2002-08-19 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a
AC
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
c906108c
SS
42
43#include "opcode/mips.h"
c2d11a7d
JM
44#include "elf/mips.h"
45#include "elf-bfd.h"
2475bac3 46#include "symcat.h"
c906108c 47
dd824b04
DJ
48/* A useful bit in the CP0 status register (PS_REGNUM). */
49/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50#define ST0_FR (1 << 26)
51
b0069a17
AC
52/* The sizes of floating point registers. */
53
54enum
55{
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58};
59
0dadbba0
AC
60/* All the possible MIPS ABIs. */
61
62enum mips_abi
63 {
2e4ebe70 64 MIPS_ABI_UNKNOWN = 0,
0dadbba0
AC
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
28d169de 67 MIPS_ABI_N64,
0dadbba0
AC
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
2e4ebe70
DJ
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
0dadbba0
AC
72 };
73
2e4ebe70
DJ
74static const char *mips_abi_string;
75
76static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
28d169de 80 "n64",
2e4ebe70
DJ
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85};
86
cce74817 87struct frame_extra_info
c5aa993b
JM
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
cce74817 92
d929b26f
AC
93/* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
53904c9e
AC
97static const char size_auto[] = "auto";
98static const char size_32[] = "32";
99static const char size_64[] = "64";
d929b26f 100
53904c9e 101static const char *size_enums[] = {
d929b26f
AC
102 size_auto,
103 size_32,
104 size_64,
a5ea2558
AC
105 0
106};
107
7a292a7a
SS
108/* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
c906108c
SS
111
112enum mips_fpu_type
c5aa993b
JM
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
c906108c
SS
118
119#ifndef MIPS_DEFAULT_FPU_TYPE
120#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121#endif
122static int mips_fpu_type_auto = 1;
123static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 124
9ace0497 125static int mips_debug = 0;
7a292a7a 126
c2d11a7d
JM
127/* MIPS specific per-architecture information */
128struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
70f80edf 132
c2d11a7d 133 /* mips options */
0dadbba0 134 enum mips_abi mips_abi;
2e4ebe70 135 enum mips_abi found_abi;
c2d11a7d
JM
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
a5ea2558 139 int mips_default_saved_regsize;
c2d11a7d 140 int mips_fp_register_double;
d929b26f 141 int mips_default_stack_argsize;
5213ab06 142 int gdb_target_is_mips64;
4014092b 143 int default_mask_address_p;
70f80edf
JT
144
145 enum gdb_osabi osabi;
c2d11a7d
JM
146 };
147
0dadbba0 148#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 150
c2d11a7d 151#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 152
c2d11a7d 153#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 154
c2d11a7d 155#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 156
d929b26f
AC
157/* Return the currently configured (or set) saved register size. */
158
a5ea2558 159#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 160
53904c9e 161static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
162
163#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165static unsigned int
acdb74a0 166mips_saved_regsize (void)
d929b26f
AC
167{
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174}
175
dd824b04
DJ
176/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
177 compatiblity mode. A return value of 1 means that we have
178 physical 64-bit registers, but should treat them as 32-bit registers. */
179
180static int
181mips2_fp_compat (void)
182{
183 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
184 meaningful. */
185 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
186 return 0;
187
188#if 0
189 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
190 in all the places we deal with FP registers. PR gdb/413. */
191 /* Otherwise check the FR bit in the status register - it controls
192 the FP compatiblity mode. If it is clear we are in compatibility
193 mode. */
194 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
195 return 1;
196#endif
361d1df0 197
dd824b04
DJ
198 return 0;
199}
200
c2d11a7d
JM
201/* Indicate that the ABI makes use of double-precision registers
202 provided by the FPU (rather than combining pairs of registers to
203 form double-precision values). Do not use "TARGET_IS_MIPS64" to
204 determine if the ABI is using double-precision registers. See also
205 MIPS_FPU_TYPE. */
c2d11a7d 206#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 207
d929b26f
AC
208/* The amount of space reserved on the stack for registers. This is
209 different to MIPS_SAVED_REGSIZE as it determines the alignment of
210 data allocated after the registers have run out. */
211
0dadbba0 212#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
213
214#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
215
53904c9e 216static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
217
218static unsigned int
219mips_stack_argsize (void)
220{
221 if (mips_stack_argsize_string == size_auto)
222 return MIPS_DEFAULT_STACK_ARGSIZE;
223 else if (mips_stack_argsize_string == size_64)
224 return 8;
225 else /* if (mips_stack_argsize_string == size_32) */
226 return 4;
227}
228
5213ab06 229#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 230
92e1c15c 231#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 232
7a292a7a 233#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 234
a14ed312 235int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 236
a14ed312 237static void mips_print_register (int, int);
c906108c
SS
238
239static mips_extra_func_info_t
479412cd 240heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
c906108c 241
a14ed312 242static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 243
a14ed312 244static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 245
a14ed312 246int mips_set_processor_type (char *);
c906108c 247
a14ed312 248static void mips_show_processor_type_command (char *, int);
c906108c 249
a14ed312 250static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c
SS
251
252static mips_extra_func_info_t
479412cd 253find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
c906108c 254
a14ed312
KB
255static CORE_ADDR after_prologue (CORE_ADDR pc,
256 mips_extra_func_info_t proc_desc);
c906108c 257
dd824b04
DJ
258static void mips_read_fp_register_single (int regno, char *rare_buffer);
259static void mips_read_fp_register_double (int regno, char *rare_buffer);
260
67b2c998
DJ
261static struct type *mips_float_register_type (void);
262static struct type *mips_double_register_type (void);
263
c906108c
SS
264/* This value is the model of MIPS in use. It is derived from the value
265 of the PrID register. */
266
267char *mips_processor_type;
268
269char *tmp_mips_processor_type;
270
acdb74a0
AC
271/* The list of available "set mips " and "show mips " commands */
272
273static struct cmd_list_element *setmipscmdlist = NULL;
274static struct cmd_list_element *showmipscmdlist = NULL;
275
c906108c
SS
276/* A set of original names, to be used when restoring back to generic
277 registers from a specific set. */
278
cce74817
JM
279char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
280char **mips_processor_reg_names = mips_generic_reg_names;
281
fa88f677 282const char *
fba45db2 283mips_register_name (int i)
cce74817
JM
284{
285 return mips_processor_reg_names[i];
286}
9846de1b 287/* *INDENT-OFF* */
c906108c
SS
288/* Names of IDT R3041 registers. */
289
290char *mips_r3041_reg_names[] = {
291 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
292 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
293 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
294 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
295 "sr", "lo", "hi", "bad", "cause","pc",
296 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
297 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
298 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
299 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
300 "fsr", "fir", "fp", "",
301 "", "", "bus", "ccfg", "", "", "", "",
302 "", "", "port", "cmp", "", "", "epc", "prid",
303};
304
305/* Names of IDT R3051 registers. */
306
307char *mips_r3051_reg_names[] = {
308 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
309 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
310 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
311 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
312 "sr", "lo", "hi", "bad", "cause","pc",
313 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
314 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
315 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
316 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
317 "fsr", "fir", "fp", "",
318 "inx", "rand", "elo", "", "ctxt", "", "", "",
319 "", "", "ehi", "", "", "", "epc", "prid",
320};
321
322/* Names of IDT R3081 registers. */
323
324char *mips_r3081_reg_names[] = {
325 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
326 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
327 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
328 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
329 "sr", "lo", "hi", "bad", "cause","pc",
330 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
331 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
332 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
333 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
334 "fsr", "fir", "fp", "",
335 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
336 "", "", "ehi", "", "", "", "epc", "prid",
337};
338
339/* Names of LSI 33k registers. */
340
341char *mips_lsi33k_reg_names[] = {
342 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
343 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
344 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
345 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
346 "epc", "hi", "lo", "sr", "cause","badvaddr",
347 "dcic", "bpc", "bda", "", "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 "", "", "", "", "", "", "", "",
350 "", "", "", "", "", "", "", "",
351 "", "", "", "",
352 "", "", "", "", "", "", "", "",
353 "", "", "", "", "", "", "", "",
354};
355
356struct {
357 char *name;
358 char **regnames;
359} mips_processor_type_table[] = {
360 { "generic", mips_generic_reg_names },
361 { "r3041", mips_r3041_reg_names },
362 { "r3051", mips_r3051_reg_names },
363 { "r3071", mips_r3081_reg_names },
364 { "r3081", mips_r3081_reg_names },
365 { "lsi33k", mips_lsi33k_reg_names },
366 { NULL, NULL }
367};
9846de1b 368/* *INDENT-ON* */
c906108c 369
c5aa993b
JM
370
371
372
c906108c 373/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
374static int mips16_to_32_reg[8] =
375{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
376
377/* Heuristic_proc_start may hunt through the text section for a long
378 time across a 2400 baud serial line. Allows the user to limit this
379 search. */
380
381static unsigned int heuristic_fence_post = 0;
382
c5aa993b
JM
383#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
384#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
385#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
386#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
387#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
388#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
389#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
390#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
391#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
392#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
393/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
394 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
395#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
396#define _PROC_MAGIC_ 0x0F0F0F0F
397#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
398#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
399
400struct linked_proc_info
c5aa993b
JM
401 {
402 struct mips_extra_func_info info;
403 struct linked_proc_info *next;
404 }
405 *linked_proc_desc_table = NULL;
c906108c 406
cce74817 407void
acdb74a0 408mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
409{
410 if (fi
411 && fi->extra_info
412 && fi->extra_info->proc_desc
413 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 414 printf_filtered (" frame pointer is at %s+%s\n",
cce74817 415 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
d4f3574e 416 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
cce74817 417}
c906108c 418
46cd78fb
AC
419/* Number of bytes of storage in the actual machine representation for
420 register N. NOTE: This indirectly defines the register size
421 transfered by the GDB protocol. */
43e526b9
JM
422
423static int mips64_transfers_32bit_regs_p = 0;
424
425int
acdb74a0 426mips_register_raw_size (int reg_nr)
43e526b9
JM
427{
428 if (mips64_transfers_32bit_regs_p)
429 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
430 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
431 && FP_REGISTER_DOUBLE)
432 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
433 registers. */
434 return 8;
43e526b9
JM
435 else
436 return MIPS_REGSIZE;
437}
438
46cd78fb
AC
439/* Convert between RAW and VIRTUAL registers. The RAW register size
440 defines the remote-gdb packet. */
441
d05285fa 442static int
acdb74a0 443mips_register_convertible (int reg_nr)
43e526b9
JM
444{
445 if (mips64_transfers_32bit_regs_p)
446 return 0;
447 else
448 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
449}
450
d05285fa 451static void
acdb74a0
AC
452mips_register_convert_to_virtual (int n, struct type *virtual_type,
453 char *raw_buf, char *virt_buf)
43e526b9 454{
d7449b42 455 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
456 memcpy (virt_buf,
457 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
458 TYPE_LENGTH (virtual_type));
459 else
460 memcpy (virt_buf,
461 raw_buf,
462 TYPE_LENGTH (virtual_type));
463}
464
d05285fa 465static void
acdb74a0
AC
466mips_register_convert_to_raw (struct type *virtual_type, int n,
467 char *virt_buf, char *raw_buf)
43e526b9
JM
468{
469 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 470 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
471 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
472 virt_buf,
473 TYPE_LENGTH (virtual_type));
474 else
475 memcpy (raw_buf,
476 virt_buf,
477 TYPE_LENGTH (virtual_type));
478}
479
102182a9
MS
480void
481mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
482{
483 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
484 && REGISTER_RAW_SIZE (regnum) == 4
485 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
486 && TYPE_CODE(type) == TYPE_CODE_FLT
487 && TYPE_LENGTH(type) == 8)
488 {
489 char temp[4];
490 memcpy (temp, ((char *)(buffer))+4, 4);
491 memcpy (((char *)(buffer))+4, (buffer), 4);
492 memcpy (((char *)(buffer)), temp, 4);
493 }
494}
495
496void
497mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
498{
499if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
500 && REGISTER_RAW_SIZE (regnum) == 4
501 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
502 && TYPE_CODE(type) == TYPE_CODE_FLT
503 && TYPE_LENGTH(type) == 8)
504 {
505 char temp[4];
506 memcpy (temp, ((char *)(buffer))+4, 4);
507 memcpy (((char *)(buffer))+4, (buffer), 4);
508 memcpy (((char *)(buffer)), temp, 4);
509 }
510}
511
78fde5f8
KB
512/* Return the GDB type object for the "standard" data type
513 of data in register REG.
