* mips-tdep.c: Comment typo.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b
JM
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
197e01b6
EZ
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
c906108c
SS
26
27#include "defs.h"
28#include "gdb_string.h"
5e2e9765 29#include "gdb_assert.h"
c906108c
SS
30#include "frame.h"
31#include "inferior.h"
32#include "symtab.h"
33#include "value.h"
34#include "gdbcmd.h"
35#include "language.h"
36#include "gdbcore.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "gdbtypes.h"
40#include "target.h"
28d069e6 41#include "arch-utils.h"
4e052eda 42#include "regcache.h"
70f80edf 43#include "osabi.h"
d1973055 44#include "mips-tdep.h"
fe898f56 45#include "block.h"
a4b8ebc8 46#include "reggroups.h"
c906108c 47#include "opcode/mips.h"
c2d11a7d
JM
48#include "elf/mips.h"
49#include "elf-bfd.h"
2475bac3 50#include "symcat.h"
a4b8ebc8 51#include "sim-regno.h"
a89aa300 52#include "dis-asm.h"
edfae063
AC
53#include "frame-unwind.h"
54#include "frame-base.h"
55#include "trad-frame.h"
7d9b040b 56#include "infcall.h"
fed7ba43 57#include "floatformat.h"
29709017
DJ
58#include "remote.h"
59#include "target-descriptions.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
0dadbba0 77
2e4ebe70
DJ
78static const char *mips_abi_string;
79
80static const char *mips_abi_strings[] = {
81 "auto",
82 "n32",
83 "o32",
28d169de 84 "n64",
2e4ebe70
DJ
85 "o64",
86 "eabi32",
87 "eabi64",
88 NULL
89};
90
d929b26f
AC
91/* Various MIPS ISA options (related to stack analysis) can be
92 overridden dynamically. Establish an enum/array for managing
93 them. */
94
53904c9e
AC
95static const char size_auto[] = "auto";
96static const char size_32[] = "32";
97static const char size_64[] = "64";
d929b26f 98
53904c9e 99static const char *size_enums[] = {
d929b26f
AC
100 size_auto,
101 size_32,
102 size_64,
a5ea2558
AC
103 0
104};
105
7a292a7a 106/* Some MIPS boards don't support floating point while others only
ceae6e75 107 support single-precision floating-point operations. */
c906108c
SS
108
109enum mips_fpu_type
6d82d43b
AC
110{
111 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
112 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
113 MIPS_FPU_NONE /* No floating point. */
114};
c906108c
SS
115
116#ifndef MIPS_DEFAULT_FPU_TYPE
117#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
118#endif
119static int mips_fpu_type_auto = 1;
120static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 121
9ace0497 122static int mips_debug = 0;
7a292a7a 123
29709017
DJ
124/* Properties (for struct target_desc) describing the g/G packet
125 layout. */
126#define PROPERTY_GP32 "internal: transfers-32bit-registers"
127#define PROPERTY_GP64 "internal: transfers-64bit-registers"
128
c2d11a7d
JM
129/* MIPS specific per-architecture information */
130struct gdbarch_tdep
6d82d43b
AC
131{
132 /* from the elf header */
133 int elf_flags;
134
135 /* mips options */
136 enum mips_abi mips_abi;
137 enum mips_abi found_abi;
138 enum mips_fpu_type mips_fpu_type;
139 int mips_last_arg_regnum;
140 int mips_last_fp_arg_regnum;
6d82d43b
AC
141 int default_mask_address_p;
142 /* Is the target using 64-bit raw integer registers but only
143 storing a left-aligned 32-bit value in each? */
144 int mips64_transfers_32bit_regs_p;
145 /* Indexes for various registers. IRIX and embedded have
146 different values. This contains the "public" fields. Don't
147 add any that do not need to be public. */
148 const struct mips_regnum *regnum;
149 /* Register names table for the current register set. */
150 const char **mips_processor_reg_names;
29709017
DJ
151
152 /* The size of register data available from the target, if known.
153 This doesn't quite obsolete the manual
154 mips64_transfers_32bit_regs_p, since that is documented to force
155 left alignment even for big endian (very strange). */
156 int register_size_valid_p;
157 int register_size;
6d82d43b 158};
c2d11a7d 159
fed7ba43
JB
160static int
161n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 162 const void *from)
fed7ba43
JB
163{
164 return 1;
165}
166
167/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
168 They are implemented as a pair of 64bit doubles where the high
169 part holds the result of the operation rounded to double, and
170 the low double holds the difference between the exact result and
171 the rounded result. So "high" + "low" contains the result with
172 added precision. Unfortunately, the floatformat structure used
173 by GDB is not powerful enough to describe this format. As a temporary
174 measure, we define a 128bit floatformat that only uses the high part.
175 We lose a bit of precision but that's probably the best we can do
176 for now with the current infrastructure. */
177
178static const struct floatformat floatformat_n32n64_long_double_big =
179{
180 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
181 floatformat_intbit_no,
8da61cc4 182 "floatformat_n32n64_long_double_big",
fed7ba43
JB
183 n32n64_floatformat_always_valid
184};
185
8da61cc4
DJ
186static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
187{
188 &floatformat_n32n64_long_double_big,
189 &floatformat_n32n64_long_double_big
190};
191
56cea623
AC
192const struct mips_regnum *
193mips_regnum (struct gdbarch *gdbarch)
194{
195 return gdbarch_tdep (gdbarch)->regnum;
196}
197
198static int
199mips_fpa0_regnum (struct gdbarch *gdbarch)
200{
201 return mips_regnum (gdbarch)->fp0 + 12;
202}
203
0dadbba0 204#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 205 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 206
c2d11a7d 207#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 208
c2d11a7d 209#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 210
c2d11a7d 211#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 212
95404a3e
AC
213/* MIPS16 function addresses are odd (bit 0 is set). Here are some
214 functions to test, set, or clear bit 0 of addresses. */
215
216static CORE_ADDR
217is_mips16_addr (CORE_ADDR addr)
218{
219 return ((addr) & 1);
220}
221
95404a3e
AC
222static CORE_ADDR
223unmake_mips16_addr (CORE_ADDR addr)
224{
5b652102 225 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
226}
227
22540ece
AC
228/* Return the contents of register REGNUM as a signed integer. */
229
230static LONGEST
231read_signed_register (int regnum)
232{
1d93fe1a
AC
233 LONGEST val;
234 regcache_cooked_read_signed (current_regcache, regnum, &val);
235 return val;
22540ece
AC
236}
237
238static LONGEST
239read_signed_register_pid (int regnum, ptid_t ptid)
240{
241 ptid_t save_ptid;
242 LONGEST retval;
243
244 if (ptid_equal (ptid, inferior_ptid))
245 return read_signed_register (regnum);
246
247 save_ptid = inferior_ptid;
248
249 inferior_ptid = ptid;
250
251 retval = read_signed_register (regnum);
252
253 inferior_ptid = save_ptid;
254
255 return retval;
256}
257
d1973055
KB
258/* Return the MIPS ABI associated with GDBARCH. */
259enum mips_abi
260mips_abi (struct gdbarch *gdbarch)
261{
262 return gdbarch_tdep (gdbarch)->mips_abi;
263}
264
4246e332 265int
1b13c4f6 266mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 267{
29709017
DJ
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 /* If we know how big the registers are, use that size. */
271 if (tdep->register_size_valid_p)
272 return tdep->register_size;
273
274 /* Fall back to the previous behavior. */
4246e332
AC
275 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
276 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
277}
278
480d3dd2
AC
279/* Return the currently configured (or set) saved register size. */
280
1b13c4f6 281static const char *mips_abi_regsize_string = size_auto;
480d3dd2 282
e6bc2e8a 283unsigned int
13326b4e 284mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 285{
1b13c4f6 286 if (mips_abi_regsize_string == size_auto)
13326b4e
AC
287 switch (mips_abi (gdbarch))
288 {
289 case MIPS_ABI_EABI32:
290 case MIPS_ABI_O32:
291 return 4;
292 case MIPS_ABI_N32:
293 case MIPS_ABI_N64:
294 case MIPS_ABI_O64:
295 case MIPS_ABI_EABI64:
296 return 8;
297 case MIPS_ABI_UNKNOWN:
298 case MIPS_ABI_LAST:
299 default:
e2e0b3e5 300 internal_error (__FILE__, __LINE__, _("bad switch"));
13326b4e 301 }
1b13c4f6 302 else if (mips_abi_regsize_string == size_64)
d929b26f 303 return 8;
1b13c4f6 304 else /* if (mips_abi_regsize_string == size_32) */
d929b26f
AC
305 return 4;
306}
307
71b8ef93 308/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 309 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 310 "info" field is used for this purpose.
5a89d8aa
MS
311
312 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
313 i.e. refers to a 16-bit function, and sets a "special" bit in a
314 minimal symbol to mark it as a 16-bit function
315
f594e5e9 316 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 317
5a89d8aa 318static void
6d82d43b
AC
319mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
320{
321 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
322 {
323 MSYMBOL_INFO (msym) = (char *)
324 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
325 SYMBOL_VALUE_ADDRESS (msym) |= 1;
326 }
5a89d8aa
MS
327}
328
71b8ef93
MS
329static int
330msymbol_is_special (struct minimal_symbol *msym)
331{
332 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
333}
334
88658117
AC
335/* XFER a value from the big/little/left end of the register.
336 Depending on the size of the value it might occupy the entire
337 register or just part of it. Make an allowance for this, aligning
338 things accordingly. */
339
340static void
341mips_xfer_register (struct regcache *regcache, int reg_num, int length,
870cd05e
MK
342 enum bfd_endian endian, gdb_byte *in,
343 const gdb_byte *out, int buf_offset)
88658117 344{
88658117 345 int reg_offset = 0;
a4b8ebc8 346 gdb_assert (reg_num >= NUM_REGS);
cb1d2653
AC
347 /* Need to transfer the left or right part of the register, based on
348 the targets byte order. */
88658117
AC
349 switch (endian)
350 {
351 case BFD_ENDIAN_BIG:
719ec221 352 reg_offset = register_size (current_gdbarch, reg_num) - length;
88658117
AC
353 break;
354 case BFD_ENDIAN_LITTLE:
355 reg_offset = 0;
356 break;
6d82d43b 357 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
358 reg_offset = 0;
359 break;
360 default:
e2e0b3e5 361 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
362 }
363 if (mips_debug)
cb1d2653
AC
364 fprintf_unfiltered (gdb_stderr,
365 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
366 reg_num, reg_offset, buf_offset, length);
88658117
AC
367 if (mips_debug && out != NULL)
368 {
369 int i;
cb1d2653 370 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 371 for (i = 0; i < length; i++)
cb1d2653 372 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
373 }
374 if (in != NULL)
6d82d43b
AC
375 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
376 in + buf_offset);
88658117 377 if (out != NULL)
6d82d43b
AC
378 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
379 out + buf_offset);
88658117
AC
380 if (mips_debug && in != NULL)
381 {
382 int i;
cb1d2653 383 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 384 for (i = 0; i < length; i++)
cb1d2653 385 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
386 }
387 if (mips_debug)
388 fprintf_unfiltered (gdb_stdlog, "\n");
389}
390
dd824b04
DJ
391/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
392 compatiblity mode. A return value of 1 means that we have
393 physical 64-bit registers, but should treat them as 32-bit registers. */
394
395static int
396mips2_fp_compat (void)
397{
398 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
399 meaningful. */
6d82d43b
AC
400 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
401 4)
dd824b04
DJ
402 return 0;
403
404#if 0
405 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
406 in all the places we deal with FP registers. PR gdb/413. */
407 /* Otherwise check the FR bit in the status register - it controls
408 the FP compatiblity mode. If it is clear we are in compatibility
409 mode. */
24e05951 410 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
411 return 1;
412#endif
361d1df0 413
dd824b04
DJ
414 return 0;
415}
416
d929b26f 417/* The amount of space reserved on the stack for registers. This is
1b13c4f6 418 different to MIPS_ABI_REGSIZE as it determines the alignment of
d929b26f
AC
419 data allocated after the registers have run out. */
420
53904c9e 421static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
422
423static unsigned int
13326b4e 424mips_stack_argsize (struct gdbarch *gdbarch)
d929b26f
AC
425{
426 if (mips_stack_argsize_string == size_auto)
13326b4e 427 return mips_abi_regsize (gdbarch);
d929b26f
AC
428 else if (mips_stack_argsize_string == size_64)
429 return 8;
6d82d43b 430 else /* if (mips_stack_argsize_string == size_32) */
d929b26f
AC
431 return 4;
432}
433
7a292a7a 434#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 435
a14ed312 436static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 437
a14ed312 438static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 439
a14ed312 440static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 441
67b2c998
DJ
442static struct type *mips_float_register_type (void);
443static struct type *mips_double_register_type (void);
444
acdb74a0
AC
445/* The list of available "set mips " and "show mips " commands */
446
447static struct cmd_list_element *setmipscmdlist = NULL;
448static struct cmd_list_element *showmipscmdlist = NULL;
449
5e2e9765
KB
450/* Integer registers 0 thru 31 are handled explicitly by
451 mips_register_name(). Processor specific registers 32 and above
8a9fc081 452 are listed in the following tables. */
691c0433 453
6d82d43b
AC
454enum
455{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
456
457/* Generic MIPS. */
458
459static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
460 "sr", "lo", "hi", "bad", "cause", "pc",
461 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
462 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
463 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
464 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
465 "fsr", "fir", "" /*"fp" */ , "",
466 "", "", "", "", "", "", "", "",
467 "", "", "", "", "", "", "", "",
691c0433
AC
468};
469
470/* Names of IDT R3041 registers. */
471
472static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
473 "sr", "lo", "hi", "bad", "cause", "pc",
474 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
475 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
476 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
477 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
478 "fsr", "fir", "", /*"fp" */ "",
479 "", "", "bus", "ccfg", "", "", "", "",
480 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
481};
482
483/* Names of tx39 registers. */
484
485static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
486 "sr", "lo", "hi", "bad", "cause", "pc",
487 "", "", "", "", "", "", "", "",
488 "", "", "", "", "", "", "", "",
489 "", "", "", "", "", "", "", "",
490 "", "", "", "", "", "", "", "",
491 "", "", "", "",
492 "", "", "", "", "", "", "", "",
493 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
494};
495
496/* Names of IRIX registers. */
497static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
498 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
499 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
500 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
501 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
502 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
503};
504
cce74817 505
5e2e9765 506/* Return the name of the register corresponding to REGNO. */
5a89d8aa 507static const char *
5e2e9765 508mips_register_name (int regno)
cce74817 509{
691c0433 510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
511 /* GPR names for all ABIs other than n32/n64. */
512 static char *mips_gpr_names[] = {
6d82d43b
AC
513 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
514 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
515 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
516 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
517 };
518
519 /* GPR names for n32 and n64 ABIs. */
520 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
521 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
522 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
523 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
524 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
525 };
526
527 enum mips_abi abi = mips_abi (current_gdbarch);
528
a4b8ebc8
AC
529 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
530 don't make the raw register names visible. */
531 int rawnum = regno % NUM_REGS;
532 if (regno < NUM_REGS)
533 return "";
534
5e2e9765
KB
535 /* The MIPS integer registers are always mapped from 0 to 31. The
536 names of the registers (which reflects the conventions regarding
537 register use) vary depending on the ABI. */
a4b8ebc8 538 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
539 {
540 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 541 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 542 else
a4b8ebc8 543 return mips_gpr_names[rawnum];
5e2e9765 544 }
a4b8ebc8 545 else if (32 <= rawnum && rawnum < NUM_REGS)
691c0433
AC
546 {
547 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
548 return tdep->mips_processor_reg_names[rawnum - 32];
549 }
5e2e9765
KB
550 else
551 internal_error (__FILE__, __LINE__,
e2e0b3e5 552 _("mips_register_name: bad register number %d"), rawnum);
cce74817 553}
5e2e9765 554
a4b8ebc8 555/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 556
a4b8ebc8
AC
557static int
558mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
559 struct reggroup *reggroup)
560{
561 int vector_p;
562 int float_p;
563 int raw_p;
564 int rawnum = regnum % NUM_REGS;
565 int pseudo = regnum / NUM_REGS;
566 if (reggroup == all_reggroup)
567 return pseudo;
568 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
569 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
570 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
571 (gdbarch), as not all architectures are multi-arch. */
572 raw_p = rawnum < NUM_REGS;
6d82d43b 573 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
a4b8ebc8
AC
574 return 0;
575 if (reggroup == float_reggroup)
576 return float_p && pseudo;
577 if (reggroup == vector_reggroup)
578 return vector_p && pseudo;
579 if (reggroup == general_reggroup)
580 return (!vector_p && !float_p) && pseudo;
581 /* Save the pseudo registers. Need to make certain that any code
582 extracting register values from a saved register cache also uses
583 pseudo registers. */
584 if (reggroup == save_reggroup)
585 return raw_p && pseudo;
586 /* Restore the same pseudo register. */
587 if (reggroup == restore_reggroup)
588 return raw_p && pseudo;
6d82d43b 589 return 0;
a4b8ebc8
AC
590}
591
592/* Map the symbol table registers which live in the range [1 *
593 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
47ebcfbe 594 registers. Take care of alignment and size problems. */
c5aa993b 595
a4b8ebc8
AC
596static void
597mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 598 int cookednum, gdb_byte *buf)
a4b8ebc8 599{
47ebcfbe 600 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 601 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 602 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 603 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
604 else if (register_size (gdbarch, rawnum) >
605 register_size (gdbarch, cookednum))
47ebcfbe
AC
606 {
607 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
608 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
609 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
610 else
611 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
612 }
613 else
e2e0b3e5 614 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
615}
616
617static void
6d82d43b
AC
618mips_pseudo_register_write (struct gdbarch *gdbarch,
619 struct regcache *regcache, int cookednum,
47a35522 620 const gdb_byte *buf)
a4b8ebc8 621{
47ebcfbe 622 int rawnum = cookednum % NUM_REGS;
a4b8ebc8 623 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
47ebcfbe 624 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 625 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
626 else if (register_size (gdbarch, rawnum) >
627 register_size (gdbarch, cookednum))
47ebcfbe
AC
628 {
629 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
630 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
631 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
632 else
633 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
634 }
635 else
e2e0b3e5 636 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 637}
c5aa993b 638
c906108c 639/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 640static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
641
642/* Heuristic_proc_start may hunt through the text section for a long
643 time across a 2400 baud serial line. Allows the user to limit this
644 search. */
645
646static unsigned int heuristic_fence_post = 0;
647
46cd78fb 648/* Number of bytes of storage in the actual machine representation for
719ec221
AC
649 register N. NOTE: This defines the pseudo register type so need to
650 rebuild the architecture vector. */
43e526b9
JM
651
652static int mips64_transfers_32bit_regs_p = 0;
653
719ec221
AC
654static void
655set_mips64_transfers_32bit_regs (char *args, int from_tty,
656 struct cmd_list_element *c)
43e526b9 657{
719ec221
AC
658 struct gdbarch_info info;
659 gdbarch_info_init (&info);
660 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
661 instead of relying on globals. Doing that would let generic code
662 handle the search for this specific architecture. */
663 if (!gdbarch_update_p (info))
a4b8ebc8 664 {
719ec221 665 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 666 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 667 }
a4b8ebc8
AC
668}
669
47ebcfbe 670/* Convert to/from a register and the corresponding memory value. */
43e526b9 671
ff2e87ac
AC
672static int
673mips_convert_register_p (int regnum, struct type *type)
674{
675 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
719ec221 676 && register_size (current_gdbarch, regnum) == 4
87783b8b
AC
677 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
678 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 679 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
680}
681
42c466d7 682static void
ff2e87ac 683mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 684 struct type *type, gdb_byte *to)
102182a9 685{
47a35522
MK
686 get_frame_register (frame, regnum + 0, to + 4);
687 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
688}
689
42c466d7 690static void
ff2e87ac 691mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 692 struct type *type, const gdb_byte *from)
102182a9 693{
47a35522
MK
694 put_frame_register (frame, regnum + 0, from + 4);
695 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
696}
697
a4b8ebc8
AC
698/* Return the GDB type object for the "standard" data type of data in
699 register REG. */
78fde5f8
KB
700
701static struct type *
a4b8ebc8
AC
702mips_register_type (struct gdbarch *gdbarch, int regnum)
703{
5ef80fb0 704 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
56cea623
AC
705 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
706 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
a6425924 707 {
5ef80fb0 708 /* The floating-point registers raw, or cooked, always match
1b13c4f6 709 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
710 if (mips_isa_regsize (gdbarch) == 4)
711 return builtin_type_ieee_single;
712 else
713 return builtin_type_ieee_double;
a6425924 714 }
d5ac5a39
AC
715 else if (regnum < NUM_REGS)
716 {
717 /* The raw or ISA registers. These are all sized according to
718 the ISA regsize. */
719 if (mips_isa_regsize (gdbarch) == 4)
720 return builtin_type_int32;
721 else
722 return builtin_type_int64;
723 }
78fde5f8 724 else
d5ac5a39
AC
725 {
726 /* The cooked or ABI registers. These are sized according to
727 the ABI (with a few complications). */
728 if (regnum >= (NUM_REGS
729 + mips_regnum (current_gdbarch)->fp_control_status)
607fc93c 730 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
735 /* The target, while possibly using a 64-bit register buffer,
736 is only transfering 32-bits of each integer register.
