class readable_regcache and pass readable_regcache to gdbarch pseudo_register_read...
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
e2882c85 3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
bf64bfd6 4
c906108c
SS
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "language.h"
30#include "gdbcore.h"
31#include "symfile.h"
32#include "objfiles.h"
33#include "gdbtypes.h"
34#include "target.h"
28d069e6 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
70f80edf 37#include "osabi.h"
d1973055 38#include "mips-tdep.h"
fe898f56 39#include "block.h"
a4b8ebc8 40#include "reggroups.h"
c906108c 41#include "opcode/mips.h"
c2d11a7d
JM
42#include "elf/mips.h"
43#include "elf-bfd.h"
2475bac3 44#include "symcat.h"
a4b8ebc8 45#include "sim-regno.h"
a89aa300 46#include "dis-asm.h"
e47ad6c0 47#include "disasm.h"
edfae063
AC
48#include "frame-unwind.h"
49#include "frame-base.h"
50#include "trad-frame.h"
7d9b040b 51#include "infcall.h"
29709017
DJ
52#include "remote.h"
53#include "target-descriptions.h"
2bd0c3d7 54#include "dwarf2-frame.h"
f8b73d13 55#include "user-regs.h"
79a45b7d 56#include "valprint.h"
175ff332 57#include "ax.h"
f69fdf9b 58#include "target-float.h"
325fac50 59#include <algorithm>
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
ab50adb6
MR
65static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
4cc0665f 77
1bab7383
YQ
78static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
24e05951 81/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
82/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83#define ST0_FR (1 << 26)
84
b0069a17
AC
85/* The sizes of floating point registers. */
86
87enum
88{
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91};
92
1a69e1e4
DJ
93enum
94{
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97};
0dadbba0 98
2e4ebe70
DJ
99static const char *mips_abi_string;
100
40478521 101static const char *const mips_abi_strings[] = {
2e4ebe70
DJ
102 "auto",
103 "n32",
104 "o32",
28d169de 105 "n64",
2e4ebe70
DJ
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110};
111
44f1c4d7
YQ
112/* Enum describing the different kinds of breakpoints. */
113
114enum mips_breakpoint_kind
115{
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127};
128
4cc0665f
MR
129/* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132static const char mips_compression_mips16[] = "mips16";
133static const char mips_compression_micromips[] = "micromips";
134static const char *const mips_compression_strings[] =
135{
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139};
140
141static const char *mips_compression_string = mips_compression_mips16;
142
f8b73d13
DJ
143/* The standard register names, and all the valid aliases for them. */
144struct register_alias
145{
146 const char *name;
147 int regnum;
148};
149
150/* Aliases for o32 and most other ABIs. */
151const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156};
157
158/* Aliases for n32 and n64. */
159const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164};
165
166/* Aliases for ABI-independent registers. */
167const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170#define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175#undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190};
191
865093a3
AR
192const struct register_alias mips_numeric_register_aliases[] = {
193#define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198#undef R
199};
200
c906108c
SS
201#ifndef MIPS_DEFAULT_FPU_TYPE
202#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203#endif
204static int mips_fpu_type_auto = 1;
205static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 206
ccce17b0 207static unsigned int mips_debug = 0;
7a292a7a 208
29709017
DJ
209/* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211#define PROPERTY_GP32 "internal: transfers-32bit-registers"
212#define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
4eb0ad19
DJ
214struct target_desc *mips_tdesc_gp32;
215struct target_desc *mips_tdesc_gp64;
216
56cea623
AC
217const struct mips_regnum *
218mips_regnum (struct gdbarch *gdbarch)
219{
220 return gdbarch_tdep (gdbarch)->regnum;
221}
222
223static int
224mips_fpa0_regnum (struct gdbarch *gdbarch)
225{
226 return mips_regnum (gdbarch)->fp0 + 12;
227}
228
004159a2
MR
229/* Return 1 if REGNUM refers to a floating-point general register, raw
230 or cooked. Otherwise return 0. */
231
232static int
233mips_float_register_p (struct gdbarch *gdbarch, int regnum)
234{
235 int rawnum = regnum % gdbarch_num_regs (gdbarch);
236
237 return (rawnum >= mips_regnum (gdbarch)->fp0
238 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
239}
240
74ed0bb4
MD
241#define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
242 == MIPS_ABI_EABI32 \
243 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 244
025bb325
MS
245#define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
246 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 247
025bb325
MS
248#define MIPS_LAST_ARG_REGNUM(gdbarch) \
249 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
c2d11a7d 250
74ed0bb4 251#define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
c2d11a7d 252
d1973055
KB
253/* Return the MIPS ABI associated with GDBARCH. */
254enum mips_abi
255mips_abi (struct gdbarch *gdbarch)
256{
257 return gdbarch_tdep (gdbarch)->mips_abi;
258}
259
4246e332 260int
1b13c4f6 261mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 262{
29709017
DJ
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* If we know how big the registers are, use that size. */
266 if (tdep->register_size_valid_p)
267 return tdep->register_size;
268
269 /* Fall back to the previous behavior. */
4246e332
AC
270 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
271 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
272}
273
b3464d03
PA
274/* Max saved register size. */
275#define MAX_MIPS_ABI_REGSIZE 8
276
025bb325 277/* Return the currently configured (or set) saved register size. */
480d3dd2 278
e6bc2e8a 279unsigned int
13326b4e 280mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 281{
1a69e1e4
DJ
282 switch (mips_abi (gdbarch))
283 {
284 case MIPS_ABI_EABI32:
285 case MIPS_ABI_O32:
286 return 4;
287 case MIPS_ABI_N32:
288 case MIPS_ABI_N64:
289 case MIPS_ABI_O64:
290 case MIPS_ABI_EABI64:
291 return 8;
292 case MIPS_ABI_UNKNOWN:
293 case MIPS_ABI_LAST:
294 default:
295 internal_error (__FILE__, __LINE__, _("bad switch"));
296 }
d929b26f
AC
297}
298
4cc0665f
MR
299/* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
300 are some functions to handle addresses associated with compressed
301 code including but not limited to testing, setting, or clearing
302 bit 0 of such addresses. */
742c84f6 303
4cc0665f
MR
304/* Return one iff compressed code is the MIPS16 instruction set. */
305
306static int
307is_mips16_isa (struct gdbarch *gdbarch)
308{
309 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
310}
311
312/* Return one iff compressed code is the microMIPS instruction set. */
313
314static int
315is_micromips_isa (struct gdbarch *gdbarch)
316{
317 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
318}
319
320/* Return one iff ADDR denotes compressed code. */
321
322static int
323is_compact_addr (CORE_ADDR addr)
742c84f6
MR
324{
325 return ((addr) & 1);
326}
327
4cc0665f
MR
328/* Return one iff ADDR denotes standard ISA code. */
329
330static int
331is_mips_addr (CORE_ADDR addr)
332{
333 return !is_compact_addr (addr);
334}
335
336/* Return one iff ADDR denotes MIPS16 code. */
337
338static int
339is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
340{
341 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
342}
343
344/* Return one iff ADDR denotes microMIPS code. */
345
346static int
347is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
348{
349 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
350}
351
352/* Strip the ISA (compression) bit off from ADDR. */
353
742c84f6 354static CORE_ADDR
4cc0665f 355unmake_compact_addr (CORE_ADDR addr)
742c84f6
MR
356{
357 return ((addr) & ~(CORE_ADDR) 1);
358}
359
4cc0665f
MR
360/* Add the ISA (compression) bit to ADDR. */
361
742c84f6 362static CORE_ADDR
4cc0665f 363make_compact_addr (CORE_ADDR addr)
742c84f6
MR
364{
365 return ((addr) | (CORE_ADDR) 1);
366}
367
3e29f34a
MR
368/* Extern version of unmake_compact_addr; we use a separate function
369 so that unmake_compact_addr can be inlined throughout this file. */
370
371CORE_ADDR
372mips_unmake_compact_addr (CORE_ADDR addr)
373{
374 return unmake_compact_addr (addr);
375}
376
71b8ef93 377/* Functions for setting and testing a bit in a minimal symbol that
4cc0665f
MR
378 marks it as MIPS16 or microMIPS function. The MSB of the minimal
379 symbol's "info" field is used for this purpose.
5a89d8aa 380
4cc0665f
MR
381 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
382 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
383 one of the "special" bits in a minimal symbol to mark it accordingly.
384 The test checks an ELF-private flag that is valid for true function
1bbce132
MR
385 symbols only; for synthetic symbols such as for PLT stubs that have
386 no ELF-private part at all the MIPS BFD backend arranges for this
387 information to be carried in the asymbol's udata field instead.
5a89d8aa 388
4cc0665f
MR
389 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
390 in a minimal symbol. */
5a89d8aa 391
5a89d8aa 392static void
6d82d43b
AC
393mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
394{
4cc0665f 395 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
1bbce132 396 unsigned char st_other;
4cc0665f 397
1bbce132
MR
398 if ((sym->flags & BSF_SYNTHETIC) == 0)
399 st_other = elfsym->internal_elf_sym.st_other;
400 else if ((sym->flags & BSF_FUNCTION) != 0)
401 st_other = sym->udata.i;
402 else
4cc0665f
MR
403 return;
404
1bbce132 405 if (ELF_ST_IS_MICROMIPS (st_other))
3e29f34a 406 {
f161c171 407 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
3e29f34a
MR
408 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
409 }
1bbce132 410 else if (ELF_ST_IS_MIPS16 (st_other))
3e29f34a 411 {
f161c171 412 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
3e29f34a
MR
413 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
414 }
4cc0665f
MR
415}
416
417/* Return one iff MSYM refers to standard ISA code. */
418
419static int
420msymbol_is_mips (struct minimal_symbol *msym)
421{
f161c171
MR
422 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
423 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
5a89d8aa
MS
424}
425
4cc0665f
MR
426/* Return one iff MSYM refers to MIPS16 code. */
427
71b8ef93 428static int
4cc0665f 429msymbol_is_mips16 (struct minimal_symbol *msym)
71b8ef93 430{
f161c171 431 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
71b8ef93
MS
432}
433
4cc0665f
MR
434/* Return one iff MSYM refers to microMIPS code. */
435
436static int
437msymbol_is_micromips (struct minimal_symbol *msym)
438{
f161c171 439 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
4cc0665f
MR
440}
441
3e29f34a
MR
442/* Set the ISA bit in the main symbol too, complementing the corresponding
443 minimal symbol setting and reflecting the run-time value of the symbol.
444 The need for comes from the ISA bit having been cleared as code in
445 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
446 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
447 of symbols referring to compressed code different in GDB to the values
448 used by actual code. That in turn makes them evaluate incorrectly in
449 expressions, producing results different to what the same expressions
450 yield when compiled into the program being debugged. */
451
452static void
453mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
454{
455 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
456 {
457 /* We are in symbol reading so it is OK to cast away constness. */
458 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
459 CORE_ADDR compact_block_start;
460 struct bound_minimal_symbol msym;
461
462 compact_block_start = BLOCK_START (block) | 1;
463 msym = lookup_minimal_symbol_by_pc (compact_block_start);
464 if (msym.minsym && !msymbol_is_mips (msym.minsym))
465 {
466 BLOCK_START (block) = compact_block_start;
467 }
468 }
469}
470
88658117
AC
471/* XFER a value from the big/little/left end of the register.
472 Depending on the size of the value it might occupy the entire
473 register or just part of it. Make an allowance for this, aligning
474 things accordingly. */
475
476static void
ba32f989
DJ
477mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
478 int reg_num, int length,
870cd05e
MK
479 enum bfd_endian endian, gdb_byte *in,
480 const gdb_byte *out, int buf_offset)
88658117 481{
88658117 482 int reg_offset = 0;
72a155b4
UW
483
484 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
485 /* Need to transfer the left or right part of the register, based on
486 the targets byte order. */
88658117
AC
487 switch (endian)
488 {
489 case BFD_ENDIAN_BIG:
72a155b4 490 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
491 break;
492 case BFD_ENDIAN_LITTLE:
493 reg_offset = 0;
494 break;
6d82d43b 495 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
496 reg_offset = 0;
497 break;
498 default:
e2e0b3e5 499 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
500 }
501 if (mips_debug)
cb1d2653
AC
502 fprintf_unfiltered (gdb_stderr,
503 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
504 reg_num, reg_offset, buf_offset, length);
88658117
AC
505 if (mips_debug && out != NULL)
506 {
507 int i;
cb1d2653 508 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 509 for (i = 0; i < length; i++)
cb1d2653 510 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
511 }
512 if (in != NULL)
6d82d43b
AC
513 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
514 in + buf_offset);
88658117 515 if (out != NULL)
6d82d43b
AC
516 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
517 out + buf_offset);
88658117
AC
518 if (mips_debug && in != NULL)
519 {
520 int i;
cb1d2653 521 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 522 for (i = 0; i < length; i++)
cb1d2653 523 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
524 }
525 if (mips_debug)
526 fprintf_unfiltered (gdb_stdlog, "\n");
527}
528
dd824b04
DJ
529/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
530 compatiblity mode. A return value of 1 means that we have
531 physical 64-bit registers, but should treat them as 32-bit registers. */
532
533static int
9c9acae0 534mips2_fp_compat (struct frame_info *frame)
dd824b04 535{
72a155b4 536 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
537 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
538 meaningful. */
72a155b4 539 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
540 return 0;
541
542#if 0
543 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
544 in all the places we deal with FP registers. PR gdb/413. */
545 /* Otherwise check the FR bit in the status register - it controls
546 the FP compatiblity mode. If it is clear we are in compatibility
547 mode. */
9c9acae0 548 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
549 return 1;
550#endif
361d1df0 551
dd824b04
DJ
552 return 0;
553}
554
7a292a7a 555#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 556
74ed0bb4 557static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
c906108c 558
025bb325 559/* The list of available "set mips " and "show mips " commands. */
acdb74a0
AC
560
561static struct cmd_list_element *setmipscmdlist = NULL;
562static struct cmd_list_element *showmipscmdlist = NULL;
563
5e2e9765
KB
564/* Integer registers 0 thru 31 are handled explicitly by
565 mips_register_name(). Processor specific registers 32 and above
8a9fc081 566 are listed in the following tables. */
691c0433 567
6d82d43b
AC
568enum
569{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
570
571/* Generic MIPS. */
572
573static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
574 "sr", "lo", "hi", "bad", "cause", "pc",
575 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
576 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
577 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
578 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
1faeff08 579 "fsr", "fir",
691c0433
AC
580};
581
691c0433
AC
582/* Names of tx39 registers. */
583
584static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
585 "sr", "lo", "hi", "bad", "cause", "pc",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "", "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "", "",
591 "", "", "", "", "", "", "", "",
1faeff08 592 "", "", "config", "cache", "debug", "depc", "epc",
691c0433
AC
593};
594
44099a67 595/* Names of registers with Linux kernels. */
1faeff08
MR
596static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
597 "sr", "lo", "hi", "bad", "cause", "pc",
598 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
599 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
600 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
601 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
602 "fsr", "fir"
603};
604
cce74817 605
5e2e9765 606/* Return the name of the register corresponding to REGNO. */
5a89d8aa 607static const char *
d93859e2 608mips_register_name (struct gdbarch *gdbarch, int regno)
cce74817 609{
d93859e2 610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5e2e9765 611 /* GPR names for all ABIs other than n32/n64. */
a121b7c1 612 static const char *mips_gpr_names[] = {
6d82d43b
AC
613 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
614 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
615 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
616 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
617 };
618
619 /* GPR names for n32 and n64 ABIs. */
a121b7c1 620 static const char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
621 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
622 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
623 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
624 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
625 };
626
d93859e2 627 enum mips_abi abi = mips_abi (gdbarch);
5e2e9765 628
f57d151a 629 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
6229fbea
HZ
630 but then don't make the raw register names visible. This (upper)
631 range of user visible register numbers are the pseudo-registers.
632
633 This approach was adopted accommodate the following scenario:
634 It is possible to debug a 64-bit device using a 32-bit
635 programming model. In such instances, the raw registers are
636 configured to be 64-bits wide, while the pseudo registers are
637 configured to be 32-bits wide. The registers that the user
638 sees - the pseudo registers - match the users expectations
639 given the programming model being used. */
d93859e2
UW
640 int rawnum = regno % gdbarch_num_regs (gdbarch);
641 if (regno < gdbarch_num_regs (gdbarch))
a4b8ebc8
AC
642 return "";
643
5e2e9765
KB
644 /* The MIPS integer registers are always mapped from 0 to 31. The
645 names of the registers (which reflects the conventions regarding
646 register use) vary depending on the ABI. */
a4b8ebc8 647 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
648 {
649 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 650 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 651 else
a4b8ebc8 652 return mips_gpr_names[rawnum];
5e2e9765 653 }
d93859e2
UW
654 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
655 return tdesc_register_name (gdbarch, rawnum);
656 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
691c0433
AC
657 {
658 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
1faeff08
MR
659 if (tdep->mips_processor_reg_names[rawnum - 32])
660 return tdep->mips_processor_reg_names[rawnum - 32];
661 return "";
691c0433 662 }
5e2e9765
KB
663 else
664 internal_error (__FILE__, __LINE__,
e2e0b3e5 665 _("mips_register_name: bad register number %d"), rawnum);
cce74817 666}
5e2e9765 667
a4b8ebc8 668/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 669
a4b8ebc8
AC
670static int
671mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
672 struct reggroup *reggroup)
673{
674 int vector_p;
675 int float_p;
676 int raw_p;
72a155b4
UW
677 int rawnum = regnum % gdbarch_num_regs (gdbarch);
678 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
679 if (reggroup == all_reggroup)
680 return pseudo;
681 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
682 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
683 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
684 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
685 raw_p = rawnum < gdbarch_num_regs (gdbarch);
686 if (gdbarch_register_name (gdbarch, regnum) == NULL
687 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
688 return 0;
689 if (reggroup == float_reggroup)
690 return float_p && pseudo;
691 if (reggroup == vector_reggroup)
692 return vector_p && pseudo;
693 if (reggroup == general_reggroup)
694 return (!vector_p && !float_p) && pseudo;
695 /* Save the pseudo registers. Need to make certain that any code
696 extracting register values from a saved register cache also uses
697 pseudo registers. */
698 if (reggroup == save_reggroup)
699 return raw_p && pseudo;
700 /* Restore the same pseudo register. */
701 if (reggroup == restore_reggroup)
702 return raw_p && pseudo;
6d82d43b 703 return 0;
a4b8ebc8
AC
704}
705
f8b73d13
DJ
706/* Return the groups that a MIPS register can be categorised into.
707 This version is only used if we have a target description which
708 describes real registers (and their groups). */
709
710static int
711mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
712 struct reggroup *reggroup)
713{
714 int rawnum = regnum % gdbarch_num_regs (gdbarch);
715 int pseudo = regnum / gdbarch_num_regs (gdbarch);
716 int ret;
717
718 /* Only save, restore, and display the pseudo registers. Need to
719 make certain that any code extracting register values from a
720 saved register cache also uses pseudo registers.
721
722 Note: saving and restoring the pseudo registers is slightly
723 strange; if we have 64 bits, we should save and restore all
724 64 bits. But this is hard and has little benefit. */
725 if (!pseudo)
726 return 0;
727
728 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
729 if (ret != -1)
730 return ret;
731
732 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
733}
734
a4b8ebc8 735/* Map the symbol table registers which live in the range [1 *
f57d151a 736 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 737 registers. Take care of alignment and size problems. */
c5aa993b 738
05d1431c 739static enum register_status
849d0ba8 740mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
47a35522 741 int cookednum, gdb_byte *buf)
a4b8ebc8 742{
72a155b4
UW
743 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
744 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
745 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 746 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
03f50fc8 747 return regcache->raw_read (rawnum, buf);
6d82d43b
AC
748 else if (register_size (gdbarch, rawnum) >
749 register_size (gdbarch, cookednum))
47ebcfbe 750 {
8bdf35dc 751 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
03f50fc8 752 return regcache->raw_read_part (rawnum, 0, 4, buf);
47ebcfbe 753 else
8bdf35dc
KB
754 {
755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
756 LONGEST regval;
05d1431c
PA
757 enum register_status status;
758
03f50fc8 759 status = regcache->raw_read (rawnum, &regval);
05d1431c
PA
760 if (status == REG_VALID)
761 store_signed_integer (buf, 4, byte_order, regval);
762 return status;
8bdf35dc 763 }
47ebcfbe
AC
764 }
765 else
e2e0b3e5 766 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
767}
768
769static void
6d82d43b
AC
770mips_pseudo_register_write (struct gdbarch *gdbarch,
771 struct regcache *regcache, int cookednum,
47a35522 772 const gdb_byte *buf)
a4b8ebc8 773{
72a155b4
UW
774 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
775 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
776 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 777 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 778 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
779 else if (register_size (gdbarch, rawnum) >
780 register_size (gdbarch, cookednum))
47ebcfbe 781 {
8bdf35dc 782 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
47ebcfbe
AC
783 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
784 else
8bdf35dc
KB
785 {
786 /* Sign extend the shortened version of the register prior
787 to placing it in the raw register. This is required for
788 some mips64 parts in order to avoid unpredictable behavior. */
789 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
790 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
791 regcache_raw_write_signed (regcache, rawnum, regval);
792 }
47ebcfbe
AC
793 }
794 else
e2e0b3e5 795 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 796}
c5aa993b 797
175ff332
HZ
798static int
799mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
800 struct agent_expr *ax, int reg)
801{
802 int rawnum = reg % gdbarch_num_regs (gdbarch);
803 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
804 && reg < 2 * gdbarch_num_regs (gdbarch));
805
806 ax_reg_mask (ax, rawnum);
807
808 return 0;
809}
810
811static int
812mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
813 struct agent_expr *ax, int reg)
814{
815 int rawnum = reg % gdbarch_num_regs (gdbarch);
816 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
817 && reg < 2 * gdbarch_num_regs (gdbarch));
818 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
819 {
820 ax_reg (ax, rawnum);
821
822 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
823 {
824 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
825 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
826 {
827 ax_const_l (ax, 32);
828 ax_simple (ax, aop_lsh);
829 }
830 ax_const_l (ax, 32);
831 ax_simple (ax, aop_rsh_signed);
832 }
833 }
834 else
835 internal_error (__FILE__, __LINE__, _("bad register size"));
836
837 return 0;
838}
839
4cc0665f 840/* Table to translate 3-bit register field to actual register number. */
d467df4e 841static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
842
843/* Heuristic_proc_start may hunt through the text section for a long
844 time across a 2400 baud serial line. Allows the user to limit this
845 search. */
846
44096aee 847static int heuristic_fence_post = 0;
c906108c 848
46cd78fb 849/* Number of bytes of storage in the actual machine representation for
719ec221
AC
850 register N. NOTE: This defines the pseudo register type so need to
851 rebuild the architecture vector. */
43e526b9
JM
852
853static int mips64_transfers_32bit_regs_p = 0;
854
719ec221 855static void
eb4c3f4a 856set_mips64_transfers_32bit_regs (const char *args, int from_tty,
719ec221 857 struct cmd_list_element *c)
43e526b9 858{
719ec221
AC
859 struct gdbarch_info info;
860 gdbarch_info_init (&info);
861 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
862 instead of relying on globals. Doing that would let generic code
863 handle the search for this specific architecture. */
864 if (!gdbarch_update_p (info))
a4b8ebc8 865 {
719ec221 866 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 867 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 868 }
a4b8ebc8
AC
869}
870
47ebcfbe 871/* Convert to/from a register and the corresponding memory value. */
43e526b9 872
ee51a8c7
KB
873/* This predicate tests for the case of an 8 byte floating point
874 value that is being transferred to or from a pair of floating point
875 registers each of which are (or are considered to be) only 4 bytes
876 wide. */
ff2e87ac 877static int
ee51a8c7
KB
878mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
879 struct type *type)
ff2e87ac 880{
0abe36f5
MD
881 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
882 && register_size (gdbarch, regnum) == 4
004159a2 883 && mips_float_register_p (gdbarch, regnum)
6d82d43b 884 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
885}
886
ee51a8c7
KB
887/* This predicate tests for the case of a value of less than 8
888 bytes in width that is being transfered to or from an 8 byte
889 general purpose register. */
890static int
891mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
892 struct type *type)
893{
894 int num_regs = gdbarch_num_regs (gdbarch);
895
896 return (register_size (gdbarch, regnum) == 8
897 && regnum % num_regs > 0 && regnum % num_regs < 32
898 && TYPE_LENGTH (type) < 8);
899}
900
901static int
025bb325
MS
902mips_convert_register_p (struct gdbarch *gdbarch,
903 int regnum, struct type *type)
ee51a8c7 904{
eaa05d59
MR
905 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
906 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
ee51a8c7
KB
907}
908
8dccd430 909static int
ff2e87ac 910mips_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
911 struct type *type, gdb_byte *to,
912 int *optimizedp, int *unavailablep)
102182a9 913{
ee51a8c7
KB
914 struct gdbarch *gdbarch = get_frame_arch (frame);
915
916 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
917 {
918 get_frame_register (frame, regnum + 0, to + 4);
919 get_frame_register (frame, regnum + 1, to + 0);
8dccd430
PA
920
921 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
922 optimizedp, unavailablep))
923 return 0;
924
925 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
926 optimizedp, unavailablep))
927 return 0;
928 *optimizedp = *unavailablep = 0;
929 return 1;
ee51a8c7
KB
930 }
931 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
932 {
933 int len = TYPE_LENGTH (type);
8dccd430
PA
934 CORE_ADDR offset;
935
936 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
937 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
938 optimizedp, unavailablep))
939 return 0;
940
941 *optimizedp = *unavailablep = 0;
942 return 1;
ee51a8c7
KB
943 }
944 else
945 {
946 internal_error (__FILE__, __LINE__,
947 _("mips_register_to_value: unrecognized case"));
948 }
102182a9
MS
949}
950
42c466d7 951static void
ff2e87ac 952mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 953 struct type *type, const gdb_byte *from)
102182a9 954{
ee51a8c7
KB
955 struct gdbarch *gdbarch = get_frame_arch (frame);
956
957 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
958 {
959 put_frame_register (frame, regnum + 0, from + 4);
960 put_frame_register (frame, regnum + 1, from + 0);
961 }
962 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
963 {
964 gdb_byte fill[8];
965 int len = TYPE_LENGTH (type);
966
967 /* Sign extend values, irrespective of type, that are stored to
968 a 64-bit general purpose register. (32-bit unsigned values
969 are stored as signed quantities within a 64-bit register.
970 When performing an operation, in compiled code, that combines
971 a 32-bit unsigned value with a signed 64-bit value, a type
972 conversion is first performed that zeroes out the high 32 bits.) */
973 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
974 {
975 if (from[0] & 0x80)
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
977 else
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
979 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
980 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
981 }
982 else
983 {
984 if (from[len-1] & 0x80)
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
986 else
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
988 put_frame_register_bytes (frame, regnum, 0, len, from);
989 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
990 }
991 }
992 else
993 {
994 internal_error (__FILE__, __LINE__,
995 _("mips_value_to_register: unrecognized case"));
996 }
102182a9
MS
997}
998
a4b8ebc8
AC
999/* Return the GDB type object for the "standard" data type of data in
1000 register REG. */
78fde5f8
KB
1001
1002static struct type *
a4b8ebc8
AC
1003mips_register_type (struct gdbarch *gdbarch, int regnum)
1004{
72a155b4 1005 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
004159a2 1006 if (mips_float_register_p (gdbarch, regnum))
a6425924 1007 {
5ef80fb0 1008 /* The floating-point registers raw, or cooked, always match
1b13c4f6 1009 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4 1010 if (mips_isa_regsize (gdbarch) == 4)
27067745 1011 return builtin_type (gdbarch)->builtin_float;
8da61cc4 1012 else
27067745 1013 return builtin_type (gdbarch)->builtin_double;
a6425924 1014 }
72a155b4 1015 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
1016 {
1017 /* The raw or ISA registers. These are all sized according to
1018 the ISA regsize. */
1019 if (mips_isa_regsize (gdbarch) == 4)
df4df182 1020 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39 1021 else
df4df182 1022 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1023 }
78fde5f8 1024 else
d5ac5a39 1025 {
1faeff08
MR
1026 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1027
d5ac5a39
AC
1028 /* The cooked or ABI registers. These are sized according to
1029 the ABI (with a few complications). */
1faeff08
MR
1030 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1031 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1032 return builtin_type (gdbarch)->builtin_int32;
de4bfa86 1033 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1faeff08
MR
1034 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1035 && rawnum <= MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
1036 /* The pseudo/cooked view of the embedded registers is always
1037 32-bit. The raw view is handled below. */
df4df182 1038 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1039 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1040 /* The target, while possibly using a 64-bit register buffer,
1041 is only transfering 32-bits of each integer register.
1042 Reflect this in the cooked/pseudo (ABI) register value. */
df4df182 1043 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1044 else if (mips_abi_regsize (gdbarch) == 4)
1045 /* The ABI is restricted to 32-bit registers (the ISA could be
1046 32- or 64-bit). */
df4df182 1047 return builtin_type (gdbarch)->builtin_int32;
d5ac5a39
AC
1048 else
1049 /* 64-bit ABI. */
df4df182 1050 return builtin_type (gdbarch)->builtin_int64;
d5ac5a39 1051 }
78fde5f8
KB
1052}
1053
f8b73d13
DJ
1054/* Return the GDB type for the pseudo register REGNUM, which is the
1055 ABI-level view. This function is only called if there is a target
1056 description which includes registers, so we know precisely the
1057 types of hardware registers. */
1058
1059static struct type *
1060mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1061{
1062 const int num_regs = gdbarch_num_regs (gdbarch);
f8b73d13
DJ
1063 int rawnum = regnum % num_regs;
1064 struct type *rawtype;
1065
1066 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1067
1068 /* Absent registers are still absent. */
1069 rawtype = gdbarch_register_type (gdbarch, rawnum);
1070 if (TYPE_LENGTH (rawtype) == 0)
1071 return rawtype;
1072
a6912260
MR
1073 /* Present the floating point registers however the hardware did;
1074 do not try to convert between FPU layouts. */
de13fcf2 1075 if (mips_float_register_p (gdbarch, rawnum))
f8b73d13
DJ
1076 return rawtype;
1077
78b86327
MR
1078 /* Floating-point control registers are always 32-bit even though for
1079 backwards compatibility reasons 64-bit targets will transfer them
1080 as 64-bit quantities even if using XML descriptions. */
1081 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1082 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1083 return builtin_type (gdbarch)->builtin_int32;
1084
f8b73d13
DJ
1085 /* Use pointer types for registers if we can. For n32 we can not,
1086 since we do not have a 64-bit pointer type. */
0dfff4cb
UW
1087 if (mips_abi_regsize (gdbarch)
1088 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
f8b73d13 1089 {
1faeff08
MR
1090 if (rawnum == MIPS_SP_REGNUM
1091 || rawnum == mips_regnum (gdbarch)->badvaddr)
0dfff4cb 1092 return builtin_type (gdbarch)->builtin_data_ptr;
1faeff08 1093 else if (rawnum == mips_regnum (gdbarch)->pc)
0dfff4cb 1094 return builtin_type (gdbarch)->builtin_func_ptr;
f8b73d13
DJ
1095 }
1096
1097 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1faeff08
MR
1098 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1099 || rawnum == mips_regnum (gdbarch)->lo
1100 || rawnum == mips_regnum (gdbarch)->hi
1101 || rawnum == mips_regnum (gdbarch)->badvaddr
1102 || rawnum == mips_regnum (gdbarch)->cause
1103 || rawnum == mips_regnum (gdbarch)->pc
1104 || (mips_regnum (gdbarch)->dspacc != -1
1105 && rawnum >= mips_regnum (gdbarch)->dspacc
1106 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
df4df182 1107 return builtin_type (gdbarch)->builtin_int32;
f8b73d13 1108
a6912260
MR
1109 /* The pseudo/cooked view of embedded registers is always
1110 32-bit, even if the target transfers 64-bit values for them.
1111 New targets relying on XML descriptions should only transfer
1112 the necessary 32 bits, but older versions of GDB expected 64,
1113 so allow the target to provide 64 bits without interfering
1114 with the displayed type. */
de4bfa86 1115 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
78b86327 1116 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1faeff08 1117 && rawnum <= MIPS_LAST_EMBED_REGNUM)
a6912260 1118 return builtin_type (gdbarch)->builtin_int32;
1faeff08 1119
f8b73d13
DJ
1120 /* For all other registers, pass through the hardware type. */
1121 return rawtype;
1122}
bcb0cc15 1123
025bb325 1124/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 1125enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
1126
1127static int
480d3dd2 1128mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
1129{
1130 switch (mask_address_var)
1131 {
7f19b9a2 1132 case AUTO_BOOLEAN_TRUE:
4014092b 1133 return 1;
7f19b9a2 1134 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1135 return 0;
1136 break;
7f19b9a2 1137 case AUTO_BOOLEAN_AUTO:
480d3dd2 1138 return tdep->default_mask_address_p;
4014092b 1139 default:
025bb325
MS
1140 internal_error (__FILE__, __LINE__,
1141 _("mips_mask_address_p: bad switch"));
4014092b 1142 return -1;
361d1df0 1143 }
4014092b
AC
1144}
1145
1146static void
08546159
AC
1147show_mask_address (struct ui_file *file, int from_tty,
1148 struct cmd_list_element *c, const char *value)
4014092b 1149{
f5656ead 1150 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
08546159
AC
1151
1152 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
1153 switch (mask_address_var)
1154 {
7f19b9a2 1155 case AUTO_BOOLEAN_TRUE:
4014092b
AC
1156 printf_filtered ("The 32 bit mips address mask is enabled\n");
1157 break;
7f19b9a2 1158 case AUTO_BOOLEAN_FALSE:
4014092b
AC
1159 printf_filtered ("The 32 bit mips address mask is disabled\n");
1160 break;
7f19b9a2 1161 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
1162 printf_filtered
1163 ("The 32 bit address mask is set automatically. Currently %s\n",
1164 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
1165 break;
1166 default:
e2e0b3e5 1167 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 1168 break;
361d1df0 1169 }
4014092b 1170}
c906108c 1171
4cc0665f
MR
1172/* Tell if the program counter value in MEMADDR is in a standard ISA
1173 function. */
1174
1175int
1176mips_pc_is_mips (CORE_ADDR memaddr)
1177{
7cbd4a93 1178 struct bound_minimal_symbol sym;
4cc0665f
MR
1179
1180 /* Flags indicating that this is a MIPS16 or microMIPS function is
1181 stored by elfread.c in the high bit of the info field. Use this
1182 to decide if the function is standard MIPS. Otherwise if bit 0
1183 of the address is clear, then this is a standard MIPS function. */
3e29f34a 1184 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1185 if (sym.minsym)
1186 return msymbol_is_mips (sym.minsym);
4cc0665f
MR
1187 else
1188 return is_mips_addr (memaddr);
1189}
1190
c906108c
SS
1191/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1192
0fe7e7c8 1193int
4cc0665f 1194mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
c906108c 1195{
7cbd4a93 1196 struct bound_minimal_symbol sym;
c906108c 1197
91912e4d
MR
1198 /* A flag indicating that this is a MIPS16 function is stored by
1199 elfread.c in the high bit of the info field. Use this to decide
4cc0665f
MR
1200 if the function is MIPS16. Otherwise if bit 0 of the address is
1201 set, then ELF file flags will tell if this is a MIPS16 function. */
3e29f34a 1202 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1203 if (sym.minsym)
1204 return msymbol_is_mips16 (sym.minsym);
4cc0665f
MR
1205 else
1206 return is_mips16_addr (gdbarch, memaddr);
1207}
1208
1209/* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1210
1211int
1212mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1213{
7cbd4a93 1214 struct bound_minimal_symbol sym;
4cc0665f
MR
1215
1216 /* A flag indicating that this is a microMIPS function is stored by
1217 elfread.c in the high bit of the info field. Use this to decide
1218 if the function is microMIPS. Otherwise if bit 0 of the address
1219 is set, then ELF file flags will tell if this is a microMIPS
1220 function. */
3e29f34a 1221 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93
TT
1222 if (sym.minsym)
1223 return msymbol_is_micromips (sym.minsym);
4cc0665f
MR
1224 else
1225 return is_micromips_addr (gdbarch, memaddr);
1226}
1227
1228/* Tell the ISA type of the function the program counter value in MEMADDR
1229 is in. */
1230
1231static enum mips_isa
1232mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1233{
7cbd4a93 1234 struct bound_minimal_symbol sym;
4cc0665f
MR
1235
1236 /* A flag indicating that this is a MIPS16 or a microMIPS function
1237 is stored by elfread.c in the high bit of the info field. Use
1238 this to decide if the function is MIPS16 or microMIPS or normal
1239 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1240 flags will tell if this is a MIPS16 or a microMIPS function. */
3e29f34a 1241 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
7cbd4a93 1242 if (sym.minsym)
4cc0665f 1243 {
7cbd4a93 1244 if (msymbol_is_micromips (sym.minsym))
4cc0665f 1245 return ISA_MICROMIPS;
7cbd4a93 1246 else if (msymbol_is_mips16 (sym.minsym))
4cc0665f
MR
1247 return ISA_MIPS16;
1248 else
1249 return ISA_MIPS;
1250 }
c906108c 1251 else
4cc0665f
MR
1252 {
1253 if (is_mips_addr (memaddr))
1254 return ISA_MIPS;
1255 else if (is_micromips_addr (gdbarch, memaddr))
1256 return ISA_MICROMIPS;
1257 else
1258 return ISA_MIPS16;
1259 }
c906108c
SS
1260}
1261
3e29f34a
MR
1262/* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1263 The need for comes from the ISA bit having been cleared, making
1264 addresses in FDE, range records, etc. referring to compressed code
1265 different to those in line information, the symbol table and finally
1266 the PC register. That in turn confuses many operations. */
1267
1268static CORE_ADDR
1269mips_adjust_dwarf2_addr (CORE_ADDR pc)
1270{
1271 pc = unmake_compact_addr (pc);
1272 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1273}
1274
1275/* Recalculate the line record requested so that the resulting PC has
1276 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1277 this adjustment comes from some records associated with compressed
1278 code having the ISA bit cleared, most notably at function prologue
1279 ends. The ISA bit is in this context retrieved from the minimal
1280 symbol covering the address requested, which in turn has been
1281 constructed from the binary's symbol table rather than DWARF-2
1282 information. The correct setting of the ISA bit is required for
1283 breakpoint addresses to correctly match against the stop PC.
1284
1285 As line entries can specify relative address adjustments we need to
1286 keep track of the absolute value of the last line address recorded
1287 in line information, so that we can calculate the actual address to
1288 apply the ISA bit adjustment to. We use PC for this tracking and
1289 keep the original address there.
1290
1291 As such relative address adjustments can be odd within compressed
1292 code we need to keep track of the last line address with the ISA
1293 bit adjustment applied too, as the original address may or may not
1294 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1295 the adjusted address there.
1296
1297 For relative address adjustments we then use these variables to
1298 calculate the address intended by line information, which will be
1299 PC-relative, and return an updated adjustment carrying ISA bit
1300 information, which will be ADJ_PC-relative. For absolute address
1301 adjustments we just return the same address that we store in ADJ_PC
1302 too.
