2007-10-10 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
5e2e9765 27#include "gdb_assert.h"
c906108c
SS
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
fe898f56 43#include "block.h"
a4b8ebc8 44#include "reggroups.h"
c906108c 45#include "opcode/mips.h"
c2d11a7d
JM
46#include "elf/mips.h"
47#include "elf-bfd.h"
2475bac3 48#include "symcat.h"
a4b8ebc8 49#include "sim-regno.h"
a89aa300 50#include "dis-asm.h"
edfae063
AC
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
7d9b040b 54#include "infcall.h"
fed7ba43 55#include "floatformat.h"
29709017
DJ
56#include "remote.h"
57#include "target-descriptions.h"
2bd0c3d7 58#include "dwarf2-frame.h"
f8b73d13 59#include "user-regs.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
1a69e1e4
DJ
77enum
78{
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81};
0dadbba0 82
2e4ebe70
DJ
83static const char *mips_abi_string;
84
85static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
28d169de 89 "n64",
2e4ebe70
DJ
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94};
95
f8b73d13
DJ
96/* The standard register names, and all the valid aliases for them. */
97struct register_alias
98{
99 const char *name;
100 int regnum;
101};
102
103/* Aliases for o32 and most other ABIs. */
104const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109};
110
111/* Aliases for n32 and n64. */
112const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117};
118
119/* Aliases for ABI-independent registers. */
120const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123#define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128#undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143};
144
7a292a7a 145/* Some MIPS boards don't support floating point while others only
ceae6e75 146 support single-precision floating-point operations. */
c906108c
SS
147
148enum mips_fpu_type
6d82d43b
AC
149{
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153};
c906108c
SS
154
155#ifndef MIPS_DEFAULT_FPU_TYPE
156#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157#endif
158static int mips_fpu_type_auto = 1;
159static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 160
9ace0497 161static int mips_debug = 0;
7a292a7a 162
29709017
DJ
163/* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165#define PROPERTY_GP32 "internal: transfers-32bit-registers"
166#define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
4eb0ad19
DJ
168struct target_desc *mips_tdesc_gp32;
169struct target_desc *mips_tdesc_gp64;
170
c2d11a7d
JM
171/* MIPS specific per-architecture information */
172struct gdbarch_tdep
6d82d43b
AC
173{
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
6d82d43b
AC
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
29709017
DJ
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
6d82d43b 200};
c2d11a7d 201
fed7ba43
JB
202static int
203n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 204 const void *from)
fed7ba43
JB
205{
206 return 1;
207}
208
209/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220static const struct floatformat floatformat_n32n64_long_double_big =
221{
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
8da61cc4 224 "floatformat_n32n64_long_double_big",
fed7ba43
JB
225 n32n64_floatformat_always_valid
226};
227
8da61cc4
DJ
228static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229{
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232};
233
56cea623
AC
234const struct mips_regnum *
235mips_regnum (struct gdbarch *gdbarch)
236{
237 return gdbarch_tdep (gdbarch)->regnum;
238}
239
240static int
241mips_fpa0_regnum (struct gdbarch *gdbarch)
242{
243 return mips_regnum (gdbarch)->fp0 + 12;
244}
245
0dadbba0 246#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 248
c2d11a7d 249#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 250
c2d11a7d 251#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 252
c2d11a7d 253#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 254
95404a3e
AC
255/* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258static CORE_ADDR
259is_mips16_addr (CORE_ADDR addr)
260{
261 return ((addr) & 1);
262}
263
95404a3e
AC
264static CORE_ADDR
265unmake_mips16_addr (CORE_ADDR addr)
266{
5b652102 267 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
268}
269
d1973055
KB
270/* Return the MIPS ABI associated with GDBARCH. */
271enum mips_abi
272mips_abi (struct gdbarch *gdbarch)
273{
274 return gdbarch_tdep (gdbarch)->mips_abi;
275}
276
4246e332 277int
1b13c4f6 278mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 279{
29709017
DJ
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
4246e332
AC
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289}
290
480d3dd2
AC
291/* Return the currently configured (or set) saved register size. */
292
e6bc2e8a 293unsigned int
13326b4e 294mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 295{
1a69e1e4
DJ
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
d929b26f
AC
311}
312
71b8ef93 313/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 314 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 315 "info" field is used for this purpose.
5a89d8aa 316
95f1da47 317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
f594e5e9 321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 322
5a89d8aa 323static void
6d82d43b
AC
324mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325{
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
5a89d8aa
MS
332}
333
71b8ef93
MS
334static int
335msymbol_is_special (struct minimal_symbol *msym)
336{
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338}
339
88658117
AC
340/* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345static void
346mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
88658117 349{
88658117 350 int reg_offset = 0;
f57d151a 351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
cb1d2653
AC
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
88658117
AC
354 switch (endian)
355 {
356 case BFD_ENDIAN_BIG:
719ec221 357 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
358 break;
359 case BFD_ENDIAN_LITTLE:
360 reg_offset = 0;
361 break;
6d82d43b 362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
363 reg_offset = 0;
364 break;
365 default:
e2e0b3e5 366 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
367 }
368 if (mips_debug)
cb1d2653
AC
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
88658117
AC
372 if (mips_debug && out != NULL)
373 {
374 int i;
cb1d2653 375 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 376 for (i = 0; i < length; i++)
cb1d2653 377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
378 }
379 if (in != NULL)
6d82d43b
AC
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
381 in + buf_offset);
88658117 382 if (out != NULL)
6d82d43b
AC
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
384 out + buf_offset);
88658117
AC
385 if (mips_debug && in != NULL)
386 {
387 int i;
cb1d2653 388 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 389 for (i = 0; i < length; i++)
cb1d2653 390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
391 }
392 if (mips_debug)
393 fprintf_unfiltered (gdb_stdlog, "\n");
394}
395
dd824b04
DJ
396/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
399
400static int
9c9acae0 401mips2_fp_compat (struct frame_info *frame)
dd824b04
DJ
402{
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
404 meaningful. */
6d82d43b
AC
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
406 4)
dd824b04
DJ
407 return 0;
408
409#if 0
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
414 mode. */
9c9acae0 415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
416 return 1;
417#endif
361d1df0 418
dd824b04
DJ
419 return 0;
420}
421
7a292a7a 422#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 423
a14ed312 424static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 425
a14ed312 426static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 427
67b2c998
DJ
428static struct type *mips_float_register_type (void);
429static struct type *mips_double_register_type (void);
430
acdb74a0
AC
431/* The list of available "set mips " and "show mips " commands */
432
433static struct cmd_list_element *setmipscmdlist = NULL;
434static struct cmd_list_element *showmipscmdlist = NULL;
435
5e2e9765
KB
436/* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
8a9fc081 438 are listed in the following tables. */
691c0433 439
6d82d43b
AC
440enum
441{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
442
443/* Generic MIPS. */
444
445static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
691c0433
AC
454};
455
456/* Names of IDT R3041 registers. */
457
458static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
467};
468
469/* Names of tx39 registers. */
470
471static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
480};
481
482/* Names of IRIX registers. */
483static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
489};
490
cce74817 491
5e2e9765 492/* Return the name of the register corresponding to REGNO. */
5a89d8aa 493static const char *
5e2e9765 494mips_register_name (int regno)
cce74817 495{
691c0433 496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
6d82d43b
AC
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
503 };
504
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
511 };
512
513 enum mips_abi abi = mips_abi (current_gdbarch);
514
f57d151a
UW
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
a4b8ebc8
AC
519 return "";
520
5e2e9765
KB
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
a4b8ebc8 524 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
525 {
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 527 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 528 else
a4b8ebc8 529 return mips_gpr_names[rawnum];
5e2e9765 530 }
f8b73d13
DJ
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
f57d151a 533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
691c0433
AC
534 {
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
537 }
5e2e9765
KB
538 else
539 internal_error (__FILE__, __LINE__,
e2e0b3e5 540 _("mips_register_name: bad register number %d"), rawnum);
cce74817 541}
5e2e9765 542
a4b8ebc8 543/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 544
a4b8ebc8
AC
545static int
546mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
548{
549 int vector_p;
550 int float_p;
551 int raw_p;
f57d151a
UW
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
a4b8ebc8
AC
554 if (reggroup == all_reggroup)
555 return pseudo;
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
f57d151a 560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
c9f4d572
UW
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
563 return 0;
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
572 pseudo registers. */
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
6d82d43b 578 return 0;
a4b8ebc8
AC
579}
580
f8b73d13
DJ
581/* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
584
585static int
586mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
588{
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
591 int ret;
592
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
596
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
600 if (!pseudo)
601 return 0;
602
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
604 if (ret != -1)
605 return ret;
606
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
608}
609
a4b8ebc8 610/* Map the symbol table registers which live in the range [1 *
f57d151a 611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 612 registers. Take care of alignment and size problems. */
c5aa993b 613
a4b8ebc8
AC
614static void
615mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 616 int cookednum, gdb_byte *buf)
a4b8ebc8 617{
f57d151a
UW
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
47ebcfbe 621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 622 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
47ebcfbe
AC
625 {
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
4c6b5505 627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
629 else
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
631 }
632 else
e2e0b3e5 633 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
634}
635
636static void
6d82d43b
AC
637mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
47a35522 639 const gdb_byte *buf)
a4b8ebc8 640{
f57d151a
UW
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
47ebcfbe 644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 645 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
47ebcfbe
AC
648 {
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
4c6b5505 650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
652 else
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
654 }
655 else
e2e0b3e5 656 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 657}
c5aa993b 658
c906108c 659/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 660static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
661
662/* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
664 search. */
665
666static unsigned int heuristic_fence_post = 0;
667
46cd78fb 668/* Number of bytes of storage in the actual machine representation for
719ec221
AC
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
43e526b9
JM
671
672static int mips64_transfers_32bit_regs_p = 0;
673
719ec221
AC
674static void
675set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
43e526b9 677{
719ec221
AC
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
a4b8ebc8 684 {
719ec221 685 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 686 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 687 }
a4b8ebc8
AC
688}
689
47ebcfbe 690/* Convert to/from a register and the corresponding memory value. */
43e526b9 691
ff2e87ac
AC
692static int
693mips_convert_register_p (int regnum, struct type *type)
694{
4c6b5505 695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
719ec221 696 && register_size (current_gdbarch, regnum) == 4
f57d151a
UW
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
702}
703
42c466d7 704static void
ff2e87ac 705mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 706 struct type *type, gdb_byte *to)
102182a9 707{
47a35522
MK
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
710}
711
42c466d7 712static void
ff2e87ac 713mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 714 struct type *type, const gdb_byte *from)
102182a9 715{
47a35522
MK
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
718}
719
a4b8ebc8
AC
720/* Return the GDB type object for the "standard" data type of data in
721 register REG. */
78fde5f8
KB
722
723static struct type *
a4b8ebc8
AC
724mips_register_type (struct gdbarch *gdbarch, int regnum)
725{
f57d151a
UW
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 731 {
5ef80fb0 732 /* The floating-point registers raw, or cooked, always match
1b13c4f6 733 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
736 else
737 return builtin_type_ieee_double;
a6425924 738 }
f57d151a 739 else if (regnum < gdbarch_num_regs (current_gdbarch))
d5ac5a39
AC
740 {
741 /* The raw or ISA registers. These are all sized according to
742 the ISA regsize. */
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
745 else
746 return builtin_type_int64;
747 }
78fde5f8 748 else
d5ac5a39
AC
749 {
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
f57d151a 752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
d5ac5a39 753 + mips_regnum (current_gdbarch)->fp_control_status)
f57d151a
UW
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
78fde5f8
KB
772}
773
f8b73d13
DJ
774/* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779static struct type *
780mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781{
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826}
bcb0cc15 827
c906108c 828/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 829enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
830
831static int
480d3dd2 832mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
833{
834 switch (mask_address_var)
835 {
7f19b9a2 836 case AUTO_BOOLEAN_TRUE:
4014092b 837 return 1;
7f19b9a2 838 case AUTO_BOOLEAN_FALSE:
4014092b
AC
839 return 0;
840 break;
7f19b9a2 841 case AUTO_BOOLEAN_AUTO:
480d3dd2 842 return tdep->default_mask_address_p;
4014092b 843 default:
e2e0b3e5 844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 845 return -1;
361d1df0 846 }
4014092b
AC
847}
848
849static void
08546159
AC
850show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
4014092b 852{
480d3dd2 853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
854
855 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
856 switch (mask_address_var)
857 {
7f19b9a2 858 case AUTO_BOOLEAN_TRUE:
4014092b
AC
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
7f19b9a2 861 case AUTO_BOOLEAN_FALSE:
4014092b
AC
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
7f19b9a2 864 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
868 break;
869 default:
e2e0b3e5 870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 871 break;
361d1df0 872 }
4014092b 873}
c906108c 874
c906108c
SS
875/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
0fe7e7c8
AC
877int
878mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
879{
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 883 if (is_mips16_addr (memaddr))
c906108c
SS
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
71b8ef93 891 return msymbol_is_special (sym);
c906108c
SS
892 else
893 return 0;
894}
895
b2fa5097 896/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
897 all registers should be sign extended for simplicity? */
898
899static CORE_ADDR
61a1198a 900mips_read_pc (struct regcache *regcache)
6c997a34 901{
61a1198a
UW
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
b6cb9035
AC
906}
907
58dfe9ff
AC
908static CORE_ADDR
909mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910{
edfae063 911 return frame_unwind_register_signed (next_frame,
f57d151a
UW
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
edfae063
AC
914}
915
30244cd8
UW
916static CORE_ADDR
917mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
918{
f57d151a
UW
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
921 + MIPS_SP_REGNUM);
30244cd8
UW
922}
923
edfae063
AC
924/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
927 breakpoint. */
928
929static struct frame_id
930mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
931{
f57d151a
UW
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
935 + MIPS_SP_REGNUM),
936 frame_pc_unwind (next_frame));
58dfe9ff
AC
937}
938
b6cb9035 939static void
61a1198a 940mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 941{
61a1198a
UW
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 944}
c906108c 945
c906108c
SS
946/* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
948
d37cca3d 949static ULONGEST
acdb74a0 950mips_fetch_instruction (CORE_ADDR addr)
c906108c 951{
47a35522 952 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
953 int instlen;
954 int status;
955
0fe7e7c8 956 if (mips_pc_is_mips16 (addr))
c906108c 957 {
95ac2dcf 958 instlen = MIPS_INSN16_SIZE;
95404a3e 959 addr = unmake_mips16_addr (addr);
c906108c
SS
960 }
961 else
95ac2dcf 962 instlen = MIPS_INSN32_SIZE;
359a9262 963 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
964 if (status)
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
967}
968
c906108c 969/* These the fields of 32 bit mips instructions */
e135b889
DJ
970#define mips32_op(x) (x >> 26)
971#define itype_op(x) (x >> 26)
972#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 973#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 974#define itype_immediate(x) (x & 0xffff)
c906108c 975
e135b889
DJ
976#define jtype_op(x) (x >> 26)
977#define jtype_target(x) (x & 0x03ffffff)
c906108c 978
e135b889
DJ
979#define rtype_op(x) (x >> 26)
980#define rtype_rs(x) ((x >> 21) & 0x1f)
981#define rtype_rt(x) ((x >> 16) & 0x1f)
982#define rtype_rd(x) ((x >> 11) & 0x1f)
983#define rtype_shamt(x) ((x >> 6) & 0x1f)
984#define rtype_funct(x) (x & 0x3f)
c906108c 985
06987e64
MK
986static LONGEST
987mips32_relative_offset (ULONGEST inst)
c5aa993b 988{
06987e64 989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
990}
991
f49e4e6d
MS
992/* Determine where to set a single step breakpoint while considering
993 branch prediction. */
5a89d8aa 994static CORE_ADDR
0b1b3e42 995mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b
JM
996{
997 unsigned long inst;
998 int op;
999 inst = mips_fetch_instruction (pc);
e135b889 1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 1001 {
e135b889 1002 if (itype_op (inst) >> 2 == 5)
6d82d43b 1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1004 {
e135b889 1005 op = (itype_op (inst) & 0x03);
c906108c
SS
1006 switch (op)
1007 {
e135b889
DJ
1008 case 0: /* BEQL */
1009 goto equal_branch;
1010 case 1: /* BNEL */
1011 goto neq_branch;
1012 case 2: /* BLEZL */
1013 goto less_branch;
313628cc 1014 case 3: /* BGTZL */
e135b889 1015 goto greater_branch;
c5aa993b
JM
1016 default:
1017 pc += 4;
c906108c
SS
1018 }
1019 }
e135b889 1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
1022 {
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
6d82d43b 1025 int fcrcs =
0b1b3e42
UW
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1027 fp_control_status);
e135b889
DJ
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1029
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 }
c5aa993b
JM
1035 else
1036 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1037 }
1038 else
c5aa993b
JM
1039 { /* This gets way messy */
1040
c906108c 1041 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1043 {
c5aa993b
JM
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1046 switch (op)
1047 {
1048 case 8: /* JR */
1049 case 9: /* JALR */
6c997a34 1050 /* Set PC to that address */
0b1b3e42 1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b
JM
1052 break;
1053 default:
1054 pc += 4;
1055 }
1056
6d82d43b 1057 break; /* end SPECIAL */
c5aa993b 1058 case 1: /* REGIMM */
c906108c 1059 {
e135b889
DJ
1060 op = itype_rt (inst); /* branch condition */
1061 switch (op)
c906108c 1062 {
c5aa993b 1063 case 0: /* BLTZ */
e135b889
DJ
1064 case 2: /* BLTZL */
1065 case 16: /* BLTZAL */
c5aa993b 1066 case 18: /* BLTZALL */
c906108c 1067 less_branch:
0b1b3e42 1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
e135b889 1073 case 1: /* BGEZ */
c5aa993b
JM
1074 case 3: /* BGEZL */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
0b1b3e42 1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
e135b889 1082 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1083 default:
1084 pc += 4;
c906108c
SS
1085 }
1086 }
6d82d43b 1087 break; /* end REGIMM */
c5aa993b
JM
1088 case 2: /* J */
1089 case 3: /* JAL */
1090 {
1091 unsigned long reg;
1092 reg = jtype_target (inst) << 2;
e135b889 1093 /* Upper four bits get never changed... */
5b652102 1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1095 }
c5aa993b
JM
1096 break;
1097 /* FIXME case JALX : */
1098 {
1099 unsigned long reg;
1100 reg = jtype_target (inst) << 2;
5b652102 1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1103 }
c5aa993b 1104 break; /* The new PC will be alternate mode */
e135b889 1105 case 4: /* BEQ, BEQL */
c5aa993b 1106 equal_branch:
0b1b3e42
UW
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8;
1112 break;
e135b889 1113 case 5: /* BNE, BNEL */
c5aa993b 1114 neq_branch:
0b1b3e42
UW
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1117 pc += mips32_relative_offset (inst) + 4;
1118 else
1119 pc += 8;
1120 break;
e135b889 1121 case 6: /* BLEZ, BLEZL */
0b1b3e42 1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1123 pc += mips32_relative_offset (inst) + 4;
1124 else
1125 pc += 8;
1126 break;
1127 case 7:
e135b889
DJ
1128 default:
1129 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1131 pc += mips32_relative_offset (inst) + 4;
1132 else
1133 pc += 8;
1134 break;
c5aa993b
JM
1135 } /* switch */
1136 } /* else */
1137 return pc;
1138} /* mips32_next_pc */
c906108c
SS
1139
1140/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1144 either.