737 Reflect this in the cooked/pseudo (ABI) register value. */
738 return builtin_type_int32;
739 else if (mips_abi_regsize (gdbarch) == 4)
740 /* The ABI is restricted to 32-bit registers (the ISA could be
741 32- or 64-bit). */
742 return builtin_type_int32;
743 else
744 /* 64-bit ABI. */
745 return builtin_type_int64;
746 }
78fde5f8
KB
747}
748
bcb0cc15
MS
749/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
750
751static CORE_ADDR
752mips_read_sp (void)
753{
f10683bb 754 return read_signed_register (MIPS_SP_REGNUM);
bcb0cc15
MS
755}
756
c906108c 757/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 758enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
759
760static int
480d3dd2 761mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
762{
763 switch (mask_address_var)
764 {
7f19b9a2 765 case AUTO_BOOLEAN_TRUE:
4014092b 766 return 1;
7f19b9a2 767 case AUTO_BOOLEAN_FALSE:
4014092b
AC
768 return 0;
769 break;
7f19b9a2 770 case AUTO_BOOLEAN_AUTO:
480d3dd2 771 return tdep->default_mask_address_p;
4014092b 772 default:
e2e0b3e5 773 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 774 return -1;
361d1df0 775 }
4014092b
AC
776}
777
778static void
08546159
AC
779show_mask_address (struct ui_file *file, int from_tty,
780 struct cmd_list_element *c, const char *value)
4014092b 781{
480d3dd2 782 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
783
784 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
785 switch (mask_address_var)
786 {
7f19b9a2 787 case AUTO_BOOLEAN_TRUE:
4014092b
AC
788 printf_filtered ("The 32 bit mips address mask is enabled\n");
789 break;
7f19b9a2 790 case AUTO_BOOLEAN_FALSE:
4014092b
AC
791 printf_filtered ("The 32 bit mips address mask is disabled\n");
792 break;
7f19b9a2 793 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
794 printf_filtered
795 ("The 32 bit address mask is set automatically. Currently %s\n",
796 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
797 break;
798 default:
e2e0b3e5 799 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 800 break;
361d1df0 801 }
4014092b 802}
c906108c 803
c906108c
SS
804/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
805
0fe7e7c8
AC
806int
807mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
808{
809 struct minimal_symbol *sym;
810
811 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 812 if (is_mips16_addr (memaddr))
c906108c
SS
813 return 1;
814
815 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
816 the high bit of the info field. Use this to decide if the function is
817 MIPS16 or normal MIPS. */
818 sym = lookup_minimal_symbol_by_pc (memaddr);
819 if (sym)
71b8ef93 820 return msymbol_is_special (sym);
c906108c
SS
821 else
822 return 0;
823}
824
b2fa5097 825/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
826 all registers should be sign extended for simplicity? */
827
828static CORE_ADDR
39f77062 829mips_read_pc (ptid_t ptid)
6c997a34 830{
b6cb9035
AC
831 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
832}
833
58dfe9ff
AC
834static CORE_ADDR
835mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
836{
edfae063
AC
837 return frame_unwind_register_signed (next_frame,
838 NUM_REGS + mips_regnum (gdbarch)->pc);
839}
840
841/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
842 dummy frame. The frame ID's base needs to match the TOS value
843 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
844 breakpoint. */
845
846static struct frame_id
847mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
848{
f10683bb 849 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
edfae063 850 frame_pc_unwind (next_frame));
58dfe9ff
AC
851}
852
b6cb9035
AC
853static void
854mips_write_pc (CORE_ADDR pc, ptid_t ptid)
855{
856 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
6c997a34 857}
c906108c 858
c906108c
SS
859/* Fetch and return instruction from the specified location. If the PC
860 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
861
d37cca3d 862static ULONGEST
acdb74a0 863mips_fetch_instruction (CORE_ADDR addr)
c906108c 864{
47a35522 865 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
866 int instlen;
867 int status;
868
0fe7e7c8 869 if (mips_pc_is_mips16 (addr))
c906108c 870 {
95ac2dcf 871 instlen = MIPS_INSN16_SIZE;
95404a3e 872 addr = unmake_mips16_addr (addr);
c906108c
SS
873 }
874 else
95ac2dcf 875 instlen = MIPS_INSN32_SIZE;
359a9262 876 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
877 if (status)
878 memory_error (status, addr);
879 return extract_unsigned_integer (buf, instlen);
880}
881
c906108c 882/* These the fields of 32 bit mips instructions */
e135b889
DJ
883#define mips32_op(x) (x >> 26)
884#define itype_op(x) (x >> 26)
885#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 886#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 887#define itype_immediate(x) (x & 0xffff)
c906108c 888
e135b889
DJ
889#define jtype_op(x) (x >> 26)
890#define jtype_target(x) (x & 0x03ffffff)
c906108c 891
e135b889
DJ
892#define rtype_op(x) (x >> 26)
893#define rtype_rs(x) ((x >> 21) & 0x1f)
894#define rtype_rt(x) ((x >> 16) & 0x1f)
895#define rtype_rd(x) ((x >> 11) & 0x1f)
896#define rtype_shamt(x) ((x >> 6) & 0x1f)
897#define rtype_funct(x) (x & 0x3f)
c906108c 898
06987e64
MK
899static LONGEST
900mips32_relative_offset (ULONGEST inst)
c5aa993b 901{
06987e64 902 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
903}
904
f49e4e6d
MS
905/* Determine where to set a single step breakpoint while considering
906 branch prediction. */
5a89d8aa 907static CORE_ADDR
c5aa993b
JM
908mips32_next_pc (CORE_ADDR pc)
909{
910 unsigned long inst;
911 int op;
912 inst = mips_fetch_instruction (pc);
e135b889 913 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 914 {
e135b889 915 if (itype_op (inst) >> 2 == 5)
6d82d43b 916 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 917 {
e135b889 918 op = (itype_op (inst) & 0x03);
c906108c
SS
919 switch (op)
920 {
e135b889
DJ
921 case 0: /* BEQL */
922 goto equal_branch;
923 case 1: /* BNEL */
924 goto neq_branch;
925 case 2: /* BLEZL */
926 goto less_branch;
927 case 3: /* BGTZ */
928 goto greater_branch;
c5aa993b
JM
929 default:
930 pc += 4;
c906108c
SS
931 }
932 }
e135b889 933 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 934 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
935 {
936 int tf = itype_rt (inst) & 0x01;
937 int cnum = itype_rt (inst) >> 2;
6d82d43b
AC
938 int fcrcs =
939 read_signed_register (mips_regnum (current_gdbarch)->
940 fp_control_status);
e135b889
DJ
941 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
942
943 if (((cond >> cnum) & 0x01) == tf)
944 pc += mips32_relative_offset (inst) + 4;
945 else
946 pc += 8;
947 }
c5aa993b
JM
948 else
949 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
950 }
951 else
c5aa993b
JM
952 { /* This gets way messy */
953
c906108c 954 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 955 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 956 {
c5aa993b
JM
957 case 0: /* SPECIAL */
958 op = rtype_funct (inst);
959 switch (op)
960 {
961 case 8: /* JR */
962 case 9: /* JALR */
6c997a34
AC
963 /* Set PC to that address */
964 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
965 break;
966 default:
967 pc += 4;
968 }
969
6d82d43b 970 break; /* end SPECIAL */
c5aa993b 971 case 1: /* REGIMM */
c906108c 972 {
e135b889
DJ
973 op = itype_rt (inst); /* branch condition */
974 switch (op)
c906108c 975 {
c5aa993b 976 case 0: /* BLTZ */
e135b889
DJ
977 case 2: /* BLTZL */
978 case 16: /* BLTZAL */
c5aa993b 979 case 18: /* BLTZALL */
c906108c 980 less_branch:
6c997a34 981 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
982 pc += mips32_relative_offset (inst) + 4;
983 else
984 pc += 8; /* after the delay slot */
985 break;
e135b889 986 case 1: /* BGEZ */
c5aa993b
JM
987 case 3: /* BGEZL */
988 case 17: /* BGEZAL */
989 case 19: /* BGEZALL */
6c997a34 990 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
e135b889 995 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
996 default:
997 pc += 4;
c906108c
SS
998 }
999 }
6d82d43b 1000 break; /* end REGIMM */
c5aa993b
JM
1001 case 2: /* J */
1002 case 3: /* JAL */
1003 {
1004 unsigned long reg;
1005 reg = jtype_target (inst) << 2;
e135b889 1006 /* Upper four bits get never changed... */
5b652102 1007 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1008 }
c5aa993b
JM
1009 break;
1010 /* FIXME case JALX : */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
5b652102 1014 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1015 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1016 }
c5aa993b 1017 break; /* The new PC will be alternate mode */
e135b889 1018 case 4: /* BEQ, BEQL */
c5aa993b 1019 equal_branch:
6c997a34
AC
1020 if (read_signed_register (itype_rs (inst)) ==
1021 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1022 pc += mips32_relative_offset (inst) + 4;
1023 else
1024 pc += 8;
1025 break;
e135b889 1026 case 5: /* BNE, BNEL */
c5aa993b 1027 neq_branch:
6c997a34 1028 if (read_signed_register (itype_rs (inst)) !=
e135b889 1029 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
e135b889 1034 case 6: /* BLEZ, BLEZL */
1fd8cd20 1035 if (read_signed_register (itype_rs (inst)) <= 0)
c5aa993b
JM
1036 pc += mips32_relative_offset (inst) + 4;
1037 else
1038 pc += 8;
1039 break;
1040 case 7:
e135b889
DJ
1041 default:
1042 greater_branch: /* BGTZ, BGTZL */
1fd8cd20 1043 if (read_signed_register (itype_rs (inst)) > 0)
c5aa993b
JM
1044 pc += mips32_relative_offset (inst) + 4;
1045 else
1046 pc += 8;
1047 break;
c5aa993b
JM
1048 } /* switch */
1049 } /* else */
1050 return pc;
1051} /* mips32_next_pc */
c906108c
SS
1052
1053/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1054 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1055 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1056 We dont want to set a single step instruction on the extend instruction
1057 either.
c5aa993b 1058 */
c906108c
SS
1059
1060/* Lots of mips16 instruction formats */
1061/* Predicting jumps requires itype,ritype,i8type
1062 and their extensions extItype,extritype,extI8type
c5aa993b 1063 */
c906108c
SS
1064enum mips16_inst_fmts
1065{
c5aa993b
JM
1066 itype, /* 0 immediate 5,10 */
1067 ritype, /* 1 5,3,8 */
1068 rrtype, /* 2 5,3,3,5 */
1069 rritype, /* 3 5,3,3,5 */
1070 rrrtype, /* 4 5,3,3,3,2 */
1071 rriatype, /* 5 5,3,3,1,4 */
1072 shifttype, /* 6 5,3,3,3,2 */
1073 i8type, /* 7 5,3,8 */
1074 i8movtype, /* 8 5,3,3,5 */
1075 i8mov32rtype, /* 9 5,3,5,3 */
1076 i64type, /* 10 5,3,8 */
1077 ri64type, /* 11 5,3,3,5 */
1078 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1079 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1080 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1081 extRRItype, /* 15 5,5,5,5,3,3,5 */
1082 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1083 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1084 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1085 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1086 extRi64type, /* 20 5,6,5,5,3,3,5 */
1087 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1088};
12f02c2a
AC
1089/* I am heaping all the fields of the formats into one structure and
1090 then, only the fields which are involved in instruction extension */
c906108c 1091struct upk_mips16
6d82d43b
AC
1092{
1093 CORE_ADDR offset;
1094 unsigned int regx; /* Function in i8 type */
1095 unsigned int regy;
1096};
c906108c
SS
1097
1098
12f02c2a
AC
1099/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1100 for the bits which make up the immediatate extension. */
c906108c 1101
12f02c2a
AC
1102static CORE_ADDR
1103extended_offset (unsigned int extension)
c906108c 1104{
12f02c2a 1105 CORE_ADDR value;
c5aa993b
JM
1106 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1107 value = value << 6;
1108 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1109 value = value << 5;
1110 value |= extension & 0x01f; /* extract 4:0 */
1111 return value;
c906108c
SS
1112}
1113
1114/* Only call this function if you know that this is an extendable
1115 instruction, It wont malfunction, but why make excess remote memory references?
1116 If the immediate operands get sign extended or somthing, do it after
1117 the extension is performed.
c5aa993b 1118 */
c906108c
SS
1119/* FIXME: Every one of these cases needs to worry about sign extension
1120 when the offset is to be used in relative addressing */
1121
1122
12f02c2a 1123static unsigned int
c5aa993b 1124fetch_mips_16 (CORE_ADDR pc)
c906108c 1125{
47a35522 1126 gdb_byte buf[8];
c5aa993b
JM
1127 pc &= 0xfffffffe; /* clear the low order bit */
1128 target_read_memory (pc, buf, 2);
1129 return extract_unsigned_integer (buf, 2);
c906108c
SS
1130}
1131
1132static void
c5aa993b 1133unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1134 unsigned int extension,
1135 unsigned int inst,
6d82d43b 1136 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1137{
12f02c2a
AC
1138 CORE_ADDR offset;
1139 int regx;
1140 int regy;
1141 switch (insn_format)
c906108c 1142 {
c5aa993b 1143 case itype:
c906108c 1144 {
12f02c2a
AC
1145 CORE_ADDR value;
1146 if (extension)
c5aa993b
JM
1147 {
1148 value = extended_offset (extension);
1149 value = value << 11; /* rom for the original value */
6d82d43b 1150 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1151 }
1152 else
c5aa993b 1153 {
12f02c2a 1154 value = inst & 0x7ff;
c5aa993b 1155 /* FIXME : Consider sign extension */
c906108c 1156 }
12f02c2a
AC
1157 offset = value;
1158 regx = -1;
1159 regy = -1;
c906108c 1160 }
c5aa993b
JM
1161 break;
1162 case ritype:
1163 case i8type:
1164 { /* A register identifier and an offset */
c906108c
SS
1165 /* Most of the fields are the same as I type but the
1166 immediate value is of a different length */
12f02c2a
AC
1167 CORE_ADDR value;
1168 if (extension)
c906108c 1169 {
c5aa993b
JM
1170 value = extended_offset (extension);
1171 value = value << 8; /* from the original instruction */
12f02c2a
AC
1172 value |= inst & 0xff; /* eleven bits from instruction */
1173 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1174 if (value & 0x4000) /* test the sign bit , bit 26 */
1175 {
1176 value &= ~0x3fff; /* remove the sign bit */
1177 value = -value;
c906108c
SS
1178 }
1179 }
c5aa993b
JM
1180 else
1181 {
12f02c2a
AC
1182 value = inst & 0xff; /* 8 bits */
1183 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1184 /* FIXME: Do sign extension , this format needs it */
1185 if (value & 0x80) /* THIS CONFUSES ME */
1186 {
1187 value &= 0xef; /* remove the sign bit */
1188 value = -value;
1189 }
c5aa993b 1190 }
12f02c2a
AC
1191 offset = value;
1192 regy = -1;
c5aa993b 1193 break;
c906108c 1194 }
c5aa993b 1195 case jalxtype:
c906108c 1196 {
c5aa993b 1197 unsigned long value;
12f02c2a
AC
1198 unsigned int nexthalf;
1199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1200 value = value << 16;
1201 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1202 value |= nexthalf;
12f02c2a
AC
1203 offset = value;
1204 regx = -1;
1205 regy = -1;
c5aa993b 1206 break;
c906108c
SS
1207 }
1208 default:
e2e0b3e5 1209 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1210 }
12f02c2a
AC
1211 upk->offset = offset;
1212 upk->regx = regx;
1213 upk->regy = regy;
c906108c
SS
1214}
1215
1216
c5aa993b
JM
1217static CORE_ADDR
1218add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1219{
5b652102 1220 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1221}
1222
12f02c2a
AC
1223static CORE_ADDR
1224extended_mips16_next_pc (CORE_ADDR pc,
6d82d43b 1225 unsigned int extension, unsigned int insn)
c906108c 1226{
12f02c2a
AC
1227 int op = (insn >> 11);
1228 switch (op)
c906108c 1229 {
6d82d43b 1230 case 2: /* Branch */
12f02c2a
AC
1231 {
1232 CORE_ADDR offset;
1233 struct upk_mips16 upk;
1234 unpack_mips16 (pc, extension, insn, itype, &upk);
1235 offset = upk.offset;
1236 if (offset & 0x800)
1237 {
1238 offset &= 0xeff;
1239 offset = -offset;
1240 }
1241 pc += (offset << 1) + 2;
1242 break;
1243 }
6d82d43b 1244 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1245 {
1246 struct upk_mips16 upk;
1247 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1248 pc = add_offset_16 (pc, upk.offset);
1249 if ((insn >> 10) & 0x01) /* Exchange mode */
1250 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1251 else
1252 pc |= 0x01;
1253 break;
1254 }
6d82d43b 1255 case 4: /* beqz */
12f02c2a
AC
1256 {
1257 struct upk_mips16 upk;
1258 int reg;
1259 unpack_mips16 (pc, extension, insn, ritype, &upk);
1260 reg = read_signed_register (upk.regx);
1261 if (reg == 0)
1262 pc += (upk.offset << 1) + 2;
1263 else
1264 pc += 2;
1265 break;
1266 }
6d82d43b 1267 case 5: /* bnez */
12f02c2a
AC
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg != 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
6d82d43b 1279 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, i8type, &upk);
1284 /* upk.regx contains the opcode */
1285 reg = read_signed_register (24); /* Test register is 24 */
1286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1288 /* pc = add_offset_16(pc,upk.offset) ; */
1289 pc += (upk.offset << 1) + 2;
1290 else
1291 pc += 2;
1292 break;
1293 }
6d82d43b 1294 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1295 {
1296 struct upk_mips16 upk;
1297 /* upk.fmt = rrtype; */
1298 op = insn & 0x1f;
1299 if (op == 0)
c5aa993b 1300 {
12f02c2a
AC
1301 int reg;
1302 upk.regx = (insn >> 8) & 0x07;
1303 upk.regy = (insn >> 5) & 0x07;
1304 switch (upk.regy)
c5aa993b 1305 {
12f02c2a
AC
1306 case 0:
1307 reg = upk.regx;
1308 break;
1309 case 1:
1310 reg = 31;
6d82d43b 1311 break; /* Function return instruction */
12f02c2a
AC
1312 case 2:
1313 reg = upk.regx;
1314 break;
1315 default:
1316 reg = 31;
6d82d43b 1317 break; /* BOGUS Guess */
c906108c 1318 }
12f02c2a 1319 pc = read_signed_register (reg);
c906108c 1320 }
12f02c2a 1321 else
c5aa993b 1322 pc += 2;
12f02c2a
AC
1323 break;
1324 }
1325 case 30:
1326 /* This is an instruction extension. Fetch the real instruction
1327 (which follows the extension) and decode things based on
1328 that. */
1329 {
1330 pc += 2;
1331 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1332 break;
1333 }
1334 default:
1335 {
1336 pc += 2;
1337 break;
1338 }
c906108c 1339 }
c5aa993b 1340 return pc;
12f02c2a 1341}
c906108c 1342
5a89d8aa 1343static CORE_ADDR
12f02c2a
AC
1344mips16_next_pc (CORE_ADDR pc)
1345{
1346 unsigned int insn = fetch_mips_16 (pc);
1347 return extended_mips16_next_pc (pc, 0, insn);
1348}
1349
1350/* The mips_next_pc function supports single_step when the remote
7e73cedf 1351 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1352 It works by decoding the current instruction and predicting where a
1353 branch will go. This isnt hard because all the data is available.
1354 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1355CORE_ADDR
1356mips_next_pc (CORE_ADDR pc)
c906108c 1357{
c5aa993b
JM
1358 if (pc & 0x01)
1359 return mips16_next_pc (pc);
1360 else
1361 return mips32_next_pc (pc);
12f02c2a 1362}
c906108c 1363
edfae063
AC
1364struct mips_frame_cache
1365{
1366 CORE_ADDR base;
1367 struct trad_frame_saved_reg *saved_regs;
1368};
1369
29639122
JB
1370/* Set a register's saved stack address in temp_saved_regs. If an
1371 address has already been set for this register, do nothing; this
1372 way we will only recognize the first save of a given register in a
1373 function prologue.
eec63939 1374
29639122
JB
1375 For simplicity, save the address in both [0 .. NUM_REGS) and
1376 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1377 is used as it is only second range (the ABI instead of ISA
1378 registers) that comes into play when finding saved registers in a
1379 frame. */
eec63939
AC
1380
1381static void
29639122
JB
1382set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1383 CORE_ADDR offset)
eec63939 1384{
29639122
JB
1385 if (this_cache != NULL
1386 && this_cache->saved_regs[regnum].addr == -1)
1387 {
1388 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1389 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1390 }
eec63939
AC
1391}
1392
eec63939 1393
29639122
JB
1394/* Fetch the immediate value from a MIPS16 instruction.
1395 If the previous instruction was an EXTEND, use it to extend
1396 the upper bits of the immediate value. This is a helper function
1397 for mips16_scan_prologue. */
eec63939 1398
29639122
JB
1399static int
1400mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1401 unsigned short inst, /* current instruction */
1402 int nbits, /* number of bits in imm field */
1403 int scale, /* scale factor to be applied to imm */
1404 int is_signed) /* is the imm field signed? */
eec63939 1405{
29639122 1406 int offset;
eec63939 1407
29639122
JB
1408 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1409 {
1410 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1411 if (offset & 0x8000) /* check for negative extend */
1412 offset = 0 - (0x10000 - (offset & 0xffff));
1413 return offset | (inst & 0x1f);
1414 }
eec63939 1415 else
29639122
JB
1416 {
1417 int max_imm = 1 << nbits;
1418 int mask = max_imm - 1;
1419 int sign_bit = max_imm >> 1;
45c9dd44 1420
29639122
JB
1421 offset = inst & mask;
1422 if (is_signed && (offset & sign_bit))
1423 offset = 0 - (max_imm - offset);
1424 return offset * scale;
1425 }
1426}
eec63939 1427
65596487 1428
29639122
JB
1429/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1430 the associated FRAME_CACHE if not null.