1303
1304 As the first line entry can be relative to an implied address value
1305 of 0 we need to have the initial address set up that we store in PC
1306 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1307 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1308
1309static CORE_ADDR
1310mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1311{
1312 static CORE_ADDR adj_pc;
1313 static CORE_ADDR pc;
1314 CORE_ADDR isa_pc;
1315
1316 pc = rel ? pc + addr : addr;
1317 isa_pc = mips_adjust_dwarf2_addr (pc);
1318 addr = rel ? isa_pc - adj_pc : isa_pc;
1319 adj_pc = isa_pc;
1320 return addr;
1321}
1322
14132e89
MR
1323/* Various MIPS16 thunk (aka stub or trampoline) names. */
1324
1325static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1326static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1327static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1328static const char mips_str_call_stub[] = "__call_stub_";
1329static const char mips_str_fn_stub[] = "__fn_stub_";
1330
1331/* This is used as a PIC thunk prefix. */
1332
1333static const char mips_str_pic[] = ".pic.";
1334
1335/* Return non-zero if the PC is inside a call thunk (aka stub or
1336 trampoline) that should be treated as a temporary frame. */
1337
1338static int
1339mips_in_frame_stub (CORE_ADDR pc)
1340{
1341 CORE_ADDR start_addr;
1342 const char *name;
1343
1344 /* Find the starting address of the function containing the PC. */
1345 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1346 return 0;
1347
1348 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
61012eef 1349 if (startswith (name, mips_str_mips16_call_stub))
14132e89
MR
1350 return 1;
1351 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
61012eef 1352 if (startswith (name, mips_str_call_stub))
14132e89
MR
1353 return 1;
1354 /* If the PC is in __fn_stub_*, this is a call stub. */
61012eef 1355 if (startswith (name, mips_str_fn_stub))
14132e89
MR
1356 return 1;
1357
1358 return 0; /* Not a stub. */
1359}
1360
b2fa5097 1361/* MIPS believes that the PC has a sign extended value. Perhaps the
025bb325 1362 all registers should be sign extended for simplicity? */
6c997a34
AC
1363
1364static CORE_ADDR
61a1198a 1365mips_read_pc (struct regcache *regcache)
6c997a34 1366{
ac7936df 1367 int regnum = gdbarch_pc_regnum (regcache->arch ());
70242eb1 1368 LONGEST pc;
8376de04 1369
61a1198a
UW
1370 regcache_cooked_read_signed (regcache, regnum, &pc);
1371 return pc;
b6cb9035
AC
1372}
1373
58dfe9ff
AC
1374static CORE_ADDR
1375mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1376{
14132e89 1377 CORE_ADDR pc;
930bd0e0 1378
8376de04 1379 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
14132e89
MR
1380 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1381 intermediate frames. In this case we can get the caller's address
1382 from $ra, or if $ra contains an address within a thunk as well, then
1383 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1384 and thus the caller's address is in $s2. */
1385 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1386 {
1387 pc = frame_unwind_register_signed
1388 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
14132e89 1389 if (mips_in_frame_stub (pc))
3e29f34a
MR
1390 pc = frame_unwind_register_signed
1391 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
14132e89 1392 }
930bd0e0 1393 return pc;
edfae063
AC
1394}
1395
30244cd8
UW
1396static CORE_ADDR
1397mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1398{
72a155b4
UW
1399 return frame_unwind_register_signed
1400 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
1401}
1402
b8a22b94 1403/* Assuming THIS_FRAME is a dummy, return the frame ID of that
edfae063
AC
1404 dummy frame. The frame ID's base needs to match the TOS value
1405 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1406 breakpoint. */
1407
1408static struct frame_id
b8a22b94 1409mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
edfae063 1410{
f57d151a 1411 return frame_id_build
b8a22b94
DJ
1412 (get_frame_register_signed (this_frame,
1413 gdbarch_num_regs (gdbarch)
1414 + MIPS_SP_REGNUM),
1415 get_frame_pc (this_frame));
58dfe9ff
AC
1416}
1417
5a439849
MR
1418/* Implement the "write_pc" gdbarch method. */
1419
1420void
61a1198a 1421mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 1422{
ac7936df 1423 int regnum = gdbarch_pc_regnum (regcache->arch ());
8376de04 1424
3e29f34a 1425 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 1426}
c906108c 1427
4cc0665f
MR
1428/* Fetch and return instruction from the specified location. Handle
1429 MIPS16/microMIPS as appropriate. */
c906108c 1430
d37cca3d 1431static ULONGEST
4cc0665f 1432mips_fetch_instruction (struct gdbarch *gdbarch,
d09f2c3f 1433 enum mips_isa isa, CORE_ADDR addr, int *errp)
c906108c 1434{
e17a4113 1435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 1436 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c 1437 int instlen;
d09f2c3f 1438 int err;
c906108c 1439
4cc0665f 1440 switch (isa)
c906108c 1441 {
4cc0665f
MR
1442 case ISA_MICROMIPS:
1443 case ISA_MIPS16:
95ac2dcf 1444 instlen = MIPS_INSN16_SIZE;
4cc0665f
MR
1445 addr = unmake_compact_addr (addr);
1446 break;
1447 case ISA_MIPS:
1448 instlen = MIPS_INSN32_SIZE;
1449 break;
1450 default:
1451 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1452 break;
c906108c 1453 }
d09f2c3f
PA
1454 err = target_read_memory (addr, buf, instlen);
1455 if (errp != NULL)
1456 *errp = err;
1457 if (err != 0)
4cc0665f 1458 {
d09f2c3f
PA
1459 if (errp == NULL)
1460 memory_error (TARGET_XFER_E_IO, addr);
4cc0665f
MR
1461 return 0;
1462 }
e17a4113 1463 return extract_unsigned_integer (buf, instlen, byte_order);
c906108c
SS
1464}
1465
025bb325 1466/* These are the fields of 32 bit mips instructions. */
e135b889
DJ
1467#define mips32_op(x) (x >> 26)
1468#define itype_op(x) (x >> 26)
1469#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 1470#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 1471#define itype_immediate(x) (x & 0xffff)
c906108c 1472
e135b889
DJ
1473#define jtype_op(x) (x >> 26)
1474#define jtype_target(x) (x & 0x03ffffff)
c906108c 1475
e135b889
DJ
1476#define rtype_op(x) (x >> 26)
1477#define rtype_rs(x) ((x >> 21) & 0x1f)
1478#define rtype_rt(x) ((x >> 16) & 0x1f)
1479#define rtype_rd(x) ((x >> 11) & 0x1f)
1480#define rtype_shamt(x) ((x >> 6) & 0x1f)
1481#define rtype_funct(x) (x & 0x3f)
c906108c 1482
4cc0665f
MR
1483/* MicroMIPS instruction fields. */
1484#define micromips_op(x) ((x) >> 10)
1485
1486/* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1487 bit and the size respectively of the field extracted. */
1488#define b0s4_imm(x) ((x) & 0xf)
1489#define b0s5_imm(x) ((x) & 0x1f)
1490#define b0s5_reg(x) ((x) & 0x1f)
1491#define b0s7_imm(x) ((x) & 0x7f)
1492#define b0s10_imm(x) ((x) & 0x3ff)
1493#define b1s4_imm(x) (((x) >> 1) & 0xf)
1494#define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1495#define b2s3_cc(x) (((x) >> 2) & 0x7)
1496#define b4s2_regl(x) (((x) >> 4) & 0x3)
1497#define b5s5_op(x) (((x) >> 5) & 0x1f)
1498#define b5s5_reg(x) (((x) >> 5) & 0x1f)
1499#define b6s4_op(x) (((x) >> 6) & 0xf)
1500#define b7s3_reg(x) (((x) >> 7) & 0x7)
1501
1502/* 32-bit instruction formats, B and S refer to the lowest bit and the size
1503 respectively of the field extracted. */
1504#define b0s6_op(x) ((x) & 0x3f)
1505#define b0s11_op(x) ((x) & 0x7ff)
1506#define b0s12_imm(x) ((x) & 0xfff)
1507#define b0s16_imm(x) ((x) & 0xffff)
1508#define b0s26_imm(x) ((x) & 0x3ffffff)
1509#define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1510#define b11s5_reg(x) (((x) >> 11) & 0x1f)
1511#define b12s4_op(x) (((x) >> 12) & 0xf)
1512
1513/* Return the size in bytes of the instruction INSN encoded in the ISA
1514 instruction set. */
1515
1516static int
1517mips_insn_size (enum mips_isa isa, ULONGEST insn)
1518{
1519 switch (isa)
1520 {
1521 case ISA_MICROMIPS:
100b4f2e
MR
1522 if ((micromips_op (insn) & 0x4) == 0x4
1523 || (micromips_op (insn) & 0x7) == 0x0)
4cc0665f
MR
1524 return 2 * MIPS_INSN16_SIZE;
1525 else
1526 return MIPS_INSN16_SIZE;
1527 case ISA_MIPS16:
1528 if ((insn & 0xf800) == 0xf000)
1529 return 2 * MIPS_INSN16_SIZE;
1530 else
1531 return MIPS_INSN16_SIZE;
1532 case ISA_MIPS:
1533 return MIPS_INSN32_SIZE;
1534 }
1535 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1536}
1537
06987e64
MK
1538static LONGEST
1539mips32_relative_offset (ULONGEST inst)
c5aa993b 1540{
06987e64 1541 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
1542}
1543
a385295e
MR
1544/* Determine the address of the next instruction executed after the INST
1545 floating condition branch instruction at PC. COUNT specifies the
1546 number of the floating condition bits tested by the branch. */
1547
1548static CORE_ADDR
7113a196 1549mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
a385295e
MR
1550 ULONGEST inst, CORE_ADDR pc, int count)
1551{
1552 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1553 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1554 int tf = itype_rt (inst) & 1;
1555 int mask = (1 << count) - 1;
1556 ULONGEST fcs;
1557 int cond;
1558
1559 if (fcsr == -1)
1560 /* No way to handle; it'll most likely trap anyway. */
1561 return pc;
1562
7113a196 1563 fcs = regcache_raw_get_unsigned (regcache, fcsr);
a385295e
MR
1564 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1565
1566 if (((cond >> cnum) & mask) != mask * !tf)
1567 pc += mips32_relative_offset (inst);
1568 else
1569 pc += 4;
1570
1571 return pc;
1572}
1573
f94363d7
AP
1574/* Return nonzero if the gdbarch is an Octeon series. */
1575
1576static int
1577is_octeon (struct gdbarch *gdbarch)
1578{
1579 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1580
1581 return (info->mach == bfd_mach_mips_octeon
1582 || info->mach == bfd_mach_mips_octeonp
1583 || info->mach == bfd_mach_mips_octeon2);
1584}
1585
1586/* Return true if the OP represents the Octeon's BBIT instruction. */
1587
1588static int
1589is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1590{
1591 if (!is_octeon (gdbarch))
1592 return 0;
1593 /* BBIT0 is encoded as LWC2: 110 010. */
1594 /* BBIT032 is encoded as LDC2: 110 110. */
1595 /* BBIT1 is encoded as SWC2: 111 010. */
1596 /* BBIT132 is encoded as SDC2: 111 110. */
1597 if (op == 50 || op == 54 || op == 58 || op == 62)
1598 return 1;
1599 return 0;
1600}
1601
1602
f49e4e6d
MS
1603/* Determine where to set a single step breakpoint while considering
1604 branch prediction. */
78a59c2f 1605
5a89d8aa 1606static CORE_ADDR
7113a196 1607mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
c5aa993b 1608{
ac7936df 1609 struct gdbarch *gdbarch = regcache->arch ();
c5aa993b
JM
1610 unsigned long inst;
1611 int op;
4cc0665f 1612 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4f5bcb50 1613 op = itype_op (inst);
025bb325
MS
1614 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1615 instruction. */
c5aa993b 1616 {
4f5bcb50 1617 if (op >> 2 == 5)
6d82d43b 1618 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1619 {
4f5bcb50 1620 switch (op & 0x03)
c906108c 1621 {
e135b889
DJ
1622 case 0: /* BEQL */
1623 goto equal_branch;
1624 case 1: /* BNEL */
1625 goto neq_branch;
1626 case 2: /* BLEZL */
1627 goto less_branch;
313628cc 1628 case 3: /* BGTZL */
e135b889 1629 goto greater_branch;
c5aa993b
JM
1630 default:
1631 pc += 4;
c906108c
SS
1632 }
1633 }
4f5bcb50 1634 else if (op == 17 && itype_rs (inst) == 8)
6d82d43b 1635 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7113a196 1636 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
4f5bcb50 1637 else if (op == 17 && itype_rs (inst) == 9
a385295e
MR
1638 && (itype_rt (inst) & 2) == 0)
1639 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
7113a196 1640 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
4f5bcb50 1641 else if (op == 17 && itype_rs (inst) == 10
a385295e
MR
1642 && (itype_rt (inst) & 2) == 0)
1643 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
7113a196 1644 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
4f5bcb50 1645 else if (op == 29)
9e8da49c
MR
1646 /* JALX: 011101 */
1647 /* The new PC will be alternate mode. */
1648 {
1649 unsigned long reg;
1650
1651 reg = jtype_target (inst) << 2;
1652 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1653 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1654 }
f94363d7
AP
1655 else if (is_octeon_bbit_op (op, gdbarch))
1656 {
1657 int bit, branch_if;
1658
1659 branch_if = op == 58 || op == 62;
1660 bit = itype_rt (inst);
1661
1662 /* Take into account the *32 instructions. */
1663 if (op == 54 || op == 62)
1664 bit += 32;
1665
7113a196
YQ
1666 if (((regcache_raw_get_signed (regcache,
1667 itype_rs (inst)) >> bit) & 1)
f94363d7
AP
1668 == branch_if)
1669 pc += mips32_relative_offset (inst) + 4;
1670 else
1671 pc += 8; /* After the delay slot. */
1672 }
1673
c5aa993b 1674 else
025bb325 1675 pc += 4; /* Not a branch, next instruction is easy. */
c906108c
SS
1676 }
1677 else
025bb325 1678 { /* This gets way messy. */
c5aa993b 1679
025bb325 1680 /* Further subdivide into SPECIAL, REGIMM and other. */
4f5bcb50 1681 switch (op & 0x07) /* Extract bits 28,27,26. */
c906108c 1682 {
c5aa993b
JM
1683 case 0: /* SPECIAL */
1684 op = rtype_funct (inst);
1685 switch (op)
1686 {
1687 case 8: /* JR */
1688 case 9: /* JALR */
025bb325 1689 /* Set PC to that address. */
7113a196 1690 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
c5aa993b 1691 break;
e38d4e1a
DJ
1692 case 12: /* SYSCALL */
1693 {
1694 struct gdbarch_tdep *tdep;
1695
7113a196 1696 tdep = gdbarch_tdep (gdbarch);
e38d4e1a 1697 if (tdep->syscall_next_pc != NULL)
7113a196 1698 pc = tdep->syscall_next_pc (get_current_frame ());
e38d4e1a
DJ
1699 else
1700 pc += 4;
1701 }
1702 break;
c5aa993b
JM
1703 default:
1704 pc += 4;
1705 }
1706
6d82d43b 1707 break; /* end SPECIAL */
025bb325 1708 case 1: /* REGIMM */
c906108c 1709 {
e135b889
DJ
1710 op = itype_rt (inst); /* branch condition */
1711 switch (op)
c906108c 1712 {
c5aa993b 1713 case 0: /* BLTZ */
e135b889
DJ
1714 case 2: /* BLTZL */
1715 case 16: /* BLTZAL */
c5aa993b 1716 case 18: /* BLTZALL */
c906108c 1717 less_branch:
7113a196 1718 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
c5aa993b
JM
1719 pc += mips32_relative_offset (inst) + 4;
1720 else
1721 pc += 8; /* after the delay slot */
1722 break;
e135b889 1723 case 1: /* BGEZ */
c5aa993b
JM
1724 case 3: /* BGEZL */
1725 case 17: /* BGEZAL */
1726 case 19: /* BGEZALL */
7113a196 1727 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
c5aa993b
JM
1728 pc += mips32_relative_offset (inst) + 4;
1729 else
1730 pc += 8; /* after the delay slot */
1731 break;
a385295e
MR
1732 case 0x1c: /* BPOSGE32 */
1733 case 0x1e: /* BPOSGE64 */
1734 pc += 4;
1735 if (itype_rs (inst) == 0)
1736 {
1737 unsigned int pos = (op & 2) ? 64 : 32;
1738 int dspctl = mips_regnum (gdbarch)->dspctl;
1739
1740 if (dspctl == -1)
1741 /* No way to handle; it'll most likely trap anyway. */
1742 break;
1743
7113a196
YQ
1744 if ((regcache_raw_get_unsigned (regcache,
1745 dspctl) & 0x7f) >= pos)
a385295e
MR
1746 pc += mips32_relative_offset (inst);
1747 else
1748 pc += 4;
1749 }
1750 break;
e135b889 1751 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1752 default:
1753 pc += 4;
c906108c
SS
1754 }
1755 }
6d82d43b 1756 break; /* end REGIMM */
c5aa993b
JM
1757 case 2: /* J */
1758 case 3: /* JAL */
1759 {
1760 unsigned long reg;
1761 reg = jtype_target (inst) << 2;
025bb325 1762 /* Upper four bits get never changed... */
5b652102 1763 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1764 }
c5aa993b 1765 break;
e135b889 1766 case 4: /* BEQ, BEQL */
c5aa993b 1767 equal_branch:
7113a196
YQ
1768 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1769 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1770 pc += mips32_relative_offset (inst) + 4;
1771 else
1772 pc += 8;
1773 break;
e135b889 1774 case 5: /* BNE, BNEL */
c5aa993b 1775 neq_branch:
7113a196
YQ
1776 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1777 regcache_raw_get_signed (regcache, itype_rt (inst)))
c5aa993b
JM
1778 pc += mips32_relative_offset (inst) + 4;
1779 else
1780 pc += 8;
1781 break;
e135b889 1782 case 6: /* BLEZ, BLEZL */
7113a196 1783 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
c5aa993b
JM
1784 pc += mips32_relative_offset (inst) + 4;
1785 else
1786 pc += 8;
1787 break;
1788 case 7:
e135b889
DJ
1789 default:
1790 greater_branch: /* BGTZ, BGTZL */
7113a196 1791 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
c5aa993b
JM
1792 pc += mips32_relative_offset (inst) + 4;
1793 else
1794 pc += 8;
1795 break;
c5aa993b
JM
1796 } /* switch */
1797 } /* else */
1798 return pc;
1799} /* mips32_next_pc */
c906108c 1800
4cc0665f
MR
1801/* Extract the 7-bit signed immediate offset from the microMIPS instruction
1802 INSN. */
1803
1804static LONGEST
1805micromips_relative_offset7 (ULONGEST insn)
1806{
1807 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1808}
1809
1810/* Extract the 10-bit signed immediate offset from the microMIPS instruction
1811 INSN. */
1812
1813static LONGEST
1814micromips_relative_offset10 (ULONGEST insn)
1815{
1816 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1817}
1818
1819/* Extract the 16-bit signed immediate offset from the microMIPS instruction
1820 INSN. */
1821
1822static LONGEST
1823micromips_relative_offset16 (ULONGEST insn)
1824{
1825 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1826}
1827
1828/* Return the size in bytes of the microMIPS instruction at the address PC. */
1829
1830static int
1831micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1832{
1833 ULONGEST insn;
1834
1835 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1836 return mips_insn_size (ISA_MICROMIPS, insn);
1837}
1838
1839/* Calculate the address of the next microMIPS instruction to execute
1840 after the INSN coprocessor 1 conditional branch instruction at the
1841 address PC. COUNT denotes the number of coprocessor condition bits
1842 examined by the branch. */
1843
1844static CORE_ADDR
7113a196 1845micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
4cc0665f
MR
1846 ULONGEST insn, CORE_ADDR pc, int count)
1847{
1848 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1849 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1850 int tf = b5s5_op (insn >> 16) & 1;
1851 int mask = (1 << count) - 1;
1852 ULONGEST fcs;
1853 int cond;
1854
1855 if (fcsr == -1)
1856 /* No way to handle; it'll most likely trap anyway. */
1857 return pc;
1858
7113a196 1859 fcs = regcache_raw_get_unsigned (regcache, fcsr);
4cc0665f
MR
1860 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1861
1862 if (((cond >> cnum) & mask) != mask * !tf)
1863 pc += micromips_relative_offset16 (insn);
1864 else
1865 pc += micromips_pc_insn_size (gdbarch, pc);
1866
1867 return pc;
1868}
1869
1870/* Calculate the address of the next microMIPS instruction to execute
1871 after the instruction at the address PC. */
1872
1873static CORE_ADDR
7113a196 1874micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
4cc0665f 1875{
ac7936df 1876 struct gdbarch *gdbarch = regcache->arch ();
4cc0665f
MR
1877 ULONGEST insn;
1878
1879 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1880 pc += MIPS_INSN16_SIZE;
1881 switch (mips_insn_size (ISA_MICROMIPS, insn))
1882 {
4cc0665f
MR
1883 /* 32-bit instructions. */
1884 case 2 * MIPS_INSN16_SIZE:
1885 insn <<= 16;
1886 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1887 pc += MIPS_INSN16_SIZE;
1888 switch (micromips_op (insn >> 16))
1889 {
1890 case 0x00: /* POOL32A: bits 000000 */
1891 if (b0s6_op (insn) == 0x3c
1892 /* POOL32Axf: bits 000000 ... 111100 */
1893 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1894 /* JALR, JALR.HB: 000000 000x111100 111100 */
1895 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7113a196 1896 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
4cc0665f
MR
1897 break;
1898
1899 case 0x10: /* POOL32I: bits 010000 */
1900 switch (b5s5_op (insn >> 16))
1901 {
1902 case 0x00: /* BLTZ: bits 010000 00000 */
1903 case 0x01: /* BLTZAL: bits 010000 00001 */
1904 case 0x11: /* BLTZALS: bits 010000 10001 */
7113a196
YQ
1905 if (regcache_raw_get_signed (regcache,
1906 b0s5_reg (insn >> 16)) < 0)
4cc0665f
MR
1907 pc += micromips_relative_offset16 (insn);
1908 else
1909 pc += micromips_pc_insn_size (gdbarch, pc);
1910 break;
1911
1912 case 0x02: /* BGEZ: bits 010000 00010 */
1913 case 0x03: /* BGEZAL: bits 010000 00011 */
1914 case 0x13: /* BGEZALS: bits 010000 10011 */
7113a196
YQ
1915 if (regcache_raw_get_signed (regcache,
1916 b0s5_reg (insn >> 16)) >= 0)
4cc0665f
MR
1917 pc += micromips_relative_offset16 (insn);
1918 else
1919 pc += micromips_pc_insn_size (gdbarch, pc);
1920 break;
1921
1922 case 0x04: /* BLEZ: bits 010000 00100 */
7113a196
YQ
1923 if (regcache_raw_get_signed (regcache,
1924 b0s5_reg (insn >> 16)) <= 0)
4cc0665f
MR
1925 pc += micromips_relative_offset16 (insn);
1926 else
1927 pc += micromips_pc_insn_size (gdbarch, pc);
1928 break;
1929
1930 case 0x05: /* BNEZC: bits 010000 00101 */
7113a196
YQ
1931 if (regcache_raw_get_signed (regcache,
1932 b0s5_reg (insn >> 16)) != 0)
4cc0665f
MR
1933 pc += micromips_relative_offset16 (insn);
1934 break;
1935
1936 case 0x06: /* BGTZ: bits 010000 00110 */
7113a196
YQ
1937 if (regcache_raw_get_signed (regcache,
1938 b0s5_reg (insn >> 16)) > 0)
4cc0665f
MR
1939 pc += micromips_relative_offset16 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 break;
1943
1944 case 0x07: /* BEQZC: bits 010000 00111 */
7113a196
YQ
1945 if (regcache_raw_get_signed (regcache,
1946 b0s5_reg (insn >> 16)) == 0)
4cc0665f
MR
1947 pc += micromips_relative_offset16 (insn);
1948 break;
1949
1950 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1951 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1952 if (((insn >> 16) & 0x3) == 0x0)
1953 /* BC2F, BC2T: don't know how to handle these. */
1954 break;
1955 break;
1956
1957 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1958 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1959 {
1960 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1961 int dspctl = mips_regnum (gdbarch)->dspctl;
1962
1963 if (dspctl == -1)
1964 /* No way to handle; it'll most likely trap anyway. */
1965 break;
1966
7113a196
YQ
1967 if ((regcache_raw_get_unsigned (regcache,
1968 dspctl) & 0x7f) >= pos)
4cc0665f
MR
1969 pc += micromips_relative_offset16 (insn);
1970 else
1971 pc += micromips_pc_insn_size (gdbarch, pc);
1972 }
1973 break;
1974
1975 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1976 /* BC1ANY2F: bits 010000 11100 xxx01 */
1977 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1978 /* BC1ANY2T: bits 010000 11101 xxx01 */
1979 if (((insn >> 16) & 0x2) == 0x0)
7113a196 1980 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
4cc0665f
MR
1981 ((insn >> 16) & 0x1) + 1);
1982 break;
1983
1984 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1985 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1986 if (((insn >> 16) & 0x3) == 0x1)
7113a196 1987 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
4cc0665f
MR
1988 break;
1989 }
1990 break;
1991
1992 case 0x1d: /* JALS: bits 011101 */
1993 case 0x35: /* J: bits 110101 */
1994 case 0x3d: /* JAL: bits 111101 */
1995 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1996 break;
1997
1998 case 0x25: /* BEQ: bits 100101 */
7113a196
YQ
1999 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2000 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2001 pc += micromips_relative_offset16 (insn);
2002 else
2003 pc += micromips_pc_insn_size (gdbarch, pc);
2004 break;
2005
2006 case 0x2d: /* BNE: bits 101101 */
7113a196
YQ
2007 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2008 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
4cc0665f
MR
2009 pc += micromips_relative_offset16 (insn);
2010 else
2011 pc += micromips_pc_insn_size (gdbarch, pc);
2012 break;
2013
2014 case 0x3c: /* JALX: bits 111100 */
2015 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2016 break;
2017 }
2018 break;
2019
2020 /* 16-bit instructions. */
2021 case MIPS_INSN16_SIZE:
2022 switch (micromips_op (insn))
2023 {
2024 case 0x11: /* POOL16C: bits 010001 */
2025 if ((b5s5_op (insn) & 0x1c) == 0xc)
2026 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
7113a196 2027 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
4cc0665f
MR
2028 else if (b5s5_op (insn) == 0x18)
2029 /* JRADDIUSP: bits 010001 11000 */
7113a196 2030 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
4cc0665f
MR
2031 break;
2032
2033 case 0x23: /* BEQZ16: bits 100011 */
2034 {
2035 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2036
7113a196 2037 if (regcache_raw_get_signed (regcache, rs) == 0)
4cc0665f
MR
2038 pc += micromips_relative_offset7 (insn);
2039 else
2040 pc += micromips_pc_insn_size (gdbarch, pc);
2041 }
2042 break;
2043
2044 case 0x2b: /* BNEZ16: bits 101011 */
2045 {
2046 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2047
7113a196 2048 if (regcache_raw_get_signed (regcache, rs) != 0)
4cc0665f
MR
2049 pc += micromips_relative_offset7 (insn);
2050 else
2051 pc += micromips_pc_insn_size (gdbarch, pc);
2052 }
2053 break;
2054
2055 case 0x33: /* B16: bits 110011 */
2056 pc += micromips_relative_offset10 (insn);
2057 break;
2058 }
2059 break;
2060 }
2061
2062 return pc;
2063}
2064
c906108c 2065/* Decoding the next place to set a breakpoint is irregular for the
025bb325
MS
2066 mips 16 variant, but fortunately, there fewer instructions. We have
2067 to cope ith extensions for 16 bit instructions and a pair of actual
2068 32 bit instructions. We dont want to set a single step instruction
2069 on the extend instruction either. */
c906108c
SS
2070
2071/* Lots of mips16 instruction formats */
2072/* Predicting jumps requires itype,ritype,i8type
025bb325 2073 and their extensions extItype,extritype,extI8type. */
c906108c
SS
2074enum mips16_inst_fmts
2075{
c5aa993b
JM
2076 itype, /* 0 immediate 5,10 */
2077 ritype, /* 1 5,3,8 */
2078 rrtype, /* 2 5,3,3,5 */
2079 rritype, /* 3 5,3,3,5 */
2080 rrrtype, /* 4 5,3,3,3,2 */
2081 rriatype, /* 5 5,3,3,1,4 */
2082 shifttype, /* 6 5,3,3,3,2 */
2083 i8type, /* 7 5,3,8 */
2084 i8movtype, /* 8 5,3,3,5 */
2085 i8mov32rtype, /* 9 5,3,5,3 */
2086 i64type, /* 10 5,3,8 */
2087 ri64type, /* 11 5,3,3,5 */
2088 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2089 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2090 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2091 extRRItype, /* 15 5,5,5,5,3,3,5 */
2092 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2093 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2094 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2095 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2096 extRi64type, /* 20 5,6,5,5,3,3,5 */
2097 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2098};
12f02c2a 2099/* I am heaping all the fields of the formats into one structure and
025bb325 2100 then, only the fields which are involved in instruction extension. */
c906108c 2101struct upk_mips16
6d82d43b
AC
2102{
2103 CORE_ADDR offset;
025bb325 2104 unsigned int regx; /* Function in i8 type. */
6d82d43b
AC
2105 unsigned int regy;
2106};
c906108c
SS
2107
2108
12f02c2a 2109/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
c68cf8ad 2110 for the bits which make up the immediate extension. */
c906108c 2111
12f02c2a
AC
2112static CORE_ADDR
2113extended_offset (unsigned int extension)
c906108c 2114{
12f02c2a 2115 CORE_ADDR value;
130854df 2116
4c2051c6 2117 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
c5aa993b 2118 value = value << 6;
4c2051c6 2119 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
c5aa993b 2120 value = value << 5;
130854df
MR
2121 value |= extension & 0x1f; /* Extract 4:0. */
2122
c5aa993b 2123 return value;
c906108c
SS
2124}
2125
2126/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
2127 instruction. It won't malfunction, but why make excess remote memory
2128 references? If the immediate operands get sign extended or something,
2129 do it after the extension is performed. */
c906108c 2130/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 2131 when the offset is to be used in relative addressing. */
c906108c 2132
12f02c2a 2133static unsigned int
e17a4113 2134fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2135{
e17a4113 2136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
47a35522 2137 gdb_byte buf[8];
a2fb2cee
MR
2138
2139 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
c5aa993b 2140 target_read_memory (pc, buf, 2);
e17a4113 2141 return extract_unsigned_integer (buf, 2, byte_order);
c906108c
SS
2142}
2143
2144static void
e17a4113 2145unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
12f02c2a
AC
2146 unsigned int extension,
2147 unsigned int inst,
6d82d43b 2148 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 2149{
12f02c2a
AC
2150 CORE_ADDR offset;
2151 int regx;
2152 int regy;
2153 switch (insn_format)
c906108c 2154 {
c5aa993b 2155 case itype:
c906108c 2156 {
12f02c2a
AC
2157 CORE_ADDR value;
2158 if (extension)
c5aa993b 2159 {
4c2051c6
MR
2160 value = extended_offset ((extension << 16) | inst);
2161 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c
SS
2162 }
2163 else
c5aa993b 2164 {
12f02c2a 2165 value = inst & 0x7ff;
4c2051c6 2166 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
c906108c 2167 }
12f02c2a
AC
2168 offset = value;
2169 regx = -1;
2170 regy = -1;
c906108c 2171 }
c5aa993b
JM
2172 break;
2173 case ritype:
2174 case i8type:
025bb325 2175 { /* A register identifier and an offset. */
c906108c 2176 /* Most of the fields are the same as I type but the
025bb325 2177 immediate value is of a different length. */
12f02c2a
AC
2178 CORE_ADDR value;
2179 if (extension)
c906108c 2180 {
4c2051c6
MR
2181 value = extended_offset ((extension << 16) | inst);
2182 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
c906108c 2183 }
c5aa993b
JM
2184 else
2185 {
4c2051c6
MR
2186 value = inst & 0xff; /* 8 bits */
2187 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
c5aa993b 2188 }
12f02c2a 2189 offset = value;
4c2051c6 2190 regx = (inst >> 8) & 0x07; /* i8 funct */
12f02c2a 2191 regy = -1;
c5aa993b 2192 break;
c906108c 2193 }
c5aa993b 2194 case jalxtype:
c906108c 2195 {
c5aa993b 2196 unsigned long value;
12f02c2a
AC
2197 unsigned int nexthalf;
2198 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b 2199 value = value << 16;
4cc0665f
MR
2200 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2201 /* Low bit still set. */
c5aa993b 2202 value |= nexthalf;
12f02c2a
AC
2203 offset = value;
2204 regx = -1;
2205 regy = -1;
c5aa993b 2206 break;
c906108c
SS
2207 }
2208 default:
e2e0b3e5 2209 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 2210 }
12f02c2a
AC
2211 upk->offset = offset;
2212 upk->regx = regx;
2213 upk->regy = regy;
c906108c
SS
2214}
2215
2216
484933d1
MR
2217/* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2218 and having a signed 16-bit OFFSET. */
2219
c5aa993b
JM
2220static CORE_ADDR
2221add_offset_16 (CORE_ADDR pc, int offset)
c906108c 2222{
484933d1 2223 return pc + (offset << 1) + 2;
c906108c
SS
2224}
2225
12f02c2a 2226static CORE_ADDR
7113a196 2227extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
6d82d43b 2228 unsigned int extension, unsigned int insn)
c906108c 2229{
ac7936df 2230 struct gdbarch *gdbarch = regcache->arch ();
12f02c2a
AC
2231 int op = (insn >> 11);
2232 switch (op)
c906108c 2233 {
6d82d43b 2234 case 2: /* Branch */
12f02c2a 2235 {
12f02c2a 2236 struct upk_mips16 upk;
e17a4113 2237 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
484933d1 2238 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2239 break;
2240 }
025bb325
MS
2241 case 3: /* JAL , JALX - Watch out, these are 32 bit
2242 instructions. */
12f02c2a
AC
2243 {
2244 struct upk_mips16 upk;
e17a4113 2245 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
484933d1 2246 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
12f02c2a 2247 if ((insn >> 10) & 0x01) /* Exchange mode */
025bb325 2248 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
12f02c2a
AC
2249 else
2250 pc |= 0x01;
2251 break;
2252 }
6d82d43b 2253 case 4: /* beqz */
12f02c2a
AC
2254 {
2255 struct upk_mips16 upk;
2256 int reg;
e17a4113 2257 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2258 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2259 if (reg == 0)
484933d1 2260 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2261 else
2262 pc += 2;
2263 break;
2264 }
6d82d43b 2265 case 5: /* bnez */
12f02c2a
AC
2266 {
2267 struct upk_mips16 upk;
2268 int reg;
e17a4113 2269 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
7113a196 2270 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
12f02c2a 2271 if (reg != 0)
484933d1 2272 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2273 else
2274 pc += 2;
2275 break;
2276 }
6d82d43b 2277 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
2278 {
2279 struct upk_mips16 upk;
2280 int reg;
e17a4113 2281 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
12f02c2a 2282 /* upk.regx contains the opcode */
7113a196
YQ
2283 /* Test register is 24 */
2284 reg = regcache_raw_get_signed (regcache, 24);
12f02c2a
AC
2285 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2286 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
484933d1 2287 pc = add_offset_16 (pc, upk.offset);
12f02c2a
AC
2288 else
2289 pc += 2;
2290 break;
2291 }
6d82d43b 2292 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
2293 {
2294 struct upk_mips16 upk;
2295 /* upk.fmt = rrtype; */
2296 op = insn & 0x1f;
2297 if (op == 0)
c5aa993b 2298 {
12f02c2a
AC
2299 int reg;
2300 upk.regx = (insn >> 8) & 0x07;
2301 upk.regy = (insn >> 5) & 0x07;
4c2051c6 2302 if ((upk.regy & 1) == 0)
4cc0665f 2303 reg = mips_reg3_to_reg[upk.regx];
4c2051c6
MR
2304 else
2305 reg = 31; /* Function return instruction. */
7113a196 2306 pc = regcache_raw_get_signed (regcache, reg);
c906108c 2307 }
12f02c2a 2308 else
c5aa993b 2309 pc += 2;
12f02c2a
AC
2310 break;
2311 }
2312 case 30:
2313 /* This is an instruction extension. Fetch the real instruction
2314 (which follows the extension) and decode things based on
025bb325 2315 that. */
12f02c2a
AC
2316 {
2317 pc += 2;
7113a196 2318 pc = extended_mips16_next_pc (regcache, pc, insn,
e17a4113 2319 fetch_mips_16 (gdbarch, pc));
12f02c2a
AC
2320 break;
2321 }
2322 default:
2323 {
2324 pc += 2;
2325 break;
2326 }
c906108c 2327 }
c5aa993b 2328 return pc;
12f02c2a 2329}
c906108c 2330
5a89d8aa 2331static CORE_ADDR
7113a196 2332mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
12f02c2a 2333{
ac7936df 2334 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 2335 unsigned int insn = fetch_mips_16 (gdbarch, pc);
7113a196 2336 return extended_mips16_next_pc (regcache, pc, 0, insn);
12f02c2a
AC
2337}
2338
2339/* The mips_next_pc function supports single_step when the remote
7e73cedf 2340 target monitor or stub is not developed enough to do a single_step.
12f02c2a 2341 It works by decoding the current instruction and predicting where a
1aee363c 2342 branch will go. This isn't hard because all the data is available.
4cc0665f 2343 The MIPS32, MIPS16 and microMIPS variants are quite different. */
ad527d2e 2344static CORE_ADDR
7113a196 2345mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
c906108c 2346{
ac7936df 2347 struct gdbarch *gdbarch = regcache->arch ();
4cc0665f
MR
2348
2349 if (mips_pc_is_mips16 (gdbarch, pc))
7113a196 2350 return mips16_next_pc (regcache, pc);
4cc0665f 2351 else if (mips_pc_is_micromips (gdbarch, pc))
7113a196 2352 return micromips_next_pc (regcache, pc);
c5aa993b 2353 else
7113a196 2354 return mips32_next_pc (regcache, pc);
12f02c2a 2355}
c906108c 2356
ab50adb6
MR
2357/* Return non-zero if the MIPS16 instruction INSN is a compact branch
2358 or jump. */
2359
2360static int
2361mips16_instruction_is_compact_branch (unsigned short insn)
2362{
2363 switch (insn & 0xf800)
2364 {
2365 case 0xe800:
2366 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2367 case 0x6000:
2368 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2369 case 0x2800: /* BNEZ */
2370 case 0x2000: /* BEQZ */
2371 case 0x1000: /* B */
2372 return 1;
2373 default:
2374 return 0;
2375 }
2376}
2377
2378/* Return non-zero if the microMIPS instruction INSN is a compact branch
2379 or jump. */
2380
2381static int
2382micromips_instruction_is_compact_branch (unsigned short insn)
2383{
2384 switch (micromips_op (insn))
2385 {
2386 case 0x11: /* POOL16C: bits 010001 */
2387 return (b5s5_op (insn) == 0x18
2388 /* JRADDIUSP: bits 010001 11000 */
2389 || b5s5_op (insn) == 0xd);
2390 /* JRC: bits 010011 01101 */
2391 case 0x10: /* POOL32I: bits 010000 */
2392 return (b5s5_op (insn) & 0x1d) == 0x5;
2393 /* BEQZC/BNEZC: bits 010000 001x1 */
2394 default:
2395 return 0;
2396 }
2397}
2398
edfae063
AC
2399struct mips_frame_cache
2400{
2401 CORE_ADDR base;
2402 struct trad_frame_saved_reg *saved_regs;
2403};
2404
29639122
JB
2405/* Set a register's saved stack address in temp_saved_regs. If an
2406 address has already been set for this register, do nothing; this
2407 way we will only recognize the first save of a given register in a
2408 function prologue.
eec63939 2409
f57d151a
UW
2410 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2411 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2412 Strictly speaking, only the second range is used as it is only second
2413 range (the ABI instead of ISA registers) that comes into play when finding
2414 saved registers in a frame. */
eec63939
AC
2415
2416static void
74ed0bb4
MD
2417set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2418 int regnum, CORE_ADDR offset)
eec63939 2419{
29639122
JB
2420 if (this_cache != NULL
2421 && this_cache->saved_regs[regnum].addr == -1)
2422 {
74ed0bb4
MD
2423 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
2425 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2426 = offset;
29639122 2427 }
eec63939
AC
2428}
2429
eec63939 2430
29639122
JB
2431/* Fetch the immediate value from a MIPS16 instruction.
