 because the user can always use "999999" or some such for unlimited. */
6489 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6490 (char *) &heuristic_fence_post,
6491 "\
6492Set the distance searched for the start of a function.\n\
6493If you are debugging a stripped executable, GDB needs to search through the\n\
6494program for the start of a function. This command sets the distance of the\n\
6495search. The only need to set it is when debugging a stripped executable.",
6496 &setlist);
6497 /* We need to throw away the frame cache when we set this, since it
6498 might change our ability to get backtraces. */
9f60d481 6499 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6500 add_show_from_set (c, &showlist);
6501
6502 /* Allow the user to control whether the upper bits of 64-bit
6503 addresses should be zeroed. */
e9e68a56
AC
6504 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6505Set zeroing of upper 32 bits of 64-bit addresses.\n\
6506Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6507allow GDB to determine the correct value.\n", "\
6508Show zeroing of upper 32 bits of 64-bit addresses.",
6509 NULL, show_mask_address,
6510 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6511
6512 /* Allow the user to control the size of 32 bit registers within the
6513 raw remote packet. */
6514 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6515 class_obscure,
6516 var_boolean,
6517 (char *)&mips64_transfers_32bit_regs_p, "\
6518Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6519Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6520that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
652164 bits for others. Use \"off\" to disable compatibility mode",
6522 &setlist),
6523 &showlist);
9ace0497
AC
6524
6525 /* Debug this files internals. */
6526 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6527 &mips_debug, "Set mips debugging.\n\
6528When non-zero, mips specific debugging is enabled.", &setdebuglist),
6529 &showdebuglist);
c906108c 6530}
This page took 0.926321 seconds and 4 git commands to generate.