1431 Return the address of the first instruction past the prologue. */
eec63939 1432
29639122
JB
1433static CORE_ADDR
1434mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1435 struct frame_info *next_frame,
1436 struct mips_frame_cache *this_cache)
1437{
1438 CORE_ADDR cur_pc;
1439 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1440 CORE_ADDR sp;
1441 long frame_offset = 0; /* Size of stack frame. */
1442 long frame_adjust = 0; /* Offset of FP from SP. */
1443 int frame_reg = MIPS_SP_REGNUM;
1444 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1445 unsigned inst = 0; /* current instruction */
1446 unsigned entry_inst = 0; /* the entry instruction */
1447 int reg, offset;
a343eb3c 1448
29639122
JB
1449 int extend_bytes = 0;
1450 int prev_extend_bytes;
1451 CORE_ADDR end_prologue_addr = 0;
a343eb3c 1452
29639122
JB
1453 /* Can be called when there's no process, and hence when there's no
1454 NEXT_FRAME. */
1455 if (next_frame != NULL)
1456 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1457 else
1458 sp = 0;
eec63939 1459
29639122
JB
1460 if (limit_pc > start_pc + 200)
1461 limit_pc = start_pc + 200;
eec63939 1462
95ac2dcf 1463 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1464 {
1465 /* Save the previous instruction. If it's an EXTEND, we'll extract
1466 the immediate offset extension from it in mips16_get_imm. */
1467 prev_inst = inst;
eec63939 1468
29639122
JB
1469 /* Fetch and decode the instruction. */
1470 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1471
29639122
JB
1472 /* Normally we ignore extend instructions. However, if it is
1473 not followed by a valid prologue instruction, then this
1474 instruction is not part of the prologue either. We must
1475 remember in this case to adjust the end_prologue_addr back
1476 over the extend. */
1477 if ((inst & 0xf800) == 0xf000) /* extend */
1478 {
95ac2dcf 1479 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1480 continue;
1481 }
eec63939 1482
29639122
JB
1483 prev_extend_bytes = extend_bytes;
1484 extend_bytes = 0;
eec63939 1485
29639122
JB
1486 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1487 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1490 if (offset < 0) /* negative stack adjustment? */
1491 frame_offset -= offset;
1492 else
1493 /* Exit loop if a positive stack adjustment is found, which
1494 usually means that the stack cleanup code in the function
1495 epilogue is reached. */
1496 break;
1497 }
1498 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1499 {
1500 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1501 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1502 set_reg_offset (this_cache, reg, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1507 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1508 set_reg_offset (this_cache, reg, sp + offset);
1509 }
1510 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1513 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1514 }
1515 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1516 {
1517 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1518 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1519 }
1520 else if (inst == 0x673d) /* move $s1, $sp */
1521 {
1522 frame_addr = sp;
1523 frame_reg = 17;
1524 }
1525 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1526 {
1527 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1528 frame_addr = sp + offset;
1529 frame_reg = 17;
1530 frame_adjust = offset;
1531 }
1532 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1533 {
1534 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1535 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1536 set_reg_offset (this_cache, reg, frame_addr + offset);
1537 }
1538 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1539 {
1540 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1541 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1542 set_reg_offset (this_cache, reg, frame_addr + offset);
1543 }
1544 else if ((inst & 0xf81f) == 0xe809
1545 && (inst & 0x700) != 0x700) /* entry */
1546 entry_inst = inst; /* save for later processing */
1547 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1548 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1549 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1550 {
1551 /* This instruction is part of the prologue, but we don't
1552 need to do anything special to handle it. */
1553 }
1554 else
1555 {
1556 /* This instruction is not an instruction typically found
1557 in a prologue, so we must have reached the end of the
1558 prologue. */
1559 if (end_prologue_addr == 0)
1560 end_prologue_addr = cur_pc - prev_extend_bytes;
1561 }
1562 }
eec63939 1563
29639122
JB
1564 /* The entry instruction is typically the first instruction in a function,
1565 and it stores registers at offsets relative to the value of the old SP
1566 (before the prologue). But the value of the sp parameter to this
1567 function is the new SP (after the prologue has been executed). So we
1568 can't calculate those offsets until we've seen the entire prologue,
1569 and can calculate what the old SP must have been. */
1570 if (entry_inst != 0)
1571 {
1572 int areg_count = (entry_inst >> 8) & 7;
1573 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1574
29639122
JB
1575 /* The entry instruction always subtracts 32 from the SP. */
1576 frame_offset += 32;
1577
1578 /* Now we can calculate what the SP must have been at the
1579 start of the function prologue. */
1580 sp += frame_offset;
1581
1582 /* Check if a0-a3 were saved in the caller's argument save area. */
1583 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset += mips_abi_regsize (current_gdbarch);
1587 }
1588
1589 /* Check if the ra register was pushed on the stack. */
1590 offset = -4;
1591 if (entry_inst & 0x20)
1592 {
4c7d22cb 1593 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1594 offset -= mips_abi_regsize (current_gdbarch);
1595 }
1596
1597 /* Check if the s0 and s1 registers were pushed on the stack. */
1598 for (reg = 16; reg < sreg_count + 16; reg++)
1599 {
1600 set_reg_offset (this_cache, reg, sp + offset);
1601 offset -= mips_abi_regsize (current_gdbarch);
1602 }
1603 }
1604
1605 if (this_cache != NULL)
1606 {
1607 this_cache->base =
1608 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1609 + frame_offset - frame_adjust);
1610 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1611 be able to get rid of the assignment below, evetually. But it's
1612 still needed for now. */
1613 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1614 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122
JB
1615 }
1616
1617 /* If we didn't reach the end of the prologue when scanning the function
1618 instructions, then set end_prologue_addr to the address of the
1619 instruction immediately after the last one we scanned. */
1620 if (end_prologue_addr == 0)
1621 end_prologue_addr = cur_pc;
1622
1623 return end_prologue_addr;
eec63939
AC
1624}
1625
29639122
JB
1626/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1627 Procedures that use the 32-bit instruction set are handled by the
1628 mips_insn32 unwinder. */
1629
1630static struct mips_frame_cache *
1631mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1632{
29639122 1633 struct mips_frame_cache *cache;
eec63939
AC
1634
1635 if ((*this_cache) != NULL)
1636 return (*this_cache);
29639122
JB
1637 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1638 (*this_cache) = cache;
1639 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1640
29639122
JB
1641 /* Analyze the function prologue. */
1642 {
6de5b849
JB
1643 const CORE_ADDR pc =
1644 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1645 CORE_ADDR start_addr;
eec63939 1646
29639122
JB
1647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1648 if (start_addr == 0)
1649 start_addr = heuristic_proc_start (pc);
1650 /* We can't analyze the prologue if we couldn't find the begining
1651 of the function. */
1652 if (start_addr == 0)
1653 return cache;
eec63939 1654
29639122
JB
1655 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1656 }
1657
1658 /* SP_REGNUM, contains the value and not the address. */
1659 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
eec63939 1660
29639122 1661 return (*this_cache);
eec63939
AC
1662}
1663
1664static void
29639122
JB
1665mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1666 struct frame_id *this_id)
eec63939 1667{
29639122
JB
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
93d42b30
DJ
1670 (*this_id) = frame_id_build (info->base,
1671 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1672}
1673
1674static void
29639122 1675mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1676 void **this_cache,
1677 int regnum, int *optimizedp,
1678 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1679 int *realnump, gdb_byte *valuep)
eec63939 1680{
29639122
JB
1681 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1682 this_cache);
1683 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1684 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1685}
1686
29639122 1687static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1688{
1689 NORMAL_FRAME,
29639122
JB
1690 mips_insn16_frame_this_id,
1691 mips_insn16_frame_prev_register
eec63939
AC
1692};
1693
1694static const struct frame_unwind *
29639122 1695mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1696{
6de5b849 1697 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1698 if (mips_pc_is_mips16 (pc))
29639122
JB
1699 return &mips_insn16_frame_unwind;
1700 return NULL;
eec63939
AC
1701}
1702
1703static CORE_ADDR
29639122
JB
1704mips_insn16_frame_base_address (struct frame_info *next_frame,
1705 void **this_cache)
eec63939 1706{
29639122
JB
1707 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1708 this_cache);
1709 return info->base;
eec63939
AC
1710}
1711
29639122 1712static const struct frame_base mips_insn16_frame_base =
eec63939 1713{
29639122
JB
1714 &mips_insn16_frame_unwind,
1715 mips_insn16_frame_base_address,
1716 mips_insn16_frame_base_address,
1717 mips_insn16_frame_base_address
eec63939
AC
1718};
1719
1720static const struct frame_base *
29639122 1721mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1722{
29639122
JB
1723 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1724 return &mips_insn16_frame_base;
eec63939
AC
1725 else
1726 return NULL;
edfae063
AC
1727}
1728
29639122
JB
1729/* Mark all the registers as unset in the saved_regs array
1730 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1731
1732void
1733reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1734{
29639122
JB
1735 if (this_cache == NULL || this_cache->saved_regs == NULL)
1736 return;
1737
1738 {
1739 const int num_regs = NUM_REGS;
1740 int i;
64159455 1741
29639122
JB
1742 for (i = 0; i < num_regs; i++)
1743 {
1744 this_cache->saved_regs[i].addr = -1;
1745 }
1746 }
c906108c
SS
1747}
1748
29639122
JB
1749/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1750 the associated FRAME_CACHE if not null.
1751 Return the address of the first instruction past the prologue. */
c906108c 1752
875e1767 1753static CORE_ADDR
29639122
JB
1754mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1755 struct frame_info *next_frame,
1756 struct mips_frame_cache *this_cache)
c906108c 1757{
29639122
JB
1758 CORE_ADDR cur_pc;
1759 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1760 CORE_ADDR sp;
1761 long frame_offset;
1762 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1763
29639122
JB
1764 CORE_ADDR end_prologue_addr = 0;
1765 int seen_sp_adjust = 0;
1766 int load_immediate_bytes = 0;
8fa9cfa1 1767
29639122
JB
1768 /* Can be called when there's no process, and hence when there's no
1769 NEXT_FRAME. */
1770 if (next_frame != NULL)
1771 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
8fa9cfa1 1772 else
29639122 1773 sp = 0;
9022177c 1774
29639122
JB
1775 if (limit_pc > start_pc + 200)
1776 limit_pc = start_pc + 200;
9022177c 1777
29639122 1778restart:
9022177c 1779
29639122 1780 frame_offset = 0;
95ac2dcf 1781 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1782 {
29639122
JB
1783 unsigned long inst, high_word, low_word;
1784 int reg;
9022177c 1785
29639122
JB
1786 /* Fetch the instruction. */
1787 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1788
29639122
JB
1789 /* Save some code by pre-extracting some useful fields. */
1790 high_word = (inst >> 16) & 0xffff;
1791 low_word = inst & 0xffff;
1792 reg = high_word & 0x1f;
fe29b929 1793
29639122
JB
1794 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1795 || high_word == 0x23bd /* addi $sp,$sp,-i */
1796 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1797 {
1798 if (low_word & 0x8000) /* negative stack adjustment? */
1799 frame_offset += 0x10000 - low_word;
1800 else
1801 /* Exit loop if a positive stack adjustment is found, which
1802 usually means that the stack cleanup code in the function
1803 epilogue is reached. */
1804 break;
1805 seen_sp_adjust = 1;
1806 }
1807 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1808 {
1809 set_reg_offset (this_cache, reg, sp + low_word);
1810 }
1811 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1812 {
1813 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1814 set_reg_offset (this_cache, reg, sp + low_word);
1815 }
1816 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1817 {
1818 /* Old gcc frame, r30 is virtual frame pointer. */
1819 if ((long) low_word != frame_offset)
1820 frame_addr = sp + low_word;
1821 else if (frame_reg == MIPS_SP_REGNUM)
1822 {
1823 unsigned alloca_adjust;
a4b8ebc8 1824
29639122
JB
1825 frame_reg = 30;
1826 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1827 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1828 if (alloca_adjust > 0)
1829 {
1830 /* FP > SP + frame_size. This may be because of
1831 an alloca or somethings similar. Fix sp to
1832 "pre-alloca" value, and try again. */
1833 sp += alloca_adjust;
1834 /* Need to reset the status of all registers. Otherwise,
1835 we will hit a guard that prevents the new address
1836 for each register to be recomputed during the second
1837 pass. */
1838 reset_saved_regs (this_cache);
1839 goto restart;
1840 }
1841 }
1842 }
1843 /* move $30,$sp. With different versions of gas this will be either
1844 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1845 Accept any one of these. */
1846 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1847 {
1848 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1849 if (frame_reg == MIPS_SP_REGNUM)
1850 {
1851 unsigned alloca_adjust;
c906108c 1852
29639122
JB
1853 frame_reg = 30;
1854 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1855 alloca_adjust = (unsigned) (frame_addr - sp);
1856 if (alloca_adjust > 0)
1857 {
1858 /* FP > SP + frame_size. This may be because of
1859 an alloca or somethings similar. Fix sp to
1860 "pre-alloca" value, and try again. */
1861 sp = frame_addr;
1862 /* Need to reset the status of all registers. Otherwise,
1863 we will hit a guard that prevents the new address
1864 for each register to be recomputed during the second
1865 pass. */
1866 reset_saved_regs (this_cache);
1867 goto restart;
1868 }
1869 }
1870 }
1871 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1872 {
1873 set_reg_offset (this_cache, reg, frame_addr + low_word);
1874 }
1875 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1876 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1877 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1878 || high_word == 0x3c1c /* lui $gp,n */
1879 || high_word == 0x279c /* addiu $gp,$gp,n */
1880 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1881 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1882 )
1883 {
1884 /* These instructions are part of the prologue, but we don't
1885 need to do anything special to handle them. */
1886 }
1887 /* The instructions below load $at or $t0 with an immediate
1888 value in preparation for a stack adjustment via
1889 subu $sp,$sp,[$at,$t0]. These instructions could also
1890 initialize a local variable, so we accept them only before
1891 a stack adjustment instruction was seen. */
1892 else if (!seen_sp_adjust
1893 && (high_word == 0x3c01 /* lui $at,n */
1894 || high_word == 0x3c08 /* lui $t0,n */
1895 || high_word == 0x3421 /* ori $at,$at,n */
1896 || high_word == 0x3508 /* ori $t0,$t0,n */
1897 || high_word == 0x3401 /* ori $at,$zero,n */
1898 || high_word == 0x3408 /* ori $t0,$zero,n */
1899 ))
1900 {
95ac2dcf 1901 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
1902 }
1903 else
1904 {
1905 /* This instruction is not an instruction typically found
1906 in a prologue, so we must have reached the end of the
1907 prologue. */
1908 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1909 loop now? Why would we need to continue scanning the function
1910 instructions? */
1911 if (end_prologue_addr == 0)
1912 end_prologue_addr = cur_pc;
1913 }
a4b8ebc8 1914 }
c906108c 1915
29639122
JB
1916 if (this_cache != NULL)
1917 {
1918 this_cache->base =
1919 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1920 + frame_offset);
1921 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1922 this assignment below, eventually. But it's still needed
1923 for now. */
1924 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
4c7d22cb 1925 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
29639122 1926 }
c906108c 1927
29639122
JB
1928 /* If we didn't reach the end of the prologue when scanning the function
1929 instructions, then set end_prologue_addr to the address of the
1930 instruction immediately after the last one we scanned. */
1931 /* brobecker/2004-10-10: I don't think this would ever happen, but
1932 we may as well be careful and do our best if we have a null
1933 end_prologue_addr. */
1934 if (end_prologue_addr == 0)
1935 end_prologue_addr = cur_pc;
1936
1937 /* In a frameless function, we might have incorrectly
1938 skipped some load immediate instructions. Undo the skipping
1939 if the load immediate was not followed by a stack adjustment. */
1940 if (load_immediate_bytes && !seen_sp_adjust)
1941 end_prologue_addr -= load_immediate_bytes;
c906108c 1942
29639122 1943 return end_prologue_addr;
c906108c
SS
1944}
1945
29639122
JB
1946/* Heuristic unwinder for procedures using 32-bit instructions (covers
1947 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1948 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1949 unwinder. */
c906108c 1950
29639122
JB
1951static struct mips_frame_cache *
1952mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 1953{
29639122 1954 struct mips_frame_cache *cache;
c906108c 1955
29639122
JB
1956 if ((*this_cache) != NULL)
1957 return (*this_cache);
c5aa993b 1958
29639122
JB
1959 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1960 (*this_cache) = cache;
1961 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 1962
29639122
JB
1963 /* Analyze the function prologue. */
1964 {
6de5b849
JB
1965 const CORE_ADDR pc =
1966 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1967 CORE_ADDR start_addr;
c906108c 1968
29639122
JB
1969 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1970 if (start_addr == 0)
1971 start_addr = heuristic_proc_start (pc);
1972 /* We can't analyze the prologue if we couldn't find the begining
1973 of the function. */
1974 if (start_addr == 0)
1975 return cache;
c5aa993b 1976
29639122
JB
1977 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1978 }
1979
1980 /* SP_REGNUM, contains the value and not the address. */
1981 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
c5aa993b 1982
29639122 1983 return (*this_cache);
c906108c
SS
1984}
1985
29639122
JB
1986static void
1987mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1988 struct frame_id *this_id)
c906108c 1989{
29639122
JB
1990 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1991 this_cache);
93d42b30
DJ
1992 (*this_id) = frame_id_build (info->base,
1993 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 1994}
c906108c 1995
29639122
JB
1996static void
1997mips_insn32_frame_prev_register (struct frame_info *next_frame,
1998 void **this_cache,
1999 int regnum, int *optimizedp,
2000 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2001 int *realnump, gdb_byte *valuep)
29639122
JB
2002{
2003 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2004 this_cache);
2005 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2006 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2007}
2008
29639122
JB
2009static const struct frame_unwind mips_insn32_frame_unwind =
2010{
2011 NORMAL_FRAME,
2012 mips_insn32_frame_this_id,
2013 mips_insn32_frame_prev_register
2014};
c906108c 2015
29639122
JB
2016static const struct frame_unwind *
2017mips_insn32_frame_sniffer (struct frame_info *next_frame)
2018{
6de5b849 2019 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2020 if (! mips_pc_is_mips16 (pc))
29639122
JB
2021 return &mips_insn32_frame_unwind;
2022 return NULL;
2023}
c906108c 2024
1c645fec 2025static CORE_ADDR
29639122
JB
2026mips_insn32_frame_base_address (struct frame_info *next_frame,
2027 void **this_cache)
c906108c 2028{
29639122
JB
2029 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2030 this_cache);
2031 return info->base;
2032}
c906108c 2033
29639122
JB
2034static const struct frame_base mips_insn32_frame_base =
2035{
2036 &mips_insn32_frame_unwind,
2037 mips_insn32_frame_base_address,
2038 mips_insn32_frame_base_address,
2039 mips_insn32_frame_base_address
2040};
1c645fec 2041
29639122
JB
2042static const struct frame_base *
2043mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2044{
2045 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2046 return &mips_insn32_frame_base;
a65bbe44 2047 else
29639122
JB
2048 return NULL;
2049}
a65bbe44 2050
29639122
JB
2051static struct trad_frame_cache *
2052mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2053{
2054 CORE_ADDR pc;
2055 CORE_ADDR start_addr;
2056 CORE_ADDR stack_addr;
2057 struct trad_frame_cache *this_trad_cache;
c906108c 2058
29639122
JB
2059 if ((*this_cache) != NULL)
2060 return (*this_cache);
2061 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2062 (*this_cache) = this_trad_cache;
1c645fec 2063
29639122 2064 /* The return address is in the link register. */
4c7d22cb 2065 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
1c645fec 2066
29639122
JB
2067 /* Frame ID, since it's a frameless / stackless function, no stack
2068 space is allocated and SP on entry is the current SP. */
2069 pc = frame_pc_unwind (next_frame);
2070 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2071 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
29639122 2072 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
1c645fec 2073
29639122
JB
2074 /* Assume that the frame's base is the same as the
2075 stack-pointer. */
2076 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2077
29639122
JB
2078 return this_trad_cache;
2079}
c906108c 2080
29639122
JB
2081static void
2082mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2083 struct frame_id *this_id)
2084{
2085 struct trad_frame_cache *this_trad_cache
2086 = mips_stub_frame_cache (next_frame, this_cache);
2087 trad_frame_get_id (this_trad_cache, this_id);
2088}
c906108c 2089
29639122
JB
2090static void
2091mips_stub_frame_prev_register (struct frame_info *next_frame,
2092 void **this_cache,
2093 int regnum, int *optimizedp,
2094 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2095 int *realnump, gdb_byte *valuep)
29639122
JB
2096{
2097 struct trad_frame_cache *this_trad_cache
2098 = mips_stub_frame_cache (next_frame, this_cache);
2099 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2100 lvalp, addrp, realnump, valuep);
2101}
c906108c 2102
29639122
JB
2103static const struct frame_unwind mips_stub_frame_unwind =
2104{
2105 NORMAL_FRAME,
2106 mips_stub_frame_this_id,
2107 mips_stub_frame_prev_register
2108};
c906108c 2109
29639122
JB
2110static const struct frame_unwind *
2111mips_stub_frame_sniffer (struct frame_info *next_frame)
2112{
979b38e0 2113 struct obj_section *s;
93d42b30 2114 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2115
29639122
JB
2116 if (in_plt_section (pc, NULL))
2117 return &mips_stub_frame_unwind;
979b38e0
DJ
2118
2119 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2120 s = find_pc_section (pc);
2121
2122 if (s != NULL
2123 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2124 ".MIPS.stubs") == 0)
2125 return &mips_stub_frame_unwind;
2126
2127 return NULL;
29639122 2128}
c906108c 2129
29639122
JB
2130static CORE_ADDR
2131mips_stub_frame_base_address (struct frame_info *next_frame,
2132 void **this_cache)
2133{
2134 struct trad_frame_cache *this_trad_cache
2135 = mips_stub_frame_cache (next_frame, this_cache);
2136 return trad_frame_get_this_base (this_trad_cache);
2137}
0fce0821 2138
29639122
JB
2139static const struct frame_base mips_stub_frame_base =
2140{
2141 &mips_stub_frame_unwind,
2142 mips_stub_frame_base_address,
2143 mips_stub_frame_base_address,
2144 mips_stub_frame_base_address
2145};
2146
2147static const struct frame_base *
2148mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2149{
2150 if (mips_stub_frame_sniffer (next_frame) != NULL)
2151 return &mips_stub_frame_base;
2152 else
2153 return NULL;
2154}
2155
2156static CORE_ADDR
2157read_next_frame_reg (struct frame_info *fi, int regno)
2158{
2159 /* Always a pseudo. */
2160 gdb_assert (regno >= NUM_REGS);
2161 if (fi == NULL)
0fce0821 2162 {
29639122
JB
2163 LONGEST val;
2164 regcache_cooked_read_signed (current_regcache, regno, &val);
2165 return val;
0fce0821 2166 }
29639122
JB
2167 else
2168 return frame_unwind_register_signed (fi, regno);
1c645fec 2169
c906108c
SS
2170}
2171
29639122 2172/* mips_addr_bits_remove - remove useless address bits */
65596487 2173
29639122
JB
2174static CORE_ADDR
2175mips_addr_bits_remove (CORE_ADDR addr)
65596487 2176{
29639122
JB
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2178 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2179 /* This hack is a work-around for existing boards using PMON, the
2180 simulator, and any other 64-bit targets that doesn't have true
2181 64-bit addressing. On these targets, the upper 32 bits of
2182 addresses are ignored by the hardware. Thus, the PC or SP are
2183 likely to have been sign extended to all 1s by instruction
2184 sequences that load 32-bit addresses. For example, a typical
2185 piece of code that loads an address is this:
65596487 2186
29639122
JB
2187 lui $r2, <upper 16 bits>
2188 ori $r2, <lower 16 bits>
65596487 2189
29639122
JB
2190 But the lui sign-extends the value such that the upper 32 bits
2191 may be all 1s. The workaround is simply to mask off these
2192 bits. In the future, gcc may be changed to support true 64-bit
2193 addressing, and this masking will have to be disabled. */
2194 return addr &= 0xffffffffUL;
2195 else
2196 return addr;
65596487
JB
2197}
2198
29639122
JB
2199/* mips_software_single_step() is called just before we want to resume
2200 the inferior, if we want to single-step it but there is no hardware
2201 or kernel single-step support (MIPS on GNU/Linux for example). We find
2202 the target of the coming instruction and breakpoint it.
