2006-05-06 Fred Fish <fnf@specifix.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
197e01b6 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
d05f6826 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
edfae063
AC
53#include "frame-unwind.h"
54#include "frame-base.h"
55#include "trad-frame.h"
7d9b040b 56#include "infcall.h"
fed7ba43 57#include "floatformat.h"
c906108c 58
8d5f9dcb
DJ
59static const struct objfile_data *mips_pdr_data;
60
5bbcb741 61static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 62
24e05951 63/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
64/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65#define ST0_FR (1 << 26)
66
b0069a17
AC
67/* The sizes of floating point registers. */
68
69enum
70{
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73};
74
0dadbba0 75
2e4ebe70
DJ
76static const char *mips_abi_string;
77
78static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
28d169de 82 "n64",
2e4ebe70
DJ
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87};
88
d929b26f
AC
89/* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
53904c9e
AC
93static const char size_auto[] = "auto";
94static const char size_32[] = "32";
95static const char size_64[] = "64";
d929b26f 96
53904c9e 97static const char *size_enums[] = {
d929b26f
AC
98 size_auto,
99 size_32,
100 size_64,
a5ea2558
AC
101 0
102};
103
7a292a7a 104/* Some MIPS boards don't support floating point while others only
ceae6e75 105 support single-precision floating-point operations. */
c906108c
SS
106
107enum mips_fpu_type
6d82d43b
AC
108{
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112};
c906108c
SS
113
114#ifndef MIPS_DEFAULT_FPU_TYPE
115#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116#endif
117static int mips_fpu_type_auto = 1;
118static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 119
9ace0497 120static int mips_debug = 0;
7a292a7a 121
c2d11a7d
JM
122/* MIPS specific per-architecture information */
123struct gdbarch_tdep
6d82d43b
AC
124{
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
6d82d43b
AC
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144};
c2d11a7d 145
fed7ba43
JB
146static int
147n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 148 const void *from)
fed7ba43
JB
149{
150 return 1;
151}
152
153/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164static const struct floatformat floatformat_n32n64_long_double_big =
165{
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170};
171
56cea623
AC
172const struct mips_regnum *
173mips_regnum (struct gdbarch *gdbarch)
174{
175 return gdbarch_tdep (gdbarch)->regnum;
176}
177
178static int
179mips_fpa0_regnum (struct gdbarch *gdbarch)
180{
181 return mips_regnum (gdbarch)->fp0 + 12;
182}
183
0dadbba0 184#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 186
c2d11a7d 187#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 188
c2d11a7d 189#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 190
c2d11a7d 191#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 192
95404a3e
AC
193/* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196static CORE_ADDR
197is_mips16_addr (CORE_ADDR addr)
198{
199 return ((addr) & 1);
200}
201
95404a3e
AC
202static CORE_ADDR
203unmake_mips16_addr (CORE_ADDR addr)
204{
5b652102 205 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
206}
207
22540ece
AC
208/* Return the contents of register REGNUM as a signed integer. */
209
210static LONGEST
211read_signed_register (int regnum)
212{
1d93fe1a
AC
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
22540ece
AC
216}
217
218static LONGEST
219read_signed_register_pid (int regnum, ptid_t ptid)
220{
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236}
237
d1973055
KB
238/* Return the MIPS ABI associated with GDBARCH. */
239enum mips_abi
240mips_abi (struct gdbarch *gdbarch)
241{
242 return gdbarch_tdep (gdbarch)->mips_abi;
243}
244
4246e332 245int
1b13c4f6 246mips_isa_regsize (struct gdbarch *gdbarch)
4246e332
AC
247{
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250}
251
480d3dd2
AC
252/* Return the currently configured (or set) saved register size. */
253
1b13c4f6 254static const char *mips_abi_regsize_string = size_auto;
480d3dd2 255
e6bc2e8a 256unsigned int
13326b4e 257mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 258{
1b13c4f6 259 if (mips_abi_regsize_string == size_auto)
13326b4e
AC
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
e2e0b3e5 273 internal_error (__FILE__, __LINE__, _("bad switch"));
13326b4e 274 }
1b13c4f6 275 else if (mips_abi_regsize_string == size_64)
d929b26f 276 return 8;
1b13c4f6 277 else /* if (mips_abi_regsize_string == size_32) */
d929b26f
AC
278 return 4;
279}
280
71b8ef93 281/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 282 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 283 "info" field is used for this purpose.
5a89d8aa
MS
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
f594e5e9 289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 290
5a89d8aa 291static void
6d82d43b
AC
292mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293{
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
5a89d8aa
MS
300}
301
71b8ef93
MS
302static int
303msymbol_is_special (struct minimal_symbol *msym)
304{
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306}
307
88658117
AC
308/* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313static void
314mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
315 enum bfd_endian endian, gdb_byte *in,
316 const gdb_byte *out, int buf_offset)
88658117 317{
88658117 318 int reg_offset = 0;
a4b8ebc8 319 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
88658117
AC
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
719ec221 325 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
6d82d43b 330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
331 reg_offset = 0;
332 break;
333 default:
e2e0b3e5 334 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
335 }
336 if (mips_debug)
cb1d2653
AC
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
88658117
AC
340 if (mips_debug && out != NULL)
341 {
342 int i;
cb1d2653 343 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 344 for (i = 0; i < length; i++)
cb1d2653 345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
346 }
347 if (in != NULL)
6d82d43b
AC
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
88658117 350 if (out != NULL)
6d82d43b
AC
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
88658117
AC
353 if (mips_debug && in != NULL)
354 {
355 int i;
cb1d2653 356 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 357 for (i = 0; i < length; i++)
cb1d2653 358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362}
363
dd824b04
DJ
364/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368static int
369mips2_fp_compat (void)
370{
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
6d82d43b
AC
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
dd824b04
DJ
375 return 0;
376
377#if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
24e05951 383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
384 return 1;
385#endif
361d1df0 386
dd824b04
DJ
387 return 0;
388}
389
d929b26f 390/* The amount of space reserved on the stack for registers. This is
1b13c4f6 391 different to MIPS_ABI_REGSIZE as it determines the alignment of
d929b26f
AC
392 data allocated after the registers have run out. */
393
53904c9e 394static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
395
396static unsigned int
13326b4e 397mips_stack_argsize (struct gdbarch *gdbarch)
d929b26f
AC
398{
399 if (mips_stack_argsize_string == size_auto)
13326b4e 400 return mips_abi_regsize (gdbarch);
d929b26f
AC
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
6d82d43b 403 else /* if (mips_stack_argsize_string == size_32) */
d929b26f
AC
404 return 4;
405}
406
7a292a7a 407#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 408
a14ed312 409static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 410
a14ed312 411static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 412
a14ed312 413static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 414
67b2c998
DJ
415static struct type *mips_float_register_type (void);
416static struct type *mips_double_register_type (void);
417
acdb74a0
AC
418/* The list of available "set mips " and "show mips " commands */
419
420static struct cmd_list_element *setmipscmdlist = NULL;
421static struct cmd_list_element *showmipscmdlist = NULL;
422
5e2e9765
KB
423/* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
691c0433
AC
425 are listed in the followign tables. */
426
6d82d43b
AC
427enum
428{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
429
430/* Generic MIPS. */
431
432static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
691c0433
AC
441};
442
443/* Names of IDT R3041 registers. */
444
445static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
454};
455
456/* Names of tx39 registers. */
457
458static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
467};
468
469/* Names of IRIX registers. */
470static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
476};
477
cce74817 478
5e2e9765 479/* Return the name of the register corresponding to REGNO. */
5a89d8aa 480static const char *
5e2e9765 481mips_register_name (int regno)
cce74817 482{
691c0433 483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
6d82d43b
AC
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
a4b8ebc8
AC
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
5e2e9765
KB
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
a4b8ebc8 511 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 514 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 515 else
a4b8ebc8 516 return mips_gpr_names[rawnum];
5e2e9765 517 }
a4b8ebc8 518 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
5e2e9765
KB
523 else
524 internal_error (__FILE__, __LINE__,
e2e0b3e5 525 _("mips_register_name: bad register number %d"), rawnum);
cce74817 526}
5e2e9765 527
a4b8ebc8 528/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 529
a4b8ebc8
AC
530static int
531mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533{
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
6d82d43b 546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
a4b8ebc8
AC
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
6d82d43b 562 return 0;
a4b8ebc8
AC
563}
564
565/* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 567 registers. Take care of alignment and size problems. */
c5aa993b 568
a4b8ebc8
AC
569static void
570mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 571 int cookednum, gdb_byte *buf)
a4b8ebc8 572{
47ebcfbe 573 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 576 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
47ebcfbe
AC
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
e2e0b3e5 587 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
588}
589
590static void
6d82d43b
AC
591mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
47a35522 593 const gdb_byte *buf)
a4b8ebc8 594{
47ebcfbe 595 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 598 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
47ebcfbe
AC
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
e2e0b3e5 609 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 610}
c5aa993b 611
c906108c 612/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 613static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
614
615/* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619static unsigned int heuristic_fence_post = 0;
620
46cd78fb 621/* Number of bytes of storage in the actual machine representation for
719ec221
AC
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
43e526b9
JM
624
625static int mips64_transfers_32bit_regs_p = 0;
626
719ec221
AC
627static void
628set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
43e526b9 630{
719ec221
AC
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
a4b8ebc8 637 {
719ec221 638 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 639 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 640 }
a4b8ebc8
AC
641}
642
47ebcfbe 643/* Convert to/from a register and the corresponding memory value. */
43e526b9 644
ff2e87ac
AC
645static int
646mips_convert_register_p (int regnum, struct type *type)
647{
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 649 && register_size (current_gdbarch, regnum) == 4
87783b8b
AC
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
653}
654
42c466d7 655static void
ff2e87ac 656mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 657 struct type *type, gdb_byte *to)
102182a9 658{
47a35522
MK
659 get_frame_register (frame, regnum + 0, to + 4);
660 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
661}
662
42c466d7 663static void
ff2e87ac 664mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 665 struct type *type, const gdb_byte *from)
102182a9 666{
47a35522
MK
667 put_frame_register (frame, regnum + 0, from + 4);
668 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
669}
670
a4b8ebc8
AC
671/* Return the GDB type object for the "standard" data type of data in
672 register REG. */
78fde5f8
KB
673
674static struct type *
a4b8ebc8
AC
675mips_register_type (struct gdbarch *gdbarch, int regnum)
676{
5ef80fb0 677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 680 {
5ef80fb0 681 /* The floating-point registers raw, or cooked, always match
1b13c4f6 682 mips_isa_regsize(), and also map 1:1, byte for byte. */
5ef80fb0
AC
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
1b13c4f6 686 if (mips_isa_regsize (gdbarch) == 4)
5ef80fb0
AC
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
1b13c4f6 691 if (mips_isa_regsize (gdbarch) == 4)
5ef80fb0
AC
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
e2e0b3e5 697 internal_error (__FILE__, __LINE__, _("bad switch"));
5ef80fb0 698 }
a6425924 699 }
d5ac5a39
AC
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
78fde5f8 709 else
d5ac5a39
AC
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
607fc93c 715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
78fde5f8
KB
732}
733
bcb0cc15
MS
734/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736static CORE_ADDR
737mips_read_sp (void)
738{
f10683bb 739 return read_signed_register (MIPS_SP_REGNUM);
bcb0cc15
MS
740}
741
c906108c 742/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 743enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
744
745static int
480d3dd2 746mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
747{
748 switch (mask_address_var)
749 {
7f19b9a2 750 case AUTO_BOOLEAN_TRUE:
4014092b 751 return 1;
7f19b9a2 752 case AUTO_BOOLEAN_FALSE:
4014092b
AC
753 return 0;
754 break;
7f19b9a2 755 case AUTO_BOOLEAN_AUTO:
480d3dd2 756 return tdep->default_mask_address_p;
4014092b 757 default:
e2e0b3e5 758 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 759 return -1;
361d1df0 760 }
4014092b
AC
761}
762
763static void
08546159
AC
764show_mask_address (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
4014092b 766{
480d3dd2 767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
768
769 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
770 switch (mask_address_var)
771 {
7f19b9a2 772 case AUTO_BOOLEAN_TRUE:
4014092b
AC
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
774 break;
7f19b9a2 775 case AUTO_BOOLEAN_FALSE:
4014092b
AC
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
777 break;
7f19b9a2 778 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
779 printf_filtered
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
782 break;
783 default:
e2e0b3e5 784 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 785 break;
361d1df0 786 }
4014092b 787}
c906108c 788
c906108c
SS
789/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
790
0fe7e7c8
AC
791int
792mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
793{
794 struct minimal_symbol *sym;
795
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 797 if (is_mips16_addr (memaddr))
c906108c
SS
798 return 1;
799
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym = lookup_minimal_symbol_by_pc (memaddr);
804 if (sym)
71b8ef93 805 return msymbol_is_special (sym);
c906108c
SS
806 else
807 return 0;
808}
809
b2fa5097 810/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
811 all registers should be sign extended for simplicity? */
812
813static CORE_ADDR
39f77062 814mips_read_pc (ptid_t ptid)
6c997a34 815{
b6cb9035
AC
816 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817}
818
58dfe9ff
AC
819static CORE_ADDR
820mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
821{
edfae063
AC
822 return frame_unwind_register_signed (next_frame,
823 NUM_REGS + mips_regnum (gdbarch)->pc);
824}
825
826/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
829 breakpoint. */
830
831static struct frame_id
832mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
833{
f10683bb 834 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
edfae063 835 frame_pc_unwind (next_frame));
58dfe9ff
AC
836}
837
b6cb9035
AC
838static void
839mips_write_pc (CORE_ADDR pc, ptid_t ptid)
840{
841 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
6c997a34 842}
c906108c 843
c906108c
SS
844/* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
846
d37cca3d 847static ULONGEST
acdb74a0 848mips_fetch_instruction (CORE_ADDR addr)
c906108c 849{
47a35522 850 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
851 int instlen;
852 int status;
853
0fe7e7c8 854 if (mips_pc_is_mips16 (addr))
c906108c 855 {
95ac2dcf 856 instlen = MIPS_INSN16_SIZE;
95404a3e 857 addr = unmake_mips16_addr (addr);
c906108c
SS
858 }
859 else
95ac2dcf 860 instlen = MIPS_INSN32_SIZE;
1f602b35 861 status = deprecated_read_memory_nobpt (addr, buf, instlen);
c906108c
SS
862 if (status)
863 memory_error (status, addr);
864 return extract_unsigned_integer (buf, instlen);
865}
866
c906108c 867/* These the fields of 32 bit mips instructions */
e135b889
DJ
868#define mips32_op(x) (x >> 26)
869#define itype_op(x) (x >> 26)
870#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 871#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 872#define itype_immediate(x) (x & 0xffff)
c906108c 873
e135b889
DJ
874#define jtype_op(x) (x >> 26)
875#define jtype_target(x) (x & 0x03ffffff)
c906108c 876
e135b889
DJ
877#define rtype_op(x) (x >> 26)
878#define rtype_rs(x) ((x >> 21) & 0x1f)
879#define rtype_rt(x) ((x >> 16) & 0x1f)
880#define rtype_rd(x) ((x >> 11) & 0x1f)
881#define rtype_shamt(x) ((x >> 6) & 0x1f)
882#define rtype_funct(x) (x & 0x3f)
c906108c 883
06987e64
MK
884static LONGEST
885mips32_relative_offset (ULONGEST inst)
c5aa993b 886{
06987e64 887 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
888}
889
890/* Determine whate to set a single step breakpoint while considering
891 branch prediction */
5a89d8aa 892static CORE_ADDR
c5aa993b
JM
893mips32_next_pc (CORE_ADDR pc)
894{
895 unsigned long inst;
896 int op;
897 inst = mips_fetch_instruction (pc);
e135b889 898 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 899 {
e135b889 900 if (itype_op (inst) >> 2 == 5)
6d82d43b 901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 902 {
e135b889 903 op = (itype_op (inst) & 0x03);
c906108c
SS
904 switch (op)
905 {
e135b889
DJ
906 case 0: /* BEQL */
907 goto equal_branch;
908 case 1: /* BNEL */
909 goto neq_branch;
910 case 2: /* BLEZL */
911 goto less_branch;
912 case 3: /* BGTZ */
913 goto greater_branch;
c5aa993b
JM
914 default:
915 pc += 4;
c906108c
SS
916 }
917 }
e135b889 918 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
920 {
921 int tf = itype_rt (inst) & 0x01;
922 int cnum = itype_rt (inst) >> 2;
6d82d43b
AC
923 int fcrcs =
924 read_signed_register (mips_regnum (current_gdbarch)->
925 fp_control_status);
e135b889
DJ
926 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
927
928 if (((cond >> cnum) & 0x01) == tf)
929 pc += mips32_relative_offset (inst) + 4;
930 else
931 pc += 8;
932 }
c5aa993b
JM
933 else
934 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
935 }
936 else
c5aa993b
JM
937 { /* This gets way messy */
938
c906108c 939 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 940 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 941 {
c5aa993b
JM
942 case 0: /* SPECIAL */
943 op = rtype_funct (inst);
944 switch (op)
945 {
946 case 8: /* JR */
947 case 9: /* JALR */
6c997a34
AC
948 /* Set PC to that address */
949 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
950 break;
951 default:
952 pc += 4;
953 }
954
6d82d43b 955 break; /* end SPECIAL */
c5aa993b 956 case 1: /* REGIMM */
c906108c 957 {
e135b889
DJ
958 op = itype_rt (inst); /* branch condition */
959 switch (op)
c906108c 960 {
c5aa993b 961 case 0: /* BLTZ */
e135b889
DJ
962 case 2: /* BLTZL */
963 case 16: /* BLTZAL */
c5aa993b 964 case 18: /* BLTZALL */
c906108c 965 less_branch:
6c997a34 966 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8; /* after the delay slot */
970 break;
e135b889 971 case 1: /* BGEZ */
c5aa993b
JM
972 case 3: /* BGEZL */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
6c997a34 975 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8; /* after the delay slot */
979 break;
e135b889 980 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
981 default:
982 pc += 4;
c906108c
SS
983 }
984 }
6d82d43b 985 break; /* end REGIMM */
c5aa993b
JM
986 case 2: /* J */
987 case 3: /* JAL */
988 {
989 unsigned long reg;
990 reg = jtype_target (inst) << 2;
e135b889 991 /* Upper four bits get never changed... */
5b652102 992 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 993 }
c5aa993b
JM
994 break;
995 /* FIXME case JALX : */
996 {
997 unsigned long reg;
998 reg = jtype_target (inst) << 2;
5b652102 999 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1001 }
c5aa993b 1002 break; /* The new PC will be alternate mode */
e135b889 1003 case 4: /* BEQ, BEQL */
c5aa993b 1004 equal_branch:
6c997a34
AC
1005 if (read_signed_register (itype_rs (inst)) ==
1006 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8;
1010 break;
e135b889 1011 case 5: /* BNE, BNEL */
c5aa993b 1012 neq_branch:
6c997a34 1013 if (read_signed_register (itype_rs (inst)) !=
e135b889 1014 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1015 pc += mips32_relative_offset (inst) + 4;
1016 else
1017 pc += 8;
1018 break;
e135b889 1019 case 6: /* BLEZ, BLEZL */
1fd8cd20 1020 if (read_signed_register (itype_rs (inst)) <= 0)
c5aa993b
JM
1021 pc += mips32_relative_offset (inst) + 4;
1022 else
1023 pc += 8;
1024 break;
1025 case 7:
e135b889
DJ
1026 default:
1027 greater_branch: /* BGTZ, BGTZL */
1fd8cd20 1028 if (read_signed_register (itype_rs (inst)) > 0)
c5aa993b
JM
1029 pc += mips32_relative_offset (inst) + 4;
1030 else
1031 pc += 8;
1032 break;
c5aa993b
JM
1033 } /* switch */
1034 } /* else */
1035 return pc;
1036} /* mips32_next_pc */
c906108c
SS
1037
1038/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1042 either.