c5aa993b 1145 */
c906108c
SS
1146
1147/* Lots of mips16 instruction formats */
1148/* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
c5aa993b 1150 */
c906108c
SS
1151enum mips16_inst_fmts
1152{
c5aa993b
JM
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1175};
12f02c2a
AC
1176/* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
c906108c 1178struct upk_mips16
6d82d43b
AC
1179{
1180 CORE_ADDR offset;
1181 unsigned int regx; /* Function in i8 type */
1182 unsigned int regy;
1183};
c906108c
SS
1184
1185
12f02c2a
AC
1186/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
c906108c 1188
12f02c2a
AC
1189static CORE_ADDR
1190extended_offset (unsigned int extension)
c906108c 1191{
12f02c2a 1192 CORE_ADDR value;
c5aa993b
JM
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1194 value = value << 6;
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1196 value = value << 5;
1197 value |= extension & 0x01f; /* extract 4:0 */
1198 return value;
c906108c
SS
1199}
1200
1201/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
c906108c 1205/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1206 when the offset is to be used in relative addressing. */
c906108c 1207
12f02c2a 1208static unsigned int
c5aa993b 1209fetch_mips_16 (CORE_ADDR pc)
c906108c 1210{
47a35522 1211 gdb_byte buf[8];
c5aa993b
JM
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
c906108c
SS
1215}
1216
1217static void
c5aa993b 1218unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1219 unsigned int extension,
1220 unsigned int inst,
6d82d43b 1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1222{
12f02c2a
AC
1223 CORE_ADDR offset;
1224 int regx;
1225 int regy;
1226 switch (insn_format)
c906108c 1227 {
c5aa993b 1228 case itype:
c906108c 1229 {
12f02c2a
AC
1230 CORE_ADDR value;
1231 if (extension)
c5aa993b
JM
1232 {
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
6d82d43b 1235 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1236 }
1237 else
c5aa993b 1238 {
12f02c2a 1239 value = inst & 0x7ff;
c5aa993b 1240 /* FIXME : Consider sign extension */
c906108c 1241 }
12f02c2a
AC
1242 offset = value;
1243 regx = -1;
1244 regy = -1;
c906108c 1245 }
c5aa993b
JM
1246 break;
1247 case ritype:
1248 case i8type:
1249 { /* A register identifier and an offset */
c906108c
SS
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
12f02c2a
AC
1252 CORE_ADDR value;
1253 if (extension)
c906108c 1254 {
c5aa993b
JM
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
12f02c2a
AC
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1260 {
1261 value &= ~0x3fff; /* remove the sign bit */
1262 value = -value;
c906108c
SS
1263 }
1264 }
c5aa993b
JM
1265 else
1266 {
12f02c2a
AC
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1271 {
1272 value &= 0xef; /* remove the sign bit */
1273 value = -value;
1274 }
c5aa993b 1275 }
12f02c2a
AC
1276 offset = value;
1277 regy = -1;
c5aa993b 1278 break;
c906108c 1279 }
c5aa993b 1280 case jalxtype:
c906108c 1281 {
c5aa993b 1282 unsigned long value;
12f02c2a
AC
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1287 value |= nexthalf;
12f02c2a
AC
1288 offset = value;
1289 regx = -1;
1290 regy = -1;
c5aa993b 1291 break;
c906108c
SS
1292 }
1293 default:
e2e0b3e5 1294 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1295 }
12f02c2a
AC
1296 upk->offset = offset;
1297 upk->regx = regx;
1298 upk->regy = regy;
c906108c
SS
1299}
1300
1301
c5aa993b
JM
1302static CORE_ADDR
1303add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1304{
5b652102 1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1306}
1307
12f02c2a 1308static CORE_ADDR
0b1b3e42 1309extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1310 unsigned int extension, unsigned int insn)
c906108c 1311{
12f02c2a
AC
1312 int op = (insn >> 11);
1313 switch (op)
c906108c 1314 {
6d82d43b 1315 case 2: /* Branch */
12f02c2a
AC
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
6d82d43b 1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
6d82d43b 1340 case 4: /* beqz */
12f02c2a
AC
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1345 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
6d82d43b 1352 case 5: /* bnez */
12f02c2a
AC
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1357 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
6d82d43b 1364 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
0b1b3e42 1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
6d82d43b 1379 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
c5aa993b 1385 {
12f02c2a
AC
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
c5aa993b 1390 {
12f02c2a
AC
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
6d82d43b 1396 break; /* Function return instruction */
12f02c2a
AC
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
6d82d43b 1402 break; /* BOGUS Guess */
c906108c 1403 }
0b1b3e42 1404 pc = get_frame_register_signed (frame, reg);
c906108c 1405 }
12f02c2a 1406 else
c5aa993b 1407 pc += 2;
12f02c2a
AC
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
0b1b3e42 1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
12f02c2a
AC
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
c906108c 1424 }
c5aa993b 1425 return pc;
12f02c2a 1426}
c906108c 1427
5a89d8aa 1428static CORE_ADDR
0b1b3e42 1429mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a
AC
1430{
1431 unsigned int insn = fetch_mips_16 (pc);
0b1b3e42 1432 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1433}
1434
1435/* The mips_next_pc function supports single_step when the remote
7e73cedf 1436 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
ce1f96de 1439 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1440static CORE_ADDR
0b1b3e42 1441mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1442{
ce1f96de 1443 if (is_mips16_addr (pc))
0b1b3e42 1444 return mips16_next_pc (frame, pc);
c5aa993b 1445 else
0b1b3e42 1446 return mips32_next_pc (frame, pc);
12f02c2a 1447}
c906108c 1448
edfae063
AC
1449struct mips_frame_cache
1450{
1451 CORE_ADDR base;
1452 struct trad_frame_saved_reg *saved_regs;
1453};
1454
29639122
JB
1455/* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1458 function prologue.
eec63939 1459
f57d151a
UW
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
eec63939
AC
1465
1466static void
29639122
JB
1467set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1468 CORE_ADDR offset)
eec63939 1469{
29639122
JB
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1472 {
f57d151a
UW
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1475 = offset;
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1478 = offset;
29639122 1479 }
eec63939
AC
1480}
1481
eec63939 1482
29639122
JB
1483/* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
eec63939 1487
29639122
JB
1488static int
1489mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
eec63939 1494{
29639122 1495 int offset;
eec63939 1496
29639122
JB
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1498 {
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1503 }
eec63939 1504 else
29639122
JB
1505 {
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
45c9dd44 1509
29639122
JB
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1514 }
1515}
eec63939 1516
65596487 1517
29639122
JB
1518/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
eec63939 1521
29639122
JB
1522static CORE_ADDR
1523mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1526{
1527 CORE_ADDR cur_pc;
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1529 CORE_ADDR sp;
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1536 int reg, offset;
a343eb3c 1537
29639122
JB
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1541
29639122
JB
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
d2ca4222
UW
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1547 + MIPS_SP_REGNUM);
29639122
JB
1548 else
1549 sp = 0;
eec63939 1550
29639122
JB
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
eec63939 1553
95ac2dcf 1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
eec63939 1559
29639122
JB
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1562
29639122
JB
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
95ac2dcf 1570 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1571 continue;
1572 }
eec63939 1573
29639122
JB
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
eec63939 1576
29639122
JB
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
eec63939 1654
29639122
JB
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1665
29639122
JB
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
4c7d22cb 1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1685 offset -= mips_abi_regsize (current_gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
f57d151a
UW
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1701 + frame_reg)
29639122
JB
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
f57d151a
UW
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1709 + MIPS_RA_REGNUM];
29639122
JB
1710 }
1711
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1717
1718 return end_prologue_addr;
eec63939
AC
1719}
1720
29639122
JB
1721/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1724
1725static struct mips_frame_cache *
1726mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1727{
29639122 1728 struct mips_frame_cache *cache;
eec63939
AC
1729
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
29639122
JB
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1735
29639122
JB
1736 /* Analyze the function prologue. */
1737 {
6de5b849
JB
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1740 CORE_ADDR start_addr;
eec63939 1741
29639122
JB
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1746 of the function. */
1747 if (start_addr == 0)
1748 return cache;
eec63939 1749
29639122
JB
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1751 }
1752
3e8c568d 1753 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a
UW
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
eec63939 1756
29639122 1757 return (*this_cache);
eec63939
AC
1758}
1759
1760static void
29639122
JB
1761mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
eec63939 1763{
29639122
JB
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
93d42b30
DJ
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1768}
1769
1770static void
29639122 1771mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1775 int *realnump, gdb_byte *valuep)
eec63939 1776{
29639122
JB
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1781}
1782
29639122 1783static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1784{
1785 NORMAL_FRAME,
29639122
JB
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
eec63939
AC
1788};
1789
1790static const struct frame_unwind *
29639122 1791mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1792{
6de5b849 1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1794 if (mips_pc_is_mips16 (pc))
29639122
JB
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
eec63939
AC
1797}
1798
1799static CORE_ADDR
29639122
JB
1800mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
eec63939 1802{
29639122
JB
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
eec63939
AC
1806}
1807
29639122 1808static const struct frame_base mips_insn16_frame_base =
eec63939 1809{
29639122
JB
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
eec63939
AC
1814};
1815
1816static const struct frame_base *
29639122 1817mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1818{
29639122
JB
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
eec63939
AC
1821 else
1822 return NULL;
edfae063
AC
1823}
1824
29639122
JB
1825/* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828void
1829reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1830{
29639122
JB
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
f57d151a 1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
29639122 1836 int i;
64159455 1837
29639122
JB
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
c906108c
SS
1843}
1844
29639122
JB
1845/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
c906108c 1848
875e1767 1849static CORE_ADDR
29639122
JB
1850mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
c906108c 1853{
29639122
JB
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1859
29639122
JB
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
8fa9cfa1 1863
29639122
JB
1864 /* Can be called when there's no process, and hence when there's no
1865 NEXT_FRAME. */
1866 if (next_frame != NULL)
d2ca4222
UW
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1869 + MIPS_SP_REGNUM);
8fa9cfa1 1870 else
29639122 1871 sp = 0;
9022177c 1872
29639122
JB
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
9022177c 1875
29639122 1876restart:
9022177c 1877
29639122 1878 frame_offset = 0;
95ac2dcf 1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1880 {
29639122
JB
1881 unsigned long inst, high_word, low_word;
1882 int reg;
9022177c 1883
29639122
JB
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1886
29639122
JB
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
fe29b929 1891
29639122
JB
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1895 {
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1898 else
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1902 break;
1903 seen_sp_adjust = 1;
1904 }
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1906 {
1907 set_reg_offset (this_cache, reg, sp + low_word);
1908 }
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1910 {
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1913 }
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1915 {
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
d2ca4222 1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1920 {
1921 unsigned alloca_adjust;
a4b8ebc8 1922
29639122 1923 frame_reg = 30;
d2ca4222
UW
1924 frame_addr = frame_unwind_register_signed
1925 (next_frame,
1926 gdbarch_num_regs (current_gdbarch) + 30);
1927
29639122
JB
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
d2ca4222 1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1951 {
1952 unsigned alloca_adjust;
c906108c 1953
29639122 1954 frame_reg = 30;
d2ca4222
UW
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame,
1957 gdbarch_num_regs (current_gdbarch) + 30);
1958
29639122
JB
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1961 {
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1965 sp = frame_addr;
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1969 pass. */
1970 reset_saved_regs (this_cache);
1971 goto restart;
1972 }
1973 }
1974 }
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1976 {
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1978 }
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1986 )
1987 {
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1990 }
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2003 ))
2004 {
95ac2dcf 2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2006 }
2007 else
2008 {
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2011 prologue. */
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2014 instructions? */
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2017 }
a4b8ebc8 2018 }
c906108c 2019
29639122
JB
2020 if (this_cache != NULL)
2021 {
2022 this_cache->base =
f57d151a
UW
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2025 + frame_reg)
29639122
JB
2026 + frame_offset);
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2029 for now. */
f57d151a
UW
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2033 + MIPS_RA_REGNUM];
29639122 2034 }
c906108c 2035
29639122
JB
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2044
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
c906108c 2050
29639122 2051 return end_prologue_addr;
c906108c
SS
2052}
2053
29639122
JB
2054/* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2057 unwinder. */
c906108c 2058
29639122
JB
2059static struct mips_frame_cache *
2060mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 2061{
29639122 2062 struct mips_frame_cache *cache;
c906108c 2063
29639122
JB
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
c5aa993b 2066
29639122
JB
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 2070
29639122
JB
2071 /* Analyze the function prologue. */
2072 {
6de5b849
JB
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 2075 CORE_ADDR start_addr;
c906108c 2076
29639122
JB
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2081 of the function. */
2082 if (start_addr == 0)
2083 return cache;
c5aa993b 2084
29639122
JB
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2086 }
2087
3e8c568d 2088 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a
UW
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2091 cache->base);
c5aa993b 2092
29639122 2093 return (*this_cache);
c906108c
SS
2094}
2095
29639122
JB
2096static void
2097mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
c906108c 2099{
29639122
JB
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2101 this_cache);
93d42b30
DJ
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 2104}
c906108c 2105
29639122
JB
2106static void
2107mips_insn32_frame_prev_register (struct frame_info *next_frame,
2108 void **this_cache,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2111 int *realnump, gdb_byte *valuep)
29639122
JB
2112{
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2114 this_cache);
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2117}
2118
29639122
JB
2119static const struct frame_unwind mips_insn32_frame_unwind =
2120{
2121 NORMAL_FRAME,
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2124};
c906108c 2125
29639122
JB
2126static const struct frame_unwind *
2127mips_insn32_frame_sniffer (struct frame_info *next_frame)
2128{
6de5b849 2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2130 if (! mips_pc_is_mips16 (pc))
29639122
JB
2131 return &mips_insn32_frame_unwind;
2132 return NULL;
2133}
c906108c 2134
1c645fec 2135static CORE_ADDR
29639122
JB
2136mips_insn32_frame_base_address (struct frame_info *next_frame,
2137 void **this_cache)
c906108c 2138{
29639122
JB
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2140 this_cache);
2141 return info->base;
2142}
c906108c 2143
29639122
JB
2144static const struct frame_base mips_insn32_frame_base =
2145{
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2150};
1c645fec 2151
29639122
JB
2152static const struct frame_base *
2153mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2154{
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
a65bbe44 2157 else
29639122
JB
2158 return NULL;
2159}
a65bbe44 2160
29639122
JB
2161static struct trad_frame_cache *
2162mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2163{
2164 CORE_ADDR pc;
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
c906108c 2168
29639122
JB
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
1c645fec 2173
29639122 2174 /* The return address is in the link register. */
3e8c568d
UW
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
aa6c981f
DJ
2177 (gdbarch_num_regs (current_gdbarch)
2178 + MIPS_RA_REGNUM));
1c645fec 2179
29639122
JB
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
aa6c981f 2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 2186
29639122
JB
2187 /* Assume that the frame's base is the same as the
2188 stack-pointer. */
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2190
29639122
JB
2191 return this_trad_cache;
2192}
c906108c 2193
29639122
JB
2194static void
2195mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2197{
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2201}
c906108c 2202
29639122
JB
2203static void
2204mips_stub_frame_prev_register (struct frame_info *next_frame,
2205 void **this_cache,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2208 int *realnump, gdb_byte *valuep)
29639122
JB
2209{
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2214}
c906108c 2215
29639122
JB
2216static const struct frame_unwind mips_stub_frame_unwind =
2217{
2218 NORMAL_FRAME,
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2221};
c906108c 2222
29639122
JB
2223static const struct frame_unwind *
2224mips_stub_frame_sniffer (struct frame_info *next_frame)
2225{
aa6c981f 2226 gdb_byte dummy[4];
979b38e0 2227 struct obj_section *s;
93d42b30 2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2229
aa6c981f
DJ
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2233
29639122
JB
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
979b38e0
DJ
2236
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2239
2240 if (s != NULL
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2244
2245 return NULL;
29639122 2246}
c906108c 2247
29639122
JB
2248static CORE_ADDR
2249mips_stub_frame_base_address (struct frame_info *next_frame,
2250 void **this_cache)
2251{
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2255}
0fce0821 2256
29639122
JB
2257static const struct frame_base mips_stub_frame_base =
2258{
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2263};
2264
2265static const struct frame_base *
2266mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2267{
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2270 else
2271 return NULL;
2272}
2273
29639122 2274/* mips_addr_bits_remove - remove useless address bits */
65596487 2275
29639122
JB
2276static CORE_ADDR
2277mips_addr_bits_remove (CORE_ADDR addr)
65596487 2278{
29639122
JB
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
65596487 2288
29639122
JB
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
65596487 2291
29639122
JB
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2297 else
2298 return addr;
65596487
JB
2299}
2300
29639122
JB
2301/* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2304 the target of the coming instruction and breakpoint it. */
29639122 2305