514
515 Note: kevinb/2002-08-01: The definition below should faithfully
516 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
517 definitions found in config/mips/tm-*.h. I'm concerned about
518 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
519 though. In some cases FP_REGNUM is in this range, and I doubt
520 that this code is correct for the 64-bit case. */
521
522static struct type *
523mips_register_virtual_type (int reg)
524{
525 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
526 {
527 /* Floating point registers... */
528 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
529 return builtin_type_ieee_double_big;
530 else
531 return builtin_type_ieee_double_little;
532 }
78fde5f8
KB
533 else if (reg == PS_REGNUM /* CR */)
534 return builtin_type_uint32;
535 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
536 return builtin_type_uint32;
537 else
538 {
a6425924
KB
539 /* Everything else...
540 Return type appropriate for width of register. */
541 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
542 return builtin_type_uint64;
78fde5f8 543 else
a6425924 544 return builtin_type_uint32;
78fde5f8
KB
545 }
546}
547
bcb0cc15
MS
548/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
549
550static CORE_ADDR
551mips_read_sp (void)
552{
553 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
554}
555
c906108c 556/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 557enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
558
559static int
560mips_mask_address_p (void)
561{
562 switch (mask_address_var)
563 {
7f19b9a2 564 case AUTO_BOOLEAN_TRUE:
4014092b 565 return 1;
7f19b9a2 566 case AUTO_BOOLEAN_FALSE:
4014092b
AC
567 return 0;
568 break;
7f19b9a2 569 case AUTO_BOOLEAN_AUTO:
92e1c15c 570 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 571 default:
8e65ff28
AC
572 internal_error (__FILE__, __LINE__,
573 "mips_mask_address_p: bad switch");
4014092b 574 return -1;
361d1df0 575 }
4014092b
AC
576}
577
578static void
e9e68a56 579show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
580{
581 switch (mask_address_var)
582 {
7f19b9a2 583 case AUTO_BOOLEAN_TRUE:
4014092b
AC
584 printf_filtered ("The 32 bit mips address mask is enabled\n");
585 break;
7f19b9a2 586 case AUTO_BOOLEAN_FALSE:
4014092b
AC
587 printf_filtered ("The 32 bit mips address mask is disabled\n");
588 break;
7f19b9a2 589 case AUTO_BOOLEAN_AUTO:
4014092b
AC
590 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
591 mips_mask_address_p () ? "enabled" : "disabled");
592 break;
593 default:
8e65ff28
AC
594 internal_error (__FILE__, __LINE__,
595 "show_mask_address: bad switch");
4014092b 596 break;
361d1df0 597 }
4014092b 598}
c906108c
SS
599
600/* Should call_function allocate stack space for a struct return? */
cb811fe7 601
c906108c 602int
cb811fe7 603mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 604{
cb811fe7
MS
605 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
606}
607
608int
609mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
610{
b78bcb18 611 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
612}
613
614int
615mips_o32_use_struct_convention (int gcc_p, struct type *type)
616{
617 return 1; /* Structures are returned by ref in extra arg0. */
c906108c
SS
618}
619
8b389c40
MS
620/* Should call_function pass struct by reference?
621 For each architecture, structs are passed either by
622 value or by reference, depending on their size. */
623
624static int
625mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
626{
627 enum type_code typecode = TYPE_CODE (check_typedef (type));
628 int len = TYPE_LENGTH (check_typedef (type));
629
630 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
631 return (len > MIPS_SAVED_REGSIZE);
632
633 return 0;
634}
635
636static int
637mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
638{
639 return 0; /* Assumption: N32/N64 never passes struct by ref. */
640}
641
642int
643mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
644{
645 return 0; /* Assumption: O32/O64 never passes struct by ref. */
646}
647
c906108c
SS
648/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
649
650static int
651pc_is_mips16 (bfd_vma memaddr)
652{
653 struct minimal_symbol *sym;
654
655 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
656 if (IS_MIPS16_ADDR (memaddr))
657 return 1;
658
659 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
660 the high bit of the info field. Use this to decide if the function is
661 MIPS16 or normal MIPS. */
662 sym = lookup_minimal_symbol_by_pc (memaddr);
663 if (sym)
664 return MSYMBOL_IS_SPECIAL (sym);
665 else
666 return 0;
667}
668
6c997a34
AC
669/* MIPS believes that the PC has a sign extended value. Perhaphs the
670 all registers should be sign extended for simplicity? */
671
672static CORE_ADDR
39f77062 673mips_read_pc (ptid_t ptid)
6c997a34 674{
39f77062 675 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 676}
c906108c
SS
677
678/* This returns the PC of the first inst after the prologue. If we can't
679 find the prologue, then return 0. */
680
681static CORE_ADDR
acdb74a0
AC
682after_prologue (CORE_ADDR pc,
683 mips_extra_func_info_t proc_desc)
c906108c
SS
684{
685 struct symtab_and_line sal;
686 CORE_ADDR func_addr, func_end;
687
479412cd
DJ
688 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
689 to read the stack pointer from the current machine state, because
690 the current machine state has nothing to do with the information
691 we need from the proc_desc; and the process may or may not exist
692 right now. */
c906108c 693 if (!proc_desc)
479412cd 694 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
695
696 if (proc_desc)
697 {
698 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 699 strongly suspect that frameless always means prologueless... */
c906108c
SS
700 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
701 && PROC_FRAME_OFFSET (proc_desc) == 0)
702 return 0;
703 }
704
705 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
706 return 0; /* Unknown */
707
708 sal = find_pc_line (func_addr, 0);
709
710 if (sal.end < func_end)
711 return sal.end;
712
713 /* The line after the prologue is after the end of the function. In this
714 case, tell the caller to find the prologue the hard way. */
715
716 return 0;
717}
718
719/* Decode a MIPS32 instruction that saves a register in the stack, and
720 set the appropriate bit in the general register mask or float register mask
721 to indicate which register is saved. This is a helper function
722 for mips_find_saved_regs. */
723
724static void
acdb74a0
AC
725mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
726 unsigned long *float_mask)
c906108c
SS
727{
728 int reg;
729
730 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
731 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
732 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
733 {
734 /* It might be possible to use the instruction to
c5aa993b
JM
735 find the offset, rather than the code below which
736 is based on things being in a certain order in the
737 frame, but figuring out what the instruction's offset
738 is relative to might be a little tricky. */
c906108c
SS
739 reg = (inst & 0x001f0000) >> 16;
740 *gen_mask |= (1 << reg);
741 }
742 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
743 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
744 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
745
746 {
747 reg = ((inst & 0x001f0000) >> 16);
748 *float_mask |= (1 << reg);
749 }
750}
751
752/* Decode a MIPS16 instruction that saves a register in the stack, and
753 set the appropriate bit in the general register or float register mask
754 to indicate which register is saved. This is a helper function
755 for mips_find_saved_regs. */
756
757static void
acdb74a0 758mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 759{
c5aa993b 760 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
761 {
762 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
763 *gen_mask |= (1 << reg);
764 }
c5aa993b 765 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
766 {
767 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
768 *gen_mask |= (1 << reg);
769 }
c5aa993b 770 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
771 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
772 *gen_mask |= (1 << RA_REGNUM);
773}
774
775
776/* Fetch and return instruction from the specified location. If the PC
777 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
778
779static t_inst
acdb74a0 780mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
781{
782 char buf[MIPS_INSTLEN];
783 int instlen;
784 int status;
785
786 if (pc_is_mips16 (addr))
787 {
788 instlen = MIPS16_INSTLEN;
789 addr = UNMAKE_MIPS16_ADDR (addr);
790 }
791 else
c5aa993b 792 instlen = MIPS_INSTLEN;
c906108c
SS
793 status = read_memory_nobpt (addr, buf, instlen);
794 if (status)
795 memory_error (status, addr);
796 return extract_unsigned_integer (buf, instlen);
797}
798
799
800/* These the fields of 32 bit mips instructions */
e135b889
DJ
801#define mips32_op(x) (x >> 26)
802#define itype_op(x) (x >> 26)
803#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 804#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 805#define itype_immediate(x) (x & 0xffff)
c906108c 806
e135b889
DJ
807#define jtype_op(x) (x >> 26)
808#define jtype_target(x) (x & 0x03ffffff)
c906108c 809
e135b889
DJ
810#define rtype_op(x) (x >> 26)
811#define rtype_rs(x) ((x >> 21) & 0x1f)
812#define rtype_rt(x) ((x >> 16) & 0x1f)
813#define rtype_rd(x) ((x >> 11) & 0x1f)
814#define rtype_shamt(x) ((x >> 6) & 0x1f)
815#define rtype_funct(x) (x & 0x3f)
c906108c
SS
816
817static CORE_ADDR
c5aa993b
JM
818mips32_relative_offset (unsigned long inst)
819{
820 long x;
821 x = itype_immediate (inst);
822 if (x & 0x8000) /* sign bit set */
c906108c 823 {
c5aa993b 824 x |= 0xffff0000; /* sign extension */
c906108c 825 }
c5aa993b
JM
826 x = x << 2;
827 return x;
c906108c
SS
828}
829
830/* Determine whate to set a single step breakpoint while considering
831 branch prediction */
832CORE_ADDR
c5aa993b
JM
833mips32_next_pc (CORE_ADDR pc)
834{