1e05a7bf 2203
29639122
JB
2204 single_step is also called just after the inferior stops. If we had
2205 set up a simulated single-step, we undo our damage. */
2206
2207void
2208mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
c906108c 2209{
8181d85f 2210 CORE_ADDR pc, next_pc;
65596487 2211
29639122
JB
2212 if (insert_breakpoints_p)
2213 {
2214 pc = read_register (mips_regnum (current_gdbarch)->pc);
2215 next_pc = mips_next_pc (pc);
98b4dd94 2216
8181d85f 2217 insert_single_step_breakpoint (next_pc);
29639122 2218 }
a65bbe44 2219 else
8181d85f 2220 remove_single_step_breakpoints ();
29639122 2221}
a65bbe44 2222
29639122
JB
2223/* Test whether the PC points to the return instruction at the
2224 end of a function. */
65596487 2225
29639122
JB
2226static int
2227mips_about_to_return (CORE_ADDR pc)
2228{
0fe7e7c8 2229 if (mips_pc_is_mips16 (pc))
29639122
JB
2230 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2231 generates a "jr $ra"; other times it generates code to load
2232 the return address from the stack to an accessible register (such
2233 as $a3), then a "jr" using that register. This second case
2234 is almost impossible to distinguish from an indirect jump
2235 used for switch statements, so we don't even try. */
2236 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2237 else
2238 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2239}
c906108c 2240
c906108c 2241
29639122
JB
2242/* This fencepost looks highly suspicious to me. Removing it also
2243 seems suspicious as it could affect remote debugging across serial
2244 lines. */
c906108c 2245
29639122
JB
2246static CORE_ADDR
2247heuristic_proc_start (CORE_ADDR pc)
2248{
2249 CORE_ADDR start_pc;
2250 CORE_ADDR fence;
2251 int instlen;
2252 int seen_adjsp = 0;
65596487 2253
29639122
JB
2254 pc = ADDR_BITS_REMOVE (pc);
2255 start_pc = pc;
2256 fence = start_pc - heuristic_fence_post;
2257 if (start_pc == 0)
2258 return 0;
65596487 2259
29639122
JB
2260 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2261 fence = VM_MIN_ADDRESS;
65596487 2262
95ac2dcf 2263 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2264
29639122
JB
2265 /* search back for previous return */
2266 for (start_pc -= instlen;; start_pc -= instlen)
2267 if (start_pc < fence)
2268 {
2269 /* It's not clear to me why we reach this point when
2270 stop_soon, but with this test, at least we
2271 don't print out warnings for every child forked (eg, on
2272 decstation). 22apr93 rich@cygnus.com. */
2273 if (stop_soon == NO_STOP_QUIETLY)
2274 {
2275 static int blurb_printed = 0;
98b4dd94 2276
8a3fe4f8 2277 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2278 paddr_nz (pc));
2279
2280 if (!blurb_printed)
2281 {
2282 /* This actually happens frequently in embedded
2283 development, when you first connect to a board
2284 and your stack pointer and pc are nowhere in
2285 particular. This message needs to give people
2286 in that situation enough information to
2287 determine that it's no big deal. */
2288 printf_filtered ("\n\
2289 GDB is unable to find the start of the function at 0x%s\n\
2290and thus can't determine the size of that function's stack frame.\n\
2291This means that GDB may be unable to access that stack frame, or\n\
2292the frames below it.\n\
2293 This problem is most likely caused by an invalid program counter or\n\
2294stack pointer.\n\
2295 However, if you think GDB should simply search farther back\n\
2296from 0x%s for code which looks like the beginning of a\n\
2297function, you can increase the range of the search using the `set\n\
2298heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2299 blurb_printed = 1;
2300 }
2301 }
2302
2303 return 0;
2304 }
0fe7e7c8 2305 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2306 {
2307 unsigned short inst;
2308
2309 /* On MIPS16, any one of the following is likely to be the
2310 start of a function:
2311 entry
2312 addiu sp,-n
2313 daddiu sp,-n
2314 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2315 inst = mips_fetch_instruction (start_pc);
2316 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2317 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2318 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2319 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2320 break;
2321 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2322 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2323 seen_adjsp = 1;
2324 else
2325 seen_adjsp = 0;
2326 }
2327 else if (mips_about_to_return (start_pc))
2328 {
4c7d22cb 2329 /* Skip return and its delay slot. */
95ac2dcf 2330 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2331 break;
2332 }
2333
2334 return start_pc;
c906108c
SS
2335}
2336
6c0d6680
DJ
2337struct mips_objfile_private
2338{
2339 bfd_size_type size;
2340 char *contents;
2341};
2342
f09ded24
AC
2343/* According to the current ABI, should the type be passed in a
2344 floating-point register (assuming that there is space)? When there
a1f5b845 2345 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2346 FP registers and, consequently this returns false - forces FP
2347 arguments into integer registers. */
2348
2349static int
2350fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2351{
2352 return ((typecode == TYPE_CODE_FLT
2353 || (MIPS_EABI
6d82d43b
AC
2354 && (typecode == TYPE_CODE_STRUCT
2355 || typecode == TYPE_CODE_UNION)
f09ded24 2356 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2357 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2358 == TYPE_CODE_FLT))
c86b5b38 2359 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2360}
2361
49e790b0
DJ
2362/* On o32, argument passing in GPRs depends on the alignment of the type being
2363 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2364
2365static int
2366mips_type_needs_double_align (struct type *type)
2367{
2368 enum type_code typecode = TYPE_CODE (type);
361d1df0 2369
49e790b0
DJ
2370 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2371 return 1;
2372 else if (typecode == TYPE_CODE_STRUCT)
2373 {
2374 if (TYPE_NFIELDS (type) < 1)
2375 return 0;
2376 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2377 }
2378 else if (typecode == TYPE_CODE_UNION)
2379 {
361d1df0 2380 int i, n;
49e790b0
DJ
2381
2382 n = TYPE_NFIELDS (type);
2383 for (i = 0; i < n; i++)
2384 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2385 return 1;
2386 return 0;
2387 }
2388 return 0;
2389}
2390
dc604539
AC
2391/* Adjust the address downward (direction of stack growth) so that it
2392 is correctly aligned for a new stack frame. */
2393static CORE_ADDR
2394mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2395{
5b03f266 2396 return align_down (addr, 16);
dc604539
AC
2397}
2398
f7ab6ec6 2399static CORE_ADDR
7d9b040b 2400mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2401 struct regcache *regcache, CORE_ADDR bp_addr,
2402 int nargs, struct value **args, CORE_ADDR sp,
2403 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2404{
2405 int argreg;
2406 int float_argreg;
2407 int argnum;
2408 int len = 0;
2409 int stack_offset = 0;
480d3dd2 2410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2411 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 2412
25ab4790
AC
2413 /* For shared libraries, "t9" needs to point at the function
2414 address. */
4c7d22cb 2415 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2416
2417 /* Set the return address register to point to the entry point of
2418 the program, where a breakpoint lies in wait. */
4c7d22cb 2419 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2420
c906108c 2421 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2422 are properly aligned. The stack has to be at least 64-bit
2423 aligned even on 32-bit machines, because doubles must be 64-bit
2424 aligned. For n32 and n64, stack frames need to be 128-bit
2425 aligned, so we round to this widest known alignment. */
2426
5b03f266
AC
2427 sp = align_down (sp, 16);
2428 struct_addr = align_down (struct_addr, 16);
c5aa993b 2429
46e0f506 2430 /* Now make space on the stack for the args. We allocate more
c906108c 2431 than necessary for EABI, because the first few arguments are
46e0f506 2432 passed in registers, but that's OK. */
c906108c 2433 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2434 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2435 mips_stack_argsize (gdbarch));
5b03f266 2436 sp -= align_up (len, 16);
c906108c 2437
9ace0497 2438 if (mips_debug)
6d82d43b 2439 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2440 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2441 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2442
c906108c 2443 /* Initialize the integer and float register pointers. */
4c7d22cb 2444 argreg = MIPS_A0_REGNUM;
56cea623 2445 float_argreg = mips_fpa0_regnum (current_gdbarch);
c906108c 2446
46e0f506 2447 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2448 if (struct_return)
9ace0497
AC
2449 {
2450 if (mips_debug)
2451 fprintf_unfiltered (gdb_stdlog,
25ab4790 2452 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2453 argreg, paddr_nz (struct_addr));
9ace0497
AC
2454 write_register (argreg++, struct_addr);
2455 }
c906108c
SS
2456
2457 /* Now load as many as possible of the first arguments into
2458 registers, and push the rest onto the stack. Loop thru args
2459 from first to last. */
2460 for (argnum = 0; argnum < nargs; argnum++)
2461 {
47a35522
MK
2462 const gdb_byte *val;
2463 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2464 struct value *arg = args[argnum];
4991999e 2465 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2466 int len = TYPE_LENGTH (arg_type);
2467 enum type_code typecode = TYPE_CODE (arg_type);
2468
9ace0497
AC
2469 if (mips_debug)
2470 fprintf_unfiltered (gdb_stdlog,
25ab4790 2471 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2472 argnum + 1, len, (int) typecode);
9ace0497 2473
c906108c 2474 /* The EABI passes structures that do not fit in a register by
46e0f506 2475 reference. */
13326b4e 2476 if (len > mips_abi_regsize (gdbarch)
9ace0497 2477 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2478 {
13326b4e 2479 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
480d3dd2 2480 VALUE_ADDRESS (arg));
c906108c 2481 typecode = TYPE_CODE_PTR;
13326b4e 2482 len = mips_abi_regsize (gdbarch);
c906108c 2483 val = valbuf;
9ace0497
AC
2484 if (mips_debug)
2485 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2486 }
2487 else
47a35522 2488 val = value_contents (arg);
c906108c
SS
2489
2490 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2491 even-numbered floating point register. Round the FP register
2492 up before the check to see if there are any FP registers
46e0f506
MS
2493 left. Non MIPS_EABI targets also pass the FP in the integer
2494 registers so also round up normal registers. */
ceae6e75
AC
2495 if (mips_abi_regsize (gdbarch) < 8
2496 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2497 {
2498 if ((float_argreg & 1))
2499 float_argreg++;
2500 }
c906108c
SS
2501
2502 /* Floating point arguments passed in registers have to be
2503 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2504 are passed in register pairs; the even register gets
2505 the low word, and the odd register gets the high word.
2506 On non-EABI processors, the first two floating point arguments are
2507 also copied to general registers, because MIPS16 functions
2508 don't use float registers for arguments. This duplication of
2509 arguments in general registers can't hurt non-MIPS16 functions
2510 because those registers are normally skipped. */
1012bd0e
EZ
2511 /* MIPS_EABI squeezes a struct that contains a single floating
2512 point value into an FP register instead of pushing it onto the
46e0f506 2513 stack. */
f09ded24
AC
2514 if (fp_register_arg_p (typecode, arg_type)
2515 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2516 {
8b07f6d8 2517 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
c906108c 2518 {
d7449b42 2519 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2520 unsigned long regval;
2521
2522 /* Write the low word of the double to the even register(s). */
c5aa993b 2523 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2524 if (mips_debug)
acdb74a0 2525 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2526 float_argreg, phex (regval, 4));
c906108c 2527 write_register (float_argreg++, regval);
c906108c
SS
2528
2529 /* Write the high word of the double to the odd register(s). */
c5aa993b 2530 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2531 if (mips_debug)
acdb74a0 2532 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2533 float_argreg, phex (regval, 4));
c906108c 2534 write_register (float_argreg++, regval);
c906108c
SS
2535 }
2536 else
2537 {
2538 /* This is a floating point value that fits entirely
2539 in a single register. */
53a5351d 2540 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2541 above to ensure that it is even register aligned. */
9ace0497
AC
2542 LONGEST regval = extract_unsigned_integer (val, len);
2543 if (mips_debug)
acdb74a0 2544 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2545 float_argreg, phex (regval, len));
c906108c 2546 write_register (float_argreg++, regval);
c906108c
SS
2547 }
2548 }
2549 else
2550 {
2551 /* Copy the argument to general registers or the stack in
2552 register-sized pieces. Large arguments are split between
2553 registers and stack. */
4246e332 2554 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2555 mips_abi_regsize() are treated specially: Irix cc passes
2556 them in registers where gcc sometimes puts them on the
2557 stack. For maximum compatibility, we will put them in
2558 both places. */
13326b4e
AC
2559 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2560 && (len % mips_abi_regsize (gdbarch) != 0));
46e0f506 2561
f09ded24 2562 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2563 register are only written to memory. */
c906108c
SS
2564 while (len > 0)
2565 {
ebafbe83 2566 /* Remember if the argument was written to the stack. */
566f0f7a 2567 int stack_used_p = 0;
13326b4e
AC
2568 int partial_len = (len < mips_abi_regsize (gdbarch)
2569 ? len : mips_abi_regsize (gdbarch));
c906108c 2570
acdb74a0
AC
2571 if (mips_debug)
2572 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2573 partial_len);
2574
566f0f7a 2575 /* Write this portion of the argument to the stack. */
f09ded24
AC
2576 if (argreg > MIPS_LAST_ARG_REGNUM
2577 || odd_sized_struct
2578 || fp_register_arg_p (typecode, arg_type))
c906108c 2579 {
c906108c
SS
2580 /* Should shorter than int integer values be
2581 promoted to int before being stored? */
c906108c 2582 int longword_offset = 0;
9ace0497 2583 CORE_ADDR addr;
566f0f7a 2584 stack_used_p = 1;
d7449b42 2585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2586 {
13326b4e 2587 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2588 && (typecode == TYPE_CODE_INT
2589 || typecode == TYPE_CODE_PTR
6d82d43b 2590 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2591 longword_offset = mips_stack_argsize (gdbarch) - len;
480d3dd2
AC
2592 else if ((typecode == TYPE_CODE_STRUCT
2593 || typecode == TYPE_CODE_UNION)
2594 && (TYPE_LENGTH (arg_type)
13326b4e
AC
2595 < mips_stack_argsize (gdbarch)))
2596 longword_offset = mips_stack_argsize (gdbarch) - len;
7a292a7a 2597 }
c5aa993b 2598
9ace0497
AC
2599 if (mips_debug)
2600 {
cb3d25d1
MS
2601 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2602 paddr_nz (stack_offset));
2603 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2604 paddr_nz (longword_offset));
9ace0497 2605 }
361d1df0 2606
9ace0497
AC
2607 addr = sp + stack_offset + longword_offset;
2608
2609 if (mips_debug)
2610 {
2611 int i;
6d82d43b 2612 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2613 paddr_nz (addr));
9ace0497
AC
2614 for (i = 0; i < partial_len; i++)
2615 {
6d82d43b 2616 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2617 val[i] & 0xff);
9ace0497
AC
2618 }
2619 }
2620 write_memory (addr, val, partial_len);
c906108c
SS
2621 }
2622
f09ded24
AC
2623 /* Note!!! This is NOT an else clause. Odd sized
2624 structs may go thru BOTH paths. Floating point
46e0f506 2625 arguments will not. */
566f0f7a 2626 /* Write this portion of the argument to a general
6d82d43b 2627 purpose register. */
f09ded24
AC
2628 if (argreg <= MIPS_LAST_ARG_REGNUM
2629 && !fp_register_arg_p (typecode, arg_type))
c906108c 2630 {
6d82d43b
AC
2631 LONGEST regval =
2632 extract_unsigned_integer (val, partial_len);
c906108c 2633
9ace0497 2634 if (mips_debug)
acdb74a0 2635 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2636 argreg,
6d82d43b 2637 phex (regval,
13326b4e 2638 mips_abi_regsize (gdbarch)));
c906108c
SS
2639 write_register (argreg, regval);
2640 argreg++;
c906108c 2641 }
c5aa993b 2642
c906108c
SS
2643 len -= partial_len;
2644 val += partial_len;
2645
566f0f7a 2646 /* Compute the the offset into the stack at which we
6d82d43b 2647 will copy the next parameter.
566f0f7a 2648
566f0f7a 2649 In the new EABI (and the NABI32), the stack_offset
46e0f506 2650 only needs to be adjusted when it has been used. */
c906108c 2651
46e0f506 2652 if (stack_used_p)
480d3dd2 2653 stack_offset += align_up (partial_len,
13326b4e 2654 mips_stack_argsize (gdbarch));
c906108c
SS
2655 }
2656 }
9ace0497
AC
2657 if (mips_debug)
2658 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2659 }
2660
f10683bb 2661 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2662
0f71a2f6
JM
2663 /* Return adjusted stack pointer. */
2664 return sp;
2665}
2666
a1f5b845 2667/* Determine the return value convention being used. */
6d82d43b 2668
9c8fdbfa
AC
2669static enum return_value_convention
2670mips_eabi_return_value (struct gdbarch *gdbarch,
2671 struct type *type, struct regcache *regcache,
47a35522 2672 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2673{
9c8fdbfa
AC
2674 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2675 return RETURN_VALUE_STRUCT_CONVENTION;
2676 if (readbuf)
2677 memset (readbuf, 0, TYPE_LENGTH (type));
2678 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2679}
2680
6d82d43b
AC
2681
2682/* N32/N64 ABI stuff. */
ebafbe83 2683
f7ab6ec6 2684static CORE_ADDR
7d9b040b 2685mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2686 struct regcache *regcache, CORE_ADDR bp_addr,
2687 int nargs, struct value **args, CORE_ADDR sp,
2688 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2689{
2690 int argreg;
2691 int float_argreg;
2692 int argnum;
2693 int len = 0;
2694 int stack_offset = 0;
480d3dd2 2695 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2696 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2697
25ab4790
AC
2698 /* For shared libraries, "t9" needs to point at the function
2699 address. */
4c7d22cb 2700 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2701
2702 /* Set the return address register to point to the entry point of
2703 the program, where a breakpoint lies in wait. */
4c7d22cb 2704 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2705
cb3d25d1
MS
2706 /* First ensure that the stack and structure return address (if any)
2707 are properly aligned. The stack has to be at least 64-bit
2708 aligned even on 32-bit machines, because doubles must be 64-bit
2709 aligned. For n32 and n64, stack frames need to be 128-bit
2710 aligned, so we round to this widest known alignment. */
2711
5b03f266
AC
2712 sp = align_down (sp, 16);
2713 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2714
2715 /* Now make space on the stack for the args. */
2716 for (argnum = 0; argnum < nargs; argnum++)
4991999e 2717 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 2718 mips_stack_argsize (gdbarch));
5b03f266 2719 sp -= align_up (len, 16);
cb3d25d1
MS
2720
2721 if (mips_debug)
6d82d43b 2722 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2723 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2724 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2725
2726 /* Initialize the integer and float register pointers. */
4c7d22cb 2727 argreg = MIPS_A0_REGNUM;
56cea623 2728 float_argreg = mips_fpa0_regnum (current_gdbarch);
cb3d25d1 2729
46e0f506 2730 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2731 if (struct_return)
2732 {
2733 if (mips_debug)
2734 fprintf_unfiltered (gdb_stdlog,
25ab4790 2735 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
2736 argreg, paddr_nz (struct_addr));
2737 write_register (argreg++, struct_addr);
2738 }
2739
2740 /* Now load as many as possible of the first arguments into
2741 registers, and push the rest onto the stack. Loop thru args
2742 from first to last. */
2743 for (argnum = 0; argnum < nargs; argnum++)
2744 {
47a35522 2745 const gdb_byte *val;
cb3d25d1 2746 struct value *arg = args[argnum];
4991999e 2747 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2748 int len = TYPE_LENGTH (arg_type);
2749 enum type_code typecode = TYPE_CODE (arg_type);
2750
2751 if (mips_debug)
2752 fprintf_unfiltered (gdb_stdlog,
25ab4790 2753 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2754 argnum + 1, len, (int) typecode);
2755
47a35522 2756 val = value_contents (arg);
cb3d25d1
MS
2757
2758 if (fp_register_arg_p (typecode, arg_type)
2759 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2760 {
2761 /* This is a floating point value that fits entirely
2762 in a single register. */
2763 /* On 32 bit ABI's the float_argreg is further adjusted
2764 above to ensure that it is even register aligned. */
2765 LONGEST regval = extract_unsigned_integer (val, len);
2766 if (mips_debug)
2767 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2768 float_argreg, phex (regval, len));
2769 write_register (float_argreg++, regval);
2770
2771 if (mips_debug)
2772 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2773 argreg, phex (regval, len));
2774 write_register (argreg, regval);
2775 argreg += 1;
2776 }
2777 else
2778 {
2779 /* Copy the argument to general registers or the stack in
2780 register-sized pieces. Large arguments are split between
2781 registers and stack. */
4246e332 2782 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
2783 mips_abi_regsize() are treated specially: Irix cc passes
2784 them in registers where gcc sometimes puts them on the
2785 stack. For maximum compatibility, we will put them in
2786 both places. */
13326b4e
AC
2787 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2788 && (len % mips_abi_regsize (gdbarch) != 0));
cb3d25d1 2789 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2790 register are only written to memory. */
cb3d25d1
MS
2791 while (len > 0)
2792 {
2793 /* Rememer if the argument was written to the stack. */
2794 int stack_used_p = 0;
13326b4e
AC
2795 int partial_len = (len < mips_abi_regsize (gdbarch)
2796 ? len : mips_abi_regsize (gdbarch));
cb3d25d1
MS
2797
2798 if (mips_debug)
2799 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2800 partial_len);
2801
2802 /* Write this portion of the argument to the stack. */
2803 if (argreg > MIPS_LAST_ARG_REGNUM
2804 || odd_sized_struct
2805 || fp_register_arg_p (typecode, arg_type))
2806 {
2807 /* Should shorter than int integer values be
2808 promoted to int before being stored? */
2809 int longword_offset = 0;
2810 CORE_ADDR addr;
2811 stack_used_p = 1;
2812 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2813 {
13326b4e 2814 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
2815 && (typecode == TYPE_CODE_INT
2816 || typecode == TYPE_CODE_PTR
6d82d43b 2817 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 2818 longword_offset = mips_stack_argsize (gdbarch) - len;
cb3d25d1
MS
2819 }
2820
2821 if (mips_debug)
2822 {
2823 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2824 paddr_nz (stack_offset));
2825 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2826 paddr_nz (longword_offset));
2827 }
2828
2829 addr = sp + stack_offset + longword_offset;
2830
2831 if (mips_debug)
2832 {
2833 int i;
6d82d43b 2834 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2835 paddr_nz (addr));
2836 for (i = 0; i < partial_len; i++)
2837 {
6d82d43b 2838 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2839 val[i] & 0xff);
2840 }
2841 }
2842 write_memory (addr, val, partial_len);
2843 }
2844
2845 /* Note!!! This is NOT an else clause. Odd sized
2846 structs may go thru BOTH paths. Floating point
2847 arguments will not. */
2848 /* Write this portion of the argument to a general
6d82d43b 2849 purpose register. */
cb3d25d1
MS
2850 if (argreg <= MIPS_LAST_ARG_REGNUM
2851 && !fp_register_arg_p (typecode, arg_type))
2852 {
6d82d43b
AC
2853 LONGEST regval =
2854 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
2855
2856 /* A non-floating-point argument being passed in a
2857 general register. If a struct or union, and if
2858 the remaining length is smaller than the register
2859 size, we have to adjust the register value on
2860 big endian targets.