e6590a1b 2306int
0b1b3e42 2307mips_software_single_step (struct frame_info *frame)
c906108c 2308{
8181d85f 2309 CORE_ADDR pc, next_pc;
65596487 2310
0b1b3e42
UW
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
e6590a1b 2313
e0cd558a 2314 insert_single_step_breakpoint (next_pc);
e6590a1b 2315 return 1;
29639122 2316}
a65bbe44 2317
29639122
JB
2318/* Test whether the PC points to the return instruction at the
2319 end of a function. */
65596487 2320
29639122
JB
2321static int
2322mips_about_to_return (CORE_ADDR pc)
2323{
0fe7e7c8 2324 if (mips_pc_is_mips16 (pc))
29639122
JB
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2332 else
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2334}
c906108c 2335
c906108c 2336
29639122
JB
2337/* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2339 lines. */
c906108c 2340
29639122
JB
2341static CORE_ADDR
2342heuristic_proc_start (CORE_ADDR pc)
2343{
2344 CORE_ADDR start_pc;
2345 CORE_ADDR fence;
2346 int instlen;
2347 int seen_adjsp = 0;
65596487 2348
bf6ae464 2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
29639122
JB
2350 start_pc = pc;
2351 fence = start_pc - heuristic_fence_post;
2352 if (start_pc == 0)
2353 return 0;
65596487 2354
29639122
JB
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
65596487 2357
95ac2dcf 2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2359
29639122
JB
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2363 {
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2369 {
2370 static int blurb_printed = 0;
98b4dd94 2371
8a3fe4f8 2372 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2373 paddr_nz (pc));
2374
2375 if (!blurb_printed)
2376 {
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385and thus can't determine the size of that function's stack frame.\n\
2386This means that GDB may be unable to access that stack frame, or\n\
2387the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2389stack pointer.\n\
2390 However, if you think GDB should simply search farther back\n\
2391from 0x%s for code which looks like the beginning of a\n\
2392function, you can increase the range of the search using the `set\n\
2393heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2394 blurb_printed = 1;
2395 }
2396 }
2397
2398 return 0;
2399 }
0fe7e7c8 2400 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2401 {
2402 unsigned short inst;
2403
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
193774b3
MR
2406 extend save
2407 save
29639122
JB
2408 entry
2409 addiu sp,-n
2410 daddiu sp,-n
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
193774b3
MR
2413 if ((inst & 0xff80) == 0x6480) /* save */
2414 {
2415 if (start_pc - instlen >= fence)
2416 {
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2420 }
2421 break;
2422 }
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
2428 break;
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2431 seen_adjsp = 1;
2432 else
2433 seen_adjsp = 0;
2434 }
2435 else if (mips_about_to_return (start_pc))
2436 {
4c7d22cb 2437 /* Skip return and its delay slot. */
95ac2dcf 2438 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2439 break;
2440 }
2441
2442 return start_pc;
c906108c
SS
2443}
2444
6c0d6680
DJ
2445struct mips_objfile_private
2446{
2447 bfd_size_type size;
2448 char *contents;
2449};
2450
f09ded24
AC
2451/* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
a1f5b845 2453 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2456
2457static int
2458fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2459{
2460 return ((typecode == TYPE_CODE_FLT
2461 || (MIPS_EABI
6d82d43b
AC
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
f09ded24 2464 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2466 == TYPE_CODE_FLT))
c86b5b38 2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2468}
2469
49e790b0
DJ
2470/* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2472
2473static int
2474mips_type_needs_double_align (struct type *type)
2475{
2476 enum type_code typecode = TYPE_CODE (type);
361d1df0 2477
49e790b0
DJ
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2479 return 1;
2480 else if (typecode == TYPE_CODE_STRUCT)
2481 {
2482 if (TYPE_NFIELDS (type) < 1)
2483 return 0;
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2485 }
2486 else if (typecode == TYPE_CODE_UNION)
2487 {
361d1df0 2488 int i, n;
49e790b0
DJ
2489
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2493 return 1;
2494 return 0;
2495 }
2496 return 0;
2497}
2498
dc604539
AC
2499/* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2501static CORE_ADDR
2502mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2503{
5b03f266 2504 return align_down (addr, 16);
dc604539
AC
2505}
2506
f7ab6ec6 2507static CORE_ADDR
7d9b040b 2508mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2512{
2513 int argreg;
2514 int float_argreg;
2515 int argnum;
2516 int len = 0;
2517 int stack_offset = 0;
480d3dd2 2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2520 int regsize = mips_abi_regsize (gdbarch);
c906108c 2521
25ab4790
AC
2522 /* For shared libraries, "t9" needs to point at the function
2523 address. */
4c7d22cb 2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2525
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
4c7d22cb 2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2529
c906108c 2530 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2535
5b03f266
AC
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
c5aa993b 2538
46e0f506 2539 /* Now make space on the stack for the args. We allocate more
c906108c 2540 than necessary for EABI, because the first few arguments are
46e0f506 2541 passed in registers, but that's OK. */
c906108c 2542 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2544 sp -= align_up (len, 16);
c906108c 2545
9ace0497 2546 if (mips_debug)
6d82d43b 2547 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2550
c906108c 2551 /* Initialize the integer and float register pointers. */
4c7d22cb 2552 argreg = MIPS_A0_REGNUM;
56cea623 2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2554
46e0f506 2555 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2556 if (struct_return)
9ace0497
AC
2557 {
2558 if (mips_debug)
2559 fprintf_unfiltered (gdb_stdlog,
25ab4790 2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2561 argreg, paddr_nz (struct_addr));
9c9acae0 2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2563 }
c906108c
SS
2564
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2569 {
47a35522
MK
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2572 struct value *arg = args[argnum];
4991999e 2573 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2576
9ace0497
AC
2577 if (mips_debug)
2578 fprintf_unfiltered (gdb_stdlog,
25ab4790 2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2580 argnum + 1, len, (int) typecode);
9ace0497 2581
c906108c 2582 /* The EABI passes structures that do not fit in a register by
46e0f506 2583 reference. */
1a69e1e4 2584 if (len > regsize
9ace0497 2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2586 {
1a69e1e4 2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
c906108c 2588 typecode = TYPE_CODE_PTR;
1a69e1e4 2589 len = regsize;
c906108c 2590 val = valbuf;
9ace0497
AC
2591 if (mips_debug)
2592 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2593 }
2594 else
47a35522 2595 val = value_contents (arg);
c906108c
SS
2596
2597 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
46e0f506
MS
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
1a69e1e4 2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2603 {
2604 if ((float_argreg & 1))
2605 float_argreg++;
2606 }
c906108c
SS
2607
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
1012bd0e
EZ
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
46e0f506 2619 stack. */
f09ded24
AC
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2622 {
6da397e0
KB
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2629 {
4c6b5505
UW
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2632 unsigned long regval;
2633
2634 /* Write the low word of the double to the even register(s). */
c5aa993b 2635 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2636 if (mips_debug)
acdb74a0 2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2638 float_argreg, phex (regval, 4));
9c9acae0 2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2640
2641 /* Write the high word of the double to the odd register(s). */
c5aa993b 2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2643 if (mips_debug)
acdb74a0 2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2645 float_argreg, phex (regval, 4));
9c9acae0 2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2647 }
2648 else
2649 {
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
53a5351d 2652 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2653 above to ensure that it is even register aligned. */
9ace0497
AC
2654 LONGEST regval = extract_unsigned_integer (val, len);
2655 if (mips_debug)
acdb74a0 2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2657 float_argreg, phex (regval, len));
9c9acae0 2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2659 }
2660 }
2661 else
2662 {
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
1a69e1e4
DJ
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
d5ac5a39
AC
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2670 both places. */
1a69e1e4 2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2672
f09ded24 2673 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2674 register are only written to memory. */
c906108c
SS
2675 while (len > 0)
2676 {
ebafbe83 2677 /* Remember if the argument was written to the stack. */
566f0f7a 2678 int stack_used_p = 0;
1a69e1e4 2679 int partial_len = (len < regsize ? len : regsize);
c906108c 2680
acdb74a0
AC
2681 if (mips_debug)
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2683 partial_len);
2684
566f0f7a 2685 /* Write this portion of the argument to the stack. */
f09ded24
AC
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2687 || odd_sized_struct
2688 || fp_register_arg_p (typecode, arg_type))
c906108c 2689 {
c906108c
SS
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
c906108c 2692 int longword_offset = 0;
9ace0497 2693 CORE_ADDR addr;
566f0f7a 2694 stack_used_p = 1;
4c6b5505 2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2696 {
1a69e1e4 2697 if (regsize == 8
480d3dd2
AC
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
6d82d43b 2700 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2701 longword_offset = regsize - len;
480d3dd2
AC
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
7a292a7a 2706 }
c5aa993b 2707
9ace0497
AC
2708 if (mips_debug)
2709 {
cb3d25d1
MS
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
9ace0497 2714 }
361d1df0 2715
9ace0497
AC
2716 addr = sp + stack_offset + longword_offset;
2717
2718 if (mips_debug)
2719 {
2720 int i;
6d82d43b 2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2722 paddr_nz (addr));
9ace0497
AC
2723 for (i = 0; i < partial_len; i++)
2724 {
6d82d43b 2725 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2726 val[i] & 0xff);
9ace0497
AC
2727 }
2728 }
2729 write_memory (addr, val, partial_len);
c906108c
SS
2730 }
2731
f09ded24
AC
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
46e0f506 2734 arguments will not. */
566f0f7a 2735 /* Write this portion of the argument to a general
6d82d43b 2736 purpose register. */
f09ded24
AC
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
c906108c 2739 {
6d82d43b
AC
2740 LONGEST regval =
2741 extract_unsigned_integer (val, partial_len);
c906108c 2742
9ace0497 2743 if (mips_debug)
acdb74a0 2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2745 argreg,
1a69e1e4 2746 phex (regval, regsize));
9c9acae0 2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2748 argreg++;
c906108c 2749 }
c5aa993b 2750
c906108c
SS
2751 len -= partial_len;
2752 val += partial_len;
2753
566f0f7a 2754 /* Compute the the offset into the stack at which we
6d82d43b 2755 will copy the next parameter.
566f0f7a 2756
566f0f7a 2757 In the new EABI (and the NABI32), the stack_offset
46e0f506 2758 only needs to be adjusted when it has been used. */
c906108c 2759
46e0f506 2760 if (stack_used_p)
1a69e1e4 2761 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2762 }
2763 }
9ace0497
AC
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2766 }
2767
f10683bb 2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2769
0f71a2f6
JM
2770 /* Return adjusted stack pointer. */
2771 return sp;
2772}
2773
a1f5b845 2774/* Determine the return value convention being used. */
6d82d43b 2775
9c8fdbfa
AC
2776static enum return_value_convention
2777mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
47a35522 2779 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2780{
9c8fdbfa
AC
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2783 if (readbuf)
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2786}
2787
6d82d43b
AC
2788
2789/* N32/N64 ABI stuff. */
ebafbe83 2790
8d26208a
DJ
2791/* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2793 registers. */
2794
2795static int
2796mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2797{
2798 int i;
2799
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2801 return 0;
2802
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2804 return 0;
2805
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2807 return 0;
2808
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2810 {
2811 int pos;
2812 struct type *field_type;
2813
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2817 continue;
2818
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2821 if (pos > offset)
2822 return 0;
2823
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2825
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2829 continue;
2830
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2834 return 1;
2835
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2839 }
2840
2841 return 0;
2842}
2843
f7ab6ec6 2844static CORE_ADDR
7d9b040b 2845mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2849{
2850 int argreg;
2851 int float_argreg;
2852 int argnum;
2853 int len = 0;
2854 int stack_offset = 0;
480d3dd2 2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2857
25ab4790
AC
2858 /* For shared libraries, "t9" needs to point at the function
2859 address. */
4c7d22cb 2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2861
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
4c7d22cb 2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2865
cb3d25d1
MS
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2871
5b03f266
AC
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2874
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 2878 sp -= align_up (len, 16);
cb3d25d1
MS
2879
2880 if (mips_debug)
6d82d43b 2881 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2884
2885 /* Initialize the integer and float register pointers. */
4c7d22cb 2886 argreg = MIPS_A0_REGNUM;
56cea623 2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2888
46e0f506 2889 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2890 if (struct_return)
2891 {
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog,
25ab4790 2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2895 argreg, paddr_nz (struct_addr));
9c9acae0 2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
2897 }
2898
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 {
47a35522 2904 const gdb_byte *val;
cb3d25d1 2905 struct value *arg = args[argnum];
4991999e 2906 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2909
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
25ab4790 2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2913 argnum + 1, len, (int) typecode);
2914
47a35522 2915 val = value_contents (arg);
cb3d25d1
MS
2916
2917 if (fp_register_arg_p (typecode, arg_type)
8d26208a 2918 && argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2919 {
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
cb3d25d1
MS
2922 LONGEST regval = extract_unsigned_integer (val, len);
2923 if (mips_debug)
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
8d26208a 2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
9c9acae0 2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
2932 float_argreg++;
2933 argreg++;
cb3d25d1
MS
2934 }
2935 else
2936 {
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
ab2e1992
MR
2940 /* For N32/N64, structs, unions, or other composite types are
2941 treated as a sequence of doublewords, and are passed in integer
2942 or floating point registers as though they were simple scalar
2943 parameters to the extent that they fit, with any excess on the
2944 stack packed according to the normal memory layout of the
2945 object.
2946 The caller does not reserve space for the register arguments;
2947 the callee is responsible for reserving it if required. */
cb3d25d1 2948 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2949 register are only written to memory. */
cb3d25d1
MS
2950 while (len > 0)
2951 {
ad018eee 2952 /* Remember if the argument was written to the stack. */
cb3d25d1 2953 int stack_used_p = 0;
1a69e1e4 2954 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
2955
2956 if (mips_debug)
2957 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2958 partial_len);
2959
8d26208a
DJ
2960 if (fp_register_arg_p (typecode, arg_type))
2961 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2962
cb3d25d1 2963 /* Write this portion of the argument to the stack. */
ab2e1992 2964 if (argreg > MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2965 {
2966 /* Should shorter than int integer values be
2967 promoted to int before being stored? */
2968 int longword_offset = 0;
2969 CORE_ADDR addr;
2970 stack_used_p = 1;
4c6b5505 2971 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 2972 {
1a69e1e4
DJ
2973 if ((typecode == TYPE_CODE_INT
2974 || typecode == TYPE_CODE_PTR
2975 || typecode == TYPE_CODE_FLT)
2976 && len <= 4)
2977 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
2978 }
2979
2980 if (mips_debug)
2981 {
2982 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2983 paddr_nz (stack_offset));
2984 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2985 paddr_nz (longword_offset));
2986 }
2987
2988 addr = sp + stack_offset + longword_offset;
2989
2990 if (mips_debug)
2991 {
2992 int i;
6d82d43b 2993 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2994 paddr_nz (addr));
2995 for (i = 0; i < partial_len; i++)
2996 {
6d82d43b 2997 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2998 val[i] & 0xff);
2999 }
3000 }
3001 write_memory (addr, val, partial_len);
3002 }
3003
3004 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 3005 structs may go thru BOTH paths. */
cb3d25d1 3006 /* Write this portion of the argument to a general
6d82d43b 3007 purpose register. */
8d26208a 3008 if (argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1 3009 {
6d82d43b
AC
3010 LONGEST regval =
3011 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
3012
3013 /* A non-floating-point argument being passed in a
3014 general register. If a struct or union, and if
3015 the remaining length is smaller than the register
3016 size, we have to adjust the register value on
3017 big endian targets.
3018
3019 It does not seem to be necessary to do the
1a69e1e4 3020 same for integral types. */
cb3d25d1 3021
4c6b5505 3022 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3023 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3024 && (typecode == TYPE_CODE_STRUCT
3025 || typecode == TYPE_CODE_UNION))
1a69e1e4 3026 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3027 * TARGET_CHAR_BIT);
cb3d25d1
MS
3028
3029 if (mips_debug)
3030 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3031 argreg,
1a69e1e4 3032 phex (regval, MIPS64_REGSIZE));
9c9acae0 3033 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3034
3035 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3036 TYPE_LENGTH (arg_type) - len))
3037 {
3038 if (mips_debug)
3039 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3040 float_argreg,
3041 phex (regval, MIPS64_REGSIZE));
3042 regcache_cooked_write_unsigned (regcache, float_argreg,
3043 regval);
3044 }
3045
3046 float_argreg++;
cb3d25d1
MS
3047 argreg++;
3048 }
3049
3050 len -= partial_len;
3051 val += partial_len;
3052
3053 /* Compute the the offset into the stack at which we
6d82d43b 3054 will copy the next parameter.
cb3d25d1
MS
3055
3056 In N32 (N64?), the stack_offset only needs to be
3057 adjusted when it has been used. */
3058
3059 if (stack_used_p)
1a69e1e4 3060 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
3061 }
3062 }
3063 if (mips_debug)
3064 fprintf_unfiltered (gdb_stdlog, "\n");
3065 }
3066
f10683bb 3067 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3068
cb3d25d1
MS
3069 /* Return adjusted stack pointer. */
3070 return sp;
3071}
3072
6d82d43b
AC
3073static enum return_value_convention
3074mips_n32n64_return_value (struct gdbarch *gdbarch,
3075 struct type *type, struct regcache *regcache,
47a35522 3076 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 3077{
6d82d43b 3078 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
b18bb924
MR
3079
3080 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3081
3082 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3083 if needed), as appropriate for the type. Composite results (struct,
3084 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3085 following rules:
3086
3087 * A struct with only one or two floating point fields is returned in $f0
3088 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3089 case.
3090
3091 * Any other struct or union results of at most 128 bits are returned in
3092 $2 (first 64 bits) and $3 (remainder, if necessary).