835 unsigned long inst;
836 int op;
837 inst = mips_fetch_instruction (pc);
e135b889 838 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 839 {
e135b889
DJ
840 if (itype_op (inst) >> 2 == 5)
841 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 842 {
e135b889 843 op = (itype_op (inst) & 0x03);
c906108c
SS
844 switch (op)
845 {
e135b889
DJ
846 case 0: /* BEQL */
847 goto equal_branch;
848 case 1: /* BNEL */
849 goto neq_branch;
850 case 2: /* BLEZL */
851 goto less_branch;
852 case 3: /* BGTZ */
853 goto greater_branch;
c5aa993b
JM
854 default:
855 pc += 4;
c906108c
SS
856 }
857 }
e135b889
DJ
858 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
859 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
860 {
861 int tf = itype_rt (inst) & 0x01;
862 int cnum = itype_rt (inst) >> 2;
863 int fcrcs = read_signed_register (FCRCS_REGNUM);
864 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
865
866 if (((cond >> cnum) & 0x01) == tf)
867 pc += mips32_relative_offset (inst) + 4;
868 else
869 pc += 8;
870 }
c5aa993b
JM
871 else
872 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
873 }
874 else
c5aa993b
JM
875 { /* This gets way messy */
876
c906108c 877 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 878 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 879 {
c5aa993b
JM
880 case 0: /* SPECIAL */
881 op = rtype_funct (inst);
882 switch (op)
883 {
884 case 8: /* JR */
885 case 9: /* JALR */
6c997a34
AC
886 /* Set PC to that address */
887 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
888 break;
889 default:
890 pc += 4;
891 }
892
e135b889 893 break; /* end SPECIAL */
c5aa993b 894 case 1: /* REGIMM */
c906108c 895 {
e135b889
DJ
896 op = itype_rt (inst); /* branch condition */
897 switch (op)
c906108c 898 {
c5aa993b 899 case 0: /* BLTZ */
e135b889
DJ
900 case 2: /* BLTZL */
901 case 16: /* BLTZAL */
c5aa993b 902 case 18: /* BLTZALL */
c906108c 903 less_branch:
6c997a34 904 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
905 pc += mips32_relative_offset (inst) + 4;
906 else
907 pc += 8; /* after the delay slot */
908 break;
e135b889 909 case 1: /* BGEZ */
c5aa993b
JM
910 case 3: /* BGEZL */
911 case 17: /* BGEZAL */
912 case 19: /* BGEZALL */
c906108c 913 greater_equal_branch:
6c997a34 914 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
915 pc += mips32_relative_offset (inst) + 4;
916 else
917 pc += 8; /* after the delay slot */
918 break;
e135b889 919 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
920 default:
921 pc += 4;
c906108c
SS
922 }
923 }
e135b889 924 break; /* end REGIMM */
c5aa993b
JM
925 case 2: /* J */
926 case 3: /* JAL */
927 {
928 unsigned long reg;
929 reg = jtype_target (inst) << 2;
e135b889 930 /* Upper four bits get never changed... */
c5aa993b 931 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 932 }
c5aa993b
JM
933 break;
934 /* FIXME case JALX : */
935 {
936 unsigned long reg;
937 reg = jtype_target (inst) << 2;
938 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
939 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
940 }
c5aa993b 941 break; /* The new PC will be alternate mode */
e135b889 942 case 4: /* BEQ, BEQL */
c5aa993b 943 equal_branch:
6c997a34
AC
944 if (read_signed_register (itype_rs (inst)) ==
945 read_signed_register (itype_rt (inst)))
c5aa993b
JM
946 pc += mips32_relative_offset (inst) + 4;
947 else
948 pc += 8;
949 break;
e135b889 950 case 5: /* BNE, BNEL */
c5aa993b 951 neq_branch:
6c997a34 952 if (read_signed_register (itype_rs (inst)) !=
e135b889 953 read_signed_register (itype_rt (inst)))
c5aa993b
JM
954 pc += mips32_relative_offset (inst) + 4;
955 else
956 pc += 8;
957 break;
e135b889 958 case 6: /* BLEZ, BLEZL */
c906108c 959 less_zero_branch:
6c997a34 960 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
961 pc += mips32_relative_offset (inst) + 4;
962 else
963 pc += 8;
964 break;
965 case 7:
e135b889
DJ
966 default:
967 greater_branch: /* BGTZ, BGTZL */
6c997a34 968 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
969 pc += mips32_relative_offset (inst) + 4;
970 else
971 pc += 8;
972 break;
c5aa993b
JM
973 } /* switch */
974 } /* else */
975 return pc;
976} /* mips32_next_pc */
c906108c
SS
977
978/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 979 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
980 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
981 We dont want to set a single step instruction on the extend instruction
982 either.
c5aa993b 983 */
c906108c
SS
984
985/* Lots of mips16 instruction formats */
986/* Predicting jumps requires itype,ritype,i8type
987 and their extensions extItype,extritype,extI8type
c5aa993b 988 */
c906108c
SS
989enum mips16_inst_fmts
990{
c5aa993b
JM
991 itype, /* 0 immediate 5,10 */
992 ritype, /* 1 5,3,8 */
993 rrtype, /* 2 5,3,3,5 */
994 rritype, /* 3 5,3,3,5 */
995 rrrtype, /* 4 5,3,3,3,2 */
996 rriatype, /* 5 5,3,3,1,4 */
997 shifttype, /* 6 5,3,3,3,2 */
998 i8type, /* 7 5,3,8 */
999 i8movtype, /* 8 5,3,3,5 */
1000 i8mov32rtype, /* 9 5,3,5,3 */
1001 i64type, /* 10 5,3,8 */
1002 ri64type, /* 11 5,3,3,5 */
1003 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1004 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1005 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1006 extRRItype, /* 15 5,5,5,5,3,3,5 */
1007 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1008 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1009 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1010 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1011 extRi64type, /* 20 5,6,5,5,3,3,5 */
1012 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1013};
12f02c2a
AC
1014/* I am heaping all the fields of the formats into one structure and
1015 then, only the fields which are involved in instruction extension */
c906108c 1016struct upk_mips16
c5aa993b 1017 {
12f02c2a 1018 CORE_ADDR offset;
c5aa993b
JM
1019 unsigned int regx; /* Function in i8 type */
1020 unsigned int regy;
1021 };
c906108c
SS
1022
1023
12f02c2a
AC
1024/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1025 for the bits which make up the immediatate extension. */
c906108c 1026
12f02c2a
AC
1027static CORE_ADDR
1028extended_offset (unsigned int extension)
c906108c 1029{
12f02c2a 1030 CORE_ADDR value;
c5aa993b
JM
1031 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1032 value = value << 6;
1033 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1034 value = value << 5;
1035 value |= extension & 0x01f; /* extract 4:0 */
1036 return value;
c906108c
SS
1037}
1038
1039/* Only call this function if you know that this is an extendable
1040 instruction, It wont malfunction, but why make excess remote memory references?
1041 If the immediate operands get sign extended or somthing, do it after
1042 the extension is performed.
c5aa993b 1043 */
c906108c
SS
1044/* FIXME: Every one of these cases needs to worry about sign extension
1045 when the offset is to be used in relative addressing */
1046
1047
12f02c2a 1048static unsigned int
c5aa993b 1049fetch_mips_16 (CORE_ADDR pc)
c906108c 1050{
c5aa993b
JM
1051 char buf[8];
1052 pc &= 0xfffffffe; /* clear the low order bit */
1053 target_read_memory (pc, buf, 2);
1054 return extract_unsigned_integer (buf, 2);
c906108c
SS
1055}
1056
1057static void
c5aa993b 1058unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1059 unsigned int extension,
1060 unsigned int inst,
1061 enum mips16_inst_fmts insn_format,
c5aa993b 1062 struct upk_mips16 *upk)
c906108c 1063{
12f02c2a
AC
1064 CORE_ADDR offset;
1065 int regx;
1066 int regy;
1067 switch (insn_format)
c906108c 1068 {
c5aa993b 1069 case itype:
c906108c 1070 {
12f02c2a
AC
1071 CORE_ADDR value;
1072 if (extension)
c5aa993b
JM
1073 {
1074 value = extended_offset (extension);
1075 value = value << 11; /* rom for the original value */
12f02c2a 1076 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1077 }
1078 else
c5aa993b 1079 {
12f02c2a 1080 value = inst & 0x7ff;
c5aa993b 1081 /* FIXME : Consider sign extension */
c906108c 1082 }
12f02c2a
AC
1083 offset = value;
1084 regx = -1;
1085 regy = -1;
c906108c 1086 }
c5aa993b
JM
1087 break;
1088 case ritype:
1089 case i8type:
1090 { /* A register identifier and an offset */
c906108c
SS
1091 /* Most of the fields are the same as I type but the
1092 immediate value is of a different length */
12f02c2a
AC
1093 CORE_ADDR value;
1094 if (extension)
c906108c 1095 {
c5aa993b
JM
1096 value = extended_offset (extension);
1097 value = value << 8; /* from the original instruction */
12f02c2a
AC
1098 value |= inst & 0xff; /* eleven bits from instruction */
1099 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1100 if (value & 0x4000) /* test the sign bit , bit 26 */
1101 {
1102 value &= ~0x3fff; /* remove the sign bit */
1103 value = -value;
c906108c
SS
1104 }
1105 }
c5aa993b
JM
1106 else
1107 {
12f02c2a
AC
1108 value = inst & 0xff; /* 8 bits */
1109 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1110 /* FIXME: Do sign extension , this format needs it */
1111 if (value & 0x80) /* THIS CONFUSES ME */
1112 {
1113 value &= 0xef; /* remove the sign bit */
1114 value = -value;
1115 }
c5aa993b 1116 }
12f02c2a
AC
1117 offset = value;
1118 regy = -1;
c5aa993b 1119 break;
c906108c 1120 }
c5aa993b 1121 case jalxtype:
c906108c 1122 {
c5aa993b 1123 unsigned long value;
12f02c2a
AC
1124 unsigned int nexthalf;
1125 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1126 value = value << 16;
1127 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1128 value |= nexthalf;
12f02c2a
AC
1129 offset = value;
1130 regx = -1;
1131 regy = -1;
c5aa993b 1132 break;
c906108c
SS
1133 }
1134 default:
8e65ff28
AC
1135 internal_error (__FILE__, __LINE__,
1136 "bad switch");
c906108c 1137 }
12f02c2a
AC
1138 upk->offset = offset;
1139 upk->regx = regx;
1140 upk->regy = regy;
c906108c
SS
1141}
1142
1143
c5aa993b
JM
1144static CORE_ADDR
1145add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1146{
c5aa993b 1147 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1148}
1149
12f02c2a
AC
1150static CORE_ADDR
1151extended_mips16_next_pc (CORE_ADDR pc,
1152 unsigned int extension,
1153 unsigned int insn)
c906108c 1154{