2861
2862 It does not seem to be necessary to do the
2863 same for integral types.
2864
2865 cagney/2001-07-23: gdb/179: Also, GCC, when
2866 outputting LE O32 with sizeof (struct) <
1b13c4f6 2867 mips_abi_regsize(), generates a left shift as
cb3d25d1
MS
2868 part of storing the argument in a register a
2869 register (the left shift isn't generated when
1b13c4f6 2870 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
2871 it is quite possible that this is GCC
2872 contradicting the LE/O32 ABI, GDB has not been
2873 adjusted to accommodate this. Either someone
2874 needs to demonstrate that the LE/O32 ABI
2875 specifies such a left shift OR this new ABI gets
2876 identified as such and GDB gets tweaked
2877 accordingly. */
cb3d25d1
MS
2878
2879 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 2880 && partial_len < mips_abi_regsize (gdbarch)
cb3d25d1
MS
2881 && (typecode == TYPE_CODE_STRUCT ||
2882 typecode == TYPE_CODE_UNION))
13326b4e 2883 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
cb3d25d1
MS
2884 TARGET_CHAR_BIT);
2885
2886 if (mips_debug)
2887 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2888 argreg,
6d82d43b 2889 phex (regval,
13326b4e 2890 mips_abi_regsize (gdbarch)));
cb3d25d1
MS
2891 write_register (argreg, regval);
2892 argreg++;
2893 }
2894
2895 len -= partial_len;
2896 val += partial_len;
2897
2898 /* Compute the the offset into the stack at which we
6d82d43b 2899 will copy the next parameter.
cb3d25d1
MS
2900
2901 In N32 (N64?), the stack_offset only needs to be
2902 adjusted when it has been used. */
2903
2904 if (stack_used_p)
480d3dd2 2905 stack_offset += align_up (partial_len,
13326b4e 2906 mips_stack_argsize (gdbarch));
cb3d25d1
MS
2907 }
2908 }
2909 if (mips_debug)
2910 fprintf_unfiltered (gdb_stdlog, "\n");
2911 }
2912
f10683bb 2913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2914
cb3d25d1
MS
2915 /* Return adjusted stack pointer. */
2916 return sp;
2917}
2918
6d82d43b
AC
2919static enum return_value_convention
2920mips_n32n64_return_value (struct gdbarch *gdbarch,
2921 struct type *type, struct regcache *regcache,
47a35522 2922 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 2923{
6d82d43b
AC
2924 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2925 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2926 || TYPE_CODE (type) == TYPE_CODE_UNION
2927 || TYPE_CODE (type) == TYPE_CODE_ARRAY
13326b4e 2928 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
6d82d43b 2929 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
2930 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2931 && TYPE_LENGTH (type) == 16
2932 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2933 {
2934 /* A 128-bit floating-point value fills both $f0 and $f2. The
2935 two registers are used in the same as memory order, so the
2936 eight bytes with the lower memory address are in $f0. */
2937 if (mips_debug)
2938 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2939 mips_xfer_register (regcache,
2940 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2941 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2942 mips_xfer_register (regcache,
2943 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2944 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2945 writebuf ? writebuf + 8 : writebuf, 0);
2946 return RETURN_VALUE_REGISTER_CONVENTION;
2947 }
6d82d43b
AC
2948 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2949 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2950 {
2951 /* A floating-point value belongs in the least significant part
2952 of FP0. */
2953 if (mips_debug)
2954 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2955 mips_xfer_register (regcache,
2956 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2957 TYPE_LENGTH (type),
2958 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2959 return RETURN_VALUE_REGISTER_CONVENTION;
2960 }
2961 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2962 && TYPE_NFIELDS (type) <= 2
2963 && TYPE_NFIELDS (type) >= 1
2964 && ((TYPE_NFIELDS (type) == 1
2965 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2966 == TYPE_CODE_FLT))
2967 || (TYPE_NFIELDS (type) == 2
2968 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2969 == TYPE_CODE_FLT)
2970 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2971 == TYPE_CODE_FLT)))
2972 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2973 {
2974 /* A struct that contains one or two floats. Each value is part
2975 in the least significant part of their floating point
2976 register.. */
6d82d43b
AC
2977 int regnum;
2978 int field;
2979 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2980 field < TYPE_NFIELDS (type); field++, regnum += 2)
2981 {
2982 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2983 / TARGET_CHAR_BIT);
2984 if (mips_debug)
2985 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2986 offset);
2987 mips_xfer_register (regcache, NUM_REGS + regnum,
2988 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2989 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2990 }
2991 return RETURN_VALUE_REGISTER_CONVENTION;
2992 }
2993 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2994 || TYPE_CODE (type) == TYPE_CODE_UNION)
2995 {
2996 /* A structure or union. Extract the left justified value,
2997 regardless of the byte order. I.e. DO NOT USE
2998 mips_xfer_lower. */
2999 int offset;
3000 int regnum;
4c7d22cb 3001 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3002 offset < TYPE_LENGTH (type);
3003 offset += register_size (current_gdbarch, regnum), regnum++)
3004 {
3005 int xfer = register_size (current_gdbarch, regnum);
3006 if (offset + xfer > TYPE_LENGTH (type))
3007 xfer = TYPE_LENGTH (type) - offset;
3008 if (mips_debug)
3009 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3010 offset, xfer, regnum);
3011 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3012 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3013 }
3014 return RETURN_VALUE_REGISTER_CONVENTION;
3015 }
3016 else
3017 {
3018 /* A scalar extract each part but least-significant-byte
3019 justified. */
3020 int offset;
3021 int regnum;
4c7d22cb 3022 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3023 offset < TYPE_LENGTH (type);
3024 offset += register_size (current_gdbarch, regnum), regnum++)
3025 {
3026 int xfer = register_size (current_gdbarch, regnum);
6d82d43b
AC
3027 if (offset + xfer > TYPE_LENGTH (type))
3028 xfer = TYPE_LENGTH (type) - offset;
3029 if (mips_debug)
3030 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3031 offset, xfer, regnum);
3032 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3033 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3034 }
3035 return RETURN_VALUE_REGISTER_CONVENTION;
3036 }
3037}
3038
3039/* O32 ABI stuff. */
3040
3041static CORE_ADDR
7d9b040b 3042mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3043 struct regcache *regcache, CORE_ADDR bp_addr,
3044 int nargs, struct value **args, CORE_ADDR sp,
3045 int struct_return, CORE_ADDR struct_addr)
3046{
3047 int argreg;
3048 int float_argreg;
3049 int argnum;
3050 int len = 0;
3051 int stack_offset = 0;
3052 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3053 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3054
3055 /* For shared libraries, "t9" needs to point at the function
3056 address. */
4c7d22cb 3057 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3058
3059 /* Set the return address register to point to the entry point of
3060 the program, where a breakpoint lies in wait. */
4c7d22cb 3061 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3062
3063 /* First ensure that the stack and structure return address (if any)
3064 are properly aligned. The stack has to be at least 64-bit
3065 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3066 aligned. For n32 and n64, stack frames need to be 128-bit
3067 aligned, so we round to this widest known alignment. */
3068
5b03f266
AC
3069 sp = align_down (sp, 16);
3070 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3071
3072 /* Now make space on the stack for the args. */
3073 for (argnum = 0; argnum < nargs; argnum++)
4991999e 3074 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 3075 mips_stack_argsize (gdbarch));
5b03f266 3076 sp -= align_up (len, 16);
ebafbe83
MS
3077
3078 if (mips_debug)
6d82d43b 3079 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3080 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3081 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3082
3083 /* Initialize the integer and float register pointers. */
4c7d22cb 3084 argreg = MIPS_A0_REGNUM;
56cea623 3085 float_argreg = mips_fpa0_regnum (current_gdbarch);
ebafbe83 3086
bcb0cc15 3087 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3088 if (struct_return)
3089 {
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog,
25ab4790 3092 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3093 argreg, paddr_nz (struct_addr));
3094 write_register (argreg++, struct_addr);
13326b4e 3095 stack_offset += mips_stack_argsize (gdbarch);
ebafbe83
MS
3096 }
3097
3098 /* Now load as many as possible of the first arguments into
3099 registers, and push the rest onto the stack. Loop thru args
3100 from first to last. */
3101 for (argnum = 0; argnum < nargs; argnum++)
3102 {
47a35522 3103 const gdb_byte *val;
ebafbe83 3104 struct value *arg = args[argnum];
4991999e 3105 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3106 int len = TYPE_LENGTH (arg_type);
3107 enum type_code typecode = TYPE_CODE (arg_type);
3108
3109 if (mips_debug)
3110 fprintf_unfiltered (gdb_stdlog,
25ab4790 3111 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3112 argnum + 1, len, (int) typecode);
3113
47a35522 3114 val = value_contents (arg);
46cac009
AC
3115
3116 /* 32-bit ABIs always start floating point arguments in an
3117 even-numbered floating point register. Round the FP register
3118 up before the check to see if there are any FP registers
3119 left. O32/O64 targets also pass the FP in the integer
3120 registers so also round up normal registers. */
ceae6e75
AC
3121 if (mips_abi_regsize (gdbarch) < 8
3122 && fp_register_arg_p (typecode, arg_type))
46cac009
AC
3123 {
3124 if ((float_argreg & 1))
3125 float_argreg++;
3126 }
3127
3128 /* Floating point arguments passed in registers have to be
3129 treated specially. On 32-bit architectures, doubles
3130 are passed in register pairs; the even register gets
3131 the low word, and the odd register gets the high word.
3132 On O32/O64, the first two floating point arguments are
3133 also copied to general registers, because MIPS16 functions
3134 don't use float registers for arguments. This duplication of
3135 arguments in general registers can't hurt non-MIPS16 functions
3136 because those registers are normally skipped. */
3137
3138 if (fp_register_arg_p (typecode, arg_type)
3139 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3140 {
8b07f6d8 3141 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009
AC
3142 {
3143 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3144 unsigned long regval;
3145
3146 /* Write the low word of the double to the even register(s). */
3147 regval = extract_unsigned_integer (val + low_offset, 4);
3148 if (mips_debug)
3149 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3150 float_argreg, phex (regval, 4));
3151 write_register (float_argreg++, regval);
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3154 argreg, phex (regval, 4));
3155 write_register (argreg++, regval);
3156
3157 /* Write the high word of the double to the odd register(s). */
3158 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3159 if (mips_debug)
3160 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3161 float_argreg, phex (regval, 4));
3162 write_register (float_argreg++, regval);
3163
3164 if (mips_debug)
3165 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3166 argreg, phex (regval, 4));
3167 write_register (argreg++, regval);
3168 }
3169 else
3170 {
3171 /* This is a floating point value that fits entirely
3172 in a single register. */
3173 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3174 above to ensure that it is even register aligned. */
46cac009
AC
3175 LONGEST regval = extract_unsigned_integer (val, len);
3176 if (mips_debug)
3177 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3178 float_argreg, phex (regval, len));
3179 write_register (float_argreg++, regval);
3180 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3181 registers for each argument. The below is (my
3182 guess) to ensure that the corresponding integer
3183 register has reserved the same space. */
46cac009
AC
3184 if (mips_debug)
3185 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3186 argreg, phex (regval, len));
3187 write_register (argreg, regval);
ceae6e75 3188 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
46cac009
AC
3189 }
3190 /* Reserve space for the FP register. */
13326b4e 3191 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
46cac009
AC
3192 }
3193 else
3194 {
3195 /* Copy the argument to general registers or the stack in
3196 register-sized pieces. Large arguments are split between
3197 registers and stack. */
4246e332 3198 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3199 mips_abi_regsize() are treated specially: Irix cc passes
3200 them in registers where gcc sometimes puts them on the
3201 stack. For maximum compatibility, we will put them in
3202 both places. */
13326b4e
AC
3203 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3204 && (len % mips_abi_regsize (gdbarch) != 0));
46cac009
AC
3205 /* Structures should be aligned to eight bytes (even arg registers)
3206 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3207 if (mips_abi_regsize (gdbarch) < 8
46cac009
AC
3208 && mips_type_needs_double_align (arg_type))
3209 {
3210 if ((argreg & 1))
6d82d43b 3211 argreg++;
46cac009
AC
3212 }
3213 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3214 register are only written to memory. */
46cac009
AC
3215 while (len > 0)
3216 {
3217 /* Remember if the argument was written to the stack. */
3218 int stack_used_p = 0;
13326b4e
AC
3219 int partial_len = (len < mips_abi_regsize (gdbarch)
3220 ? len : mips_abi_regsize (gdbarch));
46cac009
AC
3221
3222 if (mips_debug)
3223 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3224 partial_len);
3225
3226 /* Write this portion of the argument to the stack. */
3227 if (argreg > MIPS_LAST_ARG_REGNUM
3228 || odd_sized_struct
3229 || fp_register_arg_p (typecode, arg_type))
3230 {
3231 /* Should shorter than int integer values be
3232 promoted to int before being stored? */
3233 int longword_offset = 0;
3234 CORE_ADDR addr;
3235 stack_used_p = 1;
3236 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3237 {
13326b4e 3238 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3239 && (typecode == TYPE_CODE_INT
3240 || typecode == TYPE_CODE_PTR
6d82d43b 3241 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3242 longword_offset = mips_stack_argsize (gdbarch) - len;
46cac009
AC
3243 }
3244
3245 if (mips_debug)
3246 {
3247 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3248 paddr_nz (stack_offset));
3249 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3250 paddr_nz (longword_offset));
3251 }
3252
3253 addr = sp + stack_offset + longword_offset;
3254
3255 if (mips_debug)
3256 {
3257 int i;
6d82d43b 3258 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3259 paddr_nz (addr));
3260 for (i = 0; i < partial_len; i++)
3261 {
6d82d43b 3262 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3263 val[i] & 0xff);
3264 }
3265 }
3266 write_memory (addr, val, partial_len);
3267 }
3268
3269 /* Note!!! This is NOT an else clause. Odd sized
3270 structs may go thru BOTH paths. Floating point
3271 arguments will not. */
3272 /* Write this portion of the argument to a general
6d82d43b 3273 purpose register. */
46cac009
AC
3274 if (argreg <= MIPS_LAST_ARG_REGNUM
3275 && !fp_register_arg_p (typecode, arg_type))
3276 {
3277 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3278 /* Value may need to be sign extended, because
1b13c4f6 3279 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3280
3281 /* A non-floating-point argument being passed in a
3282 general register. If a struct or union, and if
3283 the remaining length is smaller than the register
3284 size, we have to adjust the register value on
3285 big endian targets.
3286
3287 It does not seem to be necessary to do the
3288 same for integral types.
3289
3290 Also don't do this adjustment on O64 binaries.
3291
3292 cagney/2001-07-23: gdb/179: Also, GCC, when
3293 outputting LE O32 with sizeof (struct) <
1b13c4f6 3294 mips_abi_regsize(), generates a left shift as
46cac009
AC
3295 part of storing the argument in a register a
3296 register (the left shift isn't generated when
1b13c4f6 3297 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3298 it is quite possible that this is GCC
3299 contradicting the LE/O32 ABI, GDB has not been
3300 adjusted to accommodate this. Either someone
3301 needs to demonstrate that the LE/O32 ABI
3302 specifies such a left shift OR this new ABI gets
3303 identified as such and GDB gets tweaked
3304 accordingly. */
3305
13326b4e 3306 if (mips_abi_regsize (gdbarch) < 8
46cac009 3307 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3308 && partial_len < mips_abi_regsize (gdbarch)
46cac009
AC
3309 && (typecode == TYPE_CODE_STRUCT ||
3310 typecode == TYPE_CODE_UNION))
13326b4e 3311 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
46cac009
AC
3312 TARGET_CHAR_BIT);
3313
3314 if (mips_debug)
3315 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3316 argreg,
6d82d43b 3317 phex (regval,
13326b4e 3318 mips_abi_regsize (gdbarch)));
46cac009
AC
3319 write_register (argreg, regval);
3320 argreg++;
3321
3322 /* Prevent subsequent floating point arguments from
3323 being passed in floating point registers. */
3324 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3325 }
3326
3327 len -= partial_len;
3328 val += partial_len;
3329
3330 /* Compute the the offset into the stack at which we
6d82d43b 3331 will copy the next parameter.
46cac009 3332
6d82d43b
AC
3333 In older ABIs, the caller reserved space for
3334 registers that contained arguments. This was loosely
3335 refered to as their "home". Consequently, space is
3336 always allocated. */
46cac009 3337
480d3dd2 3338 stack_offset += align_up (partial_len,
13326b4e 3339 mips_stack_argsize (gdbarch));
46cac009
AC
3340 }
3341 }
3342 if (mips_debug)
3343 fprintf_unfiltered (gdb_stdlog, "\n");
3344 }
3345
f10683bb 3346 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3347
46cac009
AC
3348 /* Return adjusted stack pointer. */
3349 return sp;
3350}
3351
6d82d43b
AC
3352static enum return_value_convention
3353mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3354 struct regcache *regcache,
47a35522 3355 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b
AC
3356{
3357 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3358
3359 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3360 || TYPE_CODE (type) == TYPE_CODE_UNION
3361 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3362 return RETURN_VALUE_STRUCT_CONVENTION;
3363 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3364 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3365 {
3366 /* A single-precision floating-point value. It fits in the
3367 least significant part of FP0. */
3368 if (mips_debug)
3369 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3370 mips_xfer_register (regcache,
3371 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3372 TYPE_LENGTH (type),
3373 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3374 return RETURN_VALUE_REGISTER_CONVENTION;
3375 }
3376 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3377 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3378 {
3379 /* A double-precision floating-point value. The most
3380 significant part goes in FP1, and the least significant in
3381 FP0. */
3382 if (mips_debug)
3383 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3384 switch (TARGET_BYTE_ORDER)
3385 {
3386 case BFD_ENDIAN_LITTLE:
3387 mips_xfer_register (regcache,
3388 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3389 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3390 mips_xfer_register (regcache,
3391 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3392 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3393 break;
3394 case BFD_ENDIAN_BIG:
3395 mips_xfer_register (regcache,
3396 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3397 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3398 mips_xfer_register (regcache,
3399 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3400 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3401 break;
3402 default:
e2e0b3e5 3403 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3404 }
3405 return RETURN_VALUE_REGISTER_CONVENTION;
3406 }
3407#if 0
3408 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3409 && TYPE_NFIELDS (type) <= 2
3410 && TYPE_NFIELDS (type) >= 1
3411 && ((TYPE_NFIELDS (type) == 1
3412 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3413 == TYPE_CODE_FLT))
3414 || (TYPE_NFIELDS (type) == 2
3415 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3416 == TYPE_CODE_FLT)
3417 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3418 == TYPE_CODE_FLT)))
3419 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3420 {
3421 /* A struct that contains one or two floats. Each value is part
3422 in the least significant part of their floating point
3423 register.. */
870cd05e 3424 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3425 int regnum;
3426 int field;
3427 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3428 field < TYPE_NFIELDS (type); field++, regnum += 2)
3429 {
3430 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3431 / TARGET_CHAR_BIT);
3432 if (mips_debug)
3433 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3434 offset);
3435 mips_xfer_register (regcache, NUM_REGS + regnum,
3436 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3437 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3438 }
3439 return RETURN_VALUE_REGISTER_CONVENTION;
3440 }
3441#endif
3442#if 0
3443 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3444 || TYPE_CODE (type) == TYPE_CODE_UNION)
3445 {
3446 /* A structure or union. Extract the left justified value,
3447 regardless of the byte order. I.e. DO NOT USE
3448 mips_xfer_lower. */
3449 int offset;
3450 int regnum;
4c7d22cb 3451 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b
AC
3452 offset < TYPE_LENGTH (type);
3453 offset += register_size (current_gdbarch, regnum), regnum++)
3454 {
3455 int xfer = register_size (current_gdbarch, regnum);
3456 if (offset + xfer > TYPE_LENGTH (type))
3457 xfer = TYPE_LENGTH (type) - offset;
3458 if (mips_debug)
3459 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3460 offset, xfer, regnum);
3461 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3462 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3463 }
3464 return RETURN_VALUE_REGISTER_CONVENTION;
3465 }
3466#endif
3467 else
3468 {
3469 /* A scalar extract each part but least-significant-byte
3470 justified. o32 thinks registers are 4 byte, regardless of
3471 the ISA. mips_stack_argsize controls this. */
3472 int offset;
3473 int regnum;
4c7d22cb 3474 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3475 offset < TYPE_LENGTH (type);
13326b4e 3476 offset += mips_stack_argsize (gdbarch), regnum++)
6d82d43b 3477 {
13326b4e 3478 int xfer = mips_stack_argsize (gdbarch);
6d82d43b
AC
3479 if (offset + xfer > TYPE_LENGTH (type))
3480 xfer = TYPE_LENGTH (type) - offset;
3481 if (mips_debug)
3482 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3483 offset, xfer, regnum);
3484 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3485 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3486 }
3487 return RETURN_VALUE_REGISTER_CONVENTION;
3488 }
3489}
3490
3491/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3492 ABI. */
46cac009
AC
3493
3494static CORE_ADDR
7d9b040b 3495mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3496 struct regcache *regcache, CORE_ADDR bp_addr,
3497 int nargs,
3498 struct value **args, CORE_ADDR sp,
3499 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3500{
3501 int argreg;
3502 int float_argreg;
3503 int argnum;
3504 int len = 0;
3505 int stack_offset = 0;
480d3dd2 3506 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3507 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3508
25ab4790
AC
3509 /* For shared libraries, "t9" needs to point at the function
3510 address. */
4c7d22cb 3511 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3512
3513 /* Set the return address register to point to the entry point of
3514 the program, where a breakpoint lies in wait. */
4c7d22cb 3515 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3516
46cac009
AC
3517 /* First ensure that the stack and structure return address (if any)
3518 are properly aligned. The stack has to be at least 64-bit
3519 aligned even on 32-bit machines, because doubles must be 64-bit
3520 aligned. For n32 and n64, stack frames need to be 128-bit
3521 aligned, so we round to this widest known alignment. */
3522
5b03f266
AC
3523 sp = align_down (sp, 16);
3524 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3525
3526 /* Now make space on the stack for the args. */
3527 for (argnum = 0; argnum < nargs; argnum++)
4991999e 3528 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
13326b4e 3529 mips_stack_argsize (gdbarch));
5b03f266 3530 sp -= align_up (len, 16);
46cac009
AC
3531
3532 if (mips_debug)
6d82d43b 3533 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3534 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3535 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3536
3537 /* Initialize the integer and float register pointers. */
4c7d22cb 3538 argreg = MIPS_A0_REGNUM;
56cea623 3539 float_argreg = mips_fpa0_regnum (current_gdbarch);
46cac009
AC
3540
3541 /* The struct_return pointer occupies the first parameter-passing reg. */
3542 if (struct_return)
3543 {
3544 if (mips_debug)
3545 fprintf_unfiltered (gdb_stdlog,
25ab4790 3546 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3547 argreg, paddr_nz (struct_addr));
3548 write_register (argreg++, struct_addr);
13326b4e 3549 stack_offset += mips_stack_argsize (gdbarch);
46cac009
AC
3550 }
3551
3552 /* Now load as many as possible of the first arguments into
3553 registers, and push the rest onto the stack. Loop thru args
3554 from first to last. */
3555 for (argnum = 0; argnum < nargs; argnum++)
3556 {
47a35522 3557 const gdb_byte *val;
46cac009 3558 struct value *arg = args[argnum];
4991999e 3559 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3560 int len = TYPE_LENGTH (arg_type);
3561 enum type_code typecode = TYPE_CODE (arg_type);
3562
3563 if (mips_debug)
3564 fprintf_unfiltered (gdb_stdlog,
25ab4790 3565 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3566 argnum + 1, len, (int) typecode);
3567
47a35522 3568 val = value_contents (arg);
ebafbe83
MS
3569
3570 /* 32-bit ABIs always start floating point arguments in an
3571 even-numbered floating point register. Round the FP register
3572 up before the check to see if there are any FP registers
3573 left. O32/O64 targets also pass the FP in the integer
3574 registers so also round up normal registers. */
ceae6e75
AC
3575 if (mips_abi_regsize (gdbarch) < 8
3576 && fp_register_arg_p (typecode, arg_type))
ebafbe83
MS
3577 {
3578 if ((float_argreg & 1))
3579 float_argreg++;
3580 }
3581
3582 /* Floating point arguments passed in registers have to be
3583 treated specially. On 32-bit architectures, doubles
3584 are passed in register pairs; the even register gets
3585 the low word, and the odd register gets the high word.