3093
3094 * Larger composite results are handled by converting the function to a
3095 procedure with an implicit first parameter, which is a pointer to an area
3096 reserved by the caller to receive the result. [The o32-bit ABI requires
3097 that all composite results be handled by conversion to implicit first
3098 parameters. The MIPS/SGI Fortran implementation has always made a
3099 specific exception to return COMPLEX results in the floating point
3100 registers.] */
3101
3102 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 3103 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 3104 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
3105 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3106 && TYPE_LENGTH (type) == 16
3107 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3108 {
3109 /* A 128-bit floating-point value fills both $f0 and $f2. The
3110 two registers are used in the same as memory order, so the
3111 eight bytes with the lower memory address are in $f0. */
3112 if (mips_debug)
3113 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3114 mips_xfer_register (regcache,
f57d151a
UW
3115 gdbarch_num_regs (current_gdbarch)
3116 + mips_regnum (current_gdbarch)->fp0,
4c6b5505
UW
3117 8, gdbarch_byte_order (current_gdbarch),
3118 readbuf, writebuf, 0);
d05f6826 3119 mips_xfer_register (regcache,
f57d151a
UW
3120 gdbarch_num_regs (current_gdbarch)
3121 + mips_regnum (current_gdbarch)->fp0 + 2,
4c6b5505
UW
3122 8, gdbarch_byte_order (current_gdbarch),
3123 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3124 writebuf ? writebuf + 8 : writebuf, 0);
3125 return RETURN_VALUE_REGISTER_CONVENTION;
3126 }
6d82d43b
AC
3127 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3128 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3129 {
59aa1faa 3130 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
3131 if (mips_debug)
3132 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3133 mips_xfer_register (regcache,
f57d151a
UW
3134 gdbarch_num_regs (current_gdbarch)
3135 + mips_regnum (current_gdbarch)->fp0,
6d82d43b 3136 TYPE_LENGTH (type),
4c6b5505
UW
3137 gdbarch_byte_order (current_gdbarch),
3138 readbuf, writebuf, 0);
6d82d43b
AC
3139 return RETURN_VALUE_REGISTER_CONVENTION;
3140 }
3141 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3142 && TYPE_NFIELDS (type) <= 2
3143 && TYPE_NFIELDS (type) >= 1
3144 && ((TYPE_NFIELDS (type) == 1
b18bb924 3145 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
3146 == TYPE_CODE_FLT))
3147 || (TYPE_NFIELDS (type) == 2
b18bb924 3148 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 3149 == TYPE_CODE_FLT)
b18bb924 3150 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
6d82d43b
AC
3151 == TYPE_CODE_FLT)))
3152 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3153 {
3154 /* A struct that contains one or two floats. Each value is part
3155 in the least significant part of their floating point
3156 register.. */
6d82d43b
AC
3157 int regnum;
3158 int field;
3159 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3160 field < TYPE_NFIELDS (type); field++, regnum += 2)
3161 {
3162 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3163 / TARGET_CHAR_BIT);
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3166 offset);
f57d151a
UW
3167 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3168 + regnum,
6d82d43b 3169 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4c6b5505
UW
3170 gdbarch_byte_order (current_gdbarch),
3171 readbuf, writebuf, offset);
6d82d43b
AC
3172 }
3173 return RETURN_VALUE_REGISTER_CONVENTION;
3174 }
3175 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3176 || TYPE_CODE (type) == TYPE_CODE_UNION)
3177 {
3178 /* A structure or union. Extract the left justified value,
3179 regardless of the byte order. I.e. DO NOT USE
3180 mips_xfer_lower. */
3181 int offset;
3182 int regnum;
4c7d22cb 3183 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3184 offset < TYPE_LENGTH (type);
3185 offset += register_size (current_gdbarch, regnum), regnum++)
3186 {
3187 int xfer = register_size (current_gdbarch, regnum);
3188 if (offset + xfer > TYPE_LENGTH (type))
3189 xfer = TYPE_LENGTH (type) - offset;
3190 if (mips_debug)
3191 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3192 offset, xfer, regnum);
f57d151a
UW
3193 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3194 + regnum, xfer,
6d82d43b
AC
3195 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3196 }
3197 return RETURN_VALUE_REGISTER_CONVENTION;
3198 }
3199 else
3200 {
3201 /* A scalar extract each part but least-significant-byte
3202 justified. */
3203 int offset;
3204 int regnum;
4c7d22cb 3205 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3206 offset < TYPE_LENGTH (type);
3207 offset += register_size (current_gdbarch, regnum), regnum++)
3208 {
3209 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3210 if (offset + xfer > TYPE_LENGTH (type))
3211 xfer = TYPE_LENGTH (type) - offset;
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3214 offset, xfer, regnum);
f57d151a
UW
3215 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3216 + regnum, xfer,
4c6b5505
UW
3217 gdbarch_byte_order (current_gdbarch),
3218 readbuf, writebuf, offset);
6d82d43b
AC
3219 }
3220 return RETURN_VALUE_REGISTER_CONVENTION;
3221 }
3222}
3223
3224/* O32 ABI stuff. */
3225
3226static CORE_ADDR
7d9b040b 3227mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3228 struct regcache *regcache, CORE_ADDR bp_addr,
3229 int nargs, struct value **args, CORE_ADDR sp,
3230 int struct_return, CORE_ADDR struct_addr)
3231{
3232 int argreg;
3233 int float_argreg;
3234 int argnum;
3235 int len = 0;
3236 int stack_offset = 0;
3237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3238 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3239
3240 /* For shared libraries, "t9" needs to point at the function
3241 address. */
4c7d22cb 3242 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3243
3244 /* Set the return address register to point to the entry point of
3245 the program, where a breakpoint lies in wait. */
4c7d22cb 3246 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3247
3248 /* First ensure that the stack and structure return address (if any)
3249 are properly aligned. The stack has to be at least 64-bit
3250 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3251 aligned. For n32 and n64, stack frames need to be 128-bit
3252 aligned, so we round to this widest known alignment. */
3253
5b03f266
AC
3254 sp = align_down (sp, 16);
3255 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3256
3257 /* Now make space on the stack for the args. */
3258 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3259 {
3260 struct type *arg_type = check_typedef (value_type (args[argnum]));
3261 int arglen = TYPE_LENGTH (arg_type);
3262
3263 /* Align to double-word if necessary. */
2afd3f0a 3264 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3265 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3266 /* Allocate space on the stack. */
1a69e1e4 3267 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3268 }
5b03f266 3269 sp -= align_up (len, 16);
ebafbe83
MS
3270
3271 if (mips_debug)
6d82d43b 3272 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3273 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3274 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3275
3276 /* Initialize the integer and float register pointers. */
4c7d22cb 3277 argreg = MIPS_A0_REGNUM;
56cea623 3278 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3279
bcb0cc15 3280 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3281 if (struct_return)
3282 {
3283 if (mips_debug)
3284 fprintf_unfiltered (gdb_stdlog,
25ab4790 3285 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83 3286 argreg, paddr_nz (struct_addr));
9c9acae0 3287 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3288 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3289 }
3290
3291 /* Now load as many as possible of the first arguments into
3292 registers, and push the rest onto the stack. Loop thru args
3293 from first to last. */
3294 for (argnum = 0; argnum < nargs; argnum++)
3295 {
47a35522 3296 const gdb_byte *val;
ebafbe83 3297 struct value *arg = args[argnum];
4991999e 3298 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3299 int len = TYPE_LENGTH (arg_type);
3300 enum type_code typecode = TYPE_CODE (arg_type);
3301
3302 if (mips_debug)
3303 fprintf_unfiltered (gdb_stdlog,
25ab4790 3304 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3305 argnum + 1, len, (int) typecode);
3306
47a35522 3307 val = value_contents (arg);
46cac009
AC
3308
3309 /* 32-bit ABIs always start floating point arguments in an
3310 even-numbered floating point register. Round the FP register
3311 up before the check to see if there are any FP registers
3312 left. O32/O64 targets also pass the FP in the integer
3313 registers so also round up normal registers. */
2afd3f0a 3314 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3315 {
3316 if ((float_argreg & 1))
3317 float_argreg++;
3318 }
3319
3320 /* Floating point arguments passed in registers have to be
3321 treated specially. On 32-bit architectures, doubles
3322 are passed in register pairs; the even register gets
3323 the low word, and the odd register gets the high word.
3324 On O32/O64, the first two floating point arguments are
3325 also copied to general registers, because MIPS16 functions
3326 don't use float registers for arguments. This duplication of
3327 arguments in general registers can't hurt non-MIPS16 functions
3328 because those registers are normally skipped. */
3329
3330 if (fp_register_arg_p (typecode, arg_type)
3331 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3332 {
8b07f6d8 3333 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3334 {
4c6b5505
UW
3335 int low_offset = gdbarch_byte_order (current_gdbarch)
3336 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3337 unsigned long regval;
3338
3339 /* Write the low word of the double to the even register(s). */
3340 regval = extract_unsigned_integer (val + low_offset, 4);
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3343 float_argreg, phex (regval, 4));
9c9acae0 3344 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3345 if (mips_debug)
3346 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3347 argreg, phex (regval, 4));
9c9acae0 3348 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3349
3350 /* Write the high word of the double to the odd register(s). */
3351 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3352 if (mips_debug)
3353 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3354 float_argreg, phex (regval, 4));
9c9acae0 3355 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3356
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, 4));
9c9acae0 3360 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3361 }
3362 else
3363 {
3364 /* This is a floating point value that fits entirely
3365 in a single register. */
3366 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3367 above to ensure that it is even register aligned. */
46cac009
AC
3368 LONGEST regval = extract_unsigned_integer (val, len);
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3371 float_argreg, phex (regval, len));
9c9acae0 3372 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009 3373 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3374 registers for each argument. The below is (my
3375 guess) to ensure that the corresponding integer
3376 register has reserved the same space. */
46cac009
AC
3377 if (mips_debug)
3378 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3379 argreg, phex (regval, len));
9c9acae0 3380 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3381 argreg += 2;
46cac009
AC
3382 }
3383 /* Reserve space for the FP register. */
1a69e1e4 3384 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3385 }
3386 else
3387 {
3388 /* Copy the argument to general registers or the stack in
3389 register-sized pieces. Large arguments are split between
3390 registers and stack. */
1a69e1e4
DJ
3391 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3392 are treated specially: Irix cc passes
d5ac5a39
AC
3393 them in registers where gcc sometimes puts them on the
3394 stack. For maximum compatibility, we will put them in
3395 both places. */
1a69e1e4
DJ
3396 int odd_sized_struct = (len > MIPS32_REGSIZE
3397 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3398 /* Structures should be aligned to eight bytes (even arg registers)
3399 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3400 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3401 {
3402 if ((argreg & 1))
968b5391
MR
3403 {
3404 argreg++;
1a69e1e4 3405 stack_offset += MIPS32_REGSIZE;
968b5391 3406 }
46cac009 3407 }
46cac009
AC
3408 while (len > 0)
3409 {
3410 /* Remember if the argument was written to the stack. */
3411 int stack_used_p = 0;
1a69e1e4 3412 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3413
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3416 partial_len);
3417
3418 /* Write this portion of the argument to the stack. */
3419 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3420 || odd_sized_struct)
46cac009
AC
3421 {
3422 /* Should shorter than int integer values be
3423 promoted to int before being stored? */
3424 int longword_offset = 0;
3425 CORE_ADDR addr;
3426 stack_used_p = 1;
46cac009
AC
3427
3428 if (mips_debug)
3429 {
3430 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3431 paddr_nz (stack_offset));
3432 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3433 paddr_nz (longword_offset));
3434 }
3435
3436 addr = sp + stack_offset + longword_offset;
3437
3438 if (mips_debug)
3439 {
3440 int i;
6d82d43b 3441 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3442 paddr_nz (addr));
3443 for (i = 0; i < partial_len; i++)
3444 {
6d82d43b 3445 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3446 val[i] & 0xff);
3447 }
3448 }
3449 write_memory (addr, val, partial_len);
3450 }
3451
3452 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3453 structs may go thru BOTH paths. */
46cac009 3454 /* Write this portion of the argument to a general
6d82d43b 3455 purpose register. */
968b5391 3456 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3457 {
3458 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3459 /* Value may need to be sign extended, because
1b13c4f6 3460 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3461
3462 /* A non-floating-point argument being passed in a
3463 general register. If a struct or union, and if
3464 the remaining length is smaller than the register
3465 size, we have to adjust the register value on
3466 big endian targets.
3467
3468 It does not seem to be necessary to do the
3469 same for integral types.
3470
3471 Also don't do this adjustment on O64 binaries.
3472
3473 cagney/2001-07-23: gdb/179: Also, GCC, when
3474 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3475 mips_abi_regsize(), generates a left shift
3476 as part of storing the argument in a register
3477 (the left shift isn't generated when
1b13c4f6 3478 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3479 it is quite possible that this is GCC
3480 contradicting the LE/O32 ABI, GDB has not been
3481 adjusted to accommodate this. Either someone
3482 needs to demonstrate that the LE/O32 ABI
3483 specifies such a left shift OR this new ABI gets
3484 identified as such and GDB gets tweaked
3485 accordingly. */
3486
4c6b5505 3487 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3488 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3489 && (typecode == TYPE_CODE_STRUCT
3490 || typecode == TYPE_CODE_UNION))
1a69e1e4 3491 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3492 * TARGET_CHAR_BIT);
46cac009
AC
3493
3494 if (mips_debug)
3495 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3496 argreg,
1a69e1e4 3497 phex (regval, MIPS32_REGSIZE));
9c9acae0 3498 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3499 argreg++;
3500
3501 /* Prevent subsequent floating point arguments from
3502 being passed in floating point registers. */
3503 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3504 }
3505
3506 len -= partial_len;
3507 val += partial_len;
3508
3509 /* Compute the the offset into the stack at which we
6d82d43b 3510 will copy the next parameter.
46cac009 3511
6d82d43b
AC
3512 In older ABIs, the caller reserved space for
3513 registers that contained arguments. This was loosely
3514 refered to as their "home". Consequently, space is
3515 always allocated. */
46cac009 3516
1a69e1e4 3517 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3518 }
3519 }
3520 if (mips_debug)
3521 fprintf_unfiltered (gdb_stdlog, "\n");
3522 }
3523
f10683bb 3524 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3525
46cac009
AC
3526 /* Return adjusted stack pointer. */
3527 return sp;
3528}
3529
6d82d43b
AC
3530static enum return_value_convention
3531mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3532 struct regcache *regcache,
47a35522 3533 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3534{
3535 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3536
3537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3538 || TYPE_CODE (type) == TYPE_CODE_UNION
3539 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3540 return RETURN_VALUE_STRUCT_CONVENTION;
3541 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3542 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3543 {
3544 /* A single-precision floating-point value. It fits in the
3545 least significant part of FP0. */
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3548 mips_xfer_register (regcache,
f57d151a
UW
3549 gdbarch_num_regs (current_gdbarch)
3550 + mips_regnum (current_gdbarch)->fp0,
6d82d43b 3551 TYPE_LENGTH (type),
4c6b5505
UW
3552 gdbarch_byte_order (current_gdbarch),
3553 readbuf, writebuf, 0);
6d82d43b
AC
3554 return RETURN_VALUE_REGISTER_CONVENTION;
3555 }
3556 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3557 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3558 {
3559 /* A double-precision floating-point value. The most
3560 significant part goes in FP1, and the least significant in
3561 FP0. */
3562 if (mips_debug)
3563 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4c6b5505 3564 switch (gdbarch_byte_order (current_gdbarch))
6d82d43b
AC
3565 {
3566 case BFD_ENDIAN_LITTLE:
3567 mips_xfer_register (regcache,
f57d151a
UW
3568 gdbarch_num_regs (current_gdbarch)
3569 + mips_regnum (current_gdbarch)->fp0 +
4c6b5505
UW
3570 0, 4, gdbarch_byte_order (current_gdbarch),
3571 readbuf, writebuf, 0);
6d82d43b 3572 mips_xfer_register (regcache,
f57d151a
UW
3573 gdbarch_num_regs (current_gdbarch)
3574 + mips_regnum (current_gdbarch)->fp0 + 1,
4c6b5505
UW
3575 4, gdbarch_byte_order (current_gdbarch),
3576 readbuf, writebuf, 4);
6d82d43b
AC
3577 break;
3578 case BFD_ENDIAN_BIG:
3579 mips_xfer_register (regcache,
f57d151a
UW
3580 gdbarch_num_regs (current_gdbarch)
3581 + mips_regnum (current_gdbarch)->fp0 + 1,
4c6b5505
UW
3582 4, gdbarch_byte_order (current_gdbarch),
3583 readbuf, writebuf, 0);
6d82d43b 3584 mips_xfer_register (regcache,
f57d151a
UW
3585 gdbarch_num_regs (current_gdbarch)
3586 + mips_regnum (current_gdbarch)->fp0 + 0,
4c6b5505
UW
3587 4, gdbarch_byte_order (current_gdbarch),
3588 readbuf, writebuf, 4);
6d82d43b
AC
3589 break;
3590 default:
e2e0b3e5 3591 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3592 }
3593 return RETURN_VALUE_REGISTER_CONVENTION;
3594 }
3595#if 0
3596 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3597 && TYPE_NFIELDS (type) <= 2
3598 && TYPE_NFIELDS (type) >= 1
3599 && ((TYPE_NFIELDS (type) == 1
3600 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3601 == TYPE_CODE_FLT))
3602 || (TYPE_NFIELDS (type) == 2
3603 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3604 == TYPE_CODE_FLT)
3605 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3606 == TYPE_CODE_FLT)))
3607 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3608 {
3609 /* A struct that contains one or two floats. Each value is part
3610 in the least significant part of their floating point
3611 register.. */
870cd05e 3612 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3613 int regnum;
3614 int field;
3615 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3616 field < TYPE_NFIELDS (type); field++, regnum += 2)
3617 {
3618 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3619 / TARGET_CHAR_BIT);
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3622 offset);
f57d151a
UW
3623 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3624 + regnum,
6d82d43b 3625 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4c6b5505
UW
3626 gdbarch_byte_order (current_gdbarch),
3627 readbuf, writebuf, offset);
6d82d43b
AC
3628 }
3629 return RETURN_VALUE_REGISTER_CONVENTION;
3630 }
3631#endif
3632#if 0
3633 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3634 || TYPE_CODE (type) == TYPE_CODE_UNION)
3635 {
3636 /* A structure or union. Extract the left justified value,
3637 regardless of the byte order. I.e. DO NOT USE
3638 mips_xfer_lower. */
3639 int offset;
3640 int regnum;
4c7d22cb 3641 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3642 offset < TYPE_LENGTH (type);
3643 offset += register_size (current_gdbarch, regnum), regnum++)
3644 {
3645 int xfer = register_size (current_gdbarch, regnum);
3646 if (offset + xfer > TYPE_LENGTH (type))
3647 xfer = TYPE_LENGTH (type) - offset;
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3650 offset, xfer, regnum);
f57d151a
UW
3651 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3652 + regnum, xfer,
6d82d43b
AC
3653 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3654 }
3655 return RETURN_VALUE_REGISTER_CONVENTION;
3656 }
3657#endif
3658 else
3659 {
3660 /* A scalar extract each part but least-significant-byte
3661 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3662 the ISA. */
6d82d43b
AC
3663 int offset;
3664 int regnum;
4c7d22cb 3665 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3666 offset < TYPE_LENGTH (type);
1a69e1e4 3667 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3668 {
1a69e1e4 3669 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3670 if (offset + xfer > TYPE_LENGTH (type))
3671 xfer = TYPE_LENGTH (type) - offset;
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3674 offset, xfer, regnum);
f57d151a
UW
3675 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3676 + regnum, xfer,
4c6b5505
UW
3677 gdbarch_byte_order (current_gdbarch),
3678 readbuf, writebuf, offset);
6d82d43b
AC
3679 }
3680 return RETURN_VALUE_REGISTER_CONVENTION;
3681 }
3682}
3683
3684/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3685 ABI. */
46cac009
AC
3686
3687static CORE_ADDR
7d9b040b 3688mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3689 struct regcache *regcache, CORE_ADDR bp_addr,
3690 int nargs,
3691 struct value **args, CORE_ADDR sp,
3692 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3693{
3694 int argreg;
3695 int float_argreg;
3696 int argnum;
3697 int len = 0;
3698 int stack_offset = 0;
480d3dd2 3699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3700 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3701
25ab4790
AC
3702 /* For shared libraries, "t9" needs to point at the function
3703 address. */
4c7d22cb 3704 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3705
3706 /* Set the return address register to point to the entry point of
3707 the program, where a breakpoint lies in wait. */
4c7d22cb 3708 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3709
46cac009
AC
3710 /* First ensure that the stack and structure return address (if any)
3711 are properly aligned. The stack has to be at least 64-bit
3712 aligned even on 32-bit machines, because doubles must be 64-bit
3713 aligned. For n32 and n64, stack frames need to be 128-bit
3714 aligned, so we round to this widest known alignment. */
3715
5b03f266
AC
3716 sp = align_down (sp, 16);
3717 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3718
3719 /* Now make space on the stack for the args. */
3720 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3721 {
3722 struct type *arg_type = check_typedef (value_type (args[argnum]));
3723 int arglen = TYPE_LENGTH (arg_type);
3724
968b5391 3725 /* Allocate space on the stack. */
1a69e1e4 3726 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 3727 }
5b03f266 3728 sp -= align_up (len, 16);
46cac009
AC
3729
3730 if (mips_debug)
6d82d43b 3731 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3732 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3733 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3734
3735 /* Initialize the integer and float register pointers. */
4c7d22cb 3736 argreg = MIPS_A0_REGNUM;
56cea623 3737 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3738
3739 /* The struct_return pointer occupies the first parameter-passing reg. */
3740 if (struct_return)
3741 {
3742 if (mips_debug)
3743 fprintf_unfiltered (gdb_stdlog,
25ab4790 3744 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009 3745 argreg, paddr_nz (struct_addr));
9c9acae0 3746 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3747 stack_offset += MIPS64_REGSIZE;
46cac009
AC
3748 }
3749
3750 /* Now load as many as possible of the first arguments into
3751 registers, and push the rest onto the stack. Loop thru args
3752 from first to last. */
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
47a35522 3755 const gdb_byte *val;
46cac009 3756 struct value *arg = args[argnum];
4991999e 3757 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3758 int len = TYPE_LENGTH (arg_type);
3759 enum type_code typecode = TYPE_CODE (arg_type);
3760
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog,
25ab4790 3763 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3764 argnum + 1, len, (int) typecode);
3765
47a35522 3766 val = value_contents (arg);
ebafbe83 3767
ebafbe83
MS
3768 /* Floating point arguments passed in registers have to be
3769 treated specially. On 32-bit architectures, doubles
3770 are passed in register pairs; the even register gets
3771 the low word, and the odd register gets the high word.