12f02c2a
AC
1155 int op = (insn >> 11);
1156 switch (op)
c906108c 1157 {
12f02c2a
AC
1158 case 2: /* Branch */
1159 {
1160 CORE_ADDR offset;
1161 struct upk_mips16 upk;
1162 unpack_mips16 (pc, extension, insn, itype, &upk);
1163 offset = upk.offset;
1164 if (offset & 0x800)
1165 {
1166 offset &= 0xeff;
1167 offset = -offset;
1168 }
1169 pc += (offset << 1) + 2;
1170 break;
1171 }
1172 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1173 {
1174 struct upk_mips16 upk;
1175 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1176 pc = add_offset_16 (pc, upk.offset);
1177 if ((insn >> 10) & 0x01) /* Exchange mode */
1178 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1179 else
1180 pc |= 0x01;
1181 break;
1182 }
1183 case 4: /* beqz */
1184 {
1185 struct upk_mips16 upk;
1186 int reg;
1187 unpack_mips16 (pc, extension, insn, ritype, &upk);
1188 reg = read_signed_register (upk.regx);
1189 if (reg == 0)
1190 pc += (upk.offset << 1) + 2;
1191 else
1192 pc += 2;
1193 break;
1194 }
1195 case 5: /* bnez */
1196 {
1197 struct upk_mips16 upk;
1198 int reg;
1199 unpack_mips16 (pc, extension, insn, ritype, &upk);
1200 reg = read_signed_register (upk.regx);
1201 if (reg != 0)
1202 pc += (upk.offset << 1) + 2;
1203 else
1204 pc += 2;
1205 break;
1206 }
1207 case 12: /* I8 Formats btez btnez */
1208 {
1209 struct upk_mips16 upk;
1210 int reg;
1211 unpack_mips16 (pc, extension, insn, i8type, &upk);
1212 /* upk.regx contains the opcode */
1213 reg = read_signed_register (24); /* Test register is 24 */
1214 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1215 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1216 /* pc = add_offset_16(pc,upk.offset) ; */
1217 pc += (upk.offset << 1) + 2;
1218 else
1219 pc += 2;
1220 break;
1221 }
1222 case 29: /* RR Formats JR, JALR, JALR-RA */
1223 {
1224 struct upk_mips16 upk;
1225 /* upk.fmt = rrtype; */
1226 op = insn & 0x1f;
1227 if (op == 0)
c5aa993b 1228 {
12f02c2a
AC
1229 int reg;
1230 upk.regx = (insn >> 8) & 0x07;
1231 upk.regy = (insn >> 5) & 0x07;
1232 switch (upk.regy)
c5aa993b 1233 {
12f02c2a
AC
1234 case 0:
1235 reg = upk.regx;
1236 break;
1237 case 1:
1238 reg = 31;
1239 break; /* Function return instruction */
1240 case 2:
1241 reg = upk.regx;
1242 break;
1243 default:
1244 reg = 31;
1245 break; /* BOGUS Guess */
c906108c 1246 }
12f02c2a 1247 pc = read_signed_register (reg);
c906108c 1248 }
12f02c2a 1249 else
c5aa993b 1250 pc += 2;
12f02c2a
AC
1251 break;
1252 }
1253 case 30:
1254 /* This is an instruction extension. Fetch the real instruction
1255 (which follows the extension) and decode things based on
1256 that. */
1257 {
1258 pc += 2;
1259 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1260 break;
1261 }
1262 default:
1263 {
1264 pc += 2;
1265 break;
1266 }
c906108c 1267 }
c5aa993b 1268 return pc;
12f02c2a 1269}
c906108c 1270
12f02c2a
AC
1271CORE_ADDR
1272mips16_next_pc (CORE_ADDR pc)
1273{
1274 unsigned int insn = fetch_mips_16 (pc);
1275 return extended_mips16_next_pc (pc, 0, insn);
1276}
1277
1278/* The mips_next_pc function supports single_step when the remote
7e73cedf 1279 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1280 It works by decoding the current instruction and predicting where a
1281 branch will go. This isnt hard because all the data is available.
1282 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1283CORE_ADDR
1284mips_next_pc (CORE_ADDR pc)
c906108c 1285{
c5aa993b
JM
1286 if (pc & 0x01)
1287 return mips16_next_pc (pc);
1288 else
1289 return mips32_next_pc (pc);
12f02c2a 1290}
c906108c
SS
1291
1292/* Guaranteed to set fci->saved_regs to some values (it never leaves it
ffabd70d
KB
1293 NULL).
1294
1295 Note: kevinb/2002-08-09: The only caller of this function is (and
1296 should remain) mips_frame_init_saved_regs(). In fact,
1297 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1298 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1299 functions should really be combined and now that there is only one
1300 caller, it should be straightforward. (Watch out for multiple returns
c4ac3e63 1301 though.) */
c906108c 1302
d28e01f4 1303static void
acdb74a0 1304mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1305{
1306 int ireg;
1307 CORE_ADDR reg_position;
1308 /* r0 bit means kernel trap */
1309 int kernel_trap;
1310 /* What registers have been saved? Bitmasks. */
1311 unsigned long gen_mask, float_mask;
1312 mips_extra_func_info_t proc_desc;
1313 t_inst inst;
1314
1315 frame_saved_regs_zalloc (fci);
1316
1317 /* If it is the frame for sigtramp, the saved registers are located
1318 in a sigcontext structure somewhere on the stack.
1319 If the stack layout for sigtramp changes we might have to change these
1320 constants and the companion fixup_sigtramp in mdebugread.c */
1321#ifndef SIGFRAME_BASE
1322/* To satisfy alignment restrictions, sigcontext is located 4 bytes
1323 above the sigtramp frame. */
1324#define SIGFRAME_BASE MIPS_REGSIZE
1325/* FIXME! Are these correct?? */
1326#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1327#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1328#define SIGFRAME_FPREGSAVE_OFF \
1329 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1330#endif
1331#ifndef SIGFRAME_REG_SIZE
1332/* FIXME! Is this correct?? */
1333#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1334#endif
1335 if (fci->signal_handler_caller)
1336 {
1337 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1338 {
c5aa993b
JM
1339 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1340 + ireg * SIGFRAME_REG_SIZE;
1341 fci->saved_regs[ireg] = reg_position;
c906108c
SS
1342 }
1343 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1344 {
c5aa993b
JM
1345 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1346 + ireg * SIGFRAME_REG_SIZE;
1347 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
1348 }
1349 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1350 return;
1351 }
1352
cce74817 1353 proc_desc = fci->extra_info->proc_desc;
c906108c
SS
1354 if (proc_desc == NULL)
1355 /* I'm not sure how/whether this can happen. Normally when we can't
1356 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1357 and set the saved_regs right away. */
1358 return;
1359
c5aa993b
JM
1360 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1361 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1362 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1363
c5aa993b
JM
1364 if ( /* In any frame other than the innermost or a frame interrupted by
1365 a signal, we assume that all registers have been saved.
1366 This assumes that all register saves in a function happen before
1367 the first function call. */
1368 (fci->next == NULL || fci->next->signal_handler_caller)
c906108c 1369
c5aa993b
JM
1370 /* In a dummy frame we know exactly where things are saved. */
1371 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1372
c5aa993b
JM
1373 /* Don't bother unless we are inside a function prologue. Outside the
1374 prologue, we know where everything is. */
c906108c 1375
c5aa993b 1376 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
c906108c 1377
c5aa993b
JM
1378 /* Not sure exactly what kernel_trap means, but if it means
1379 the kernel saves the registers without a prologue doing it,
1380 we better not examine the prologue to see whether registers
1381 have been saved yet. */
1382 && !kernel_trap)
c906108c
SS
1383 {
1384 /* We need to figure out whether the registers that the proc_desc
c5aa993b 1385 claims are saved have been saved yet. */
c906108c
SS
1386
1387 CORE_ADDR addr;
1388
1389 /* Bitmasks; set if we have found a save for the register. */
1390 unsigned long gen_save_found = 0;
1391 unsigned long float_save_found = 0;
1392 int instlen;
1393
1394 /* If the address is odd, assume this is MIPS16 code. */
1395 addr = PROC_LOW_ADDR (proc_desc);
1396 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1397
1398 /* Scan through this function's instructions preceding the current
1399 PC, and look for those that save registers. */
1400 while (addr < fci->pc)
1401 {
1402 inst = mips_fetch_instruction (addr);
1403 if (pc_is_mips16 (addr))
1404 mips16_decode_reg_save (inst, &gen_save_found);
1405 else
1406 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1407 addr += instlen;
1408 }
1409 gen_mask = gen_save_found;
1410 float_mask = float_save_found;
1411 }
1412
1413 /* Fill in the offsets for the registers which gen_mask says
1414 were saved. */
1415 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
c5aa993b 1416 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
c906108c
SS
1417 if (gen_mask & 0x80000000)
1418 {
1419 fci->saved_regs[ireg] = reg_position;
7a292a7a 1420 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1421 }
1422
1423 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1424 of that normally used by gcc. Therefore, we have to fetch the first
1425 instruction of the function, and if it's an entry instruction that
1426 saves $s0 or $s1, correct their saved addresses. */
1427 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1428 {
1429 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
c5aa993b 1430 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
c906108c
SS
1431 {
1432 int reg;
1433 int sreg_count = (inst >> 6) & 3;
c5aa993b 1434
c906108c
SS
1435 /* Check if the ra register was pushed on the stack. */
1436 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1437 if (inst & 0x20)
7a292a7a 1438 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1439
1440 /* Check if the s0 and s1 registers were pushed on the stack. */
c5aa993b 1441 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c
SS
1442 {
1443 fci->saved_regs[reg] = reg_position;
7a292a7a 1444 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1445 }
1446 }
1447 }
1448
1449 /* Fill in the offsets for the registers which float_mask says
1450 were saved. */
1451 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1452
6acdf5c7
MS
1453 /* Apparently, the freg_offset gives the offset to the first 64 bit
1454 saved.
1455
1456 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1457 designates the first saved 64 bit register.