2432 If the previous instruction was an EXTEND, use it to extend
2433 the upper bits of the immediate value. This is a helper function
2434 for mips16_scan_prologue. */
eec63939 2435
29639122
JB
2436static int
2437mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2438 unsigned short inst, /* current instruction */
2439 int nbits, /* number of bits in imm field */
2440 int scale, /* scale factor to be applied to imm */
025bb325 2441 int is_signed) /* is the imm field signed? */
eec63939 2442{
29639122 2443 int offset;
eec63939 2444
29639122
JB
2445 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2446 {
2447 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2448 if (offset & 0x8000) /* check for negative extend */
2449 offset = 0 - (0x10000 - (offset & 0xffff));
2450 return offset | (inst & 0x1f);
2451 }
eec63939 2452 else
29639122
JB
2453 {
2454 int max_imm = 1 << nbits;
2455 int mask = max_imm - 1;
2456 int sign_bit = max_imm >> 1;
45c9dd44 2457
29639122
JB
2458 offset = inst & mask;
2459 if (is_signed && (offset & sign_bit))
2460 offset = 0 - (max_imm - offset);
2461 return offset * scale;
2462 }
2463}
eec63939 2464
65596487 2465
29639122
JB
2466/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2467 the associated FRAME_CACHE if not null.
2468 Return the address of the first instruction past the prologue. */
eec63939 2469
29639122 2470static CORE_ADDR
e17a4113
UW
2471mips16_scan_prologue (struct gdbarch *gdbarch,
2472 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 2473 struct frame_info *this_frame,
29639122
JB
2474 struct mips_frame_cache *this_cache)
2475{
ab50adb6
MR
2476 int prev_non_prologue_insn = 0;
2477 int this_non_prologue_insn;
2478 int non_prologue_insns = 0;
2479 CORE_ADDR prev_pc;
29639122 2480 CORE_ADDR cur_pc;
025bb325 2481 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
29639122
JB
2482 CORE_ADDR sp;
2483 long frame_offset = 0; /* Size of stack frame. */
2484 long frame_adjust = 0; /* Offset of FP from SP. */
2485 int frame_reg = MIPS_SP_REGNUM;
025bb325 2486 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
29639122
JB
2487 unsigned inst = 0; /* current instruction */
2488 unsigned entry_inst = 0; /* the entry instruction */
2207132d 2489 unsigned save_inst = 0; /* the save instruction */
ab50adb6
MR
2490 int prev_delay_slot = 0;
2491 int in_delay_slot;
29639122 2492 int reg, offset;
a343eb3c 2493
29639122 2494 int extend_bytes = 0;
ab50adb6
MR
2495 int prev_extend_bytes = 0;
2496 CORE_ADDR end_prologue_addr;
a343eb3c 2497
29639122 2498 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
2499 THIS_FRAME. */
2500 if (this_frame != NULL)
2501 sp = get_frame_register_signed (this_frame,
2502 gdbarch_num_regs (gdbarch)
2503 + MIPS_SP_REGNUM);
29639122
JB
2504 else
2505 sp = 0;
eec63939 2506
29639122
JB
2507 if (limit_pc > start_pc + 200)
2508 limit_pc = start_pc + 200;
ab50adb6 2509 prev_pc = start_pc;
eec63939 2510
ab50adb6
MR
2511 /* Permit at most one non-prologue non-control-transfer instruction
2512 in the middle which may have been reordered by the compiler for
2513 optimisation. */
95ac2dcf 2514 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122 2515 {
ab50adb6
MR
2516 this_non_prologue_insn = 0;
2517 in_delay_slot = 0;
2518
29639122
JB
2519 /* Save the previous instruction. If it's an EXTEND, we'll extract
2520 the immediate offset extension from it in mips16_get_imm. */
2521 prev_inst = inst;
eec63939 2522
025bb325 2523 /* Fetch and decode the instruction. */
4cc0665f
MR
2524 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2525 cur_pc, NULL);
eec63939 2526
29639122
JB
2527 /* Normally we ignore extend instructions. However, if it is
2528 not followed by a valid prologue instruction, then this
2529 instruction is not part of the prologue either. We must
2530 remember in this case to adjust the end_prologue_addr back
2531 over the extend. */
2532 if ((inst & 0xf800) == 0xf000) /* extend */
2533 {
95ac2dcf 2534 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
2535 continue;
2536 }
eec63939 2537
29639122
JB
2538 prev_extend_bytes = extend_bytes;
2539 extend_bytes = 0;
eec63939 2540
29639122
JB
2541 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2542 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2543 {
2544 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
025bb325 2545 if (offset < 0) /* Negative stack adjustment? */
29639122
JB
2546 frame_offset -= offset;
2547 else
2548 /* Exit loop if a positive stack adjustment is found, which
2549 usually means that the stack cleanup code in the function
2550 epilogue is reached. */
2551 break;
2552 }
2553 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2554 {
2555 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4cc0665f 2556 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
74ed0bb4 2557 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2558 }
2559 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2560 {
2561 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2562 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2563 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
2564 }
2565 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2566 {
2567 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
74ed0bb4 2568 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2569 }
2570 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
74ed0bb4 2573 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
2574 }
2575 else if (inst == 0x673d) /* move $s1, $sp */
2576 {
2577 frame_addr = sp;
2578 frame_reg = 17;
2579 }
2580 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2581 {
2582 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2583 frame_addr = sp + offset;
2584 frame_reg = 17;
2585 frame_adjust = offset;
2586 }
2587 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
4cc0665f 2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2591 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2592 }
2593 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
4cc0665f 2596 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
74ed0bb4 2597 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
2598 }
2599 else if ((inst & 0xf81f) == 0xe809
2600 && (inst & 0x700) != 0x700) /* entry */
025bb325 2601 entry_inst = inst; /* Save for later processing. */
2207132d
MR
2602 else if ((inst & 0xff80) == 0x6480) /* save */
2603 {
025bb325 2604 save_inst = inst; /* Save for later processing. */
2207132d
MR
2605 if (prev_extend_bytes) /* extend */
2606 save_inst |= prev_inst << 16;
2607 }
29639122
JB
2608 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2609 {
2610 /* This instruction is part of the prologue, but we don't
2611 need to do anything special to handle it. */
2612 }
ab50adb6
MR
2613 else if (mips16_instruction_has_delay_slot (inst, 0))
2614 /* JAL/JALR/JALX/JR */
2615 {
2616 /* The instruction in the delay slot can be a part
2617 of the prologue, so move forward once more. */
2618 in_delay_slot = 1;
2619 if (mips16_instruction_has_delay_slot (inst, 1))
2620 /* JAL/JALX */
2621 {
2622 prev_extend_bytes = MIPS_INSN16_SIZE;
2623 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2624 }
2625 }
29639122
JB
2626 else
2627 {
ab50adb6 2628 this_non_prologue_insn = 1;
29639122 2629 }
ab50adb6
MR
2630
2631 non_prologue_insns += this_non_prologue_insn;
2632
2633 /* A jump or branch, or enough non-prologue insns seen? If so,
2634 then we must have reached the end of the prologue by now. */
2635 if (prev_delay_slot || non_prologue_insns > 1
2636 || mips16_instruction_is_compact_branch (inst))
2637 break;
2638
2639 prev_non_prologue_insn = this_non_prologue_insn;
2640 prev_delay_slot = in_delay_slot;
2641 prev_pc = cur_pc - prev_extend_bytes;
29639122 2642 }
eec63939 2643
29639122
JB
2644 /* The entry instruction is typically the first instruction in a function,
2645 and it stores registers at offsets relative to the value of the old SP
2646 (before the prologue). But the value of the sp parameter to this
2647 function is the new SP (after the prologue has been executed). So we
2648 can't calculate those offsets until we've seen the entire prologue,
025bb325 2649 and can calculate what the old SP must have been. */
29639122
JB
2650 if (entry_inst != 0)
2651 {
2652 int areg_count = (entry_inst >> 8) & 7;
2653 int sreg_count = (entry_inst >> 6) & 3;
eec63939 2654
29639122
JB
2655 /* The entry instruction always subtracts 32 from the SP. */
2656 frame_offset += 32;
2657
2658 /* Now we can calculate what the SP must have been at the
2659 start of the function prologue. */
2660 sp += frame_offset;
2661
2662 /* Check if a0-a3 were saved in the caller's argument save area. */
2663 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2664 {
74ed0bb4 2665 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2666 offset += mips_abi_regsize (gdbarch);
29639122
JB
2667 }
2668
2669 /* Check if the ra register was pushed on the stack. */
2670 offset = -4;
2671 if (entry_inst & 0x20)
2672 {
74ed0bb4 2673 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 2674 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2675 }
2676
2677 /* Check if the s0 and s1 registers were pushed on the stack. */
2678 for (reg = 16; reg < sreg_count + 16; reg++)
2679 {
74ed0bb4 2680 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
72a155b4 2681 offset -= mips_abi_regsize (gdbarch);
29639122
JB
2682 }
2683 }
2684
2207132d
MR
2685 /* The SAVE instruction is similar to ENTRY, except that defined by the
2686 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2687 size of the frame is specified as an immediate field of instruction
2688 and an extended variation exists which lets additional registers and
2689 frame space to be specified. The instruction always treats registers
2690 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2691 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2692 {
2693 static int args_table[16] = {
2694 0, 0, 0, 0, 1, 1, 1, 1,
2695 2, 2, 2, 0, 3, 3, 4, -1,
2696 };
2697 static int astatic_table[16] = {
2698 0, 1, 2, 3, 0, 1, 2, 3,
2699 0, 1, 2, 4, 0, 1, 0, -1,
2700 };
2701 int aregs = (save_inst >> 16) & 0xf;
2702 int xsregs = (save_inst >> 24) & 0x7;
2703 int args = args_table[aregs];
2704 int astatic = astatic_table[aregs];
2705 long frame_size;
2706
2707 if (args < 0)
2708 {
2709 warning (_("Invalid number of argument registers encoded in SAVE."));
2710 args = 0;
2711 }
2712 if (astatic < 0)
2713 {
2714 warning (_("Invalid number of static registers encoded in SAVE."));
2715 astatic = 0;
2716 }
2717
2718 /* For standard SAVE the frame size of 0 means 128. */
2719 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2720 if (frame_size == 0 && (save_inst >> 16) == 0)
2721 frame_size = 16;
2722 frame_size *= 8;
2723 frame_offset += frame_size;
2724
2725 /* Now we can calculate what the SP must have been at the
2726 start of the function prologue. */
2727 sp += frame_offset;
2728
2729 /* Check if A0-A3 were saved in the caller's argument save area. */
2730 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2731 {
74ed0bb4 2732 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2733 offset += mips_abi_regsize (gdbarch);
2734 }
2735
2736 offset = -4;
2737
2738 /* Check if the RA register was pushed on the stack. */
2739 if (save_inst & 0x40)
2740 {
74ed0bb4 2741 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2207132d
MR
2742 offset -= mips_abi_regsize (gdbarch);
2743 }
2744
2745 /* Check if the S8 register was pushed on the stack. */
2746 if (xsregs > 6)
2747 {
74ed0bb4 2748 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2207132d
MR
2749 offset -= mips_abi_regsize (gdbarch);
2750 xsregs--;
2751 }
2752 /* Check if S2-S7 were pushed on the stack. */
2753 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2754 {
74ed0bb4 2755 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2207132d
MR
2756 offset -= mips_abi_regsize (gdbarch);
2757 }
2758
2759 /* Check if the S1 register was pushed on the stack. */
2760 if (save_inst & 0x10)
2761 {
74ed0bb4 2762 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2207132d
MR
2763 offset -= mips_abi_regsize (gdbarch);
2764 }
2765 /* Check if the S0 register was pushed on the stack. */
2766 if (save_inst & 0x20)
2767 {
74ed0bb4 2768 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2207132d
MR
2769 offset -= mips_abi_regsize (gdbarch);
2770 }
2771
4cc0665f
MR
2772 /* Check if A0-A3 were pushed on the stack. */
2773 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2774 {
2775 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2776 offset -= mips_abi_regsize (gdbarch);
2777 }
2778 }
2779
2780 if (this_cache != NULL)
2781 {
2782 this_cache->base =
2783 (get_frame_register_signed (this_frame,
2784 gdbarch_num_regs (gdbarch) + frame_reg)
2785 + frame_offset - frame_adjust);
2786 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2787 be able to get rid of the assignment below, evetually. But it's
2788 still needed for now. */
2789 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2790 + mips_regnum (gdbarch)->pc]
2791 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2792 }
2793
ab50adb6
MR
2794 /* Set end_prologue_addr to the address of the instruction immediately
2795 after the last one we scanned. Unless the last one looked like a
2796 non-prologue instruction (and we looked ahead), in which case use
2797 its address instead. */
2798 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2799 ? prev_pc : cur_pc - prev_extend_bytes);
4cc0665f
MR
2800
2801 return end_prologue_addr;
2802}
2803
2804/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2805 Procedures that use the 32-bit instruction set are handled by the
2806 mips_insn32 unwinder. */
2807
2808static struct mips_frame_cache *
2809mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2810{
2811 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2812 struct mips_frame_cache *cache;
2813
2814 if ((*this_cache) != NULL)
19ba03f4 2815 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2816 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2817 (*this_cache) = cache;
2818 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2819
2820 /* Analyze the function prologue. */
2821 {
2822 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2823 CORE_ADDR start_addr;
2824
2825 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2826 if (start_addr == 0)
2827 start_addr = heuristic_proc_start (gdbarch, pc);
2828 /* We can't analyze the prologue if we couldn't find the begining
2829 of the function. */
2830 if (start_addr == 0)
2831 return cache;
2832
19ba03f4
SM
2833 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2834 (struct mips_frame_cache *) *this_cache);
4cc0665f
MR
2835 }
2836
2837 /* gdbarch_sp_regnum contains the value and not the address. */
2838 trad_frame_set_value (cache->saved_regs,
2839 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2840 cache->base);
2841
19ba03f4 2842 return (struct mips_frame_cache *) (*this_cache);
4cc0665f
MR
2843}
2844
2845static void
2846mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2847 struct frame_id *this_id)
2848{
2849 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2850 this_cache);
2851 /* This marks the outermost frame. */
2852 if (info->base == 0)
2853 return;
2854 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2855}
2856
2857static struct value *
2858mips_insn16_frame_prev_register (struct frame_info *this_frame,
2859 void **this_cache, int regnum)
2860{
2861 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2862 this_cache);
2863 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2864}
2865
2866static int
2867mips_insn16_frame_sniffer (const struct frame_unwind *self,
2868 struct frame_info *this_frame, void **this_cache)
2869{
2870 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2871 CORE_ADDR pc = get_frame_pc (this_frame);
2872 if (mips_pc_is_mips16 (gdbarch, pc))
2873 return 1;
2874 return 0;
2875}
2876
2877static const struct frame_unwind mips_insn16_frame_unwind =
2878{
2879 NORMAL_FRAME,
2880 default_frame_unwind_stop_reason,
2881 mips_insn16_frame_this_id,
2882 mips_insn16_frame_prev_register,
2883 NULL,
2884 mips_insn16_frame_sniffer
2885};
2886
2887static CORE_ADDR
2888mips_insn16_frame_base_address (struct frame_info *this_frame,
2889 void **this_cache)
2890{
2891 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2892 this_cache);
2893 return info->base;
2894}
2895
2896static const struct frame_base mips_insn16_frame_base =
2897{
2898 &mips_insn16_frame_unwind,
2899 mips_insn16_frame_base_address,
2900 mips_insn16_frame_base_address,
2901 mips_insn16_frame_base_address
2902};
2903
2904static const struct frame_base *
2905mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2906{
2907 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2908 CORE_ADDR pc = get_frame_pc (this_frame);
2909 if (mips_pc_is_mips16 (gdbarch, pc))
2910 return &mips_insn16_frame_base;
2911 else
2912 return NULL;
2913}
2914
2915/* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2916 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2917 interpreted directly, and then multiplied by 4. */
2918
2919static int
2920micromips_decode_imm9 (int imm)
2921{
2922 imm = (imm ^ 0x100) - 0x100;
2923 if (imm > -3 && imm < 2)
2924 imm ^= 0x100;
2925 return imm << 2;
2926}
2927
2928/* Analyze the function prologue from START_PC to LIMIT_PC. Return
2929 the address of the first instruction past the prologue. */
2930
2931static CORE_ADDR
2932micromips_scan_prologue (struct gdbarch *gdbarch,
2933 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2934 struct frame_info *this_frame,
2935 struct mips_frame_cache *this_cache)
2936{
ab50adb6 2937 CORE_ADDR end_prologue_addr;
4cc0665f
MR
2938 int prev_non_prologue_insn = 0;
2939 int frame_reg = MIPS_SP_REGNUM;
2940 int this_non_prologue_insn;
2941 int non_prologue_insns = 0;
2942 long frame_offset = 0; /* Size of stack frame. */
2943 long frame_adjust = 0; /* Offset of FP from SP. */
ab50adb6
MR
2944 int prev_delay_slot = 0;
2945 int in_delay_slot;
4cc0665f
MR
2946 CORE_ADDR prev_pc;
2947 CORE_ADDR cur_pc;
2948 ULONGEST insn; /* current instruction */
2949 CORE_ADDR sp;
2950 long offset;
2951 long sp_adj;
2952 long v1_off = 0; /* The assumption is LUI will replace it. */
2953 int reglist;
2954 int breg;
2955 int dreg;
2956 int sreg;
2957 int treg;
2958 int loc;
2959 int op;
2960 int s;
2961 int i;
2962
2963 /* Can be called when there's no process, and hence when there's no
2964 THIS_FRAME. */
2965 if (this_frame != NULL)
2966 sp = get_frame_register_signed (this_frame,
2967 gdbarch_num_regs (gdbarch)
2968 + MIPS_SP_REGNUM);
2969 else
2970 sp = 0;
2971
2972 if (limit_pc > start_pc + 200)
2973 limit_pc = start_pc + 200;
2974 prev_pc = start_pc;
2975
2976 /* Permit at most one non-prologue non-control-transfer instruction
2977 in the middle which may have been reordered by the compiler for
2978 optimisation. */
2979 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2980 {
2981 this_non_prologue_insn = 0;
ab50adb6 2982 in_delay_slot = 0;
4cc0665f
MR
2983 sp_adj = 0;
2984 loc = 0;
2985 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2986 loc += MIPS_INSN16_SIZE;
2987 switch (mips_insn_size (ISA_MICROMIPS, insn))
2988 {
4cc0665f
MR
2989 /* 32-bit instructions. */
2990 case 2 * MIPS_INSN16_SIZE:
2991 insn <<= 16;
2992 insn |= mips_fetch_instruction (gdbarch,
2993 ISA_MICROMIPS, cur_pc + loc, NULL);
2994 loc += MIPS_INSN16_SIZE;
2995 switch (micromips_op (insn >> 16))
2996 {
2997 /* Record $sp/$fp adjustment. */
2998 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2999 case 0x0: /* POOL32A: bits 000000 */
3000 case 0x16: /* POOL32S: bits 010110 */
3001 op = b0s11_op (insn);
3002 sreg = b0s5_reg (insn >> 16);
3003 treg = b5s5_reg (insn >> 16);
3004 dreg = b11s5_reg (insn);
3005 if (op == 0x1d0
3006 /* SUBU: bits 000000 00111010000 */
3007 /* DSUBU: bits 010110 00111010000 */
3008 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3009 && treg == 3)
3010 /* (D)SUBU $sp, $v1 */
3011 sp_adj = v1_off;
3012 else if (op != 0x150
3013 /* ADDU: bits 000000 00101010000 */
3014 /* DADDU: bits 010110 00101010000 */
3015 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3016 this_non_prologue_insn = 1;
3017 break;
3018
3019 case 0x8: /* POOL32B: bits 001000 */
3020 op = b12s4_op (insn);
3021 breg = b0s5_reg (insn >> 16);
3022 reglist = sreg = b5s5_reg (insn >> 16);
3023 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3024 if ((op == 0x9 || op == 0xc)
3025 /* SWP: bits 001000 1001 */
3026 /* SDP: bits 001000 1100 */
3027 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3028 /* S[DW]P reg,offset($sp) */
3029 {
3030 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg, sp + offset);
3033 set_reg_offset (gdbarch, this_cache,
3034 sreg + 1, sp + offset + s);
3035 }
3036 else if ((op == 0xd || op == 0xf)
3037 /* SWM: bits 001000 1101 */
3038 /* SDM: bits 001000 1111 */
3039 && breg == MIPS_SP_REGNUM
3040 /* SWM reglist,offset($sp) */
3041 && ((reglist >= 1 && reglist <= 9)
3042 || (reglist >= 16 && reglist <= 25)))
3043 {
325fac50 3044 int sreglist = std::min(reglist & 0xf, 8);
4cc0665f
MR
3045
3046 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3047 for (i = 0; i < sreglist; i++)
3048 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3049 if ((reglist & 0xf) > 8)
3050 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3051 if ((reglist & 0x10) == 0x10)
3052 set_reg_offset (gdbarch, this_cache,
3053 MIPS_RA_REGNUM, sp + s * i++);
3054 }
3055 else
3056 this_non_prologue_insn = 1;
3057 break;
3058
3059 /* Record $sp/$fp adjustment. */
3060 /* Discard (D)ADDIU $gp used for PIC code. */
3061 case 0xc: /* ADDIU: bits 001100 */
3062 case 0x17: /* DADDIU: bits 010111 */
3063 sreg = b0s5_reg (insn >> 16);
3064 dreg = b5s5_reg (insn >> 16);
3065 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3066 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3067 /* (D)ADDIU $sp, imm */
3068 sp_adj = offset;
3069 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3070 /* (D)ADDIU $fp, $sp, imm */
3071 {
4cc0665f
MR
3072 frame_adjust = offset;
3073 frame_reg = 30;
3074 }
3075 else if (sreg != 28 || dreg != 28)
3076 /* (D)ADDIU $gp, imm */
3077 this_non_prologue_insn = 1;
3078 break;
3079
3080 /* LUI $v1 is used for larger $sp adjustments. */
3356937a 3081 /* Discard LUI $gp used for PIC code. */
4cc0665f
MR
3082 case 0x10: /* POOL32I: bits 010000 */
3083 if (b5s5_op (insn >> 16) == 0xd
3084 /* LUI: bits 010000 001101 */
3085 && b0s5_reg (insn >> 16) == 3)
3086 /* LUI $v1, imm */
3087 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3088 else if (b5s5_op (insn >> 16) != 0xd
3089 /* LUI: bits 010000 001101 */
3090 || b0s5_reg (insn >> 16) != 28)
3091 /* LUI $gp, imm */
3092 this_non_prologue_insn = 1;
3093 break;
3094
3095 /* ORI $v1 is used for larger $sp adjustments. */
3096 case 0x14: /* ORI: bits 010100 */
3097 sreg = b0s5_reg (insn >> 16);
3098 dreg = b5s5_reg (insn >> 16);
3099 if (sreg == 3 && dreg == 3)
3100 /* ORI $v1, imm */
3101 v1_off |= b0s16_imm (insn);
3102 else
3103 this_non_prologue_insn = 1;
3104 break;
3105
3106 case 0x26: /* SWC1: bits 100110 */
3107 case 0x2e: /* SDC1: bits 101110 */
3108 breg = b0s5_reg (insn >> 16);
3109 if (breg != MIPS_SP_REGNUM)
3110 /* S[DW]C1 reg,offset($sp) */
3111 this_non_prologue_insn = 1;
3112 break;
3113
3114 case 0x36: /* SD: bits 110110 */
3115 case 0x3e: /* SW: bits 111110 */
3116 breg = b0s5_reg (insn >> 16);
3117 sreg = b5s5_reg (insn >> 16);
3118 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3119 if (breg == MIPS_SP_REGNUM)
3120 /* S[DW] reg,offset($sp) */
3121 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3122 else
3123 this_non_prologue_insn = 1;
3124 break;
3125
3126 default:
ab50adb6
MR
3127 /* The instruction in the delay slot can be a part
3128 of the prologue, so move forward once more. */
3129 if (micromips_instruction_has_delay_slot (insn, 0))
3130 in_delay_slot = 1;
3131 else
3132 this_non_prologue_insn = 1;
4cc0665f
MR
3133 break;
3134 }
ab50adb6 3135 insn >>= 16;
4cc0665f
MR
3136 break;
3137
3138 /* 16-bit instructions. */
3139 case MIPS_INSN16_SIZE:
3140 switch (micromips_op (insn))
3141 {
3142 case 0x3: /* MOVE: bits 000011 */
3143 sreg = b0s5_reg (insn);
3144 dreg = b5s5_reg (insn);
3145 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3146 /* MOVE $fp, $sp */
78cc6c2d 3147 frame_reg = 30;
4cc0665f
MR
3148 else if ((sreg & 0x1c) != 0x4)
3149 /* MOVE reg, $a0-$a3 */
3150 this_non_prologue_insn = 1;
3151 break;
3152
3153 case 0x11: /* POOL16C: bits 010001 */
3154 if (b6s4_op (insn) == 0x5)
3155 /* SWM: bits 010001 0101 */
3156 {
3157 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3158 reglist = b4s2_regl (insn);
3159 for (i = 0; i <= reglist; i++)
3160 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3161 set_reg_offset (gdbarch, this_cache,
3162 MIPS_RA_REGNUM, sp + 4 * i++);
3163 }
3164 else
3165 this_non_prologue_insn = 1;
3166 break;
3167
3168 case 0x13: /* POOL16D: bits 010011 */
3169 if ((insn & 0x1) == 0x1)
3170 /* ADDIUSP: bits 010011 1 */
3171 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3172 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3173 /* ADDIUS5: bits 010011 0 */
3174 /* ADDIUS5 $sp, imm */
3175 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3176 else
3177 this_non_prologue_insn = 1;
3178 break;
3179
3180 case 0x32: /* SWSP: bits 110010 */
3181 offset = b0s5_imm (insn) << 2;
3182 sreg = b5s5_reg (insn);
3183 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3184 break;
3185
3186 default:
ab50adb6
MR
3187 /* The instruction in the delay slot can be a part
3188 of the prologue, so move forward once more. */
3189 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3190 in_delay_slot = 1;
3191 else
3192 this_non_prologue_insn = 1;
4cc0665f
MR
3193 break;
3194 }
3195 break;
3196 }
3197 if (sp_adj < 0)
3198 frame_offset -= sp_adj;
3199
3200 non_prologue_insns += this_non_prologue_insn;
ab50adb6
MR
3201
3202 /* A jump or branch, enough non-prologue insns seen or positive
3203 stack adjustment? If so, then we must have reached the end
3204 of the prologue by now. */
3205 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3206 || micromips_instruction_is_compact_branch (insn))
3207 break;
3208
4cc0665f 3209 prev_non_prologue_insn = this_non_prologue_insn;
ab50adb6 3210 prev_delay_slot = in_delay_slot;
4cc0665f 3211 prev_pc = cur_pc;
2207132d
MR
3212 }
3213
29639122
JB
3214 if (this_cache != NULL)
3215 {
3216 this_cache->base =
4cc0665f 3217 (get_frame_register_signed (this_frame,
b8a22b94 3218 gdbarch_num_regs (gdbarch) + frame_reg)
4cc0665f 3219 + frame_offset - frame_adjust);
29639122 3220 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
4cc0665f
MR
3221 be able to get rid of the assignment below, evetually. But it's
3222 still needed for now. */
72a155b4
UW
3223 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3224 + mips_regnum (gdbarch)->pc]
4cc0665f 3225 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
3226 }
3227
ab50adb6
MR
3228 /* Set end_prologue_addr to the address of the instruction immediately
3229 after the last one we scanned. Unless the last one looked like a
3230 non-prologue instruction (and we looked ahead), in which case use
3231 its address instead. */
3232 end_prologue_addr
3233 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3234
3235 return end_prologue_addr;
eec63939
AC
3236}
3237
4cc0665f 3238/* Heuristic unwinder for procedures using microMIPS instructions.
29639122 3239 Procedures that use the 32-bit instruction set are handled by the
4cc0665f 3240 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
29639122
JB
3241
3242static struct mips_frame_cache *
4cc0665f 3243mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
eec63939 3244{
e17a4113 3245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3246 struct mips_frame_cache *cache;
eec63939
AC
3247
3248 if ((*this_cache) != NULL)
19ba03f4 3249 return (struct mips_frame_cache *) (*this_cache);
4cc0665f 3250
29639122
JB
3251 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3252 (*this_cache) = cache;
b8a22b94 3253 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
eec63939 3254
29639122
JB
3255 /* Analyze the function prologue. */
3256 {
b8a22b94 3257 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3258 CORE_ADDR start_addr;
eec63939 3259
29639122
JB
3260 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3261 if (start_addr == 0)
4cc0665f 3262 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
29639122
JB
3263 /* We can't analyze the prologue if we couldn't find the begining
3264 of the function. */
3265 if (start_addr == 0)
3266 return cache;
eec63939 3267
19ba03f4
SM
3268 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3269 (struct mips_frame_cache *) *this_cache);
29639122 3270 }
4cc0665f 3271
3e8c568d 3272 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4 3273 trad_frame_set_value (cache->saved_regs,
e17a4113 3274 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
72a155b4 3275 cache->base);
eec63939 3276
19ba03f4 3277 return (struct mips_frame_cache *) (*this_cache);
eec63939
AC
3278}
3279
3280static void
4cc0665f
MR
3281mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3282 struct frame_id *this_id)
eec63939 3283{
4cc0665f
MR
3284 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3285 this_cache);
21327321
DJ
3286 /* This marks the outermost frame. */
3287 if (info->base == 0)
3288 return;
b8a22b94 3289 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
eec63939
AC
3290}
3291
b8a22b94 3292static struct value *
4cc0665f
MR
3293mips_micro_frame_prev_register (struct frame_info *this_frame,
3294 void **this_cache, int regnum)
eec63939 3295{
4cc0665f
MR
3296 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3297 this_cache);
b8a22b94
DJ
3298 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3299}
3300
3301static int
4cc0665f
MR
3302mips_micro_frame_sniffer (const struct frame_unwind *self,
3303 struct frame_info *this_frame, void **this_cache)
b8a22b94 3304{
4cc0665f 3305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3306 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3307
3308 if (mips_pc_is_micromips (gdbarch, pc))
b8a22b94
DJ
3309 return 1;
3310 return 0;
eec63939
AC
3311}
3312
4cc0665f 3313static const struct frame_unwind mips_micro_frame_unwind =
eec63939
AC
3314{
3315 NORMAL_FRAME,
8fbca658 3316 default_frame_unwind_stop_reason,
4cc0665f
MR
3317 mips_micro_frame_this_id,
3318 mips_micro_frame_prev_register,
b8a22b94 3319 NULL,
4cc0665f 3320 mips_micro_frame_sniffer
eec63939
AC
3321};
3322
eec63939 3323static CORE_ADDR
4cc0665f
MR
3324mips_micro_frame_base_address (struct frame_info *this_frame,
3325 void **this_cache)
eec63939 3326{
4cc0665f
MR
3327 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3328 this_cache);
29639122 3329 return info->base;
eec63939
AC
3330}
3331
4cc0665f 3332static const struct frame_base mips_micro_frame_base =
eec63939 3333{
4cc0665f
MR
3334 &mips_micro_frame_unwind,
3335 mips_micro_frame_base_address,
3336 mips_micro_frame_base_address,
3337 mips_micro_frame_base_address
eec63939
AC
3338};
3339
3340static const struct frame_base *
4cc0665f 3341mips_micro_frame_base_sniffer (struct frame_info *this_frame)
eec63939 3342{
4cc0665f 3343 struct gdbarch *gdbarch = get_frame_arch (this_frame);
b8a22b94 3344 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f
MR
3345
3346 if (mips_pc_is_micromips (gdbarch, pc))
3347 return &mips_micro_frame_base;
eec63939
AC
3348 else
3349 return NULL;
edfae063
AC
3350}
3351
29639122
JB
3352/* Mark all the registers as unset in the saved_regs array
3353 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3354
74ed0bb4
MD
3355static void
3356reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
c906108c 3357{
29639122
JB
3358 if (this_cache == NULL || this_cache->saved_regs == NULL)
3359 return;
3360
3361 {
74ed0bb4 3362 const int num_regs = gdbarch_num_regs (gdbarch);
29639122 3363 int i;
64159455 3364
29639122
JB
3365 for (i = 0; i < num_regs; i++)
3366 {
3367 this_cache->saved_regs[i].addr = -1;
3368 }
3369 }
c906108c
SS
3370}
3371
025bb325 3372/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
29639122
JB
3373 the associated FRAME_CACHE if not null.