3772 On O32/O64, the first two floating point arguments are
3773 also copied to general registers, because MIPS16 functions
3774 don't use float registers for arguments. This duplication of
3775 arguments in general registers can't hurt non-MIPS16 functions
3776 because those registers are normally skipped. */
3777
3778 if (fp_register_arg_p (typecode, arg_type)
3779 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3780 {
2afd3f0a
MR
3781 LONGEST regval = extract_unsigned_integer (val, len);
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3784 float_argreg, phex (regval, len));
9c9acae0 3785 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
3786 if (mips_debug)
3787 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3788 argreg, phex (regval, len));
9c9acae0 3789 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3790 argreg++;
ebafbe83 3791 /* Reserve space for the FP register. */
1a69e1e4 3792 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
3793 }
3794 else
3795 {
3796 /* Copy the argument to general registers or the stack in
3797 register-sized pieces. Large arguments are split between
3798 registers and stack. */
1a69e1e4 3799 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
3800 are treated specially: Irix cc passes them in registers
3801 where gcc sometimes puts them on the stack. For maximum
3802 compatibility, we will put them in both places. */
1a69e1e4
DJ
3803 int odd_sized_struct = (len > MIPS64_REGSIZE
3804 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
3805 while (len > 0)
3806 {
3807 /* Remember if the argument was written to the stack. */
3808 int stack_used_p = 0;
1a69e1e4 3809 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
3810
3811 if (mips_debug)
3812 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3813 partial_len);
3814
3815 /* Write this portion of the argument to the stack. */
3816 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3817 || odd_sized_struct)
ebafbe83
MS
3818 {
3819 /* Should shorter than int integer values be
3820 promoted to int before being stored? */
3821 int longword_offset = 0;
3822 CORE_ADDR addr;
3823 stack_used_p = 1;
4c6b5505 3824 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 3825 {
1a69e1e4
DJ
3826 if ((typecode == TYPE_CODE_INT
3827 || typecode == TYPE_CODE_PTR
3828 || typecode == TYPE_CODE_FLT)
3829 && len <= 4)
3830 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
3831 }
3832
3833 if (mips_debug)
3834 {
3835 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3836 paddr_nz (stack_offset));
3837 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3838 paddr_nz (longword_offset));
3839 }
3840
3841 addr = sp + stack_offset + longword_offset;
3842
3843 if (mips_debug)
3844 {
3845 int i;
6d82d43b 3846 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3847 paddr_nz (addr));
3848 for (i = 0; i < partial_len; i++)
3849 {
6d82d43b 3850 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3851 val[i] & 0xff);
3852 }
3853 }
3854 write_memory (addr, val, partial_len);
3855 }
3856
3857 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3858 structs may go thru BOTH paths. */
ebafbe83 3859 /* Write this portion of the argument to a general
6d82d43b 3860 purpose register. */
968b5391 3861 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3862 {
3863 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3864 /* Value may need to be sign extended, because
1b13c4f6 3865 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3866
3867 /* A non-floating-point argument being passed in a
3868 general register. If a struct or union, and if
3869 the remaining length is smaller than the register
3870 size, we have to adjust the register value on
3871 big endian targets.
3872
3873 It does not seem to be necessary to do the
401835eb 3874 same for integral types. */
480d3dd2 3875
4c6b5505 3876 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3877 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3878 && (typecode == TYPE_CODE_STRUCT
3879 || typecode == TYPE_CODE_UNION))
1a69e1e4 3880 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3881 * TARGET_CHAR_BIT);
ebafbe83
MS
3882
3883 if (mips_debug)
3884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3885 argreg,
1a69e1e4 3886 phex (regval, MIPS64_REGSIZE));
9c9acae0 3887 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
3888 argreg++;
3889
3890 /* Prevent subsequent floating point arguments from
3891 being passed in floating point registers. */
3892 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3893 }
3894
3895 len -= partial_len;
3896 val += partial_len;
3897
3898 /* Compute the the offset into the stack at which we
6d82d43b 3899 will copy the next parameter.
ebafbe83 3900
6d82d43b
AC
3901 In older ABIs, the caller reserved space for
3902 registers that contained arguments. This was loosely
3903 refered to as their "home". Consequently, space is
3904 always allocated. */
ebafbe83 3905
1a69e1e4 3906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
3907 }
3908 }
3909 if (mips_debug)
3910 fprintf_unfiltered (gdb_stdlog, "\n");
3911 }
3912
f10683bb 3913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3914
ebafbe83
MS
3915 /* Return adjusted stack pointer. */
3916 return sp;
3917}
3918
9c8fdbfa
AC
3919static enum return_value_convention
3920mips_o64_return_value (struct gdbarch *gdbarch,
3921 struct type *type, struct regcache *regcache,
47a35522 3922 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3923{
7a076fd2
FF
3924 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3925
3926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3927 || TYPE_CODE (type) == TYPE_CODE_UNION
3928 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3929 return RETURN_VALUE_STRUCT_CONVENTION;
3930 else if (fp_register_arg_p (TYPE_CODE (type), type))
3931 {
3932 /* A floating-point value. It fits in the least significant
3933 part of FP0. */
3934 if (mips_debug)
3935 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3936 mips_xfer_register (regcache,
f57d151a
UW
3937 gdbarch_num_regs (current_gdbarch)
3938 + mips_regnum (current_gdbarch)->fp0,
7a076fd2 3939 TYPE_LENGTH (type),
4c6b5505
UW
3940 gdbarch_byte_order (current_gdbarch),
3941 readbuf, writebuf, 0);
7a076fd2
FF
3942 return RETURN_VALUE_REGISTER_CONVENTION;
3943 }
3944 else
3945 {
3946 /* A scalar extract each part but least-significant-byte
3947 justified. */
3948 int offset;
3949 int regnum;
3950 for (offset = 0, regnum = MIPS_V0_REGNUM;
3951 offset < TYPE_LENGTH (type);
1a69e1e4 3952 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 3953 {
1a69e1e4 3954 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
3955 if (offset + xfer > TYPE_LENGTH (type))
3956 xfer = TYPE_LENGTH (type) - offset;
3957 if (mips_debug)
3958 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3959 offset, xfer, regnum);
f57d151a
UW
3960 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3961 + regnum, xfer,
4c6b5505
UW
3962 gdbarch_byte_order (current_gdbarch),
3963 readbuf, writebuf, offset);
7a076fd2
FF
3964 }
3965 return RETURN_VALUE_REGISTER_CONVENTION;
3966 }
6d82d43b
AC
3967}
3968
dd824b04
DJ
3969/* Floating point register management.
3970
3971 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3972 64bit operations, these early MIPS cpus treat fp register pairs
3973 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3974 registers and offer a compatibility mode that emulates the MIPS2 fp
3975 model. When operating in MIPS2 fp compat mode, later cpu's split
3976 double precision floats into two 32-bit chunks and store them in
3977 consecutive fp regs. To display 64-bit floats stored in this
3978 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3979 Throw in user-configurable endianness and you have a real mess.
3980
3981 The way this works is:
3982 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3983 double-precision value will be split across two logical registers.
3984 The lower-numbered logical register will hold the low-order bits,
3985 regardless of the processor's endianness.
3986 - If we are on a 64-bit processor, and we are looking for a
3987 single-precision value, it will be in the low ordered bits
3988 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3989 save slot in memory.
3990 - If we are in 64-bit mode, everything is straightforward.
3991
3992 Note that this code only deals with "live" registers at the top of the
3993 stack. We will attempt to deal with saved registers later, when
3994 the raw/cooked register interface is in place. (We need a general
3995 interface that can deal with dynamic saved register sizes -- fp
3996 regs could be 32 bits wide in one frame and 64 on the frame above
3997 and below). */
3998
67b2c998
DJ
3999static struct type *
4000mips_float_register_type (void)
4001{
8da61cc4 4002 return builtin_type_ieee_single;
67b2c998
DJ
4003}
4004
4005static struct type *
4006mips_double_register_type (void)
4007{
8da61cc4 4008 return builtin_type_ieee_double;
67b2c998
DJ
4009}
4010
dd824b04
DJ
4011/* Copy a 32-bit single-precision value from the current frame
4012 into rare_buffer. */
4013
4014static void
e11c53d2 4015mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 4016 gdb_byte *rare_buffer)
dd824b04 4017{
719ec221 4018 int raw_size = register_size (current_gdbarch, regno);
47a35522 4019 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 4020
e11c53d2 4021 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572
UW
4022 error (_("can't read register %d (%s)"),
4023 regno, gdbarch_register_name (current_gdbarch, regno));
dd824b04
DJ
4024 if (raw_size == 8)
4025 {
4026 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 4027 32 bits. */
dd824b04
DJ
4028 int offset;
4029
4c6b5505 4030 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
4031 offset = 4;
4032 else
4033 offset = 0;
4034
4035 memcpy (rare_buffer, raw_buffer + offset, 4);
4036 }
4037 else
4038 {
4039 memcpy (rare_buffer, raw_buffer, 4);
4040 }
4041}
4042
4043/* Copy a 64-bit double-precision value from the current frame into
4044 rare_buffer. This may include getting half of it from the next
4045 register. */
4046
4047static void
e11c53d2 4048mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 4049 gdb_byte *rare_buffer)
dd824b04 4050{
719ec221 4051 int raw_size = register_size (current_gdbarch, regno);
dd824b04 4052
9c9acae0 4053 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
4054 {
4055 /* We have a 64-bit value for this register, and we should use
6d82d43b 4056 all 64 bits. */
e11c53d2 4057 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572
UW
4058 error (_("can't read register %d (%s)"),
4059 regno, gdbarch_register_name (current_gdbarch, regno));
dd824b04
DJ
4060 }
4061 else
4062 {
82e91389
DJ
4063 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
4064
4065 if ((rawnum - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 4066 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
4067 _("mips_read_fp_register_double: bad access to "
4068 "odd-numbered FP register"));
dd824b04
DJ
4069
4070 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 4071 each register. */
4c6b5505 4072 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
dd824b04 4073 {
e11c53d2
AC
4074 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4075 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4076 }
361d1df0 4077 else
dd824b04 4078 {
e11c53d2
AC
4079 mips_read_fp_register_single (frame, regno, rare_buffer);
4080 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4081 }
4082 }
4083}
4084
c906108c 4085static void
e11c53d2
AC
4086mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4087 int regnum)
c5aa993b 4088{ /* do values for FP (float) regs */
47a35522 4089 gdb_byte *raw_buffer;
3903d437
AC
4090 double doub, flt1; /* doubles extracted from raw hex data */
4091 int inv1, inv2;
c5aa993b 4092
47a35522
MK
4093 raw_buffer = alloca (2 * register_size (current_gdbarch,
4094 mips_regnum (current_gdbarch)->fp0));
c906108c 4095
c9f4d572
UW
4096 fprintf_filtered (file, "%s:",
4097 gdbarch_register_name (current_gdbarch, regnum));
4098 fprintf_filtered (file, "%*s",
4099 4 - (int) strlen (gdbarch_register_name
4100 (current_gdbarch, regnum)),
e11c53d2 4101 "");
f0ef6b29 4102
9c9acae0 4103 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 4104 {
f0ef6b29
KB
4105 /* 4-byte registers: Print hex and floating. Also print even
4106 numbered registers as doubles. */
e11c53d2 4107 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4108 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4109
6d82d43b
AC
4110 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4111 file);
dd824b04 4112
e11c53d2 4113 fprintf_filtered (file, " flt: ");
1adad886 4114 if (inv1)
e11c53d2 4115 fprintf_filtered (file, " <invalid float> ");
1adad886 4116 else
e11c53d2 4117 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4118
82e91389 4119 if ((regnum - gdbarch_num_regs (current_gdbarch)) % 2 == 0)
f0ef6b29 4120 {
e11c53d2 4121 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 4122 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 4123 &inv2);
1adad886 4124
e11c53d2 4125 fprintf_filtered (file, " dbl: ");
f0ef6b29 4126 if (inv2)
e11c53d2 4127 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4128 else
e11c53d2 4129 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4130 }
c906108c
SS
4131 }
4132 else
dd824b04 4133 {
f0ef6b29 4134 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4135 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4136 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4137
e11c53d2 4138 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4139 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4140
361d1df0 4141
6d82d43b
AC
4142 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4143 file);
f0ef6b29 4144
e11c53d2 4145 fprintf_filtered (file, " flt: ");
1adad886 4146 if (inv1)
e11c53d2 4147 fprintf_filtered (file, "<invalid float>");
1adad886 4148 else
e11c53d2 4149 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4150
e11c53d2 4151 fprintf_filtered (file, " dbl: ");
f0ef6b29 4152 if (inv2)
e11c53d2 4153 fprintf_filtered (file, "<invalid double>");
1adad886 4154 else
e11c53d2 4155 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4156 }
4157}
4158
4159static void
e11c53d2 4160mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4161 int regnum)
f0ef6b29 4162{
a4b8ebc8 4163 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4164 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4165 int offset;
1adad886 4166
7b9ee6a8 4167 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4168 {
e11c53d2 4169 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4170 return;
4171 }
4172
4173 /* Get the data in raw format. */
e11c53d2 4174 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4175 {
c9f4d572
UW
4176 fprintf_filtered (file, "%s: [Invalid]",
4177 gdbarch_register_name (current_gdbarch, regnum));
f0ef6b29 4178 return;
c906108c 4179 }
f0ef6b29 4180
c9f4d572 4181 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
f0ef6b29
KB
4182
4183 /* The problem with printing numeric register names (r26, etc.) is that
4184 the user can't use them on input. Probably the best solution is to
4185 fix it so that either the numeric or the funky (a2, etc.) names
4186 are accepted on input. */
4187 if (regnum < MIPS_NUMREGS)
e11c53d2 4188 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4189 else
e11c53d2 4190 fprintf_filtered (file, ": ");
f0ef6b29 4191
4c6b5505 4192 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6d82d43b
AC
4193 offset =
4194 register_size (current_gdbarch,
4195 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4196 else
4197 offset = 0;
4198
6d82d43b 4199 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4200 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4201 file);
c906108c
SS
4202}
4203
f0ef6b29
KB
4204/* Replacement for generic do_registers_info.