3586 On O32/O64, the first two floating point arguments are
3587 also copied to general registers, because MIPS16 functions
3588 don't use float registers for arguments. This duplication of
3589 arguments in general registers can't hurt non-MIPS16 functions
3590 because those registers are normally skipped. */
3591
3592 if (fp_register_arg_p (typecode, arg_type)
3593 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3594 {
ceae6e75 3595 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
ebafbe83
MS
3596 {
3597 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3598 unsigned long regval;
3599
3600 /* Write the low word of the double to the even register(s). */
3601 regval = extract_unsigned_integer (val + low_offset, 4);
3602 if (mips_debug)
3603 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3604 float_argreg, phex (regval, 4));
3605 write_register (float_argreg++, regval);
3606 if (mips_debug)
3607 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3608 argreg, phex (regval, 4));
3609 write_register (argreg++, regval);
3610
3611 /* Write the high word of the double to the odd register(s). */
3612 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3613 if (mips_debug)
3614 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3615 float_argreg, phex (regval, 4));
3616 write_register (float_argreg++, regval);
3617
3618 if (mips_debug)
3619 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3620 argreg, phex (regval, 4));
3621 write_register (argreg++, regval);
3622 }
3623 else
3624 {
3625 /* This is a floating point value that fits entirely
3626 in a single register. */
3627 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3628 above to ensure that it is even register aligned. */
ebafbe83
MS
3629 LONGEST regval = extract_unsigned_integer (val, len);
3630 if (mips_debug)
3631 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3632 float_argreg, phex (regval, len));
3633 write_register (float_argreg++, regval);
3634 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3635 registers for each argument. The below is (my
3636 guess) to ensure that the corresponding integer
3637 register has reserved the same space. */
ebafbe83
MS
3638 if (mips_debug)
3639 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3640 argreg, phex (regval, len));
3641 write_register (argreg, regval);
ceae6e75 3642 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
ebafbe83
MS
3643 }
3644 /* Reserve space for the FP register. */
13326b4e 3645 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
ebafbe83
MS
3646 }
3647 else
3648 {
3649 /* Copy the argument to general registers or the stack in
3650 register-sized pieces. Large arguments are split between
3651 registers and stack. */
4246e332 3652 /* Note: structs whose size is not a multiple of
d5ac5a39
AC
3653 mips_abi_regsize() are treated specially: Irix cc passes
3654 them in registers where gcc sometimes puts them on the
3655 stack. For maximum compatibility, we will put them in
3656 both places. */
13326b4e
AC
3657 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3658 && (len % mips_abi_regsize (gdbarch) != 0));
ebafbe83
MS
3659 /* Structures should be aligned to eight bytes (even arg registers)
3660 on MIPS_ABI_O32, if their first member has double precision. */
13326b4e 3661 if (mips_abi_regsize (gdbarch) < 8
ebafbe83
MS
3662 && mips_type_needs_double_align (arg_type))
3663 {
3664 if ((argreg & 1))
6d82d43b 3665 argreg++;
ebafbe83
MS
3666 }
3667 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 3668 register are only written to memory. */
ebafbe83
MS
3669 while (len > 0)
3670 {
3671 /* Remember if the argument was written to the stack. */
3672 int stack_used_p = 0;
13326b4e
AC
3673 int partial_len = (len < mips_abi_regsize (gdbarch)
3674 ? len : mips_abi_regsize (gdbarch));
ebafbe83
MS
3675
3676 if (mips_debug)
3677 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3678 partial_len);
3679
3680 /* Write this portion of the argument to the stack. */
3681 if (argreg > MIPS_LAST_ARG_REGNUM
3682 || odd_sized_struct
3683 || fp_register_arg_p (typecode, arg_type))
3684 {
3685 /* Should shorter than int integer values be
3686 promoted to int before being stored? */
3687 int longword_offset = 0;
3688 CORE_ADDR addr;
3689 stack_used_p = 1;
3690 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3691 {
13326b4e 3692 if (mips_stack_argsize (gdbarch) == 8
480d3dd2
AC
3693 && (typecode == TYPE_CODE_INT
3694 || typecode == TYPE_CODE_PTR
6d82d43b 3695 || typecode == TYPE_CODE_FLT) && len <= 4)
13326b4e 3696 longword_offset = mips_stack_argsize (gdbarch) - len;
ebafbe83
MS
3697 }
3698
3699 if (mips_debug)
3700 {
3701 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3702 paddr_nz (stack_offset));
3703 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3704 paddr_nz (longword_offset));
3705 }
3706
3707 addr = sp + stack_offset + longword_offset;
3708
3709 if (mips_debug)
3710 {
3711 int i;
6d82d43b 3712 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3713 paddr_nz (addr));
3714 for (i = 0; i < partial_len; i++)
3715 {
6d82d43b 3716 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3717 val[i] & 0xff);
3718 }
3719 }
3720 write_memory (addr, val, partial_len);
3721 }
3722
3723 /* Note!!! This is NOT an else clause. Odd sized
3724 structs may go thru BOTH paths. Floating point
3725 arguments will not. */
3726 /* Write this portion of the argument to a general
6d82d43b 3727 purpose register. */
ebafbe83
MS
3728 if (argreg <= MIPS_LAST_ARG_REGNUM
3729 && !fp_register_arg_p (typecode, arg_type))
3730 {
3731 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3732 /* Value may need to be sign extended, because
1b13c4f6 3733 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3734
3735 /* A non-floating-point argument being passed in a
3736 general register. If a struct or union, and if
3737 the remaining length is smaller than the register
3738 size, we have to adjust the register value on
3739 big endian targets.
3740
3741 It does not seem to be necessary to do the
401835eb 3742 same for integral types. */
480d3dd2 3743
401835eb 3744 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
13326b4e 3745 && partial_len < mips_abi_regsize (gdbarch)
ebafbe83
MS
3746 && (typecode == TYPE_CODE_STRUCT ||
3747 typecode == TYPE_CODE_UNION))
13326b4e 3748 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
ebafbe83
MS
3749 TARGET_CHAR_BIT);
3750
3751 if (mips_debug)
3752 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3753 argreg,
6d82d43b 3754 phex (regval,
13326b4e 3755 mips_abi_regsize (gdbarch)));
ebafbe83
MS
3756 write_register (argreg, regval);
3757 argreg++;
3758
3759 /* Prevent subsequent floating point arguments from
3760 being passed in floating point registers. */
3761 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3762 }
3763
3764 len -= partial_len;
3765 val += partial_len;
3766
3767 /* Compute the the offset into the stack at which we
6d82d43b 3768 will copy the next parameter.
ebafbe83 3769
6d82d43b
AC
3770 In older ABIs, the caller reserved space for
3771 registers that contained arguments. This was loosely
3772 refered to as their "home". Consequently, space is
3773 always allocated. */
ebafbe83 3774
480d3dd2 3775 stack_offset += align_up (partial_len,
13326b4e 3776 mips_stack_argsize (gdbarch));
ebafbe83
MS
3777 }
3778 }
3779 if (mips_debug)
3780 fprintf_unfiltered (gdb_stdlog, "\n");
3781 }
3782
f10683bb 3783 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3784
ebafbe83
MS
3785 /* Return adjusted stack pointer. */
3786 return sp;
3787}
3788
9c8fdbfa
AC
3789static enum return_value_convention
3790mips_o64_return_value (struct gdbarch *gdbarch,
3791 struct type *type, struct regcache *regcache,
47a35522 3792 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3793{
7a076fd2
FF
3794 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3795
3796 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3797 || TYPE_CODE (type) == TYPE_CODE_UNION
3798 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3799 return RETURN_VALUE_STRUCT_CONVENTION;
3800 else if (fp_register_arg_p (TYPE_CODE (type), type))
3801 {
3802 /* A floating-point value. It fits in the least significant
3803 part of FP0. */
3804 if (mips_debug)
3805 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3806 mips_xfer_register (regcache,
3807 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3808 TYPE_LENGTH (type),
3809 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3810 return RETURN_VALUE_REGISTER_CONVENTION;
3811 }
3812 else
3813 {
3814 /* A scalar extract each part but least-significant-byte
3815 justified. */
3816 int offset;
3817 int regnum;
3818 for (offset = 0, regnum = MIPS_V0_REGNUM;
3819 offset < TYPE_LENGTH (type);
3820 offset += mips_stack_argsize (gdbarch), regnum++)
3821 {
3822 int xfer = mips_stack_argsize (gdbarch);
3823 if (offset + xfer > TYPE_LENGTH (type))
3824 xfer = TYPE_LENGTH (type) - offset;
3825 if (mips_debug)
3826 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3827 offset, xfer, regnum);
3828 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3829 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3830 }
3831 return RETURN_VALUE_REGISTER_CONVENTION;
3832 }
6d82d43b
AC
3833}
3834
dd824b04
DJ
3835/* Floating point register management.
3836
3837 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3838 64bit operations, these early MIPS cpus treat fp register pairs
3839 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3840 registers and offer a compatibility mode that emulates the MIPS2 fp
3841 model. When operating in MIPS2 fp compat mode, later cpu's split
3842 double precision floats into two 32-bit chunks and store them in
3843 consecutive fp regs. To display 64-bit floats stored in this
3844 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3845 Throw in user-configurable endianness and you have a real mess.
3846
3847 The way this works is:
3848 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3849 double-precision value will be split across two logical registers.
3850 The lower-numbered logical register will hold the low-order bits,
3851 regardless of the processor's endianness.
3852 - If we are on a 64-bit processor, and we are looking for a
3853 single-precision value, it will be in the low ordered bits
3854 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3855 save slot in memory.
3856 - If we are in 64-bit mode, everything is straightforward.
3857
3858 Note that this code only deals with "live" registers at the top of the
3859 stack. We will attempt to deal with saved registers later, when
3860 the raw/cooked register interface is in place. (We need a general
3861 interface that can deal with dynamic saved register sizes -- fp
3862 regs could be 32 bits wide in one frame and 64 on the frame above
3863 and below). */
3864
67b2c998
DJ
3865static struct type *
3866mips_float_register_type (void)
3867{
8da61cc4 3868 return builtin_type_ieee_single;
67b2c998
DJ
3869}
3870
3871static struct type *
3872mips_double_register_type (void)
3873{
8da61cc4 3874 return builtin_type_ieee_double;
67b2c998
DJ
3875}
3876
dd824b04
DJ
3877/* Copy a 32-bit single-precision value from the current frame
3878 into rare_buffer. */
3879
3880static void
e11c53d2 3881mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 3882 gdb_byte *rare_buffer)
dd824b04 3883{
719ec221 3884 int raw_size = register_size (current_gdbarch, regno);
47a35522 3885 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 3886
e11c53d2 3887 if (!frame_register_read (frame, regno, raw_buffer))
8a3fe4f8 3888 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3889 if (raw_size == 8)
3890 {
3891 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 3892 32 bits. */
dd824b04
DJ
3893 int offset;
3894
3895 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3896 offset = 4;
3897 else
3898 offset = 0;
3899
3900 memcpy (rare_buffer, raw_buffer + offset, 4);
3901 }
3902 else
3903 {
3904 memcpy (rare_buffer, raw_buffer, 4);
3905 }
3906}
3907
3908/* Copy a 64-bit double-precision value from the current frame into
3909 rare_buffer. This may include getting half of it from the next
3910 register. */
3911
3912static void
e11c53d2 3913mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 3914 gdb_byte *rare_buffer)
dd824b04 3915{
719ec221 3916 int raw_size = register_size (current_gdbarch, regno);
dd824b04
DJ
3917
3918 if (raw_size == 8 && !mips2_fp_compat ())
3919 {
3920 /* We have a 64-bit value for this register, and we should use
6d82d43b 3921 all 64 bits. */
e11c53d2 3922 if (!frame_register_read (frame, regno, rare_buffer))
8a3fe4f8 3923 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
dd824b04
DJ
3924 }
3925 else
3926 {
56cea623 3927 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
dd824b04 3928 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3929 _("mips_read_fp_register_double: bad access to "
3930 "odd-numbered FP register"));
dd824b04
DJ
3931
3932 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 3933 each register. */
dd824b04
DJ
3934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3935 {
e11c53d2
AC
3936 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3937 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3938 }
361d1df0 3939 else
dd824b04 3940 {
e11c53d2
AC
3941 mips_read_fp_register_single (frame, regno, rare_buffer);
3942 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
3943 }
3944 }
3945}
3946
c906108c 3947static void
e11c53d2
AC
3948mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3949 int regnum)
c5aa993b 3950{ /* do values for FP (float) regs */
47a35522 3951 gdb_byte *raw_buffer;
3903d437
AC
3952 double doub, flt1; /* doubles extracted from raw hex data */
3953 int inv1, inv2;
c5aa993b 3954
47a35522
MK
3955 raw_buffer = alloca (2 * register_size (current_gdbarch,
3956 mips_regnum (current_gdbarch)->fp0));
c906108c 3957
e11c53d2
AC
3958 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3959 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3960 "");
f0ef6b29 3961
719ec221 3962 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
c906108c 3963 {
f0ef6b29
KB
3964 /* 4-byte registers: Print hex and floating. Also print even
3965 numbered registers as doubles. */
e11c53d2 3966 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 3967 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3968
6d82d43b
AC
3969 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3970 file);
dd824b04 3971
e11c53d2 3972 fprintf_filtered (file, " flt: ");
1adad886 3973 if (inv1)
e11c53d2 3974 fprintf_filtered (file, " <invalid float> ");
1adad886 3975 else
e11c53d2 3976 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 3977
f0ef6b29
KB
3978 if (regnum % 2 == 0)
3979 {
e11c53d2 3980 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 3981 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 3982 &inv2);
1adad886 3983
e11c53d2 3984 fprintf_filtered (file, " dbl: ");
f0ef6b29 3985 if (inv2)
e11c53d2 3986 fprintf_filtered (file, "<invalid double>");
f0ef6b29 3987 else
e11c53d2 3988 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 3989 }
c906108c
SS
3990 }
3991 else
dd824b04 3992 {
f0ef6b29 3993 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 3994 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 3995 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 3996
e11c53d2 3997 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
3998 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3999
361d1df0 4000
6d82d43b
AC
4001 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4002 file);
f0ef6b29 4003
e11c53d2 4004 fprintf_filtered (file, " flt: ");
1adad886 4005 if (inv1)
e11c53d2 4006 fprintf_filtered (file, "<invalid float>");
1adad886 4007 else
e11c53d2 4008 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4009
e11c53d2 4010 fprintf_filtered (file, " dbl: ");
f0ef6b29 4011 if (inv2)
e11c53d2 4012 fprintf_filtered (file, "<invalid double>");
1adad886 4013 else
e11c53d2 4014 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4015 }
4016}
4017
4018static void
e11c53d2
AC
4019mips_print_register (struct ui_file *file, struct frame_info *frame,
4020 int regnum, int all)
f0ef6b29 4021{
a4b8ebc8 4022 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4023 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4024 int offset;
1adad886 4025
7b9ee6a8 4026 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4027 {
e11c53d2 4028 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4029 return;
4030 }
4031
4032 /* Get the data in raw format. */
e11c53d2 4033 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4034 {
e11c53d2 4035 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4036 return;
c906108c 4037 }
f0ef6b29 4038
e11c53d2 4039 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4040
4041 /* The problem with printing numeric register names (r26, etc.) is that
4042 the user can't use them on input. Probably the best solution is to
4043 fix it so that either the numeric or the funky (a2, etc.) names
4044 are accepted on input. */
4045 if (regnum < MIPS_NUMREGS)
e11c53d2 4046 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4047 else
e11c53d2 4048 fprintf_filtered (file, ": ");
f0ef6b29
KB
4049
4050 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4051 offset =
4052 register_size (current_gdbarch,
4053 regnum) - register_size (current_gdbarch, regnum);
f0ef6b29
KB
4054 else
4055 offset = 0;
4056
6d82d43b 4057 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4058 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4059 file);
c906108c
SS
4060}
4061
f0ef6b29
KB
4062/* Replacement for generic do_registers_info.
4063 Print regs in pretty columns. */
4064
4065static int
e11c53d2
AC
4066print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4067 int regnum)
f0ef6b29 4068{
e11c53d2
AC
4069 fprintf_filtered (file, " ");
4070 mips_print_fp_register (file, frame, regnum);
4071 fprintf_filtered (file, "\n");
f0ef6b29
KB
4072 return regnum + 1;
4073}
4074
4075
c906108c
SS
4076/* Print a row's worth of GP (int) registers, with name labels above */
4077
4078static int
e11c53d2 4079print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4080 int start_regnum)
c906108c 4081{
a4b8ebc8 4082 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4083 /* do values for GP (int) regs */
47a35522 4084 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4085 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4086 int col, byte;
a4b8ebc8 4087 int regnum;
c906108c
SS
4088
4089 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4090 for (col = 0, regnum = start_regnum;
6d82d43b 4091 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4092 {
4093 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4094 continue; /* unused register */
7b9ee6a8 4095 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4096 TYPE_CODE_FLT)
c5aa993b 4097 break; /* end the row: reached FP register */
d05f6826
DJ
4098 if (col == 0)
4099 fprintf_filtered (file, " ");
6d82d43b 4100 fprintf_filtered (file,
d5ac5a39 4101 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
e11c53d2 4102 REGISTER_NAME (regnum));
c906108c
SS
4103 col++;
4104 }
d05f6826
DJ
4105
4106 if (col == 0)
4107 return regnum;
4108
a4b8ebc8 4109 /* print the R0 to R31 names */
20e6603c
AC
4110 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4111 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4112 else
4113 fprintf_filtered (file, "\n ");
c906108c 4114
c906108c 4115 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4116 for (col = 0, regnum = start_regnum;
6d82d43b 4117 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
c906108c
SS
4118 {
4119 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4120 continue; /* unused register */
7b9ee6a8 4121 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4122 TYPE_CODE_FLT)
c5aa993b 4123 break; /* end row: reached FP register */
c906108c 4124 /* OK: get the data in raw format. */
e11c53d2 4125 if (!frame_register_read (frame, regnum, raw_buffer))
8a3fe4f8 4126 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
c906108c 4127 /* pad small registers */
4246e332 4128 for (byte = 0;
d5ac5a39 4129 byte < (mips_abi_regsize (current_gdbarch)
6d82d43b 4130 - register_size (current_gdbarch, regnum)); byte++)
c906108c
SS
4131 printf_filtered (" ");
4132 /* Now print the register value in hex, endian order. */
d7449b42 4133 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
6d82d43b
AC
4134 for (byte =
4135 register_size (current_gdbarch,
4136 regnum) - register_size (current_gdbarch, regnum);
4137 byte < register_size (current_gdbarch, regnum); byte++)
47a35522 4138 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4139 else
c73e8f27 4140 for (byte = register_size (current_gdbarch, regnum) - 1;
6d82d43b 4141 byte >= 0; byte--)
47a35522 4142 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4143 fprintf_filtered (file, " ");
c906108c
SS
4144 col++;
4145 }
c5aa993b 4146 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4147 fprintf_filtered (file, "\n");
c906108c
SS
4148
4149 return regnum;
4150}
4151
4152/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4153
bf1f5b4c 4154static void
e11c53d2
AC
4155mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4156 struct frame_info *frame, int regnum, int all)
c906108c 4157{
c5aa993b 4158 if (regnum != -1) /* do one specified register */
c906108c 4159 {
a4b8ebc8 4160 gdb_assert (regnum >= NUM_REGS);
c906108c 4161 if (*(REGISTER_NAME (regnum)) == '\0')
8a3fe4f8 4162 error (_("Not a valid register for the current processor type"));
c906108c 4163
e11c53d2
AC
4164 mips_print_register (file, frame, regnum, 0);
4165 fprintf_filtered (file, "\n");
c906108c 4166 }
c5aa993b
JM
4167 else
4168 /* do all (or most) registers */
c906108c 4169 {
a4b8ebc8
AC
4170 regnum = NUM_REGS;
4171 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
c906108c 4172 {
7b9ee6a8 4173 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4174 TYPE_CODE_FLT)
e11c53d2
AC
4175 {
4176 if (all) /* true for "INFO ALL-REGISTERS" command */
4177 regnum = print_fp_register_row (file, frame, regnum);
4178 else
4179 regnum += MIPS_NUMREGS; /* skip floating point regs */
4180 }
c906108c 4181 else
e11c53d2 4182 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4183 }
4184 }
4185}
4186
c906108c
SS
4187/* Is this a branch with a delay slot? */
4188
c906108c 4189static int
acdb74a0 4190is_delayed (unsigned long insn)
c906108c
SS
4191{
4192 int i;
4193 for (i = 0; i < NUMOPCODES; ++i)
4194 if (mips_opcodes[i].pinfo != INSN_MACRO
4195 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4196 break;
4197 return (i < NUMOPCODES
4198 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4199 | INSN_COND_BRANCH_DELAY
4200 | INSN_COND_BRANCH_LIKELY)));
4201}
4202
4203int
3352ef37
AC
4204mips_single_step_through_delay (struct gdbarch *gdbarch,
4205 struct frame_info *frame)
c906108c 4206{
3352ef37 4207 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4208 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4209
4210 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4211 if (mips_pc_is_mips16 (pc))
c906108c
SS
4212 return 0;
4213
06648491
MK
4214 if (!breakpoint_here_p (pc + 4))
4215 return 0;
4216
3352ef37
AC
4217 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4218 /* If error reading memory, guess that it is not a delayed
4219 branch. */
c906108c 4220 return 0;
4c7d22cb 4221 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4222}
4223
6d82d43b
AC
4224/* To skip prologues, I use this predicate. Returns either PC itself
4225 if the code at PC does not look like a function prologue; otherwise
4226 returns an address that (if we're lucky) follows the prologue. If
4227 LENIENT, then we must skip everything which is involved in setting
4228 up the frame (it's OK to skip more, just so long as we don't skip
4229 anything which might clobber the registers which are being saved.