3374 Return the address of the first instruction past the prologue. */
c906108c 3375
875e1767 3376static CORE_ADDR
e17a4113
UW
3377mips32_scan_prologue (struct gdbarch *gdbarch,
3378 CORE_ADDR start_pc, CORE_ADDR limit_pc,
b8a22b94 3379 struct frame_info *this_frame,
29639122 3380 struct mips_frame_cache *this_cache)
c906108c 3381{
ab50adb6
MR
3382 int prev_non_prologue_insn;
3383 int this_non_prologue_insn;
3384 int non_prologue_insns;
025bb325
MS
3385 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3386 frame-pointer. */
ab50adb6
MR
3387 int prev_delay_slot;
3388 CORE_ADDR prev_pc;
3389 CORE_ADDR cur_pc;
29639122
JB
3390 CORE_ADDR sp;
3391 long frame_offset;
3392 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 3393
ab50adb6 3394 CORE_ADDR end_prologue_addr;
29639122
JB
3395 int seen_sp_adjust = 0;
3396 int load_immediate_bytes = 0;
ab50adb6 3397 int in_delay_slot;
7d1e6fb8 3398 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
8fa9cfa1 3399
29639122 3400 /* Can be called when there's no process, and hence when there's no
b8a22b94
DJ
3401 THIS_FRAME. */
3402 if (this_frame != NULL)
3403 sp = get_frame_register_signed (this_frame,
3404 gdbarch_num_regs (gdbarch)
3405 + MIPS_SP_REGNUM);
8fa9cfa1 3406 else
29639122 3407 sp = 0;
9022177c 3408
29639122
JB
3409 if (limit_pc > start_pc + 200)
3410 limit_pc = start_pc + 200;
9022177c 3411
29639122 3412restart:
ab50adb6
MR
3413 prev_non_prologue_insn = 0;
3414 non_prologue_insns = 0;
3415 prev_delay_slot = 0;
3416 prev_pc = start_pc;
9022177c 3417
ab50adb6
MR
3418 /* Permit at most one non-prologue non-control-transfer instruction
3419 in the middle which may have been reordered by the compiler for
3420 optimisation. */
29639122 3421 frame_offset = 0;
95ac2dcf 3422 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 3423 {
eaa6a9a4
MR
3424 unsigned long inst, high_word;
3425 long offset;
29639122 3426 int reg;
9022177c 3427
ab50adb6
MR
3428 this_non_prologue_insn = 0;
3429 in_delay_slot = 0;
3430
025bb325 3431 /* Fetch the instruction. */
4cc0665f
MR
3432 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3433 cur_pc, NULL);
9022177c 3434
29639122
JB
3435 /* Save some code by pre-extracting some useful fields. */
3436 high_word = (inst >> 16) & 0xffff;
eaa6a9a4 3437 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
29639122 3438 reg = high_word & 0x1f;
fe29b929 3439
025bb325 3440 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
29639122
JB
3441 || high_word == 0x23bd /* addi $sp,$sp,-i */
3442 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3443 {
eaa6a9a4
MR
3444 if (offset < 0) /* Negative stack adjustment? */
3445 frame_offset -= offset;
29639122
JB
3446 else
3447 /* Exit loop if a positive stack adjustment is found, which
3448 usually means that the stack cleanup code in the function
3449 epilogue is reached. */
3450 break;
3451 seen_sp_adjust = 1;
3452 }
7d1e6fb8
KB
3453 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3454 && !regsize_is_64_bits)
29639122 3455 {
eaa6a9a4 3456 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122 3457 }
7d1e6fb8
KB
3458 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3459 && regsize_is_64_bits)
29639122
JB
3460 {
3461 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
eaa6a9a4 3462 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
29639122
JB
3463 }
3464 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3465 {
3466 /* Old gcc frame, r30 is virtual frame pointer. */
eaa6a9a4
MR
3467 if (offset != frame_offset)
3468 frame_addr = sp + offset;
b8a22b94 3469 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3470 {
3471 unsigned alloca_adjust;
a4b8ebc8 3472
29639122 3473 frame_reg = 30;
b8a22b94
DJ
3474 frame_addr = get_frame_register_signed
3475 (this_frame, gdbarch_num_regs (gdbarch) + 30);
ca9c94ef 3476 frame_offset = 0;
d2ca4222 3477
eaa6a9a4 3478 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
29639122
JB
3479 if (alloca_adjust > 0)
3480 {
025bb325 3481 /* FP > SP + frame_size. This may be because of
29639122
JB
3482 an alloca or somethings similar. Fix sp to
3483 "pre-alloca" value, and try again. */
3484 sp += alloca_adjust;
3485 /* Need to reset the status of all registers. Otherwise,
3486 we will hit a guard that prevents the new address
3487 for each register to be recomputed during the second
3488 pass. */
74ed0bb4 3489 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3490 goto restart;
3491 }
3492 }
3493 }
3494 /* move $30,$sp. With different versions of gas this will be either
3495 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3496 Accept any one of these. */
3497 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3498 {
3499 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
b8a22b94 3500 if (this_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
3501 {
3502 unsigned alloca_adjust;
c906108c 3503
29639122 3504 frame_reg = 30;
b8a22b94
DJ
3505 frame_addr = get_frame_register_signed
3506 (this_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 3507
29639122
JB
3508 alloca_adjust = (unsigned) (frame_addr - sp);
3509 if (alloca_adjust > 0)
3510 {
025bb325 3511 /* FP > SP + frame_size. This may be because of
29639122
JB
3512 an alloca or somethings similar. Fix sp to
3513 "pre-alloca" value, and try again. */
3514 sp = frame_addr;
3515 /* Need to reset the status of all registers. Otherwise,
3516 we will hit a guard that prevents the new address
3517 for each register to be recomputed during the second
3518 pass. */
74ed0bb4 3519 reset_saved_regs (gdbarch, this_cache);
29639122
JB
3520 goto restart;
3521 }
3522 }
3523 }
7d1e6fb8
KB
3524 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3525 && !regsize_is_64_bits)
29639122 3526 {
eaa6a9a4 3527 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
29639122
JB
3528 }
3529 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3530 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3531 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3532 || high_word == 0x3c1c /* lui $gp,n */
3533 || high_word == 0x279c /* addiu $gp,$gp,n */
3534 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3535 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3536 )
19080931
MR
3537 {
3538 /* These instructions are part of the prologue, but we don't
3539 need to do anything special to handle them. */
3540 }
29639122
JB
3541 /* The instructions below load $at or $t0 with an immediate
3542 value in preparation for a stack adjustment via
025bb325 3543 subu $sp,$sp,[$at,$t0]. These instructions could also
29639122
JB
3544 initialize a local variable, so we accept them only before
3545 a stack adjustment instruction was seen. */
3546 else if (!seen_sp_adjust
ab50adb6 3547 && !prev_delay_slot
19080931
MR
3548 && (high_word == 0x3c01 /* lui $at,n */
3549 || high_word == 0x3c08 /* lui $t0,n */
3550 || high_word == 0x3421 /* ori $at,$at,n */
3551 || high_word == 0x3508 /* ori $t0,$t0,n */
3552 || high_word == 0x3401 /* ori $at,$zero,n */
3553 || high_word == 0x3408 /* ori $t0,$zero,n */
3554 ))
3555 {
ab50adb6 3556 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
19080931 3557 }
ab50adb6
MR
3558 /* Check for branches and jumps. The instruction in the delay
3559 slot can be a part of the prologue, so move forward once more. */
3560 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3561 {
3562 in_delay_slot = 1;
3563 }
3564 /* This instruction is not an instruction typically found
3565 in a prologue, so we must have reached the end of the
3566 prologue. */
29639122 3567 else
19080931 3568 {
ab50adb6 3569 this_non_prologue_insn = 1;
19080931 3570 }
db5f024e 3571
ab50adb6
MR
3572 non_prologue_insns += this_non_prologue_insn;
3573
3574 /* A jump or branch, or enough non-prologue insns seen? If so,
3575 then we must have reached the end of the prologue by now. */
3576 if (prev_delay_slot || non_prologue_insns > 1)
db5f024e 3577 break;
ab50adb6
MR
3578
3579 prev_non_prologue_insn = this_non_prologue_insn;
3580 prev_delay_slot = in_delay_slot;
3581 prev_pc = cur_pc;
a4b8ebc8 3582 }
c906108c 3583
29639122
JB
3584 if (this_cache != NULL)
3585 {
3586 this_cache->base =
b8a22b94
DJ
3587 (get_frame_register_signed (this_frame,
3588 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
3589 + frame_offset);
3590 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3591 this assignment below, eventually. But it's still needed
3592 for now. */
72a155b4
UW
3593 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3594 + mips_regnum (gdbarch)->pc]
3595 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 3596 + MIPS_RA_REGNUM];
29639122 3597 }
c906108c 3598
ab50adb6
MR
3599 /* Set end_prologue_addr to the address of the instruction immediately
3600 after the last one we scanned. Unless the last one looked like a
3601 non-prologue instruction (and we looked ahead), in which case use
3602 its address instead. */
3603 end_prologue_addr
3604 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
29639122
JB
3605
3606 /* In a frameless function, we might have incorrectly
025bb325 3607 skipped some load immediate instructions. Undo the skipping
29639122
JB
3608 if the load immediate was not followed by a stack adjustment. */
3609 if (load_immediate_bytes && !seen_sp_adjust)
3610 end_prologue_addr -= load_immediate_bytes;
c906108c 3611
29639122 3612 return end_prologue_addr;
c906108c
SS
3613}
3614
29639122
JB
3615/* Heuristic unwinder for procedures using 32-bit instructions (covers
3616 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3617 instructions (a.k.a. MIPS16) are handled by the mips_insn16
4cc0665f 3618 unwinder. Likewise microMIPS and the mips_micro unwinder. */
c906108c 3619
29639122 3620static struct mips_frame_cache *
b8a22b94 3621mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
c906108c 3622{
e17a4113 3623 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29639122 3624 struct mips_frame_cache *cache;
c906108c 3625
29639122 3626 if ((*this_cache) != NULL)
19ba03f4 3627 return (struct mips_frame_cache *) (*this_cache);
c5aa993b 3628
29639122
JB
3629 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3630 (*this_cache) = cache;
b8a22b94 3631 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c5aa993b 3632
29639122
JB
3633 /* Analyze the function prologue. */
3634 {
b8a22b94 3635 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
29639122 3636 CORE_ADDR start_addr;
c906108c 3637
29639122
JB
3638 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3639 if (start_addr == 0)
e17a4113 3640 start_addr = heuristic_proc_start (gdbarch, pc);
29639122
JB
3641 /* We can't analyze the prologue if we couldn't find the begining
3642 of the function. */
3643 if (start_addr == 0)
3644 return cache;
c5aa993b 3645
19ba03f4
SM
3646 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3647 (struct mips_frame_cache *) *this_cache);
29639122
JB
3648 }
3649
3e8c568d 3650 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 3651 trad_frame_set_value (cache->saved_regs,
e17a4113 3652 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
f57d151a 3653 cache->base);
c5aa993b 3654
19ba03f4 3655 return (struct mips_frame_cache *) (*this_cache);
c906108c
SS
3656}
3657
29639122 3658static void
b8a22b94 3659mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122 3660 struct frame_id *this_id)
c906108c 3661{
b8a22b94 3662 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3663 this_cache);
21327321
DJ
3664 /* This marks the outermost frame. */
3665 if (info->base == 0)
3666 return;
b8a22b94 3667 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
29639122 3668}
c906108c 3669
b8a22b94
DJ
3670static struct value *
3671mips_insn32_frame_prev_register (struct frame_info *this_frame,
3672 void **this_cache, int regnum)
29639122 3673{
b8a22b94 3674 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122 3675 this_cache);
b8a22b94
DJ
3676 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3677}
3678
3679static int
3680mips_insn32_frame_sniffer (const struct frame_unwind *self,
3681 struct frame_info *this_frame, void **this_cache)
3682{
3683 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3684 if (mips_pc_is_mips (pc))
b8a22b94
DJ
3685 return 1;
3686 return 0;
c906108c
SS
3687}
3688
29639122
JB
3689static const struct frame_unwind mips_insn32_frame_unwind =
3690{
3691 NORMAL_FRAME,
8fbca658 3692 default_frame_unwind_stop_reason,
29639122 3693 mips_insn32_frame_this_id,
b8a22b94
DJ
3694 mips_insn32_frame_prev_register,
3695 NULL,
3696 mips_insn32_frame_sniffer
29639122 3697};
c906108c 3698
1c645fec 3699static CORE_ADDR
b8a22b94 3700mips_insn32_frame_base_address (struct frame_info *this_frame,
29639122 3701 void **this_cache)
c906108c 3702{
b8a22b94 3703 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
29639122
JB
3704 this_cache);
3705 return info->base;
3706}
c906108c 3707
29639122
JB
3708static const struct frame_base mips_insn32_frame_base =
3709{
3710 &mips_insn32_frame_unwind,
3711 mips_insn32_frame_base_address,
3712 mips_insn32_frame_base_address,
3713 mips_insn32_frame_base_address
3714};
1c645fec 3715
29639122 3716static const struct frame_base *
b8a22b94 3717mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
29639122 3718{
b8a22b94 3719 CORE_ADDR pc = get_frame_pc (this_frame);
4cc0665f 3720 if (mips_pc_is_mips (pc))
29639122 3721 return &mips_insn32_frame_base;
a65bbe44 3722 else
29639122
JB
3723 return NULL;
3724}
a65bbe44 3725
29639122 3726static struct trad_frame_cache *
b8a22b94 3727mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
29639122
JB
3728{
3729 CORE_ADDR pc;
3730 CORE_ADDR start_addr;
3731 CORE_ADDR stack_addr;
3732 struct trad_frame_cache *this_trad_cache;
b8a22b94
DJ
3733 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3734 int num_regs = gdbarch_num_regs (gdbarch);
c906108c 3735
29639122 3736 if ((*this_cache) != NULL)
19ba03f4 3737 return (struct trad_frame_cache *) (*this_cache);
b8a22b94 3738 this_trad_cache = trad_frame_cache_zalloc (this_frame);
29639122 3739 (*this_cache) = this_trad_cache;
1c645fec 3740
29639122 3741 /* The return address is in the link register. */
3e8c568d 3742 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4 3743 gdbarch_pc_regnum (gdbarch),
b8a22b94 3744 num_regs + MIPS_RA_REGNUM);
1c645fec 3745
29639122
JB
3746 /* Frame ID, since it's a frameless / stackless function, no stack
3747 space is allocated and SP on entry is the current SP. */
b8a22b94 3748 pc = get_frame_pc (this_frame);
29639122 3749 find_pc_partial_function (pc, NULL, &start_addr, NULL);
b8a22b94
DJ
3750 stack_addr = get_frame_register_signed (this_frame,
3751 num_regs + MIPS_SP_REGNUM);
aa6c981f 3752 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 3753
29639122
JB
3754 /* Assume that the frame's base is the same as the
3755 stack-pointer. */
3756 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 3757
29639122
JB
3758 return this_trad_cache;
3759}
c906108c 3760
29639122 3761static void
b8a22b94 3762mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
29639122
JB
3763 struct frame_id *this_id)
3764{
3765 struct trad_frame_cache *this_trad_cache
b8a22b94 3766 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3767 trad_frame_get_id (this_trad_cache, this_id);
3768}
c906108c 3769
b8a22b94
DJ
3770static struct value *
3771mips_stub_frame_prev_register (struct frame_info *this_frame,
3772 void **this_cache, int regnum)
29639122
JB
3773{
3774 struct trad_frame_cache *this_trad_cache
b8a22b94
DJ
3775 = mips_stub_frame_cache (this_frame, this_cache);
3776 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
29639122 3777}
c906108c 3778
b8a22b94
DJ
3779static int
3780mips_stub_frame_sniffer (const struct frame_unwind *self,
3781 struct frame_info *this_frame, void **this_cache)
29639122 3782{
aa6c981f 3783 gdb_byte dummy[4];
b8a22b94 3784 CORE_ADDR pc = get_frame_address_in_block (this_frame);
7cbd4a93 3785 struct bound_minimal_symbol msym;
979b38e0 3786
aa6c981f 3787 /* Use the stub unwinder for unreadable code. */
b8a22b94
DJ
3788 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3789 return 1;
aa6c981f 3790
3e5d3a5a 3791 if (in_plt_section (pc) || in_mips_stubs_section (pc))
b8a22b94 3792 return 1;
979b38e0 3793
db5f024e
DJ
3794 /* Calling a PIC function from a non-PIC function passes through a
3795 stub. The stub for foo is named ".pic.foo". */
3796 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 3797 if (msym.minsym != NULL
efd66ac6 3798 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
61012eef 3799 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
3800 return 1;
3801
b8a22b94 3802 return 0;
29639122 3803}
c906108c 3804
b8a22b94
DJ
3805static const struct frame_unwind mips_stub_frame_unwind =
3806{
3807 NORMAL_FRAME,
8fbca658 3808 default_frame_unwind_stop_reason,
b8a22b94
DJ
3809 mips_stub_frame_this_id,
3810 mips_stub_frame_prev_register,
3811 NULL,
3812 mips_stub_frame_sniffer
3813};
3814
29639122 3815static CORE_ADDR
b8a22b94 3816mips_stub_frame_base_address (struct frame_info *this_frame,
29639122
JB
3817 void **this_cache)
3818{
3819 struct trad_frame_cache *this_trad_cache
b8a22b94 3820 = mips_stub_frame_cache (this_frame, this_cache);
29639122
JB
3821 return trad_frame_get_this_base (this_trad_cache);
3822}
0fce0821 3823
29639122
JB
3824static const struct frame_base mips_stub_frame_base =
3825{
3826 &mips_stub_frame_unwind,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address,
3829 mips_stub_frame_base_address
3830};
3831
3832static const struct frame_base *
b8a22b94 3833mips_stub_frame_base_sniffer (struct frame_info *this_frame)
29639122 3834{
b8a22b94 3835 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
29639122
JB
3836 return &mips_stub_frame_base;
3837 else
3838 return NULL;
3839}
3840
29639122 3841/* mips_addr_bits_remove - remove useless address bits */
65596487 3842
29639122 3843static CORE_ADDR
24568a2c 3844mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
65596487 3845{
24568a2c 3846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
930bd0e0 3847
29639122
JB
3848 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3849 /* This hack is a work-around for existing boards using PMON, the
3850 simulator, and any other 64-bit targets that doesn't have true
3851 64-bit addressing. On these targets, the upper 32 bits of
3852 addresses are ignored by the hardware. Thus, the PC or SP are
3853 likely to have been sign extended to all 1s by instruction
3854 sequences that load 32-bit addresses. For example, a typical
3855 piece of code that loads an address is this:
65596487 3856
29639122
JB
3857 lui $r2, <upper 16 bits>
3858 ori $r2, <lower 16 bits>
65596487 3859
29639122
JB
3860 But the lui sign-extends the value such that the upper 32 bits
3861 may be all 1s. The workaround is simply to mask off these
3862 bits. In the future, gcc may be changed to support true 64-bit
3863 addressing, and this masking will have to be disabled. */
3864 return addr &= 0xffffffffUL;
3865 else
3866 return addr;
65596487
JB
3867}
3868
3d5f6d12
DJ
3869
3870/* Checks for an atomic sequence of instructions beginning with a LL/LLD
3871 instruction and ending with a SC/SCD instruction. If such a sequence
3872 is found, attempt to step through it. A breakpoint is placed at the end of
3873 the sequence. */
3874
4cc0665f
MR
3875/* Instructions used during single-stepping of atomic sequences, standard
3876 ISA version. */
3877#define LL_OPCODE 0x30
3878#define LLD_OPCODE 0x34
3879#define SC_OPCODE 0x38
3880#define SCD_OPCODE 0x3c
3881
a0ff9e1a 3882static std::vector<CORE_ADDR>
93f9a11f 3883mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3d5f6d12
DJ
3884{
3885 CORE_ADDR breaks[2] = {-1, -1};
3886 CORE_ADDR loc = pc;
3887 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
4cc0665f 3888 ULONGEST insn;
3d5f6d12
DJ
3889 int insn_count;
3890 int index;
3891 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3892 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3893
4cc0665f 3894 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3895 /* Assume all atomic sequences start with a ll/lld instruction. */
3896 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
a0ff9e1a 3897 return {};
3d5f6d12
DJ
3898
3899 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3900 instructions. */
3901 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3902 {
3903 int is_branch = 0;
3904 loc += MIPS_INSN32_SIZE;
4cc0665f 3905 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3d5f6d12
DJ
3906
3907 /* Assume that there is at most one branch in the atomic
3908 sequence. If a branch is found, put a breakpoint in its
3909 destination address. */
3910 switch (itype_op (insn))
3911 {
3912 case 0: /* SPECIAL */
3913 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
a0ff9e1a 3914 return {}; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3915 break;
3916 case 1: /* REGIMM */
a385295e
MR
3917 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3918 || ((itype_rt (insn) & 0x1e) == 0
3919 && itype_rs (insn) == 0)); /* BPOSGE* */
3d5f6d12
DJ
3920 break;
3921 case 2: /* J */
3922 case 3: /* JAL */
a0ff9e1a 3923 return {}; /* fallback to the standard single-step code. */
3d5f6d12
DJ
3924 case 4: /* BEQ */
3925 case 5: /* BNE */
3926 case 6: /* BLEZ */
3927 case 7: /* BGTZ */
3928 case 20: /* BEQL */
3929 case 21: /* BNEL */
3930 case 22: /* BLEZL */
3931 case 23: /* BGTTL */
3932 is_branch = 1;
3933 break;
3934 case 17: /* COP1 */
a385295e
MR
3935 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3936 && (itype_rt (insn) & 0x2) == 0);
3937 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3938 break;
3939 /* Fall through. */
3d5f6d12
DJ
3940 case 18: /* COP2 */
3941 case 19: /* COP3 */
3942 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3943 break;
3944 }
3945 if (is_branch)
3946 {
3947 branch_bp = loc + mips32_relative_offset (insn) + 4;
3948 if (last_breakpoint >= 1)
a0ff9e1a
SM
3949 return {}; /* More than one branch found, fallback to the
3950 standard single-step code. */
3d5f6d12
DJ
3951 breaks[1] = branch_bp;
3952 last_breakpoint++;
3953 }
3954
3955 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3956 break;
3957 }
3958
3959 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3960 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
a0ff9e1a 3961 return {};
3d5f6d12
DJ
3962
3963 loc += MIPS_INSN32_SIZE;
3964
3965 /* Insert a breakpoint right after the end of the atomic sequence. */
3966 breaks[0] = loc;
3967
3968 /* Check for duplicated breakpoints. Check also for a breakpoint
025bb325 3969 placed (branch instruction's destination) in the atomic sequence. */
3d5f6d12
DJ
3970 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3971 last_breakpoint = 0;
3972
a0ff9e1a
SM
3973 std::vector<CORE_ADDR> next_pcs;
3974
3d5f6d12
DJ
3975 /* Effectively inserts the breakpoints. */
3976 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 3977 next_pcs.push_back (breaks[index]);
3d5f6d12 3978
93f9a11f 3979 return next_pcs;
3d5f6d12
DJ
3980}
3981
a0ff9e1a 3982static std::vector<CORE_ADDR>
4cc0665f 3983micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4cc0665f
MR
3984 CORE_ADDR pc)
3985{
3986 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3987 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3988 CORE_ADDR breaks[2] = {-1, -1};
4b844a38
AT
3989 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3990 destination. */
4cc0665f
MR
3991 CORE_ADDR loc = pc;
3992 int sc_found = 0;
3993 ULONGEST insn;
3994 int insn_count;
3995 int index;
3996
3997 /* Assume all atomic sequences start with a ll/lld instruction. */
3998 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3999 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
a0ff9e1a 4000 return {};
4cc0665f
MR
4001 loc += MIPS_INSN16_SIZE;
4002 insn <<= 16;
4003 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4004 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
a0ff9e1a 4005 return {};
4cc0665f
MR
4006 loc += MIPS_INSN16_SIZE;
4007
4008 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4009 that no atomic sequence is longer than "atomic_sequence_length"
4010 instructions. */
4011 for (insn_count = 0;
4012 !sc_found && insn_count < atomic_sequence_length;
4013 ++insn_count)
4014 {
4015 int is_branch = 0;
4016
4017 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4018 loc += MIPS_INSN16_SIZE;
4019
4020 /* Assume that there is at most one conditional branch in the
4021 atomic sequence. If a branch is found, put a breakpoint in
4022 its destination address. */
4023 switch (mips_insn_size (ISA_MICROMIPS, insn))
4024 {
4cc0665f
MR
4025 /* 32-bit instructions. */
4026 case 2 * MIPS_INSN16_SIZE:
4027 switch (micromips_op (insn))
4028 {
4029 case 0x10: /* POOL32I: bits 010000 */
4030 if ((b5s5_op (insn) & 0x18) != 0x0
4031 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4032 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4033 && (b5s5_op (insn) & 0x1d) != 0x11
4034 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4035 && ((b5s5_op (insn) & 0x1e) != 0x14
4036 || (insn & 0x3) != 0x0)
4037 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4038 && (b5s5_op (insn) & 0x1e) != 0x1a
4039 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4040 && ((b5s5_op (insn) & 0x1e) != 0x1c
4041 || (insn & 0x3) != 0x0)
4042 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4043 && ((b5s5_op (insn) & 0x1c) != 0x1c
4044 || (insn & 0x3) != 0x1))
4045 /* BC1ANY*: bits 010000 111xx xxx01 */
4046 break;
4047 /* Fall through. */
4048
4049 case 0x25: /* BEQ: bits 100101 */
4050 case 0x2d: /* BNE: bits 101101 */
4051 insn <<= 16;
4052 insn |= mips_fetch_instruction (gdbarch,
4053 ISA_MICROMIPS, loc, NULL);
4054 branch_bp = (loc + MIPS_INSN16_SIZE
4055 + micromips_relative_offset16 (insn));
4056 is_branch = 1;
4057 break;
4058
4059 case 0x00: /* POOL32A: bits 000000 */
4060 insn <<= 16;
4061 insn |= mips_fetch_instruction (gdbarch,
4062 ISA_MICROMIPS, loc, NULL);
4063 if (b0s6_op (insn) != 0x3c
4064 /* POOL32Axf: bits 000000 ... 111100 */
4065 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4066 /* JALR, JALR.HB: 000000 000x111100 111100 */
4067 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4068 break;
4069 /* Fall through. */
4070
4071 case 0x1d: /* JALS: bits 011101 */
4072 case 0x35: /* J: bits 110101 */
4073 case 0x3d: /* JAL: bits 111101 */
4074 case 0x3c: /* JALX: bits 111100 */
a0ff9e1a 4075 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4076
4077 case 0x18: /* POOL32C: bits 011000 */
4078 if ((b12s4_op (insn) & 0xb) == 0xb)
4079 /* SC, SCD: bits 011000 1x11 */
4080 sc_found = 1;
4081 break;
4082 }
4083 loc += MIPS_INSN16_SIZE;
4084 break;
4085
4086 /* 16-bit instructions. */
4087 case MIPS_INSN16_SIZE:
4088 switch (micromips_op (insn))
4089 {
4090 case 0x23: /* BEQZ16: bits 100011 */
4091 case 0x2b: /* BNEZ16: bits 101011 */
4092 branch_bp = loc + micromips_relative_offset7 (insn);
4093 is_branch = 1;
4094 break;
4095
4096 case 0x11: /* POOL16C: bits 010001 */
4097 if ((b5s5_op (insn) & 0x1c) != 0xc
4098 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4099 && b5s5_op (insn) != 0x18)
4100 /* JRADDIUSP: bits 010001 11000 */
4101 break;
a0ff9e1a 4102 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4103
4104 case 0x33: /* B16: bits 110011 */
a0ff9e1a 4105 return {}; /* Fall back to the standard single-step code. */
4cc0665f
MR
4106 }
4107 break;
4108 }
4109 if (is_branch)
4110 {
4111 if (last_breakpoint >= 1)
a0ff9e1a
SM
4112 return {}; /* More than one branch found, fallback to the
4113 standard single-step code. */
4cc0665f
MR
4114 breaks[1] = branch_bp;
4115 last_breakpoint++;
4116 }
4117 }
4118 if (!sc_found)
a0ff9e1a 4119 return {};
4cc0665f
MR
4120
4121 /* Insert a breakpoint right after the end of the atomic sequence. */
4122 breaks[0] = loc;
4123
4124 /* Check for duplicated breakpoints. Check also for a breakpoint
4125 placed (branch instruction's destination) in the atomic sequence */
4126 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4127 last_breakpoint = 0;
4128
a0ff9e1a
SM
4129 std::vector<CORE_ADDR> next_pcs;
4130
4cc0665f
MR
4131 /* Effectively inserts the breakpoints. */
4132 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 4133 next_pcs.push_back (breaks[index]);
4cc0665f 4134
93f9a11f 4135 return next_pcs;
4cc0665f
MR
4136}
4137
a0ff9e1a 4138static std::vector<CORE_ADDR>
93f9a11f 4139deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
4140{
4141 if (mips_pc_is_mips (pc))
93f9a11f 4142 return mips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4143 else if (mips_pc_is_micromips (gdbarch, pc))
93f9a11f 4144 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4cc0665f 4145 else
a0ff9e1a 4146 return {};
4cc0665f
MR
4147}
4148
29639122
JB
4149/* mips_software_single_step() is called just before we want to resume
4150 the inferior, if we want to single-step it but there is no hardware
4151 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 4152 the target of the coming instruction and breakpoint it. */
29639122 4153
a0ff9e1a 4154std::vector<CORE_ADDR>
f5ea389a 4155mips_software_single_step (struct regcache *regcache)
c906108c 4156{
ac7936df 4157 struct gdbarch *gdbarch = regcache->arch ();
8181d85f 4158 CORE_ADDR pc, next_pc;
65596487 4159
7113a196 4160 pc = regcache_read_pc (regcache);
a0ff9e1a
SM
4161 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4162
4163 if (!next_pcs.empty ())
93f9a11f 4164 return next_pcs;
3d5f6d12 4165
7113a196 4166 next_pc = mips_next_pc (regcache, pc);
e6590a1b 4167
a0ff9e1a 4168 return {next_pc};
29639122 4169}
a65bbe44 4170
29639122 4171/* Test whether the PC points to the return instruction at the
025bb325 4172 end of a function. */
65596487 4173
29639122 4174static int
e17a4113 4175mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122 4176{
6321c22a
MR
4177 ULONGEST insn;
4178 ULONGEST hint;
4179
4180 /* This used to check for MIPS16, but this piece of code is never
4cc0665f
MR
4181 called for MIPS16 functions. And likewise microMIPS ones. */
4182 gdb_assert (mips_pc_is_mips (pc));
6321c22a 4183
4cc0665f 4184 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6321c22a
MR
4185 hint = 0x7c0;
4186 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
29639122 4187}
c906108c 4188
c906108c 4189
29639122
JB
4190/* This fencepost looks highly suspicious to me. Removing it also
4191 seems suspicious as it could affect remote debugging across serial
4192 lines. */
c906108c 4193
29639122 4194static CORE_ADDR
74ed0bb4 4195heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
29639122
JB
4196{
4197 CORE_ADDR start_pc;
4198 CORE_ADDR fence;
4199 int instlen;
4200 int seen_adjsp = 0;
d6b48e9c 4201 struct inferior *inf;
65596487 4202
74ed0bb4 4203 pc = gdbarch_addr_bits_remove (gdbarch, pc);
29639122
JB
4204 start_pc = pc;
4205 fence = start_pc - heuristic_fence_post;
4206 if (start_pc == 0)
4207 return 0;
65596487 4208
44096aee 4209 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
29639122 4210 fence = VM_MIN_ADDRESS;
65596487 4211
4cc0665f 4212 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
98b4dd94 4213
d6b48e9c
PA
4214 inf = current_inferior ();
4215
025bb325 4216 /* Search back for previous return. */
29639122
JB
4217 for (start_pc -= instlen;; start_pc -= instlen)
4218 if (start_pc < fence)
4219 {
4220 /* It's not clear to me why we reach this point when
4221 stop_soon, but with this test, at least we
4222 don't print out warnings for every child forked (eg, on
4223 decstation). 22apr93 rich@cygnus.com. */
16c381f0 4224 if (inf->control.stop_soon == NO_STOP_QUIETLY)
29639122
JB
4225 {
4226 static int blurb_printed = 0;
98b4dd94 4227
5af949e3
UW
4228 warning (_("GDB can't find the start of the function at %s."),
4229 paddress (gdbarch, pc));
29639122
JB
4230
4231 if (!blurb_printed)
4232 {
4233 /* This actually happens frequently in embedded
4234 development, when you first connect to a board
4235 and your stack pointer and pc are nowhere in
4236 particular. This message needs to give people
4237 in that situation enough information to
4238 determine that it's no big deal. */
4239 printf_filtered ("\n\
5af949e3 4240 GDB is unable to find the start of the function at %s\n\
29639122
JB
4241and thus can't determine the size of that function's stack frame.\n\
4242This means that GDB may be unable to access that stack frame, or\n\
4243the frames below it.\n\
4244 This problem is most likely caused by an invalid program counter or\n\
4245stack pointer.\n\
4246 However, if you think GDB should simply search farther back\n\
5af949e3 4247from %s for code which looks like the beginning of a\n\
29639122 4248function, you can increase the range of the search using the `set\n\
5af949e3
UW
4249heuristic-fence-post' command.\n",
4250 paddress (gdbarch, pc), paddress (gdbarch, pc));
29639122
JB
4251 blurb_printed = 1;
4252 }
4253 }
4254
4255 return 0;
4256 }
4cc0665f 4257 else if (mips_pc_is_mips16 (gdbarch, start_pc))
29639122
JB
4258 {
4259 unsigned short inst;
4260
4261 /* On MIPS16, any one of the following is likely to be the
4262 start of a function:
193774b3
MR
4263 extend save
4264 save
29639122
JB
4265 entry
4266 addiu sp,-n
4267 daddiu sp,-n
025bb325 4268 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4cc0665f 4269 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
193774b3
MR
4270 if ((inst & 0xff80) == 0x6480) /* save */
4271 {
4272 if (start_pc - instlen >= fence)
4273 {
4cc0665f
MR
4274 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4275 start_pc - instlen, NULL);
193774b3
MR
4276 if ((inst & 0xf800) == 0xf000) /* extend */
4277 start_pc -= instlen;
4278 }
4279 break;
4280 }
4281 else if (((inst & 0xf81f) == 0xe809
4282 && (inst & 0x700) != 0x700) /* entry */
4283 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4284 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4285 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
4286 break;
4287 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4288 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4289 seen_adjsp = 1;
4290 else
4291 seen_adjsp = 0;
4292 }
4cc0665f
MR
4293 else if (mips_pc_is_micromips (gdbarch, start_pc))
4294 {
4295 ULONGEST insn;
4296 int stop = 0;
4297 long offset;
4298 int dreg;
4299 int sreg;
4300
4301 /* On microMIPS, any one of the following is likely to be the
4302 start of a function:
4303 ADDIUSP -imm
4304 (D)ADDIU $sp, -imm
4305 LUI $gp, imm */
4306 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4307 switch (micromips_op (insn))
4308 {
4309 case 0xc: /* ADDIU: bits 001100 */
4310 case 0x17: /* DADDIU: bits 010111 */
4311 sreg = b0s5_reg (insn);
4312 dreg = b5s5_reg (insn);
4313 insn <<= 16;
4314 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4315 pc + MIPS_INSN16_SIZE, NULL);
4316 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4317 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4318 /* (D)ADDIU $sp, imm */
4319 && offset < 0)
4320 stop = 1;
4321 break;
4322
4323 case 0x10: /* POOL32I: bits 010000 */
4324 if (b5s5_op (insn) == 0xd
4325 /* LUI: bits 010000 001101 */
4326 && b0s5_reg (insn >> 16) == 28)
4327 /* LUI $gp, imm */
4328 stop = 1;
4329 break;
4330
4331 case 0x13: /* POOL16D: bits 010011 */
4332 if ((insn & 0x1) == 0x1)
4333 /* ADDIUSP: bits 010011 1 */
4334 {
4335 offset = micromips_decode_imm9 (b1s9_imm (insn));
4336 if (offset < 0)
4337 /* ADDIUSP -imm */
4338 stop = 1;
4339 }
4340 else
4341 /* ADDIUS5: bits 010011 0 */
4342 {
4343 dreg = b5s5_reg (insn);
4344 offset = (b1s4_imm (insn) ^ 8) - 8;
4345 if (dreg == MIPS_SP_REGNUM && offset < 0)
4346 /* ADDIUS5 $sp, -imm */
4347 stop = 1;
4348 }
4349 break;
4350 }
4351 if (stop)
4352 break;
4353 }
e17a4113 4354 else if (mips_about_to_return (gdbarch, start_pc))
29639122 4355 {
4c7d22cb 4356 /* Skip return and its delay slot. */
95ac2dcf 4357 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
4358 break;
4359 }
4360
4361 return start_pc;
c906108c
SS
4362}
4363
6c0d6680
DJ
4364struct mips_objfile_private
4365{
4366 bfd_size_type size;
4367 char *contents;
4368};
4369
f09ded24
AC
4370/* According to the current ABI, should the type be passed in a
4371 floating-point register (assuming that there is space)? When there
a1f5b845 4372 is no FPU, FP are not even considered as possible candidates for
f09ded24 4373 FP registers and, consequently this returns false - forces FP
025bb325 4374 arguments into integer registers. */
f09ded24
AC
4375
4376static int
74ed0bb4
MD
4377fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4378 struct type *arg_type)
f09ded24
AC
4379{
4380 return ((typecode == TYPE_CODE_FLT
74ed0bb4 4381 || (MIPS_EABI (gdbarch)
6d82d43b
AC
4382 && (typecode == TYPE_CODE_STRUCT
4383 || typecode == TYPE_CODE_UNION)
f09ded24 4384 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
4385 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4386 == TYPE_CODE_FLT))
74ed0bb4 4387 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
f09ded24
AC
4388}
4389
49e790b0 4390/* On o32, argument passing in GPRs depends on the alignment of the type being
025bb325 4391 passed. Return 1 if this type must be aligned to a doubleword boundary. */
49e790b0
DJ
4392
4393static int
4394mips_type_needs_double_align (struct type *type)
4395{
4396 enum type_code typecode = TYPE_CODE (type);
361d1df0 4397
49e790b0
DJ
4398 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4399 return 1;
4400 else if (typecode == TYPE_CODE_STRUCT)
4401 {
4402 if (TYPE_NFIELDS (type) < 1)
4403 return 0;
4404 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4405 }
4406 else if (typecode == TYPE_CODE_UNION)
4407 {
361d1df0 4408 int i, n;
49e790b0
DJ
4409
4410 n = TYPE_NFIELDS (type);
4411 for (i = 0; i < n; i++)
4412 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4413 return 1;
4414 return 0;
4415 }
4416 return 0;
4417}
4418
dc604539
AC
4419/* Adjust the address downward (direction of stack growth) so that it
4420 is correctly aligned for a new stack frame. */
4421static CORE_ADDR
4422mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4423{
5b03f266 4424 return align_down (addr, 16);
dc604539
AC
4425}
4426
8ae38c14 4427/* Implement the "push_dummy_code" gdbarch method. */
2c76a0c7
JB
4428
4429static CORE_ADDR
4430mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4431 CORE_ADDR funaddr, struct value **args,
4432 int nargs, struct type *value_type,
4433 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4434 struct regcache *regcache)
4435{
2c76a0c7 4436 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
2e81047f
MR
4437 CORE_ADDR nop_addr;
4438 CORE_ADDR bp_slot;
2c76a0c7
JB
4439
4440 /* Reserve enough room on the stack for our breakpoint instruction. */
2e81047f
MR
4441 bp_slot = sp - sizeof (nop_insn);
4442
4443 /* Return to microMIPS mode if calling microMIPS code to avoid
4444 triggering an address error exception on processors that only
4445 support microMIPS execution. */
4446 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4447 ? make_compact_addr (bp_slot) : bp_slot);
2c76a0c7
JB
4448
4449 /* The breakpoint layer automatically adjusts the address of
4450 breakpoints inserted in a branch delay slot. With enough
4451 bad luck, the 4 bytes located just before our breakpoint
4452 instruction could look like a branch instruction, and thus
4453 trigger the adjustement, and break the function call entirely.
4454 So, we reserve those 4 bytes and write a nop instruction
4455 to prevent that from happening. */
2e81047f 4456 nop_addr = bp_slot - sizeof (nop_insn);
2c76a0c7
JB
4457 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4458 sp = mips_frame_align (gdbarch, nop_addr);
4459
4460 /* Inferior resumes at the function entry point. */
4461 *real_pc = funaddr;
4462
4463 return sp;
4464}
4465
f7ab6ec6 4466static CORE_ADDR
7d9b040b 4467mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4468 struct regcache *regcache, CORE_ADDR bp_addr,
4469 int nargs, struct value **args, CORE_ADDR sp,
4470 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
4471{
4472 int argreg;
4473 int float_argreg;
4474 int argnum;
4475 int len = 0;
4476 int stack_offset = 0;
e17a4113 4477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4478 CORE_ADDR func_addr = find_function_addr (function, NULL);
b3464d03 4479 int abi_regsize = mips_abi_regsize (gdbarch);
c906108c 4480
25ab4790
AC
4481 /* For shared libraries, "t9" needs to point at the function
4482 address. */
4c7d22cb 4483 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4484
4485 /* Set the return address register to point to the entry point of
4486 the program, where a breakpoint lies in wait. */
4c7d22cb 4487 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4488
c906108c 4489 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
4490 are properly aligned. The stack has to be at least 64-bit
4491 aligned even on 32-bit machines, because doubles must be 64-bit
4492 aligned. For n32 and n64, stack frames need to be 128-bit
4493 aligned, so we round to this widest known alignment. */
4494
5b03f266
AC
4495 sp = align_down (sp, 16);
4496 struct_addr = align_down (struct_addr, 16);
c5aa993b 4497
46e0f506 4498 /* Now make space on the stack for the args. We allocate more
c906108c 4499 than necessary for EABI, because the first few arguments are
46e0f506 4500 passed in registers, but that's OK. */
c906108c 4501 for (argnum = 0; argnum < nargs; argnum++)
b3464d03 4502 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
5b03f266 4503 sp -= align_up (len, 16);
c906108c 4504
9ace0497 4505 if (mips_debug)
6d82d43b 4506 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4507 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4508 paddress (gdbarch, sp), (long) align_up (len, 16));
9ace0497 4509
c906108c 4510 /* Initialize the integer and float register pointers. */
4c7d22cb 4511 argreg = MIPS_A0_REGNUM;
72a155b4 4512 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 4513
46e0f506 4514 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 4515 if (struct_return)
9ace0497
AC
4516 {
4517 if (mips_debug)
4518 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4519 "mips_eabi_push_dummy_call: "
4520 "struct_return reg=%d %s\n",
5af949e3 4521 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4522 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 4523 }
c906108c
SS
4524
4525 /* Now load as many as possible of the first arguments into
4526 registers, and push the rest onto the stack. Loop thru args
4527 from first to last. */
4528 for (argnum = 0; argnum < nargs; argnum++)
4529 {
47a35522 4530 const gdb_byte *val;
b3464d03
PA
4531 /* This holds the address of structures that are passed by
4532 reference. */
4533 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
ea7c478f 4534 struct value *arg = args[argnum];
4991999e 4535 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
4536 int len = TYPE_LENGTH (arg_type);
4537 enum type_code typecode = TYPE_CODE (arg_type);
4538
9ace0497
AC
4539 if (mips_debug)
4540 fprintf_unfiltered (gdb_stdlog,
25ab4790 4541 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 4542 argnum + 1, len, (int) typecode);
9ace0497 4543
c906108c 4544 /* The EABI passes structures that do not fit in a register by
46e0f506 4545 reference. */
b3464d03 4546 if (len > abi_regsize
9ace0497 4547 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 4548 {
b3464d03
PA
4549 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4550 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
e17a4113 4551 value_address (arg));
c906108c 4552 typecode = TYPE_CODE_PTR;
b3464d03
PA
4553 len = abi_regsize;
4554 val = ref_valbuf;
9ace0497
AC
4555 if (mips_debug)
4556 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
4557 }
4558 else
47a35522 4559 val = value_contents (arg);
c906108c
SS
4560
4561 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
4562 even-numbered floating point register. Round the FP register
4563 up before the check to see if there are any FP registers
46e0f506
MS
4564 left. Non MIPS_EABI targets also pass the FP in the integer
4565 registers so also round up normal registers. */
b3464d03 4566 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
acdb74a0
AC
4567 {
4568 if ((float_argreg & 1))
4569 float_argreg++;
4570 }
c906108c
SS
4571
4572 /* Floating point arguments passed in registers have to be
4573 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
4574 are passed in register pairs; the even register gets
4575 the low word, and the odd register gets the high word.