1458
1459 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1460 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1461 FREG_OFFSET, designates the address of the lower register of the
1462 register pair. Adjust the offset so that it designates the upper
1463 register of the pair -- i.e., the address of the first saved 32
1464 bit register. */
1465
1466 if (MIPS_SAVED_REGSIZE == 4)
7a292a7a 1467 reg_position += MIPS_SAVED_REGSIZE;
c906108c
SS
1468
1469 /* Fill in the offsets for the float registers which float_mask says
1470 were saved. */
c5aa993b 1471 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
c906108c
SS
1472 if (float_mask & 0x80000000)
1473 {
c5aa993b 1474 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
7a292a7a 1475 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1476 }
1477
1478 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1479}
1480
d28e01f4
KB
1481/* Set up the 'saved_regs' array. This is a data structure containing
1482 the addresses on the stack where each register has been saved, for
1483 each stack frame. Registers that have not been saved will have
1484 zero here. The stack pointer register is special: rather than the
1485 address where the stack register has been saved, saved_regs[SP_REGNUM]
1486 will have the actual value of the previous frame's stack register. */
1487
1488static void
1489mips_frame_init_saved_regs (struct frame_info *frame)
1490{
1491 if (frame->saved_regs == NULL)
1492 {
1493 mips_find_saved_regs (frame);
1494 }
1495 frame->saved_regs[SP_REGNUM] = frame->frame;
1496}
1497
c906108c 1498static CORE_ADDR
acdb74a0 1499read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
1500{
1501 for (; fi; fi = fi->next)
1502 {
1503 /* We have to get the saved sp from the sigcontext
c5aa993b 1504 if it is a signal handler frame. */
c906108c
SS
1505 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1506 return fi->frame;
1507 else
1508 {
1509 if (fi->saved_regs == NULL)
ffabd70d 1510 FRAME_INIT_SAVED_REGS (fi);
c906108c 1511 if (fi->saved_regs[regno])
2acceee2 1512 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
c906108c
SS
1513 }
1514 }
6c997a34 1515 return read_signed_register (regno);
c906108c
SS
1516}
1517
1518/* mips_addr_bits_remove - remove useless address bits */
1519
875e1767 1520static CORE_ADDR
acdb74a0 1521mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1522{
5213ab06
AC
1523 if (GDB_TARGET_IS_MIPS64)
1524 {
4014092b 1525 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1526 {
1527 /* This hack is a work-around for existing boards using
1528 PMON, the simulator, and any other 64-bit targets that
1529 doesn't have true 64-bit addressing. On these targets,
1530 the upper 32 bits of addresses are ignored by the
1531 hardware. Thus, the PC or SP are likely to have been
1532 sign extended to all 1s by instruction sequences that
1533 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1534 code that loads an address is this:
1535 lui $r2, <upper 16 bits>
1536 ori $r2, <lower 16 bits>
1537 But the lui sign-extends the value such that the upper 32
1538 bits may be all 1s. The workaround is simply to mask off
1539 these bits. In the future, gcc may be changed to support
1540 true 64-bit addressing, and this masking will have to be
1541 disabled. */
5213ab06
AC
1542 addr &= (CORE_ADDR) 0xffffffff;
1543 }
1544 }
4014092b 1545 else if (mips_mask_address_p ())
5213ab06 1546 {
4014092b
AC
1547 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1548 masking off bits, instead, the actual target should be asking
1549 for the address to be converted to a valid pointer. */
5213ab06
AC
1550 /* Even when GDB is configured for some 32-bit targets
1551 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1552 so CORE_ADDR is 64 bits. So we still have to mask off
1553 useless bits from addresses. */
c5aa993b 1554 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1555 }
c906108c
SS
1556 return addr;
1557}
1558
9022177c
DJ
1559/* mips_software_single_step() is called just before we want to resume
1560 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1561 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1562 the target of the coming instruction and breakpoint it.
1563
1564 single_step is also called just after the inferior stops. If we had
1565 set up a simulated single-step, we undo our damage. */
1566
1567void
1568mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1569{
1570 static CORE_ADDR next_pc;
1571 typedef char binsn_quantum[BREAKPOINT_MAX];
1572 static binsn_quantum break_mem;
1573 CORE_ADDR pc;
1574
1575 if (insert_breakpoints_p)
1576 {
1577 pc = read_register (PC_REGNUM);
1578 next_pc = mips_next_pc (pc);
1579
1580 target_insert_breakpoint (next_pc, break_mem);
1581 }
1582 else
1583 target_remove_breakpoint (next_pc, break_mem);
1584}
1585
10312cc4 1586static void
acdb74a0 1587mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1588{
1589 CORE_ADDR pc, tmp;
1590
1591 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
c5aa993b 1592 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
c906108c 1593 tmp = mips_skip_stub (pc);
c5aa993b 1594 prev->pc = tmp ? tmp : pc;
c906108c
SS
1595}
1596
1597
1598CORE_ADDR
acdb74a0 1599mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1600{
1601 CORE_ADDR saved_pc;
cce74817 1602 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
1603 /* We have to get the saved pc from the sigcontext
1604 if it is a signal handler frame. */
1605 int pcreg = frame->signal_handler_caller ? PC_REGNUM
c5aa993b 1606 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1607
c5aa993b 1608 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
7a292a7a 1609 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1610 else
7a292a7a 1611 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1612
1613 return ADDR_BITS_REMOVE (saved_pc);
1614}
1615
1616static struct mips_extra_func_info temp_proc_desc;
cce74817 1617static CORE_ADDR temp_saved_regs[NUM_REGS];
c906108c
SS
1618
1619/* Set a register's saved stack address in temp_saved_regs. If an address
1620 has already been set for this register, do nothing; this way we will
1621 only recognize the first save of a given register in a function prologue.
1622 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1623
1624static void
acdb74a0 1625set_reg_offset (int regno, CORE_ADDR offset)
c906108c 1626{
cce74817
JM
1627 if (temp_saved_regs[regno] == 0)
1628 temp_saved_regs[regno] = offset;
c906108c
SS
1629}
1630
1631
1632/* Test whether the PC points to the return instruction at the
1633 end of a function. */
1634
c5aa993b 1635static int
acdb74a0 1636mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1637{
1638 if (pc_is_mips16 (pc))
1639 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1640 generates a "jr $ra"; other times it generates code to load
1641 the return address from the stack to an accessible register (such
1642 as $a3), then a "jr" using that register. This second case
1643 is almost impossible to distinguish from an indirect jump
1644 used for switch statements, so we don't even try. */
1645 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1646 else
1647 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1648}
1649
1650
1651/* This fencepost looks highly suspicious to me. Removing it also
1652 seems suspicious as it could affect remote debugging across serial
1653 lines. */
1654
1655static CORE_ADDR
acdb74a0 1656heuristic_proc_start (CORE_ADDR pc)
c906108c 1657{
c5aa993b
JM
1658 CORE_ADDR start_pc;
1659 CORE_ADDR fence;
1660 int instlen;
1661 int seen_adjsp = 0;
c906108c 1662
c5aa993b
JM
1663 pc = ADDR_BITS_REMOVE (pc);
1664 start_pc = pc;
1665 fence = start_pc - heuristic_fence_post;
1666 if (start_pc == 0)
1667 return 0;
c906108c 1668
c5aa993b
JM
1669 if (heuristic_fence_post == UINT_MAX
1670 || fence < VM_MIN_ADDRESS)
1671 fence = VM_MIN_ADDRESS;
c906108c 1672
c5aa993b 1673 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1674
c5aa993b
JM
1675 /* search back for previous return */
1676 for (start_pc -= instlen;; start_pc -= instlen)
1677 if (start_pc < fence)
1678 {
1679 /* It's not clear to me why we reach this point when
1680 stop_soon_quietly, but with this test, at least we
1681 don't print out warnings for every child forked (eg, on
1682 decstation). 22apr93 rich@cygnus.com. */
1683 if (!stop_soon_quietly)
c906108c 1684 {
c5aa993b
JM
1685 static int blurb_printed = 0;
1686
1687 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1688 paddr_nz (pc));
1689
1690 if (!blurb_printed)
c906108c 1691 {
c5aa993b
JM
1692 /* This actually happens frequently in embedded
1693 development, when you first connect to a board
1694 and your stack pointer and pc are nowhere in
1695 particular. This message needs to give people
1696 in that situation enough information to
1697 determine that it's no big deal. */
1698 printf_filtered ("\n\
cd0fc7c3
SS
1699 GDB is unable to find the start of the function at 0x%s\n\
1700and thus can't determine the size of that function's stack frame.\n\
1701This means that GDB may be unable to access that stack frame, or\n\
1702the frames below it.\n\
1703 This problem is most likely caused by an invalid program counter or\n\
1704stack pointer.\n\
1705 However, if you think GDB should simply search farther back\n\
1706from 0x%s for code which looks like the beginning of a\n\
1707function, you can increase the range of the search using the `set\n\
1708heuristic-fence-post' command.\n",
c5aa993b
JM
1709 paddr_nz (pc), paddr_nz (pc));
1710 blurb_printed = 1;
c906108c 1711 }
c906108c
SS
1712 }
1713
c5aa993b
JM
1714 return 0;
1715 }
1716 else if (pc_is_mips16 (start_pc))
1717 {
1718 unsigned short inst;
1719
1720 /* On MIPS16, any one of the following is likely to be the
1721 start of a function:
1722 entry
1723 addiu sp,-n
1724 daddiu sp,-n
1725 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1726 inst = mips_fetch_instruction (start_pc);
1727 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1728 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1729 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1730 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1731 break;
1732 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1733 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1734 seen_adjsp = 1;
1735 else
1736 seen_adjsp = 0;
1737 }
1738 else if (mips_about_to_return (start_pc))
1739 {
1740 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1741 break;
1742 }
1743
c5aa993b 1744 return start_pc;
c906108c
SS
1745}
1746
1747/* Fetch the immediate value from a MIPS16 instruction.