4205 Print regs in pretty columns. */
4206
4207static int
e11c53d2
AC
4208print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4209 int regnum)
f0ef6b29 4210{
e11c53d2
AC
4211 fprintf_filtered (file, " ");
4212 mips_print_fp_register (file, frame, regnum);
4213 fprintf_filtered (file, "\n");
f0ef6b29
KB
4214 return regnum + 1;
4215}
4216
4217
c906108c
SS
4218/* Print a row's worth of GP (int) registers, with name labels above */
4219
4220static int
e11c53d2 4221print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4222 int start_regnum)
c906108c 4223{
a4b8ebc8 4224 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4225 /* do values for GP (int) regs */
47a35522 4226 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4227 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4228 int col, byte;
a4b8ebc8 4229 int regnum;
c906108c
SS
4230
4231 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4232 for (col = 0, regnum = start_regnum;
f57d151a
UW
4233 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4234 + gdbarch_num_pseudo_regs (current_gdbarch);
4235 regnum++)
c906108c 4236 {
c9f4d572 4237 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
c5aa993b 4238 continue; /* unused register */
7b9ee6a8 4239 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4240 TYPE_CODE_FLT)
c5aa993b 4241 break; /* end the row: reached FP register */
0cc93a06
DJ
4242 /* Large registers are handled separately. */
4243 if (register_size (current_gdbarch, regnum)
4244 > mips_abi_regsize (current_gdbarch))
4245 {
4246 if (col > 0)
4247 break; /* End the row before this register. */
4248
4249 /* Print this register on a row by itself. */
4250 mips_print_register (file, frame, regnum);
4251 fprintf_filtered (file, "\n");
4252 return regnum + 1;
4253 }
d05f6826
DJ
4254 if (col == 0)
4255 fprintf_filtered (file, " ");
6d82d43b 4256 fprintf_filtered (file,
d5ac5a39 4257 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
c9f4d572 4258 gdbarch_register_name (current_gdbarch, regnum));
c906108c
SS
4259 col++;
4260 }
d05f6826
DJ
4261
4262 if (col == 0)
4263 return regnum;
4264
a4b8ebc8 4265 /* print the R0 to R31 names */
f57d151a
UW
4266 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4267 fprintf_filtered (file, "\n R%-4d",
4268 start_regnum % gdbarch_num_regs (current_gdbarch));
20e6603c
AC
4269 else
4270 fprintf_filtered (file, "\n ");
c906108c 4271
c906108c 4272 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4273 for (col = 0, regnum = start_regnum;
f57d151a
UW
4274 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4275 + gdbarch_num_pseudo_regs (current_gdbarch);
4276 regnum++)
c906108c 4277 {
c9f4d572 4278 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
c5aa993b 4279 continue; /* unused register */
7b9ee6a8 4280 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4281 TYPE_CODE_FLT)
c5aa993b 4282 break; /* end row: reached FP register */
0cc93a06
DJ
4283 if (register_size (current_gdbarch, regnum)
4284 > mips_abi_regsize (current_gdbarch))
4285 break; /* End row: large register. */
4286
c906108c 4287 /* OK: get the data in raw format. */
e11c53d2 4288 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572
UW
4289 error (_("can't read register %d (%s)"),
4290 regnum, gdbarch_register_name (current_gdbarch, regnum));
c906108c 4291 /* pad small registers */
4246e332 4292 for (byte = 0;
d5ac5a39 4293 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4294 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4295 printf_filtered (" ");
4296 /* Now print the register value in hex, endian order. */
4c6b5505 4297 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6d82d43b
AC
4298 for (byte =
4299 register_size (current_gdbarch,
4300 regnum) - register_size (current_gdbarch, regnum);
4301 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4302 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4303 else
c73e8f27 4304 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4305 byte >= 0; byte--)
47a35522 4306 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4307 fprintf_filtered (file, " ");
c906108c
SS
4308 col++;
4309 }
c5aa993b 4310 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4311 fprintf_filtered (file, "\n");
c906108c
SS
4312
4313 return regnum;
4314}
4315
4316/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4317
bf1f5b4c 4318static void
e11c53d2
AC
4319mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4320 struct frame_info *frame, int regnum, int all)
c906108c 4321{
c5aa993b 4322 if (regnum != -1) /* do one specified register */
c906108c 4323 {
f57d151a 4324 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
c9f4d572 4325 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
8a3fe4f8 4326 error (_("Not a valid register for the current processor type"));
c906108c 4327
0cc93a06 4328 mips_print_register (file, frame, regnum);
e11c53d2 4329 fprintf_filtered (file, "\n");
c906108c 4330 }
c5aa993b
JM
4331 else
4332 /* do all (or most) registers */
c906108c 4333 {
f57d151a
UW
4334 regnum = gdbarch_num_regs (current_gdbarch);
4335 while (regnum < gdbarch_num_regs (current_gdbarch)
4336 + gdbarch_num_pseudo_regs (current_gdbarch))
c906108c 4337 {
7b9ee6a8 4338 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4339 TYPE_CODE_FLT)
e11c53d2
AC
4340 {
4341 if (all) /* true for "INFO ALL-REGISTERS" command */
4342 regnum = print_fp_register_row (file, frame, regnum);
4343 else
4344 regnum += MIPS_NUMREGS; /* skip floating point regs */
4345 }
c906108c 4346 else
e11c53d2 4347 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4348 }
4349 }
4350}
4351
c906108c
SS
4352/* Is this a branch with a delay slot? */
4353
c906108c 4354static int
acdb74a0 4355is_delayed (unsigned long insn)
c906108c
SS
4356{
4357 int i;
4358 for (i = 0; i < NUMOPCODES; ++i)
4359 if (mips_opcodes[i].pinfo != INSN_MACRO
4360 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4361 break;
4362 return (i < NUMOPCODES
4363 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4364 | INSN_COND_BRANCH_DELAY
4365 | INSN_COND_BRANCH_LIKELY)));
4366}
4367
4368int
3352ef37
AC
4369mips_single_step_through_delay (struct gdbarch *gdbarch,
4370 struct frame_info *frame)
c906108c 4371{
3352ef37 4372 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4373 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4374
4375 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4376 if (mips_pc_is_mips16 (pc))
c906108c
SS
4377 return 0;
4378
06648491
MK
4379 if (!breakpoint_here_p (pc + 4))
4380 return 0;
4381
3352ef37
AC
4382 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4383 /* If error reading memory, guess that it is not a delayed
4384 branch. */
c906108c 4385 return 0;
4c7d22cb 4386 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4387}
4388
6d82d43b
AC
4389/* To skip prologues, I use this predicate. Returns either PC itself
4390 if the code at PC does not look like a function prologue; otherwise
4391 returns an address that (if we're lucky) follows the prologue. If
4392 LENIENT, then we must skip everything which is involved in setting
4393 up the frame (it's OK to skip more, just so long as we don't skip
4394 anything which might clobber the registers which are being saved.
4395 We must skip more in the case where part of the prologue is in the
4396 delay slot of a non-prologue instruction). */
4397
4398static CORE_ADDR
4399mips_skip_prologue (CORE_ADDR pc)
4400{
8b622e6a
AC
4401 CORE_ADDR limit_pc;
4402 CORE_ADDR func_addr;
4403
6d82d43b
AC
4404 /* See if we can determine the end of the prologue via the symbol table.
4405 If so, then return either PC, or the PC after the prologue, whichever
4406 is greater. */
8b622e6a
AC
4407 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4408 {
4409 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4410 if (post_prologue_pc != 0)
4411 return max (pc, post_prologue_pc);
4412 }
6d82d43b
AC
4413
4414 /* Can't determine prologue from the symbol table, need to examine
4415 instructions. */
4416
98b4dd94
JB
4417 /* Find an upper limit on the function prologue using the debug
4418 information. If the debug information could not be used to provide
4419 that bound, then use an arbitrary large number as the upper bound. */
4420 limit_pc = skip_prologue_using_sal (pc);
4421 if (limit_pc == 0)
4422 limit_pc = pc + 100; /* Magic. */
4423
0fe7e7c8 4424 if (mips_pc_is_mips16 (pc))
a65bbe44 4425 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4426 else
a65bbe44 4427 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4428}
4429
97ab0fdd
MR
4430/* Check whether the PC is in a function epilogue (32-bit version).
4431 This is a helper function for mips_in_function_epilogue_p. */
4432static int
4433mips32_in_function_epilogue_p (CORE_ADDR pc)
4434{
4435 CORE_ADDR func_addr = 0, func_end = 0;
4436
4437 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4438 {
4439 /* The MIPS epilogue is max. 12 bytes long. */
4440 CORE_ADDR addr = func_end - 12;
4441
4442 if (addr < func_addr + 4)
4443 addr = func_addr + 4;
4444 if (pc < addr)
4445 return 0;
4446
4447 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4448 {
4449 unsigned long high_word;
4450 unsigned long inst;
4451
4452 inst = mips_fetch_instruction (pc);
4453 high_word = (inst >> 16) & 0xffff;
4454
4455 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4456 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4457 && inst != 0x03e00008 /* jr $ra */
4458 && inst != 0x00000000) /* nop */
4459 return 0;
4460 }
4461
4462 return 1;
4463 }
4464
4465 return 0;
4466}
4467
4468/* Check whether the PC is in a function epilogue (16-bit version).
4469 This is a helper function for mips_in_function_epilogue_p. */
4470static int
4471mips16_in_function_epilogue_p (CORE_ADDR pc)
4472{
4473 CORE_ADDR func_addr = 0, func_end = 0;
4474
4475 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4476 {
4477 /* The MIPS epilogue is max. 12 bytes long. */
4478 CORE_ADDR addr = func_end - 12;
4479
4480 if (addr < func_addr + 4)
4481 addr = func_addr + 4;
4482 if (pc < addr)
4483 return 0;
4484
4485 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4486 {
4487 unsigned short inst;
4488
4489 inst = mips_fetch_instruction (pc);
4490
4491 if ((inst & 0xf800) == 0xf000) /* extend */
4492 continue;
4493
4494 if (inst != 0x6300 /* addiu $sp,offset */
4495 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4496 && inst != 0xe820 /* jr $ra */
4497 && inst != 0xe8a0 /* jrc $ra */
4498 && inst != 0x6500) /* nop */
4499 return 0;
4500 }
4501
4502 return 1;
4503 }
4504
4505 return 0;
4506}
4507
4508/* The epilogue is defined here as the area at the end of a function,
4509 after an instruction which destroys the function's stack frame. */
4510static int
4511mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4512{
4513 if (mips_pc_is_mips16 (pc))
4514 return mips16_in_function_epilogue_p (pc);
4515 else
4516 return mips32_in_function_epilogue_p (pc);
4517}
4518
a5ea2558
AC
4519/* Root of all "set mips "/"show mips " commands. This will eventually be
4520 used for all MIPS-specific commands. */
4521
a5ea2558 4522static void
acdb74a0 4523show_mips_command (char *args, int from_tty)
a5ea2558
AC
4524{
4525 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4526}
4527
a5ea2558 4528static void
acdb74a0 4529set_mips_command (char *args, int from_tty)
a5ea2558 4530{
6d82d43b
AC
4531 printf_unfiltered
4532 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4533 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4534}
4535
c906108c
SS
4536/* Commands to show/set the MIPS FPU type. */
4537
c906108c 4538static void
acdb74a0 4539show_mipsfpu_command (char *args, int from_tty)
c906108c 4540{
c906108c
SS
4541 char *fpu;
4542 switch (MIPS_FPU_TYPE)
4543 {
4544 case MIPS_FPU_SINGLE:
4545 fpu = "single-precision";
4546 break;
4547 case MIPS_FPU_DOUBLE:
4548 fpu = "double-precision";
4549 break;
4550 case MIPS_FPU_NONE:
4551 fpu = "absent (none)";
4552 break;
93d56215 4553 default:
e2e0b3e5 4554 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4555 }
4556 if (mips_fpu_type_auto)
6d82d43b
AC
4557 printf_unfiltered
4558 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4559 fpu);
c906108c 4560 else
6d82d43b
AC
4561 printf_unfiltered
4562 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4563}
4564
4565
c906108c 4566static void
acdb74a0 4567set_mipsfpu_command (char *args, int from_tty)
c906108c 4568{
6d82d43b
AC
4569 printf_unfiltered
4570 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4571 show_mipsfpu_command (args, from_tty);
4572}
4573
c906108c 4574static void
acdb74a0 4575set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4576{
8d5838b5
AC
4577 struct gdbarch_info info;
4578 gdbarch_info_init (&info);
c906108c
SS
4579 mips_fpu_type = MIPS_FPU_SINGLE;
4580 mips_fpu_type_auto = 0;
8d5838b5
AC
4581 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4582 instead of relying on globals. Doing that would let generic code
4583 handle the search for this specific architecture. */
4584 if (!gdbarch_update_p (info))
e2e0b3e5 4585 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4586}
4587
c906108c 4588static void
acdb74a0 4589set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4590{
8d5838b5
AC
4591 struct gdbarch_info info;
4592 gdbarch_info_init (&info);
c906108c
SS
4593 mips_fpu_type = MIPS_FPU_DOUBLE;
4594 mips_fpu_type_auto = 0;
8d5838b5
AC
4595 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4596 instead of relying on globals. Doing that would let generic code
4597 handle the search for this specific architecture. */
4598 if (!gdbarch_update_p (info))
e2e0b3e5 4599 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4600}
4601
c906108c 4602static void
acdb74a0 4603set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4604{
8d5838b5
AC
4605 struct gdbarch_info info;
4606 gdbarch_info_init (&info);
c906108c
SS
4607 mips_fpu_type = MIPS_FPU_NONE;
4608 mips_fpu_type_auto = 0;
8d5838b5
AC
4609 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4610 instead of relying on globals. Doing that would let generic code
4611 handle the search for this specific architecture. */
4612 if (!gdbarch_update_p (info))
e2e0b3e5 4613 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4614}
4615
c906108c 4616static void
acdb74a0 4617set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4618{
4619 mips_fpu_type_auto = 1;
4620}
4621
c906108c 4622/* Attempt to identify the particular processor model by reading the
691c0433
AC
4623 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4624 the relevant processor still exists (it dates back to '94) and
4625 secondly this is not the way to do this. The processor type should
4626 be set by forcing an architecture change. */
c906108c 4627
691c0433
AC
4628void
4629deprecated_mips_set_processor_regs_hack (void)
c906108c 4630{
691c0433 4631 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a9614958 4632 ULONGEST prid;
c906108c 4633
594f7785 4634 regcache_cooked_read_unsigned (get_current_regcache (),
a9614958 4635 MIPS_PRID_REGNUM, &prid);
c906108c 4636 if ((prid & ~0xf) == 0x700)
691c0433 4637 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4638}
4639
4640/* Just like reinit_frame_cache, but with the right arguments to be
4641 callable as an sfunc. */
4642
4643static void
acdb74a0
AC
4644reinit_frame_cache_sfunc (char *args, int from_tty,
4645 struct cmd_list_element *c)
c906108c
SS
4646{
4647 reinit_frame_cache ();
4648}
4649
a89aa300
AC
4650static int
4651gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4652{
e5ab0dce 4653 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4654
d31431ed
AC
4655 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4656 disassembler needs to be able to locally determine the ISA, and
4657 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4658 work. */
ec4045ea
AC
4659 if (mips_pc_is_mips16 (memaddr))
4660 info->mach = bfd_mach_mips16;
c906108c
SS
4661
4662 /* Round down the instruction address to the appropriate boundary. */
65c11066 4663 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4664
e5ab0dce 4665 /* Set the disassembler options. */
6d82d43b 4666 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4667 {
4668 /* Set up the disassembler info, so that we get the right
6d82d43b 4669 register names from libopcodes. */
e5ab0dce
AC
4670 if (tdep->mips_abi == MIPS_ABI_N32)
4671 info->disassembler_options = "gpr-names=n32";
4672 else
4673 info->disassembler_options = "gpr-names=64";
4674 info->flavour = bfd_target_elf_flavour;
4675 }
4676 else
4677 /* This string is not recognized explicitly by the disassembler,
4678 but it tells the disassembler to not try to guess the ABI from
4679 the bfd elf headers, such that, if the user overrides the ABI
4680 of a program linked as NewABI, the disassembly will follow the
4681 register naming conventions specified by the user. */
4682 info->disassembler_options = "gpr-names=32";
4683
c906108c 4684 /* Call the appropriate disassembler based on the target endian-ness. */
4c6b5505 4685 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
4686 return print_insn_big_mips (memaddr, info);
4687 else
4688 return print_insn_little_mips (memaddr, info);
4689}
4690
3b3b875c
UW
4691/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4692 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4693 It returns a pointer to a string of bytes that encode a breakpoint
4694 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4695 necessary) to point to the actual memory location where the breakpoint
4696 should be inserted. */
c906108c 4697
47a35522 4698static const gdb_byte *
6d82d43b 4699mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4700{
4c6b5505 4701 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 4702 {
0fe7e7c8 4703 if (mips_pc_is_mips16 (*pcptr))
c906108c 4704 {
47a35522 4705 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4706 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4707 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4708 return mips16_big_breakpoint;
4709 }
4710 else
4711 {
aaab4dba
AC
4712 /* The IDT board uses an unusual breakpoint value, and
4713 sometimes gets confused when it sees the usual MIPS
4714 breakpoint instruction. */
47a35522
MK
4715 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4716 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4717 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4718
c5aa993b 4719 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4720
4721 if (strcmp (target_shortname, "mips") == 0)
4722 return idt_big_breakpoint;
4723 else if (strcmp (target_shortname, "ddb") == 0
4724 || strcmp (target_shortname, "pmon") == 0
4725 || strcmp (target_shortname, "lsi") == 0)
4726 return pmon_big_breakpoint;
4727 else
4728 return big_breakpoint;
4729 }
4730 }
4731 else
4732 {
0fe7e7c8 4733 if (mips_pc_is_mips16 (*pcptr))
c906108c 4734 {
47a35522 4735 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4736 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4737 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4738 return mips16_little_breakpoint;
4739 }
4740 else
4741 {
47a35522
MK
4742 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4743 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4744 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4745
c5aa993b 4746 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4747
4748 if (strcmp (target_shortname, "mips") == 0)
4749 return idt_little_breakpoint;
4750 else if (strcmp (target_shortname, "ddb") == 0
4751 || strcmp (target_shortname, "pmon") == 0
4752 || strcmp (target_shortname, "lsi") == 0)
4753 return pmon_little_breakpoint;
4754 else
4755 return little_breakpoint;
4756 }
4757 }
4758}
4759
4760/* If PC is in a mips16 call or return stub, return the address of the target
4761 PC, which is either the callee or the caller. There are several
4762 cases which must be handled:
4763
4764 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4765 target PC is in $31 ($ra).