4576 On non-EABI processors, the first two floating point arguments are
4577 also copied to general registers, because MIPS16 functions
4578 don't use float registers for arguments. This duplication of
4579 arguments in general registers can't hurt non-MIPS16 functions
4580 because those registers are normally skipped. */
1012bd0e
EZ
4581 /* MIPS_EABI squeezes a struct that contains a single floating
4582 point value into an FP register instead of pushing it onto the
46e0f506 4583 stack. */
74ed0bb4
MD
4584 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4585 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
c906108c 4586 {
6da397e0
KB
4587 /* EABI32 will pass doubles in consecutive registers, even on
4588 64-bit cores. At one time, we used to check the size of
4589 `float_argreg' to determine whether or not to pass doubles
4590 in consecutive registers, but this is not sufficient for
4591 making the ABI determination. */
4592 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 4593 {
72a155b4 4594 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 4595 == BFD_ENDIAN_BIG ? 4 : 0;
a8852dc5 4596 long regval;
c906108c
SS
4597
4598 /* Write the low word of the double to the even register(s). */
a8852dc5
KB
4599 regval = extract_signed_integer (val + low_offset,
4600 4, byte_order);
9ace0497 4601 if (mips_debug)
acdb74a0 4602 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4603 float_argreg, phex (regval, 4));
a8852dc5 4604 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4605
4606 /* Write the high word of the double to the odd register(s). */
a8852dc5
KB
4607 regval = extract_signed_integer (val + 4 - low_offset,
4608 4, byte_order);
9ace0497 4609 if (mips_debug)
acdb74a0 4610 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4611 float_argreg, phex (regval, 4));
a8852dc5 4612 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4613 }
4614 else
4615 {
4616 /* This is a floating point value that fits entirely
4617 in a single register. */
53a5351d 4618 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 4619 above to ensure that it is even register aligned. */
a8852dc5 4620 LONGEST regval = extract_signed_integer (val, len, byte_order);
9ace0497 4621 if (mips_debug)
acdb74a0 4622 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 4623 float_argreg, phex (regval, len));
a8852dc5 4624 regcache_cooked_write_signed (regcache, float_argreg++, regval);
c906108c
SS
4625 }
4626 }
4627 else
4628 {
4629 /* Copy the argument to general registers or the stack in
4630 register-sized pieces. Large arguments are split between
4631 registers and stack. */
b3464d03 4632 /* Note: structs whose size is not a multiple of abi_regsize
1a69e1e4 4633 are treated specially: Irix cc passes
d5ac5a39
AC
4634 them in registers where gcc sometimes puts them on the
4635 stack. For maximum compatibility, we will put them in
4636 both places. */
b3464d03 4637 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
46e0f506 4638
f09ded24 4639 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4640 register are only written to memory. */
c906108c
SS
4641 while (len > 0)
4642 {
ebafbe83 4643 /* Remember if the argument was written to the stack. */
566f0f7a 4644 int stack_used_p = 0;
b3464d03 4645 int partial_len = (len < abi_regsize ? len : abi_regsize);
c906108c 4646
acdb74a0
AC
4647 if (mips_debug)
4648 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4649 partial_len);
4650
566f0f7a 4651 /* Write this portion of the argument to the stack. */
74ed0bb4 4652 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
f09ded24 4653 || odd_sized_struct
74ed0bb4 4654 || fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4655 {
c906108c 4656 /* Should shorter than int integer values be
025bb325 4657 promoted to int before being stored? */
c906108c 4658 int longword_offset = 0;
9ace0497 4659 CORE_ADDR addr;
566f0f7a 4660 stack_used_p = 1;
72a155b4 4661 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 4662 {
b3464d03 4663 if (abi_regsize == 8
480d3dd2
AC
4664 && (typecode == TYPE_CODE_INT
4665 || typecode == TYPE_CODE_PTR
6d82d43b 4666 || typecode == TYPE_CODE_FLT) && len <= 4)
b3464d03 4667 longword_offset = abi_regsize - len;
480d3dd2
AC
4668 else if ((typecode == TYPE_CODE_STRUCT
4669 || typecode == TYPE_CODE_UNION)
b3464d03
PA
4670 && TYPE_LENGTH (arg_type) < abi_regsize)
4671 longword_offset = abi_regsize - len;
7a292a7a 4672 }
c5aa993b 4673
9ace0497
AC
4674 if (mips_debug)
4675 {
5af949e3
UW
4676 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4677 paddress (gdbarch, stack_offset));
4678 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4679 paddress (gdbarch, longword_offset));
9ace0497 4680 }
361d1df0 4681
9ace0497
AC
4682 addr = sp + stack_offset + longword_offset;
4683
4684 if (mips_debug)
4685 {
4686 int i;
5af949e3
UW
4687 fprintf_unfiltered (gdb_stdlog, " @%s ",
4688 paddress (gdbarch, addr));
9ace0497
AC
4689 for (i = 0; i < partial_len; i++)
4690 {
6d82d43b 4691 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 4692 val[i] & 0xff);
9ace0497
AC
4693 }
4694 }
4695 write_memory (addr, val, partial_len);
c906108c
SS
4696 }
4697
f09ded24
AC
4698 /* Note!!! This is NOT an else clause. Odd sized
4699 structs may go thru BOTH paths. Floating point
46e0f506 4700 arguments will not. */
566f0f7a 4701 /* Write this portion of the argument to a general
6d82d43b 4702 purpose register. */
74ed0bb4
MD
4703 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4704 && !fp_register_arg_p (gdbarch, typecode, arg_type))
c906108c 4705 {
6d82d43b 4706 LONGEST regval =
a8852dc5 4707 extract_signed_integer (val, partial_len, byte_order);
c906108c 4708
9ace0497 4709 if (mips_debug)
acdb74a0 4710 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 4711 argreg,
b3464d03 4712 phex (regval, abi_regsize));
a8852dc5 4713 regcache_cooked_write_signed (regcache, argreg, regval);
c906108c 4714 argreg++;
c906108c 4715 }
c5aa993b 4716
c906108c
SS
4717 len -= partial_len;
4718 val += partial_len;
4719
b021a221
MS
4720 /* Compute the offset into the stack at which we will
4721 copy the next parameter.
566f0f7a 4722
566f0f7a 4723 In the new EABI (and the NABI32), the stack_offset
46e0f506 4724 only needs to be adjusted when it has been used. */
c906108c 4725
46e0f506 4726 if (stack_used_p)
b3464d03 4727 stack_offset += align_up (partial_len, abi_regsize);
c906108c
SS
4728 }
4729 }
9ace0497
AC
4730 if (mips_debug)
4731 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
4732 }
4733
f10683bb 4734 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 4735
0f71a2f6
JM
4736 /* Return adjusted stack pointer. */
4737 return sp;
4738}
4739
a1f5b845 4740/* Determine the return value convention being used. */
6d82d43b 4741
9c8fdbfa 4742static enum return_value_convention
6a3a010b 4743mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 4744 struct type *type, struct regcache *regcache,
47a35522 4745 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 4746{
609ba780
JM
4747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4748 int fp_return_type = 0;
4749 int offset, regnum, xfer;
4750
9c8fdbfa
AC
4751 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4752 return RETURN_VALUE_STRUCT_CONVENTION;
609ba780
JM
4753
4754 /* Floating point type? */
4755 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4756 {
4757 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4758 fp_return_type = 1;
4759 /* Structs with a single field of float type
4760 are returned in a floating point register. */
4761 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4762 || TYPE_CODE (type) == TYPE_CODE_UNION)
4763 && TYPE_NFIELDS (type) == 1)
4764 {
4765 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4766
4767 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4768 fp_return_type = 1;
4769 }
4770 }
4771
4772 if (fp_return_type)
4773 {
4774 /* A floating-point value belongs in the least significant part
4775 of FP0/FP1. */
4776 if (mips_debug)
4777 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4778 regnum = mips_regnum (gdbarch)->fp0;
4779 }
4780 else
4781 {
4782 /* An integer value goes in V0/V1. */
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4785 regnum = MIPS_V0_REGNUM;
4786 }
4787 for (offset = 0;
4788 offset < TYPE_LENGTH (type);
4789 offset += mips_abi_regsize (gdbarch), regnum++)
4790 {
4791 xfer = mips_abi_regsize (gdbarch);
4792 if (offset + xfer > TYPE_LENGTH (type))
4793 xfer = TYPE_LENGTH (type) - offset;
4794 mips_xfer_register (gdbarch, regcache,
4795 gdbarch_num_regs (gdbarch) + regnum, xfer,
4796 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4797 offset);
4798 }
4799
9c8fdbfa 4800 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
4801}
4802
6d82d43b
AC
4803
4804/* N32/N64 ABI stuff. */
ebafbe83 4805
8d26208a
DJ
4806/* Search for a naturally aligned double at OFFSET inside a struct
4807 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4808 registers. */
4809
4810static int
74ed0bb4
MD
4811mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4812 int offset)
8d26208a
DJ
4813{
4814 int i;
4815
4816 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4817 return 0;
4818
74ed0bb4 4819 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
8d26208a
DJ
4820 return 0;
4821
4822 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4823 return 0;
4824
4825 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4826 {
4827 int pos;
4828 struct type *field_type;
4829
4830 /* We're only looking at normal fields. */
5bc60cfb 4831 if (field_is_static (&TYPE_FIELD (arg_type, i))
8d26208a
DJ
4832 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4833 continue;
4834
4835 /* If we have gone past the offset, there is no double to pass. */
4836 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4837 if (pos > offset)
4838 return 0;
4839
4840 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4841
4842 /* If this field is entirely before the requested offset, go
4843 on to the next one. */
4844 if (pos + TYPE_LENGTH (field_type) <= offset)
4845 continue;
4846
4847 /* If this is our special aligned double, we can stop. */
4848 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4849 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4850 return 1;
4851
4852 /* This field starts at or before the requested offset, and
4853 overlaps it. If it is a structure, recurse inwards. */
74ed0bb4 4854 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
8d26208a
DJ
4855 }
4856
4857 return 0;
4858}
4859
f7ab6ec6 4860static CORE_ADDR
7d9b040b 4861mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
4862 struct regcache *regcache, CORE_ADDR bp_addr,
4863 int nargs, struct value **args, CORE_ADDR sp,
4864 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
4865{
4866 int argreg;
4867 int float_argreg;
4868 int argnum;
4869 int len = 0;
4870 int stack_offset = 0;
e17a4113 4871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 4872 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 4873
25ab4790
AC
4874 /* For shared libraries, "t9" needs to point at the function
4875 address. */
4c7d22cb 4876 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
4877
4878 /* Set the return address register to point to the entry point of
4879 the program, where a breakpoint lies in wait. */
4c7d22cb 4880 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 4881
cb3d25d1
MS
4882 /* First ensure that the stack and structure return address (if any)
4883 are properly aligned. The stack has to be at least 64-bit
4884 aligned even on 32-bit machines, because doubles must be 64-bit
4885 aligned. For n32 and n64, stack frames need to be 128-bit
4886 aligned, so we round to this widest known alignment. */
4887
5b03f266
AC
4888 sp = align_down (sp, 16);
4889 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
4890
4891 /* Now make space on the stack for the args. */
4892 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 4893 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 4894 sp -= align_up (len, 16);
cb3d25d1
MS
4895
4896 if (mips_debug)
6d82d43b 4897 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4898 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4899 paddress (gdbarch, sp), (long) align_up (len, 16));
cb3d25d1
MS
4900
4901 /* Initialize the integer and float register pointers. */
4c7d22cb 4902 argreg = MIPS_A0_REGNUM;
72a155b4 4903 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 4904
46e0f506 4905 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
4906 if (struct_return)
4907 {
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
4910 "mips_n32n64_push_dummy_call: "
4911 "struct_return reg=%d %s\n",
5af949e3 4912 argreg, paddress (gdbarch, struct_addr));
9c9acae0 4913 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
4914 }
4915
4916 /* Now load as many as possible of the first arguments into
4917 registers, and push the rest onto the stack. Loop thru args
4918 from first to last. */
4919 for (argnum = 0; argnum < nargs; argnum++)
4920 {
47a35522 4921 const gdb_byte *val;
cb3d25d1 4922 struct value *arg = args[argnum];
4991999e 4923 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
4924 int len = TYPE_LENGTH (arg_type);
4925 enum type_code typecode = TYPE_CODE (arg_type);
4926
4927 if (mips_debug)
4928 fprintf_unfiltered (gdb_stdlog,
25ab4790 4929 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
4930 argnum + 1, len, (int) typecode);
4931
47a35522 4932 val = value_contents (arg);
cb3d25d1 4933
5b68030f
JM
4934 /* A 128-bit long double value requires an even-odd pair of
4935 floating-point registers. */
4936 if (len == 16
4937 && fp_register_arg_p (gdbarch, typecode, arg_type)
4938 && (float_argreg & 1))
4939 {
4940 float_argreg++;
4941 argreg++;
4942 }
4943
74ed0bb4
MD
4944 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4945 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
4946 {
4947 /* This is a floating point value that fits entirely
5b68030f
JM
4948 in a single register or a pair of registers. */
4949 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
e17a4113 4950 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
cb3d25d1
MS
4951 if (mips_debug)
4952 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5b68030f 4953 float_argreg, phex (regval, reglen));
8d26208a 4954 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
4955
4956 if (mips_debug)
4957 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5b68030f 4958 argreg, phex (regval, reglen));
9c9acae0 4959 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
4960 float_argreg++;
4961 argreg++;
5b68030f
JM
4962 if (len == 16)
4963 {
e17a4113
UW
4964 regval = extract_unsigned_integer (val + reglen,
4965 reglen, byte_order);
5b68030f
JM
4966 if (mips_debug)
4967 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4968 float_argreg, phex (regval, reglen));
4969 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4970
4971 if (mips_debug)
4972 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4973 argreg, phex (regval, reglen));
4974 regcache_cooked_write_unsigned (regcache, argreg, regval);
4975 float_argreg++;
4976 argreg++;
4977 }
cb3d25d1
MS
4978 }
4979 else
4980 {
4981 /* Copy the argument to general registers or the stack in
4982 register-sized pieces. Large arguments are split between
4983 registers and stack. */
ab2e1992
MR
4984 /* For N32/N64, structs, unions, or other composite types are
4985 treated as a sequence of doublewords, and are passed in integer
4986 or floating point registers as though they were simple scalar
4987 parameters to the extent that they fit, with any excess on the
4988 stack packed according to the normal memory layout of the
4989 object.
4990 The caller does not reserve space for the register arguments;
4991 the callee is responsible for reserving it if required. */
cb3d25d1 4992 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 4993 register are only written to memory. */
cb3d25d1
MS
4994 while (len > 0)
4995 {
ad018eee 4996 /* Remember if the argument was written to the stack. */
cb3d25d1 4997 int stack_used_p = 0;
1a69e1e4 4998 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
4999
5000 if (mips_debug)
5001 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5002 partial_len);
5003
74ed0bb4
MD
5004 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5005 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
8d26208a 5006
cb3d25d1 5007 /* Write this portion of the argument to the stack. */
74ed0bb4 5008 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1
MS
5009 {
5010 /* Should shorter than int integer values be
025bb325 5011 promoted to int before being stored? */
cb3d25d1
MS
5012 int longword_offset = 0;
5013 CORE_ADDR addr;
5014 stack_used_p = 1;
72a155b4 5015 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 5016 {
1a69e1e4 5017 if ((typecode == TYPE_CODE_INT
5b68030f 5018 || typecode == TYPE_CODE_PTR)
1a69e1e4
DJ
5019 && len <= 4)
5020 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
5021 }
5022
5023 if (mips_debug)
5024 {
5af949e3
UW
5025 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5026 paddress (gdbarch, stack_offset));
5027 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5028 paddress (gdbarch, longword_offset));
cb3d25d1
MS
5029 }
5030
5031 addr = sp + stack_offset + longword_offset;
5032
5033 if (mips_debug)
5034 {
5035 int i;
5af949e3
UW
5036 fprintf_unfiltered (gdb_stdlog, " @%s ",
5037 paddress (gdbarch, addr));
cb3d25d1
MS
5038 for (i = 0; i < partial_len; i++)
5039 {
6d82d43b 5040 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
5041 val[i] & 0xff);
5042 }
5043 }
5044 write_memory (addr, val, partial_len);
5045 }
5046
5047 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 5048 structs may go thru BOTH paths. */
cb3d25d1 5049 /* Write this portion of the argument to a general
6d82d43b 5050 purpose register. */
74ed0bb4 5051 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
cb3d25d1 5052 {
5863b5d5
MR
5053 LONGEST regval;
5054
5055 /* Sign extend pointers, 32-bit integers and signed
5056 16-bit and 8-bit integers; everything else is taken
5057 as is. */
5058
5059 if ((partial_len == 4
5060 && (typecode == TYPE_CODE_PTR
5061 || typecode == TYPE_CODE_INT))
5062 || (partial_len < 4
5063 && typecode == TYPE_CODE_INT
5064 && !TYPE_UNSIGNED (arg_type)))
e17a4113
UW
5065 regval = extract_signed_integer (val, partial_len,
5066 byte_order);
5863b5d5 5067 else
e17a4113
UW
5068 regval = extract_unsigned_integer (val, partial_len,
5069 byte_order);
cb3d25d1
MS
5070
5071 /* A non-floating-point argument being passed in a
5072 general register. If a struct or union, and if
5073 the remaining length is smaller than the register
5074 size, we have to adjust the register value on
5075 big endian targets.
5076
5077 It does not seem to be necessary to do the
1a69e1e4 5078 same for integral types. */
cb3d25d1 5079
72a155b4 5080 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5081 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
5082 && (typecode == TYPE_CODE_STRUCT
5083 || typecode == TYPE_CODE_UNION))
1a69e1e4 5084 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 5085 * TARGET_CHAR_BIT);
cb3d25d1
MS
5086
5087 if (mips_debug)
5088 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5089 argreg,
1a69e1e4 5090 phex (regval, MIPS64_REGSIZE));
9c9acae0 5091 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a 5092
74ed0bb4 5093 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
8d26208a
DJ
5094 TYPE_LENGTH (arg_type) - len))
5095 {
5096 if (mips_debug)
5097 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5098 float_argreg,
5099 phex (regval, MIPS64_REGSIZE));
5100 regcache_cooked_write_unsigned (regcache, float_argreg,
5101 regval);
5102 }
5103
5104 float_argreg++;
cb3d25d1
MS
5105 argreg++;
5106 }
5107
5108 len -= partial_len;
5109 val += partial_len;
5110
b021a221
MS
5111 /* Compute the offset into the stack at which we will
5112 copy the next parameter.
cb3d25d1
MS
5113
5114 In N32 (N64?), the stack_offset only needs to be
5115 adjusted when it has been used. */
5116
5117 if (stack_used_p)
1a69e1e4 5118 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
5119 }
5120 }
5121 if (mips_debug)
5122 fprintf_unfiltered (gdb_stdlog, "\n");
5123 }
5124
f10683bb 5125 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5126
cb3d25d1
MS
5127 /* Return adjusted stack pointer. */
5128 return sp;
5129}
5130
6d82d43b 5131static enum return_value_convention
6a3a010b 5132mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
6d82d43b 5133 struct type *type, struct regcache *regcache,
47a35522 5134 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 5135{
72a155b4 5136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
5137
5138 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5139
5140 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5141 if needed), as appropriate for the type. Composite results (struct,
5142 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5143 following rules:
5144
5145 * A struct with only one or two floating point fields is returned in $f0
5146 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5147 case.
5148
f08877ba 5149 * Any other composite results of at most 128 bits are returned in
b18bb924
MR
5150 $2 (first 64 bits) and $3 (remainder, if necessary).
5151
5152 * Larger composite results are handled by converting the function to a
5153 procedure with an implicit first parameter, which is a pointer to an area
5154 reserved by the caller to receive the result. [The o32-bit ABI requires
5155 that all composite results be handled by conversion to implicit first
5156 parameters. The MIPS/SGI Fortran implementation has always made a
5157 specific exception to return COMPLEX results in the floating point
5158 registers.] */
5159
f08877ba 5160 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 5161 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
5162 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5163 && TYPE_LENGTH (type) == 16
5164 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5165 {
5166 /* A 128-bit floating-point value fills both $f0 and $f2. The
5167 two registers are used in the same as memory order, so the
5168 eight bytes with the lower memory address are in $f0. */
5169 if (mips_debug)
5170 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 5171 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5172 (gdbarch_num_regs (gdbarch)
5173 + mips_regnum (gdbarch)->fp0),
72a155b4 5174 8, gdbarch_byte_order (gdbarch),
4c6b5505 5175 readbuf, writebuf, 0);
ba32f989 5176 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5177 (gdbarch_num_regs (gdbarch)
5178 + mips_regnum (gdbarch)->fp0 + 2),
72a155b4 5179 8, gdbarch_byte_order (gdbarch),
4c6b5505 5180 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
5181 writebuf ? writebuf + 8 : writebuf, 0);
5182 return RETURN_VALUE_REGISTER_CONVENTION;
5183 }
6d82d43b
AC
5184 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5185 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5186 {
59aa1faa 5187 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
5188 if (mips_debug)
5189 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 5190 mips_xfer_register (gdbarch, regcache,
dca9aa3a
MR
5191 (gdbarch_num_regs (gdbarch)
5192 + mips_regnum (gdbarch)->fp0),
6d82d43b 5193 TYPE_LENGTH (type),
72a155b4 5194 gdbarch_byte_order (gdbarch),
4c6b5505 5195 readbuf, writebuf, 0);
6d82d43b
AC
5196 return RETURN_VALUE_REGISTER_CONVENTION;
5197 }
5198 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5199 && TYPE_NFIELDS (type) <= 2
5200 && TYPE_NFIELDS (type) >= 1
5201 && ((TYPE_NFIELDS (type) == 1
b18bb924 5202 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
5203 == TYPE_CODE_FLT))
5204 || (TYPE_NFIELDS (type) == 2
b18bb924 5205 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 5206 == TYPE_CODE_FLT)
b18bb924 5207 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5b68030f 5208 == TYPE_CODE_FLT))))
6d82d43b
AC
5209 {
5210 /* A struct that contains one or two floats. Each value is part
5211 in the least significant part of their floating point
5b68030f 5212 register (or GPR, for soft float). */
6d82d43b
AC
5213 int regnum;
5214 int field;
5b68030f
JM
5215 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5216 ? mips_regnum (gdbarch)->fp0
5217 : MIPS_V0_REGNUM);
6d82d43b
AC
5218 field < TYPE_NFIELDS (type); field++, regnum += 2)
5219 {
5220 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5221 / TARGET_CHAR_BIT);
5222 if (mips_debug)
5223 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5224 offset);
5b68030f
JM
5225 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5226 {
5227 /* A 16-byte long double field goes in two consecutive
5228 registers. */
5229 mips_xfer_register (gdbarch, regcache,
5230 gdbarch_num_regs (gdbarch) + regnum,
5231 8,
5232 gdbarch_byte_order (gdbarch),
5233 readbuf, writebuf, offset);
5234 mips_xfer_register (gdbarch, regcache,
5235 gdbarch_num_regs (gdbarch) + regnum + 1,
5236 8,
5237 gdbarch_byte_order (gdbarch),
5238 readbuf, writebuf, offset + 8);
5239 }
5240 else
5241 mips_xfer_register (gdbarch, regcache,
5242 gdbarch_num_regs (gdbarch) + regnum,
5243 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5244 gdbarch_byte_order (gdbarch),
5245 readbuf, writebuf, offset);
6d82d43b
AC
5246 }
5247 return RETURN_VALUE_REGISTER_CONVENTION;
5248 }
5249 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
f08877ba
JB
5250 || TYPE_CODE (type) == TYPE_CODE_UNION
5251 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6d82d43b 5252 {
f08877ba 5253 /* A composite type. Extract the left justified value,
6d82d43b
AC
5254 regardless of the byte order. I.e. DO NOT USE
5255 mips_xfer_lower. */
5256 int offset;
5257 int regnum;
4c7d22cb 5258 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5259 offset < TYPE_LENGTH (type);
72a155b4 5260 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5261 {
72a155b4 5262 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5263 if (offset + xfer > TYPE_LENGTH (type))
5264 xfer = TYPE_LENGTH (type) - offset;
5265 if (mips_debug)
5266 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5267 offset, xfer, regnum);
ba32f989
DJ
5268 mips_xfer_register (gdbarch, regcache,
5269 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
5270 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5271 offset);
6d82d43b
AC
5272 }
5273 return RETURN_VALUE_REGISTER_CONVENTION;
5274 }
5275 else
5276 {
5277 /* A scalar extract each part but least-significant-byte
5278 justified. */
5279 int offset;
5280 int regnum;
4c7d22cb 5281 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5282 offset < TYPE_LENGTH (type);
72a155b4 5283 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5284 {
72a155b4 5285 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5286 if (offset + xfer > TYPE_LENGTH (type))
5287 xfer = TYPE_LENGTH (type) - offset;
5288 if (mips_debug)
5289 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5290 offset, xfer, regnum);
ba32f989
DJ
5291 mips_xfer_register (gdbarch, regcache,
5292 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 5293 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 5294 readbuf, writebuf, offset);
6d82d43b
AC
5295 }
5296 return RETURN_VALUE_REGISTER_CONVENTION;
5297 }
5298}
5299
6a3a010b
MR
5300/* Which registers to use for passing floating-point values between
5301 function calls, one of floating-point, general and both kinds of
5302 registers. O32 and O64 use different register kinds for standard
5303 MIPS and MIPS16 code; to make the handling of cases where we may
5304 not know what kind of code is being used (e.g. no debug information)
5305 easier we sometimes use both kinds. */
5306
5307enum mips_fval_reg
5308{
5309 mips_fval_fpr,
5310 mips_fval_gpr,
5311 mips_fval_both
5312};
5313
6d82d43b
AC
5314/* O32 ABI stuff. */
5315
5316static CORE_ADDR
7d9b040b 5317mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5318 struct regcache *regcache, CORE_ADDR bp_addr,
5319 int nargs, struct value **args, CORE_ADDR sp,
5320 int struct_return, CORE_ADDR struct_addr)
5321{
5322 int argreg;
5323 int float_argreg;
5324 int argnum;
5325 int len = 0;
5326 int stack_offset = 0;
e17a4113 5327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5328 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
5329
5330 /* For shared libraries, "t9" needs to point at the function
5331 address. */
4c7d22cb 5332 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
5333
5334 /* Set the return address register to point to the entry point of
5335 the program, where a breakpoint lies in wait. */
4c7d22cb 5336 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
5337
5338 /* First ensure that the stack and structure return address (if any)
5339 are properly aligned. The stack has to be at least 64-bit
5340 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
5341 aligned. For n32 and n64, stack frames need to be 128-bit
5342 aligned, so we round to this widest known alignment. */
5343
5b03f266
AC
5344 sp = align_down (sp, 16);
5345 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
5346
5347 /* Now make space on the stack for the args. */
5348 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5349 {
5350 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391
MR
5351
5352 /* Align to double-word if necessary. */
2afd3f0a 5353 if (mips_type_needs_double_align (arg_type))
1a69e1e4 5354 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 5355 /* Allocate space on the stack. */
354ecfd5 5356 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
968b5391 5357 }
5b03f266 5358 sp -= align_up (len, 16);
ebafbe83
MS
5359
5360 if (mips_debug)
6d82d43b 5361 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5362 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5363 paddress (gdbarch, sp), (long) align_up (len, 16));
ebafbe83
MS
5364
5365 /* Initialize the integer and float register pointers. */
4c7d22cb 5366 argreg = MIPS_A0_REGNUM;
72a155b4 5367 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 5368
bcb0cc15 5369 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
5370 if (struct_return)
5371 {
5372 if (mips_debug)
5373 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5374 "mips_o32_push_dummy_call: "
5375 "struct_return reg=%d %s\n",
5af949e3 5376 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5377 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5378 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
5379 }
5380
5381 /* Now load as many as possible of the first arguments into
5382 registers, and push the rest onto the stack. Loop thru args
5383 from first to last. */
5384 for (argnum = 0; argnum < nargs; argnum++)
5385 {
47a35522 5386 const gdb_byte *val;
ebafbe83 5387 struct value *arg = args[argnum];
4991999e 5388 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
5389 int len = TYPE_LENGTH (arg_type);
5390 enum type_code typecode = TYPE_CODE (arg_type);
5391
5392 if (mips_debug)
5393 fprintf_unfiltered (gdb_stdlog,
25ab4790 5394 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
5395 argnum + 1, len, (int) typecode);
5396
47a35522 5397 val = value_contents (arg);
46cac009
AC
5398
5399 /* 32-bit ABIs always start floating point arguments in an
5400 even-numbered floating point register. Round the FP register
5401 up before the check to see if there are any FP registers
6a3a010b
MR
5402 left. O32 targets also pass the FP in the integer registers
5403 so also round up normal registers. */
74ed0bb4 5404 if (fp_register_arg_p (gdbarch, typecode, arg_type))
46cac009
AC
5405 {
5406 if ((float_argreg & 1))
5407 float_argreg++;
5408 }
5409
5410 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5411 treated specially. On 32-bit architectures, doubles are
5412 passed in register pairs; the even FP register gets the
5413 low word, and the odd FP register gets the high word.
5414 On O32, the first two floating point arguments are also
5415 copied to general registers, following their memory order,
5416 because MIPS16 functions don't use float registers for
5417 arguments. This duplication of arguments in general
5418 registers can't hurt non-MIPS16 functions, because those
5419 registers are normally skipped. */
46cac009 5420
74ed0bb4
MD
5421 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5422 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
46cac009 5423 {
8b07f6d8 5424 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 5425 {
6a3a010b
MR
5426 int freg_offset = gdbarch_byte_order (gdbarch)
5427 == BFD_ENDIAN_BIG ? 1 : 0;
46cac009
AC
5428 unsigned long regval;
5429
6a3a010b
MR
5430 /* First word. */
5431 regval = extract_unsigned_integer (val, 4, byte_order);
46cac009
AC
5432 if (mips_debug)
5433 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5434 float_argreg + freg_offset,
5435 phex (regval, 4));
025bb325 5436 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5437 float_argreg++ + freg_offset,
5438 regval);
46cac009
AC
5439 if (mips_debug)
5440 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5441 argreg, phex (regval, 4));
9c9acae0 5442 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009 5443
6a3a010b
MR
5444 /* Second word. */
5445 regval = extract_unsigned_integer (val + 4, 4, byte_order);
46cac009
AC
5446 if (mips_debug)
5447 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
6a3a010b
MR
5448 float_argreg - freg_offset,
5449 phex (regval, 4));
025bb325 5450 regcache_cooked_write_unsigned (regcache,
6a3a010b
MR
5451 float_argreg++ - freg_offset,
5452 regval);
46cac009
AC
5453 if (mips_debug)
5454 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5455 argreg, phex (regval, 4));
9c9acae0 5456 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5457 }
5458 else
5459 {
5460 /* This is a floating point value that fits entirely
5461 in a single register. */
5462 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 5463 above to ensure that it is even register aligned. */
e17a4113 5464 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
46cac009
AC
5465 if (mips_debug)
5466 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5467 float_argreg, phex (regval, len));
025bb325
MS
5468 regcache_cooked_write_unsigned (regcache,
5469 float_argreg++, regval);
5b68030f
JM
5470 /* Although two FP registers are reserved for each
5471 argument, only one corresponding integer register is
5472 reserved. */
46cac009
AC
5473 if (mips_debug)
5474 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5475 argreg, phex (regval, len));
5b68030f 5476 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
5477 }
5478 /* Reserve space for the FP register. */
1a69e1e4 5479 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
5480 }
5481 else
5482 {
5483 /* Copy the argument to general registers or the stack in
5484 register-sized pieces. Large arguments are split between
5485 registers and stack. */
1a69e1e4
DJ
5486 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5487 are treated specially: Irix cc passes
d5ac5a39
AC
5488 them in registers where gcc sometimes puts them on the
5489 stack. For maximum compatibility, we will put them in
5490 both places. */
1a69e1e4
DJ
5491 int odd_sized_struct = (len > MIPS32_REGSIZE
5492 && len % MIPS32_REGSIZE != 0);
46cac009
AC
5493 /* Structures should be aligned to eight bytes (even arg registers)
5494 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 5495 if (mips_type_needs_double_align (arg_type))
46cac009
AC
5496 {
5497 if ((argreg & 1))
968b5391
MR
5498 {
5499 argreg++;
1a69e1e4 5500 stack_offset += MIPS32_REGSIZE;
968b5391 5501 }
46cac009 5502 }
46cac009
AC
5503 while (len > 0)
5504 {
1a69e1e4 5505 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
5506
5507 if (mips_debug)
5508 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5509 partial_len);
5510
5511 /* Write this portion of the argument to the stack. */
74ed0bb4 5512 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5513 || odd_sized_struct)
46cac009
AC
5514 {
5515 /* Should shorter than int integer values be
025bb325 5516 promoted to int before being stored? */
46cac009
AC
5517 int longword_offset = 0;
5518 CORE_ADDR addr;
46cac009
AC
5519
5520 if (mips_debug)
5521 {
5af949e3
UW
5522 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5523 paddress (gdbarch, stack_offset));
5524 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5525 paddress (gdbarch, longword_offset));
46cac009
AC
5526 }
5527
5528 addr = sp + stack_offset + longword_offset;
5529
5530 if (mips_debug)
5531 {
5532 int i;
5af949e3
UW
5533 fprintf_unfiltered (gdb_stdlog, " @%s ",
5534 paddress (gdbarch, addr));
46cac009
AC
5535 for (i = 0; i < partial_len; i++)
5536 {
6d82d43b 5537 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
5538 val[i] & 0xff);
5539 }
5540 }
5541 write_memory (addr, val, partial_len);
5542 }
5543
5544 /* Note!!! This is NOT an else clause. Odd sized
968b5391 5545 structs may go thru BOTH paths. */
46cac009 5546 /* Write this portion of the argument to a general
6d82d43b 5547 purpose register. */
74ed0bb4 5548 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
46cac009 5549 {
e17a4113
UW
5550 LONGEST regval = extract_signed_integer (val, partial_len,
5551 byte_order);
4246e332 5552 /* Value may need to be sign extended, because
1b13c4f6 5553 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
5554
5555 /* A non-floating-point argument being passed in a
5556 general register. If a struct or union, and if
5557 the remaining length is smaller than the register
5558 size, we have to adjust the register value on
5559 big endian targets.
5560
5561 It does not seem to be necessary to do the
5562 same for integral types.
5563
5564 Also don't do this adjustment on O64 binaries.
5565
5566 cagney/2001-07-23: gdb/179: Also, GCC, when
5567 outputting LE O32 with sizeof (struct) <
e914cb17
MR
5568 mips_abi_regsize(), generates a left shift
5569 as part of storing the argument in a register
5570 (the left shift isn't generated when
1b13c4f6 5571 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
5572 it is quite possible that this is GCC
5573 contradicting the LE/O32 ABI, GDB has not been
5574 adjusted to accommodate this. Either someone
5575 needs to demonstrate that the LE/O32 ABI
5576 specifies such a left shift OR this new ABI gets
5577 identified as such and GDB gets tweaked
5578 accordingly. */
5579
72a155b4 5580 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 5581 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
5582 && (typecode == TYPE_CODE_STRUCT
5583 || typecode == TYPE_CODE_UNION))
1a69e1e4 5584 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 5585 * TARGET_CHAR_BIT);
46cac009
AC
5586
5587 if (mips_debug)
5588 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5589 argreg,
1a69e1e4 5590 phex (regval, MIPS32_REGSIZE));
9c9acae0 5591 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
5592 argreg++;
5593
5594 /* Prevent subsequent floating point arguments from
5595 being passed in floating point registers. */
74ed0bb4 5596 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
46cac009
AC
5597 }
5598
5599 len -= partial_len;
5600 val += partial_len;
5601
b021a221
MS
5602 /* Compute the offset into the stack at which we will
5603 copy the next parameter.