4230 We must skip more in the case where part of the prologue is in the
4231 delay slot of a non-prologue instruction). */
4232
4233static CORE_ADDR
4234mips_skip_prologue (CORE_ADDR pc)
4235{
8b622e6a
AC
4236 CORE_ADDR limit_pc;
4237 CORE_ADDR func_addr;
4238
6d82d43b
AC
4239 /* See if we can determine the end of the prologue via the symbol table.
4240 If so, then return either PC, or the PC after the prologue, whichever
4241 is greater. */
8b622e6a
AC
4242 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4243 {
4244 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4245 if (post_prologue_pc != 0)
4246 return max (pc, post_prologue_pc);
4247 }
6d82d43b
AC
4248
4249 /* Can't determine prologue from the symbol table, need to examine
4250 instructions. */
4251
98b4dd94
JB
4252 /* Find an upper limit on the function prologue using the debug
4253 information. If the debug information could not be used to provide
4254 that bound, then use an arbitrary large number as the upper bound. */
4255 limit_pc = skip_prologue_using_sal (pc);
4256 if (limit_pc == 0)
4257 limit_pc = pc + 100; /* Magic. */
4258
0fe7e7c8 4259 if (mips_pc_is_mips16 (pc))
a65bbe44 4260 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4261 else
a65bbe44 4262 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4263}
4264
a5ea2558
AC
4265/* Root of all "set mips "/"show mips " commands. This will eventually be
4266 used for all MIPS-specific commands. */
4267
a5ea2558 4268static void
acdb74a0 4269show_mips_command (char *args, int from_tty)
a5ea2558
AC
4270{
4271 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4272}
4273
a5ea2558 4274static void
acdb74a0 4275set_mips_command (char *args, int from_tty)
a5ea2558 4276{
6d82d43b
AC
4277 printf_unfiltered
4278 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4279 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4280}
4281
c906108c
SS
4282/* Commands to show/set the MIPS FPU type. */
4283
c906108c 4284static void
acdb74a0 4285show_mipsfpu_command (char *args, int from_tty)
c906108c 4286{
c906108c
SS
4287 char *fpu;
4288 switch (MIPS_FPU_TYPE)
4289 {
4290 case MIPS_FPU_SINGLE:
4291 fpu = "single-precision";
4292 break;
4293 case MIPS_FPU_DOUBLE:
4294 fpu = "double-precision";
4295 break;
4296 case MIPS_FPU_NONE:
4297 fpu = "absent (none)";
4298 break;
93d56215 4299 default:
e2e0b3e5 4300 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4301 }
4302 if (mips_fpu_type_auto)
6d82d43b
AC
4303 printf_unfiltered
4304 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4305 fpu);
c906108c 4306 else
6d82d43b
AC
4307 printf_unfiltered
4308 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4309}
4310
4311
c906108c 4312static void
acdb74a0 4313set_mipsfpu_command (char *args, int from_tty)
c906108c 4314{
6d82d43b
AC
4315 printf_unfiltered
4316 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4317 show_mipsfpu_command (args, from_tty);
4318}
4319
c906108c 4320static void
acdb74a0 4321set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4322{
8d5838b5
AC
4323 struct gdbarch_info info;
4324 gdbarch_info_init (&info);
c906108c
SS
4325 mips_fpu_type = MIPS_FPU_SINGLE;
4326 mips_fpu_type_auto = 0;
8d5838b5
AC
4327 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4328 instead of relying on globals. Doing that would let generic code
4329 handle the search for this specific architecture. */
4330 if (!gdbarch_update_p (info))
e2e0b3e5 4331 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4332}
4333
c906108c 4334static void
acdb74a0 4335set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4336{
8d5838b5
AC
4337 struct gdbarch_info info;
4338 gdbarch_info_init (&info);
c906108c
SS
4339 mips_fpu_type = MIPS_FPU_DOUBLE;
4340 mips_fpu_type_auto = 0;
8d5838b5
AC
4341 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4342 instead of relying on globals. Doing that would let generic code
4343 handle the search for this specific architecture. */
4344 if (!gdbarch_update_p (info))
e2e0b3e5 4345 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4346}
4347
c906108c 4348static void
acdb74a0 4349set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4350{
8d5838b5
AC
4351 struct gdbarch_info info;
4352 gdbarch_info_init (&info);
c906108c
SS
4353 mips_fpu_type = MIPS_FPU_NONE;
4354 mips_fpu_type_auto = 0;
8d5838b5
AC
4355 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4356 instead of relying on globals. Doing that would let generic code
4357 handle the search for this specific architecture. */
4358 if (!gdbarch_update_p (info))
e2e0b3e5 4359 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4360}
4361
c906108c 4362static void
acdb74a0 4363set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4364{
4365 mips_fpu_type_auto = 1;
4366}
4367
c906108c 4368/* Attempt to identify the particular processor model by reading the
691c0433
AC
4369 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4370 the relevant processor still exists (it dates back to '94) and
4371 secondly this is not the way to do this. The processor type should
4372 be set by forcing an architecture change. */
c906108c 4373
691c0433
AC
4374void
4375deprecated_mips_set_processor_regs_hack (void)
c906108c 4376{
691c0433 4377 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
4378 CORE_ADDR prid;
4379
a5c9623c 4380 prid = read_register (MIPS_PRID_REGNUM);
c906108c
SS
4381
4382 if ((prid & ~0xf) == 0x700)
691c0433 4383 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4384}
4385
4386/* Just like reinit_frame_cache, but with the right arguments to be
4387 callable as an sfunc. */
4388
4389static void
acdb74a0
AC
4390reinit_frame_cache_sfunc (char *args, int from_tty,
4391 struct cmd_list_element *c)
c906108c
SS
4392{
4393 reinit_frame_cache ();
4394}
4395
a89aa300
AC
4396static int
4397gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4398{
e5ab0dce 4399 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4400
d31431ed
AC
4401 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4402 disassembler needs to be able to locally determine the ISA, and
4403 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4404 work. */
ec4045ea
AC
4405 if (mips_pc_is_mips16 (memaddr))
4406 info->mach = bfd_mach_mips16;
c906108c
SS
4407
4408 /* Round down the instruction address to the appropriate boundary. */
65c11066 4409 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4410
e5ab0dce 4411 /* Set the disassembler options. */
6d82d43b 4412 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4413 {
4414 /* Set up the disassembler info, so that we get the right
6d82d43b 4415 register names from libopcodes. */
e5ab0dce
AC
4416 if (tdep->mips_abi == MIPS_ABI_N32)
4417 info->disassembler_options = "gpr-names=n32";
4418 else
4419 info->disassembler_options = "gpr-names=64";
4420 info->flavour = bfd_target_elf_flavour;
4421 }
4422 else
4423 /* This string is not recognized explicitly by the disassembler,
4424 but it tells the disassembler to not try to guess the ABI from
4425 the bfd elf headers, such that, if the user overrides the ABI
4426 of a program linked as NewABI, the disassembly will follow the
4427 register naming conventions specified by the user. */
4428 info->disassembler_options = "gpr-names=32";
4429
c906108c 4430 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 4431 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4432 return print_insn_big_mips (memaddr, info);
4433 else
4434 return print_insn_little_mips (memaddr, info);
4435}
4436
c906108c
SS
4437/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4438 counter value to determine whether a 16- or 32-bit breakpoint should be
4439 used. It returns a pointer to a string of bytes that encode a breakpoint
4440 instruction, stores the length of the string to *lenptr, and adjusts pc
4441 (if necessary) to point to the actual memory location where the
4442 breakpoint should be inserted. */
4443
47a35522 4444static const gdb_byte *
6d82d43b 4445mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4446{
d7449b42 4447 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 4448 {
0fe7e7c8 4449 if (mips_pc_is_mips16 (*pcptr))
c906108c 4450 {
47a35522 4451 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4452 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4453 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4454 return mips16_big_breakpoint;
4455 }
4456 else
4457 {
aaab4dba
AC
4458 /* The IDT board uses an unusual breakpoint value, and
4459 sometimes gets confused when it sees the usual MIPS
4460 breakpoint instruction. */
47a35522
MK
4461 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4462 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4463 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4464
c5aa993b 4465 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4466
4467 if (strcmp (target_shortname, "mips") == 0)
4468 return idt_big_breakpoint;
4469 else if (strcmp (target_shortname, "ddb") == 0
4470 || strcmp (target_shortname, "pmon") == 0
4471 || strcmp (target_shortname, "lsi") == 0)
4472 return pmon_big_breakpoint;
4473 else
4474 return big_breakpoint;
4475 }
4476 }
4477 else
4478 {
0fe7e7c8 4479 if (mips_pc_is_mips16 (*pcptr))
c906108c 4480 {
47a35522 4481 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4482 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4483 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4484 return mips16_little_breakpoint;
4485 }
4486 else
4487 {
47a35522
MK
4488 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4489 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4490 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4491
c5aa993b 4492 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4493
4494 if (strcmp (target_shortname, "mips") == 0)
4495 return idt_little_breakpoint;
4496 else if (strcmp (target_shortname, "ddb") == 0
4497 || strcmp (target_shortname, "pmon") == 0
4498 || strcmp (target_shortname, "lsi") == 0)
4499 return pmon_little_breakpoint;
4500 else
4501 return little_breakpoint;
4502 }
4503 }
4504}
4505
4506/* If PC is in a mips16 call or return stub, return the address of the target
4507 PC, which is either the callee or the caller. There are several
4508 cases which must be handled:
4509
4510 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4511 target PC is in $31 ($ra).
c906108c 4512 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4513 and the target PC is in $2.
c906108c 4514 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4515 before the jal instruction, this is effectively a call stub
4516 and the the target PC is in $2. Otherwise this is effectively
4517 a return stub and the target PC is in $18.
c906108c
SS
4518
4519 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4520 gory details. */
c906108c 4521
757a7cc6 4522static CORE_ADDR
e7d6a6d2 4523mips_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
4524{
4525 char *name;
4526 CORE_ADDR start_addr;
4527
4528 /* Find the starting address and name of the function containing the PC. */
4529 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4530 return 0;
4531
4532 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4533 target PC is in $31 ($ra). */
4534 if (strcmp (name, "__mips16_ret_sf") == 0
4535 || strcmp (name, "__mips16_ret_df") == 0)
4c7d22cb 4536 return read_signed_register (MIPS_RA_REGNUM);
c906108c
SS
4537
4538 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4539 {
4540 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4541 and the target PC is in $2. */
4542 if (name[19] >= '0' && name[19] <= '9')
6c997a34 4543 return read_signed_register (2);
c906108c
SS
4544
4545 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4546 before the jal instruction, this is effectively a call stub
4547 and the the target PC is in $2. Otherwise this is effectively
4548 a return stub and the target PC is in $18. */
c906108c
SS
4549 else if (name[19] == 's' || name[19] == 'd')
4550 {
4551 if (pc == start_addr)
4552 {
4553 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4554 stub. Such a stub for a function bar might have a name
4555 like __fn_stub_bar, and might look like this:
4556 mfc1 $4,$f13
4557 mfc1 $5,$f12
4558 mfc1 $6,$f15
4559 mfc1 $7,$f14
4560 la $1,bar (becomes a lui/addiu pair)
4561 jr $1
4562 So scan down to the lui/addi and extract the target
4563 address from those two instructions. */
c906108c 4564
6c997a34 4565 CORE_ADDR target_pc = read_signed_register (2);
d37cca3d 4566 ULONGEST inst;
c906108c
SS
4567 int i;
4568
4569 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4570 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4571 0)
c906108c
SS
4572 return target_pc;
4573 if (strncmp (name, "__fn_stub_", 10) != 0
4574 && strcmp (name, "etext") != 0
4575 && strcmp (name, "_etext") != 0)
4576 return target_pc;
4577
4578 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4579 The limit on the search is arbitrarily set to 20
4580 instructions. FIXME. */
95ac2dcf 4581 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4582 {
c5aa993b
JM
4583 inst = mips_fetch_instruction (target_pc);
4584 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4585 pc = (inst << 16) & 0xffff0000; /* high word */
4586 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4587 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4588 }
4589
4590 /* Couldn't find the lui/addui pair, so return stub address. */
4591 return target_pc;
4592 }
4593 else
4594 /* This is the 'return' part of a call stub. The return
4595 address is in $r18. */
6c997a34 4596 return read_signed_register (18);
c906108c
SS
4597 }
4598 }
c5aa993b 4599 return 0; /* not a stub */
c906108c
SS
4600}
4601
a4b8ebc8
AC
4602/* Convert a dbx stab register number (from `r' declaration) to a GDB
4603 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4604
4605static int
4606mips_stab_reg_to_regnum (int num)
4607{
a4b8ebc8 4608 int regnum;
2f38ef89 4609 if (num >= 0 && num < 32)
a4b8ebc8 4610 regnum = num;
2f38ef89 4611 else if (num >= 38 && num < 70)
56cea623 4612 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4613 else if (num == 70)
56cea623 4614 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4615 else if (num == 71)
56cea623 4616 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4617 else
a4b8ebc8
AC
4618 /* This will hopefully (eventually) provoke a warning. Should
4619 we be calling complaint() here? */
4620 return NUM_REGS + NUM_PSEUDO_REGS;
4621 return NUM_REGS + regnum;
88c72b7d
AC
4622}
4623
2f38ef89 4624
a4b8ebc8
AC
4625/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4626 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
88c72b7d
AC
4627
4628static int
2f38ef89 4629mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4630{
a4b8ebc8 4631 int regnum;
2f38ef89 4632 if (num >= 0 && num < 32)
a4b8ebc8 4633 regnum = num;
2f38ef89 4634 else if (num >= 32 && num < 64)
56cea623 4635 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4636 else if (num == 64)
56cea623 4637 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4638 else if (num == 65)
56cea623 4639 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4640 else
a4b8ebc8
AC
4641 /* This will hopefully (eventually) provoke a warning. Should we
4642 be calling complaint() here? */
4643 return NUM_REGS + NUM_PSEUDO_REGS;
4644 return NUM_REGS + regnum;
4645}
4646
4647static int
4648mips_register_sim_regno (int regnum)
4649{
4650 /* Only makes sense to supply raw registers. */
4651 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4652 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4653 decide if it is valid. Should instead define a standard sim/gdb
4654 register numbering scheme. */
4655 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4656 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4657 return regnum;
4658 else
6d82d43b 4659 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4660}
4661
2f38ef89 4662
4844f454
CV
4663/* Convert an integer into an address. Extracting the value signed
4664 guarantees a correctly sign extended address. */
fc0c74b1
AC
4665
4666static CORE_ADDR
79dd2d24 4667mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4668 struct type *type, const gdb_byte *buf)
fc0c74b1 4669{
4844f454 4670 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4671}
4672
caaa3122
DJ
4673static void
4674mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4675{
4676 enum mips_abi *abip = (enum mips_abi *) obj;
4677 const char *name = bfd_get_section_name (abfd, sect);
4678
4679 if (*abip != MIPS_ABI_UNKNOWN)
4680 return;
4681
4682 if (strncmp (name, ".mdebug.", 8) != 0)
4683 return;
4684
4685 if (strcmp (name, ".mdebug.abi32") == 0)
4686 *abip = MIPS_ABI_O32;
4687 else if (strcmp (name, ".mdebug.abiN32") == 0)
4688 *abip = MIPS_ABI_N32;
62a49b2c 4689 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4690 *abip = MIPS_ABI_N64;
caaa3122
DJ
4691 else if (strcmp (name, ".mdebug.abiO64") == 0)
4692 *abip = MIPS_ABI_O64;
4693 else if (strcmp (name, ".mdebug.eabi32") == 0)
4694 *abip = MIPS_ABI_EABI32;
4695 else if (strcmp (name, ".mdebug.eabi64") == 0)
4696 *abip = MIPS_ABI_EABI64;
4697 else
8a3fe4f8 4698 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4699}
4700
22e47e37
FF
4701static void
4702mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4703{
4704 int *lbp = (int *) obj;
4705 const char *name = bfd_get_section_name (abfd, sect);
4706
4707 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4708 *lbp = 32;
4709 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4710 *lbp = 64;
4711 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4712 warning (_("unrecognized .gcc_compiled_longXX"));
4713}
4714
2e4ebe70
DJ
4715static enum mips_abi
4716global_mips_abi (void)
4717{
4718 int i;
4719
4720 for (i = 0; mips_abi_strings[i] != NULL; i++)
4721 if (mips_abi_strings[i] == mips_abi_string)
4722 return (enum mips_abi) i;
4723
e2e0b3e5 4724 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4725}
4726
29709017
DJ
4727static void
4728mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4729{
4730 static struct target_desc *tdesc_gp32, *tdesc_gp64;
4731
4732 if (tdesc_gp32 == NULL)
4733 {
4734 /* Create feature sets with the appropriate properties. The values
4735 are not important. */
4736
4737 tdesc_gp32 = allocate_target_description ();
4738 set_tdesc_property (tdesc_gp32, PROPERTY_GP32, "");
4739
4740 tdesc_gp64 = allocate_target_description ();
4741 set_tdesc_property (tdesc_gp64, PROPERTY_GP64, "");
4742 }
4743
4744 /* If the size matches the set of 32-bit or 64-bit integer registers,
4745 assume that's what we've got. */
4746 register_remote_g_packet_guess (gdbarch, 38 * 4, tdesc_gp32);
4747 register_remote_g_packet_guess (gdbarch, 38 * 8, tdesc_gp64);
4748
4749 /* If the size matches the full set of registers GDB traditionally
4750 knows about, including floating point, for either 32-bit or
4751 64-bit, assume that's what we've got. */
4752 register_remote_g_packet_guess (gdbarch, 90 * 4, tdesc_gp32);
4753 register_remote_g_packet_guess (gdbarch, 90 * 8, tdesc_gp64);
4754
4755 /* Otherwise we don't have a useful guess. */
4756}
4757
c2d11a7d 4758static struct gdbarch *
6d82d43b 4759mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 4760{
c2d11a7d
JM
4761 struct gdbarch *gdbarch;
4762 struct gdbarch_tdep *tdep;
4763 int elf_flags;
2e4ebe70 4764 enum mips_abi mips_abi, found_abi, wanted_abi;
a4b8ebc8 4765 int num_regs;
8d5838b5 4766 enum mips_fpu_type fpu_type;
c2d11a7d 4767
ec03c1ac
AC
4768 /* First of all, extract the elf_flags, if available. */
4769 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4770 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
4771 else if (arches != NULL)
4772 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
4773 else
4774 elf_flags = 0;
4775 if (gdbarch_debug)
4776 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4777 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 4778
102182a9 4779 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
4780 switch ((elf_flags & EF_MIPS_ABI))
4781 {
4782 case E_MIPS_ABI_O32:
ec03c1ac 4783 found_abi = MIPS_ABI_O32;
0dadbba0
AC
4784 break;
4785 case E_MIPS_ABI_O64:
ec03c1ac 4786 found_abi = MIPS_ABI_O64;
0dadbba0
AC
4787 break;
4788 case E_MIPS_ABI_EABI32:
ec03c1ac 4789 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
4790 break;
4791 case E_MIPS_ABI_EABI64:
ec03c1ac 4792 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
4793 break;
4794 default:
acdb74a0 4795 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 4796 found_abi = MIPS_ABI_N32;
acdb74a0 4797 else
ec03c1ac 4798 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
4799 break;
4800 }
acdb74a0 4801
caaa3122 4802 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
4803 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4804 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 4805
dc305454 4806 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
4807 MIPS architecture (if there is one). */
4808 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4809 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 4810
32a6503c 4811 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 4812 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
4813 && info.bfd_arch_info != NULL
4814 && info.bfd_arch_info->arch == bfd_arch_mips)
4815 {
4816 switch (info.bfd_arch_info->mach)
4817 {
4818 case bfd_mach_mips3900:
ec03c1ac 4819 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
4820 break;
4821 case bfd_mach_mips4100:
4822 case bfd_mach_mips5000:
ec03c1ac 4823 found_abi = MIPS_ABI_EABI64;
bf64bfd6 4824 break;
1d06468c
EZ
4825 case bfd_mach_mips8000:
4826 case bfd_mach_mips10000:
32a6503c
KB
4827 /* On Irix, ELF64 executables use the N64 ABI. The
4828 pseudo-sections which describe the ABI aren't present
4829 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
4830 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4831 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 4832 found_abi = MIPS_ABI_N64;
28d169de 4833 else
ec03c1ac 4834 found_abi = MIPS_ABI_N32;
1d06468c 4835 break;
bf64bfd6
AC
4836 }
4837 }
2e4ebe70 4838
26c53e50
DJ
4839 /* Default 64-bit objects to N64 instead of O32. */
4840 if (found_abi == MIPS_ABI_UNKNOWN
4841 && info.abfd != NULL
4842 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4843 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4844 found_abi = MIPS_ABI_N64;
4845
ec03c1ac
AC
4846 if (gdbarch_debug)
4847 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4848 found_abi);
4849
4850 /* What has the user specified from the command line? */
4851 wanted_abi = global_mips_abi ();
4852 if (gdbarch_debug)
4853 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4854 wanted_abi);
2e4ebe70
DJ
4855
4856 /* Now that we have found what the ABI for this binary would be,
4857 check whether the user is overriding it. */
2e4ebe70
DJ
4858 if (wanted_abi != MIPS_ABI_UNKNOWN)
4859 mips_abi = wanted_abi;
ec03c1ac
AC
4860 else if (found_abi != MIPS_ABI_UNKNOWN)
4861 mips_abi = found_abi;
4862 else
4863 mips_abi = MIPS_ABI_O32;
4864 if (gdbarch_debug)
4865 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4866 mips_abi);
2e4ebe70 4867
ec03c1ac 4868 /* Also used when doing an architecture lookup. */
4b9b3959 4869 if (gdbarch_debug)
ec03c1ac
AC
4870 fprintf_unfiltered (gdb_stdlog,
4871 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4872 mips64_transfers_32bit_regs_p);
0dadbba0 4873
8d5838b5
AC
4874 /* Determine the MIPS FPU type. */
4875 if (!mips_fpu_type_auto)
4876 fpu_type = mips_fpu_type;
4877 else if (info.bfd_arch_info != NULL
4878 && info.bfd_arch_info->arch == bfd_arch_mips)
4879 switch (info.bfd_arch_info->mach)
4880 {
4881 case bfd_mach_mips3900:
4882 case bfd_mach_mips4100:
4883 case bfd_mach_mips4111:
a9d61c86 4884 case bfd_mach_mips4120:
8d5838b5
AC
4885 fpu_type = MIPS_FPU_NONE;
4886 break;
4887 case bfd_mach_mips4650:
4888 fpu_type = MIPS_FPU_SINGLE;
4889 break;
4890 default:
4891 fpu_type = MIPS_FPU_DOUBLE;
4892 break;
4893 }
4894 else if (arches != NULL)
4895 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4896 else
4897 fpu_type = MIPS_FPU_DOUBLE;
4898 if (gdbarch_debug)
4899 fprintf_unfiltered (gdb_stdlog,
6d82d43b 4900 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 4901
29709017
DJ
4902 /* Check for blatant incompatibilities. */
4903
4904 /* If we have only 32-bit registers, then we can't debug a 64-bit