1748 If the previous instruction was an EXTEND, use it to extend
1749 the upper bits of the immediate value. This is a helper function
1750 for mips16_heuristic_proc_desc. */
1751
1752static int
acdb74a0
AC
1753mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1754 unsigned short inst, /* current instruction */
1755 int nbits, /* number of bits in imm field */
1756 int scale, /* scale factor to be applied to imm */
1757 int is_signed) /* is the imm field signed? */
c906108c
SS
1758{
1759 int offset;
1760
1761 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1762 {
1763 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1764 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1765 offset = 0 - (0x10000 - (offset & 0xffff));
1766 return offset | (inst & 0x1f);
1767 }
1768 else
1769 {
1770 int max_imm = 1 << nbits;
1771 int mask = max_imm - 1;
1772 int sign_bit = max_imm >> 1;
1773
1774 offset = inst & mask;
1775 if (is_signed && (offset & sign_bit))
1776 offset = 0 - (max_imm - offset);
1777 return offset * scale;
1778 }
1779}
1780
1781
1782/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1783 stream from start_pc to limit_pc. */
1784
1785static void
acdb74a0
AC
1786mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1787 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1788{
1789 CORE_ADDR cur_pc;
1790 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1791 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1792 unsigned inst = 0; /* current instruction */
1793 unsigned entry_inst = 0; /* the entry instruction */
1794 int reg, offset;
1795
c5aa993b
JM
1796 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1797 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1798
1799 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1800 {
1801 /* Save the previous instruction. If it's an EXTEND, we'll extract
1802 the immediate offset extension from it in mips16_get_imm. */
1803 prev_inst = inst;
1804
1805 /* Fetch and decode the instruction. */
1806 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1807 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1808 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1809 {
1810 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1811 if (offset < 0) /* negative stack adjustment? */
1812 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1813 else
1814 /* Exit loop if a positive stack adjustment is found, which
1815 usually means that the stack cleanup code in the function
1816 epilogue is reached. */
1817 break;
1818 }
1819 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1820 {
1821 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1822 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1823 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1824 set_reg_offset (reg, sp + offset);
1825 }
1826 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1827 {
1828 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1829 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1830 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
c906108c
SS
1831 set_reg_offset (reg, sp + offset);
1832 }
1833 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1834 {
1835 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 1836 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1837 set_reg_offset (RA_REGNUM, sp + offset);
1838 }
1839 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1840 {
1841 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 1842 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
c906108c
SS
1843 set_reg_offset (RA_REGNUM, sp + offset);
1844 }
c5aa993b 1845 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
1846 {
1847 frame_addr = sp;
1848 PROC_FRAME_REG (&temp_proc_desc) = 17;
1849 }
1850 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1851 {
1852 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1853 frame_addr = sp + offset;
1854 PROC_FRAME_REG (&temp_proc_desc) = 17;
1855 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1856 }
1857 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1858 {
1859 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1860 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1861 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1862 set_reg_offset (reg, frame_addr + offset);
1863 }
1864 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1865 {
1866 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1867 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 1868 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1869 set_reg_offset (reg, frame_addr + offset);
1870 }
c5aa993b
JM
1871 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1872 entry_inst = inst; /* save for later processing */
c906108c 1873 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 1874 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
1875 }
1876
c5aa993b
JM
1877 /* The entry instruction is typically the first instruction in a function,
1878 and it stores registers at offsets relative to the value of the old SP
1879 (before the prologue). But the value of the sp parameter to this
1880 function is the new SP (after the prologue has been executed). So we
1881 can't calculate those offsets until we've seen the entire prologue,
1882 and can calculate what the old SP must have been. */
1883 if (entry_inst != 0)
1884 {
1885 int areg_count = (entry_inst >> 8) & 7;
1886 int sreg_count = (entry_inst >> 6) & 3;
c906108c 1887
c5aa993b
JM
1888 /* The entry instruction always subtracts 32 from the SP. */
1889 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 1890
c5aa993b
JM
1891 /* Now we can calculate what the SP must have been at the
1892 start of the function prologue. */
1893 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 1894
c5aa993b
JM
1895 /* Check if a0-a3 were saved in the caller's argument save area. */
1896 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1897 {
1898 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1899 set_reg_offset (reg, sp + offset);
1900 offset += MIPS_SAVED_REGSIZE;
1901 }
c906108c 1902
c5aa993b
JM
1903 /* Check if the ra register was pushed on the stack. */
1904 offset = -4;
1905 if (entry_inst & 0x20)
1906 {
1907 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1908 set_reg_offset (RA_REGNUM, sp + offset);
1909 offset -= MIPS_SAVED_REGSIZE;
1910 }
c906108c 1911
c5aa993b
JM
1912 /* Check if the s0 and s1 registers were pushed on the stack. */
1913 for (reg = 16; reg < sreg_count + 16; reg++)
1914 {
1915 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1916 set_reg_offset (reg, sp + offset);
1917 offset -= MIPS_SAVED_REGSIZE;
1918 }
1919 }
c906108c
SS
1920}
1921
1922static void
fba45db2
KB
1923mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1924 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1925{
1926 CORE_ADDR cur_pc;
c5aa993b 1927 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 1928restart:
cce74817 1929 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 1930 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
1931 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1932 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1933 {
1934 unsigned long inst, high_word, low_word;
1935 int reg;
1936
1937 /* Fetch the instruction. */
1938 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1939
1940 /* Save some code by pre-extracting some useful fields. */
1941 high_word = (inst >> 16) & 0xffff;
1942 low_word = inst & 0xffff;
1943 reg = high_word & 0x1f;
1944
c5aa993b 1945 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
1946 || high_word == 0x23bd /* addi $sp,$sp,-i */
1947 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1948 {
1949 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 1950 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
1951 else
1952 /* Exit loop if a positive stack adjustment is found, which
1953 usually means that the stack cleanup code in the function
1954 epilogue is reached. */
1955 break;
1956 }
1957 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1958 {
c5aa993b 1959 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1960 set_reg_offset (reg, sp + low_word);
1961 }
1962 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1963 {
1964 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1965 but the register size used is only 32 bits. Make the address
1966 for the saved register point to the lower 32 bits. */
c5aa993b 1967 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
1968 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1969 }
c5aa993b 1970 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
1971 {
1972 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
1973 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1974 frame_addr = sp + low_word;
c906108c
SS
1975 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1976 {
1977 unsigned alloca_adjust;
1978 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
1979 frame_addr = read_next_frame_reg (next_frame, 30);
1980 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
1981 if (alloca_adjust > 0)
1982 {
1983 /* FP > SP + frame_size. This may be because
1984 * of an alloca or somethings similar.
1985 * Fix sp to "pre-alloca" value, and try again.
1986 */
1987 sp += alloca_adjust;
1988 goto restart;
1989 }
1990 }
1991 }
c5aa993b
JM
1992 /* move $30,$sp. With different versions of gas this will be either
1993 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1994 Accept any one of these. */
c906108c
SS
1995 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1996 {
1997 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1998 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1999 {
2000 unsigned alloca_adjust;
2001 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2002 frame_addr = read_next_frame_reg (next_frame, 30);
2003 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2004 if (alloca_adjust > 0)
2005 {
2006 /* FP > SP + frame_size. This may be because
2007 * of an alloca or somethings similar.
2008 * Fix sp to "pre-alloca" value, and try again.
2009 */
2010 sp += alloca_adjust;
2011 goto restart;
2012 }
2013 }
2014 }
c5aa993b 2015 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2016 {
c5aa993b 2017 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
c906108c
SS
2018 set_reg_offset (reg, frame_addr + low_word);
2019 }
2020 }
2021}
2022
2023static mips_extra_func_info_t
acdb74a0 2024heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2025 struct frame_info *next_frame, int cur_frame)
c906108c 2026{
479412cd
DJ
2027 CORE_ADDR sp;
2028
2029 if (cur_frame)
2030 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2031 else
2032 sp = 0;
c906108c 2033
c5aa993b
JM
2034 if (start_pc == 0)
2035 return NULL;
2036 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
cce74817 2037 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2038 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2039 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2040 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2041
2042 if (start_pc + 200 < limit_pc)
2043 limit_pc = start_pc + 200;
2044 if (pc_is_mips16 (start_pc))
2045 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2046 else
2047 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2048 return &temp_proc_desc;
2049}
2050
6c0d6680
DJ
2051struct mips_objfile_private
2052{
2053 bfd_size_type size;
2054 char *contents;
2055};
2056
2057/* Global used to communicate between non_heuristic_proc_desc and
2058 compare_pdr_entries within qsort (). */
2059static bfd *the_bfd;
2060
2061static int
2062compare_pdr_entries (const void *a, const void *b)
2063{
2064 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2065 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2066
2067 if (lhs < rhs)
2068 return -1;
2069 else if (lhs == rhs)
2070 return 0;
2071 else
2072 return 1;
2073}
2074
c906108c 2075static mips_extra_func_info_t
acdb74a0 2076non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2077{
2078 CORE_ADDR startaddr;
2079 mips_extra_func_info_t proc_desc;
c5aa993b 2080 struct block *b = block_for_pc (pc);
c906108c 2081 struct symbol *sym;
6c0d6680
DJ
2082 struct obj_section *sec;
2083 struct mips_objfile_private *priv;
2084
2085 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2086 return NULL;
c906108c
SS
2087
2088 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2089 if (addrptr)
2090 *addrptr = startaddr;
6c0d6680
DJ
2091
2092 priv = NULL;
2093
2094 sec = find_pc_section (pc);
2095 if (sec != NULL)
c906108c 2096 {
6c0d6680
DJ
2097 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2098
2099 /* Search the ".pdr" section generated by GAS. This includes most of
2100 the information normally found in ECOFF PDRs. */
2101
2102 the_bfd = sec->objfile->obfd;
2103 if (priv == NULL
2104 && (the_bfd->format == bfd_object
2105 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2106 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2107 {
2108 /* Right now GAS only outputs the address as a four-byte sequence.
2109 This means that we should not bother with this method on 64-bit
2110 targets (until that is fixed). */
2111
2112 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2113 sizeof (struct mips_objfile_private));
2114 priv->size = 0;
2115 sec->objfile->obj_private = priv;
2116 }
2117 else if (priv == NULL)
2118 {
2119 asection *bfdsec;
2120
2121 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2122 sizeof (struct mips_objfile_private));
2123
2124 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2125 if (bfdsec != NULL)
2126 {
2127 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2128 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2129 priv->size);
2130 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2131 priv->contents, 0, priv->size);
2132
2133 /* In general, the .pdr section is sorted. However, in the
2134 presence of multiple code sections (and other corner cases)
2135 it can become unsorted. Sort it so that we can use a faster
2136 binary search. */
2137 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2138 }
2139 else
2140 priv->size = 0;
2141
2142 sec->objfile->obj_private = priv;
2143 }
2144 the_bfd = NULL;
2145
2146 if (priv->size != 0)
2147 {
2148 int low, mid, high;
2149 char *ptr;
2150
2151 low = 0;
2152 high = priv->size / 32;
2153
2154 do
2155 {
2156 CORE_ADDR pdr_pc;
2157
2158 mid = (low + high) / 2;
2159
2160 ptr = priv->contents + mid * 32;
2161 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2162 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2163 SECT_OFF_TEXT (sec->objfile));
2164 if (pdr_pc == startaddr)
2165 break;
2166 if (pdr_pc > startaddr)
2167 high = mid;
2168 else
2169 low = mid + 1;
2170 }
2171 while (low != high);
2172
2173 if (low != high)
2174 {
2175 struct symbol *sym = find_pc_function (pc);
2176
2177 /* Fill in what we need of the proc_desc. */
2178 proc_desc = (mips_extra_func_info_t)
2179 obstack_alloc (&sec->objfile->psymbol_obstack,
2180 sizeof (struct mips_extra_func_info));
2181 PROC_LOW_ADDR (proc_desc) = startaddr;
2182
2183 /* Only used for dummy frames. */
2184 PROC_HIGH_ADDR (proc_desc) = 0;
2185
2186 PROC_FRAME_OFFSET (proc_desc)
2187 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2188 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2189 ptr + 24);
2190 PROC_FRAME_ADJUST (proc_desc) = 0;
2191 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2192 ptr + 4);
2193 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2194 ptr + 12);
2195 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2196 ptr + 8);
2197 PROC_FREG_OFFSET (proc_desc)
2198 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2199 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2200 ptr + 28);
2201 proc_desc->pdr.isym = (long) sym;
2202
2203 return proc_desc;
2204 }
2205 }
c906108c
SS
2206 }
2207
6c0d6680
DJ
2208 if (b == NULL)
2209 return NULL;
2210
2211 if (startaddr > BLOCK_START (b))
2212 {
2213 /* This is the "pathological" case referred to in a comment in
2214 print_frame_info. It might be better to move this check into
2215 symbol reading. */
2216 return NULL;
2217 }
2218
2219 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2220
c906108c
SS
2221 /* If we never found a PDR for this function in symbol reading, then
2222 examine prologues to find the information. */
2223 if (sym)
2224 {
2225 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2226 if (PROC_FRAME_REG (proc_desc) == -1)
2227 return NULL;
2228 else
2229 return proc_desc;
2230 }
2231 else
2232 return NULL;
2233}
2234
2235
2236static mips_extra_func_info_t
479412cd 2237find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2238{
2239 mips_extra_func_info_t proc_desc;
2240 CORE_ADDR startaddr;
2241
2242 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2243
2244 if (proc_desc)
2245 {
2246 /* IF this is the topmost frame AND
2247 * (this proc does not have debugging information OR
2248 * the PC is in the procedure prologue)
2249 * THEN create a "heuristic" proc_desc (by analyzing
2250 * the actual code) to replace the "official" proc_desc.