c5aa993b 1043 */
c906108c
SS
1044
1045/* Lots of mips16 instruction formats */
1046/* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
c5aa993b 1048 */
c906108c
SS
1049enum mips16_inst_fmts
1050{
c5aa993b
JM
1051 itype, /* 0 immediate 5,10 */
1052 ritype, /* 1 5,3,8 */
1053 rrtype, /* 2 5,3,3,5 */
1054 rritype, /* 3 5,3,3,5 */
1055 rrrtype, /* 4 5,3,3,3,2 */
1056 rriatype, /* 5 5,3,3,1,4 */
1057 shifttype, /* 6 5,3,3,3,2 */
1058 i8type, /* 7 5,3,8 */
1059 i8movtype, /* 8 5,3,3,5 */
1060 i8mov32rtype, /* 9 5,3,5,3 */
1061 i64type, /* 10 5,3,8 */
1062 ri64type, /* 11 5,3,3,5 */
1063 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1073};
12f02c2a
AC
1074/* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
c906108c 1076struct upk_mips16
6d82d43b
AC
1077{
1078 CORE_ADDR offset;
1079 unsigned int regx; /* Function in i8 type */
1080 unsigned int regy;
1081};
c906108c
SS
1082
1083
12f02c2a
AC
1084/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
c906108c 1086
12f02c2a
AC
1087static CORE_ADDR
1088extended_offset (unsigned int extension)
c906108c 1089{
12f02c2a 1090 CORE_ADDR value;
c5aa993b
JM
1091 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1092 value = value << 6;
1093 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1094 value = value << 5;
1095 value |= extension & 0x01f; /* extract 4:0 */
1096 return value;
c906108c
SS
1097}
1098
1099/* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
c5aa993b 1103 */
c906108c
SS
1104/* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1106
1107
12f02c2a 1108static unsigned int
c5aa993b 1109fetch_mips_16 (CORE_ADDR pc)
c906108c 1110{
47a35522 1111 gdb_byte buf[8];
c5aa993b
JM
1112 pc &= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc, buf, 2);
1114 return extract_unsigned_integer (buf, 2);
c906108c
SS
1115}
1116
1117static void
c5aa993b 1118unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1119 unsigned int extension,
1120 unsigned int inst,
6d82d43b 1121 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1122{
12f02c2a
AC
1123 CORE_ADDR offset;
1124 int regx;
1125 int regy;
1126 switch (insn_format)
c906108c 1127 {
c5aa993b 1128 case itype:
c906108c 1129 {
12f02c2a
AC
1130 CORE_ADDR value;
1131 if (extension)
c5aa993b
JM
1132 {
1133 value = extended_offset (extension);
1134 value = value << 11; /* rom for the original value */
6d82d43b 1135 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1136 }
1137 else
c5aa993b 1138 {
12f02c2a 1139 value = inst & 0x7ff;
c5aa993b 1140 /* FIXME : Consider sign extension */
c906108c 1141 }
12f02c2a
AC
1142 offset = value;
1143 regx = -1;
1144 regy = -1;
c906108c 1145 }
c5aa993b
JM
1146 break;
1147 case ritype:
1148 case i8type:
1149 { /* A register identifier and an offset */
c906108c
SS
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
12f02c2a
AC
1152 CORE_ADDR value;
1153 if (extension)
c906108c 1154 {
c5aa993b
JM
1155 value = extended_offset (extension);
1156 value = value << 8; /* from the original instruction */
12f02c2a
AC
1157 value |= inst & 0xff; /* eleven bits from instruction */
1158 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1159 if (value & 0x4000) /* test the sign bit , bit 26 */
1160 {
1161 value &= ~0x3fff; /* remove the sign bit */
1162 value = -value;
c906108c
SS
1163 }
1164 }
c5aa993b
JM
1165 else
1166 {
12f02c2a
AC
1167 value = inst & 0xff; /* 8 bits */
1168 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value & 0x80) /* THIS CONFUSES ME */
1171 {
1172 value &= 0xef; /* remove the sign bit */
1173 value = -value;
1174 }
c5aa993b 1175 }
12f02c2a
AC
1176 offset = value;
1177 regy = -1;
c5aa993b 1178 break;
c906108c 1179 }
c5aa993b 1180 case jalxtype:
c906108c 1181 {
c5aa993b 1182 unsigned long value;
12f02c2a
AC
1183 unsigned int nexthalf;
1184 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1185 value = value << 16;
1186 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1187 value |= nexthalf;
12f02c2a
AC
1188 offset = value;
1189 regx = -1;
1190 regy = -1;
c5aa993b 1191 break;
c906108c
SS
1192 }
1193 default:
e2e0b3e5 1194 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1195 }
12f02c2a
AC
1196 upk->offset = offset;
1197 upk->regx = regx;
1198 upk->regy = regy;
c906108c
SS
1199}
1200
1201
c5aa993b
JM
1202static CORE_ADDR
1203add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1204{
5b652102 1205 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1206}
1207
12f02c2a
AC
1208static CORE_ADDR
1209extended_mips16_next_pc (CORE_ADDR pc,
6d82d43b 1210 unsigned int extension, unsigned int insn)
c906108c 1211{
12f02c2a
AC
1212 int op = (insn >> 11);
1213 switch (op)
c906108c 1214 {
6d82d43b 1215 case 2: /* Branch */
12f02c2a
AC
1216 {
1217 CORE_ADDR offset;
1218 struct upk_mips16 upk;
1219 unpack_mips16 (pc, extension, insn, itype, &upk);
1220 offset = upk.offset;
1221 if (offset & 0x800)
1222 {
1223 offset &= 0xeff;
1224 offset = -offset;
1225 }
1226 pc += (offset << 1) + 2;
1227 break;
1228 }
6d82d43b 1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1230 {
1231 struct upk_mips16 upk;
1232 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1233 pc = add_offset_16 (pc, upk.offset);
1234 if ((insn >> 10) & 0x01) /* Exchange mode */
1235 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1236 else
1237 pc |= 0x01;
1238 break;
1239 }
6d82d43b 1240 case 4: /* beqz */
12f02c2a
AC
1241 {
1242 struct upk_mips16 upk;
1243 int reg;
1244 unpack_mips16 (pc, extension, insn, ritype, &upk);
1245 reg = read_signed_register (upk.regx);
1246 if (reg == 0)
1247 pc += (upk.offset << 1) + 2;
1248 else
1249 pc += 2;
1250 break;
1251 }
6d82d43b 1252 case 5: /* bnez */
12f02c2a
AC
1253 {
1254 struct upk_mips16 upk;
1255 int reg;
1256 unpack_mips16 (pc, extension, insn, ritype, &upk);
1257 reg = read_signed_register (upk.regx);
1258 if (reg != 0)
1259 pc += (upk.offset << 1) + 2;
1260 else
1261 pc += 2;
1262 break;
1263 }
6d82d43b 1264 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1265 {
1266 struct upk_mips16 upk;
1267 int reg;
1268 unpack_mips16 (pc, extension, insn, i8type, &upk);
1269 /* upk.regx contains the opcode */
1270 reg = read_signed_register (24); /* Test register is 24 */
1271 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1272 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
6d82d43b 1279 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1280 {
1281 struct upk_mips16 upk;
1282 /* upk.fmt = rrtype; */
1283 op = insn & 0x1f;
1284 if (op == 0)
c5aa993b 1285 {
12f02c2a
AC
1286 int reg;
1287 upk.regx = (insn >> 8) & 0x07;
1288 upk.regy = (insn >> 5) & 0x07;
1289 switch (upk.regy)
c5aa993b 1290 {
12f02c2a
AC
1291 case 0:
1292 reg = upk.regx;
1293 break;
1294 case 1:
1295 reg = 31;
6d82d43b 1296 break; /* Function return instruction */
12f02c2a
AC
1297 case 2:
1298 reg = upk.regx;
1299 break;
1300 default:
1301 reg = 31;
6d82d43b 1302 break; /* BOGUS Guess */
c906108c 1303 }
12f02c2a 1304 pc = read_signed_register (reg);
c906108c 1305 }
12f02c2a 1306 else
c5aa993b 1307 pc += 2;
12f02c2a
AC
1308 break;
1309 }
1310 case 30:
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1313 that. */
1314 {
1315 pc += 2;
1316 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1317 break;
1318 }
1319 default:
1320 {
1321 pc += 2;
1322 break;
1323 }
c906108c 1324 }
c5aa993b 1325 return pc;
12f02c2a 1326}
c906108c 1327
5a89d8aa 1328static CORE_ADDR
12f02c2a
AC
1329mips16_next_pc (CORE_ADDR pc)
1330{
1331 unsigned int insn = fetch_mips_16 (pc);
1332 return extended_mips16_next_pc (pc, 0, insn);
1333}
1334
1335/* The mips_next_pc function supports single_step when the remote
7e73cedf 1336 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1340CORE_ADDR
1341mips_next_pc (CORE_ADDR pc)
c906108c 1342{
c5aa993b
JM
1343 if (pc & 0x01)
1344 return mips16_next_pc (pc);
1345 else
1346 return mips32_next_pc (pc);
12f02c2a 1347}
c906108c 1348
edfae063
AC
1349struct mips_frame_cache
1350{
1351 CORE_ADDR base;
1352 struct trad_frame_saved_reg *saved_regs;
1353};
1354
29639122
JB
1355/* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1358 function prologue.
eec63939 1359
29639122
JB
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1364 frame. */
eec63939
AC
1365
1366static void
29639122
JB
1367set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1368 CORE_ADDR offset)
eec63939 1369{
29639122
JB
1370 if (this_cache != NULL
1371 && this_cache->saved_regs[regnum].addr == -1)
1372 {
1373 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1374 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1375 }
eec63939
AC
1376}
1377
eec63939 1378
29639122
JB
1379/* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
eec63939 1383
29639122
JB
1384static int
1385mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1386 unsigned short inst, /* current instruction */
1387 int nbits, /* number of bits in imm field */
1388 int scale, /* scale factor to be applied to imm */
1389 int is_signed) /* is the imm field signed? */
eec63939 1390{
29639122 1391 int offset;
eec63939 1392
29639122
JB
1393 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1394 {
1395 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1396 if (offset & 0x8000) /* check for negative extend */
1397 offset = 0 - (0x10000 - (offset & 0xffff));
1398 return offset | (inst & 0x1f);
1399 }
eec63939 1400 else
29639122
JB
1401 {
1402 int max_imm = 1 << nbits;
1403 int mask = max_imm - 1;
1404 int sign_bit = max_imm >> 1;
45c9dd44 1405
29639122
JB
1406 offset = inst & mask;
1407 if (is_signed && (offset & sign_bit))
1408 offset = 0 - (max_imm - offset);
1409 return offset * scale;
1410 }
1411}
eec63939 1412
65596487 1413
29639122
JB
1414/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
eec63939 1417
29639122
JB
1418static CORE_ADDR
1419mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1420 struct frame_info *next_frame,
1421 struct mips_frame_cache *this_cache)
1422{
1423 CORE_ADDR cur_pc;
1424 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1425 CORE_ADDR sp;
1426 long frame_offset = 0; /* Size of stack frame. */
1427 long frame_adjust = 0; /* Offset of FP from SP. */
1428 int frame_reg = MIPS_SP_REGNUM;
1429 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1430 unsigned inst = 0; /* current instruction */
1431 unsigned entry_inst = 0; /* the entry instruction */
1432 int reg, offset;
a343eb3c 1433
29639122
JB
1434 int extend_bytes = 0;
1435 int prev_extend_bytes;
1436 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1437
29639122
JB
1438 /* Can be called when there's no process, and hence when there's no
1439 NEXT_FRAME. */
1440 if (next_frame != NULL)
1441 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1442 else
1443 sp = 0;
eec63939 1444
29639122
JB
1445 if (limit_pc > start_pc + 200)
1446 limit_pc = start_pc + 200;
eec63939 1447
95ac2dcf 1448 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1449 {
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1452 prev_inst = inst;
eec63939 1453
29639122
JB
1454 /* Fetch and decode the instruction. */
1455 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1456
29639122
JB
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1461 over the extend. */
1462 if ((inst & 0xf800) == 0xf000) /* extend */
1463 {
95ac2dcf 1464 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1465 continue;
1466 }
eec63939 1467
29639122
JB
1468 prev_extend_bytes = extend_bytes;
1469 extend_bytes = 0;
eec63939 1470
29639122
JB
1471 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1472 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1473 {
1474 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1475 if (offset < 0) /* negative stack adjustment? */
1476 frame_offset -= offset;
1477 else
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1481 break;
1482 }
1483 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1484 {
1485 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1486 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1487 set_reg_offset (this_cache, reg, sp + offset);
1488 }
1489 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1490 {
1491 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1492 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1493 set_reg_offset (this_cache, reg, sp + offset);
1494 }
1495 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1496 {
1497 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1498 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1499 }
1500 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1501 {
1502 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1503 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1504 }
1505 else if (inst == 0x673d) /* move $s1, $sp */
1506 {
1507 frame_addr = sp;
1508 frame_reg = 17;
1509 }
1510 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 frame_addr = sp + offset;
1514 frame_reg = 17;
1515 frame_adjust = offset;
1516 }
1517 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1518 {
1519 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1520 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1521 set_reg_offset (this_cache, reg, frame_addr + offset);
1522 }
1523 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1524 {
1525 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1526 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1527 set_reg_offset (this_cache, reg, frame_addr + offset);
1528 }
1529 else if ((inst & 0xf81f) == 0xe809
1530 && (inst & 0x700) != 0x700) /* entry */
1531 entry_inst = inst; /* save for later processing */
1532 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1533 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1534 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1535 {
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1538 }
1539 else
1540 {
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1543 prologue. */
1544 if (end_prologue_addr == 0)
1545 end_prologue_addr = cur_pc - prev_extend_bytes;
1546 }
1547 }
eec63939 1548
29639122
JB
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst != 0)
1556 {
1557 int areg_count = (entry_inst >> 8) & 7;
1558 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1559
29639122
JB
1560 /* The entry instruction always subtracts 32 from the SP. */
1561 frame_offset += 32;
1562
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1565 sp += frame_offset;
1566
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1569 {
1570 set_reg_offset (this_cache, reg, sp + offset);
1571 offset += mips_abi_regsize (current_gdbarch);
1572 }
1573
1574 /* Check if the ra register was pushed on the stack. */
1575 offset = -4;
1576 if (entry_inst & 0x20)
1577 {
4c7d22cb 1578 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1579 offset -= mips_abi_regsize (current_gdbarch);
1580 }
1581
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg = 16; reg < sreg_count + 16; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset -= mips_abi_regsize (current_gdbarch);
1587 }
1588 }
1589
1590 if (this_cache != NULL)
1591 {
1592 this_cache->base =
1593 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1594 + frame_offset - frame_adjust);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1599 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122
JB
1600 }
1601
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr == 0)
1606 end_prologue_addr = cur_pc;
1607
1608 return end_prologue_addr;
eec63939
AC
1609}
1610
29639122
JB
1611/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1614
1615static struct mips_frame_cache *
1616mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1617{
29639122 1618 struct mips_frame_cache *cache;
eec63939
AC
1619
1620 if ((*this_cache) != NULL)
1621 return (*this_cache);
29639122
JB
1622 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1623 (*this_cache) = cache;
1624 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1625
29639122
JB
1626 /* Analyze the function prologue. */
1627 {
1628 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1629 CORE_ADDR start_addr;
eec63939 1630
29639122
JB
1631 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1632 if (start_addr == 0)
1633 start_addr = heuristic_proc_start (pc);
1634 /* We can't analyze the prologue if we couldn't find the begining
1635 of the function. */
1636 if (start_addr == 0)
1637 return cache;
eec63939 1638
29639122
JB
1639 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1640 }
1641
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
eec63939 1644
29639122 1645 return (*this_cache);
eec63939
AC
1646}
1647
1648static void
29639122
JB
1649mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1650 struct frame_id *this_id)
eec63939 1651{
29639122
JB
1652 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1653 this_cache);
1654 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
eec63939
AC
1655}
1656
1657static void
29639122 1658mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1659 void **this_cache,
1660 int regnum, int *optimizedp,
1661 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1662 int *realnump, gdb_byte *valuep)
eec63939 1663{
29639122
JB
1664 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1665 this_cache);
1666 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1667 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1668}
1669
29639122 1670static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1671{
1672 NORMAL_FRAME,
29639122
JB
1673 mips_insn16_frame_this_id,
1674 mips_insn16_frame_prev_register
eec63939
AC
1675};
1676
1677static const struct frame_unwind *
29639122 1678mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939
AC
1679{
1680 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1681 if (mips_pc_is_mips16 (pc))
29639122
JB
1682 return &mips_insn16_frame_unwind;
1683 return NULL;
eec63939
AC
1684}
1685
1686static CORE_ADDR
29639122
JB
1687mips_insn16_frame_base_address (struct frame_info *next_frame,
1688 void **this_cache)
eec63939 1689{
29639122
JB
1690 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1691 this_cache);
1692 return info->base;
eec63939
AC
1693}
1694
29639122 1695static const struct frame_base mips_insn16_frame_base =
eec63939 1696{
29639122
JB
1697 &mips_insn16_frame_unwind,
1698 mips_insn16_frame_base_address,
1699 mips_insn16_frame_base_address,
1700 mips_insn16_frame_base_address
eec63939
AC
1701};
1702
1703static const struct frame_base *
29639122 1704mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1705{
29639122
JB
1706 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1707 return &mips_insn16_frame_base;
eec63939
AC
1708 else
1709 return NULL;
edfae063
AC
1710}
1711
29639122
JB
1712/* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1714
1715void
1716reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1717{
29639122
JB
1718 if (this_cache == NULL || this_cache->saved_regs == NULL)
1719 return;
1720
1721 {
1722 const int num_regs = NUM_REGS;
1723 int i;
64159455 1724
29639122
JB
1725 for (i = 0; i < num_regs; i++)
1726 {
1727 this_cache->saved_regs[i].addr = -1;
1728 }
1729 }
c906108c
SS
1730}
1731
29639122
JB
1732/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
c906108c 1735
875e1767 1736static CORE_ADDR
29639122
JB
1737mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1738 struct frame_info *next_frame,
1739 struct mips_frame_cache *this_cache)
c906108c 1740{
29639122
JB
1741 CORE_ADDR cur_pc;
1742 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1743 CORE_ADDR sp;
1744 long frame_offset;
1745 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1746
29639122
JB
1747 CORE_ADDR end_prologue_addr = 0;
1748 int seen_sp_adjust = 0;
1749 int load_immediate_bytes = 0;
8fa9cfa1 1750
29639122
JB
1751 /* Can be called when there's no process, and hence when there's no
1752 NEXT_FRAME. */
1753 if (next_frame != NULL)
1754 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
8fa9cfa1 1755 else
29639122 1756 sp = 0;
9022177c 1757
29639122
JB
1758 if (limit_pc > start_pc + 200)
1759 limit_pc = start_pc + 200;
9022177c 1760
29639122 1761restart:
9022177c 1762
29639122 1763 frame_offset = 0;
95ac2dcf 1764 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1765 {
29639122
JB
1766 unsigned long inst, high_word, low_word;
1767 int reg;
9022177c 1768
29639122
JB
1769 /* Fetch the instruction. */
1770 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1771
29639122
JB
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word = (inst >> 16) & 0xffff;
1774 low_word = inst & 0xffff;
1775 reg = high_word & 0x1f;
fe29b929 1776
29639122
JB
1777 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word == 0x23bd /* addi $sp,$sp,-i */
1779 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1780 {
1781 if (low_word & 0x8000) /* negative stack adjustment? */
1782 frame_offset += 0x10000 - low_word;
1783 else
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1787 break;
1788 seen_sp_adjust = 1;
1789 }
1790 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1791 {
1792 set_reg_offset (this_cache, reg, sp + low_word);
1793 }
1794 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1795 {
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache, reg, sp + low_word);
1798 }
1799 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1800 {
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word != frame_offset)
1803 frame_addr = sp + low_word;
1804 else if (frame_reg == MIPS_SP_REGNUM)
1805 {
1806 unsigned alloca_adjust;
a4b8ebc8 1807
29639122
JB
1808 frame_reg = 30;
1809 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1810 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1811 if (alloca_adjust > 0)
1812 {
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp += alloca_adjust;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1820 pass. */
1821 reset_saved_regs (this_cache);
1822 goto restart;
1823 }
1824 }
1825 }
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1830 {
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg == MIPS_SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