4905 ABI. */
4906 if (info.target_desc
4907 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
4908 && mips_abi != MIPS_ABI_EABI32
4909 && mips_abi != MIPS_ABI_O32)
4910 return NULL;
4911
c2d11a7d
JM
4912 /* try to find a pre-existing architecture */
4913 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4914 arches != NULL;
4915 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4916 {
4917 /* MIPS needs to be pedantic about which ABI the object is
102182a9 4918 using. */
9103eae0 4919 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 4920 continue;
9103eae0 4921 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 4922 continue;
719ec221
AC
4923 /* Need to be pedantic about which register virtual size is
4924 used. */
4925 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4926 != mips64_transfers_32bit_regs_p)
4927 continue;
8d5838b5
AC
4928 /* Be pedantic about which FPU is selected. */
4929 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4930 continue;
4be87837 4931 return arches->gdbarch;
c2d11a7d
JM
4932 }
4933
102182a9 4934 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
4935 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4936 gdbarch = gdbarch_alloc (&info, tdep);
4937 tdep->elf_flags = elf_flags;
719ec221 4938 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
4939 tdep->found_abi = found_abi;
4940 tdep->mips_abi = mips_abi;
8d5838b5 4941 tdep->mips_fpu_type = fpu_type;
29709017
DJ
4942 tdep->register_size_valid_p = 0;
4943 tdep->register_size = 0;
4944
4945 if (info.target_desc)
4946 {
4947 /* Some useful properties can be inferred from the target. */
4948 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
4949 {
4950 tdep->register_size_valid_p = 1;
4951 tdep->register_size = 4;
4952 }
4953 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
4954 {
4955 tdep->register_size_valid_p = 1;
4956 tdep->register_size = 8;
4957 }
4958 }
c2d11a7d 4959
102182a9 4960 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
4961 set_gdbarch_short_bit (gdbarch, 16);
4962 set_gdbarch_int_bit (gdbarch, 32);
4963 set_gdbarch_float_bit (gdbarch, 32);
4964 set_gdbarch_double_bit (gdbarch, 64);
4965 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
4966 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4967 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4968 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 4969
6d82d43b 4970 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
4971 mips_elf_make_msymbol_special);
4972
16e109ca 4973 /* Fill in the OS dependant register numbers and names. */
56cea623 4974 {
16e109ca 4975 const char **reg_names;
56cea623
AC
4976 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4977 struct mips_regnum);
56cea623
AC
4978 if (info.osabi == GDB_OSABI_IRIX)
4979 {
4980 regnum->fp0 = 32;
4981 regnum->pc = 64;
4982 regnum->cause = 65;
4983 regnum->badvaddr = 66;
4984 regnum->hi = 67;
4985 regnum->lo = 68;
4986 regnum->fp_control_status = 69;
4987 regnum->fp_implementation_revision = 70;
4988 num_regs = 71;
16e109ca 4989 reg_names = mips_irix_reg_names;
56cea623
AC
4990 }
4991 else
4992 {
4993 regnum->lo = MIPS_EMBED_LO_REGNUM;
4994 regnum->hi = MIPS_EMBED_HI_REGNUM;
4995 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4996 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4997 regnum->pc = MIPS_EMBED_PC_REGNUM;
4998 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4999 regnum->fp_control_status = 70;
5000 regnum->fp_implementation_revision = 71;
5001 num_regs = 90;
16e109ca
AC
5002 if (info.bfd_arch_info != NULL
5003 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5004 reg_names = mips_tx39_reg_names;
5005 else
5006 reg_names = mips_generic_reg_names;
56cea623
AC
5007 }
5008 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5009 replaced by read_pc? */
f10683bb
MH
5010 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5011 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5012 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5013 set_gdbarch_num_regs (gdbarch, num_regs);
5014 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca
AC
5015 set_gdbarch_register_name (gdbarch, mips_register_name);
5016 tdep->mips_processor_reg_names = reg_names;
5017 tdep->regnum = regnum;
56cea623 5018 }
fe29b929 5019
0dadbba0 5020 switch (mips_abi)
c2d11a7d 5021 {
0dadbba0 5022 case MIPS_ABI_O32:
25ab4790 5023 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5024 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5025 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5026 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5027 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5028 set_gdbarch_long_bit (gdbarch, 32);
5029 set_gdbarch_ptr_bit (gdbarch, 32);
5030 set_gdbarch_long_long_bit (gdbarch, 64);
5031 break;
0dadbba0 5032 case MIPS_ABI_O64:
25ab4790 5033 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5034 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5035 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5036 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5037 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5038 set_gdbarch_long_bit (gdbarch, 32);
5039 set_gdbarch_ptr_bit (gdbarch, 32);
5040 set_gdbarch_long_long_bit (gdbarch, 64);
5041 break;
0dadbba0 5042 case MIPS_ABI_EABI32:
25ab4790 5043 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5044 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5045 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5046 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5047 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5048 set_gdbarch_long_bit (gdbarch, 32);
5049 set_gdbarch_ptr_bit (gdbarch, 32);
5050 set_gdbarch_long_long_bit (gdbarch, 64);
5051 break;
0dadbba0 5052 case MIPS_ABI_EABI64:
25ab4790 5053 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5054 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5055 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5056 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5057 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5058 set_gdbarch_long_bit (gdbarch, 64);
5059 set_gdbarch_ptr_bit (gdbarch, 64);
5060 set_gdbarch_long_long_bit (gdbarch, 64);
5061 break;
0dadbba0 5062 case MIPS_ABI_N32:
25ab4790 5063 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5064 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5065 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5066 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5067 tdep->default_mask_address_p = 0;
0dadbba0
AC
5068 set_gdbarch_long_bit (gdbarch, 32);
5069 set_gdbarch_ptr_bit (gdbarch, 32);
5070 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5071 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5072 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5073 break;
5074 case MIPS_ABI_N64:
25ab4790 5075 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5076 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5077 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5078 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5079 tdep->default_mask_address_p = 0;
5080 set_gdbarch_long_bit (gdbarch, 64);
5081 set_gdbarch_ptr_bit (gdbarch, 64);
5082 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5083 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5084 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5085 break;
c2d11a7d 5086 default:
e2e0b3e5 5087 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5088 }
5089
22e47e37
FF
5090 /* GCC creates a pseudo-section whose name specifies the size of
5091 longs, since -mlong32 or -mlong64 may be used independent of
5092 other options. How those options affect pointer sizes is ABI and
5093 architecture dependent, so use them to override the default sizes
5094 set by the ABI. This table shows the relationship between ABI,
5095 -mlongXX, and size of pointers:
5096
5097 ABI -mlongXX ptr bits
5098 --- -------- --------
5099 o32 32 32
5100 o32 64 32
5101 n32 32 32
5102 n32 64 64
5103 o64 32 32
5104 o64 64 64
5105 n64 32 32
5106 n64 64 64
5107 eabi32 32 32
5108 eabi32 64 32
5109 eabi64 32 32
5110 eabi64 64 64
5111
5112 Note that for o32 and eabi32, pointers are always 32 bits
5113 regardless of any -mlongXX option. For all others, pointers and
5114 longs are the same, as set by -mlongXX or set by defaults.
5115 */
5116
5117 if (info.abfd != NULL)
5118 {
5119 int long_bit = 0;
5120
5121 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5122 if (long_bit)
5123 {
5124 set_gdbarch_long_bit (gdbarch, long_bit);
5125 switch (mips_abi)
5126 {
5127 case MIPS_ABI_O32:
5128 case MIPS_ABI_EABI32:
5129 break;
5130 case MIPS_ABI_N32:
5131 case MIPS_ABI_O64:
5132 case MIPS_ABI_N64:
5133 case MIPS_ABI_EABI64:
5134 set_gdbarch_ptr_bit (gdbarch, long_bit);
5135 break;
5136 default:
5137 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5138 }
5139 }
5140 }
5141
a5ea2558
AC
5142 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5143 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5144 comment:
5145
5146 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5147 flag in object files because to do so would make it impossible to
102182a9 5148 link with libraries compiled without "-gp32". This is
a5ea2558 5149 unnecessarily restrictive.
361d1df0 5150
a5ea2558
AC
5151 We could solve this problem by adding "-gp32" multilibs to gcc,
5152 but to set this flag before gcc is built with such multilibs will
5153 break too many systems.''
5154
5155 But even more unhelpfully, the default linker output target for
5156 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5157 for 64-bit programs - you need to change the ABI to change this,
102182a9 5158 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5159 this flag to detect 32-bit mode would do the wrong thing given
5160 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5161 as 32-bit programs by default. */
a5ea2558 5162
6c997a34 5163 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5164 set_gdbarch_write_pc (gdbarch, mips_write_pc);
bcb0cc15 5165 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5166
102182a9
MS
5167 /* Add/remove bits from an address. The MIPS needs be careful to
5168 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5169 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5170
58dfe9ff
AC
5171 /* Unwind the frame. */
5172 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
edfae063 5173 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5174
102182a9 5175 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5176 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5177 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5178 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5179 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5180 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5181 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5182 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5183 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5184
c2d11a7d
JM
5185 /* MIPS version of CALL_DUMMY */
5186
9710e734
AC
5187 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5188 replaced by a command, and all targets will default to on stack
5189 (regardless of the stack's execute status). */
5190 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5191 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5192
87783b8b
AC
5193 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5194 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5195 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5196
f7b9e9fc
AC
5197 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5198 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5199
5200 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5201
fc0c74b1
AC
5202 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5203 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5204 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5205
a4b8ebc8 5206 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5207
e11c53d2 5208 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5209
e5ab0dce
AC
5210 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5211
3a3bc038
AC
5212 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5213 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5214 need to all be folded into the target vector. Since they are
5215 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5216 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5217 is sitting on? */
5218 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5219
e7d6a6d2 5220 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5221
3352ef37
AC
5222 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5223
0d5de010
DJ
5224 /* Virtual tables. */
5225 set_gdbarch_vbit_in_delta (gdbarch, 1);
5226
29709017
DJ
5227 mips_register_g_packet_guesses (gdbarch);
5228
6de918a6
DJ
5229 /* Hook in OS ABI-specific overrides, if they have been registered. */
5230 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5231
5792a79b 5232 /* Unwind the frame. */
eec63939 5233 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5234 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5235 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
eec63939 5236 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5237 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5238 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5239
4b9b3959
AC
5240 return gdbarch;
5241}
5242
2e4ebe70 5243static void
6d82d43b 5244mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5245{
5246 struct gdbarch_info info;
5247
5248 /* Force the architecture to update, and (if it's a MIPS architecture)
5249 mips_gdbarch_init will take care of the rest. */
5250 gdbarch_info_init (&info);
5251 gdbarch_update_p (info);
5252}
5253
ad188201
KB
5254/* Print out which MIPS ABI is in use. */
5255
5256static void
1f8ca57c
JB
5257show_mips_abi (struct ui_file *file,
5258 int from_tty,
5259 struct cmd_list_element *ignored_cmd,
5260 const char *ignored_value)
ad188201
KB
5261{
5262 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5263 fprintf_filtered
5264 (file,
5265 "The MIPS ABI is unknown because the current architecture "
5266 "is not MIPS.\n");
ad188201
KB
5267 else
5268 {
5269 enum mips_abi global_abi = global_mips_abi ();
5270 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5271 const char *actual_abi_str = mips_abi_strings[actual_abi];
5272
5273 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5274 fprintf_filtered
5275 (file,
5276 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5277 actual_abi_str);
ad188201 5278 else if (global_abi == actual_abi)
1f8ca57c
JB
5279 fprintf_filtered
5280 (file,
5281 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5282 actual_abi_str);
ad188201
KB
5283 else
5284 {
5285 /* Probably shouldn't happen... */
1f8ca57c
JB
5286 fprintf_filtered
5287 (file,
5288 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5289 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5290 }
5291 }
5292}
5293
4b9b3959
AC
5294static void
5295mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5296{
5297 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5298 if (tdep != NULL)
c2d11a7d 5299 {
acdb74a0
AC
5300 int ef_mips_arch;
5301 int ef_mips_32bitmode;
f49e4e6d 5302 /* Determine the ISA. */
acdb74a0
AC
5303 switch (tdep->elf_flags & EF_MIPS_ARCH)
5304 {
5305 case E_MIPS_ARCH_1:
5306 ef_mips_arch = 1;
5307 break;
5308 case E_MIPS_ARCH_2:
5309 ef_mips_arch = 2;
5310 break;
5311 case E_MIPS_ARCH_3:
5312 ef_mips_arch = 3;
5313 break;
5314 case E_MIPS_ARCH_4:
93d56215 5315 ef_mips_arch = 4;
acdb74a0
AC
5316 break;
5317 default:
93d56215 5318 ef_mips_arch = 0;
acdb74a0
AC
5319 break;
5320 }
f49e4e6d 5321 /* Determine the size of a pointer. */
acdb74a0 5322 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5323 fprintf_unfiltered (file,
5324 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5325 tdep->elf_flags);
4b9b3959 5326 fprintf_unfiltered (file,
acdb74a0
AC
5327 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5328 ef_mips_32bitmode);
5329 fprintf_unfiltered (file,
5330 "mips_dump_tdep: ef_mips_arch = %d\n",
5331 ef_mips_arch);
5332 fprintf_unfiltered (file,
5333 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5334 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5335 fprintf_unfiltered (file,
5336 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5337 mips_mask_address_p (tdep),
4014092b 5338 tdep->default_mask_address_p);
c2d11a7d 5339 }
4b9b3959
AC
5340 fprintf_unfiltered (file,
5341 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5342 MIPS_DEFAULT_FPU_TYPE,
5343 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5344 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5345 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5346 : "???"));
6d82d43b 5347 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5348 fprintf_unfiltered (file,
5349 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5350 MIPS_FPU_TYPE,
5351 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5352 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5353 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5354 : "???"));
4b9b3959 5355 fprintf_unfiltered (file,
480d3dd2 5356 "mips_dump_tdep: mips_stack_argsize() = %d\n",
13326b4e 5357 mips_stack_argsize (current_gdbarch));
c2d11a7d
JM
5358}
5359
6d82d43b 5360extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5361
c906108c 5362void
acdb74a0 5363_initialize_mips_tdep (void)
c906108c
SS
5364{
5365 static struct cmd_list_element *mipsfpulist = NULL;
5366 struct cmd_list_element *c;
5367
6d82d43b 5368 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5369 if (MIPS_ABI_LAST + 1
5370 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5371 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5372
4b9b3959 5373 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5374
8d5f9dcb
DJ
5375 mips_pdr_data = register_objfile_data ();
5376
a5ea2558
AC
5377 /* Add root prefix command for all "set mips"/"show mips" commands */
5378 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5379 _("Various MIPS specific commands."),
a5ea2558
AC
5380 &setmipscmdlist, "set mips ", 0, &setlist);
5381
5382 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5383 _("Various MIPS specific commands."),
a5ea2558
AC
5384 &showmipscmdlist, "show mips ", 0, &showlist);
5385
5386 /* Allow the user to override the saved register size. */
1b295c3d 5387 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
7915a72c
AC
5388 size_enums, &mips_abi_regsize_string, _("\
5389Set size of general purpose registers saved on the stack."), _("\
5390Show size of general purpose registers saved on the stack."), _("\
a5ea2558
AC
5391This option can be set to one of:\n\
5392 32 - Force GDB to treat saved GP registers as 32-bit\n\
5393 64 - Force GDB to treat saved GP registers as 64-bit\n\
5394 auto - Allow GDB to use the target's default setting or autodetect the\n\
7915a72c
AC
5395 saved GP register size from information contained in the\n\
5396 executable (default)."),
2c5b56ce 5397 NULL,
7915a72c 5398 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
2c5b56ce 5399 &setmipscmdlist, &showmipscmdlist);
a5ea2558 5400
d929b26f 5401 /* Allow the user to override the argument stack size. */
1b295c3d 5402 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
7915a72c
AC
5403 size_enums, &mips_stack_argsize_string, _("\
5404Set the amount of stack space reserved for each argument."), _("\
5405Show the amount of stack space reserved for each argument."), _("\
d929b26f
AC
5406This option can be set to one of:\n\
5407 32 - Force GDB to allocate 32-bit chunks per argument\n\
5408 64 - Force GDB to allocate 64-bit chunks per argument\n\
5409 auto - Allow GDB to determine the correct setting from the current\n\
7915a72c 5410 target and executable (default)"),
2c5b56ce 5411 NULL,
7915a72c 5412 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
2c5b56ce 5413 &setmipscmdlist, &showmipscmdlist);
d929b26f 5414
2e4ebe70 5415 /* Allow the user to override the ABI. */
7ab04401
AC
5416 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5417 &mips_abi_string, _("\
5418Set the MIPS ABI used by this program."), _("\
5419Show the MIPS ABI used by this program."), _("\
5420This option can be set to one of:\n\
5421 auto - the default ABI associated with the current binary\n\
5422 o32\n\
5423 o64\n\
5424 n32\n\
5425 n64\n\
5426 eabi32\n\
5427 eabi64"),
5428 mips_abi_update,
5429 show_mips_abi,
5430 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5431
c906108c
SS
5432 /* Let the user turn off floating point and set the fence post for
5433 heuristic_proc_start. */
5434
5435 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5436 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5437 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5438 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5439 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5440 &mipsfpulist);
5441 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5442 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5443 &mipsfpulist);
5444 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5445 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5446 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5447 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5448 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5449 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5450 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5451 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5452 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5453 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5454 &mipsfpulist);
5455 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5456 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5457 &showlist);
5458
c906108c
SS
5459 /* We really would like to have both "0" and "unlimited" work, but
5460 command.c doesn't deal with that. So make it a var_zinteger
5461 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5462 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5463 &heuristic_fence_post, _("\
5464Set the distance searched for the start of a function."), _("\
5465Show the distance searched for the start of a function."), _("\
c906108c
SS
5466If you are debugging a stripped executable, GDB needs to search through the\n\
5467program for the start of a function. This command sets the distance of the\n\
7915a72c 5468search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5469 reinit_frame_cache_sfunc,
7915a72c 5470 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5471 &setlist, &showlist);
c906108c
SS
5472
5473 /* Allow the user to control whether the upper bits of 64-bit
5474 addresses should be zeroed. */
7915a72c
AC
5475 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5476 &mask_address_var, _("\
5477Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5478Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5479Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5480allow GDB to determine the correct value."),
08546159
AC
5481 NULL, show_mask_address,
5482 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5483
5484 /* Allow the user to control the size of 32 bit registers within the
5485 raw remote packet. */
b3f42336 5486 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5487 &mips64_transfers_32bit_regs_p, _("\
5488Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5489 _("\
5490Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5491 _("\
719ec221
AC
5492Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5493that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 549464 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5495 set_mips64_transfers_32bit_regs,
7915a72c 5496 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5497 &setlist, &showlist);
9ace0497
AC
5498
5499 /* Debug this files internals. */
6bcadd06 5500 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5501 &mips_debug, _("\
5502Set mips debugging."), _("\
5503Show mips debugging."), _("\
5504When non-zero, mips specific debugging is enabled."),
2c5b56ce 5505 NULL,
7915a72c 5506 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5507 &setdebuglist, &showdebuglist);
c906108c 5508}
This page took 1.132674 seconds and 4 git commands to generate.