2251 */
2252 if (next_frame == NULL)
2253 {
2254 struct symtab_and_line val;
2255 struct symbol *proc_symbol =
c86b5b38 2256 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2257
2258 if (proc_symbol)
2259 {
2260 val = find_pc_line (BLOCK_START
c5aa993b 2261 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2262 0);
2263 val.pc = val.end ? val.end : pc;
2264 }
2265 if (!proc_symbol || pc < val.pc)
2266 {
2267 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2268 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2269 pc, next_frame, cur_frame);
c906108c
SS
2270 if (found_heuristic)
2271 proc_desc = found_heuristic;
2272 }
2273 }
2274 }
2275 else
2276 {
2277 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2278 by procedure call dummys. However, the procedures being called ought
2279 to have their own proc_descs, and even if they don't,
2280 heuristic_proc_desc knows how to create them! */
c906108c
SS
2281
2282 register struct linked_proc_info *link;
2283
2284 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2285 if (PROC_LOW_ADDR (&link->info) <= pc
2286 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2287 return &link->info;
2288
2289 if (startaddr == 0)
2290 startaddr = heuristic_proc_start (pc);
2291
2292 proc_desc =
479412cd 2293 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2294 }
2295 return proc_desc;
2296}
2297
2298static CORE_ADDR
acdb74a0
AC
2299get_frame_pointer (struct frame_info *frame,
2300 mips_extra_func_info_t proc_desc)
c906108c 2301{
c86b5b38
MS
2302 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2303 PROC_FRAME_REG (proc_desc)) +
2304 PROC_FRAME_OFFSET (proc_desc) -
2305 PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2306}
2307
2308mips_extra_func_info_t cached_proc_desc;
2309
2310CORE_ADDR
acdb74a0 2311mips_frame_chain (struct frame_info *frame)
c906108c
SS
2312{
2313 mips_extra_func_info_t proc_desc;
2314 CORE_ADDR tmp;
c5aa993b 2315 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
c906108c
SS
2316
2317 if (saved_pc == 0 || inside_entry_file (saved_pc))
2318 return 0;
2319
2320 /* Check if the PC is inside a call stub. If it is, fetch the
2321 PC of the caller of that stub. */
2322 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2323 saved_pc = tmp;
2324
2325 /* Look up the procedure descriptor for this PC. */
479412cd 2326 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2327 if (!proc_desc)
2328 return 0;
2329
2330 cached_proc_desc = proc_desc;
2331
2332 /* If no frame pointer and frame size is zero, we must be at end
2333 of stack (or otherwise hosed). If we don't check frame size,
2334 we loop forever if we see a zero size frame. */
2335 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2336 && PROC_FRAME_OFFSET (proc_desc) == 0
bf1f5b4c
MS
2337 /* The previous frame from a sigtramp frame might be frameless
2338 and have frame size zero. */
2339 && !frame->signal_handler_caller)
c906108c
SS
2340 return 0;
2341 else
2342 return get_frame_pointer (frame, proc_desc);
2343}
2344
2345void
acdb74a0 2346mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2347{
2348 int regnum;
2349
2350 /* Use proc_desc calculated in frame_chain */
2351 mips_extra_func_info_t proc_desc =
c86b5b38 2352 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
c906108c 2353
cce74817
JM
2354 fci->extra_info = (struct frame_extra_info *)
2355 frame_obstack_alloc (sizeof (struct frame_extra_info));
2356
c906108c 2357 fci->saved_regs = NULL;
cce74817 2358 fci->extra_info->proc_desc =
c906108c
SS
2359 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2360 if (proc_desc)
2361 {
2362 /* Fixup frame-pointer - only needed for top frame */
2363 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2364 Get the value of the frame relative sp, procedure might have been
2365 interrupted by a signal at it's very start. */
c906108c
SS
2366 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2367 && !PROC_DESC_IS_DUMMY (proc_desc))
2368 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2369 else
2370 fci->frame = get_frame_pointer (fci->next, proc_desc);
2371
2372 if (proc_desc == &temp_proc_desc)
2373 {
2374 char *name;
2375
2376 /* Do not set the saved registers for a sigtramp frame,
2377 mips_find_saved_registers will do that for us.
2378 We can't use fci->signal_handler_caller, it is not yet set. */
2379 find_pc_partial_function (fci->pc, &name,
c5aa993b 2380 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 2381 if (!PC_IN_SIGTRAMP (fci->pc, name))
c906108c 2382 {
c5aa993b 2383 frame_saved_regs_zalloc (fci);
cce74817 2384 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2385 fci->saved_regs[PC_REGNUM]
2386 = fci->saved_regs[RA_REGNUM];
ffabd70d
KB
2387 /* Set value of previous frame's stack pointer. Remember that
2388 saved_regs[SP_REGNUM] is special in that it contains the
2389 value of the stack pointer register. The other saved_regs
2390 values are addresses (in the inferior) at which a given
2391 register's value may be found. */
2392 fci->saved_regs[SP_REGNUM] = fci->frame;
c906108c
SS
2393 }
2394 }
2395
2396 /* hack: if argument regs are saved, guess these contain args */
cce74817
JM
2397 /* assume we can't tell how many args for now */
2398 fci->extra_info->num_args = -1;
c906108c
SS
2399 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2400 {
c5aa993b 2401 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2402 {
cce74817 2403 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2404 break;
2405 }
c5aa993b 2406 }
c906108c
SS
2407 }
2408}
2409
2410/* MIPS stack frames are almost impenetrable. When execution stops,
2411 we basically have to look at symbol information for the function
2412 that we stopped in, which tells us *which* register (if any) is
2413 the base of the frame pointer, and what offset from that register
361d1df0 2414 the frame itself is at.
c906108c
SS
2415
2416 This presents a problem when trying to examine a stack in memory
2417 (that isn't executing at the moment), using the "frame" command. We
2418 don't have a PC, nor do we have any registers except SP.
2419
2420 This routine takes two arguments, SP and PC, and tries to make the
2421 cached frames look as if these two arguments defined a frame on the
2422 cache. This allows the rest of info frame to extract the important
2423 arguments without difficulty. */
2424
2425struct frame_info *
acdb74a0 2426setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2427{
2428 if (argc != 2)
2429 error ("MIPS frame specifications require two arguments: sp and pc");
2430
2431 return create_new_frame (argv[0], argv[1]);
2432}
2433
f09ded24
AC
2434/* According to the current ABI, should the type be passed in a
2435 floating-point register (assuming that there is space)? When there
2436 is no FPU, FP are not even considered as possibile candidates for
2437 FP registers and, consequently this returns false - forces FP
2438 arguments into integer registers. */
2439
2440static int
2441fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2442{
2443 return ((typecode == TYPE_CODE_FLT
2444 || (MIPS_EABI
2445 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2446 && TYPE_NFIELDS (arg_type) == 1
2447 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2448 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2449}
2450
49e790b0
DJ
2451/* On o32, argument passing in GPRs depends on the alignment of the type being
2452 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2453
2454static int
2455mips_type_needs_double_align (struct type *type)
2456{
2457 enum type_code typecode = TYPE_CODE (type);
361d1df0 2458
49e790b0
DJ
2459 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2460 return 1;
2461 else if (typecode == TYPE_CODE_STRUCT)
2462 {
2463 if (TYPE_NFIELDS (type) < 1)
2464 return 0;
2465 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2466 }
2467 else if (typecode == TYPE_CODE_UNION)
2468 {
361d1df0 2469 int i, n;
49e790b0
DJ
2470
2471 n = TYPE_NFIELDS (type);
2472 for (i = 0; i < n; i++)
2473 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2474 return 1;
2475 return 0;
2476 }
2477 return 0;
2478}
2479
cb3d25d1
MS
2480/* Macros to round N up or down to the next A boundary;
2481 A must be a power of two. */
2482
2483#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2484#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2485
c906108c 2486CORE_ADDR
46e0f506
MS
2487mips_eabi_push_arguments (int nargs,
2488 struct value **args,
2489 CORE_ADDR sp,
2490 int struct_return,
2491 CORE_ADDR struct_addr)
c906108c
SS
2492{
2493 int argreg;
2494 int float_argreg;
2495 int argnum;
2496 int len = 0;
2497 int stack_offset = 0;
2498
c906108c 2499 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2500 are properly aligned. The stack has to be at least 64-bit
2501 aligned even on 32-bit machines, because doubles must be 64-bit
2502 aligned. For n32 and n64, stack frames need to be 128-bit
2503 aligned, so we round to this widest known alignment. */
2504
c906108c 2505 sp = ROUND_DOWN (sp, 16);
cce41527 2506 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2507
46e0f506 2508 /* Now make space on the stack for the args. We allocate more
c906108c 2509 than necessary for EABI, because the first few arguments are
46e0f506 2510 passed in registers, but that's OK. */
c906108c 2511 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2512 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2513 MIPS_STACK_ARGSIZE);
c906108c
SS
2514 sp -= ROUND_UP (len, 16);
2515
9ace0497 2516 if (mips_debug)
46e0f506
MS
2517 fprintf_unfiltered (gdb_stdlog,
2518 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
cb3d25d1 2519 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2520
c906108c
SS
2521 /* Initialize the integer and float register pointers. */
2522 argreg = A0_REGNUM;
2523 float_argreg = FPA0_REGNUM;
2524
46e0f506 2525 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2526 if (struct_return)
9ace0497
AC
2527 {
2528 if (mips_debug)
2529 fprintf_unfiltered (gdb_stdlog,
46e0f506 2530 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
cb3d25d1 2531 argreg, paddr_nz (struct_addr));
9ace0497
AC
2532 write_register (argreg++, struct_addr);
2533 }
c906108c
SS
2534
2535 /* Now load as many as possible of the first arguments into
2536 registers, and push the rest onto the stack. Loop thru args
2537 from first to last. */
2538 for (argnum = 0; argnum < nargs; argnum++)
2539 {
2540 char *val;
cb3d25d1 2541 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
ea7c478f 2542 struct value *arg = args[argnum];
c906108c
SS
2543 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2544 int len = TYPE_LENGTH (arg_type);
2545 enum type_code typecode = TYPE_CODE (arg_type);
2546
9ace0497
AC
2547 if (mips_debug)
2548 fprintf_unfiltered (gdb_stdlog,
46e0f506 2549 "mips_eabi_push_arguments: %d len=%d type=%d",
acdb74a0 2550 argnum + 1, len, (int) typecode);
9ace0497 2551
c906108c 2552 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2553 reference. */
2554 if (len > MIPS_SAVED_REGSIZE
9ace0497 2555 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2556 {
7a292a7a 2557 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2558 typecode = TYPE_CODE_PTR;
7a292a7a 2559 len = MIPS_SAVED_REGSIZE;
c906108c 2560 val = valbuf;
9ace0497
AC
2561 if (mips_debug)
2562 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2563 }
2564 else
c5aa993b 2565 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2566
2567 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2568 even-numbered floating point register. Round the FP register
2569 up before the check to see if there are any FP registers
46e0f506
MS
2570 left. Non MIPS_EABI targets also pass the FP in the integer
2571 registers so also round up normal registers. */
acdb74a0
AC
2572 if (!FP_REGISTER_DOUBLE
2573 && fp_register_arg_p (typecode, arg_type))
2574 {
2575 if ((float_argreg & 1))
2576 float_argreg++;
2577 }
c906108c
SS
2578
2579 /* Floating point arguments passed in registers have to be
2580 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2581 are passed in register pairs; the even register gets
2582 the low word, and the odd register gets the high word.