c906108c 4766 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4767 and the target PC is in $2.
c906108c 4768 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4769 before the jal instruction, this is effectively a call stub
4770 and the the target PC is in $2. Otherwise this is effectively
4771 a return stub and the target PC is in $18.
c906108c
SS
4772
4773 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4774 gory details. */
c906108c 4775
757a7cc6 4776static CORE_ADDR
52f729a7 4777mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
4778{
4779 char *name;
4780 CORE_ADDR start_addr;
4781
4782 /* Find the starting address and name of the function containing the PC. */
4783 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4784 return 0;
4785
4786 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4787 target PC is in $31 ($ra). */
4788 if (strcmp (name, "__mips16_ret_sf") == 0
4789 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 4790 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
4791
4792 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4793 {
4794 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4795 and the target PC is in $2. */
4796 if (name[19] >= '0' && name[19] <= '9')
52f729a7 4797 return get_frame_register_signed (frame, 2);
c906108c
SS
4798
4799 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4800 before the jal instruction, this is effectively a call stub
4801 and the the target PC is in $2. Otherwise this is effectively
4802 a return stub and the target PC is in $18. */
c906108c
SS
4803 else if (name[19] == 's' || name[19] == 'd')
4804 {
4805 if (pc == start_addr)
4806 {
4807 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4808 stub. Such a stub for a function bar might have a name
4809 like __fn_stub_bar, and might look like this:
4810 mfc1 $4,$f13
4811 mfc1 $5,$f12
4812 mfc1 $6,$f15
4813 mfc1 $7,$f14
4814 la $1,bar (becomes a lui/addiu pair)
4815 jr $1
4816 So scan down to the lui/addi and extract the target
4817 address from those two instructions. */
c906108c 4818
52f729a7 4819 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 4820 ULONGEST inst;
c906108c
SS
4821 int i;
4822
4823 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4824 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4825 0)
c906108c
SS
4826 return target_pc;
4827 if (strncmp (name, "__fn_stub_", 10) != 0
4828 && strcmp (name, "etext") != 0
4829 && strcmp (name, "_etext") != 0)
4830 return target_pc;
4831
4832 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4833 The limit on the search is arbitrarily set to 20
4834 instructions. FIXME. */
95ac2dcf 4835 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4836 {
c5aa993b
JM
4837 inst = mips_fetch_instruction (target_pc);
4838 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4839 pc = (inst << 16) & 0xffff0000; /* high word */
4840 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4841 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4842 }
4843
4844 /* Couldn't find the lui/addui pair, so return stub address. */
4845 return target_pc;
4846 }
4847 else
4848 /* This is the 'return' part of a call stub. The return
4849 address is in $r18. */
52f729a7 4850 return get_frame_register_signed (frame, 18);
c906108c
SS
4851 }
4852 }
c5aa993b 4853 return 0; /* not a stub */
c906108c
SS
4854}
4855
a4b8ebc8 4856/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 4857 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4858
4859static int
4860mips_stab_reg_to_regnum (int num)
4861{
a4b8ebc8 4862 int regnum;
2f38ef89 4863 if (num >= 0 && num < 32)
a4b8ebc8 4864 regnum = num;
2f38ef89 4865 else if (num >= 38 && num < 70)
56cea623 4866 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4867 else if (num == 70)
56cea623 4868 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4869 else if (num == 71)
56cea623 4870 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4871 else
a4b8ebc8
AC
4872 /* This will hopefully (eventually) provoke a warning. Should
4873 we be calling complaint() here? */
f57d151a
UW
4874 return gdbarch_num_regs (current_gdbarch)
4875 + gdbarch_num_pseudo_regs (current_gdbarch);
4876 return gdbarch_num_regs (current_gdbarch) + regnum;
88c72b7d
AC
4877}
4878
2f38ef89 4879
a4b8ebc8 4880/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 4881 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4882
4883static int
2f38ef89 4884mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4885{
a4b8ebc8 4886 int regnum;
2f38ef89 4887 if (num >= 0 && num < 32)
a4b8ebc8 4888 regnum = num;
2f38ef89 4889 else if (num >= 32 && num < 64)
56cea623 4890 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4891 else if (num == 64)
56cea623 4892 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4893 else if (num == 65)
56cea623 4894 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4895 else
a4b8ebc8
AC
4896 /* This will hopefully (eventually) provoke a warning. Should we
4897 be calling complaint() here? */
f57d151a
UW
4898 return gdbarch_num_regs (current_gdbarch)
4899 + gdbarch_num_pseudo_regs (current_gdbarch);
4900 return gdbarch_num_regs (current_gdbarch) + regnum;
a4b8ebc8
AC
4901}
4902
4903static int
4904mips_register_sim_regno (int regnum)
4905{
4906 /* Only makes sense to supply raw registers. */
f57d151a 4907 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
a4b8ebc8
AC
4908 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4909 decide if it is valid. Should instead define a standard sim/gdb
4910 register numbering scheme. */
c9f4d572
UW
4911 if (gdbarch_register_name (current_gdbarch,
4912 gdbarch_num_regs
4913 (current_gdbarch) + regnum) != NULL
4914 && gdbarch_register_name (current_gdbarch,
4915 gdbarch_num_regs
4916 (current_gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
4917 return regnum;
4918 else
6d82d43b 4919 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4920}
4921
2f38ef89 4922
4844f454
CV
4923/* Convert an integer into an address. Extracting the value signed
4924 guarantees a correctly sign extended address. */
fc0c74b1
AC
4925
4926static CORE_ADDR
79dd2d24 4927mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4928 struct type *type, const gdb_byte *buf)
fc0c74b1 4929{
4844f454 4930 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4931}
4932
82e91389
DJ
4933/* Dummy virtual frame pointer method. This is no more or less accurate
4934 than most other architectures; we just need to be explicit about it,
4935 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
4936 an assertion failure. */
4937
4938static void
4939mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
4940{
4941 *reg = MIPS_SP_REGNUM;
4942 *offset = 0;
4943}
4944
caaa3122
DJ
4945static void
4946mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4947{
4948 enum mips_abi *abip = (enum mips_abi *) obj;
4949 const char *name = bfd_get_section_name (abfd, sect);
4950
4951 if (*abip != MIPS_ABI_UNKNOWN)
4952 return;
4953
4954 if (strncmp (name, ".mdebug.", 8) != 0)
4955 return;
4956
4957 if (strcmp (name, ".mdebug.abi32") == 0)
4958 *abip = MIPS_ABI_O32;
4959 else if (strcmp (name, ".mdebug.abiN32") == 0)
4960 *abip = MIPS_ABI_N32;
62a49b2c 4961 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4962 *abip = MIPS_ABI_N64;
caaa3122
DJ
4963 else if (strcmp (name, ".mdebug.abiO64") == 0)
4964 *abip = MIPS_ABI_O64;
4965 else if (strcmp (name, ".mdebug.eabi32") == 0)
4966 *abip = MIPS_ABI_EABI32;
4967 else if (strcmp (name, ".mdebug.eabi64") == 0)
4968 *abip = MIPS_ABI_EABI64;
4969 else
8a3fe4f8 4970 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4971}
4972
22e47e37
FF
4973static void
4974mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4975{
4976 int *lbp = (int *) obj;
4977 const char *name = bfd_get_section_name (abfd, sect);
4978
4979 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4980 *lbp = 32;
4981 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4982 *lbp = 64;
4983 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4984 warning (_("unrecognized .gcc_compiled_longXX"));
4985}
4986
2e4ebe70
DJ
4987static enum mips_abi
4988global_mips_abi (void)
4989{
4990 int i;
4991
4992 for (i = 0; mips_abi_strings[i] != NULL; i++)
4993 if (mips_abi_strings[i] == mips_abi_string)
4994 return (enum mips_abi) i;
4995
e2e0b3e5 4996 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4997}
4998
29709017
DJ
4999static void
5000mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5001{
29709017
DJ
5002 /* If the size matches the set of 32-bit or 64-bit integer registers,
5003 assume that's what we've got. */
4eb0ad19
DJ
5004 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5005 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
5006
5007 /* If the size matches the full set of registers GDB traditionally
5008 knows about, including floating point, for either 32-bit or
5009 64-bit, assume that's what we've got. */
4eb0ad19
DJ
5010 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5011 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
5012
5013 /* Otherwise we don't have a useful guess. */
5014}
5015
f8b73d13
DJ
5016static struct value *
5017value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5018{
5019 const int *reg_p = baton;
5020 return value_of_register (*reg_p, frame);
5021}
5022
c2d11a7d 5023static struct gdbarch *
6d82d43b 5024mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 5025{
c2d11a7d
JM
5026 struct gdbarch *gdbarch;
5027 struct gdbarch_tdep *tdep;
5028 int elf_flags;
2e4ebe70 5029 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 5030 int i, num_regs;
8d5838b5 5031 enum mips_fpu_type fpu_type;
f8b73d13 5032 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 5033 int elf_fpu_type = 0;
f8b73d13
DJ
5034
5035 /* Check any target description for validity. */
5036 if (tdesc_has_registers (info.target_desc))
5037 {
5038 static const char *const mips_gprs[] = {
5039 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5040 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5041 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5042 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5043 };
5044 static const char *const mips_fprs[] = {
5045 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5046 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5047 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5048 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5049 };
5050
5051 const struct tdesc_feature *feature;
5052 int valid_p;
5053
5054 feature = tdesc_find_feature (info.target_desc,
5055 "org.gnu.gdb.mips.cpu");
5056 if (feature == NULL)
5057 return NULL;
5058
5059 tdesc_data = tdesc_data_alloc ();
5060
5061 valid_p = 1;
5062 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5063 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5064 mips_gprs[i]);
5065
5066
5067 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5068 MIPS_EMBED_LO_REGNUM, "lo");
5069 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5070 MIPS_EMBED_HI_REGNUM, "hi");
5071 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5072 MIPS_EMBED_PC_REGNUM, "pc");
5073
5074 if (!valid_p)
5075 {
5076 tdesc_data_cleanup (tdesc_data);
5077 return NULL;
5078 }
5079
5080 feature = tdesc_find_feature (info.target_desc,
5081 "org.gnu.gdb.mips.cp0");
5082 if (feature == NULL)
5083 {
5084 tdesc_data_cleanup (tdesc_data);
5085 return NULL;
5086 }
5087
5088 valid_p = 1;
5089 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5090 MIPS_EMBED_BADVADDR_REGNUM,
5091 "badvaddr");
5092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5093 MIPS_PS_REGNUM, "status");
5094 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5095 MIPS_EMBED_CAUSE_REGNUM, "cause");
5096
5097 if (!valid_p)
5098 {
5099 tdesc_data_cleanup (tdesc_data);
5100 return NULL;
5101 }
5102
5103 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5104 backend is not prepared for that, though. */
5105 feature = tdesc_find_feature (info.target_desc,
5106 "org.gnu.gdb.mips.fpu");
5107 if (feature == NULL)
5108 {
5109 tdesc_data_cleanup (tdesc_data);
5110 return NULL;
5111 }
5112
5113 valid_p = 1;
5114 for (i = 0; i < 32; i++)
5115 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5116 i + MIPS_EMBED_FP0_REGNUM,
5117 mips_fprs[i]);
5118
5119 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5120 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5121 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5122 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5123
5124 if (!valid_p)
5125 {
5126 tdesc_data_cleanup (tdesc_data);
5127 return NULL;
5128 }
5129
5130 /* It would be nice to detect an attempt to use a 64-bit ABI
5131 when only 32-bit registers are provided. */
5132 }
c2d11a7d 5133
ec03c1ac
AC
5134 /* First of all, extract the elf_flags, if available. */
5135 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5136 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5137 else if (arches != NULL)
5138 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5139 else
5140 elf_flags = 0;
5141 if (gdbarch_debug)
5142 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5143 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 5144
102182a9 5145 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5146 switch ((elf_flags & EF_MIPS_ABI))
5147 {
5148 case E_MIPS_ABI_O32:
ec03c1ac 5149 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5150 break;
5151 case E_MIPS_ABI_O64:
ec03c1ac 5152 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5153 break;
5154 case E_MIPS_ABI_EABI32:
ec03c1ac 5155 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5156 break;
5157 case E_MIPS_ABI_EABI64:
ec03c1ac 5158 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5159 break;
5160 default:
acdb74a0 5161 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5162 found_abi = MIPS_ABI_N32;
acdb74a0 5163 else
ec03c1ac 5164 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5165 break;
5166 }
acdb74a0 5167
caaa3122 5168 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5169 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5170 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5171
dc305454 5172 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
5173 MIPS architecture (if there is one). */
5174 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5175 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5176
32a6503c 5177 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5178 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5179 && info.bfd_arch_info != NULL
5180 && info.bfd_arch_info->arch == bfd_arch_mips)
5181 {
5182 switch (info.bfd_arch_info->mach)
5183 {
5184 case bfd_mach_mips3900:
ec03c1ac 5185 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5186 break;
5187 case bfd_mach_mips4100:
5188 case bfd_mach_mips5000:
ec03c1ac 5189 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5190 break;
1d06468c
EZ
5191 case bfd_mach_mips8000:
5192 case bfd_mach_mips10000:
32a6503c
KB
5193 /* On Irix, ELF64 executables use the N64 ABI. The
5194 pseudo-sections which describe the ABI aren't present
5195 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5196 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5197 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5198 found_abi = MIPS_ABI_N64;
28d169de 5199 else
ec03c1ac 5200 found_abi = MIPS_ABI_N32;
1d06468c 5201 break;
bf64bfd6
AC
5202 }
5203 }
2e4ebe70 5204
26c53e50
DJ
5205 /* Default 64-bit objects to N64 instead of O32. */
5206 if (found_abi == MIPS_ABI_UNKNOWN
5207 && info.abfd != NULL
5208 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5209 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5210 found_abi = MIPS_ABI_N64;
5211
ec03c1ac
AC
5212 if (gdbarch_debug)
5213 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5214 found_abi);
5215
5216 /* What has the user specified from the command line? */
5217 wanted_abi = global_mips_abi ();
5218 if (gdbarch_debug)
5219 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5220 wanted_abi);
2e4ebe70
DJ
5221
5222 /* Now that we have found what the ABI for this binary would be,
5223 check whether the user is overriding it. */
2e4ebe70
DJ
5224 if (wanted_abi != MIPS_ABI_UNKNOWN)
5225 mips_abi = wanted_abi;
ec03c1ac
AC
5226 else if (found_abi != MIPS_ABI_UNKNOWN)
5227 mips_abi = found_abi;
5228 else
5229 mips_abi = MIPS_ABI_O32;
5230 if (gdbarch_debug)
5231 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5232 mips_abi);
2e4ebe70 5233
ec03c1ac 5234 /* Also used when doing an architecture lookup. */
4b9b3959 5235 if (gdbarch_debug)
ec03c1ac
AC
5236 fprintf_unfiltered (gdb_stdlog,
5237 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5238 mips64_transfers_32bit_regs_p);
0dadbba0 5239
8d5838b5 5240 /* Determine the MIPS FPU type. */
609ca2b9
DJ
5241#ifdef HAVE_ELF
5242 if (info.abfd
5243 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5244 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5245 Tag_GNU_MIPS_ABI_FP);
5246#endif /* HAVE_ELF */
5247
8d5838b5
AC
5248 if (!mips_fpu_type_auto)
5249 fpu_type = mips_fpu_type;
609ca2b9
DJ
5250 else if (elf_fpu_type != 0)
5251 {
5252 switch (elf_fpu_type)
5253 {
5254 case 1:
5255 fpu_type = MIPS_FPU_DOUBLE;
5256 break;
5257 case 2:
5258 fpu_type = MIPS_FPU_SINGLE;
5259 break;
5260 case 3:
5261 default:
5262 /* Soft float or unknown. */
5263 fpu_type = MIPS_FPU_NONE;
5264 break;
5265 }
5266 }
8d5838b5
AC
5267 else if (info.bfd_arch_info != NULL
5268 && info.bfd_arch_info->arch == bfd_arch_mips)
5269 switch (info.bfd_arch_info->mach)
5270 {
5271 case bfd_mach_mips3900:
5272 case bfd_mach_mips4100:
5273 case bfd_mach_mips4111:
a9d61c86 5274 case bfd_mach_mips4120:
8d5838b5
AC
5275 fpu_type = MIPS_FPU_NONE;
5276 break;
5277 case bfd_mach_mips4650:
5278 fpu_type = MIPS_FPU_SINGLE;
5279 break;
5280 default:
5281 fpu_type = MIPS_FPU_DOUBLE;
5282 break;
5283 }
5284 else if (arches != NULL)
5285 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5286 else
5287 fpu_type = MIPS_FPU_DOUBLE;
5288 if (gdbarch_debug)
5289 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5290 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5291
29709017
DJ
5292 /* Check for blatant incompatibilities. */
5293
5294 /* If we have only 32-bit registers, then we can't debug a 64-bit
5295 ABI. */
5296 if (info.target_desc
5297 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5298 && mips_abi != MIPS_ABI_EABI32
5299 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5300 {
5301 if (tdesc_data != NULL)
5302 tdesc_data_cleanup (tdesc_data);
5303 return NULL;
5304 }
29709017 5305
c2d11a7d
JM
5306 /* try to find a pre-existing architecture */
5307 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5308 arches != NULL;
5309 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5310 {
5311 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5312 using. */
9103eae0 5313 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5314 continue;
9103eae0 5315 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5316 continue;
719ec221
AC
5317 /* Need to be pedantic about which register virtual size is
5318 used. */
5319 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5320 != mips64_transfers_32bit_regs_p)
5321 continue;
8d5838b5
AC
5322 /* Be pedantic about which FPU is selected. */
5323 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5324 continue;
f8b73d13
DJ
5325
5326 if (tdesc_data != NULL)
5327 tdesc_data_cleanup (tdesc_data);
4be87837 5328 return arches->gdbarch;
c2d11a7d
JM
5329 }
5330
102182a9 5331 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5332 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5333 gdbarch = gdbarch_alloc (&info, tdep);
5334 tdep->elf_flags = elf_flags;
719ec221 5335 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5336 tdep->found_abi = found_abi;
5337 tdep->mips_abi = mips_abi;
8d5838b5 5338 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5339 tdep->register_size_valid_p = 0;
5340 tdep->register_size = 0;
5341
5342 if (info.target_desc)
5343 {
5344 /* Some useful properties can be inferred from the target. */
5345 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5346 {
5347 tdep->register_size_valid_p = 1;
5348 tdep->register_size = 4;
5349 }
5350 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5351 {
5352 tdep->register_size_valid_p = 1;
5353 tdep->register_size = 8;
5354 }
5355 }
c2d11a7d 5356
102182a9 5357 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5358 set_gdbarch_short_bit (gdbarch, 16);
5359 set_gdbarch_int_bit (gdbarch, 32);
5360 set_gdbarch_float_bit (gdbarch, 32);
5361 set_gdbarch_double_bit (gdbarch, 64);
5362 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5363 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5364 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5365 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5366
6d82d43b 5367 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5368 mips_elf_make_msymbol_special);
5369
16e109ca 5370 /* Fill in the OS dependant register numbers and names. */
56cea623 5371 {
16e109ca 5372 const char **reg_names;
56cea623
AC
5373 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5374 struct mips_regnum);
f8b73d13
DJ
5375 if (tdesc_has_registers (info.target_desc))
5376 {
5377 regnum->lo = MIPS_EMBED_LO_REGNUM;
5378 regnum->hi = MIPS_EMBED_HI_REGNUM;
5379 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5380 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5381 regnum->pc = MIPS_EMBED_PC_REGNUM;
5382 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5383 regnum->fp_control_status = 70;
5384 regnum->fp_implementation_revision = 71;
5385 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5386 reg_names = NULL;
5387 }
5388 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5389 {