46cac009 5604
6d82d43b
AC
5605 In older ABIs, the caller reserved space for
5606 registers that contained arguments. This was loosely
5607 refered to as their "home". Consequently, space is
5608 always allocated. */
46cac009 5609
1a69e1e4 5610 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
5611 }
5612 }
5613 if (mips_debug)
5614 fprintf_unfiltered (gdb_stdlog, "\n");
5615 }
5616
f10683bb 5617 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 5618
46cac009
AC
5619 /* Return adjusted stack pointer. */
5620 return sp;
5621}
5622
6d82d43b 5623static enum return_value_convention
6a3a010b 5624mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 5625 struct type *type, struct regcache *regcache,
47a35522 5626 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 5627{
6a3a010b 5628 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 5629 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
72a155b4 5630 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 5631 enum mips_fval_reg fval_reg;
6d82d43b 5632
6a3a010b 5633 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6d82d43b
AC
5634 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5635 || TYPE_CODE (type) == TYPE_CODE_UNION
5636 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5637 return RETURN_VALUE_STRUCT_CONVENTION;
5638 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5639 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5640 {
6a3a010b
MR
5641 /* A single-precision floating-point value. If reading in or copying,
5642 then we get it from/put it to FP0 for standard MIPS code or GPR2
5643 for MIPS16 code. If writing out only, then we put it to both FP0
5644 and GPR2. We do not support reading in with no function known, if
5645 this safety check ever triggers, then we'll have to try harder. */
5646 gdb_assert (function || !readbuf);
6d82d43b 5647 if (mips_debug)
6a3a010b
MR
5648 switch (fval_reg)
5649 {
5650 case mips_fval_fpr:
5651 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5652 break;
5653 case mips_fval_gpr:
5654 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5655 break;
5656 case mips_fval_both:
5657 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5658 break;
5659 }
5660 if (fval_reg != mips_fval_gpr)
5661 mips_xfer_register (gdbarch, regcache,
5662 (gdbarch_num_regs (gdbarch)
5663 + mips_regnum (gdbarch)->fp0),
5664 TYPE_LENGTH (type),
5665 gdbarch_byte_order (gdbarch),
5666 readbuf, writebuf, 0);
5667 if (fval_reg != mips_fval_fpr)
5668 mips_xfer_register (gdbarch, regcache,
5669 gdbarch_num_regs (gdbarch) + 2,
5670 TYPE_LENGTH (type),
5671 gdbarch_byte_order (gdbarch),
5672 readbuf, writebuf, 0);
6d82d43b
AC
5673 return RETURN_VALUE_REGISTER_CONVENTION;
5674 }
5675 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5676 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5677 {
6a3a010b
MR
5678 /* A double-precision floating-point value. If reading in or copying,
5679 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5680 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5681 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5682 no function known, if this safety check ever triggers, then we'll
5683 have to try harder. */
5684 gdb_assert (function || !readbuf);
6d82d43b 5685 if (mips_debug)
6a3a010b
MR
5686 switch (fval_reg)
5687 {
5688 case mips_fval_fpr:
5689 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5690 break;
5691 case mips_fval_gpr:
5692 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5693 break;
5694 case mips_fval_both:
5695 fprintf_unfiltered (gdb_stderr,
5696 "Return float in $fp1/$fp0 and $2/$3\n");
5697 break;
5698 }
5699 if (fval_reg != mips_fval_gpr)
6d82d43b 5700 {
6a3a010b
MR
5701 /* The most significant part goes in FP1, and the least significant
5702 in FP0. */
5703 switch (gdbarch_byte_order (gdbarch))
5704 {
5705 case BFD_ENDIAN_LITTLE:
5706 mips_xfer_register (gdbarch, regcache,
5707 (gdbarch_num_regs (gdbarch)
5708 + mips_regnum (gdbarch)->fp0 + 0),
5709 4, gdbarch_byte_order (gdbarch),
5710 readbuf, writebuf, 0);
5711 mips_xfer_register (gdbarch, regcache,
5712 (gdbarch_num_regs (gdbarch)
5713 + mips_regnum (gdbarch)->fp0 + 1),
5714 4, gdbarch_byte_order (gdbarch),
5715 readbuf, writebuf, 4);
5716 break;
5717 case BFD_ENDIAN_BIG:
5718 mips_xfer_register (gdbarch, regcache,
5719 (gdbarch_num_regs (gdbarch)
5720 + mips_regnum (gdbarch)->fp0 + 1),
5721 4, gdbarch_byte_order (gdbarch),
5722 readbuf, writebuf, 0);
5723 mips_xfer_register (gdbarch, regcache,
5724 (gdbarch_num_regs (gdbarch)
5725 + mips_regnum (gdbarch)->fp0 + 0),
5726 4, gdbarch_byte_order (gdbarch),
5727 readbuf, writebuf, 4);
5728 break;
5729 default:
5730 internal_error (__FILE__, __LINE__, _("bad switch"));
5731 }
5732 }
5733 if (fval_reg != mips_fval_fpr)
5734 {
5735 /* The two 32-bit parts are always placed in GPR2 and GPR3
5736 following these registers' memory order. */
ba32f989 5737 mips_xfer_register (gdbarch, regcache,
6a3a010b 5738 gdbarch_num_regs (gdbarch) + 2,
72a155b4 5739 4, gdbarch_byte_order (gdbarch),
4c6b5505 5740 readbuf, writebuf, 0);
ba32f989 5741 mips_xfer_register (gdbarch, regcache,
6a3a010b 5742 gdbarch_num_regs (gdbarch) + 3,
72a155b4 5743 4, gdbarch_byte_order (gdbarch),
4c6b5505 5744 readbuf, writebuf, 4);
6d82d43b
AC
5745 }
5746 return RETURN_VALUE_REGISTER_CONVENTION;
5747 }
5748#if 0
5749 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5750 && TYPE_NFIELDS (type) <= 2
5751 && TYPE_NFIELDS (type) >= 1
5752 && ((TYPE_NFIELDS (type) == 1
5753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5754 == TYPE_CODE_FLT))
5755 || (TYPE_NFIELDS (type) == 2
5756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5757 == TYPE_CODE_FLT)
5758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5759 == TYPE_CODE_FLT)))
5760 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5761 {
5762 /* A struct that contains one or two floats. Each value is part
5763 in the least significant part of their floating point
5764 register.. */
6d82d43b
AC
5765 int regnum;
5766 int field;
72a155b4 5767 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
5768 field < TYPE_NFIELDS (type); field++, regnum += 2)
5769 {
5770 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5771 / TARGET_CHAR_BIT);
5772 if (mips_debug)
5773 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5774 offset);
ba32f989
DJ
5775 mips_xfer_register (gdbarch, regcache,
5776 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 5777 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 5778 gdbarch_byte_order (gdbarch),
4c6b5505 5779 readbuf, writebuf, offset);
6d82d43b
AC
5780 }
5781 return RETURN_VALUE_REGISTER_CONVENTION;
5782 }
5783#endif
5784#if 0
5785 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5786 || TYPE_CODE (type) == TYPE_CODE_UNION)
5787 {
5788 /* A structure or union. Extract the left justified value,
5789 regardless of the byte order. I.e. DO NOT USE
5790 mips_xfer_lower. */
5791 int offset;
5792 int regnum;
4c7d22cb 5793 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5794 offset < TYPE_LENGTH (type);
72a155b4 5795 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 5796 {
72a155b4 5797 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
5798 if (offset + xfer > TYPE_LENGTH (type))
5799 xfer = TYPE_LENGTH (type) - offset;
5800 if (mips_debug)
5801 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5802 offset, xfer, regnum);
ba32f989
DJ
5803 mips_xfer_register (gdbarch, regcache,
5804 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
5805 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5806 }
5807 return RETURN_VALUE_REGISTER_CONVENTION;
5808 }
5809#endif
5810 else
5811 {
5812 /* A scalar extract each part but least-significant-byte
5813 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 5814 the ISA. */
6d82d43b
AC
5815 int offset;
5816 int regnum;
4c7d22cb 5817 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 5818 offset < TYPE_LENGTH (type);
1a69e1e4 5819 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 5820 {
1a69e1e4 5821 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
5822 if (offset + xfer > TYPE_LENGTH (type))
5823 xfer = TYPE_LENGTH (type) - offset;
5824 if (mips_debug)
5825 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5826 offset, xfer, regnum);
ba32f989
DJ
5827 mips_xfer_register (gdbarch, regcache,
5828 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 5829 gdbarch_byte_order (gdbarch),
4c6b5505 5830 readbuf, writebuf, offset);
6d82d43b
AC
5831 }
5832 return RETURN_VALUE_REGISTER_CONVENTION;
5833 }
5834}
5835
5836/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5837 ABI. */
46cac009
AC
5838
5839static CORE_ADDR
7d9b040b 5840mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
5841 struct regcache *regcache, CORE_ADDR bp_addr,
5842 int nargs,
5843 struct value **args, CORE_ADDR sp,
5844 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
5845{
5846 int argreg;
5847 int float_argreg;
5848 int argnum;
5849 int len = 0;
5850 int stack_offset = 0;
e17a4113 5851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7d9b040b 5852 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 5853
25ab4790
AC
5854 /* For shared libraries, "t9" needs to point at the function
5855 address. */
4c7d22cb 5856 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
5857
5858 /* Set the return address register to point to the entry point of
5859 the program, where a breakpoint lies in wait. */
4c7d22cb 5860 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 5861
46cac009
AC
5862 /* First ensure that the stack and structure return address (if any)
5863 are properly aligned. The stack has to be at least 64-bit
5864 aligned even on 32-bit machines, because doubles must be 64-bit
5865 aligned. For n32 and n64, stack frames need to be 128-bit
5866 aligned, so we round to this widest known alignment. */
5867
5b03f266
AC
5868 sp = align_down (sp, 16);
5869 struct_addr = align_down (struct_addr, 16);
46cac009
AC
5870
5871 /* Now make space on the stack for the args. */
5872 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
5873 {
5874 struct type *arg_type = check_typedef (value_type (args[argnum]));
968b5391 5875
968b5391 5876 /* Allocate space on the stack. */
354ecfd5 5877 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
968b5391 5878 }
5b03f266 5879 sp -= align_up (len, 16);
46cac009
AC
5880
5881 if (mips_debug)
6d82d43b 5882 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5883 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5884 paddress (gdbarch, sp), (long) align_up (len, 16));
46cac009
AC
5885
5886 /* Initialize the integer and float register pointers. */
4c7d22cb 5887 argreg = MIPS_A0_REGNUM;
72a155b4 5888 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
5889
5890 /* The struct_return pointer occupies the first parameter-passing reg. */
5891 if (struct_return)
5892 {
5893 if (mips_debug)
5894 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
5895 "mips_o64_push_dummy_call: "
5896 "struct_return reg=%d %s\n",
5af949e3 5897 argreg, paddress (gdbarch, struct_addr));
9c9acae0 5898 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 5899 stack_offset += MIPS64_REGSIZE;
46cac009
AC
5900 }
5901
5902 /* Now load as many as possible of the first arguments into
5903 registers, and push the rest onto the stack. Loop thru args
5904 from first to last. */
5905 for (argnum = 0; argnum < nargs; argnum++)
5906 {
47a35522 5907 const gdb_byte *val;
46cac009 5908 struct value *arg = args[argnum];
4991999e 5909 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
5910 int len = TYPE_LENGTH (arg_type);
5911 enum type_code typecode = TYPE_CODE (arg_type);
5912
5913 if (mips_debug)
5914 fprintf_unfiltered (gdb_stdlog,
25ab4790 5915 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
5916 argnum + 1, len, (int) typecode);
5917
47a35522 5918 val = value_contents (arg);
ebafbe83 5919
ebafbe83 5920 /* Floating point arguments passed in registers have to be
6a3a010b
MR
5921 treated specially. On 32-bit architectures, doubles are
5922 passed in register pairs; the even FP register gets the
5923 low word, and the odd FP register gets the high word.
5924 On O64, the first two floating point arguments are also
5925 copied to general registers, because MIPS16 functions
5926 don't use float registers for arguments. This duplication
5927 of arguments in general registers can't hurt non-MIPS16
5928 functions because those registers are normally skipped. */
ebafbe83 5929
74ed0bb4
MD
5930 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5931 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
ebafbe83 5932 {
e17a4113 5933 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2afd3f0a
MR
5934 if (mips_debug)
5935 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5936 float_argreg, phex (regval, len));
9c9acae0 5937 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
5938 if (mips_debug)
5939 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5940 argreg, phex (regval, len));
9c9acae0 5941 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 5942 argreg++;
ebafbe83 5943 /* Reserve space for the FP register. */
1a69e1e4 5944 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
5945 }
5946 else
5947 {
5948 /* Copy the argument to general registers or the stack in
5949 register-sized pieces. Large arguments are split between
5950 registers and stack. */
1a69e1e4 5951 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
5952 are treated specially: Irix cc passes them in registers
5953 where gcc sometimes puts them on the stack. For maximum
5954 compatibility, we will put them in both places. */
1a69e1e4
DJ
5955 int odd_sized_struct = (len > MIPS64_REGSIZE
5956 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
5957 while (len > 0)
5958 {
1a69e1e4 5959 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
5960
5961 if (mips_debug)
5962 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5963 partial_len);
5964
5965 /* Write this portion of the argument to the stack. */
74ed0bb4 5966 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
968b5391 5967 || odd_sized_struct)
ebafbe83
MS
5968 {
5969 /* Should shorter than int integer values be
025bb325 5970 promoted to int before being stored? */
ebafbe83
MS
5971 int longword_offset = 0;
5972 CORE_ADDR addr;
72a155b4 5973 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 5974 {
1a69e1e4
DJ
5975 if ((typecode == TYPE_CODE_INT
5976 || typecode == TYPE_CODE_PTR
5977 || typecode == TYPE_CODE_FLT)
5978 && len <= 4)
5979 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
5980 }
5981
5982 if (mips_debug)
5983 {
5af949e3
UW
5984 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5985 paddress (gdbarch, stack_offset));
5986 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5987 paddress (gdbarch, longword_offset));
ebafbe83
MS
5988 }
5989
5990 addr = sp + stack_offset + longword_offset;
5991
5992 if (mips_debug)
5993 {
5994 int i;
5af949e3
UW
5995 fprintf_unfiltered (gdb_stdlog, " @%s ",
5996 paddress (gdbarch, addr));
ebafbe83
MS
5997 for (i = 0; i < partial_len; i++)
5998 {
6d82d43b 5999 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
6000 val[i] & 0xff);
6001 }
6002 }
6003 write_memory (addr, val, partial_len);
6004 }
6005
6006 /* Note!!! This is NOT an else clause. Odd sized
968b5391 6007 structs may go thru BOTH paths. */
ebafbe83 6008 /* Write this portion of the argument to a general
6d82d43b 6009 purpose register. */
74ed0bb4 6010 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
ebafbe83 6011 {
e17a4113
UW
6012 LONGEST regval = extract_signed_integer (val, partial_len,
6013 byte_order);
4246e332 6014 /* Value may need to be sign extended, because
1b13c4f6 6015 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
6016
6017 /* A non-floating-point argument being passed in a
6018 general register. If a struct or union, and if
6019 the remaining length is smaller than the register
6020 size, we have to adjust the register value on
6021 big endian targets.
6022
6023 It does not seem to be necessary to do the
025bb325 6024 same for integral types. */
480d3dd2 6025
72a155b4 6026 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 6027 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
6028 && (typecode == TYPE_CODE_STRUCT
6029 || typecode == TYPE_CODE_UNION))
1a69e1e4 6030 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 6031 * TARGET_CHAR_BIT);
ebafbe83
MS
6032
6033 if (mips_debug)
6034 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6035 argreg,
1a69e1e4 6036 phex (regval, MIPS64_REGSIZE));
9c9acae0 6037 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
6038 argreg++;
6039
6040 /* Prevent subsequent floating point arguments from
6041 being passed in floating point registers. */
74ed0bb4 6042 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
ebafbe83
MS
6043 }
6044
6045 len -= partial_len;
6046 val += partial_len;
6047
b021a221
MS
6048 /* Compute the offset into the stack at which we will
6049 copy the next parameter.
ebafbe83 6050
6d82d43b
AC
6051 In older ABIs, the caller reserved space for
6052 registers that contained arguments. This was loosely
6053 refered to as their "home". Consequently, space is
6054 always allocated. */
ebafbe83 6055
1a69e1e4 6056 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
6057 }
6058 }
6059 if (mips_debug)
6060 fprintf_unfiltered (gdb_stdlog, "\n");
6061 }
6062
f10683bb 6063 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 6064
ebafbe83
MS
6065 /* Return adjusted stack pointer. */
6066 return sp;
6067}
6068
9c8fdbfa 6069static enum return_value_convention
6a3a010b 6070mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
9c8fdbfa 6071 struct type *type, struct regcache *regcache,
47a35522 6072 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 6073{
6a3a010b 6074 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
4cc0665f 6075 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6a3a010b 6076 enum mips_fval_reg fval_reg;
7a076fd2 6077
6a3a010b 6078 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
7a076fd2
FF
6079 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6080 || TYPE_CODE (type) == TYPE_CODE_UNION
6081 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6082 return RETURN_VALUE_STRUCT_CONVENTION;
74ed0bb4 6083 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
7a076fd2 6084 {
6a3a010b
MR
6085 /* A floating-point value. If reading in or copying, then we get it
6086 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6087 If writing out only, then we put it to both FP0 and GPR2. We do
6088 not support reading in with no function known, if this safety
6089 check ever triggers, then we'll have to try harder. */
6090 gdb_assert (function || !readbuf);
7a076fd2 6091 if (mips_debug)
6a3a010b
MR
6092 switch (fval_reg)
6093 {
6094 case mips_fval_fpr:
6095 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6096 break;
6097 case mips_fval_gpr:
6098 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6099 break;
6100 case mips_fval_both:
6101 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6102 break;
6103 }
6104 if (fval_reg != mips_fval_gpr)
6105 mips_xfer_register (gdbarch, regcache,
6106 (gdbarch_num_regs (gdbarch)
6107 + mips_regnum (gdbarch)->fp0),
6108 TYPE_LENGTH (type),
6109 gdbarch_byte_order (gdbarch),
6110 readbuf, writebuf, 0);
6111 if (fval_reg != mips_fval_fpr)
6112 mips_xfer_register (gdbarch, regcache,
6113 gdbarch_num_regs (gdbarch) + 2,
6114 TYPE_LENGTH (type),
6115 gdbarch_byte_order (gdbarch),
6116 readbuf, writebuf, 0);
7a076fd2
FF
6117 return RETURN_VALUE_REGISTER_CONVENTION;
6118 }
6119 else
6120 {
6121 /* A scalar extract each part but least-significant-byte
025bb325 6122 justified. */
7a076fd2
FF
6123 int offset;
6124 int regnum;
6125 for (offset = 0, regnum = MIPS_V0_REGNUM;
6126 offset < TYPE_LENGTH (type);
1a69e1e4 6127 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 6128 {
1a69e1e4 6129 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
6130 if (offset + xfer > TYPE_LENGTH (type))
6131 xfer = TYPE_LENGTH (type) - offset;
6132 if (mips_debug)
6133 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6134 offset, xfer, regnum);
ba32f989
DJ
6135 mips_xfer_register (gdbarch, regcache,
6136 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 6137 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 6138 readbuf, writebuf, offset);
7a076fd2
FF
6139 }
6140 return RETURN_VALUE_REGISTER_CONVENTION;
6141 }
6d82d43b
AC
6142}
6143
dd824b04
DJ
6144/* Floating point register management.
6145
6146 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6147 64bit operations, these early MIPS cpus treat fp register pairs
6148 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6149 registers and offer a compatibility mode that emulates the MIPS2 fp
6150 model. When operating in MIPS2 fp compat mode, later cpu's split
6151 double precision floats into two 32-bit chunks and store them in
6152 consecutive fp regs. To display 64-bit floats stored in this
6153 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6154 Throw in user-configurable endianness and you have a real mess.
6155
6156 The way this works is:
6157 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6158 double-precision value will be split across two logical registers.
6159 The lower-numbered logical register will hold the low-order bits,
6160 regardless of the processor's endianness.
6161 - If we are on a 64-bit processor, and we are looking for a
6162 single-precision value, it will be in the low ordered bits
6163 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6164 save slot in memory.
6165 - If we are in 64-bit mode, everything is straightforward.
6166
6167 Note that this code only deals with "live" registers at the top of the
6168 stack. We will attempt to deal with saved registers later, when
025bb325 6169 the raw/cooked register interface is in place. (We need a general
dd824b04
DJ
6170 interface that can deal with dynamic saved register sizes -- fp
6171 regs could be 32 bits wide in one frame and 64 on the frame above
6172 and below). */
6173
6174/* Copy a 32-bit single-precision value from the current frame
6175 into rare_buffer. */
6176
6177static void
e11c53d2 6178mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 6179 gdb_byte *rare_buffer)
dd824b04 6180{
72a155b4
UW
6181 struct gdbarch *gdbarch = get_frame_arch (frame);
6182 int raw_size = register_size (gdbarch, regno);
224c3ddb 6183 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
dd824b04 6184
ca9d61b9 6185 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
c9f4d572 6186 error (_("can't read register %d (%s)"),
72a155b4 6187 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6188 if (raw_size == 8)
6189 {
6190 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 6191 32 bits. */
dd824b04
DJ
6192 int offset;
6193
72a155b4 6194 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
6195 offset = 4;
6196 else
6197 offset = 0;
6198
6199 memcpy (rare_buffer, raw_buffer + offset, 4);
6200 }
6201 else
6202 {
6203 memcpy (rare_buffer, raw_buffer, 4);
6204 }
6205}
6206
6207/* Copy a 64-bit double-precision value from the current frame into
6208 rare_buffer. This may include getting half of it from the next
6209 register. */
6210
6211static void
e11c53d2 6212mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 6213 gdb_byte *rare_buffer)
dd824b04 6214{
72a155b4
UW
6215 struct gdbarch *gdbarch = get_frame_arch (frame);
6216 int raw_size = register_size (gdbarch, regno);
dd824b04 6217
9c9acae0 6218 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
6219 {
6220 /* We have a 64-bit value for this register, and we should use
6d82d43b 6221 all 64 bits. */
ca9d61b9 6222 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
c9f4d572 6223 error (_("can't read register %d (%s)"),
72a155b4 6224 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
6225 }
6226 else
6227 {
72a155b4 6228 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 6229
72a155b4 6230 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 6231 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
6232 _("mips_read_fp_register_double: bad access to "
6233 "odd-numbered FP register"));
dd824b04
DJ
6234
6235 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 6236 each register. */
72a155b4 6237 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 6238 {
e11c53d2
AC
6239 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6240 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 6241 }
361d1df0 6242 else
dd824b04 6243 {
e11c53d2
AC
6244 mips_read_fp_register_single (frame, regno, rare_buffer);
6245 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
6246 }
6247 }
6248}
6249
c906108c 6250static void
e11c53d2
AC
6251mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6252 int regnum)
025bb325 6253{ /* Do values for FP (float) regs. */
72a155b4 6254 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 6255 gdb_byte *raw_buffer;
8ba0dd51
UW
6256 std::string flt_str, dbl_str;
6257
f69fdf9b
UW
6258 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6259 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
c5aa993b 6260
224c3ddb
SM
6261 raw_buffer
6262 = ((gdb_byte *)
6263 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
c906108c 6264
72a155b4 6265 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 6266 fprintf_filtered (file, "%*s",
72a155b4 6267 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 6268 "");
f0ef6b29 6269
72a155b4 6270 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 6271 {
79a45b7d
TT
6272 struct value_print_options opts;
6273
f0ef6b29
KB
6274 /* 4-byte registers: Print hex and floating. Also print even
6275 numbered registers as doubles. */
e11c53d2 6276 mips_read_fp_register_single (frame, regnum, raw_buffer);
f69fdf9b 6277 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
c5aa993b 6278
79a45b7d 6279 get_formatted_print_options (&opts, 'x');
df4df182
UW
6280 print_scalar_formatted (raw_buffer,
6281 builtin_type (gdbarch)->builtin_uint32,
6282 &opts, 'w', file);
dd824b04 6283
8ba0dd51 6284 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
1adad886 6285
72a155b4 6286 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 6287 {
e11c53d2 6288 mips_read_fp_register_double (frame, regnum, raw_buffer);
f69fdf9b 6289 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
1adad886 6290
8ba0dd51 6291 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
f0ef6b29 6292 }
c906108c
SS
6293 }
6294 else
dd824b04 6295 {
79a45b7d
TT
6296 struct value_print_options opts;
6297
f0ef6b29 6298 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 6299 mips_read_fp_register_single (frame, regnum, raw_buffer);
f69fdf9b 6300 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
c906108c 6301
e11c53d2 6302 mips_read_fp_register_double (frame, regnum, raw_buffer);
f69fdf9b 6303 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
f0ef6b29 6304
79a45b7d 6305 get_formatted_print_options (&opts, 'x');
df4df182
UW
6306 print_scalar_formatted (raw_buffer,
6307 builtin_type (gdbarch)->builtin_uint64,
6308 &opts, 'g', file);
f0ef6b29 6309
8ba0dd51
UW
6310 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6311 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
f0ef6b29
KB
6312 }
6313}
6314
6315static void
e11c53d2 6316mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 6317 int regnum)
f0ef6b29 6318{
a4b8ebc8 6319 struct gdbarch *gdbarch = get_frame_arch (frame);
79a45b7d 6320 struct value_print_options opts;
de15c4ab 6321 struct value *val;
1adad886 6322
004159a2 6323 if (mips_float_register_p (gdbarch, regnum))
f0ef6b29 6324 {
e11c53d2 6325 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
6326 return;
6327 }
6328
de15c4ab 6329 val = get_frame_register_value (frame, regnum);
f0ef6b29 6330
72a155b4 6331 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
6332
6333 /* The problem with printing numeric register names (r26, etc.) is that
6334 the user can't use them on input. Probably the best solution is to
6335 fix it so that either the numeric or the funky (a2, etc.) names
6336 are accepted on input. */
6337 if (regnum < MIPS_NUMREGS)
e11c53d2 6338 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 6339 else
e11c53d2 6340 fprintf_filtered (file, ": ");
f0ef6b29 6341
79a45b7d 6342 get_formatted_print_options (&opts, 'x');
de15c4ab 6343 val_print_scalar_formatted (value_type (val),
de15c4ab
PA
6344 value_embedded_offset (val),
6345 val,
6346 &opts, 0, file);
c906108c
SS
6347}
6348
1bab7383
YQ
6349/* Print IEEE exception condition bits in FLAGS. */
6350
6351static void
6352print_fpu_flags (struct ui_file *file, int flags)
6353{
6354 if (flags & (1 << 0))
6355 fputs_filtered (" inexact", file);
6356 if (flags & (1 << 1))
6357 fputs_filtered (" uflow", file);
6358 if (flags & (1 << 2))
6359 fputs_filtered (" oflow", file);
6360 if (flags & (1 << 3))
6361 fputs_filtered (" div0", file);
6362 if (flags & (1 << 4))
6363 fputs_filtered (" inval", file);
6364 if (flags & (1 << 5))
6365 fputs_filtered (" unimp", file);
6366 fputc_filtered ('\n', file);
6367}
6368
6369/* Print interesting information about the floating point processor
6370 (if present) or emulator. */
6371
6372static void
6373mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6374 struct frame_info *frame, const char *args)
6375{
6376 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6377 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6378 ULONGEST fcs = 0;
6379 int i;
6380
6381 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6382 type = MIPS_FPU_NONE;
6383
6384 fprintf_filtered (file, "fpu type: %s\n",
6385 type == MIPS_FPU_DOUBLE ? "double-precision"
6386 : type == MIPS_FPU_SINGLE ? "single-precision"
6387 : "none / unused");
6388
6389 if (type == MIPS_FPU_NONE)
6390 return;
6391
6392 fprintf_filtered (file, "reg size: %d bits\n",
6393 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6394
6395 fputs_filtered ("cond :", file);
6396 if (fcs & (1 << 23))
6397 fputs_filtered (" 0", file);
6398 for (i = 1; i <= 7; i++)
6399 if (fcs & (1 << (24 + i)))
6400 fprintf_filtered (file, " %d", i);
6401 fputc_filtered ('\n', file);
6402
6403 fputs_filtered ("cause :", file);
6404 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6405 fputs ("mask :", stdout);
6406 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6407 fputs ("flags :", stdout);
6408 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6409
6410 fputs_filtered ("rounding: ", file);
6411 switch (fcs & 3)
6412 {
6413 case 0: fputs_filtered ("nearest\n", file); break;
6414 case 1: fputs_filtered ("zero\n", file); break;
6415 case 2: fputs_filtered ("+inf\n", file); break;
6416 case 3: fputs_filtered ("-inf\n", file); break;
6417 }
6418
6419 fputs_filtered ("flush :", file);
6420 if (fcs & (1 << 21))
6421 fputs_filtered (" nearest", file);
6422 if (fcs & (1 << 22))
6423 fputs_filtered (" override", file);
6424 if (fcs & (1 << 24))
6425 fputs_filtered (" zero", file);
6426 if ((fcs & (0xb << 21)) == 0)
6427 fputs_filtered (" no", file);
6428 fputc_filtered ('\n', file);
6429
6430 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6431 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6432 fputc_filtered ('\n', file);
6433
6434 default_print_float_info (gdbarch, file, frame, args);
6435}
6436
f0ef6b29
KB
6437/* Replacement for generic do_registers_info.
6438 Print regs in pretty columns. */
6439
6440static int
e11c53d2
AC
6441print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6442 int regnum)
f0ef6b29 6443{
e11c53d2
AC
6444 fprintf_filtered (file, " ");
6445 mips_print_fp_register (file, frame, regnum);
6446 fprintf_filtered (file, "\n");
f0ef6b29
KB
6447 return regnum + 1;
6448}
6449
6450
025bb325 6451/* Print a row's worth of GP (int) registers, with name labels above. */
c906108c
SS
6452
6453static int
e11c53d2 6454print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 6455 int start_regnum)
c906108c 6456{
a4b8ebc8 6457 struct gdbarch *gdbarch = get_frame_arch (frame);
025bb325 6458 /* Do values for GP (int) regs. */
313c5961
AH
6459 const gdb_byte *raw_buffer;
6460 struct value *value;
025bb325
MS
6461 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6462 per row. */
c906108c 6463 int col, byte;
a4b8ebc8 6464 int regnum;
c906108c 6465
025bb325 6466 /* For GP registers, we print a separate row of names above the vals. */
a4b8ebc8 6467 for (col = 0, regnum = start_regnum;
72a155b4
UW
6468 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6469 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6470 regnum++)
c906108c 6471 {
72a155b4 6472 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6473 continue; /* unused register */
004159a2 6474 if (mips_float_register_p (gdbarch, regnum))
025bb325 6475 break; /* End the row: reached FP register. */
0cc93a06 6476 /* Large registers are handled separately. */
72a155b4 6477 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6478 {
6479 if (col > 0)
6480 break; /* End the row before this register. */
6481
6482 /* Print this register on a row by itself. */
6483 mips_print_register (file, frame, regnum);
6484 fprintf_filtered (file, "\n");
6485 return regnum + 1;
6486 }
d05f6826
DJ
6487 if (col == 0)
6488 fprintf_filtered (file, " ");
6d82d43b 6489 fprintf_filtered (file,
72a155b4
UW
6490 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6491 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
6492 col++;
6493 }
d05f6826
DJ
6494
6495 if (col == 0)
6496 return regnum;
6497
025bb325 6498 /* Print the R0 to R31 names. */
72a155b4 6499 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 6500 fprintf_filtered (file, "\n R%-4d",
72a155b4 6501 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
6502 else
6503 fprintf_filtered (file, "\n ");
c906108c 6504
025bb325 6505 /* Now print the values in hex, 4 or 8 to the row. */
a4b8ebc8 6506 for (col = 0, regnum = start_regnum;
72a155b4
UW
6507 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6508 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 6509 regnum++)
c906108c 6510 {
72a155b4 6511 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 6512 continue; /* unused register */
004159a2 6513 if (mips_float_register_p (gdbarch, regnum))
025bb325 6514 break; /* End row: reached FP register. */
72a155b4 6515 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
6516 break; /* End row: large register. */
6517
c906108c 6518 /* OK: get the data in raw format. */
313c5961
AH
6519 value = get_frame_register_value (frame, regnum);
6520 if (value_optimized_out (value)
6521 || !value_entirely_available (value))
325c9fd4
JB
6522 {
6523 fprintf_filtered (file, "%*s ",
6524 (int) mips_abi_regsize (gdbarch) * 2,
6525 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6526 : "<unavailable>"));
6527 col++;
6528 continue;
6529 }
313c5961 6530 raw_buffer = value_contents_all (value);
c906108c 6531 /* pad small registers */
4246e332 6532 for (byte = 0;
72a155b4
UW
6533 byte < (mips_abi_regsize (gdbarch)
6534 - register_size (gdbarch, regnum)); byte++)
428544e8 6535 fprintf_filtered (file, " ");
025bb325 6536 /* Now print the register value in hex, endian order. */
72a155b4 6537 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 6538 for (byte =
72a155b4
UW
6539 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6540 byte < register_size (gdbarch, regnum); byte++)
47a35522 6541 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 6542 else
72a155b4 6543 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 6544 byte >= 0; byte--)
47a35522 6545 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 6546 fprintf_filtered (file, " ");
c906108c
SS
6547 col++;
6548 }
025bb325 6549 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 6550 fprintf_filtered (file, "\n");
c906108c
SS
6551
6552 return regnum;
6553}
6554
025bb325 6555/* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
c906108c 6556
bf1f5b4c 6557static void
e11c53d2
AC
6558mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6559 struct frame_info *frame, int regnum, int all)
c906108c 6560{
025bb325 6561 if (regnum != -1) /* Do one specified register. */
c906108c 6562 {
72a155b4
UW
6563 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6564 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 6565 error (_("Not a valid register for the current processor type"));
c906108c 6566
0cc93a06 6567 mips_print_register (file, frame, regnum);
e11c53d2 6568 fprintf_filtered (file, "\n");
c906108c 6569 }
c5aa993b 6570 else
025bb325 6571 /* Do all (or most) registers. */
c906108c 6572 {
72a155b4
UW
6573 regnum = gdbarch_num_regs (gdbarch);
6574 while (regnum < gdbarch_num_regs (gdbarch)
6575 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 6576 {
004159a2 6577 if (mips_float_register_p (gdbarch, regnum))
e11c53d2 6578 {
025bb325 6579 if (all) /* True for "INFO ALL-REGISTERS" command. */
e11c53d2
AC
6580 regnum = print_fp_register_row (file, frame, regnum);
6581 else
025bb325 6582 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
e11c53d2 6583 }
c906108c 6584 else
e11c53d2 6585 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
6586 }
6587 }
6588}
6589
63807e1d 6590static int
3352ef37
AC
6591mips_single_step_through_delay (struct gdbarch *gdbarch,
6592 struct frame_info *frame)
c906108c 6593{
3352ef37 6594 CORE_ADDR pc = get_frame_pc (frame);
4cc0665f
MR
6595 enum mips_isa isa;
6596 ULONGEST insn;
4cc0665f
MR
6597 int size;
6598
6599 if ((mips_pc_is_mips (pc)
ab50adb6 6600 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
4cc0665f 6601 || (mips_pc_is_micromips (gdbarch, pc)
ab50adb6 6602 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
4cc0665f 6603 || (mips_pc_is_mips16 (gdbarch, pc)
ab50adb6 6604 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
06648491
MK
6605 return 0;
6606
4cc0665f
MR
6607 isa = mips_pc_isa (gdbarch, pc);
6608 /* _has_delay_slot above will have validated the read. */
6609 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6610 size = mips_insn_size (isa, insn);
8b86c959
YQ
6611
6612 const address_space *aspace = get_frame_address_space (frame);
6613
4cc0665f 6614 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
c906108c
SS
6615}
6616
6d82d43b
AC
6617/* To skip prologues, I use this predicate. Returns either PC itself
6618 if the code at PC does not look like a function prologue; otherwise
6619 returns an address that (if we're lucky) follows the prologue. If
6620 LENIENT, then we must skip everything which is involved in setting
6621 up the frame (it's OK to skip more, just so long as we don't skip
6622 anything which might clobber the registers which are being saved.
6623 We must skip more in the case where part of the prologue is in the
6624 delay slot of a non-prologue instruction). */
6625
6626static CORE_ADDR
6093d2eb 6627mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6d82d43b 6628{
8b622e6a
AC
6629 CORE_ADDR limit_pc;
6630 CORE_ADDR func_addr;
6631
6d82d43b
AC
6632 /* See if we can determine the end of the prologue via the symbol table.
6633 If so, then return either PC, or the PC after the prologue, whichever
6634 is greater. */
8b622e6a
AC
6635 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6636 {
d80b854b
UW
6637 CORE_ADDR post_prologue_pc
6638 = skip_prologue_using_sal (gdbarch, func_addr);
8b622e6a 6639 if (post_prologue_pc != 0)
325fac50 6640 return std::max (pc, post_prologue_pc);
8b622e6a 6641 }
6d82d43b
AC
6642
6643 /* Can't determine prologue from the symbol table, need to examine
6644 instructions. */
6645
98b4dd94
JB
6646 /* Find an upper limit on the function prologue using the debug
6647 information. If the debug information could not be used to provide
6648 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 6649 limit_pc = skip_prologue_using_sal (gdbarch, pc);
98b4dd94
JB
6650 if (limit_pc == 0)
6651 limit_pc = pc + 100; /* Magic. */
6652
4cc0665f 6653 if (mips_pc_is_mips16 (gdbarch, pc))
e17a4113 6654 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4cc0665f
MR
6655 else if (mips_pc_is_micromips (gdbarch, pc))
6656 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6d82d43b 6657 else
e17a4113 6658 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
88658117
AC
6659}
6660
c9cf6e20
MG
6661/* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6662 This is a helper function for mips_stack_frame_destroyed_p. */
6663
97ab0fdd 6664static int
c9cf6e20 6665mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6666{
6667 CORE_ADDR func_addr = 0, func_end = 0;
6668
6669 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6670 {
6671 /* The MIPS epilogue is max. 12 bytes long. */
6672 CORE_ADDR addr = func_end - 12;
6673
6674 if (addr < func_addr + 4)
6675 addr = func_addr + 4;
6676 if (pc < addr)
6677 return 0;
6678
6679 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6680 {
6681 unsigned long high_word;
6682 unsigned long inst;
6683
4cc0665f 6684 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
97ab0fdd
MR
6685 high_word = (inst >> 16) & 0xffff;
6686
6687 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6688 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6689 && inst != 0x03e00008 /* jr $ra */
6690 && inst != 0x00000000) /* nop */
6691 return 0;
6692 }
6693
6694 return 1;
6695 }
6696
6697 return 0;
6698}
6699
c9cf6e20
MG
6700/* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6701 This is a helper function for mips_stack_frame_destroyed_p. */
4cc0665f
MR
6702
6703static int
c9cf6e20 6704micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4cc0665f
MR
6705{
6706 CORE_ADDR func_addr = 0;
6707 CORE_ADDR func_end = 0;
6708 CORE_ADDR addr;
6709 ULONGEST insn;
6710 long offset;
6711 int dreg;
6712 int sreg;
6713 int loc;
6714
6715 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6716 return 0;
6717
6718 /* The microMIPS epilogue is max. 12 bytes long. */
6719 addr = func_end - 12;
6720
6721 if (addr < func_addr + 2)
6722 addr = func_addr + 2;
6723 if (pc < addr)
6724 return 0;
6725
6726 for (; pc < func_end; pc += loc)
6727 {
6728 loc = 0;
6729 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6730 loc += MIPS_INSN16_SIZE;
6731 switch (mips_insn_size (ISA_MICROMIPS, insn))
6732 {
4cc0665f
MR
6733 /* 32-bit instructions. */
6734 case 2 * MIPS_INSN16_SIZE:
6735 insn <<= 16;
6736 insn |= mips_fetch_instruction (gdbarch,
6737 ISA_MICROMIPS, pc + loc, NULL);
6738 loc += MIPS_INSN16_SIZE;
6739 switch (micromips_op (insn >> 16))
6740 {
6741 case 0xc: /* ADDIU: bits 001100 */
6742 case 0x17: /* DADDIU: bits 010111 */
6743 sreg = b0s5_reg (insn >> 16);
6744 dreg = b5s5_reg (insn >> 16);
6745 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6746 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6747 /* (D)ADDIU $sp, imm */
6748 && offset >= 0)
6749 break;
6750 return 0;
6751
6752 default:
6753 return 0;
6754 }
6755 break;
6756
6757 /* 16-bit instructions. */
6758 case MIPS_INSN16_SIZE:
6759 switch (micromips_op (insn))
6760 {
6761 case 0x3: /* MOVE: bits 000011 */
6762 sreg = b0s5_reg (insn);
6763 dreg = b5s5_reg (insn);
6764 if (sreg == 0 && dreg == 0)
6765 /* MOVE $zero, $zero aka NOP */
6766 break;
6767 return 0;
6768
6769 case 0x11: /* POOL16C: bits 010001 */
6770 if (b5s5_op (insn) == 0x18
6771 /* JRADDIUSP: bits 010011 11000 */
6772 || (b5s5_op (insn) == 0xd
6773 /* JRC: bits 010011 01101 */
6774 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6775 /* JRC $ra */
6776 break;
6777 return 0;
6778
6779 case 0x13: /* POOL16D: bits 010011 */
6780 offset = micromips_decode_imm9 (b1s9_imm (insn));
6781 if ((insn & 0x1) == 0x1
6782 /* ADDIUSP: bits 010011 1 */
6783 && offset > 0)
6784 break;
6785 return 0;
6786
6787 default:
6788 return 0;
6789 }
6790 }
6791 }
6792
6793 return 1;
6794}
6795
c9cf6e20
MG
6796/* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6797 This is a helper function for mips_stack_frame_destroyed_p. */
6798
97ab0fdd 6799static int
c9cf6e20 6800mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd
MR
6801{
6802 CORE_ADDR func_addr = 0, func_end = 0;
6803
6804 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6805 {
6806 /* The MIPS epilogue is max. 12 bytes long. */
6807 CORE_ADDR addr = func_end - 12;
6808
6809 if (addr < func_addr + 4)
6810 addr = func_addr + 4;
6811 if (pc < addr)
6812 return 0;
6813
6814 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6815 {
6816 unsigned short inst;
6817
4cc0665f 6818 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
97ab0fdd
MR
6819
6820 if ((inst & 0xf800) == 0xf000) /* extend */
6821 continue;
6822
6823 if (inst != 0x6300 /* addiu $sp,offset */
6824 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6825 && inst != 0xe820 /* jr $ra */
6826 && inst != 0xe8a0 /* jrc $ra */
6827 && inst != 0x6500) /* nop */
6828 return 0;
6829 }
6830
6831 return 1;
6832 }
6833
6834 return 0;
6835}
6836
c9cf6e20
MG
6837/* Implement the stack_frame_destroyed_p gdbarch method.