c906108c 1835
29639122
JB
1836 frame_reg = 30;
1837 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1838 alloca_adjust = (unsigned) (frame_addr - sp);
1839 if (alloca_adjust > 0)
1840 {
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1844 sp = frame_addr;
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1848 pass. */
1849 reset_saved_regs (this_cache);
1850 goto restart;
1851 }
1852 }
1853 }
1854 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1855 {
1856 set_reg_offset (this_cache, reg, frame_addr + low_word);
1857 }
1858 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word == 0x3c1c /* lui $gp,n */
1862 || high_word == 0x279c /* addiu $gp,$gp,n */
1863 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1865 )
1866 {
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1869 }
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word == 0x3c01 /* lui $at,n */
1877 || high_word == 0x3c08 /* lui $t0,n */
1878 || high_word == 0x3421 /* ori $at,$at,n */
1879 || high_word == 0x3508 /* ori $t0,$t0,n */
1880 || high_word == 0x3401 /* ori $at,$zero,n */
1881 || high_word == 0x3408 /* ori $t0,$zero,n */
1882 ))
1883 {
95ac2dcf 1884 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
1885 }
1886 else
1887 {
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1890 prologue. */
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1893 instructions? */
1894 if (end_prologue_addr == 0)
1895 end_prologue_addr = cur_pc;
1896 }
a4b8ebc8 1897 }
c906108c 1898
29639122
JB
1899 if (this_cache != NULL)
1900 {
1901 this_cache->base =
1902 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1903 + frame_offset);
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1906 for now. */
1907 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1908 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122 1909 }
c906108c 1910
29639122
JB
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr == 0)
1918 end_prologue_addr = cur_pc;
1919
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes && !seen_sp_adjust)
1924 end_prologue_addr -= load_immediate_bytes;
c906108c 1925
29639122 1926 return end_prologue_addr;
c906108c
SS
1927}
1928
29639122
JB
1929/* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1932 unwinder. */
c906108c 1933
29639122
JB
1934static struct mips_frame_cache *
1935mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 1936{
29639122 1937 struct mips_frame_cache *cache;
c906108c 1938
29639122
JB
1939 if ((*this_cache) != NULL)
1940 return (*this_cache);
c5aa993b 1941
29639122
JB
1942 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1943 (*this_cache) = cache;
1944 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 1945
29639122
JB
1946 /* Analyze the function prologue. */
1947 {
1948 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1949 CORE_ADDR start_addr;
c906108c 1950
29639122
JB
1951 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1952 if (start_addr == 0)
1953 start_addr = heuristic_proc_start (pc);
1954 /* We can't analyze the prologue if we couldn't find the begining
1955 of the function. */
1956 if (start_addr == 0)
1957 return cache;
c5aa993b 1958
29639122
JB
1959 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1960 }
1961
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
c5aa993b 1964
29639122 1965 return (*this_cache);
c906108c
SS
1966}
1967
29639122
JB
1968static void
1969mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1970 struct frame_id *this_id)
c906108c 1971{
29639122
JB
1972 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1973 this_cache);
1974 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1975}
c906108c 1976
29639122
JB
1977static void
1978mips_insn32_frame_prev_register (struct frame_info *next_frame,
1979 void **this_cache,
1980 int regnum, int *optimizedp,
1981 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1982 int *realnump, gdb_byte *valuep)
29639122
JB
1983{
1984 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1985 this_cache);
1986 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1987 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
1988}
1989
29639122
JB
1990static const struct frame_unwind mips_insn32_frame_unwind =
1991{
1992 NORMAL_FRAME,
1993 mips_insn32_frame_this_id,
1994 mips_insn32_frame_prev_register
1995};
c906108c 1996
29639122
JB
1997static const struct frame_unwind *
1998mips_insn32_frame_sniffer (struct frame_info *next_frame)
1999{
2000 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2001 if (! mips_pc_is_mips16 (pc))
29639122
JB
2002 return &mips_insn32_frame_unwind;
2003 return NULL;
2004}
c906108c 2005
1c645fec 2006static CORE_ADDR
29639122
JB
2007mips_insn32_frame_base_address (struct frame_info *next_frame,
2008 void **this_cache)
c906108c 2009{
29639122
JB
2010 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2011 this_cache);
2012 return info->base;
2013}
c906108c 2014
29639122
JB
2015static const struct frame_base mips_insn32_frame_base =
2016{
2017 &mips_insn32_frame_unwind,
2018 mips_insn32_frame_base_address,
2019 mips_insn32_frame_base_address,
2020 mips_insn32_frame_base_address
2021};
1c645fec 2022
29639122
JB
2023static const struct frame_base *
2024mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2025{
2026 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2027 return &mips_insn32_frame_base;
a65bbe44 2028 else
29639122
JB
2029 return NULL;
2030}
a65bbe44 2031
29639122
JB
2032static struct trad_frame_cache *
2033mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2034{
2035 CORE_ADDR pc;
2036 CORE_ADDR start_addr;
2037 CORE_ADDR stack_addr;
2038 struct trad_frame_cache *this_trad_cache;
c906108c 2039
29639122
JB
2040 if ((*this_cache) != NULL)
2041 return (*this_cache);
2042 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2043 (*this_cache) = this_trad_cache;
1c645fec 2044
29639122 2045 /* The return address is in the link register. */
4c7d22cb 2046 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
1c645fec 2047
29639122
JB
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc = frame_pc_unwind (next_frame);
2051 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2052 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
29639122 2053 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1c645fec 2054
29639122
JB
2055 /* Assume that the frame's base is the same as the
2056 stack-pointer. */
2057 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2058
29639122
JB
2059 return this_trad_cache;
2060}
c906108c 2061
29639122
JB
2062static void
2063mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2064 struct frame_id *this_id)
2065{
2066 struct trad_frame_cache *this_trad_cache
2067 = mips_stub_frame_cache (next_frame, this_cache);
2068 trad_frame_get_id (this_trad_cache, this_id);
2069}
c906108c 2070
29639122
JB
2071static void
2072mips_stub_frame_prev_register (struct frame_info *next_frame,
2073 void **this_cache,
2074 int regnum, int *optimizedp,
2075 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2076 int *realnump, gdb_byte *valuep)
29639122
JB
2077{
2078 struct trad_frame_cache *this_trad_cache
2079 = mips_stub_frame_cache (next_frame, this_cache);
2080 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2081 lvalp, addrp, realnump, valuep);
2082}
c906108c 2083
29639122
JB
2084static const struct frame_unwind mips_stub_frame_unwind =
2085{
2086 NORMAL_FRAME,
2087 mips_stub_frame_this_id,
2088 mips_stub_frame_prev_register
2089};
c906108c 2090
29639122
JB
2091static const struct frame_unwind *
2092mips_stub_frame_sniffer (struct frame_info *next_frame)
2093{
979b38e0 2094 struct obj_section *s;
29639122 2095 CORE_ADDR pc = frame_pc_unwind (next_frame);
979b38e0 2096
29639122
JB
2097 if (in_plt_section (pc, NULL))
2098 return &mips_stub_frame_unwind;
979b38e0
DJ
2099
2100 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2101 s = find_pc_section (pc);
2102
2103 if (s != NULL
2104 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2105 ".MIPS.stubs") == 0)
2106 return &mips_stub_frame_unwind;
2107
2108 return NULL;
29639122 2109}
c906108c 2110
29639122
JB
2111static CORE_ADDR
2112mips_stub_frame_base_address (struct frame_info *next_frame,
2113 void **this_cache)
2114{
2115 struct trad_frame_cache *this_trad_cache
2116 = mips_stub_frame_cache (next_frame, this_cache);
2117 return trad_frame_get_this_base (this_trad_cache);
2118}
0fce0821 2119
29639122
JB
2120static const struct frame_base mips_stub_frame_base =
2121{
2122 &mips_stub_frame_unwind,
2123 mips_stub_frame_base_address,
2124 mips_stub_frame_base_address,
2125 mips_stub_frame_base_address
2126};
2127
2128static const struct frame_base *
2129mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2130{
2131 if (mips_stub_frame_sniffer (next_frame) != NULL)
2132 return &mips_stub_frame_base;
2133 else
2134 return NULL;
2135}
2136
2137static CORE_ADDR
2138read_next_frame_reg (struct frame_info *fi, int regno)
2139{
2140 /* Always a pseudo. */
2141 gdb_assert (regno >= NUM_REGS);
2142 if (fi == NULL)
0fce0821 2143 {
29639122
JB
2144 LONGEST val;
2145 regcache_cooked_read_signed (current_regcache, regno, &val);
2146 return val;
0fce0821 2147 }
29639122
JB
2148 else
2149 return frame_unwind_register_signed (fi, regno);
1c645fec 2150
c906108c
SS
2151}
2152
29639122 2153/* mips_addr_bits_remove - remove useless address bits */
65596487 2154
29639122
JB
2155static CORE_ADDR
2156mips_addr_bits_remove (CORE_ADDR addr)
65596487 2157{
29639122
JB
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2159 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2160 /* This hack is a work-around for existing boards using PMON, the
2161 simulator, and any other 64-bit targets that doesn't have true
2162 64-bit addressing. On these targets, the upper 32 bits of
2163 addresses are ignored by the hardware. Thus, the PC or SP are
2164 likely to have been sign extended to all 1s by instruction
2165 sequences that load 32-bit addresses. For example, a typical
2166 piece of code that loads an address is this:
65596487 2167
29639122
JB
2168 lui $r2, <upper 16 bits>
2169 ori $r2, <lower 16 bits>
65596487 2170
29639122
JB
2171 But the lui sign-extends the value such that the upper 32 bits
2172 may be all 1s. The workaround is simply to mask off these
2173 bits. In the future, gcc may be changed to support true 64-bit
2174 addressing, and this masking will have to be disabled. */
2175 return addr &= 0xffffffffUL;
2176 else
2177 return addr;
65596487
JB
2178}
2179
29639122
JB
2180/* mips_software_single_step() is called just before we want to resume
2181 the inferior, if we want to single-step it but there is no hardware
2182 or kernel single-step support (MIPS on GNU/Linux for example). We find
2183 the target of the coming instruction and breakpoint it.
1e05a7bf 2184
29639122
JB
2185 single_step is also called just after the inferior stops. If we had
2186 set up a simulated single-step, we undo our damage. */
2187
2188void
2189mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
c906108c 2190{
8181d85f 2191 CORE_ADDR pc, next_pc;
65596487 2192
29639122
JB
2193 if (insert_breakpoints_p)
2194 {
2195 pc = read_register (mips_regnum (current_gdbarch)->pc);
2196 next_pc = mips_next_pc (pc);
98b4dd94 2197
8181d85f 2198 insert_single_step_breakpoint (next_pc);
29639122 2199 }
a65bbe44 2200 else
8181d85f 2201 remove_single_step_breakpoints ();
29639122 2202}
a65bbe44 2203
29639122
JB
2204/* Test whether the PC points to the return instruction at the
2205 end of a function. */
65596487 2206
29639122
JB
2207static int
2208mips_about_to_return (CORE_ADDR pc)
2209{
0fe7e7c8 2210 if (mips_pc_is_mips16 (pc))
29639122
JB
2211 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2212 generates a "jr $ra"; other times it generates code to load
2213 the return address from the stack to an accessible register (such
2214 as $a3), then a "jr" using that register. This second case
2215 is almost impossible to distinguish from an indirect jump
2216 used for switch statements, so we don't even try. */
2217 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2218 else
2219 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2220}
c906108c 2221
c906108c 2222
29639122
JB
2223/* This fencepost looks highly suspicious to me. Removing it also
2224 seems suspicious as it could affect remote debugging across serial
2225 lines. */
c906108c 2226
29639122
JB
2227static CORE_ADDR
2228heuristic_proc_start (CORE_ADDR pc)
2229{
2230 CORE_ADDR start_pc;
2231 CORE_ADDR fence;
2232 int instlen;
2233 int seen_adjsp = 0;
65596487 2234
29639122
JB
2235 pc = ADDR_BITS_REMOVE (pc);
2236 start_pc = pc;
2237 fence = start_pc - heuristic_fence_post;
2238 if (start_pc == 0)
2239 return 0;
65596487 2240
29639122
JB
2241 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2242 fence = VM_MIN_ADDRESS;
65596487 2243
95ac2dcf 2244 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2245
29639122
JB
2246 /* search back for previous return */
2247 for (start_pc -= instlen;; start_pc -= instlen)
2248 if (start_pc < fence)
2249 {
2250 /* It's not clear to me why we reach this point when
2251 stop_soon, but with this test, at least we
2252 don't print out warnings for every child forked (eg, on
2253 decstation). 22apr93 rich@cygnus.com. */
2254 if (stop_soon == NO_STOP_QUIETLY)
2255 {
2256 static int blurb_printed = 0;
98b4dd94 2257
8a3fe4f8 2258 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2259 paddr_nz (pc));
2260
2261 if (!blurb_printed)
2262 {
2263 /* This actually happens frequently in embedded
2264 development, when you first connect to a board
2265 and your stack pointer and pc are nowhere in
2266 particular. This message needs to give people
2267 in that situation enough information to
2268 determine that it's no big deal. */
2269 printf_filtered ("\n\
2270 GDB is unable to find the start of the function at 0x%s\n\
2271and thus can't determine the size of that function's stack frame.\n\
2272This means that GDB may be unable to access that stack frame, or\n\
2273the frames below it.\n\
2274 This problem is most likely caused by an invalid program counter or\n\
2275stack pointer.\n\
2276 However, if you think GDB should simply search farther back\n\
2277from 0x%s for code which looks like the beginning of a\n\
2278function, you can increase the range of the search using the `set\n\
2279heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2280 blurb_printed = 1;
2281 }
2282 }
2283
2284 return 0;
2285 }
0fe7e7c8 2286 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2287 {
2288 unsigned short inst;
2289
2290 /* On MIPS16, any one of the following is likely to be the
2291 start of a function:
2292 entry
2293 addiu sp,-n
2294 daddiu sp,-n
2295 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2296 inst = mips_fetch_instruction (start_pc);
2297 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2298 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2299 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2300 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2301 break;
2302 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2303 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2304 seen_adjsp = 1;
2305 else
2306 seen_adjsp = 0;
2307 }
2308 else if (mips_about_to_return (start_pc))
2309 {
4c7d22cb 2310 /* Skip return and its delay slot. */
95ac2dcf 2311 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2312 break;
2313 }
2314
2315 return start_pc;
c906108c
SS
2316}
2317
6c0d6680
DJ
2318struct mips_objfile_private
2319{
2320 bfd_size_type size;
2321 char *contents;
2322};
2323
f09ded24
AC
2324/* According to the current ABI, should the type be passed in a
2325 floating-point register (assuming that there is space)? When there
2326 is no FPU, FP are not even considered as possibile candidates for
2327 FP registers and, consequently this returns false - forces FP
2328 arguments into integer registers. */
2329
2330static int
2331fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2332{
2333 return ((typecode == TYPE_CODE_FLT
2334 || (MIPS_EABI
6d82d43b
AC
2335 && (typecode == TYPE_CODE_STRUCT
2336 || typecode == TYPE_CODE_UNION)
f09ded24
AC
2337 && TYPE_NFIELDS (arg_type) == 1
2338 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2339 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2340}
2341
49e790b0
DJ
2342/* On o32, argument passing in GPRs depends on the alignment of the type being
2343 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2344
2345static int
2346mips_type_needs_double_align (struct type *type)
2347{
2348 enum type_code typecode = TYPE_CODE (type);
361d1df0 2349
49e790b0
DJ
2350 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2351 return 1;
2352 else if (typecode == TYPE_CODE_STRUCT)
2353 {
2354 if (TYPE_NFIELDS (type) < 1)
2355 return 0;
2356 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2357 }
2358 else if (typecode == TYPE_CODE_UNION)
2359 {
361d1df0 2360 int i, n;
49e790b0
DJ
2361
2362 n = TYPE_NFIELDS (type);
2363 for (i = 0; i < n; i++)
2364 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2365 return 1;
2366 return 0;
2367 }
2368 return 0;
2369}
2370
dc604539
AC
2371/* Adjust the address downward (direction of stack growth) so that it
2372 is correctly aligned for a new stack frame. */
2373static CORE_ADDR
2374mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2375{
5b03f266 2376 return align_down (addr, 16);
dc604539
AC
2377}
2378
f7ab6ec6 2379static CORE_ADDR
7d9b040b 2380mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2381 struct regcache *regcache, CORE_ADDR bp_addr,
2382 int nargs, struct value **args, CORE_ADDR sp,
2383 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2384{
2385 int argreg;
2386 int float_argreg;
2387 int argnum;
2388 int len = 0;
2389 int stack_offset = 0;
480d3dd2 2390 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2391 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 2392
25ab4790
AC
2393 /* For shared libraries, "t9" needs to point at the function
2394 address. */
4c7d22cb 2395 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2396
2397 /* Set the return address register to point to the entry point of
2398 the program, where a breakpoint lies in wait. */
4c7d22cb 2399 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2400
c906108c 2401 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2402 are properly aligned. The stack has to be at least 64-bit
2403 aligned even on 32-bit machines, because doubles must be 64-bit
2404 aligned. For n32 and n64, stack frames need to be 128-bit
2405 aligned, so we round to this widest known alignment. */
2406
5b03f266
AC
2407 sp = align_down (sp, 16);
2408 struct_addr = align_down (struct_addr, 16);
c5aa993b 2409
46e0f506 2410 /* Now make space on the stack for the args. We allocate more
c906108c 2411 than necessary for EABI, because the first few arguments are
46e0f506 2412 passed in registers, but that's OK. */
c906108c 2413 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2414 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2415 mips_stack_argsize (gdbarch));
5b03f266 2416 sp -= align_up (len, 16);
c906108c 2417
9ace0497 2418 if (mips_debug)
6d82d43b 2419 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2420 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2421 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2422
c906108c 2423 /* Initialize the integer and float register pointers. */
4c7d22cb 2424 argreg = MIPS_A0_REGNUM;
56cea623 2425 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2426
46e0f506 2427 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2428 if (struct_return)
9ace0497
AC
2429 {
2430 if (mips_debug)
2431 fprintf_unfiltered (gdb_stdlog,
25ab4790 2432 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2433 argreg, paddr_nz (struct_addr));
9ace0497
AC
2434 write_register (argreg++, struct_addr);
2435 }
c906108c
SS
2436
2437 /* Now load as many as possible of the first arguments into
2438 registers, and push the rest onto the stack. Loop thru args
2439 from first to last. */
2440 for (argnum = 0; argnum < nargs; argnum++)
2441 {
47a35522
MK
2442 const gdb_byte *val;
2443 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2444 struct value *arg = args[argnum];
4991999e 2445 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2446 int len = TYPE_LENGTH (arg_type);
2447 enum type_code typecode = TYPE_CODE (arg_type);
2448
9ace0497
AC
2449 if (mips_debug)
2450 fprintf_unfiltered (gdb_stdlog,
25ab4790 2451 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2452 argnum + 1, len, (int) typecode);
9ace0497 2453
c906108c 2454 /* The EABI passes structures that do not fit in a register by
46e0f506 2455 reference. */
13326b4e 2456 if (len > mips_abi_regsize (gdbarch)
9ace0497 2457 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2458 {
13326b4e 2459 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
480d3dd2 2460 VALUE_ADDRESS (arg));
c906108c 2461 typecode = TYPE_CODE_PTR;
13326b4e 2462 len = mips_abi_regsize (gdbarch);
c906108c 2463 val = valbuf;
9ace0497
AC
2464 if (mips_debug)
2465 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2466 }
2467 else
47a35522 2468 val = value_contents (arg);
c906108c
SS
2469
2470 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2471 even-numbered floating point register. Round the FP register
2472 up before the check to see if there are any FP registers
46e0f506
MS
2473 left. Non MIPS_EABI targets also pass the FP in the integer
2474 registers so also round up normal registers. */
ceae6e75
AC
2475 if (mips_abi_regsize (gdbarch) < 8
2476 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2477 {
2478 if ((float_argreg & 1))
2479 float_argreg++;
2480 }
c906108c
SS
2481
2482 /* Floating point arguments passed in registers have to be
2483 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2484 are passed in register pairs; the even register gets
2485 the low word, and the odd register gets the high word.