5390 regnum->fp0 = 32;
5391 regnum->pc = 64;
5392 regnum->cause = 65;
5393 regnum->badvaddr = 66;
5394 regnum->hi = 67;
5395 regnum->lo = 68;
5396 regnum->fp_control_status = 69;
5397 regnum->fp_implementation_revision = 70;
5398 num_regs = 71;
16e109ca 5399 reg_names = mips_irix_reg_names;
56cea623
AC
5400 }
5401 else
5402 {
5403 regnum->lo = MIPS_EMBED_LO_REGNUM;
5404 regnum->hi = MIPS_EMBED_HI_REGNUM;
5405 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5406 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5407 regnum->pc = MIPS_EMBED_PC_REGNUM;
5408 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5409 regnum->fp_control_status = 70;
5410 regnum->fp_implementation_revision = 71;
5411 num_regs = 90;
16e109ca
AC
5412 if (info.bfd_arch_info != NULL
5413 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5414 reg_names = mips_tx39_reg_names;
5415 else
5416 reg_names = mips_generic_reg_names;
56cea623 5417 }
3e8c568d 5418 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
56cea623 5419 replaced by read_pc? */
f10683bb
MH
5420 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5421 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5422 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5423 set_gdbarch_num_regs (gdbarch, num_regs);
5424 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca 5425 set_gdbarch_register_name (gdbarch, mips_register_name);
82e91389 5426 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
16e109ca
AC
5427 tdep->mips_processor_reg_names = reg_names;
5428 tdep->regnum = regnum;
56cea623 5429 }
fe29b929 5430
0dadbba0 5431 switch (mips_abi)
c2d11a7d 5432 {
0dadbba0 5433 case MIPS_ABI_O32:
25ab4790 5434 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5435 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5436 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5437 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5438 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5439 set_gdbarch_long_bit (gdbarch, 32);
5440 set_gdbarch_ptr_bit (gdbarch, 32);
5441 set_gdbarch_long_long_bit (gdbarch, 64);
5442 break;
0dadbba0 5443 case MIPS_ABI_O64:
25ab4790 5444 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5445 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5446 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5447 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5448 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5449 set_gdbarch_long_bit (gdbarch, 32);
5450 set_gdbarch_ptr_bit (gdbarch, 32);
5451 set_gdbarch_long_long_bit (gdbarch, 64);
5452 break;
0dadbba0 5453 case MIPS_ABI_EABI32:
25ab4790 5454 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5455 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5456 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5457 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5458 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5459 set_gdbarch_long_bit (gdbarch, 32);
5460 set_gdbarch_ptr_bit (gdbarch, 32);
5461 set_gdbarch_long_long_bit (gdbarch, 64);
5462 break;
0dadbba0 5463 case MIPS_ABI_EABI64:
25ab4790 5464 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5465 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5466 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5467 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5468 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5469 set_gdbarch_long_bit (gdbarch, 64);
5470 set_gdbarch_ptr_bit (gdbarch, 64);
5471 set_gdbarch_long_long_bit (gdbarch, 64);
5472 break;
0dadbba0 5473 case MIPS_ABI_N32:
25ab4790 5474 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5475 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5476 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5477 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5478 tdep->default_mask_address_p = 0;
0dadbba0
AC
5479 set_gdbarch_long_bit (gdbarch, 32);
5480 set_gdbarch_ptr_bit (gdbarch, 32);
5481 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5482 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5483 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5484 break;
5485 case MIPS_ABI_N64:
25ab4790 5486 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5487 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5488 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5489 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5490 tdep->default_mask_address_p = 0;
5491 set_gdbarch_long_bit (gdbarch, 64);
5492 set_gdbarch_ptr_bit (gdbarch, 64);
5493 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5494 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5495 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5496 break;
c2d11a7d 5497 default:
e2e0b3e5 5498 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5499 }
5500
22e47e37
FF
5501 /* GCC creates a pseudo-section whose name specifies the size of
5502 longs, since -mlong32 or -mlong64 may be used independent of
5503 other options. How those options affect pointer sizes is ABI and
5504 architecture dependent, so use them to override the default sizes
5505 set by the ABI. This table shows the relationship between ABI,
5506 -mlongXX, and size of pointers:
5507
5508 ABI -mlongXX ptr bits
5509 --- -------- --------
5510 o32 32 32
5511 o32 64 32
5512 n32 32 32
5513 n32 64 64
5514 o64 32 32
5515 o64 64 64
5516 n64 32 32
5517 n64 64 64
5518 eabi32 32 32
5519 eabi32 64 32
5520 eabi64 32 32
5521 eabi64 64 64
5522
5523 Note that for o32 and eabi32, pointers are always 32 bits
5524 regardless of any -mlongXX option. For all others, pointers and
5525 longs are the same, as set by -mlongXX or set by defaults.
5526 */
5527
5528 if (info.abfd != NULL)
5529 {
5530 int long_bit = 0;
5531
5532 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5533 if (long_bit)
5534 {
5535 set_gdbarch_long_bit (gdbarch, long_bit);
5536 switch (mips_abi)
5537 {
5538 case MIPS_ABI_O32:
5539 case MIPS_ABI_EABI32:
5540 break;
5541 case MIPS_ABI_N32:
5542 case MIPS_ABI_O64:
5543 case MIPS_ABI_N64:
5544 case MIPS_ABI_EABI64:
5545 set_gdbarch_ptr_bit (gdbarch, long_bit);
5546 break;
5547 default:
5548 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5549 }
5550 }
5551 }
5552
a5ea2558
AC
5553 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5554 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5555 comment:
5556
5557 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5558 flag in object files because to do so would make it impossible to
102182a9 5559 link with libraries compiled without "-gp32". This is
a5ea2558 5560 unnecessarily restrictive.
361d1df0 5561
a5ea2558
AC
5562 We could solve this problem by adding "-gp32" multilibs to gcc,
5563 but to set this flag before gcc is built with such multilibs will
5564 break too many systems.''
5565
5566 But even more unhelpfully, the default linker output target for
5567 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5568 for 64-bit programs - you need to change the ABI to change this,
102182a9 5569 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5570 this flag to detect 32-bit mode would do the wrong thing given
5571 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5572 as 32-bit programs by default. */
a5ea2558 5573
6c997a34 5574 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5575 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5576
102182a9
MS
5577 /* Add/remove bits from an address. The MIPS needs be careful to
5578 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5579 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5580
58dfe9ff
AC
5581 /* Unwind the frame. */
5582 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5583 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
edfae063 5584 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5585
102182a9 5586 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5587 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5588 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5589 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5590 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5591 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5592 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5593 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5594 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5595
c2d11a7d
JM
5596 /* MIPS version of CALL_DUMMY */
5597
9710e734
AC
5598 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5599 replaced by a command, and all targets will default to on stack
5600 (regardless of the stack's execute status). */
5601 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5602 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5603
87783b8b
AC
5604 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5605 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5606 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5607
f7b9e9fc
AC
5608 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5609 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5610
5611 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5612
97ab0fdd
MR
5613 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5614
fc0c74b1
AC
5615 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5616 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5617 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5618
a4b8ebc8 5619 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5620
e11c53d2 5621 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5622
e5ab0dce
AC
5623 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5624
3a3bc038
AC
5625 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5626 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5627 need to all be folded into the target vector. Since they are
5628 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5629 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5630 is sitting on? */
5631 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5632
e7d6a6d2 5633 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5634
3352ef37
AC
5635 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5636
0d5de010
DJ
5637 /* Virtual tables. */
5638 set_gdbarch_vbit_in_delta (gdbarch, 1);
5639
29709017
DJ
5640 mips_register_g_packet_guesses (gdbarch);
5641
6de918a6 5642 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 5643 info.tdep_info = (void *) tdesc_data;
6de918a6 5644 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5645
5792a79b 5646 /* Unwind the frame. */
2bd0c3d7 5647 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eec63939 5648 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5649 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5650 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
2bd0c3d7 5651 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 5652 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5653 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5654 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5655
f8b73d13
DJ
5656 if (tdesc_data)
5657 {
5658 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5659 tdesc_use_registers (gdbarch, tdesc_data);
5660
5661 /* Override the normal target description methods to handle our
5662 dual real and pseudo registers. */
5663 set_gdbarch_register_name (gdbarch, mips_register_name);
5664 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5665
5666 num_regs = gdbarch_num_regs (gdbarch);
5667 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5668 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5669 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5670 }
5671
5672 /* Add ABI-specific aliases for the registers. */
5673 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5674 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5675 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5676 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5677 else
5678 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5679 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5680 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5681
5682 /* Add some other standard aliases. */
5683 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5684 user_reg_add (gdbarch, mips_register_aliases[i].name,
5685 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5686
4b9b3959
AC
5687 return gdbarch;
5688}
5689
2e4ebe70 5690static void
6d82d43b 5691mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5692{
5693 struct gdbarch_info info;
5694
5695 /* Force the architecture to update, and (if it's a MIPS architecture)
5696 mips_gdbarch_init will take care of the rest. */
5697 gdbarch_info_init (&info);
5698 gdbarch_update_p (info);
5699}
5700
ad188201
KB
5701/* Print out which MIPS ABI is in use. */
5702
5703static void
1f8ca57c
JB
5704show_mips_abi (struct ui_file *file,
5705 int from_tty,
5706 struct cmd_list_element *ignored_cmd,
5707 const char *ignored_value)
ad188201
KB
5708{
5709 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5710 fprintf_filtered
5711 (file,
5712 "The MIPS ABI is unknown because the current architecture "
5713 "is not MIPS.\n");
ad188201
KB
5714 else
5715 {
5716 enum mips_abi global_abi = global_mips_abi ();
5717 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5718 const char *actual_abi_str = mips_abi_strings[actual_abi];
5719
5720 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5721 fprintf_filtered
5722 (file,
5723 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5724 actual_abi_str);
ad188201 5725 else if (global_abi == actual_abi)
1f8ca57c
JB
5726 fprintf_filtered
5727 (file,
5728 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5729 actual_abi_str);
ad188201
KB
5730 else
5731 {
5732 /* Probably shouldn't happen... */
1f8ca57c
JB
5733 fprintf_filtered
5734 (file,
5735 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5736 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5737 }
5738 }
5739}
5740
4b9b3959
AC
5741static void
5742mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5743{
5744 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5745 if (tdep != NULL)
c2d11a7d 5746 {
acdb74a0
AC
5747 int ef_mips_arch;
5748 int ef_mips_32bitmode;
f49e4e6d 5749 /* Determine the ISA. */
acdb74a0
AC
5750 switch (tdep->elf_flags & EF_MIPS_ARCH)
5751 {
5752 case E_MIPS_ARCH_1:
5753 ef_mips_arch = 1;
5754 break;
5755 case E_MIPS_ARCH_2:
5756 ef_mips_arch = 2;
5757 break;
5758 case E_MIPS_ARCH_3:
5759 ef_mips_arch = 3;
5760 break;
5761 case E_MIPS_ARCH_4:
93d56215 5762 ef_mips_arch = 4;
acdb74a0
AC
5763 break;
5764 default:
93d56215 5765 ef_mips_arch = 0;
acdb74a0
AC
5766 break;
5767 }
f49e4e6d 5768 /* Determine the size of a pointer. */
acdb74a0 5769 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5770 fprintf_unfiltered (file,
5771 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5772 tdep->elf_flags);
4b9b3959 5773 fprintf_unfiltered (file,
acdb74a0
AC
5774 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5775 ef_mips_32bitmode);
5776 fprintf_unfiltered (file,
5777 "mips_dump_tdep: ef_mips_arch = %d\n",
5778 ef_mips_arch);
5779 fprintf_unfiltered (file,
5780 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5781 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5782 fprintf_unfiltered (file,
5783 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5784 mips_mask_address_p (tdep),
4014092b 5785 tdep->default_mask_address_p);
c2d11a7d 5786 }
4b9b3959
AC
5787 fprintf_unfiltered (file,
5788 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5789 MIPS_DEFAULT_FPU_TYPE,
5790 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5791 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5792 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5793 : "???"));
6d82d43b 5794 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5795 fprintf_unfiltered (file,
5796 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5797 MIPS_FPU_TYPE,
5798 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5799 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5800 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5801 : "???"));
c2d11a7d
JM
5802}
5803
6d82d43b 5804extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5805
c906108c 5806void
acdb74a0 5807_initialize_mips_tdep (void)
c906108c
SS
5808{
5809 static struct cmd_list_element *mipsfpulist = NULL;
5810 struct cmd_list_element *c;
5811
6d82d43b 5812 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5813 if (MIPS_ABI_LAST + 1
5814 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5815 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5816
4b9b3959 5817 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5818
8d5f9dcb
DJ
5819 mips_pdr_data = register_objfile_data ();
5820
4eb0ad19
DJ
5821 /* Create feature sets with the appropriate properties. The values
5822 are not important. */
5823 mips_tdesc_gp32 = allocate_target_description ();
5824 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5825
5826 mips_tdesc_gp64 = allocate_target_description ();
5827 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5828
a5ea2558
AC
5829 /* Add root prefix command for all "set mips"/"show mips" commands */
5830 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5831 _("Various MIPS specific commands."),
a5ea2558
AC
5832 &setmipscmdlist, "set mips ", 0, &setlist);
5833
5834 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5835 _("Various MIPS specific commands."),
a5ea2558
AC
5836 &showmipscmdlist, "show mips ", 0, &showlist);
5837
2e4ebe70 5838 /* Allow the user to override the ABI. */
7ab04401
AC
5839 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5840 &mips_abi_string, _("\
5841Set the MIPS ABI used by this program."), _("\
5842Show the MIPS ABI used by this program."), _("\
5843This option can be set to one of:\n\
5844 auto - the default ABI associated with the current binary\n\
5845 o32\n\
5846 o64\n\
5847 n32\n\
5848 n64\n\
5849 eabi32\n\
5850 eabi64"),
5851 mips_abi_update,
5852 show_mips_abi,
5853 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5854
c906108c
SS
5855 /* Let the user turn off floating point and set the fence post for
5856 heuristic_proc_start. */
5857
5858 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5859 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5860 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5861 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5862 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5863 &mipsfpulist);
5864 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5865 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5866 &mipsfpulist);
5867 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5868 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5869 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5870 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5871 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5872 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5873 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5874 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5875 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5876 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5877 &mipsfpulist);
5878 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5879 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5880 &showlist);
5881
c906108c
SS
5882 /* We really would like to have both "0" and "unlimited" work, but
5883 command.c doesn't deal with that. So make it a var_zinteger
5884 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5885 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5886 &heuristic_fence_post, _("\
5887Set the distance searched for the start of a function."), _("\
5888Show the distance searched for the start of a function."), _("\
c906108c
SS
5889If you are debugging a stripped executable, GDB needs to search through the\n\
5890program for the start of a function. This command sets the distance of the\n\
7915a72c 5891search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5892 reinit_frame_cache_sfunc,
7915a72c 5893 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5894 &setlist, &showlist);
c906108c
SS
5895
5896 /* Allow the user to control whether the upper bits of 64-bit
5897 addresses should be zeroed. */
7915a72c
AC
5898 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5899 &mask_address_var, _("\
5900Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5901Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5902Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5903allow GDB to determine the correct value."),
08546159
AC
5904 NULL, show_mask_address,
5905 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5906
5907 /* Allow the user to control the size of 32 bit registers within the
5908 raw remote packet. */
b3f42336 5909 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5910 &mips64_transfers_32bit_regs_p, _("\
5911Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5912 _("\
5913Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5914 _("\
719ec221
AC
5915Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5916that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 591764 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5918 set_mips64_transfers_32bit_regs,
7915a72c 5919 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5920 &setlist, &showlist);
9ace0497
AC
5921
5922 /* Debug this files internals. */
6bcadd06 5923 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5924 &mips_debug, _("\
5925Set mips debugging."), _("\
5926Show mips debugging."), _("\
5927When non-zero, mips specific debugging is enabled."),
2c5b56ce 5928 NULL,
7915a72c 5929 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5930 &setdebuglist, &showdebuglist);
c906108c 5931}
This page took 1.169948 seconds and 4 git commands to generate.