6838
6839 The epilogue is defined here as the area at the end of a function,
97ab0fdd 6840 after an instruction which destroys the function's stack frame. */
c9cf6e20 6841
97ab0fdd 6842static int
c9cf6e20 6843mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
97ab0fdd 6844{
4cc0665f 6845 if (mips_pc_is_mips16 (gdbarch, pc))
c9cf6e20 6846 return mips16_stack_frame_destroyed_p (gdbarch, pc);
4cc0665f 6847 else if (mips_pc_is_micromips (gdbarch, pc))
c9cf6e20 6848 return micromips_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd 6849 else
c9cf6e20 6850 return mips32_stack_frame_destroyed_p (gdbarch, pc);
97ab0fdd
MR
6851}
6852
025bb325 6853/* Root of all "set mips "/"show mips " commands. This will eventually be
a5ea2558
AC
6854 used for all MIPS-specific commands. */
6855
a5ea2558 6856static void
981a3fb3 6857show_mips_command (const char *args, int from_tty)
a5ea2558
AC
6858{
6859 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6860}
6861
a5ea2558 6862static void
981a3fb3 6863set_mips_command (const char *args, int from_tty)
a5ea2558 6864{
6d82d43b
AC
6865 printf_unfiltered
6866 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
6867 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6868}
6869
c906108c
SS
6870/* Commands to show/set the MIPS FPU type. */
6871
c906108c 6872static void
bd4c9dfe 6873show_mipsfpu_command (const char *args, int from_tty)
c906108c 6874{
a121b7c1 6875 const char *fpu;
6ca0852e 6876
f5656ead 6877 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6ca0852e
UW
6878 {
6879 printf_unfiltered
6880 ("The MIPS floating-point coprocessor is unknown "
6881 "because the current architecture is not MIPS.\n");
6882 return;
6883 }
6884
f5656ead 6885 switch (MIPS_FPU_TYPE (target_gdbarch ()))
c906108c
SS
6886 {
6887 case MIPS_FPU_SINGLE:
6888 fpu = "single-precision";
6889 break;
6890 case MIPS_FPU_DOUBLE:
6891 fpu = "double-precision";
6892 break;
6893 case MIPS_FPU_NONE:
6894 fpu = "absent (none)";
6895 break;
93d56215 6896 default:
e2e0b3e5 6897 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
6898 }
6899 if (mips_fpu_type_auto)
025bb325
MS
6900 printf_unfiltered ("The MIPS floating-point coprocessor "
6901 "is set automatically (currently %s)\n",
6902 fpu);
c906108c 6903 else
6d82d43b
AC
6904 printf_unfiltered
6905 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
6906}
6907
6908
c906108c 6909static void
981a3fb3 6910set_mipsfpu_command (const char *args, int from_tty)
c906108c 6911{
025bb325
MS
6912 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6913 "\"single\",\"none\" or \"auto\".\n");
c906108c
SS
6914 show_mipsfpu_command (args, from_tty);
6915}
6916
c906108c 6917static void
bd4c9dfe 6918set_mipsfpu_single_command (const char *args, int from_tty)
c906108c 6919{
8d5838b5
AC
6920 struct gdbarch_info info;
6921 gdbarch_info_init (&info);
c906108c
SS
6922 mips_fpu_type = MIPS_FPU_SINGLE;
6923 mips_fpu_type_auto = 0;
8d5838b5
AC
6924 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6925 instead of relying on globals. Doing that would let generic code
6926 handle the search for this specific architecture. */
6927 if (!gdbarch_update_p (info))
e2e0b3e5 6928 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6929}
6930
c906108c 6931static void
bd4c9dfe 6932set_mipsfpu_double_command (const char *args, int from_tty)
c906108c 6933{
8d5838b5
AC
6934 struct gdbarch_info info;
6935 gdbarch_info_init (&info);
c906108c
SS
6936 mips_fpu_type = MIPS_FPU_DOUBLE;
6937 mips_fpu_type_auto = 0;
8d5838b5
AC
6938 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6939 instead of relying on globals. Doing that would let generic code
6940 handle the search for this specific architecture. */
6941 if (!gdbarch_update_p (info))
e2e0b3e5 6942 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6943}
6944
c906108c 6945static void
bd4c9dfe 6946set_mipsfpu_none_command (const char *args, int from_tty)
c906108c 6947{
8d5838b5
AC
6948 struct gdbarch_info info;
6949 gdbarch_info_init (&info);
c906108c
SS
6950 mips_fpu_type = MIPS_FPU_NONE;
6951 mips_fpu_type_auto = 0;
8d5838b5
AC
6952 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6953 instead of relying on globals. Doing that would let generic code
6954 handle the search for this specific architecture. */
6955 if (!gdbarch_update_p (info))
e2e0b3e5 6956 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
6957}
6958
c906108c 6959static void
bd4c9dfe 6960set_mipsfpu_auto_command (const char *args, int from_tty)
c906108c
SS
6961{
6962 mips_fpu_type_auto = 1;
6963}
6964
c906108c
SS
6965/* Just like reinit_frame_cache, but with the right arguments to be
6966 callable as an sfunc. */
6967
6968static void
eb4c3f4a 6969reinit_frame_cache_sfunc (const char *args, int from_tty,
acdb74a0 6970 struct cmd_list_element *c)
c906108c
SS
6971{
6972 reinit_frame_cache ();
6973}
6974
a89aa300
AC
6975static int
6976gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 6977{
e47ad6c0
YQ
6978 gdb_disassembler *di
6979 = static_cast<gdb_disassembler *>(info->application_data);
6980 struct gdbarch *gdbarch = di->arch ();
4cc0665f 6981
d31431ed
AC
6982 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6983 disassembler needs to be able to locally determine the ISA, and
6984 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6985 work. */
4cc0665f 6986 if (mips_pc_is_mips16 (gdbarch, memaddr))
ec4045ea 6987 info->mach = bfd_mach_mips16;
4cc0665f
MR
6988 else if (mips_pc_is_micromips (gdbarch, memaddr))
6989 info->mach = bfd_mach_mips_micromips;
c906108c
SS
6990
6991 /* Round down the instruction address to the appropriate boundary. */
4cc0665f
MR
6992 memaddr &= (info->mach == bfd_mach_mips16
6993 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
c5aa993b 6994
e5ab0dce 6995 /* Set the disassembler options. */
9dae60cc 6996 if (!info->disassembler_options)
e5ab0dce
AC
6997 /* This string is not recognized explicitly by the disassembler,
6998 but it tells the disassembler to not try to guess the ABI from
6999 the bfd elf headers, such that, if the user overrides the ABI
7000 of a program linked as NewABI, the disassembly will follow the
7001 register naming conventions specified by the user. */
7002 info->disassembler_options = "gpr-names=32";
7003
6394c606 7004 return default_print_insn (memaddr, info);
c906108c
SS
7005}
7006
9dae60cc
UW
7007static int
7008gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7009{
7010 /* Set up the disassembler info, so that we get the right
7011 register names from libopcodes. */
7012 info->disassembler_options = "gpr-names=n32";
7013 info->flavour = bfd_target_elf_flavour;
7014
7015 return gdb_print_insn_mips (memaddr, info);
7016}
7017
7018static int
7019gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7020{
7021 /* Set up the disassembler info, so that we get the right
7022 register names from libopcodes. */
7023 info->disassembler_options = "gpr-names=64";
7024 info->flavour = bfd_target_elf_flavour;
7025
7026 return gdb_print_insn_mips (memaddr, info);
7027}
7028
cd6c3b4f
YQ
7029/* Implement the breakpoint_kind_from_pc gdbarch method. */
7030
d19280ad
YQ
7031static int
7032mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
c906108c 7033{
4cc0665f
MR
7034 CORE_ADDR pc = *pcptr;
7035
d19280ad 7036 if (mips_pc_is_mips16 (gdbarch, pc))
c906108c 7037 {
d19280ad
YQ
7038 *pcptr = unmake_compact_addr (pc);
7039 return MIPS_BP_KIND_MIPS16;
7040 }
7041 else if (mips_pc_is_micromips (gdbarch, pc))
7042 {
7043 ULONGEST insn;
7044 int status;
c906108c 7045
d19280ad
YQ
7046 *pcptr = unmake_compact_addr (pc);
7047 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7048 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7049 return MIPS_BP_KIND_MICROMIPS16;
7050 else
7051 return MIPS_BP_KIND_MICROMIPS32;
c906108c
SS
7052 }
7053 else
d19280ad
YQ
7054 return MIPS_BP_KIND_MIPS32;
7055}
7056
cd6c3b4f
YQ
7057/* Implement the sw_breakpoint_from_kind gdbarch method. */
7058
d19280ad
YQ
7059static const gdb_byte *
7060mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7061{
7062 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7063
7064 switch (kind)
c906108c 7065 {
d19280ad
YQ
7066 case MIPS_BP_KIND_MIPS16:
7067 {
7068 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7069 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7070
7071 *size = 2;
7072 if (byte_order_for_code == BFD_ENDIAN_BIG)
7073 return mips16_big_breakpoint;
7074 else
c906108c 7075 return mips16_little_breakpoint;
d19280ad
YQ
7076 }
7077 case MIPS_BP_KIND_MICROMIPS16:
7078 {
7079 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7080 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7081
7082 *size = 2;
7083
7084 if (byte_order_for_code == BFD_ENDIAN_BIG)
7085 return micromips16_big_breakpoint;
7086 else
7087 return micromips16_little_breakpoint;
7088 }
7089 case MIPS_BP_KIND_MICROMIPS32:
7090 {
7091 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7092 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7093
7094 *size = 4;
7095 if (byte_order_for_code == BFD_ENDIAN_BIG)
7096 return micromips32_big_breakpoint;
7097 else
7098 return micromips32_little_breakpoint;
7099 }
7100 case MIPS_BP_KIND_MIPS32:
7101 {
7102 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7103 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
c906108c 7104
d19280ad
YQ
7105 *size = 4;
7106 if (byte_order_for_code == BFD_ENDIAN_BIG)
7107 return big_breakpoint;
7108 else
7e3d947d 7109 return little_breakpoint;
d19280ad
YQ
7110 }
7111 default:
7112 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7113 };
c906108c
SS
7114}
7115
ab50adb6
MR
7116/* Return non-zero if the standard MIPS instruction INST has a branch
7117 delay slot (i.e. it is a jump or branch instruction). This function
7118 is based on mips32_next_pc. */
c8cef75f
MR
7119
7120static int
ab50adb6 7121mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
c8cef75f 7122{
c8cef75f 7123 int op;
a385295e
MR
7124 int rs;
7125 int rt;
c8cef75f 7126
c8cef75f
MR
7127 op = itype_op (inst);
7128 if ((inst & 0xe0000000) != 0)
a385295e
MR
7129 {
7130 rs = itype_rs (inst);
7131 rt = itype_rt (inst);
f94363d7
AP
7132 return (is_octeon_bbit_op (op, gdbarch)
7133 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
a385295e
MR
7134 || op == 29 /* JALX: bits 011101 */
7135 || (op == 17
7136 && (rs == 8
c8cef75f 7137 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
a385295e
MR
7138 || (rs == 9 && (rt & 0x2) == 0)
7139 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7140 || (rs == 10 && (rt & 0x2) == 0))));
7141 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7142 }
c8cef75f
MR
7143 else
7144 switch (op & 0x07) /* extract bits 28,27,26 */
7145 {
7146 case 0: /* SPECIAL */
7147 op = rtype_funct (inst);
7148 return (op == 8 /* JR */
7149 || op == 9); /* JALR */
7150 break; /* end SPECIAL */
7151 case 1: /* REGIMM */
a385295e
MR
7152 rs = itype_rs (inst);
7153 rt = itype_rt (inst); /* branch condition */
7154 return ((rt & 0xc) == 0
c8cef75f
MR
7155 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7156 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
a385295e
MR
7157 || ((rt & 0x1e) == 0x1c && rs == 0));
7158 /* BPOSGE32, BPOSGE64: bits 1110x */
c8cef75f
MR
7159 break; /* end REGIMM */
7160 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7161 return 1;
7162 break;
7163 }
7164}
7165
ab50adb6
MR
7166/* Return non-zero if a standard MIPS instruction at ADDR has a branch
7167 delay slot (i.e. it is a jump or branch instruction). */
c8cef75f 7168
4cc0665f 7169static int
ab50adb6 7170mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
4cc0665f
MR
7171{
7172 ULONGEST insn;
7173 int status;
7174
ab50adb6 7175 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
4cc0665f
MR
7176 if (status)
7177 return 0;
7178
ab50adb6
MR
7179 return mips32_instruction_has_delay_slot (gdbarch, insn);
7180}
4cc0665f 7181
ab50adb6
MR
7182/* Return non-zero if the microMIPS instruction INSN, comprising the
7183 16-bit major opcode word in the high 16 bits and any second word
7184 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7185 jump or branch instruction). The instruction must be 32-bit if
7186 MUSTBE32 is set or can be any instruction otherwise. */
7187
7188static int
7189micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7190{
7191 ULONGEST major = insn >> 16;
4cc0665f 7192
ab50adb6
MR
7193 switch (micromips_op (major))
7194 {
7195 /* 16-bit instructions. */
7196 case 0x33: /* B16: bits 110011 */
7197 case 0x2b: /* BNEZ16: bits 101011 */
7198 case 0x23: /* BEQZ16: bits 100011 */
7199 return !mustbe32;
7200 case 0x11: /* POOL16C: bits 010001 */
7201 return (!mustbe32
7202 && ((b5s5_op (major) == 0xc
7203 /* JR16: bits 010001 01100 */
7204 || (b5s5_op (major) & 0x1e) == 0xe)));
7205 /* JALR16, JALRS16: bits 010001 0111x */
7206 /* 32-bit instructions. */
7207 case 0x3d: /* JAL: bits 111101 */
7208 case 0x3c: /* JALX: bits 111100 */
7209 case 0x35: /* J: bits 110101 */
7210 case 0x2d: /* BNE: bits 101101 */
7211 case 0x25: /* BEQ: bits 100101 */
7212 case 0x1d: /* JALS: bits 011101 */
7213 return 1;
7214 case 0x10: /* POOL32I: bits 010000 */
7215 return ((b5s5_op (major) & 0x1c) == 0x0
4cc0665f 7216 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
ab50adb6 7217 || (b5s5_op (major) & 0x1d) == 0x4
4cc0665f 7218 /* BLEZ, BGTZ: bits 010000 001x0 */
ab50adb6 7219 || (b5s5_op (major) & 0x1d) == 0x11
4cc0665f 7220 /* BLTZALS, BGEZALS: bits 010000 100x1 */
ab50adb6
MR
7221 || ((b5s5_op (major) & 0x1e) == 0x14
7222 && (major & 0x3) == 0x0)
4cc0665f 7223 /* BC2F, BC2T: bits 010000 1010x xxx00 */
ab50adb6 7224 || (b5s5_op (major) & 0x1e) == 0x1a
4cc0665f 7225 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
ab50adb6
MR
7226 || ((b5s5_op (major) & 0x1e) == 0x1c
7227 && (major & 0x3) == 0x0)
4cc0665f 7228 /* BC1F, BC1T: bits 010000 1110x xxx00 */
ab50adb6
MR
7229 || ((b5s5_op (major) & 0x1c) == 0x1c
7230 && (major & 0x3) == 0x1));
4cc0665f 7231 /* BC1ANY*: bits 010000 111xx xxx01 */
ab50adb6
MR
7232 case 0x0: /* POOL32A: bits 000000 */
7233 return (b0s6_op (insn) == 0x3c
7234 /* POOL32Axf: bits 000000 ... 111100 */
7235 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7236 /* JALR, JALR.HB: 000000 000x111100 111100 */
7237 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7238 default:
7239 return 0;
7240 }
4cc0665f
MR
7241}
7242
ab50adb6 7243/* Return non-zero if a microMIPS instruction at ADDR has a branch delay
ae790652
MR
7244 slot (i.e. it is a non-compact jump instruction). The instruction
7245 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7246
c8cef75f 7247static int
ab50adb6
MR
7248micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7249 CORE_ADDR addr, int mustbe32)
c8cef75f 7250{
ab50adb6 7251 ULONGEST insn;
c8cef75f 7252 int status;
3f7f3650 7253 int size;
c8cef75f 7254
ab50adb6 7255 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
c8cef75f
MR
7256 if (status)
7257 return 0;
3f7f3650 7258 size = mips_insn_size (ISA_MICROMIPS, insn);
ab50adb6 7259 insn <<= 16;
3f7f3650 7260 if (size == 2 * MIPS_INSN16_SIZE)
ab50adb6
MR
7261 {
7262 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7263 if (status)
7264 return 0;
7265 }
7266
7267 return micromips_instruction_has_delay_slot (insn, mustbe32);
7268}
c8cef75f 7269
ab50adb6
MR
7270/* Return non-zero if the MIPS16 instruction INST, which must be
7271 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7272 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7273 instruction). This function is based on mips16_next_pc. */
7274
7275static int
7276mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7277{
ae790652
MR
7278 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7279 return !mustbe32;
c8cef75f
MR
7280 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7281}
7282
ab50adb6
MR
7283/* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7284 slot (i.e. it is a non-compact jump instruction). The instruction
7285 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7286
7287static int
7288mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7289 CORE_ADDR addr, int mustbe32)
7290{
7291 unsigned short insn;
7292 int status;
7293
7294 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7295 if (status)
7296 return 0;
7297
7298 return mips16_instruction_has_delay_slot (insn, mustbe32);
7299}
7300
c8cef75f
MR
7301/* Calculate the starting address of the MIPS memory segment BPADDR is in.
7302 This assumes KSSEG exists. */
7303
7304static CORE_ADDR
7305mips_segment_boundary (CORE_ADDR bpaddr)
7306{
7307 CORE_ADDR mask = CORE_ADDR_MAX;
7308 int segsize;
7309
7310 if (sizeof (CORE_ADDR) == 8)
7311 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7312 a compiler warning produced where CORE_ADDR is a 32-bit type even
7313 though in that case this is dead code). */
7314 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7315 {
7316 case 3:
7317 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7318 segsize = 29; /* 32-bit compatibility segment */
7319 else
7320 segsize = 62; /* xkseg */
7321 break;
7322 case 2: /* xkphys */
7323 segsize = 59;
7324 break;
7325 default: /* xksseg (1), xkuseg/kuseg (0) */
7326 segsize = 62;
7327 break;
7328 }
7329 else if (bpaddr & 0x80000000) /* kernel segment */
7330 segsize = 29;
7331 else
7332 segsize = 31; /* user segment */
7333 mask <<= segsize;
7334 return bpaddr & mask;
7335}
7336
7337/* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7338 it backwards if necessary. Return the address of the new location. */
7339
7340static CORE_ADDR
7341mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7342{
22e048c9 7343 CORE_ADDR prev_addr;
c8cef75f
MR
7344 CORE_ADDR boundary;
7345 CORE_ADDR func_addr;
7346
7347 /* If a breakpoint is set on the instruction in a branch delay slot,
7348 GDB gets confused. When the breakpoint is hit, the PC isn't on
7349 the instruction in the branch delay slot, the PC will point to
7350 the branch instruction. Since the PC doesn't match any known
7351 breakpoints, GDB reports a trap exception.
7352
7353 There are two possible fixes for this problem.
7354
7355 1) When the breakpoint gets hit, see if the BD bit is set in the
7356 Cause register (which indicates the last exception occurred in a
7357 branch delay slot). If the BD bit is set, fix the PC to point to
7358 the instruction in the branch delay slot.
7359
7360 2) When the user sets the breakpoint, don't allow him to set the
7361 breakpoint on the instruction in the branch delay slot. Instead
7362 move the breakpoint to the branch instruction (which will have
7363 the same result).
7364
7365 The problem with the first solution is that if the user then
7366 single-steps the processor, the branch instruction will get
7367 skipped (since GDB thinks the PC is on the instruction in the
7368 branch delay slot).
7369
7370 So, we'll use the second solution. To do this we need to know if
7371 the instruction we're trying to set the breakpoint on is in the
7372 branch delay slot. */
7373
7374 boundary = mips_segment_boundary (bpaddr);
7375
7376 /* Make sure we don't scan back before the beginning of the current
7377 function, since we may fetch constant data or insns that look like
7378 a jump. Of course we might do that anyway if the compiler has
7379 moved constants inline. :-( */
7380 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7381 && func_addr > boundary && func_addr <= bpaddr)
7382 boundary = func_addr;
7383
4cc0665f 7384 if (mips_pc_is_mips (bpaddr))
c8cef75f
MR
7385 {
7386 if (bpaddr == boundary)
7387 return bpaddr;
7388
7389 /* If the previous instruction has a branch delay slot, we have
7390 to move the breakpoint to the branch instruction. */
7391 prev_addr = bpaddr - 4;
ab50adb6 7392 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
c8cef75f
MR
7393 bpaddr = prev_addr;
7394 }
7395 else
7396 {
ab50adb6 7397 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
c8cef75f
MR
7398 CORE_ADDR addr, jmpaddr;
7399 int i;
7400
4cc0665f 7401 boundary = unmake_compact_addr (boundary);
c8cef75f
MR
7402
7403 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7404 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7405 so try for that first, then try the 2 byte JALR/JR.
4cc0665f
MR
7406 The microMIPS ASE has a whole range of jumps and branches
7407 with delay slots, some of which take 4 bytes and some take
7408 2 bytes, so the idea is the same.
c8cef75f
MR
7409 FIXME: We have to assume that bpaddr is not the second half
7410 of an extended instruction. */
ab50adb6
MR
7411 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7412 ? micromips_insn_at_pc_has_delay_slot
7413 : mips16_insn_at_pc_has_delay_slot);
c8cef75f
MR
7414
7415 jmpaddr = 0;
7416 addr = bpaddr;
7417 for (i = 1; i < 4; i++)
7418 {
4cc0665f 7419 if (unmake_compact_addr (addr) == boundary)
c8cef75f 7420 break;
4cc0665f 7421 addr -= MIPS_INSN16_SIZE;
ab50adb6 7422 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
c8cef75f
MR
7423 /* Looks like a JR/JALR at [target-1], but it could be
7424 the second word of a previous JAL/JALX, so record it
7425 and check back one more. */
7426 jmpaddr = addr;
ab50adb6 7427 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
c8cef75f
MR
7428 {
7429 if (i == 2)
7430 /* Looks like a JAL/JALX at [target-2], but it could also
7431 be the second word of a previous JAL/JALX, record it,
7432 and check back one more. */
7433 jmpaddr = addr;
7434 else
7435 /* Looks like a JAL/JALX at [target-3], so any previously
7436 recorded JAL/JALX or JR/JALR must be wrong, because:
7437
7438 >-3: JAL
7439 -2: JAL-ext (can't be JAL/JALX)
7440 -1: bdslot (can't be JR/JALR)
7441 0: target insn
7442
7443 Of course it could be another JAL-ext which looks
7444 like a JAL, but in that case we'd have broken out
7445 of this loop at [target-2]:
7446
7447 -4: JAL
7448 >-3: JAL-ext
7449 -2: bdslot (can't be jmp)
7450 -1: JR/JALR
7451 0: target insn */
7452 jmpaddr = 0;
7453 }
7454 else
7455 {
7456 /* Not a jump instruction: if we're at [target-1] this
7457 could be the second word of a JAL/JALX, so continue;
7458 otherwise we're done. */
7459 if (i > 1)
7460 break;
7461 }
7462 }
7463
7464 if (jmpaddr)
7465 bpaddr = jmpaddr;
7466 }
7467
7468 return bpaddr;
7469}
7470
14132e89
MR
7471/* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7472 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7473
7474static int
7475mips_is_stub_suffix (const char *suffix, int zero)
7476{
7477 switch (suffix[0])
7478 {
7479 case '0':
7480 return zero && suffix[1] == '\0';
7481 case '1':
7482 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7483 case '2':
7484 case '5':
7485 case '6':
7486 case '9':
7487 return suffix[1] == '\0';
7488 default:
7489 return 0;
7490 }
7491}
7492
7493/* Return non-zero if MODE is one of the mode infixes used for MIPS16
7494 call stubs, one of sf, df, sc, or dc. */
7495
7496static int
7497mips_is_stub_mode (const char *mode)
7498{
7499 return ((mode[0] == 's' || mode[0] == 'd')
7500 && (mode[1] == 'f' || mode[1] == 'c'));
7501}
7502
7503/* Code at PC is a compiler-generated stub. Such a stub for a function
7504 bar might have a name like __fn_stub_bar, and might look like this:
7505
7506 mfc1 $4, $f13
7507 mfc1 $5, $f12
7508 mfc1 $6, $f15
7509 mfc1 $7, $f14
7510
7511 followed by (or interspersed with):
7512
7513 j bar
7514
7515 or:
7516
7517 lui $25, %hi(bar)
7518 addiu $25, $25, %lo(bar)
7519 jr $25
7520
7521 ($1 may be used in old code; for robustness we accept any register)
7522 or, in PIC code:
7523
7524 lui $28, %hi(_gp_disp)
7525 addiu $28, $28, %lo(_gp_disp)
7526 addu $28, $28, $25
7527 lw $25, %got(bar)
7528 addiu $25, $25, %lo(bar)
7529 jr $25
7530
7531 In the case of a __call_stub_bar stub, the sequence to set up
7532 arguments might look like this:
7533
7534 mtc1 $4, $f13
7535 mtc1 $5, $f12
7536 mtc1 $6, $f15
7537 mtc1 $7, $f14
7538
7539 followed by (or interspersed with) one of the jump sequences above.
7540
7541 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7542 of J or JR, respectively, followed by:
7543
7544 mfc1 $2, $f0
7545 mfc1 $3, $f1
7546 jr $18
7547
7548 We are at the beginning of the stub here, and scan down and extract
7549 the target address from the jump immediate instruction or, if a jump
7550 register instruction is used, from the register referred. Return
7551 the value of PC calculated or 0 if inconclusive.
7552
7553 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7554
7555static CORE_ADDR
7556mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7557{
7558 struct gdbarch *gdbarch = get_frame_arch (frame);
7559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7560 int addrreg = MIPS_ZERO_REGNUM;
7561 CORE_ADDR start_pc = pc;
7562 CORE_ADDR target_pc = 0;
7563 CORE_ADDR addr = 0;
7564 CORE_ADDR gp = 0;
7565 int status = 0;
7566 int i;
7567
7568 for (i = 0;
7569 status == 0 && target_pc == 0 && i < 20;
7570 i++, pc += MIPS_INSN32_SIZE)
7571 {
4cc0665f 7572 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
14132e89
MR
7573 CORE_ADDR imm;
7574 int rt;
7575 int rs;
7576 int rd;
7577
7578 switch (itype_op (inst))
7579 {
7580 case 0: /* SPECIAL */
7581 switch (rtype_funct (inst))
7582 {
7583 case 8: /* JR */
7584 case 9: /* JALR */
7585 rs = rtype_rs (inst);
7586 if (rs == MIPS_GP_REGNUM)
7587 target_pc = gp; /* Hmm... */
7588 else if (rs == addrreg)
7589 target_pc = addr;
7590 break;
7591
7592 case 0x21: /* ADDU */
7593 rt = rtype_rt (inst);
7594 rs = rtype_rs (inst);
7595 rd = rtype_rd (inst);
7596 if (rd == MIPS_GP_REGNUM
7597 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7598 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7599 gp += start_pc;
7600 break;
7601 }
7602 break;
7603
7604 case 2: /* J */
7605 case 3: /* JAL */
7606 target_pc = jtype_target (inst) << 2;
7607 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7608 break;
7609
7610 case 9: /* ADDIU */
7611 rt = itype_rt (inst);
7612 rs = itype_rs (inst);
7613 if (rt == rs)
7614 {
7615 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7616 if (rt == MIPS_GP_REGNUM)
7617 gp += imm;
7618 else if (rt == addrreg)
7619 addr += imm;
7620 }
7621 break;
7622
7623 case 0xf: /* LUI */
7624 rt = itype_rt (inst);
7625 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7626 if (rt == MIPS_GP_REGNUM)
7627 gp = imm;
7628 else if (rt != MIPS_ZERO_REGNUM)
7629 {
7630 addrreg = rt;
7631 addr = imm;
7632 }
7633 break;
7634
7635 case 0x23: /* LW */
7636 rt = itype_rt (inst);
7637 rs = itype_rs (inst);
7638 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7639 if (gp != 0 && rs == MIPS_GP_REGNUM)
7640 {
7641 gdb_byte buf[4];
7642
7643 memset (buf, 0, sizeof (buf));
7644 status = target_read_memory (gp + imm, buf, sizeof (buf));
7645 addrreg = rt;
7646 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7647 }
7648 break;
7649 }
7650 }
7651
7652 return target_pc;
7653}
7654
7655/* If PC is in a MIPS16 call or return stub, return the address of the
7656 target PC, which is either the callee or the caller. There are several
c906108c
SS
7657 cases which must be handled:
7658
14132e89
MR
7659 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7660 and the target PC is in $31 ($ra).
c906108c 7661 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
14132e89
MR
7662 and the target PC is in $2.
7663 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7664 i.e. before the JALR instruction, this is effectively a call stub
7665 and the target PC is in $2. Otherwise this is effectively
7666 a return stub and the target PC is in $18.
7667 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7668 JAL or JALR instruction, this is effectively a call stub and the
7669 target PC is buried in the instruction stream. Otherwise this
7670 is effectively a return stub and the target PC is in $18.
7671 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7672 stub and the target PC is buried in the instruction stream.
7673
7674 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7675 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
e7d6a6d2 7676 gory details. */
c906108c 7677
757a7cc6 7678static CORE_ADDR
db5f024e 7679mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 7680{
e17a4113 7681 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 7682 CORE_ADDR start_addr;
14132e89
MR
7683 const char *name;
7684 size_t prefixlen;
c906108c
SS
7685
7686 /* Find the starting address and name of the function containing the PC. */
7687 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7688 return 0;
7689
14132e89
MR
7690 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7691 and the target PC is in $31 ($ra). */
7692 prefixlen = strlen (mips_str_mips16_ret_stub);
7693 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7694 && mips_is_stub_mode (name + prefixlen)
7695 && name[prefixlen + 2] == '\0')
7696 return get_frame_register_signed
7697 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7698
7699 /* If the PC is in __mips16_call_stub_*, this is one of the call
7700 call/return stubs. */
7701 prefixlen = strlen (mips_str_mips16_call_stub);
7702 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
c906108c
SS
7703 {
7704 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7705 and the target PC is in $2. */
14132e89
MR
7706 if (mips_is_stub_suffix (name + prefixlen, 0))
7707 return get_frame_register_signed
7708 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c 7709
14132e89
MR
7710 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7711 i.e. before the JALR instruction, this is effectively a call stub
b021a221 7712 and the target PC is in $2. Otherwise this is effectively
c5aa993b 7713 a return stub and the target PC is in $18. */
14132e89
MR
7714 else if (mips_is_stub_mode (name + prefixlen)
7715 && name[prefixlen + 2] == '_'
7716 && mips_is_stub_suffix (name + prefixlen + 3, 0))
c906108c
SS
7717 {
7718 if (pc == start_addr)
14132e89
MR
7719 /* This is the 'call' part of a call stub. The return
7720 address is in $2. */
7721 return get_frame_register_signed
7722 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
c906108c
SS
7723 else
7724 /* This is the 'return' part of a call stub. The return
14132e89
MR
7725 address is in $18. */
7726 return get_frame_register_signed
7727 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7728 }
14132e89
MR
7729 else
7730 return 0; /* Not a stub. */
7731 }
7732
7733 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7734 compiler-generated call or call/return stubs. */
61012eef
GB
7735 if (startswith (name, mips_str_fn_stub)
7736 || startswith (name, mips_str_call_stub))
14132e89
MR
7737 {
7738 if (pc == start_addr)
7739 /* This is the 'call' part of a call stub. Call this helper
7740 to scan through this code for interesting instructions
7741 and determine the final PC. */
7742 return mips_get_mips16_fn_stub_pc (frame, pc);
7743 else
7744 /* This is the 'return' part of a call stub. The return address
7745 is in $18. */
7746 return get_frame_register_signed
7747 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
c906108c 7748 }
14132e89
MR
7749
7750 return 0; /* Not a stub. */
7751}
7752
7753/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7754 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7755
7756static int
7757mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7758{
7759 CORE_ADDR start_addr;
7760 size_t prefixlen;
7761
7762 /* Find the starting address of the function containing the PC. */
7763 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7764 return 0;
7765
7766 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7767 the start, i.e. after the JALR instruction, this is effectively
7768 a return stub. */
7769 prefixlen = strlen (mips_str_mips16_call_stub);
7770 if (pc != start_addr
7771 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7772 && mips_is_stub_mode (name + prefixlen)
7773 && name[prefixlen + 2] == '_'
7774 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7775 return 1;
7776
7777 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7778 the JAL or JALR instruction, this is effectively a return stub. */
7779 prefixlen = strlen (mips_str_call_fp_stub);
7780 if (pc != start_addr
7781 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7782 return 1;
7783
7784 /* Consume the .pic. prefix of any PIC stub, this function must return
7785 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7786 or the call stub path will trigger in handle_inferior_event causing
7787 it to go astray. */
7788 prefixlen = strlen (mips_str_pic);
7789 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7790 name += prefixlen;
7791
7792 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7793 prefixlen = strlen (mips_str_mips16_ret_stub);
7794 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7795 && mips_is_stub_mode (name + prefixlen)
7796 && name[prefixlen + 2] == '\0')
7797 return 1;
7798
7799 return 0; /* Not a stub. */
c906108c
SS
7800}
7801
db5f024e
DJ
7802/* If the current PC is the start of a non-PIC-to-PIC stub, return the
7803 PC of the stub target. The stub just loads $t9 and jumps to it,
7804 so that $t9 has the correct value at function entry. */
7805
7806static CORE_ADDR
7807mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7808{
e17a4113
UW
7809 struct gdbarch *gdbarch = get_frame_arch (frame);
7810 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7cbd4a93 7811 struct bound_minimal_symbol msym;
db5f024e
DJ
7812 int i;
7813 gdb_byte stub_code[16];
7814 int32_t stub_words[4];
7815
7816 /* The stub for foo is named ".pic.foo", and is either two
7817 instructions inserted before foo or a three instruction sequence
7818 which jumps to foo. */
7819 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 7820 if (msym.minsym == NULL
77e371c0 7821 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
efd66ac6 7822 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
61012eef 7823 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
db5f024e
DJ
7824 return 0;
7825
7826 /* A two-instruction header. */
7cbd4a93 7827 if (MSYMBOL_SIZE (msym.minsym) == 8)
db5f024e
DJ
7828 return pc + 8;
7829
7830 /* A three-instruction (plus delay slot) trampoline. */
7cbd4a93 7831 if (MSYMBOL_SIZE (msym.minsym) == 16)
db5f024e
DJ
7832 {
7833 if (target_read_memory (pc, stub_code, 16) != 0)
7834 return 0;
7835 for (i = 0; i < 4; i++)
e17a4113
UW
7836 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7837 4, byte_order);
db5f024e
DJ
7838
7839 /* A stub contains these instructions:
7840 lui t9, %hi(target)
7841 j target
7842 addiu t9, t9, %lo(target)
7843 nop
7844
7845 This works even for N64, since stubs are only generated with
7846 -msym32. */
7847 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7848 && (stub_words[1] & 0xfc000000U) == 0x08000000
7849 && (stub_words[2] & 0xffff0000U) == 0x27390000
7850 && stub_words[3] == 0x00000000)
34b192ce
MR
7851 return ((((stub_words[0] & 0x0000ffff) << 16)
7852 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
db5f024e
DJ
7853 }
7854
7855 /* Not a recognized stub. */
7856 return 0;
7857}
7858
7859static CORE_ADDR
7860mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7861{
14132e89 7862 CORE_ADDR requested_pc = pc;
db5f024e 7863 CORE_ADDR target_pc;
14132e89
MR
7864 CORE_ADDR new_pc;
7865
7866 do
7867 {
7868 target_pc = pc;
db5f024e 7869
14132e89
MR
7870 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7871 if (new_pc)
3e29f34a 7872 pc = new_pc;
db5f024e 7873
14132e89
MR
7874 new_pc = find_solib_trampoline_target (frame, pc);
7875 if (new_pc)
3e29f34a 7876 pc = new_pc;
db5f024e 7877
14132e89
MR
7878 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7879 if (new_pc)
3e29f34a 7880 pc = new_pc;
14132e89
MR
7881 }
7882 while (pc != target_pc);
db5f024e 7883
14132e89 7884 return pc != requested_pc ? pc : 0;
db5f024e
DJ
7885}
7886
a4b8ebc8 7887/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 7888 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7889
7890static int
d3f73121 7891mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7892{
a4b8ebc8 7893 int regnum;
2f38ef89 7894 if (num >= 0 && num < 32)
a4b8ebc8 7895 regnum = num;
2f38ef89 7896 else if (num >= 38 && num < 70)
d3f73121 7897 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
040b99fd 7898 else if (num == 70)
d3f73121 7899 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7900 else if (num == 71)
d3f73121 7901 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7902 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7903 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
2f38ef89 7904 else
0fde2c53 7905 return -1;
d3f73121 7906 return gdbarch_num_regs (gdbarch) + regnum;
88c72b7d
AC
7907}
7908
2f38ef89 7909
a4b8ebc8 7910/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 7911 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
7912
7913static int
d3f73121 7914mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
88c72b7d 7915{
a4b8ebc8 7916 int regnum;
2f38ef89 7917 if (num >= 0 && num < 32)
a4b8ebc8 7918 regnum = num;
2f38ef89 7919 else if (num >= 32 && num < 64)
d3f73121 7920 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
040b99fd 7921 else if (num == 64)
d3f73121 7922 regnum = mips_regnum (gdbarch)->hi;
040b99fd 7923 else if (num == 65)
d3f73121 7924 regnum = mips_regnum (gdbarch)->lo;
1faeff08
MR
7925 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7926 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
2f38ef89 7927 else
0fde2c53 7928 return -1;
d3f73121 7929 return gdbarch_num_regs (gdbarch) + regnum;
a4b8ebc8
AC
7930}
7931
7932static int
e7faf938 7933mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
a4b8ebc8
AC
7934{
7935 /* Only makes sense to supply raw registers. */
e7faf938 7936 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
a4b8ebc8
AC
7937 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7938 decide if it is valid. Should instead define a standard sim/gdb
7939 register numbering scheme. */
e7faf938
MD
7940 if (gdbarch_register_name (gdbarch,
7941 gdbarch_num_regs (gdbarch) + regnum) != NULL
7942 && gdbarch_register_name (gdbarch,
025bb325
MS
7943 gdbarch_num_regs (gdbarch)
7944 + regnum)[0] != '\0')
a4b8ebc8
AC
7945 return regnum;
7946 else
6d82d43b 7947 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
7948}
7949
2f38ef89 7950
4844f454
CV
7951/* Convert an integer into an address. Extracting the value signed
7952 guarantees a correctly sign extended address. */
fc0c74b1
AC
7953
7954static CORE_ADDR
79dd2d24 7955mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 7956 struct type *type, const gdb_byte *buf)
fc0c74b1 7957{
e17a4113
UW
7958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7959 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
fc0c74b1
AC
7960}
7961
82e91389
DJ
7962/* Dummy virtual frame pointer method. This is no more or less accurate
7963 than most other architectures; we just need to be explicit about it,
7964 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7965 an assertion failure. */
7966
7967static void
a54fba4c
MD
7968mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7969 CORE_ADDR pc, int *reg, LONGEST *offset)
82e91389
DJ
7970{
7971 *reg = MIPS_SP_REGNUM;
7972 *offset = 0;
7973}
7974
caaa3122
DJ
7975static void
7976mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7977{
7978 enum mips_abi *abip = (enum mips_abi *) obj;
7979 const char *name = bfd_get_section_name (abfd, sect);
7980
7981 if (*abip != MIPS_ABI_UNKNOWN)
7982 return;
7983
61012eef 7984 if (!startswith (name, ".mdebug."))