2486 On non-EABI processors, the first two floating point arguments are
2487 also copied to general registers, because MIPS16 functions
2488 don't use float registers for arguments. This duplication of
2489 arguments in general registers can't hurt non-MIPS16 functions
2490 because those registers are normally skipped. */
1012bd0e
EZ
2491 /* MIPS_EABI squeezes a struct that contains a single floating
2492 point value into an FP register instead of pushing it onto the
46e0f506 2493 stack. */
f09ded24
AC
2494 if (fp_register_arg_p (typecode, arg_type)
2495 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2496 {
ceae6e75 2497 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
c906108c 2498 {
d7449b42 2499 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2500 unsigned long regval;
2501
2502 /* Write the low word of the double to the even register(s). */
c5aa993b 2503 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2504 if (mips_debug)
acdb74a0 2505 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2506 float_argreg, phex (regval, 4));
c906108c 2507 write_register (float_argreg++, regval);
c906108c
SS
2508
2509 /* Write the high word of the double to the odd register(s). */
c5aa993b 2510 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2511 if (mips_debug)
acdb74a0 2512 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2513 float_argreg, phex (regval, 4));
c906108c 2514 write_register (float_argreg++, regval);
c906108c
SS
2515 }
2516 else
2517 {
2518 /* This is a floating point value that fits entirely
2519 in a single register. */
53a5351d 2520 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2521 above to ensure that it is even register aligned. */
9ace0497
AC
2522 LONGEST regval = extract_unsigned_integer (val, len);
2523 if (mips_debug)
acdb74a0 2524 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2525 float_argreg, phex (regval, len));
c906108c 2526 write_register (float_argreg++, regval);
c906108c
SS
2527 }
2528 }
2529 else
2530 {
2531 /* Copy the argument to general registers or the stack in
2532 register-sized pieces. Large arguments are split between
2533 registers and stack. */
4246e332 2534 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2535 mips_abi_regsize() are treated specially: Irix cc passes
2536 them in registers where gcc sometimes puts them on the
2537 stack. For maximum compatibility, we will put them in
2538 both places. */
13326b4e
AC
2539 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2540 && (len % mips_abi_regsize (gdbarch) != 0));
46e0f506 2541
f09ded24 2542 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2543 register are only written to memory. */
c906108c
SS
2544 while (len > 0)
2545 {
ebafbe83 2546 /* Remember if the argument was written to the stack. */
566f0f7a 2547 int stack_used_p = 0;
13326b4e
AC
2548 int partial_len = (len < mips_abi_regsize (gdbarch)
2549 ? len : mips_abi_regsize (gdbarch));
c906108c 2550
acdb74a0
AC
2551 if (mips_debug)
2552 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2553 partial_len);
2554
566f0f7a 2555 /* Write this portion of the argument to the stack. */
f09ded24
AC
2556 if (argreg > MIPS_LAST_ARG_REGNUM
2557 || odd_sized_struct
2558 || fp_register_arg_p (typecode, arg_type))
c906108c 2559 {
c906108c
SS
2560 /* Should shorter than int integer values be
2561 promoted to int before being stored? */
c906108c 2562 int longword_offset = 0;
9ace0497 2563 CORE_ADDR addr;
566f0f7a 2564 stack_used_p = 1;
d7449b42 2565 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2566 {
13326b4e 2567 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2568 && (typecode == TYPE_CODE_INT
2569 || typecode == TYPE_CODE_PTR
6d82d43b 2570 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2571 longword_offset = mips_stack_argsize (gdbarch) - len;
480d3dd2
AC
2572 else if ((typecode == TYPE_CODE_STRUCT
2573 || typecode == TYPE_CODE_UNION)
2574 && (TYPE_LENGTH (arg_type)
13326b4e
AC
2575 < mips_stack_argsize (gdbarch)))
2576 longword_offset = mips_stack_argsize (gdbarch) - len;
7a292a7a 2577 }
c5aa993b 2578
9ace0497
AC
2579 if (mips_debug)
2580 {
cb3d25d1
MS
2581 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2582 paddr_nz (stack_offset));
2583 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2584 paddr_nz (longword_offset));
9ace0497 2585 }
361d1df0 2586
9ace0497
AC
2587 addr = sp + stack_offset + longword_offset;
2588
2589 if (mips_debug)
2590 {
2591 int i;
6d82d43b 2592 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2593 paddr_nz (addr));
9ace0497
AC
2594 for (i = 0; i < partial_len; i++)
2595 {
6d82d43b 2596 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2597 val[i] & 0xff);
9ace0497
AC
2598 }
2599 }
2600 write_memory (addr, val, partial_len);
c906108c
SS
2601 }
2602
f09ded24
AC
2603 /* Note!!! This is NOT an else clause. Odd sized
2604 structs may go thru BOTH paths. Floating point
46e0f506 2605 arguments will not. */
566f0f7a 2606 /* Write this portion of the argument to a general
6d82d43b 2607 purpose register. */
f09ded24
AC
2608 if (argreg <= MIPS_LAST_ARG_REGNUM
2609 && !fp_register_arg_p (typecode, arg_type))
c906108c 2610 {
6d82d43b
AC
2611 LONGEST regval =
2612 extract_unsigned_integer (val, partial_len);
c906108c 2613
9ace0497 2614 if (mips_debug)
acdb74a0 2615 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2616 argreg,
6d82d43b 2617 phex (regval,
13326b4e 2618 mips_abi_regsize (gdbarch)));
c906108c
SS
2619 write_register (argreg, regval);
2620 argreg++;
c906108c 2621 }
c5aa993b 2622
c906108c
SS
2623 len -= partial_len;
2624 val += partial_len;
2625
566f0f7a 2626 /* Compute the the offset into the stack at which we
6d82d43b 2627 will copy the next parameter.
566f0f7a 2628
566f0f7a 2629 In the new EABI (and the NABI32), the stack_offset
46e0f506 2630 only needs to be adjusted when it has been used. */
c906108c 2631
46e0f506 2632 if (stack_used_p)
480d3dd2 2633 stack_offset += align_up (partial_len,
13326b4e 2634 mips_stack_argsize (gdbarch));
c906108c
SS
2635 }
2636 }
9ace0497
AC
2637 if (mips_debug)
2638 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2639 }
2640
f10683bb 2641 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2642
0f71a2f6
JM
2643 /* Return adjusted stack pointer. */
2644 return sp;
2645}
2646
9c8fdbfa 2647/* Determin the return value convention being used. */
6d82d43b 2648
9c8fdbfa
AC
2649static enum return_value_convention
2650mips_eabi_return_value (struct gdbarch *gdbarch,
2651 struct type *type, struct regcache *regcache,
47a35522 2652 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2653{
9c8fdbfa
AC
2654 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2655 return RETURN_VALUE_STRUCT_CONVENTION;
2656 if (readbuf)
2657 memset (readbuf, 0, TYPE_LENGTH (type));
2658 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2659}
2660
6d82d43b
AC
2661
2662/* N32/N64 ABI stuff. */
ebafbe83 2663
f7ab6ec6 2664static CORE_ADDR
7d9b040b 2665mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2666 struct regcache *regcache, CORE_ADDR bp_addr,
2667 int nargs, struct value **args, CORE_ADDR sp,
2668 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2669{
2670 int argreg;
2671 int float_argreg;
2672 int argnum;
2673 int len = 0;
2674 int stack_offset = 0;
480d3dd2 2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2676 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2677
25ab4790
AC
2678 /* For shared libraries, "t9" needs to point at the function
2679 address. */
4c7d22cb 2680 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2681
2682 /* Set the return address register to point to the entry point of
2683 the program, where a breakpoint lies in wait. */
4c7d22cb 2684 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2685
cb3d25d1
MS
2686 /* First ensure that the stack and structure return address (if any)
2687 are properly aligned. The stack has to be at least 64-bit
2688 aligned even on 32-bit machines, because doubles must be 64-bit
2689 aligned. For n32 and n64, stack frames need to be 128-bit
2690 aligned, so we round to this widest known alignment. */
2691
5b03f266
AC
2692 sp = align_down (sp, 16);
2693 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2694
2695 /* Now make space on the stack for the args. */
2696 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2697 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2698 mips_stack_argsize (gdbarch));
5b03f266 2699 sp -= align_up (len, 16);
cb3d25d1
MS
2700
2701 if (mips_debug)
6d82d43b 2702 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2703 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2704 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2705
2706 /* Initialize the integer and float register pointers. */
4c7d22cb 2707 argreg = MIPS_A0_REGNUM;
56cea623 2708 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2709
46e0f506 2710 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2711 if (struct_return)
2712 {
2713 if (mips_debug)
2714 fprintf_unfiltered (gdb_stdlog,
25ab4790 2715 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
2716 argreg, paddr_nz (struct_addr));
2717 write_register (argreg++, struct_addr);
2718 }
2719
2720 /* Now load as many as possible of the first arguments into
2721 registers, and push the rest onto the stack. Loop thru args
2722 from first to last. */
2723 for (argnum = 0; argnum < nargs; argnum++)
2724 {
47a35522 2725 const gdb_byte *val;
cb3d25d1 2726 struct value *arg = args[argnum];
4991999e 2727 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2728 int len = TYPE_LENGTH (arg_type);
2729 enum type_code typecode = TYPE_CODE (arg_type);
2730
2731 if (mips_debug)
2732 fprintf_unfiltered (gdb_stdlog,
25ab4790 2733 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2734 argnum + 1, len, (int) typecode);
2735
47a35522 2736 val = value_contents (arg);
cb3d25d1
MS
2737
2738 if (fp_register_arg_p (typecode, arg_type)
2739 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2740 {
2741 /* This is a floating point value that fits entirely
2742 in a single register. */
2743 /* On 32 bit ABI's the float_argreg is further adjusted
2744 above to ensure that it is even register aligned. */
2745 LONGEST regval = extract_unsigned_integer (val, len);
2746 if (mips_debug)
2747 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2748 float_argreg, phex (regval, len));
2749 write_register (float_argreg++, regval);
2750
2751 if (mips_debug)
2752 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2753 argreg, phex (regval, len));
2754 write_register (argreg, regval);
2755 argreg += 1;
2756 }
2757 else
2758 {
2759 /* Copy the argument to general registers or the stack in
2760 register-sized pieces. Large arguments are split between
2761 registers and stack. */
4246e332 2762 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2763 mips_abi_regsize() are treated specially: Irix cc passes
2764 them in registers where gcc sometimes puts them on the
2765 stack. For maximum compatibility, we will put them in
2766 both places. */
13326b4e
AC
2767 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2768 && (len % mips_abi_regsize (gdbarch) != 0));
cb3d25d1 2769 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2770 register are only written to memory. */
cb3d25d1
MS
2771 while (len > 0)
2772 {
2773 /* Rememer if the argument was written to the stack. */
2774 int stack_used_p = 0;
13326b4e
AC
2775 int partial_len = (len < mips_abi_regsize (gdbarch)
2776 ? len : mips_abi_regsize (gdbarch));
cb3d25d1
MS
2777
2778 if (mips_debug)
2779 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2780 partial_len);
2781
2782 /* Write this portion of the argument to the stack. */
2783 if (argreg > MIPS_LAST_ARG_REGNUM
2784 || odd_sized_struct
2785 || fp_register_arg_p (typecode, arg_type))
2786 {
2787 /* Should shorter than int integer values be
2788 promoted to int before being stored? */
2789 int longword_offset = 0;
2790 CORE_ADDR addr;
2791 stack_used_p = 1;
2792 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2793 {
13326b4e 2794 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2795 && (typecode == TYPE_CODE_INT
2796 || typecode == TYPE_CODE_PTR
6d82d43b 2797 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2798 longword_offset = mips_stack_argsize (gdbarch) - len;
cb3d25d1
MS
2799 }
2800
2801 if (mips_debug)
2802 {
2803 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2804 paddr_nz (stack_offset));
2805 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2806 paddr_nz (longword_offset));
2807 }
2808
2809 addr = sp + stack_offset + longword_offset;
2810
2811 if (mips_debug)
2812 {
2813 int i;
6d82d43b 2814 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2815 paddr_nz (addr));
2816 for (i = 0; i < partial_len; i++)
2817 {
6d82d43b 2818 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2819 val[i] & 0xff);
2820 }
2821 }
2822 write_memory (addr, val, partial_len);
2823 }
2824
2825 /* Note!!! This is NOT an else clause. Odd sized
2826 structs may go thru BOTH paths. Floating point
2827 arguments will not. */
2828 /* Write this portion of the argument to a general
6d82d43b 2829 purpose register. */
cb3d25d1
MS
2830 if (argreg <= MIPS_LAST_ARG_REGNUM
2831 && !fp_register_arg_p (typecode, arg_type))
2832 {
6d82d43b
AC
2833 LONGEST regval =
2834 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
2835
2836 /* A non-floating-point argument being passed in a
2837 general register. If a struct or union, and if
2838 the remaining length is smaller than the register
2839 size, we have to adjust the register value on
2840 big endian targets.
2841
2842 It does not seem to be necessary to do the
2843 same for integral types.
2844
2845 cagney/2001-07-23: gdb/179: Also, GCC, when
2846 outputting LE O32 with sizeof (struct) <
1b13c4f6 2847 mips_abi_regsize(), generates a left shift as
cb3d25d1
MS
2848 part of storing the argument in a register a
2849 register (the left shift isn't generated when
1b13c4f6 2850 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
2851 it is quite possible that this is GCC
2852 contradicting the LE/O32 ABI, GDB has not been
2853 adjusted to accommodate this. Either someone
2854 needs to demonstrate that the LE/O32 ABI
2855 specifies such a left shift OR this new ABI gets
2856 identified as such and GDB gets tweaked
2857 accordingly. */
cb3d25d1
MS
2858
2859 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 2860 && partial_len < mips_abi_regsize (gdbarch)
cb3d25d1
MS
2861 && (typecode == TYPE_CODE_STRUCT ||
2862 typecode == TYPE_CODE_UNION))
13326b4e 2863 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
cb3d25d1
MS
2864 TARGET_CHAR_BIT);
2865
2866 if (mips_debug)
2867 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2868 argreg,
6d82d43b 2869 phex (regval,
13326b4e 2870 mips_abi_regsize (gdbarch)));
cb3d25d1
MS
2871 write_register (argreg, regval);
2872 argreg++;
2873 }
2874
2875 len -= partial_len;
2876 val += partial_len;
2877
2878 /* Compute the the offset into the stack at which we
6d82d43b 2879 will copy the next parameter.
cb3d25d1
MS
2880
2881 In N32 (N64?), the stack_offset only needs to be
2882 adjusted when it has been used. */
2883
2884 if (stack_used_p)
480d3dd2 2885 stack_offset += align_up (partial_len,
13326b4e 2886 mips_stack_argsize (gdbarch));
cb3d25d1
MS
2887 }
2888 }
2889 if (mips_debug)
2890 fprintf_unfiltered (gdb_stdlog, "\n");
2891 }
2892
f10683bb 2893 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2894
cb3d25d1
MS
2895 /* Return adjusted stack pointer. */
2896 return sp;
2897}
2898
6d82d43b
AC
2899static enum return_value_convention
2900mips_n32n64_return_value (struct gdbarch *gdbarch,
2901 struct type *type, struct regcache *regcache,
47a35522 2902 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 2903{
6d82d43b
AC
2904 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2905 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2906 || TYPE_CODE (type) == TYPE_CODE_UNION
2907 || TYPE_CODE (type) == TYPE_CODE_ARRAY
13326b4e 2908 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
6d82d43b 2909 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
2910 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2911 && TYPE_LENGTH (type) == 16
2912 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2913 {
2914 /* A 128-bit floating-point value fills both $f0 and $f2. The
2915 two registers are used in the same as memory order, so the
2916 eight bytes with the lower memory address are in $f0. */
2917 if (mips_debug)
2918 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2919 mips_xfer_register (regcache,
2920 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2921 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2922 mips_xfer_register (regcache,
2923 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2924 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2925 writebuf ? writebuf + 8 : writebuf, 0);
2926 return RETURN_VALUE_REGISTER_CONVENTION;
2927 }
6d82d43b
AC
2928 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2929 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2930 {
2931 /* A floating-point value belongs in the least significant part
2932 of FP0. */
2933 if (mips_debug)
2934 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2935 mips_xfer_register (regcache,
2936 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2937 TYPE_LENGTH (type),
2938 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2939 return RETURN_VALUE_REGISTER_CONVENTION;
2940 }
2941 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2942 && TYPE_NFIELDS (type) <= 2
2943 && TYPE_NFIELDS (type) >= 1
2944 && ((TYPE_NFIELDS (type) == 1
2945 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2946 == TYPE_CODE_FLT))
2947 || (TYPE_NFIELDS (type) == 2
2948 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2949 == TYPE_CODE_FLT)
2950 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2951 == TYPE_CODE_FLT)))
2952 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2953 {
2954 /* A struct that contains one or two floats. Each value is part
2955 in the least significant part of their floating point
2956 register.. */
6d82d43b
AC
2957 int regnum;
2958 int field;
2959 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2960 field < TYPE_NFIELDS (type); field++, regnum += 2)
2961 {
2962 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2963 / TARGET_CHAR_BIT);
2964 if (mips_debug)
2965 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2966 offset);
2967 mips_xfer_register (regcache, NUM_REGS + regnum,
2968 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2969 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2970 }
2971 return RETURN_VALUE_REGISTER_CONVENTION;
2972 }
2973 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2974 || TYPE_CODE (type) == TYPE_CODE_UNION)
2975 {
2976 /* A structure or union. Extract the left justified value,
2977 regardless of the byte order. I.e. DO NOT USE
2978 mips_xfer_lower. */
2979 int offset;
2980 int regnum;
4c7d22cb 2981 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
2982 offset < TYPE_LENGTH (type);
2983 offset += register_size (current_gdbarch, regnum), regnum++)
2984 {
2985 int xfer = register_size (current_gdbarch, regnum);
2986 if (offset + xfer > TYPE_LENGTH (type))
2987 xfer = TYPE_LENGTH (type) - offset;
2988 if (mips_debug)
2989 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2990 offset, xfer, regnum);
2991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2992 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2993 }
2994 return RETURN_VALUE_REGISTER_CONVENTION;
2995 }
2996 else
2997 {
2998 /* A scalar extract each part but least-significant-byte
2999 justified. */
3000 int offset;
3001 int regnum;
4c7d22cb 3002 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3003 offset < TYPE_LENGTH (type);
3004 offset += register_size (current_gdbarch, regnum), regnum++)
3005 {
3006 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3007 if (offset + xfer > TYPE_LENGTH (type))
3008 xfer = TYPE_LENGTH (type) - offset;
3009 if (mips_debug)
3010 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3011 offset, xfer, regnum);
3012 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3013 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3014 }
3015 return RETURN_VALUE_REGISTER_CONVENTION;
3016 }
3017}
3018
3019/* O32 ABI stuff. */
3020
3021static CORE_ADDR
7d9b040b 3022mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3023 struct regcache *regcache, CORE_ADDR bp_addr,
3024 int nargs, struct value **args, CORE_ADDR sp,
3025 int struct_return, CORE_ADDR struct_addr)
3026{
3027 int argreg;
3028 int float_argreg;
3029 int argnum;
3030 int len = 0;
3031 int stack_offset = 0;
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3033 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3034
3035 /* For shared libraries, "t9" needs to point at the function
3036 address. */
4c7d22cb 3037 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3038
3039 /* Set the return address register to point to the entry point of
3040 the program, where a breakpoint lies in wait. */
4c7d22cb 3041 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3042
3043 /* First ensure that the stack and structure return address (if any)
3044 are properly aligned. The stack has to be at least 64-bit
3045 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3046 aligned. For n32 and n64, stack frames need to be 128-bit
3047 aligned, so we round to this widest known alignment. */
3048
5b03f266
AC
3049 sp = align_down (sp, 16);
3050 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3051
3052 /* Now make space on the stack for the args. */
3053 for (argnum = 0; argnum < nargs; argnum++)
4991999e 3054 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 3055 mips_stack_argsize (gdbarch));
5b03f266 3056 sp -= align_up (len, 16);
ebafbe83
MS
3057
3058 if (mips_debug)
6d82d43b 3059 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3060 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3061 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3062
3063 /* Initialize the integer and float register pointers. */
4c7d22cb 3064 argreg = MIPS_A0_REGNUM;
56cea623 3065 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3066
bcb0cc15 3067 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3068 if (struct_return)
3069 {
3070 if (mips_debug)
3071 fprintf_unfiltered (gdb_stdlog,
25ab4790 3072 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3073 argreg, paddr_nz (struct_addr));
3074 write_register (argreg++, struct_addr);
13326b4e 3075 stack_offset += mips_stack_argsize (gdbarch);
ebafbe83
MS
3076 }
3077
3078 /* Now load as many as possible of the first arguments into
3079 registers, and push the rest onto the stack. Loop thru args
3080 from first to last. */
3081 for (argnum = 0; argnum < nargs; argnum++)
3082 {
47a35522 3083 const gdb_byte *val;
ebafbe83 3084 struct value *arg = args[argnum];
4991999e 3085 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3086 int len = TYPE_LENGTH (arg_type);
3087 enum type_code typecode = TYPE_CODE (arg_type);
3088
3089 if (mips_debug)
3090 fprintf_unfiltered (gdb_stdlog,
25ab4790 3091 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3092 argnum + 1, len, (int) typecode);
3093
47a35522 3094 val = value_contents (arg);
46cac009
AC
3095
3096 /* 32-bit ABIs always start floating point arguments in an
3097 even-numbered floating point register. Round the FP register
3098 up before the check to see if there are any FP registers
3099 left. O32/O64 targets also pass the FP in the integer
3100 registers so also round up normal registers. */
ceae6e75
AC
3101 if (mips_abi_regsize (gdbarch) < 8
3102 && fp_register_arg_p (typecode, arg_type))
46cac009
AC
3103 {
3104 if ((float_argreg & 1))
3105 float_argreg++;
3106 }
3107
3108 /* Floating point arguments passed in registers have to be
3109 treated specially. On 32-bit architectures, doubles
3110 are passed in register pairs; the even register gets
3111 the low word, and the odd register gets the high word.
3112 On O32/O64, the first two floating point arguments are
3113 also copied to general registers, because MIPS16 functions
3114 don't use float registers for arguments. This duplication of
3115 arguments in general registers can't hurt non-MIPS16 functions
3116 because those registers are normally skipped. */
3117
3118 if (fp_register_arg_p (typecode, arg_type)
3119 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3120 {
ceae6e75 3121 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
46cac009
AC
3122 {
3123 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3124 unsigned long regval;
3125
3126 /* Write the low word of the double to the even register(s). */
3127 regval = extract_unsigned_integer (val + low_offset, 4);
3128 if (mips_debug)
3129 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3130 float_argreg, phex (regval, 4));
3131 write_register (float_argreg++, regval);
3132 if (mips_debug)
3133 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3134 argreg, phex (regval, 4));
3135 write_register (argreg++, regval);
3136
3137 /* Write the high word of the double to the odd register(s). */
3138 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3139 if (mips_debug)
3140 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3141 float_argreg, phex (regval, 4));
3142 write_register (float_argreg++, regval);
3143
3144 if (mips_debug)
3145 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3146 argreg, phex (regval, 4));
3147 write_register (argreg++, regval);
3148 }
3149 else
3150 {
3151 /* This is a floating point value that fits entirely
3152 in a single register. */
3153 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3154 above to ensure that it is even register aligned. */
46cac009
AC
3155 LONGEST regval = extract_unsigned_integer (val, len);
3156 if (mips_debug)
3157 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3158 float_argreg, phex (regval, len));
3159 write_register (float_argreg++, regval);
3160 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3161 registers for each argument. The below is (my
3162 guess) to ensure that the corresponding integer
3163 register has reserved the same space. */
46cac009
AC
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3166 argreg, phex (regval, len));
3167 write_register (argreg, regval);
ceae6e75 3168 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
46cac009
AC
3169 }
3170 /* Reserve space for the FP register. */
13326b4e 3171 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
46cac009
AC
3172 }
3173 else
3174 {
3175 /* Copy the argument to general registers or the stack in
3176 register-sized pieces. Large arguments are split between
3177 registers and stack. */
4246e332 3178 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3179 mips_abi_regsize() are treated specially: Irix cc passes
3180 them in registers where gcc sometimes puts them on the
3181 stack. For maximum compatibility, we will put them in
3182 both places. */
13326b4e
AC
3183 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3184 && (len % mips_abi_regsize (gdbarch) != 0));
46cac009
AC
3185 /* Structures should be aligned to eight bytes (even arg registers)
3186 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3187 if (mips_abi_regsize (gdbarch) < 8
46cac009
AC
3188 && mips_type_needs_double_align (arg_type))
3189 {
3190 if ((argreg & 1))
6d82d43b 3191 argreg++;
46cac009
AC
3192 }
3193 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3194 register are only written to memory. */
46cac009
AC
3195 while (len > 0)
3196 {
3197 /* Remember if the argument was written to the stack. */
3198 int stack_used_p = 0;
13326b4e
AC
3199 int partial_len = (len < mips_abi_regsize (gdbarch)
3200 ? len : mips_abi_regsize (gdbarch));
46cac009
AC
3201
3202 if (mips_debug)
3203 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3204 partial_len);
3205
3206 /* Write this portion of the argument to the stack. */
3207 if (argreg > MIPS_LAST_ARG_REGNUM
3208 || odd_sized_struct
3209 || fp_register_arg_p (typecode, arg_type))
3210 {
3211 /* Should shorter than int integer values be
3212 promoted to int before being stored? */
3213 int longword_offset = 0;
3214 CORE_ADDR addr;
3215 stack_used_p = 1;
3216 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3217 {
13326b4e 3218 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3219 && (typecode == TYPE_CODE_INT
3220 || typecode == TYPE_CODE_PTR
6d82d43b 3221 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3222 longword_offset = mips_stack_argsize (gdbarch) - len;
46cac009
AC
3223 }
3224
3225 if (mips_debug)
3226 {
3227 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3228 paddr_nz (stack_offset));
3229 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3230 paddr_nz (longword_offset));
3231 }
3232
3233 addr = sp + stack_offset + longword_offset;
3234
3235 if (mips_debug)
3236 {
3237 int i;
6d82d43b 3238 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3239 paddr_nz (addr));
3240 for (i = 0; i < partial_len; i++)
3241 {
6d82d43b 3242 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3243 val[i] & 0xff);
3244 }
3245 }
3246 write_memory (addr, val, partial_len);
3247 }
3248
3249 /* Note!!! This is NOT an else clause. Odd sized
3250 structs may go thru BOTH paths. Floating point
3251 arguments will not. */
3252 /* Write this portion of the argument to a general
6d82d43b 3253 purpose register. */
46cac009
AC
3254 if (argreg <= MIPS_LAST_ARG_REGNUM
3255 && !fp_register_arg_p (typecode, arg_type))
3256 {
3257 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3258 /* Value may need to be sign extended, because
1b13c4f6 3259 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3260
3261 /* A non-floating-point argument being passed in a
3262 general register. If a struct or union, and if
3263 the remaining length is smaller than the register
3264 size, we have to adjust the register value on
3265 big endian targets.
3266
3267 It does not seem to be necessary to do the
3268 same for integral types.
3269
3270 Also don't do this adjustment on O64 binaries.
3271
3272 cagney/2001-07-23: gdb/179: Also, GCC, when
3273 outputting LE O32 with sizeof (struct) <
1b13c4f6 3274 mips_abi_regsize(), generates a left shift as
46cac009
AC
3275 part of storing the argument in a register a
3276 register (the left shift isn't generated when
1b13c4f6 3277 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3278 it is quite possible that this is GCC
3279 contradicting the LE/O32 ABI, GDB has not been
3280 adjusted to accommodate this. Either someone
3281 needs to demonstrate that the LE/O32 ABI
3282 specifies such a left shift OR this new ABI gets
3283 identified as such and GDB gets tweaked
3284 accordingly. */
3285
13326b4e 3286 if (mips_abi_regsize (gdbarch) < 8
46cac009 3287 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3288 && partial_len < mips_abi_regsize (gdbarch)
46cac009
AC
3289 && (typecode == TYPE_CODE_STRUCT ||
3290 typecode == TYPE_CODE_UNION))
13326b4e 3291 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
46cac009
AC
3292 TARGET_CHAR_BIT);
3293
3294 if (mips_debug)
3295 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3296 argreg,
6d82d43b 3297 phex (regval,
13326b4e 3298 mips_abi_regsize (gdbarch)));
46cac009
AC
3299 write_register (argreg, regval);
3300 argreg++;
3301
3302 /* Prevent subsequent floating point arguments from
3303 being passed in floating point registers. */
3304 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3305 }
3306
3307 len -= partial_len;
3308 val += partial_len;
3309
3310 /* Compute the the offset into the stack at which we
6d82d43b 3311 will copy the next parameter.
46cac009 3312
6d82d43b
AC
3313 In older ABIs, the caller reserved space for
3314 registers that contained arguments. This was loosely
3315 refered to as their "home". Consequently, space is
3316 always allocated. */
46cac009 3317
480d3dd2 3318 stack_offset += align_up (partial_len,
13326b4e 3319 mips_stack_argsize (gdbarch));
46cac009
AC
3320 }
3321 }
3322 if (mips_debug)
3323 fprintf_unfiltered (gdb_stdlog, "\n");
3324 }
3325
f10683bb 3326 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3327
46cac009
AC
3328 /* Return adjusted stack pointer. */
3329 return sp;
3330}
3331
6d82d43b
AC
3332static enum return_value_convention
3333mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3334 struct regcache *regcache,
47a35522 3335 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3336{
3337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3338
3339 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3340 || TYPE_CODE (type) == TYPE_CODE_UNION
3341 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3342 return RETURN_VALUE_STRUCT_CONVENTION;
3343 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3344 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3345 {
3346 /* A single-precision floating-point value. It fits in the
3347 least significant part of FP0. */
3348 if (mips_debug)
3349 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3350 mips_xfer_register (regcache,
3351 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3352 TYPE_LENGTH (type),
3353 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3354 return RETURN_VALUE_REGISTER_CONVENTION;
3355 }
3356 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3357 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3358 {
3359 /* A double-precision floating-point value. The most
3360 significant part goes in FP1, and the least significant in
3361 FP0. */
3362 if (mips_debug)
3363 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3364 switch (TARGET_BYTE_ORDER)
3365 {
3366 case BFD_ENDIAN_LITTLE:
3367 mips_xfer_register (regcache,
3368 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3369 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3370 mips_xfer_register (regcache,
3371 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3372 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3373 break;
3374 case BFD_ENDIAN_BIG:
3375 mips_xfer_register (regcache,
3376 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3377 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3378 mips_xfer_register (regcache,
3379 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3380 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3381 break;
3382 default:
e2e0b3e5 3383 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3384 }
3385 return RETURN_VALUE_REGISTER_CONVENTION;
3386 }
3387#if 0
3388 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3389 && TYPE_NFIELDS (type) <= 2
3390 && TYPE_NFIELDS (type) >= 1
3391 && ((TYPE_NFIELDS (type) == 1
3392 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3393 == TYPE_CODE_FLT))
3394 || (TYPE_NFIELDS (type) == 2
3395 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3396 == TYPE_CODE_FLT)
3397 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3398 == TYPE_CODE_FLT)))
3399 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3400 {
3401 /* A struct that contains one or two floats. Each value is part
3402 in the least significant part of their floating point
3403 register.. */
870cd05e 3404 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3405 int regnum;
3406 int field;
3407 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3408 field < TYPE_NFIELDS (type); field++, regnum += 2)
3409 {
3410 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3411 / TARGET_CHAR_BIT);
3412 if (mips_debug)
3413 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3414 offset);
3415 mips_xfer_register (regcache, NUM_REGS + regnum,
3416 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3417 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3418 }
3419 return RETURN_VALUE_REGISTER_CONVENTION;
3420 }
3421#endif
3422#if 0
3423 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3424 || TYPE_CODE (type) == TYPE_CODE_UNION)
3425 {
3426 /* A structure or union. Extract the left justified value,
3427 regardless of the byte order. I.e. DO NOT USE
3428 mips_xfer_lower. */
3429 int offset;
3430 int regnum;
4c7d22cb 3431 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3432 offset < TYPE_LENGTH (type);
3433 offset += register_size (current_gdbarch, regnum), regnum++)
3434 {
3435 int xfer = register_size (current_gdbarch, regnum);
3436 if (offset + xfer > TYPE_LENGTH (type))
3437 xfer = TYPE_LENGTH (type) - offset;
3438 if (mips_debug)
3439 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3440 offset, xfer, regnum);
3441 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3442 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3443 }
3444 return RETURN_VALUE_REGISTER_CONVENTION;
3445 }
3446#endif
3447 else
3448 {
3449 /* A scalar extract each part but least-significant-byte
3450 justified. o32 thinks registers are 4 byte, regardless of
3451 the ISA. mips_stack_argsize controls this. */
3452 int offset;
3453 int regnum;
4c7d22cb 3454 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3455 offset < TYPE_LENGTH (type);
13326b4e 3456 offset += mips_stack_argsize (gdbarch), regnum++)
6d82d43b 3457 {
13326b4e 3458 int xfer = mips_stack_argsize (gdbarch);
6d82d43b
AC
3459 if (offset + xfer > TYPE_LENGTH (type))
3460 xfer = TYPE_LENGTH (type) - offset;
3461 if (mips_debug)
3462 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3463 offset, xfer, regnum);
3464 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3465 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3466 }
3467 return RETURN_VALUE_REGISTER_CONVENTION;
3468 }
3469}
3470
3471/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3472 ABI. */
46cac009
AC
3473
3474static CORE_ADDR
7d9b040b 3475mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3476 struct regcache *regcache, CORE_ADDR bp_addr,
3477 int nargs,
3478 struct value **args, CORE_ADDR sp,
3479 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3480{
3481 int argreg;
3482 int float_argreg;
3483 int argnum;
3484 int len = 0;
3485 int stack_offset = 0;
480d3dd2 3486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3487 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3488
25ab4790
AC
3489 /* For shared libraries, "t9" needs to point at the function
3490 address. */
4c7d22cb 3491 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3492
3493 /* Set the return address register to point to the entry point of
3494 the program, where a breakpoint lies in wait. */
4c7d22cb 3495 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3496
46cac009
AC
3497 /* First ensure that the stack and structure return address (if any)
3498 are properly aligned. The stack has to be at least 64-bit
3499 aligned even on 32-bit machines, because doubles must be 64-bit
3500 aligned. For n32 and n64, stack frames need to be 128-bit
3501 aligned, so we round to this widest known alignment. */
3502
5b03f266
AC
3503 sp = align_down (sp, 16);
3504 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3505
3506 /* Now make space on the stack for the args. */
3507 for (argnum = 0; argnum < nargs; argnum++)
4991999e 3508 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 3509 mips_stack_argsize (gdbarch));
5b03f266 3510 sp -= align_up (len, 16);
46cac009
AC
3511
3512 if (mips_debug)
6d82d43b 3513 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3514 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3515 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3516
3517 /* Initialize the integer and float register pointers. */
4c7d22cb 3518 argreg = MIPS_A0_REGNUM;
56cea623 3519 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3520
3521 /* The struct_return pointer occupies the first parameter-passing reg. */
3522 if (struct_return)
3523 {
3524 if (mips_debug)
3525 fprintf_unfiltered (gdb_stdlog,
25ab4790 3526 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3527 argreg, paddr_nz (struct_addr));
3528 write_register (argreg++, struct_addr);
13326b4e 3529 stack_offset += mips_stack_argsize (gdbarch);
46cac009
AC
3530 }
3531
3532 /* Now load as many as possible of the first arguments into
3533 registers, and push the rest onto the stack. Loop thru args
3534 from first to last. */
3535 for (argnum = 0; argnum < nargs; argnum++)
3536 {
47a35522 3537 const gdb_byte *val;
46cac009 3538 struct value *arg = args[argnum];
4991999e 3539 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3540 int len = TYPE_LENGTH (arg_type);
3541 enum type_code typecode = TYPE_CODE (arg_type);
3542
3543 if (mips_debug)
3544 fprintf_unfiltered (gdb_stdlog,
25ab4790 3545 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3546 argnum + 1, len, (int) typecode);
3547
47a35522 3548 val = value_contents (arg);
ebafbe83
MS
3549
3550 /* 32-bit ABIs always start floating point arguments in an
3551 even-numbered floating point register. Round the FP register
3552 up before the check to see if there are any FP registers
3553 left. O32/O64 targets also pass the FP in the integer
3554 registers so also round up normal registers. */
ceae6e75
AC
3555 if (mips_abi_regsize (gdbarch) < 8
3556 && fp_register_arg_p (typecode, arg_type))
ebafbe83
MS
3557 {
3558 if ((float_argreg & 1))
3559 float_argreg++;
3560 }
3561
3562 /* Floating point arguments passed in registers have to be
3563 treated specially. On 32-bit architectures, doubles
3564 are passed in register pairs; the even register gets
3565 the low word, and the odd register gets the high word.