caaa3122
DJ
7985 return;
7986
7987 if (strcmp (name, ".mdebug.abi32") == 0)
7988 *abip = MIPS_ABI_O32;
7989 else if (strcmp (name, ".mdebug.abiN32") == 0)
7990 *abip = MIPS_ABI_N32;
62a49b2c 7991 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 7992 *abip = MIPS_ABI_N64;
caaa3122
DJ
7993 else if (strcmp (name, ".mdebug.abiO64") == 0)
7994 *abip = MIPS_ABI_O64;
7995 else if (strcmp (name, ".mdebug.eabi32") == 0)
7996 *abip = MIPS_ABI_EABI32;
7997 else if (strcmp (name, ".mdebug.eabi64") == 0)
7998 *abip = MIPS_ABI_EABI64;
7999 else
8a3fe4f8 8000 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
8001}
8002
22e47e37
FF
8003static void
8004mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8005{
8006 int *lbp = (int *) obj;
8007 const char *name = bfd_get_section_name (abfd, sect);
8008
61012eef 8009 if (startswith (name, ".gcc_compiled_long32"))
22e47e37 8010 *lbp = 32;
61012eef 8011 else if (startswith (name, ".gcc_compiled_long64"))
22e47e37 8012 *lbp = 64;
61012eef 8013 else if (startswith (name, ".gcc_compiled_long"))
22e47e37
FF
8014 warning (_("unrecognized .gcc_compiled_longXX"));
8015}
8016
2e4ebe70
DJ
8017static enum mips_abi
8018global_mips_abi (void)
8019{
8020 int i;
8021
8022 for (i = 0; mips_abi_strings[i] != NULL; i++)
8023 if (mips_abi_strings[i] == mips_abi_string)
8024 return (enum mips_abi) i;
8025
e2e0b3e5 8026 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
8027}
8028
4cc0665f
MR
8029/* Return the default compressed instruction set, either of MIPS16
8030 or microMIPS, selected when none could have been determined from
8031 the ELF header of the binary being executed (or no binary has been
8032 selected. */
8033
8034static enum mips_isa
8035global_mips_compression (void)
8036{
8037 int i;
8038
8039 for (i = 0; mips_compression_strings[i] != NULL; i++)
8040 if (mips_compression_strings[i] == mips_compression_string)
8041 return (enum mips_isa) i;
8042
8043 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8044}
8045
29709017
DJ
8046static void
8047mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8048{
29709017
DJ
8049 /* If the size matches the set of 32-bit or 64-bit integer registers,
8050 assume that's what we've got. */
4eb0ad19
DJ
8051 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8052 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
8053
8054 /* If the size matches the full set of registers GDB traditionally
8055 knows about, including floating point, for either 32-bit or
8056 64-bit, assume that's what we've got. */
4eb0ad19
DJ
8057 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8058 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
8059
8060 /* Otherwise we don't have a useful guess. */
8061}
8062
f8b73d13
DJ
8063static struct value *
8064value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8065{
19ba03f4 8066 const int *reg_p = (const int *) baton;
f8b73d13
DJ
8067 return value_of_register (*reg_p, frame);
8068}
8069
c2d11a7d 8070static struct gdbarch *
6d82d43b 8071mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 8072{
c2d11a7d
JM
8073 struct gdbarch *gdbarch;
8074 struct gdbarch_tdep *tdep;
8075 int elf_flags;
2e4ebe70 8076 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 8077 int i, num_regs;
8d5838b5 8078 enum mips_fpu_type fpu_type;
f8b73d13 8079 struct tdesc_arch_data *tdesc_data = NULL;
d929bc19 8080 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
1faeff08
MR
8081 const char **reg_names;
8082 struct mips_regnum mips_regnum, *regnum;
4cc0665f 8083 enum mips_isa mips_isa;
1faeff08
MR
8084 int dspacc;
8085 int dspctl;
8086
8087 /* Fill in the OS dependent register numbers and names. */
de4bfa86 8088 if (info.osabi == GDB_OSABI_LINUX)
1faeff08
MR
8089 {
8090 mips_regnum.fp0 = 38;
8091 mips_regnum.pc = 37;
8092 mips_regnum.cause = 36;
8093 mips_regnum.badvaddr = 35;
8094 mips_regnum.hi = 34;
8095 mips_regnum.lo = 33;
8096 mips_regnum.fp_control_status = 70;
8097 mips_regnum.fp_implementation_revision = 71;
8098 mips_regnum.dspacc = -1;
8099 mips_regnum.dspctl = -1;
8100 dspacc = 72;
8101 dspctl = 78;
3877922e 8102 num_regs = 90;
1faeff08
MR
8103 reg_names = mips_linux_reg_names;
8104 }
8105 else
8106 {
8107 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8108 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8109 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8110 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8111 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8112 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8113 mips_regnum.fp_control_status = 70;
8114 mips_regnum.fp_implementation_revision = 71;
8115 mips_regnum.dspacc = dspacc = -1;
8116 mips_regnum.dspctl = dspctl = -1;
8117 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8118 if (info.bfd_arch_info != NULL
8119 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8120 reg_names = mips_tx39_reg_names;
8121 else
8122 reg_names = mips_generic_reg_names;
8123 }
f8b73d13
DJ
8124
8125 /* Check any target description for validity. */
8126 if (tdesc_has_registers (info.target_desc))
8127 {
8128 static const char *const mips_gprs[] = {
8129 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8130 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8131 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8132 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8133 };
8134 static const char *const mips_fprs[] = {
8135 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8136 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8137 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8138 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8139 };
8140
8141 const struct tdesc_feature *feature;
8142 int valid_p;
8143
8144 feature = tdesc_find_feature (info.target_desc,
8145 "org.gnu.gdb.mips.cpu");
8146 if (feature == NULL)
8147 return NULL;
8148
8149 tdesc_data = tdesc_data_alloc ();
8150
8151 valid_p = 1;
8152 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8153 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8154 mips_gprs[i]);
8155
8156
8157 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8158 mips_regnum.lo, "lo");
f8b73d13 8159 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8160 mips_regnum.hi, "hi");
f8b73d13 8161 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8162 mips_regnum.pc, "pc");
f8b73d13
DJ
8163
8164 if (!valid_p)
8165 {
8166 tdesc_data_cleanup (tdesc_data);
8167 return NULL;
8168 }
8169
8170 feature = tdesc_find_feature (info.target_desc,
8171 "org.gnu.gdb.mips.cp0");
8172 if (feature == NULL)
8173 {
8174 tdesc_data_cleanup (tdesc_data);
8175 return NULL;
8176 }
8177
8178 valid_p = 1;
8179 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8180 mips_regnum.badvaddr, "badvaddr");
f8b73d13
DJ
8181 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8182 MIPS_PS_REGNUM, "status");
8183 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8184 mips_regnum.cause, "cause");
f8b73d13
DJ
8185
8186 if (!valid_p)
8187 {
8188 tdesc_data_cleanup (tdesc_data);
8189 return NULL;
8190 }
8191
8192 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8193 backend is not prepared for that, though. */
8194 feature = tdesc_find_feature (info.target_desc,
8195 "org.gnu.gdb.mips.fpu");
8196 if (feature == NULL)
8197 {
8198 tdesc_data_cleanup (tdesc_data);
8199 return NULL;
8200 }
8201
8202 valid_p = 1;
8203 for (i = 0; i < 32; i++)
8204 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08 8205 i + mips_regnum.fp0, mips_fprs[i]);
f8b73d13
DJ
8206
8207 valid_p &= tdesc_numbered_register (feature, tdesc_data,
1faeff08
MR
8208 mips_regnum.fp_control_status,
8209 "fcsr");
8210 valid_p
8211 &= tdesc_numbered_register (feature, tdesc_data,
8212 mips_regnum.fp_implementation_revision,
8213 "fir");
f8b73d13
DJ
8214
8215 if (!valid_p)
8216 {
8217 tdesc_data_cleanup (tdesc_data);
8218 return NULL;
8219 }
8220
3877922e
MR
8221 num_regs = mips_regnum.fp_implementation_revision + 1;
8222
1faeff08
MR
8223 if (dspacc >= 0)
8224 {
8225 feature = tdesc_find_feature (info.target_desc,
8226 "org.gnu.gdb.mips.dsp");
8227 /* The DSP registers are optional; it's OK if they are absent. */
8228 if (feature != NULL)
8229 {
8230 i = 0;
8231 valid_p = 1;
8232 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8233 dspacc + i++, "hi1");
8234 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8235 dspacc + i++, "lo1");
8236 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8237 dspacc + i++, "hi2");
8238 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8239 dspacc + i++, "lo2");
8240 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8241 dspacc + i++, "hi3");
8242 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8243 dspacc + i++, "lo3");
8244
8245 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8246 dspctl, "dspctl");
8247
8248 if (!valid_p)
8249 {
8250 tdesc_data_cleanup (tdesc_data);
8251 return NULL;
8252 }
8253
8254 mips_regnum.dspacc = dspacc;
8255 mips_regnum.dspctl = dspctl;
3877922e
MR
8256
8257 num_regs = mips_regnum.dspctl + 1;
1faeff08
MR
8258 }
8259 }
8260
f8b73d13
DJ
8261 /* It would be nice to detect an attempt to use a 64-bit ABI
8262 when only 32-bit registers are provided. */
1faeff08 8263 reg_names = NULL;
f8b73d13 8264 }
c2d11a7d 8265
ec03c1ac
AC
8266 /* First of all, extract the elf_flags, if available. */
8267 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8268 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
8269 else if (arches != NULL)
8270 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
8271 else
8272 elf_flags = 0;
8273 if (gdbarch_debug)
8274 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8275 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 8276
102182a9 8277 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
8278 switch ((elf_flags & EF_MIPS_ABI))
8279 {
8280 case E_MIPS_ABI_O32:
ec03c1ac 8281 found_abi = MIPS_ABI_O32;
0dadbba0
AC
8282 break;
8283 case E_MIPS_ABI_O64:
ec03c1ac 8284 found_abi = MIPS_ABI_O64;
0dadbba0
AC
8285 break;
8286 case E_MIPS_ABI_EABI32:
ec03c1ac 8287 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
8288 break;
8289 case E_MIPS_ABI_EABI64:
ec03c1ac 8290 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
8291 break;
8292 default:
acdb74a0 8293 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 8294 found_abi = MIPS_ABI_N32;
acdb74a0 8295 else
ec03c1ac 8296 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
8297 break;
8298 }
acdb74a0 8299
caaa3122 8300 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
8301 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8302 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 8303
dc305454 8304 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
8305 MIPS architecture (if there is one). */
8306 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8307 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 8308
32a6503c 8309 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 8310 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
8311 && info.bfd_arch_info != NULL
8312 && info.bfd_arch_info->arch == bfd_arch_mips)
8313 {
8314 switch (info.bfd_arch_info->mach)
8315 {
8316 case bfd_mach_mips3900:
ec03c1ac 8317 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
8318 break;
8319 case bfd_mach_mips4100:
8320 case bfd_mach_mips5000:
ec03c1ac 8321 found_abi = MIPS_ABI_EABI64;
bf64bfd6 8322 break;
1d06468c
EZ
8323 case bfd_mach_mips8000:
8324 case bfd_mach_mips10000:
32a6503c
KB
8325 /* On Irix, ELF64 executables use the N64 ABI. The
8326 pseudo-sections which describe the ABI aren't present
8327 on IRIX. (Even for executables created by gcc.) */
e6c2f47b
PA
8328 if (info.abfd != NULL
8329 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
28d169de 8330 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 8331 found_abi = MIPS_ABI_N64;
28d169de 8332 else
ec03c1ac 8333 found_abi = MIPS_ABI_N32;
1d06468c 8334 break;
bf64bfd6
AC
8335 }
8336 }
2e4ebe70 8337
26c53e50
DJ
8338 /* Default 64-bit objects to N64 instead of O32. */
8339 if (found_abi == MIPS_ABI_UNKNOWN
8340 && info.abfd != NULL
8341 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8342 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8343 found_abi = MIPS_ABI_N64;
8344
ec03c1ac
AC
8345 if (gdbarch_debug)
8346 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8347 found_abi);
8348
8349 /* What has the user specified from the command line? */
8350 wanted_abi = global_mips_abi ();
8351 if (gdbarch_debug)
8352 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8353 wanted_abi);
2e4ebe70
DJ
8354
8355 /* Now that we have found what the ABI for this binary would be,
8356 check whether the user is overriding it. */
2e4ebe70
DJ
8357 if (wanted_abi != MIPS_ABI_UNKNOWN)
8358 mips_abi = wanted_abi;
ec03c1ac
AC
8359 else if (found_abi != MIPS_ABI_UNKNOWN)
8360 mips_abi = found_abi;
8361 else
8362 mips_abi = MIPS_ABI_O32;
8363 if (gdbarch_debug)
8364 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8365 mips_abi);
2e4ebe70 8366
4cc0665f
MR
8367 /* Determine the default compressed ISA. */
8368 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8369 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8370 mips_isa = ISA_MICROMIPS;
8371 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8372 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8373 mips_isa = ISA_MIPS16;
8374 else
8375 mips_isa = global_mips_compression ();
8376 mips_compression_string = mips_compression_strings[mips_isa];
8377
ec03c1ac 8378 /* Also used when doing an architecture lookup. */
4b9b3959 8379 if (gdbarch_debug)
ec03c1ac 8380 fprintf_unfiltered (gdb_stdlog,
025bb325
MS
8381 "mips_gdbarch_init: "
8382 "mips64_transfers_32bit_regs_p = %d\n",
ec03c1ac 8383 mips64_transfers_32bit_regs_p);
0dadbba0 8384
8d5838b5 8385 /* Determine the MIPS FPU type. */
609ca2b9
DJ
8386#ifdef HAVE_ELF
8387 if (info.abfd
8388 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8389 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8390 Tag_GNU_MIPS_ABI_FP);
8391#endif /* HAVE_ELF */
8392
8d5838b5
AC
8393 if (!mips_fpu_type_auto)
8394 fpu_type = mips_fpu_type;
d929bc19 8395 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
609ca2b9
DJ
8396 {
8397 switch (elf_fpu_type)
8398 {
d929bc19 8399 case Val_GNU_MIPS_ABI_FP_DOUBLE:
609ca2b9
DJ
8400 fpu_type = MIPS_FPU_DOUBLE;
8401 break;
d929bc19 8402 case Val_GNU_MIPS_ABI_FP_SINGLE:
609ca2b9
DJ
8403 fpu_type = MIPS_FPU_SINGLE;
8404 break;
d929bc19 8405 case Val_GNU_MIPS_ABI_FP_SOFT:
609ca2b9
DJ
8406 default:
8407 /* Soft float or unknown. */
8408 fpu_type = MIPS_FPU_NONE;
8409 break;
8410 }
8411 }
8d5838b5
AC
8412 else if (info.bfd_arch_info != NULL
8413 && info.bfd_arch_info->arch == bfd_arch_mips)
8414 switch (info.bfd_arch_info->mach)
8415 {
8416 case bfd_mach_mips3900:
8417 case bfd_mach_mips4100:
8418 case bfd_mach_mips4111:
a9d61c86 8419 case bfd_mach_mips4120:
8d5838b5
AC
8420 fpu_type = MIPS_FPU_NONE;
8421 break;
8422 case bfd_mach_mips4650:
8423 fpu_type = MIPS_FPU_SINGLE;
8424 break;
8425 default:
8426 fpu_type = MIPS_FPU_DOUBLE;
8427 break;
8428 }
8429 else if (arches != NULL)
a2f1f308 8430 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8d5838b5
AC
8431 else
8432 fpu_type = MIPS_FPU_DOUBLE;
8433 if (gdbarch_debug)
8434 fprintf_unfiltered (gdb_stdlog,
6d82d43b 8435 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 8436
29709017
DJ
8437 /* Check for blatant incompatibilities. */
8438
8439 /* If we have only 32-bit registers, then we can't debug a 64-bit
8440 ABI. */
8441 if (info.target_desc
8442 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8443 && mips_abi != MIPS_ABI_EABI32
8444 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
8445 {
8446 if (tdesc_data != NULL)
8447 tdesc_data_cleanup (tdesc_data);
8448 return NULL;
8449 }
29709017 8450
025bb325 8451 /* Try to find a pre-existing architecture. */
c2d11a7d
JM
8452 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8453 arches != NULL;
8454 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8455 {
d54398a7
MR
8456 /* MIPS needs to be pedantic about which ABI and the compressed
8457 ISA variation the object is using. */
9103eae0 8458 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 8459 continue;
9103eae0 8460 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 8461 continue;
d54398a7
MR
8462 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8463 continue;
719ec221
AC
8464 /* Need to be pedantic about which register virtual size is
8465 used. */
8466 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8467 != mips64_transfers_32bit_regs_p)
8468 continue;
8d5838b5 8469 /* Be pedantic about which FPU is selected. */
a2f1f308 8470 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8d5838b5 8471 continue;
f8b73d13
DJ
8472
8473 if (tdesc_data != NULL)
8474 tdesc_data_cleanup (tdesc_data);
4be87837 8475 return arches->gdbarch;
c2d11a7d
JM
8476 }
8477
102182a9 8478 /* Need a new architecture. Fill in a target specific vector. */
cdd238da 8479 tdep = XCNEW (struct gdbarch_tdep);
c2d11a7d
JM
8480 gdbarch = gdbarch_alloc (&info, tdep);
8481 tdep->elf_flags = elf_flags;
719ec221 8482 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
8483 tdep->found_abi = found_abi;
8484 tdep->mips_abi = mips_abi;
4cc0665f 8485 tdep->mips_isa = mips_isa;
8d5838b5 8486 tdep->mips_fpu_type = fpu_type;
29709017
DJ
8487 tdep->register_size_valid_p = 0;
8488 tdep->register_size = 0;
8489
8490 if (info.target_desc)
8491 {
8492 /* Some useful properties can be inferred from the target. */
8493 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8494 {
8495 tdep->register_size_valid_p = 1;
8496 tdep->register_size = 4;
8497 }
8498 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8499 {
8500 tdep->register_size_valid_p = 1;
8501 tdep->register_size = 8;
8502 }
8503 }
c2d11a7d 8504
102182a9 8505 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
8506 set_gdbarch_short_bit (gdbarch, 16);
8507 set_gdbarch_int_bit (gdbarch, 32);
8508 set_gdbarch_float_bit (gdbarch, 32);
8509 set_gdbarch_double_bit (gdbarch, 64);
8510 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
8511 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8512 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8513 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 8514
175ff332
HZ
8515 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8516 mips_ax_pseudo_register_collect);
8517 set_gdbarch_ax_pseudo_register_push_stack
8518 (gdbarch, mips_ax_pseudo_register_push_stack);
8519
6d82d43b 8520 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6 8521 mips_elf_make_msymbol_special);
3e29f34a
MR
8522 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8523 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8524 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
f7ab6ec6 8525
1faeff08
MR
8526 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8527 *regnum = mips_regnum;
1faeff08
MR
8528 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8529 set_gdbarch_num_regs (gdbarch, num_regs);
8530 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8531 set_gdbarch_register_name (gdbarch, mips_register_name);
8532 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8533 tdep->mips_processor_reg_names = reg_names;
8534 tdep->regnum = regnum;
fe29b929 8535
0dadbba0 8536 switch (mips_abi)
c2d11a7d 8537 {
0dadbba0 8538 case MIPS_ABI_O32:
25ab4790 8539 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 8540 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 8541 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8542 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 8543 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8544 set_gdbarch_long_bit (gdbarch, 32);
8545 set_gdbarch_ptr_bit (gdbarch, 32);
8546 set_gdbarch_long_long_bit (gdbarch, 64);
8547 break;
0dadbba0 8548 case MIPS_ABI_O64:
25ab4790 8549 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 8550 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 8551 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 8552 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 8553 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8554 set_gdbarch_long_bit (gdbarch, 32);
8555 set_gdbarch_ptr_bit (gdbarch, 32);
8556 set_gdbarch_long_long_bit (gdbarch, 64);
8557 break;
0dadbba0 8558 case MIPS_ABI_EABI32:
25ab4790 8559 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8560 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8561 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8562 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8563 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8564 set_gdbarch_long_bit (gdbarch, 32);
8565 set_gdbarch_ptr_bit (gdbarch, 32);
8566 set_gdbarch_long_long_bit (gdbarch, 64);
8567 break;
0dadbba0 8568 case MIPS_ABI_EABI64:
25ab4790 8569 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 8570 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 8571 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8572 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8573 tdep->default_mask_address_p = 0;
c2d11a7d
JM
8574 set_gdbarch_long_bit (gdbarch, 64);
8575 set_gdbarch_ptr_bit (gdbarch, 64);
8576 set_gdbarch_long_long_bit (gdbarch, 64);
8577 break;
0dadbba0 8578 case MIPS_ABI_N32:
25ab4790 8579 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8580 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8581 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8582 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 8583 tdep->default_mask_address_p = 0;
0dadbba0
AC
8584 set_gdbarch_long_bit (gdbarch, 32);
8585 set_gdbarch_ptr_bit (gdbarch, 32);
8586 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8587 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8588 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
28d169de
KB
8589 break;
8590 case MIPS_ABI_N64:
25ab4790 8591 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 8592 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 8593 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 8594 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
8595 tdep->default_mask_address_p = 0;
8596 set_gdbarch_long_bit (gdbarch, 64);
8597 set_gdbarch_ptr_bit (gdbarch, 64);
8598 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 8599 set_gdbarch_long_double_bit (gdbarch, 128);
b14d30e1 8600 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0dadbba0 8601 break;
c2d11a7d 8602 default:
e2e0b3e5 8603 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
8604 }
8605
22e47e37
FF
8606 /* GCC creates a pseudo-section whose name specifies the size of
8607 longs, since -mlong32 or -mlong64 may be used independent of
8608 other options. How those options affect pointer sizes is ABI and
8609 architecture dependent, so use them to override the default sizes
8610 set by the ABI. This table shows the relationship between ABI,
8611 -mlongXX, and size of pointers:
8612
8613 ABI -mlongXX ptr bits
8614 --- -------- --------
8615 o32 32 32
8616 o32 64 32
8617 n32 32 32
8618 n32 64 64
8619 o64 32 32
8620 o64 64 64
8621 n64 32 32
8622 n64 64 64
8623 eabi32 32 32
8624 eabi32 64 32
8625 eabi64 32 32
8626 eabi64 64 64
8627
8628 Note that for o32 and eabi32, pointers are always 32 bits
8629 regardless of any -mlongXX option. For all others, pointers and
025bb325 8630 longs are the same, as set by -mlongXX or set by defaults. */
22e47e37
FF
8631
8632 if (info.abfd != NULL)
8633 {
8634 int long_bit = 0;
8635
8636 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8637 if (long_bit)
8638 {
8639 set_gdbarch_long_bit (gdbarch, long_bit);
8640 switch (mips_abi)
8641 {
8642 case MIPS_ABI_O32:
8643 case MIPS_ABI_EABI32:
8644 break;
8645 case MIPS_ABI_N32:
8646 case MIPS_ABI_O64:
8647 case MIPS_ABI_N64:
8648 case MIPS_ABI_EABI64:
8649 set_gdbarch_ptr_bit (gdbarch, long_bit);
8650 break;
8651 default:
8652 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8653 }
8654 }
8655 }
8656
a5ea2558
AC
8657 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8658 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8659 comment:
8660
8661 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8662 flag in object files because to do so would make it impossible to
102182a9 8663 link with libraries compiled without "-gp32". This is
a5ea2558 8664 unnecessarily restrictive.
361d1df0 8665
a5ea2558
AC
8666 We could solve this problem by adding "-gp32" multilibs to gcc,
8667 but to set this flag before gcc is built with such multilibs will
8668 break too many systems.''
8669
8670 But even more unhelpfully, the default linker output target for
8671 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8672 for 64-bit programs - you need to change the ABI to change this,
102182a9 8673 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
8674 this flag to detect 32-bit mode would do the wrong thing given
8675 the current gcc - it would make GDB treat these 64-bit programs
102182a9 8676 as 32-bit programs by default. */
a5ea2558 8677
6c997a34 8678 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 8679 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 8680
102182a9
MS
8681 /* Add/remove bits from an address. The MIPS needs be careful to
8682 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
8683 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8684
58dfe9ff
AC
8685 /* Unwind the frame. */
8686 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 8687 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
b8a22b94 8688 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
10312cc4 8689
102182a9 8690 /* Map debug register numbers onto internal register numbers. */
88c72b7d 8691 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
8692 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8693 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6d82d43b
AC
8694 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8695 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 8696 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 8697
025bb325 8698 /* MIPS version of CALL_DUMMY. */
c2d11a7d 8699
2c76a0c7
JB
8700 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8701 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
dc604539 8702 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 8703
1bab7383
YQ
8704 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8705
87783b8b
AC
8706 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8707 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8708 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8709
f7b9e9fc 8710 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
8711 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8712 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
c8cef75f
MR
8713 set_gdbarch_adjust_breakpoint_address (gdbarch,
8714 mips_adjust_breakpoint_address);
f7b9e9fc
AC
8715
8716 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 8717
c9cf6e20 8718 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
97ab0fdd 8719
fc0c74b1
AC
8720 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8721 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8722 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 8723
a4b8ebc8 8724 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 8725
e11c53d2 8726 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 8727
9dae60cc
UW
8728 if (mips_abi == MIPS_ABI_N32)
8729 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8730 else if (mips_abi == MIPS_ABI_N64)
8731 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8732 else
8733 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
e5ab0dce 8734
d92524f1
PM
8735 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8736 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
3a3bc038 8737 need to all be folded into the target vector. Since they are
d92524f1
PM
8738 being used as guards for target_stopped_by_watchpoint, why not have
8739 target_stopped_by_watchpoint return the type of watchpoint that the code
3a3bc038
AC
8740 is sitting on? */
8741 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8742
e7d6a6d2 8743 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 8744
14132e89
MR
8745 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8746 to support MIPS16. This is a bad thing. Make sure not to do it
8747 if we have an OS ABI that actually supports shared libraries, since
8748 shared library support is more important. If we have an OS someday
8749 that supports both shared libraries and MIPS16, we'll have to find
8750 a better place for these.
8751 macro/2012-04-25: But that applies to return trampolines only and
8752 currently no MIPS OS ABI uses shared libraries that have them. */
8753 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8754
025bb325
MS
8755 set_gdbarch_single_step_through_delay (gdbarch,
8756 mips_single_step_through_delay);
3352ef37 8757
0d5de010
DJ
8758 /* Virtual tables. */
8759 set_gdbarch_vbit_in_delta (gdbarch, 1);
8760
29709017
DJ
8761 mips_register_g_packet_guesses (gdbarch);
8762
6de918a6 8763 /* Hook in OS ABI-specific overrides, if they have been registered. */
0dba2a6c 8764 info.tdesc_data = tdesc_data;
6de918a6 8765 gdbarch_init_osabi (info, gdbarch);
757a7cc6 8766
9aac7884
MR
8767 /* The hook may have adjusted num_regs, fetch the final value and
8768 set pc_regnum and sp_regnum now that it has been fixed. */
9aac7884
MR
8769 num_regs = gdbarch_num_regs (gdbarch);
8770 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8771 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8772
5792a79b 8773 /* Unwind the frame. */
b8a22b94
DJ
8774 dwarf2_append_unwinders (gdbarch);
8775 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8776 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
4cc0665f 8777 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
b8a22b94 8778 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
2bd0c3d7 8779 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 8780 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44 8781 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
4cc0665f 8782 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
45c9dd44 8783 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 8784
f8b73d13
DJ
8785 if (tdesc_data)
8786 {
8787 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 8788 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
8789
8790 /* Override the normal target description methods to handle our
8791 dual real and pseudo registers. */
8792 set_gdbarch_register_name (gdbarch, mips_register_name);
025bb325
MS
8793 set_gdbarch_register_reggroup_p (gdbarch,
8794 mips_tdesc_register_reggroup_p);
f8b73d13
DJ
8795
8796 num_regs = gdbarch_num_regs (gdbarch);
8797 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8798 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8799 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8800 }
8801
8802 /* Add ABI-specific aliases for the registers. */
8803 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8804 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8805 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8806 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8807 else
8808 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8809 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8810 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8811
8812 /* Add some other standard aliases. */
8813 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8814 user_reg_add (gdbarch, mips_register_aliases[i].name,
8815 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8816
865093a3
AR
8817 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8818 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8819 value_of_mips_user_reg,
8820 &mips_numeric_register_aliases[i].regnum);
8821
4b9b3959
AC
8822 return gdbarch;
8823}
8824
2e4ebe70 8825static void
eb4c3f4a
TT
8826mips_abi_update (const char *ignore_args,
8827 int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
8828{
8829 struct gdbarch_info info;
8830
8831 /* Force the architecture to update, and (if it's a MIPS architecture)
8832 mips_gdbarch_init will take care of the rest. */
8833 gdbarch_info_init (&info);
8834 gdbarch_update_p (info);
8835}
8836
ad188201
KB
8837/* Print out which MIPS ABI is in use. */
8838
8839static void
1f8ca57c
JB
8840show_mips_abi (struct ui_file *file,
8841 int from_tty,
8842 struct cmd_list_element *ignored_cmd,
8843 const char *ignored_value)
ad188201 8844{
f5656ead 8845 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
1f8ca57c
JB
8846 fprintf_filtered
8847 (file,
8848 "The MIPS ABI is unknown because the current architecture "
8849 "is not MIPS.\n");
ad188201
KB
8850 else
8851 {
8852 enum mips_abi global_abi = global_mips_abi ();
f5656ead 8853 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
ad188201
KB
8854 const char *actual_abi_str = mips_abi_strings[actual_abi];
8855
8856 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
8857 fprintf_filtered
8858 (file,
8859 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 8860 actual_abi_str);
ad188201 8861 else if (global_abi == actual_abi)
1f8ca57c
JB
8862 fprintf_filtered
8863 (file,
8864 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 8865 actual_abi_str);
ad188201
KB
8866 else
8867 {
8868 /* Probably shouldn't happen... */
025bb325
MS
8869 fprintf_filtered (file,
8870 "The (auto detected) MIPS ABI \"%s\" is in use "
8871 "even though the user setting was \"%s\".\n",
6d82d43b 8872 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
8873 }
8874 }
8875}
8876
4cc0665f
MR
8877/* Print out which MIPS compressed ISA encoding is used. */
8878
8879static void
8880show_mips_compression (struct ui_file *file, int from_tty,
8881 struct cmd_list_element *c, const char *value)
8882{
8883 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8884 value);
8885}
8886
a4f320fd
MR
8887/* Return a textual name for MIPS FPU type FPU_TYPE. */
8888
8889static const char *
8890mips_fpu_type_str (enum mips_fpu_type fpu_type)
8891{
8892 switch (fpu_type)
8893 {
8894 case MIPS_FPU_NONE:
8895 return "none";
8896 case MIPS_FPU_SINGLE:
8897 return "single";
8898 case MIPS_FPU_DOUBLE:
8899 return "double";
8900 default:
8901 return "???";
8902 }
8903}
8904
4b9b3959 8905static void
72a155b4 8906mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 8907{
72a155b4 8908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 8909 if (tdep != NULL)
c2d11a7d 8910 {
acdb74a0
AC
8911 int ef_mips_arch;
8912 int ef_mips_32bitmode;
f49e4e6d 8913 /* Determine the ISA. */
acdb74a0
AC
8914 switch (tdep->elf_flags & EF_MIPS_ARCH)
8915 {
8916 case E_MIPS_ARCH_1:
8917 ef_mips_arch = 1;
8918 break;
8919 case E_MIPS_ARCH_2:
8920 ef_mips_arch = 2;
8921 break;
8922 case E_MIPS_ARCH_3:
8923 ef_mips_arch = 3;
8924 break;
8925 case E_MIPS_ARCH_4:
93d56215 8926 ef_mips_arch = 4;
acdb74a0
AC
8927 break;
8928 default:
93d56215 8929 ef_mips_arch = 0;
acdb74a0
AC
8930 break;
8931 }
f49e4e6d 8932 /* Determine the size of a pointer. */
acdb74a0 8933 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
8934 fprintf_unfiltered (file,
8935 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 8936 tdep->elf_flags);
4b9b3959 8937 fprintf_unfiltered (file,
acdb74a0
AC
8938 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8939 ef_mips_32bitmode);
8940 fprintf_unfiltered (file,
8941 "mips_dump_tdep: ef_mips_arch = %d\n",
8942 ef_mips_arch);
8943 fprintf_unfiltered (file,
8944 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 8945 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b 8946 fprintf_unfiltered (file,
025bb325
MS
8947 "mips_dump_tdep: "
8948 "mips_mask_address_p() %d (default %d)\n",
480d3dd2 8949 mips_mask_address_p (tdep),
4014092b 8950 tdep->default_mask_address_p);
c2d11a7d 8951 }
4b9b3959
AC
8952 fprintf_unfiltered (file,
8953 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8954 MIPS_DEFAULT_FPU_TYPE,
a4f320fd 8955 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
74ed0bb4
MD
8956 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8957 MIPS_EABI (gdbarch));
4b9b3959
AC
8958 fprintf_unfiltered (file,
8959 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
74ed0bb4 8960 MIPS_FPU_TYPE (gdbarch),
a4f320fd 8961 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
c2d11a7d
JM
8962}
8963
c906108c 8964void
acdb74a0 8965_initialize_mips_tdep (void)
c906108c
SS
8966{
8967 static struct cmd_list_element *mipsfpulist = NULL;
c906108c 8968
6d82d43b 8969 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
8970 if (MIPS_ABI_LAST + 1
8971 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 8972 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 8973
4b9b3959 8974 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 8975
8d5f9dcb
DJ
8976 mips_pdr_data = register_objfile_data ();
8977
4eb0ad19
DJ
8978 /* Create feature sets with the appropriate properties. The values
8979 are not important. */
8980 mips_tdesc_gp32 = allocate_target_description ();
8981 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8982
8983 mips_tdesc_gp64 = allocate_target_description ();
8984 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8985
025bb325 8986 /* Add root prefix command for all "set mips"/"show mips" commands. */
a5ea2558 8987 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 8988 _("Various MIPS specific commands."),
a5ea2558
AC
8989 &setmipscmdlist, "set mips ", 0, &setlist);
8990
8991 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 8992 _("Various MIPS specific commands."),
a5ea2558
AC
8993 &showmipscmdlist, "show mips ", 0, &showlist);
8994
025bb325 8995 /* Allow the user to override the ABI. */
7ab04401
AC
8996 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8997 &mips_abi_string, _("\
8998Set the MIPS ABI used by this program."), _("\
8999Show the MIPS ABI used by this program."), _("\
9000This option can be set to one of:\n\
9001 auto - the default ABI associated with the current binary\n\
9002 o32\n\
9003 o64\n\
9004 n32\n\
9005 n64\n\
9006 eabi32\n\
9007 eabi64"),
9008 mips_abi_update,
9009 show_mips_abi,
9010 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 9011
4cc0665f
MR
9012 /* Allow the user to set the ISA to assume for compressed code if ELF
9013 file flags don't tell or there is no program file selected. This
9014 setting is updated whenever unambiguous ELF file flags are interpreted,
9015 and carried over to subsequent sessions. */
9016 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9017 &mips_compression_string, _("\
9018Set the compressed ISA encoding used by MIPS code."), _("\
9019Show the compressed ISA encoding used by MIPS code."), _("\
9020Select the compressed ISA encoding used in functions that have no symbol\n\
9021information available. The encoding can be set to either of:\n\
9022 mips16\n\
9023 micromips\n\
9024and is updated automatically from ELF file flags if available."),
9025 mips_abi_update,
9026 show_mips_compression,
9027 &setmipscmdlist, &showmipscmdlist);
9028
c906108c
SS
9029 /* Let the user turn off floating point and set the fence post for
9030 heuristic_proc_start. */
9031
9032 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 9033 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
9034 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9035 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 9036 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
9037 &mipsfpulist);
9038 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 9039 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
9040 &mipsfpulist);
9041 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9042 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9043 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9044 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 9045 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
9046 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9047 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9048 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9049 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 9050 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
9051 &mipsfpulist);
9052 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 9053 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
9054 &showlist);
9055
c906108c
SS
9056 /* We really would like to have both "0" and "unlimited" work, but
9057 command.c doesn't deal with that. So make it a var_zinteger
9058 because the user can always use "999999" or some such for unlimited. */
6bcadd06 9059 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
9060 &heuristic_fence_post, _("\
9061Set the distance searched for the start of a function."), _("\
9062Show the distance searched for the start of a function."), _("\
c906108c
SS
9063If you are debugging a stripped executable, GDB needs to search through the\n\
9064program for the start of a function. This command sets the distance of the\n\
7915a72c 9065search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 9066 reinit_frame_cache_sfunc,
025bb325
MS
9067 NULL, /* FIXME: i18n: The distance searched for
9068 the start of a function is %s. */
6bcadd06 9069 &setlist, &showlist);
c906108c
SS
9070
9071 /* Allow the user to control whether the upper bits of 64-bit
9072 addresses should be zeroed. */
7915a72c
AC
9073 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9074 &mask_address_var, _("\
9075Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9076Show zeroing of upper 32 bits of 64-bit addresses."), _("\
cce7e648 9077Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
7915a72c 9078allow GDB to determine the correct value."),
08546159
AC
9079 NULL, show_mask_address,
9080 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
9081
9082 /* Allow the user to control the size of 32 bit registers within the
9083 raw remote packet. */
b3f42336 9084 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
9085 &mips64_transfers_32bit_regs_p, _("\
9086Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9087 _("\
9088Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9089 _("\
719ec221
AC
9090Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9091that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 909264 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 9093 set_mips64_transfers_32bit_regs,
025bb325
MS
9094 NULL, /* FIXME: i18n: Compatibility with 64-bit
9095 MIPS target that transfers 32-bit
9096 quantities is %s. */
7915a72c 9097 &setlist, &showlist);
9ace0497 9098
025bb325 9099 /* Debug this files internals. */
ccce17b0
YQ
9100 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9101 &mips_debug, _("\
7915a72c
AC
9102Set mips debugging."), _("\
9103Show mips debugging."), _("\
9104When non-zero, mips specific debugging is enabled."),
ccce17b0
YQ
9105 NULL,
9106 NULL, /* FIXME: i18n: Mips debugging is
9107 currently %s. */
9108 &setdebuglist, &showdebuglist);
c906108c 9109}
This page took 2.399144 seconds and 4 git commands to generate.