3566 On O32/O64, the first two floating point arguments are
3567 also copied to general registers, because MIPS16 functions
3568 don't use float registers for arguments. This duplication of
3569 arguments in general registers can't hurt non-MIPS16 functions
3570 because those registers are normally skipped. */
3571
3572 if (fp_register_arg_p (typecode, arg_type)
3573 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3574 {
ceae6e75 3575 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
ebafbe83
MS
3576 {
3577 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3578 unsigned long regval;
3579
3580 /* Write the low word of the double to the even register(s). */
3581 regval = extract_unsigned_integer (val + low_offset, 4);
3582 if (mips_debug)
3583 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3584 float_argreg, phex (regval, 4));
3585 write_register (float_argreg++, regval);
3586 if (mips_debug)
3587 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3588 argreg, phex (regval, 4));
3589 write_register (argreg++, regval);
3590
3591 /* Write the high word of the double to the odd register(s). */
3592 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3593 if (mips_debug)
3594 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3595 float_argreg, phex (regval, 4));
3596 write_register (float_argreg++, regval);
3597
3598 if (mips_debug)
3599 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3600 argreg, phex (regval, 4));
3601 write_register (argreg++, regval);
3602 }
3603 else
3604 {
3605 /* This is a floating point value that fits entirely
3606 in a single register. */
3607 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3608 above to ensure that it is even register aligned. */
ebafbe83
MS
3609 LONGEST regval = extract_unsigned_integer (val, len);
3610 if (mips_debug)
3611 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3612 float_argreg, phex (regval, len));
3613 write_register (float_argreg++, regval);
3614 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3615 registers for each argument. The below is (my
3616 guess) to ensure that the corresponding integer
3617 register has reserved the same space. */
ebafbe83
MS
3618 if (mips_debug)
3619 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3620 argreg, phex (regval, len));
3621 write_register (argreg, regval);
ceae6e75 3622 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
ebafbe83
MS
3623 }
3624 /* Reserve space for the FP register. */
13326b4e 3625 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
ebafbe83
MS
3626 }
3627 else
3628 {
3629 /* Copy the argument to general registers or the stack in
3630 register-sized pieces. Large arguments are split between
3631 registers and stack. */
4246e332 3632 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3633 mips_abi_regsize() are treated specially: Irix cc passes
3634 them in registers where gcc sometimes puts them on the
3635 stack. For maximum compatibility, we will put them in
3636 both places. */
13326b4e
AC
3637 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3638 && (len % mips_abi_regsize (gdbarch) != 0));
ebafbe83
MS
3639 /* Structures should be aligned to eight bytes (even arg registers)
3640 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3641 if (mips_abi_regsize (gdbarch) < 8
ebafbe83
MS
3642 && mips_type_needs_double_align (arg_type))
3643 {
3644 if ((argreg & 1))
6d82d43b 3645 argreg++;
ebafbe83
MS
3646 }
3647 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3648 register are only written to memory. */
ebafbe83
MS
3649 while (len > 0)
3650 {
3651 /* Remember if the argument was written to the stack. */
3652 int stack_used_p = 0;
13326b4e
AC
3653 int partial_len = (len < mips_abi_regsize (gdbarch)
3654 ? len : mips_abi_regsize (gdbarch));
ebafbe83
MS
3655
3656 if (mips_debug)
3657 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3658 partial_len);
3659
3660 /* Write this portion of the argument to the stack. */
3661 if (argreg > MIPS_LAST_ARG_REGNUM
3662 || odd_sized_struct
3663 || fp_register_arg_p (typecode, arg_type))
3664 {
3665 /* Should shorter than int integer values be
3666 promoted to int before being stored? */
3667 int longword_offset = 0;
3668 CORE_ADDR addr;
3669 stack_used_p = 1;
3670 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3671 {
13326b4e 3672 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3673 && (typecode == TYPE_CODE_INT
3674 || typecode == TYPE_CODE_PTR
6d82d43b 3675 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3676 longword_offset = mips_stack_argsize (gdbarch) - len;
ebafbe83
MS
3677 }
3678
3679 if (mips_debug)
3680 {
3681 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3682 paddr_nz (stack_offset));
3683 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3684 paddr_nz (longword_offset));
3685 }
3686
3687 addr = sp + stack_offset + longword_offset;
3688
3689 if (mips_debug)
3690 {
3691 int i;
6d82d43b 3692 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3693 paddr_nz (addr));
3694 for (i = 0; i < partial_len; i++)
3695 {
6d82d43b 3696 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3697 val[i] & 0xff);
3698 }
3699 }
3700 write_memory (addr, val, partial_len);
3701 }
3702
3703 /* Note!!! This is NOT an else clause. Odd sized
3704 structs may go thru BOTH paths. Floating point
3705 arguments will not. */
3706 /* Write this portion of the argument to a general
6d82d43b 3707 purpose register. */
ebafbe83
MS
3708 if (argreg <= MIPS_LAST_ARG_REGNUM
3709 && !fp_register_arg_p (typecode, arg_type))
3710 {
3711 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3712 /* Value may need to be sign extended, because
1b13c4f6 3713 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3714
3715 /* A non-floating-point argument being passed in a
3716 general register. If a struct or union, and if
3717 the remaining length is smaller than the register
3718 size, we have to adjust the register value on
3719 big endian targets.
3720
3721 It does not seem to be necessary to do the
3722 same for integral types.
3723
3724 Also don't do this adjustment on O64 binaries.
3725
3726 cagney/2001-07-23: gdb/179: Also, GCC, when
3727 outputting LE O32 with sizeof (struct) <
1b13c4f6 3728 mips_abi_regsize(), generates a left shift as
ebafbe83
MS
3729 part of storing the argument in a register a
3730 register (the left shift isn't generated when
1b13c4f6 3731 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3732 it is quite possible that this is GCC
3733 contradicting the LE/O32 ABI, GDB has not been
3734 adjusted to accommodate this. Either someone
3735 needs to demonstrate that the LE/O32 ABI
3736 specifies such a left shift OR this new ABI gets
3737 identified as such and GDB gets tweaked
3738 accordingly. */
3739
13326b4e 3740 if (mips_abi_regsize (gdbarch) < 8
ebafbe83 3741 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3742 && partial_len < mips_abi_regsize (gdbarch)
ebafbe83
MS
3743 && (typecode == TYPE_CODE_STRUCT ||
3744 typecode == TYPE_CODE_UNION))
13326b4e 3745 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
ebafbe83
MS
3746 TARGET_CHAR_BIT);
3747
3748 if (mips_debug)
3749 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3750 argreg,
6d82d43b 3751 phex (regval,
13326b4e 3752 mips_abi_regsize (gdbarch)));
ebafbe83
MS
3753 write_register (argreg, regval);
3754 argreg++;
3755
3756 /* Prevent subsequent floating point arguments from
3757 being passed in floating point registers. */
3758 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3759 }
3760
3761 len -= partial_len;
3762 val += partial_len;
3763
3764 /* Compute the the offset into the stack at which we
6d82d43b 3765 will copy the next parameter.
ebafbe83 3766
6d82d43b
AC
3767 In older ABIs, the caller reserved space for
3768 registers that contained arguments. This was loosely
3769 refered to as their "home". Consequently, space is
3770 always allocated. */
ebafbe83 3771
480d3dd2 3772 stack_offset += align_up (partial_len,
13326b4e 3773 mips_stack_argsize (gdbarch));
ebafbe83
MS
3774 }
3775 }
3776 if (mips_debug)
3777 fprintf_unfiltered (gdb_stdlog, "\n");
3778 }
3779
f10683bb 3780 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3781
ebafbe83
MS
3782 /* Return adjusted stack pointer. */
3783 return sp;
3784}
3785
9c8fdbfa
AC
3786static enum return_value_convention
3787mips_o64_return_value (struct gdbarch *gdbarch,
3788 struct type *type, struct regcache *regcache,
47a35522 3789 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3790{
7a076fd2
FF
3791 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3792
3793 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3794 || TYPE_CODE (type) == TYPE_CODE_UNION
3795 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3796 return RETURN_VALUE_STRUCT_CONVENTION;
3797 else if (fp_register_arg_p (TYPE_CODE (type), type))
3798 {
3799 /* A floating-point value. It fits in the least significant
3800 part of FP0. */
3801 if (mips_debug)
3802 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3803 mips_xfer_register (regcache,
3804 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3805 TYPE_LENGTH (type),
3806 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3807 return RETURN_VALUE_REGISTER_CONVENTION;
3808 }
3809 else
3810 {
3811 /* A scalar extract each part but least-significant-byte
3812 justified. */
3813 int offset;
3814 int regnum;
3815 for (offset = 0, regnum = MIPS_V0_REGNUM;
3816 offset < TYPE_LENGTH (type);
3817 offset += mips_stack_argsize (gdbarch), regnum++)
3818 {
3819 int xfer = mips_stack_argsize (gdbarch);
3820 if (offset + xfer > TYPE_LENGTH (type))
3821 xfer = TYPE_LENGTH (type) - offset;
3822 if (mips_debug)
3823 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3824 offset, xfer, regnum);
3825 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3826 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3827 }
3828 return RETURN_VALUE_REGISTER_CONVENTION;
3829 }
6d82d43b
AC
3830}
3831
dd824b04
DJ
3832/* Floating point register management.
3833
3834 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3835 64bit operations, these early MIPS cpus treat fp register pairs
3836 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3837 registers and offer a compatibility mode that emulates the MIPS2 fp
3838 model. When operating in MIPS2 fp compat mode, later cpu's split
3839 double precision floats into two 32-bit chunks and store them in
3840 consecutive fp regs. To display 64-bit floats stored in this
3841 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3842 Throw in user-configurable endianness and you have a real mess.
3843
3844 The way this works is:
3845 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3846 double-precision value will be split across two logical registers.
3847 The lower-numbered logical register will hold the low-order bits,
3848 regardless of the processor's endianness.
3849 - If we are on a 64-bit processor, and we are looking for a
3850 single-precision value, it will be in the low ordered bits
3851 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3852 save slot in memory.
3853 - If we are in 64-bit mode, everything is straightforward.
3854
3855 Note that this code only deals with "live" registers at the top of the
3856 stack. We will attempt to deal with saved registers later, when
3857 the raw/cooked register interface is in place. (We need a general
3858 interface that can deal with dynamic saved register sizes -- fp
3859 regs could be 32 bits wide in one frame and 64 on the frame above
3860 and below). */
3861
67b2c998
DJ
3862static struct type *
3863mips_float_register_type (void)
3864{
361d1df0 3865 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3866 return builtin_type_ieee_single_big;
3867 else
3868 return builtin_type_ieee_single_little;
3869}
3870
3871static struct type *
3872mips_double_register_type (void)
3873{
361d1df0 3874 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3875 return builtin_type_ieee_double_big;
3876 else
3877 return builtin_type_ieee_double_little;
3878}
3879
dd824b04
DJ
3880/* Copy a 32-bit single-precision value from the current frame
3881 into rare_buffer. */
3882
3883static void
e11c53d2 3884mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 3885 gdb_byte *rare_buffer)
dd824b04 3886{
719ec221 3887 int raw_size = register_size (current_gdbarch, regno);
47a35522 3888 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 3889
e11c53d2 3890 if (!frame_register_read (frame, regno, raw_buffer))
8a3fe4f8 3891 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3892 if (raw_size == 8)
3893 {
3894 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 3895 32 bits. */
dd824b04
DJ
3896 int offset;
3897
3898 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3899 offset = 4;
3900 else
3901 offset = 0;
3902
3903 memcpy (rare_buffer, raw_buffer + offset, 4);
3904 }
3905 else
3906 {
3907 memcpy (rare_buffer, raw_buffer, 4);
3908 }
3909}
3910
3911/* Copy a 64-bit double-precision value from the current frame into
3912 rare_buffer. This may include getting half of it from the next
3913 register. */
3914
3915static void
e11c53d2 3916mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 3917 gdb_byte *rare_buffer)
dd824b04 3918{
719ec221 3919 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3920
3921 if (raw_size == 8 && !mips2_fp_compat ())
3922 {
3923 /* We have a 64-bit value for this register, and we should use
6d82d43b 3924 all 64 bits. */
e11c53d2 3925 if (!frame_register_read (frame, regno, rare_buffer))
8a3fe4f8 3926 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3927 }
3928 else
3929 {
56cea623 3930 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 3931 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3932 _("mips_read_fp_register_double: bad access to "
3933 "odd-numbered FP register"));
dd824b04
DJ
3934
3935 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 3936 each register. */
dd824b04
DJ
3937 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3938 {
e11c53d2
AC
3939 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3940 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3941 }
361d1df0 3942 else
dd824b04 3943 {
e11c53d2
AC
3944 mips_read_fp_register_single (frame, regno, rare_buffer);
3945 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3946 }
3947 }
3948}
3949
c906108c 3950static void
e11c53d2
AC
3951mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3952 int regnum)
c5aa993b 3953{ /* do values for FP (float) regs */
47a35522 3954 gdb_byte *raw_buffer;
3903d437
AC
3955 double doub, flt1; /* doubles extracted from raw hex data */
3956 int inv1, inv2;
c5aa993b 3957
47a35522
MK
3958 raw_buffer = alloca (2 * register_size (current_gdbarch,
3959 mips_regnum (current_gdbarch)->fp0));
c906108c 3960
e11c53d2
AC
3961 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3962 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3963 "");
f0ef6b29 3964
719ec221 3965 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 3966 {
f0ef6b29
KB
3967 /* 4-byte registers: Print hex and floating. Also print even
3968 numbered registers as doubles. */
e11c53d2 3969 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 3970 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3971
6d82d43b
AC
3972 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3973 file);
dd824b04 3974
e11c53d2 3975 fprintf_filtered (file, " flt: ");
1adad886 3976 if (inv1)
e11c53d2 3977 fprintf_filtered (file, " <invalid float> ");
1adad886 3978 else
e11c53d2 3979 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3980
f0ef6b29
KB
3981 if (regnum % 2 == 0)
3982 {
e11c53d2 3983 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 3984 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 3985 &inv2);
1adad886 3986
e11c53d2 3987 fprintf_filtered (file, " dbl: ");
f0ef6b29 3988 if (inv2)
e11c53d2 3989 fprintf_filtered (file, "<invalid double>");
f0ef6b29 3990 else
e11c53d2 3991 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 3992 }
c906108c
SS
3993 }
3994 else
dd824b04 3995 {
f0ef6b29 3996 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 3997 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 3998 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 3999
e11c53d2 4000 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4001 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4002
361d1df0 4003
6d82d43b
AC
4004 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4005 file);
f0ef6b29 4006
e11c53d2 4007 fprintf_filtered (file, " flt: ");
1adad886 4008 if (inv1)
e11c53d2 4009 fprintf_filtered (file, "<invalid float>");
1adad886 4010 else
e11c53d2 4011 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4012
e11c53d2 4013 fprintf_filtered (file, " dbl: ");
f0ef6b29 4014 if (inv2)
e11c53d2 4015 fprintf_filtered (file, "<invalid double>");
1adad886 4016 else
e11c53d2 4017 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4018 }
4019}
4020
4021static void
e11c53d2
AC
4022mips_print_register (struct ui_file *file, struct frame_info *frame,
4023 int regnum, int all)
f0ef6b29 4024{
a4b8ebc8 4025 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4026 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4027 int offset;
1adad886 4028
a4b8ebc8 4029 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4030 {
e11c53d2 4031 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4032 return;
4033 }
4034
4035 /* Get the data in raw format. */
e11c53d2 4036 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4037 {
e11c53d2 4038 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4039 return;
c906108c 4040 }
f0ef6b29 4041
e11c53d2 4042 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4043
4044 /* The problem with printing numeric register names (r26, etc.) is that
4045 the user can't use them on input. Probably the best solution is to
4046 fix it so that either the numeric or the funky (a2, etc.) names
4047 are accepted on input. */
4048 if (regnum < MIPS_NUMREGS)
e11c53d2 4049 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4050 else
e11c53d2 4051 fprintf_filtered (file, ": ");
f0ef6b29
KB
4052
4053 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4054 offset =
4055 register_size (current_gdbarch,
4056 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4057 else
4058 offset = 0;
4059
6d82d43b
AC
4060 print_scalar_formatted (raw_buffer + offset,
4061 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4062 file);
c906108c
SS
4063}
4064
f0ef6b29
KB
4065/* Replacement for generic do_registers_info.
4066 Print regs in pretty columns. */
4067
4068static int
e11c53d2
AC
4069print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4070 int regnum)
f0ef6b29 4071{
e11c53d2
AC
4072 fprintf_filtered (file, " ");
4073 mips_print_fp_register (file, frame, regnum);
4074 fprintf_filtered (file, "\n");
f0ef6b29
KB
4075 return regnum + 1;
4076}
4077
4078
c906108c
SS
4079/* Print a row's worth of GP (int) registers, with name labels above */
4080
4081static int
e11c53d2 4082print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4083 int start_regnum)
c906108c 4084{
a4b8ebc8 4085 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4086 /* do values for GP (int) regs */
47a35522 4087 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4088 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4089 int col, byte;
a4b8ebc8 4090 int regnum;
c906108c
SS
4091
4092 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4093 for (col = 0, regnum = start_regnum;
6d82d43b 4094 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4095 {
4096 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4097 continue; /* unused register */
6d82d43b
AC
4098 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4099 TYPE_CODE_FLT)
c5aa993b 4100 break; /* end the row: reached FP register */
d05f6826
DJ
4101 if (col == 0)
4102 fprintf_filtered (file, " ");
6d82d43b 4103 fprintf_filtered (file,
d5ac5a39 4104 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4105 REGISTER_NAME (regnum));
c906108c
SS
4106 col++;
4107 }
d05f6826
DJ
4108
4109 if (col == 0)
4110 return regnum;
4111
a4b8ebc8 4112 /* print the R0 to R31 names */
20e6603c
AC
4113 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4114 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4115 else
4116 fprintf_filtered (file, "\n ");
c906108c 4117
c906108c 4118 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4119 for (col = 0, regnum = start_regnum;
6d82d43b 4120 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4121 {
4122 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4123 continue; /* unused register */
6d82d43b
AC
4124 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4125 TYPE_CODE_FLT)
c5aa993b 4126 break; /* end row: reached FP register */
c906108c 4127 /* OK: get the data in raw format. */
e11c53d2 4128 if (!frame_register_read (frame, regnum, raw_buffer))
8a3fe4f8 4129 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
c906108c 4130 /* pad small registers */
4246e332 4131 for (byte = 0;
d5ac5a39 4132 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4133 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4134 printf_filtered (" ");
4135 /* Now print the register value in hex, endian order. */
d7449b42 4136 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4137 for (byte =
4138 register_size (current_gdbarch,
4139 regnum) - register_size (current_gdbarch, regnum);
4140 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4141 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4142 else
c73e8f27 4143 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4144 byte >= 0; byte--)
47a35522 4145 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4146 fprintf_filtered (file, " ");
c906108c
SS
4147 col++;
4148 }
c5aa993b 4149 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4150 fprintf_filtered (file, "\n");
c906108c
SS
4151
4152 return regnum;
4153}
4154
4155/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4156
bf1f5b4c 4157static void
e11c53d2
AC
4158mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4159 struct frame_info *frame, int regnum, int all)
c906108c 4160{
c5aa993b 4161 if (regnum != -1) /* do one specified register */
c906108c 4162 {
a4b8ebc8 4163 gdb_assert (regnum >= NUM_REGS);
c906108c 4164 if (*(REGISTER_NAME (regnum)) == '\0')
8a3fe4f8 4165 error (_("Not a valid register for the current processor type"));
c906108c 4166
e11c53d2
AC
4167 mips_print_register (file, frame, regnum, 0);
4168 fprintf_filtered (file, "\n");
c906108c 4169 }
c5aa993b
JM
4170 else
4171 /* do all (or most) registers */
c906108c 4172 {
a4b8ebc8
AC
4173 regnum = NUM_REGS;
4174 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4175 {
6d82d43b
AC
4176 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4177 TYPE_CODE_FLT)
e11c53d2
AC
4178 {
4179 if (all) /* true for "INFO ALL-REGISTERS" command */
4180 regnum = print_fp_register_row (file, frame, regnum);
4181 else
4182 regnum += MIPS_NUMREGS; /* skip floating point regs */
4183 }
c906108c 4184 else
e11c53d2 4185 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4186 }
4187 }
4188}
4189
c906108c
SS
4190/* Is this a branch with a delay slot? */
4191
c906108c 4192static int
acdb74a0 4193is_delayed (unsigned long insn)
c906108c
SS
4194{
4195 int i;
4196 for (i = 0; i < NUMOPCODES; ++i)
4197 if (mips_opcodes[i].pinfo != INSN_MACRO
4198 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4199 break;
4200 return (i < NUMOPCODES
4201 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4202 | INSN_COND_BRANCH_DELAY
4203 | INSN_COND_BRANCH_LIKELY)));
4204}
4205
4206int
3352ef37
AC
4207mips_single_step_through_delay (struct gdbarch *gdbarch,
4208 struct frame_info *frame)
c906108c 4209{
3352ef37 4210 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4211 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4212
4213 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4214 if (mips_pc_is_mips16 (pc))
c906108c
SS
4215 return 0;
4216
06648491
MK
4217 if (!breakpoint_here_p (pc + 4))
4218 return 0;
4219
3352ef37
AC
4220 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4221 /* If error reading memory, guess that it is not a delayed
4222 branch. */
c906108c 4223 return 0;
4c7d22cb 4224 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4225}
4226
6d82d43b
AC
4227/* To skip prologues, I use this predicate. Returns either PC itself
4228 if the code at PC does not look like a function prologue; otherwise
4229 returns an address that (if we're lucky) follows the prologue. If
4230 LENIENT, then we must skip everything which is involved in setting
4231 up the frame (it's OK to skip more, just so long as we don't skip
4232 anything which might clobber the registers which are being saved.
4233 We must skip more in the case where part of the prologue is in the
4234 delay slot of a non-prologue instruction). */
4235
4236static CORE_ADDR
4237mips_skip_prologue (CORE_ADDR pc)
4238{
8b622e6a
AC
4239 CORE_ADDR limit_pc;
4240 CORE_ADDR func_addr;
4241
6d82d43b
AC
4242 /* See if we can determine the end of the prologue via the symbol table.
4243 If so, then return either PC, or the PC after the prologue, whichever
4244 is greater. */
8b622e6a
AC
4245 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4246 {
4247 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4248 if (post_prologue_pc != 0)
4249 return max (pc, post_prologue_pc);
4250 }
6d82d43b
AC
4251
4252 /* Can't determine prologue from the symbol table, need to examine
4253 instructions. */
4254
98b4dd94
JB
4255 /* Find an upper limit on the function prologue using the debug
4256 information. If the debug information could not be used to provide
4257 that bound, then use an arbitrary large number as the upper bound. */
4258 limit_pc = skip_prologue_using_sal (pc);
4259 if (limit_pc == 0)
4260 limit_pc = pc + 100; /* Magic. */
4261
0fe7e7c8 4262 if (mips_pc_is_mips16 (pc))
a65bbe44 4263 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4264 else
a65bbe44 4265 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4266}
4267
a5ea2558
AC
4268/* Root of all "set mips "/"show mips " commands. This will eventually be
4269 used for all MIPS-specific commands. */
4270
a5ea2558 4271static void
acdb74a0 4272show_mips_command (char *args, int from_tty)
a5ea2558
AC
4273{
4274 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4275}
4276
a5ea2558 4277static void
acdb74a0 4278set_mips_command (char *args, int from_tty)
a5ea2558 4279{
6d82d43b
AC
4280 printf_unfiltered
4281 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4282 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4283}
4284
c906108c
SS
4285/* Commands to show/set the MIPS FPU type. */
4286
c906108c 4287static void
acdb74a0 4288show_mipsfpu_command (char *args, int from_tty)
c906108c 4289{
c906108c
SS
4290 char *fpu;
4291 switch (MIPS_FPU_TYPE)
4292 {
4293 case MIPS_FPU_SINGLE:
4294 fpu = "single-precision";
4295 break;
4296 case MIPS_FPU_DOUBLE:
4297 fpu = "double-precision";
4298 break;
4299 case MIPS_FPU_NONE:
4300 fpu = "absent (none)";
4301 break;
93d56215 4302 default:
e2e0b3e5 4303 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4304 }
4305 if (mips_fpu_type_auto)
6d82d43b
AC
4306 printf_unfiltered
4307 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4308 fpu);
c906108c 4309 else
6d82d43b
AC
4310 printf_unfiltered
4311 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4312}
4313
4314
c906108c 4315static void
acdb74a0 4316set_mipsfpu_command (char *args, int from_tty)
c906108c 4317{
6d82d43b
AC
4318 printf_unfiltered
4319 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4320 show_mipsfpu_command (args, from_tty);
4321}
4322
c906108c 4323static void
acdb74a0 4324set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4325{
8d5838b5
AC
4326 struct gdbarch_info info;
4327 gdbarch_info_init (&info);
c906108c
SS
4328 mips_fpu_type = MIPS_FPU_SINGLE;
4329 mips_fpu_type_auto = 0;
8d5838b5
AC
4330 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4331 instead of relying on globals. Doing that would let generic code
4332 handle the search for this specific architecture. */
4333 if (!gdbarch_update_p (info))
e2e0b3e5 4334 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4335}
4336
c906108c 4337static void
acdb74a0 4338set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4339{
8d5838b5
AC
4340 struct gdbarch_info info;
4341 gdbarch_info_init (&info);
c906108c
SS
4342 mips_fpu_type = MIPS_FPU_DOUBLE;
4343 mips_fpu_type_auto = 0;
8d5838b5
AC
4344 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4345 instead of relying on globals. Doing that would let generic code
4346 handle the search for this specific architecture. */
4347 if (!gdbarch_update_p (info))
e2e0b3e5 4348 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4349}
4350
c906108c 4351static void
acdb74a0 4352set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4353{
8d5838b5
AC
4354 struct gdbarch_info info;
4355 gdbarch_info_init (&info);
c906108c
SS
4356 mips_fpu_type = MIPS_FPU_NONE;
4357 mips_fpu_type_auto = 0;
8d5838b5
AC
4358 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4359 instead of relying on globals. Doing that would let generic code
4360 handle the search for this specific architecture. */
4361 if (!gdbarch_update_p (info))
e2e0b3e5 4362 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4363}
4364
c906108c 4365static void
acdb74a0 4366set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4367{
4368 mips_fpu_type_auto = 1;
4369}
4370
c906108c 4371/* Attempt to identify the particular processor model by reading the
691c0433
AC
4372 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4373 the relevant processor still exists (it dates back to '94) and
4374 secondly this is not the way to do this. The processor type should
4375 be set by forcing an architecture change. */
c906108c 4376
691c0433
AC
4377void
4378deprecated_mips_set_processor_regs_hack (void)
c906108c 4379{
691c0433 4380 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
4381 CORE_ADDR prid;
4382
a5c9623c 4383 prid = read_register (MIPS_PRID_REGNUM);
c906108c
SS
4384
4385 if ((prid & ~0xf) == 0x700)
691c0433 4386 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4387}
4388
4389/* Just like reinit_frame_cache, but with the right arguments to be
4390 callable as an sfunc. */
4391
4392static void
acdb74a0
AC
4393reinit_frame_cache_sfunc (char *args, int from_tty,
4394 struct cmd_list_element *c)
c906108c
SS
4395{
4396 reinit_frame_cache ();
4397}
4398
a89aa300
AC
4399static int
4400gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4401{
e5ab0dce 4402 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4403
d31431ed
AC
4404 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4405 disassembler needs to be able to locally determine the ISA, and
4406 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4407 work. */
ec4045ea
AC
4408 if (mips_pc_is_mips16 (memaddr))
4409 info->mach = bfd_mach_mips16;
c906108c
SS
4410
4411 /* Round down the instruction address to the appropriate boundary. */
65c11066 4412 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4413
e5ab0dce 4414 /* Set the disassembler options. */
6d82d43b 4415 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4416 {
4417 /* Set up the disassembler info, so that we get the right
6d82d43b 4418 register names from libopcodes. */
e5ab0dce
AC
4419 if (tdep->mips_abi == MIPS_ABI_N32)
4420 info->disassembler_options = "gpr-names=n32";
4421 else
4422 info->disassembler_options = "gpr-names=64";
4423 info->flavour = bfd_target_elf_flavour;
4424 }
4425 else
4426 /* This string is not recognized explicitly by the disassembler,
4427 but it tells the disassembler to not try to guess the ABI from
4428 the bfd elf headers, such that, if the user overrides the ABI
4429 of a program linked as NewABI, the disassembly will follow the
4430 register naming conventions specified by the user. */
4431 info->disassembler_options = "gpr-names=32";
4432
c906108c 4433 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 4434 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4435 return print_insn_big_mips (memaddr, info);
4436 else
4437 return print_insn_little_mips (memaddr, info);
4438}
4439
c906108c
SS
4440/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4441 counter value to determine whether a 16- or 32-bit breakpoint should be
4442 used. It returns a pointer to a string of bytes that encode a breakpoint
4443 instruction, stores the length of the string to *lenptr, and adjusts pc
4444 (if necessary) to point to the actual memory location where the
4445 breakpoint should be inserted. */
4446
47a35522 4447static const gdb_byte *
6d82d43b 4448mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4449{
d7449b42 4450 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 4451 {
0fe7e7c8 4452 if (mips_pc_is_mips16 (*pcptr))
c906108c 4453 {
47a35522 4454 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4455 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4456 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4457 return mips16_big_breakpoint;
4458 }
4459 else
4460 {
aaab4dba
AC
4461 /* The IDT board uses an unusual breakpoint value, and
4462 sometimes gets confused when it sees the usual MIPS
4463 breakpoint instruction. */
47a35522
MK
4464 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4465 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4466 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4467
c5aa993b 4468 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4469
4470 if (strcmp (target_shortname, "mips") == 0)
4471 return idt_big_breakpoint;
4472 else if (strcmp (target_shortname, "ddb") == 0
4473 || strcmp (target_shortname, "pmon") == 0
4474 || strcmp (target_shortname, "lsi") == 0)
4475 return pmon_big_breakpoint;
4476 else
4477 return big_breakpoint;
4478 }
4479 }
4480 else
4481 {
0fe7e7c8 4482 if (mips_pc_is_mips16 (*pcptr))
c906108c 4483 {
47a35522 4484 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4485 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4486 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4487 return mips16_little_breakpoint;
4488 }
4489 else
4490 {
47a35522
MK
4491 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4492 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4493 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4494
c5aa993b 4495 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4496
4497 if (strcmp (target_shortname, "mips") == 0)
4498 return idt_little_breakpoint;
4499 else if (strcmp (target_shortname, "ddb") == 0
4500 || strcmp (target_shortname, "pmon") == 0
4501 || strcmp (target_shortname, "lsi") == 0)
4502 return pmon_little_breakpoint;
4503 else
4504 return little_breakpoint;
4505 }
4506 }
4507}
4508
4509/* If PC is in a mips16 call or return stub, return the address of the target
4510 PC, which is either the callee or the caller. There are several
4511 cases which must be handled:
4512
4513 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4514 target PC is in $31 ($ra).
c906108c 4515 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4516 and the target PC is in $2.
c906108c 4517 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4518 before the jal instruction, this is effectively a call stub
4519 and the the target PC is in $2. Otherwise this is effectively
4520 a return stub and the target PC is in $18.
c906108c
SS
4521
4522 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4523 gory details. */
c906108c 4524
757a7cc6 4525static CORE_ADDR
e7d6a6d2 4526mips_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
4527{
4528 char *name;
4529 CORE_ADDR start_addr;
4530
4531 /* Find the starting address and name of the function containing the PC. */
4532 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4533 return 0;
4534
4535 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4536 target PC is in $31 ($ra). */
4537 if (strcmp (name, "__mips16_ret_sf") == 0
4538 || strcmp (name, "__mips16_ret_df") == 0)
4c7d22cb 4539 return read_signed_register (MIPS_RA_REGNUM);
c906108c
SS
4540
4541 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4542 {
4543 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4544 and the target PC is in $2. */
4545 if (name[19] >= '0' && name[19] <= '9')
6c997a34 4546 return read_signed_register (2);
c906108c
SS
4547
4548 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4549 before the jal instruction, this is effectively a call stub
4550 and the the target PC is in $2. Otherwise this is effectively
4551 a return stub and the target PC is in $18. */
c906108c
SS
4552 else if (name[19] == 's' || name[19] == 'd')
4553 {
4554 if (pc == start_addr)
4555 {
4556 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4557 stub. Such a stub for a function bar might have a name
4558 like __fn_stub_bar, and might look like this:
4559 mfc1 $4,$f13
4560 mfc1 $5,$f12
4561 mfc1 $6,$f15
4562 mfc1 $7,$f14
4563 la $1,bar (becomes a lui/addiu pair)
4564 jr $1
4565 So scan down to the lui/addi and extract the target
4566 address from those two instructions. */
c906108c 4567
6c997a34 4568 CORE_ADDR target_pc = read_signed_register (2);
d37cca3d 4569 ULONGEST inst;
c906108c
SS
4570 int i;
4571
4572 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4573 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4574 0)
c906108c
SS
4575 return target_pc;
4576 if (strncmp (name, "__fn_stub_", 10) != 0
4577 && strcmp (name, "etext") != 0
4578 && strcmp (name, "_etext") != 0)
4579 return target_pc;
4580
4581 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4582 The limit on the search is arbitrarily set to 20
4583 instructions. FIXME. */
95ac2dcf 4584 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4585 {
c5aa993b
JM
4586 inst = mips_fetch_instruction (target_pc);
4587 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4588 pc = (inst << 16) & 0xffff0000; /* high word */
4589 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4590 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4591 }
4592
4593 /* Couldn't find the lui/addui pair, so return stub address. */
4594 return target_pc;
4595 }
4596 else
4597 /* This is the 'return' part of a call stub. The return
4598 address is in $r18. */
6c997a34 4599 return read_signed_register (18);
c906108c
SS
4600 }
4601 }
c5aa993b 4602 return 0; /* not a stub */
c906108c
SS
4603}
4604
a4b8ebc8
AC
4605/* Convert a dbx stab register number (from `r' declaration) to a GDB
4606 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4607
4608static int
4609mips_stab_reg_to_regnum (int num)
4610{
a4b8ebc8 4611 int regnum;
2f38ef89 4612 if (num >= 0 && num < 32)
a4b8ebc8 4613 regnum = num;
2f38ef89 4614 else if (num >= 38 && num < 70)
56cea623 4615 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4616 else if (num == 70)
56cea623 4617 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4618 else if (num == 71)
56cea623 4619 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4620 else
a4b8ebc8
AC
4621 /* This will hopefully (eventually) provoke a warning. Should
4622 we be calling complaint() here? */
4623 return NUM_REGS + NUM_PSEUDO_REGS;
4624 return NUM_REGS + regnum;
88c72b7d
AC
4625}
4626
2f38ef89 4627
a4b8ebc8
AC
4628/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4629 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4630
4631static int
2f38ef89 4632mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4633{
a4b8ebc8 4634 int regnum;
2f38ef89 4635 if (num >= 0 && num < 32)
a4b8ebc8 4636 regnum = num;
2f38ef89 4637 else if (num >= 32 && num < 64)
56cea623 4638 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4639 else if (num == 64)
56cea623 4640 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4641 else if (num == 65)
56cea623 4642 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4643 else
a4b8ebc8
AC
4644 /* This will hopefully (eventually) provoke a warning. Should we
4645 be calling complaint() here? */
4646 return NUM_REGS + NUM_PSEUDO_REGS;
4647 return NUM_REGS + regnum;
4648}
4649
4650static int
4651mips_register_sim_regno (int regnum)
4652{
4653 /* Only makes sense to supply raw registers. */
4654 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4655 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4656 decide if it is valid. Should instead define a standard sim/gdb
4657 register numbering scheme. */
4658 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4659 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4660 return regnum;
4661 else
6d82d43b 4662 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4663}
4664
2f38ef89 4665
fc0c74b1
AC
4666/* Convert an integer into an address. By first converting the value
4667 into a pointer and then extracting it signed, the address is
4668 guarenteed to be correctly sign extended. */
4669
4670static CORE_ADDR
79dd2d24 4671mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4672 struct type *type, const gdb_byte *buf)
fc0c74b1 4673{
47a35522 4674 gdb_byte *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
fc0c74b1
AC
4675 LONGEST val = unpack_long (type, buf);
4676 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4677 return extract_signed_integer (tmp,
4678 TYPE_LENGTH (builtin_type_void_data_ptr));
4679}
4680
caaa3122
DJ
4681static void
4682mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4683{
4684 enum mips_abi *abip = (enum mips_abi *) obj;
4685 const char *name = bfd_get_section_name (abfd, sect);
4686
4687 if (*abip != MIPS_ABI_UNKNOWN)
4688 return;
4689
4690 if (strncmp (name, ".mdebug.", 8) != 0)
4691 return;
4692
4693 if (strcmp (name, ".mdebug.abi32") == 0)
4694 *abip = MIPS_ABI_O32;
4695 else if (strcmp (name, ".mdebug.abiN32") == 0)
4696 *abip = MIPS_ABI_N32;
62a49b2c 4697 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4698 *abip = MIPS_ABI_N64;
caaa3122
DJ
4699 else if (strcmp (name, ".mdebug.abiO64") == 0)
4700 *abip = MIPS_ABI_O64;
4701 else if (strcmp (name, ".mdebug.eabi32") == 0)
4702 *abip = MIPS_ABI_EABI32;
4703 else if (strcmp (name, ".mdebug.eabi64") == 0)
4704 *abip = MIPS_ABI_EABI64;
4705 else
8a3fe4f8 4706 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4707}
4708
2e4ebe70
DJ
4709static enum mips_abi
4710global_mips_abi (void)
4711{
4712 int i;
4713
4714 for (i = 0; mips_abi_strings[i] != NULL; i++)
4715 if (mips_abi_strings[i] == mips_abi_string)
4716 return (enum mips_abi) i;
4717
e2e0b3e5 4718 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4719}
4720
c2d11a7d 4721static struct gdbarch *
6d82d43b 4722mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4723{
c2d11a7d
JM
4724 struct gdbarch *gdbarch;
4725 struct gdbarch_tdep *tdep;
4726 int elf_flags;
2e4ebe70 4727 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 4728 int num_regs;
8d5838b5 4729 enum mips_fpu_type fpu_type;
c2d11a7d 4730
ec03c1ac
AC
4731 /* First of all, extract the elf_flags, if available. */
4732 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4733 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
4734 else if (arches != NULL)
4735 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
4736 else
4737 elf_flags = 0;
4738 if (gdbarch_debug)
4739 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4740 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 4741
102182a9 4742 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
4743 switch ((elf_flags & EF_MIPS_ABI))
4744 {
4745 case E_MIPS_ABI_O32:
ec03c1ac 4746 found_abi = MIPS_ABI_O32;
0dadbba0
AC
4747 break;
4748 case E_MIPS_ABI_O64:
ec03c1ac 4749 found_abi = MIPS_ABI_O64;
0dadbba0
AC
4750 break;
4751 case E_MIPS_ABI_EABI32:
ec03c1ac 4752 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
4753 break;
4754 case E_MIPS_ABI_EABI64:
ec03c1ac 4755 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4756 break;
4757 default:
acdb74a0 4758 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 4759 found_abi = MIPS_ABI_N32;
acdb74a0 4760 else
ec03c1ac 4761 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4762 break;
4763 }
acdb74a0 4764
caaa3122 4765 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
4766 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4767 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 4768
dc305454 4769 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
4770 MIPS architecture (if there is one). */
4771 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4772 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 4773
32a6503c 4774 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 4775 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
4776 && info.bfd_arch_info != NULL
4777 && info.bfd_arch_info->arch == bfd_arch_mips)
4778 {
4779 switch (info.bfd_arch_info->mach)
4780 {
4781 case bfd_mach_mips3900:
ec03c1ac 4782 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
4783 break;
4784 case bfd_mach_mips4100:
4785 case bfd_mach_mips5000:
ec03c1ac 4786 found_abi = MIPS_ABI_EABI64;
bf64bfd6 4787 break;
1d06468c
EZ
4788 case bfd_mach_mips8000:
4789 case bfd_mach_mips10000:
32a6503c
KB
4790 /* On Irix, ELF64 executables use the N64 ABI. The
4791 pseudo-sections which describe the ABI aren't present
4792 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
4793 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4794 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 4795 found_abi = MIPS_ABI_N64;
28d169de 4796 else
ec03c1ac 4797 found_abi = MIPS_ABI_N32;
1d06468c 4798 break;
bf64bfd6
AC
4799 }
4800 }
2e4ebe70 4801
26c53e50
DJ
4802 /* Default 64-bit objects to N64 instead of O32. */
4803 if (found_abi == MIPS_ABI_UNKNOWN
4804 && info.abfd != NULL
4805 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4806 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4807 found_abi = MIPS_ABI_N64;
4808
ec03c1ac
AC
4809 if (gdbarch_debug)
4810 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4811 found_abi);
4812
4813 /* What has the user specified from the command line? */
4814 wanted_abi = global_mips_abi ();
4815 if (gdbarch_debug)
4816 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4817 wanted_abi);
2e4ebe70
DJ
4818
4819 /* Now that we have found what the ABI for this binary would be,
4820 check whether the user is overriding it. */
2e4ebe70
DJ
4821 if (wanted_abi != MIPS_ABI_UNKNOWN)
4822 mips_abi = wanted_abi;
ec03c1ac
AC
4823 else if (found_abi != MIPS_ABI_UNKNOWN)
4824 mips_abi = found_abi;
4825 else
4826 mips_abi = MIPS_ABI_O32;
4827 if (gdbarch_debug)
4828 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4829 mips_abi);
2e4ebe70 4830
ec03c1ac 4831 /* Also used when doing an architecture lookup. */
4b9b3959 4832 if (gdbarch_debug)
ec03c1ac
AC
4833 fprintf_unfiltered (gdb_stdlog,
4834 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4835 mips64_transfers_32bit_regs_p);
0dadbba0 4836
8d5838b5
AC
4837 /* Determine the MIPS FPU type. */
4838 if (!mips_fpu_type_auto)
4839 fpu_type = mips_fpu_type;
4840 else if (info.bfd_arch_info != NULL
4841 && info.bfd_arch_info->arch == bfd_arch_mips)
4842 switch (info.bfd_arch_info->mach)
4843 {
4844 case bfd_mach_mips3900:
4845 case bfd_mach_mips4100:
4846 case bfd_mach_mips4111:
a9d61c86 4847 case bfd_mach_mips4120:
8d5838b5
AC
4848 fpu_type = MIPS_FPU_NONE;
4849 break;
4850 case bfd_mach_mips4650:
4851 fpu_type = MIPS_FPU_SINGLE;
4852 break;
4853 default:
4854 fpu_type = MIPS_FPU_DOUBLE;
4855 break;
4856 }
4857 else if (arches != NULL)
4858 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4859 else
4860 fpu_type = MIPS_FPU_DOUBLE;
4861 if (gdbarch_debug)
4862 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4863 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 4864
c2d11a7d
JM
4865 /* try to find a pre-existing architecture */
4866 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4867 arches != NULL;
4868 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4869 {
4870 /* MIPS needs to be pedantic about which ABI the object is
102182a9 4871 using. */
9103eae0 4872 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4873 continue;
9103eae0 4874 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4875 continue;
719ec221
AC
4876 /* Need to be pedantic about which register virtual size is
4877 used. */
4878 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4879 != mips64_transfers_32bit_regs_p)
4880 continue;
8d5838b5
AC
4881 /* Be pedantic about which FPU is selected. */
4882 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4883 continue;
4be87837 4884 return arches->gdbarch;
c2d11a7d
JM
4885 }
4886
102182a9 4887 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
4888 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4889 gdbarch = gdbarch_alloc (&info, tdep);
4890 tdep->elf_flags = elf_flags;
719ec221 4891 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
4892 tdep->found_abi = found_abi;
4893 tdep->mips_abi = mips_abi;
8d5838b5 4894 tdep->mips_fpu_type = fpu_type;
c2d11a7d 4895
102182a9 4896 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4897 set_gdbarch_short_bit (gdbarch, 16);
4898 set_gdbarch_int_bit (gdbarch, 32);
4899 set_gdbarch_float_bit (gdbarch, 32);
4900 set_gdbarch_double_bit (gdbarch, 64);
4901 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
4902 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4903 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4904 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 4905
6d82d43b 4906 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
4907 mips_elf_make_msymbol_special);
4908
16e109ca 4909 /* Fill in the OS dependant register numbers and names. */
56cea623 4910 {
16e109ca 4911 const char **reg_names;
56cea623
AC
4912 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4913 struct mips_regnum);
56cea623
AC
4914 if (info.osabi == GDB_OSABI_IRIX)
4915 {
4916 regnum->fp0 = 32;
4917 regnum->pc = 64;
4918 regnum->cause = 65;
4919 regnum->badvaddr = 66;
4920 regnum->hi = 67;
4921 regnum->lo = 68;
4922 regnum->fp_control_status = 69;
4923 regnum->fp_implementation_revision = 70;
4924 num_regs = 71;
16e109ca 4925 reg_names = mips_irix_reg_names;
56cea623
AC
4926 }
4927 else
4928 {
4929 regnum->lo = MIPS_EMBED_LO_REGNUM;
4930 regnum->hi = MIPS_EMBED_HI_REGNUM;
4931 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4932 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4933 regnum->pc = MIPS_EMBED_PC_REGNUM;
4934 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4935 regnum->fp_control_status = 70;
4936 regnum->fp_implementation_revision = 71;
4937 num_regs = 90;
16e109ca
AC
4938 if (info.bfd_arch_info != NULL
4939 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4940 reg_names = mips_tx39_reg_names;
4941 else
4942 reg_names = mips_generic_reg_names;
56cea623
AC
4943 }
4944 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4945 replaced by read_pc? */
f10683bb
MH
4946 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4947 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
4948 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4949 set_gdbarch_num_regs (gdbarch, num_regs);
4950 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
4951 set_gdbarch_register_name (gdbarch, mips_register_name);
4952 tdep->mips_processor_reg_names = reg_names;
4953 tdep->regnum = regnum;
56cea623 4954 }
fe29b929 4955
0dadbba0 4956 switch (mips_abi)
c2d11a7d 4957 {
0dadbba0 4958 case MIPS_ABI_O32:
25ab4790 4959 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 4960 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 4961 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4962 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 4963 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4964 set_gdbarch_long_bit (gdbarch, 32);
4965 set_gdbarch_ptr_bit (gdbarch, 32);
4966 set_gdbarch_long_long_bit (gdbarch, 64);
4967 break;
0dadbba0 4968 case MIPS_ABI_O64:
25ab4790 4969 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 4970 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 4971 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 4972 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 4973 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4974 set_gdbarch_long_bit (gdbarch, 32);
4975 set_gdbarch_ptr_bit (gdbarch, 32);
4976 set_gdbarch_long_long_bit (gdbarch, 64);
4977 break;
0dadbba0 4978 case MIPS_ABI_EABI32:
25ab4790 4979 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4980 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4981 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4982 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4983 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4984 set_gdbarch_long_bit (gdbarch, 32);
4985 set_gdbarch_ptr_bit (gdbarch, 32);
4986 set_gdbarch_long_long_bit (gdbarch, 64);
4987 break;
0dadbba0 4988 case MIPS_ABI_EABI64:
25ab4790 4989 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 4990 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 4991 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 4992 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 4993 tdep->default_mask_address_p = 0;
c2d11a7d
JM
4994 set_gdbarch_long_bit (gdbarch, 64);
4995 set_gdbarch_ptr_bit (gdbarch, 64);
4996 set_gdbarch_long_long_bit (gdbarch, 64);
4997 break;
0dadbba0 4998 case MIPS_ABI_N32:
25ab4790 4999 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5000 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5001 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5002 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5003 tdep->default_mask_address_p = 0;
0dadbba0
AC
5004 set_gdbarch_long_bit (gdbarch, 32);
5005 set_gdbarch_ptr_bit (gdbarch, 32);
5006 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43
JB
5007 set_gdbarch_long_double_bit (gdbarch, 128);
5008 set_gdbarch_long_double_format (gdbarch,
5009 &floatformat_n32n64_long_double_big);
28d169de
KB
5010 break;
5011 case MIPS_ABI_N64:
25ab4790 5012 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5013 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5014 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5015 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5016 tdep->default_mask_address_p = 0;
5017 set_gdbarch_long_bit (gdbarch, 64);
5018 set_gdbarch_ptr_bit (gdbarch, 64);
5019 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43
JB
5020 set_gdbarch_long_double_bit (gdbarch, 128);
5021 set_gdbarch_long_double_format (gdbarch,
5022 &floatformat_n32n64_long_double_big);
0dadbba0 5023 break;
c2d11a7d 5024 default:
e2e0b3e5 5025 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5026 }
5027
a5ea2558
AC
5028 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5029 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5030 comment:
5031
5032 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5033 flag in object files because to do so would make it impossible to
102182a9 5034 link with libraries compiled without "-gp32". This is
a5ea2558 5035 unnecessarily restrictive.
361d1df0 5036
a5ea2558
AC
5037 We could solve this problem by adding "-gp32" multilibs to gcc,
5038 but to set this flag before gcc is built with such multilibs will
5039 break too many systems.''
5040
5041 But even more unhelpfully, the default linker output target for
5042 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5043 for 64-bit programs - you need to change the ABI to change this,
102182a9 5044 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5045 this flag to detect 32-bit mode would do the wrong thing given
5046 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5047 as 32-bit programs by default. */
a5ea2558 5048
6c997a34 5049 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5050 set_gdbarch_write_pc (gdbarch, mips_write_pc);
bcb0cc15 5051 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5052
102182a9
MS
5053 /* Add/remove bits from an address. The MIPS needs be careful to
5054 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5055 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5056
58dfe9ff
AC
5057 /* Unwind the frame. */
5058 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
edfae063 5059 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5060
102182a9 5061 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5062 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5063 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5064 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5065 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5066 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5067 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5068 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5069 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5070
c2d11a7d
JM
5071 /* MIPS version of CALL_DUMMY */
5072
9710e734
AC
5073 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5074 replaced by a command, and all targets will default to on stack
5075 (regardless of the stack's execute status). */
5076 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5077 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5078
87783b8b
AC
5079 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5080 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5081 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5082
f7b9e9fc
AC
5083 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5084 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5085
5086 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5087
fc0c74b1
AC
5088 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5089 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5090 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5091
a4b8ebc8 5092 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5093
e11c53d2 5094 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5095
e5ab0dce
AC
5096 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5097
3a3bc038
AC
5098 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5099 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5100 need to all be folded into the target vector. Since they are
5101 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5102 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5103 is sitting on? */
5104 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5105
e7d6a6d2 5106 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5107
3352ef37
AC
5108 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5109
6de918a6
DJ
5110 /* Hook in OS ABI-specific overrides, if they have been registered. */
5111 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5112
5792a79b 5113 /* Unwind the frame. */
eec63939 5114 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5115 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5116 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
eec63939 5117 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5118 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5119 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5120
4b9b3959
AC
5121 return gdbarch;
5122}
5123
2e4ebe70 5124static void
6d82d43b 5125mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5126{
5127 struct gdbarch_info info;
5128
5129 /* Force the architecture to update, and (if it's a MIPS architecture)
5130 mips_gdbarch_init will take care of the rest. */
5131 gdbarch_info_init (&info);
5132 gdbarch_update_p (info);
5133}
5134
ad188201
KB
5135/* Print out which MIPS ABI is in use. */
5136
5137static void
1f8ca57c
JB
5138show_mips_abi (struct ui_file *file,
5139 int from_tty,
5140 struct cmd_list_element *ignored_cmd,
5141 const char *ignored_value)
ad188201
KB
5142{
5143 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5144 fprintf_filtered
5145 (file,
5146 "The MIPS ABI is unknown because the current architecture "
5147 "is not MIPS.\n");
ad188201
KB
5148 else
5149 {
5150 enum mips_abi global_abi = global_mips_abi ();
5151 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5152 const char *actual_abi_str = mips_abi_strings[actual_abi];
5153
5154 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5155 fprintf_filtered
5156 (file,
5157 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5158 actual_abi_str);
ad188201 5159 else if (global_abi == actual_abi)
1f8ca57c
JB
5160 fprintf_filtered
5161 (file,
5162 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5163 actual_abi_str);
ad188201
KB
5164 else
5165 {
5166 /* Probably shouldn't happen... */
1f8ca57c
JB
5167 fprintf_filtered
5168 (file,
5169 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5170 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5171 }
5172 }
5173}
5174
4b9b3959
AC
5175static void
5176mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5177{
5178 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5179 if (tdep != NULL)
c2d11a7d 5180 {
acdb74a0
AC
5181 int ef_mips_arch;
5182 int ef_mips_32bitmode;
5183 /* determine the ISA */
5184 switch (tdep->elf_flags & EF_MIPS_ARCH)
5185 {
5186 case E_MIPS_ARCH_1:
5187 ef_mips_arch = 1;
5188 break;
5189 case E_MIPS_ARCH_2:
5190 ef_mips_arch = 2;
5191 break;
5192 case E_MIPS_ARCH_3:
5193 ef_mips_arch = 3;
5194 break;
5195 case E_MIPS_ARCH_4:
93d56215 5196 ef_mips_arch = 4;
acdb74a0
AC
5197 break;
5198 default:
93d56215 5199 ef_mips_arch = 0;
acdb74a0
AC
5200 break;
5201 }
5202 /* determine the size of a pointer */
5203 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5204 fprintf_unfiltered (file,
5205 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5206 tdep->elf_flags);
4b9b3959 5207 fprintf_unfiltered (file,
acdb74a0
AC
5208 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5209 ef_mips_32bitmode);
5210 fprintf_unfiltered (file,
5211 "mips_dump_tdep: ef_mips_arch = %d\n",
5212 ef_mips_arch);
5213 fprintf_unfiltered (file,
5214 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5215 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5216 fprintf_unfiltered (file,
5217 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5218 mips_mask_address_p (tdep),
4014092b 5219 tdep->default_mask_address_p);
c2d11a7d 5220 }
4b9b3959
AC
5221 fprintf_unfiltered (file,
5222 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5223 MIPS_DEFAULT_FPU_TYPE,
5224 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5225 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5226 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5227 : "???"));
6d82d43b 5228 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5229 fprintf_unfiltered (file,
5230 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5231 MIPS_FPU_TYPE,
5232 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5233 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5234 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5235 : "???"));
4b9b3959 5236 fprintf_unfiltered (file,
480d3dd2 5237 "mips_dump_tdep: mips_stack_argsize() = %d\n",
13326b4e 5238 mips_stack_argsize (current_gdbarch));
c2d11a7d
JM
5239}
5240
6d82d43b 5241extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5242
c906108c 5243void
acdb74a0 5244_initialize_mips_tdep (void)
c906108c
SS
5245{
5246 static struct cmd_list_element *mipsfpulist = NULL;
5247 struct cmd_list_element *c;
5248
6d82d43b 5249 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5250 if (MIPS_ABI_LAST + 1
5251 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5252 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5253
4b9b3959 5254 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5255
8d5f9dcb
DJ
5256 mips_pdr_data = register_objfile_data ();
5257
a5ea2558
AC
5258 /* Add root prefix command for all "set mips"/"show mips" commands */
5259 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5260 _("Various MIPS specific commands."),
a5ea2558
AC
5261 &setmipscmdlist, "set mips ", 0, &setlist);
5262
5263 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5264 _("Various MIPS specific commands."),
a5ea2558
AC
5265 &showmipscmdlist, "show mips ", 0, &showlist);
5266
5267 /* Allow the user to override the saved register size. */
1b295c3d 5268 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
7915a72c
AC
5269 size_enums, &mips_abi_regsize_string, _("\
5270Set size of general purpose registers saved on the stack."), _("\
5271Show size of general purpose registers saved on the stack."), _("\
a5ea2558
AC
5272This option can be set to one of:\n\
5273 32 - Force GDB to treat saved GP registers as 32-bit\n\
5274 64 - Force GDB to treat saved GP registers as 64-bit\n\
5275 auto - Allow GDB to use the target's default setting or autodetect the\n\
7915a72c
AC
5276 saved GP register size from information contained in the\n\
5277 executable (default)."),
2c5b56ce 5278 NULL,
7915a72c 5279 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
2c5b56ce 5280 &setmipscmdlist, &showmipscmdlist);
a5ea2558 5281
d929b26f 5282 /* Allow the user to override the argument stack size. */
1b295c3d 5283 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
7915a72c
AC
5284 size_enums, &mips_stack_argsize_string, _("\
5285Set the amount of stack space reserved for each argument."), _("\
5286Show the amount of stack space reserved for each argument."), _("\
d929b26f
AC
5287This option can be set to one of:\n\
5288 32 - Force GDB to allocate 32-bit chunks per argument\n\
5289 64 - Force GDB to allocate 64-bit chunks per argument\n\
5290 auto - Allow GDB to determine the correct setting from the current\n\
7915a72c 5291 target and executable (default)"),
2c5b56ce 5292 NULL,
7915a72c 5293 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
2c5b56ce 5294 &setmipscmdlist, &showmipscmdlist);
d929b26f 5295
2e4ebe70 5296 /* Allow the user to override the ABI. */
7ab04401
AC
5297 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5298 &mips_abi_string, _("\
5299Set the MIPS ABI used by this program."), _("\
5300Show the MIPS ABI used by this program."), _("\
5301This option can be set to one of:\n\
5302 auto - the default ABI associated with the current binary\n\
5303 o32\n\
5304 o64\n\
5305 n32\n\
5306 n64\n\
5307 eabi32\n\
5308 eabi64"),
5309 mips_abi_update,
5310 show_mips_abi,
5311 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5312
c906108c
SS
5313 /* Let the user turn off floating point and set the fence post for
5314 heuristic_proc_start. */
5315
5316 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5317 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5318 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5319 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5320 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5321 &mipsfpulist);
5322 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5323 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5324 &mipsfpulist);
5325 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5326 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5327 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5328 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5329 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5330 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5331 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5332 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5333 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5334 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5335 &mipsfpulist);
5336 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5337 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5338 &showlist);
5339
c906108c
SS
5340 /* We really would like to have both "0" and "unlimited" work, but
5341 command.c doesn't deal with that. So make it a var_zinteger
5342 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5343 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5344 &heuristic_fence_post, _("\
5345Set the distance searched for the start of a function."), _("\
5346Show the distance searched for the start of a function."), _("\
c906108c
SS
5347If you are debugging a stripped executable, GDB needs to search through the\n\
5348program for the start of a function. This command sets the distance of the\n\
7915a72c 5349search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5350 reinit_frame_cache_sfunc,
7915a72c 5351 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5352 &setlist, &showlist);
c906108c
SS
5353
5354 /* Allow the user to control whether the upper bits of 64-bit
5355 addresses should be zeroed. */
7915a72c
AC
5356 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5357 &mask_address_var, _("\
5358Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5359Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5360Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5361allow GDB to determine the correct value."),
08546159
AC
5362 NULL, show_mask_address,
5363 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5364
5365 /* Allow the user to control the size of 32 bit registers within the
5366 raw remote packet. */
b3f42336 5367 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5368 &mips64_transfers_32bit_regs_p, _("\
5369Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5370 _("\
5371Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5372 _("\
719ec221
AC
5373Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5374that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 537564 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5376 set_mips64_transfers_32bit_regs,
7915a72c 5377 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5378 &setlist, &showlist);
9ace0497
AC
5379
5380 /* Debug this files internals. */
6bcadd06 5381 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5382 &mips_debug, _("\
5383Set mips debugging."), _("\
5384Show mips debugging."), _("\
5385When non-zero, mips specific debugging is enabled."),
2c5b56ce 5386 NULL,
7915a72c 5387 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5388 &setdebuglist, &showdebuglist);
c906108c 5389}
This page took 1.47688 seconds and 4 git commands to generate.