2583 On non-EABI processors, the first two floating point arguments are
2584 also copied to general registers, because MIPS16 functions
2585 don't use float registers for arguments. This duplication of
2586 arguments in general registers can't hurt non-MIPS16 functions
2587 because those registers are normally skipped. */
1012bd0e
EZ
2588 /* MIPS_EABI squeezes a struct that contains a single floating
2589 point value into an FP register instead of pushing it onto the
46e0f506 2590 stack. */
f09ded24
AC
2591 if (fp_register_arg_p (typecode, arg_type)
2592 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2593 {
2594 if (!FP_REGISTER_DOUBLE && len == 8)
2595 {
d7449b42 2596 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2597 unsigned long regval;
2598
2599 /* Write the low word of the double to the even register(s). */
c5aa993b 2600 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2601 if (mips_debug)
acdb74a0 2602 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2603 float_argreg, phex (regval, 4));
c906108c 2604 write_register (float_argreg++, regval);
c906108c
SS
2605
2606 /* Write the high word of the double to the odd register(s). */
c5aa993b 2607 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2608 if (mips_debug)
acdb74a0 2609 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2610 float_argreg, phex (regval, 4));
c906108c 2611 write_register (float_argreg++, regval);
c906108c
SS
2612 }
2613 else
2614 {
2615 /* This is a floating point value that fits entirely
2616 in a single register. */
53a5351d 2617 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2618 above to ensure that it is even register aligned. */
9ace0497
AC
2619 LONGEST regval = extract_unsigned_integer (val, len);
2620 if (mips_debug)
acdb74a0 2621 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2622 float_argreg, phex (regval, len));
c906108c 2623 write_register (float_argreg++, regval);
c906108c
SS
2624 }
2625 }
2626 else
2627 {
2628 /* Copy the argument to general registers or the stack in
2629 register-sized pieces. Large arguments are split between
2630 registers and stack. */
2631 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2632 are treated specially: Irix cc passes them in registers
2633 where gcc sometimes puts them on the stack. For maximum
2634 compatibility, we will put them in both places. */
c5aa993b 2635 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2636 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2637
f09ded24 2638 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2639 register are only written to memory. */
c906108c
SS
2640 while (len > 0)
2641 {
ebafbe83 2642 /* Remember if the argument was written to the stack. */
566f0f7a 2643 int stack_used_p = 0;
46e0f506
MS
2644 int partial_len =
2645 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2646
acdb74a0
AC
2647 if (mips_debug)
2648 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2649 partial_len);
2650
566f0f7a 2651 /* Write this portion of the argument to the stack. */
f09ded24
AC
2652 if (argreg > MIPS_LAST_ARG_REGNUM
2653 || odd_sized_struct
2654 || fp_register_arg_p (typecode, arg_type))
c906108c 2655 {
c906108c
SS
2656 /* Should shorter than int integer values be
2657 promoted to int before being stored? */
c906108c 2658 int longword_offset = 0;
9ace0497 2659 CORE_ADDR addr;
566f0f7a 2660 stack_used_p = 1;
d7449b42 2661 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2662 {
d929b26f 2663 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2664 (typecode == TYPE_CODE_INT ||
2665 typecode == TYPE_CODE_PTR ||
2666 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2667 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2668 else if ((typecode == TYPE_CODE_STRUCT ||
2669 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2670 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2671 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2672 }
c5aa993b 2673
9ace0497
AC
2674 if (mips_debug)
2675 {
cb3d25d1
MS
2676 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2677 paddr_nz (stack_offset));
2678 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2679 paddr_nz (longword_offset));
9ace0497 2680 }
361d1df0 2681
9ace0497
AC
2682 addr = sp + stack_offset + longword_offset;
2683
2684 if (mips_debug)
2685 {
2686 int i;
cb3d25d1
MS
2687 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2688 paddr_nz (addr));
9ace0497
AC
2689 for (i = 0; i < partial_len; i++)
2690 {
cb3d25d1
MS
2691 fprintf_unfiltered (gdb_stdlog, "%02x",
2692 val[i] & 0xff);
9ace0497
AC
2693 }
2694 }
2695 write_memory (addr, val, partial_len);
c906108c
SS
2696 }
2697
f09ded24
AC
2698 /* Note!!! This is NOT an else clause. Odd sized
2699 structs may go thru BOTH paths. Floating point
46e0f506 2700 arguments will not. */
566f0f7a 2701 /* Write this portion of the argument to a general
46e0f506 2702 purpose register. */
f09ded24
AC
2703 if (argreg <= MIPS_LAST_ARG_REGNUM
2704 && !fp_register_arg_p (typecode, arg_type))
c906108c 2705 {
9ace0497 2706 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2707
9ace0497 2708 if (mips_debug)
acdb74a0 2709 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2710 argreg,
2711 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2712 write_register (argreg, regval);
2713 argreg++;
c906108c 2714 }
c5aa993b 2715
c906108c
SS
2716 len -= partial_len;
2717 val += partial_len;
2718
566f0f7a
AC
2719 /* Compute the the offset into the stack at which we
2720 will copy the next parameter.
2721
566f0f7a 2722 In the new EABI (and the NABI32), the stack_offset
46e0f506 2723 only needs to be adjusted when it has been used. */
c906108c 2724
46e0f506 2725 if (stack_used_p)
d929b26f 2726 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2727 }
2728 }
9ace0497
AC
2729 if (mips_debug)
2730 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2731 }
2732
0f71a2f6
JM
2733 /* Return adjusted stack pointer. */
2734 return sp;
2735}
2736
ebafbe83
MS
2737/* N32/N64 version of push_arguments. */
2738
cb3d25d1
MS
2739CORE_ADDR
2740mips_n32n64_push_arguments (int nargs,
2741 struct value **args,
2742 CORE_ADDR sp,
2743 int struct_return,
2744 CORE_ADDR struct_addr)
2745{
2746 int argreg;
2747 int float_argreg;
2748 int argnum;
2749 int len = 0;
2750 int stack_offset = 0;
2751
2752 /* First ensure that the stack and structure return address (if any)
2753 are properly aligned. The stack has to be at least 64-bit
2754 aligned even on 32-bit machines, because doubles must be 64-bit
2755 aligned. For n32 and n64, stack frames need to be 128-bit
2756 aligned, so we round to this widest known alignment. */
2757
2758 sp = ROUND_DOWN (sp, 16);
2759 struct_addr = ROUND_DOWN (struct_addr, 16);
2760
2761 /* Now make space on the stack for the args. */
2762 for (argnum = 0; argnum < nargs; argnum++)
2763 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2764 MIPS_STACK_ARGSIZE);
2765 sp -= ROUND_UP (len, 16);
2766
2767 if (mips_debug)
2768 fprintf_unfiltered (gdb_stdlog,
2769 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2770 paddr_nz (sp), ROUND_UP (len, 16));
2771
2772 /* Initialize the integer and float register pointers. */
2773 argreg = A0_REGNUM;
2774 float_argreg = FPA0_REGNUM;
2775
46e0f506 2776 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2777 if (struct_return)
2778 {
2779 if (mips_debug)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2782 argreg, paddr_nz (struct_addr));
2783 write_register (argreg++, struct_addr);
2784 }
2785
2786 /* Now load as many as possible of the first arguments into
2787 registers, and push the rest onto the stack. Loop thru args
2788 from first to last. */
2789 for (argnum = 0; argnum < nargs; argnum++)
2790 {
2791 char *val;
2792 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2793 struct value *arg = args[argnum];
2794 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2795 int len = TYPE_LENGTH (arg_type);
2796 enum type_code typecode = TYPE_CODE (arg_type);
2797
2798 if (mips_debug)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "mips_n32n64_push_arguments: %d len=%d type=%d",
2801 argnum + 1, len, (int) typecode);
2802
2803 val = (char *) VALUE_CONTENTS (arg);
2804
2805 if (fp_register_arg_p (typecode, arg_type)
2806 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2807 {
2808 /* This is a floating point value that fits entirely
2809 in a single register. */
2810 /* On 32 bit ABI's the float_argreg is further adjusted
2811 above to ensure that it is even register aligned. */
2812 LONGEST regval = extract_unsigned_integer (val, len);
2813 if (mips_debug)
2814 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2815 float_argreg, phex (regval, len));
2816 write_register (float_argreg++, regval);
2817
2818 if (mips_debug)
2819 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2820 argreg, phex (regval, len));
2821 write_register (argreg, regval);
2822 argreg += 1;
2823 }
2824 else
2825 {
2826 /* Copy the argument to general registers or the stack in
2827 register-sized pieces. Large arguments are split between
2828 registers and stack. */
2829 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2830 are treated specially: Irix cc passes them in registers
2831 where gcc sometimes puts them on the stack. For maximum
2832 compatibility, we will put them in both places. */
2833 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2834 (len % MIPS_SAVED_REGSIZE != 0));
2835 /* Note: Floating-point values that didn't fit into an FP
2836 register are only written to memory. */
2837 while (len > 0)
2838 {
2839 /* Rememer if the argument was written to the stack. */
2840 int stack_used_p = 0;
2841 int partial_len = len < MIPS_SAVED_REGSIZE ?
2842 len : MIPS_SAVED_REGSIZE;
2843
2844 if (mips_debug)
2845 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2846 partial_len);
2847
2848 /* Write this portion of the argument to the stack. */
2849 if (argreg > MIPS_LAST_ARG_REGNUM
2850 || odd_sized_struct
2851 || fp_register_arg_p (typecode, arg_type))
2852 {
2853 /* Should shorter than int integer values be
2854 promoted to int before being stored? */
2855 int longword_offset = 0;
2856 CORE_ADDR addr;
2857 stack_used_p = 1;
2858 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2859 {
2860 if (MIPS_STACK_ARGSIZE == 8 &&
2861 (typecode == TYPE_CODE_INT ||
2862 typecode == TYPE_CODE_PTR ||
2863 typecode == TYPE_CODE_FLT) && len <= 4)
2864 longword_offset = MIPS_STACK_ARGSIZE - len;
2865 else if ((typecode == TYPE_CODE_STRUCT ||
2866 typecode == TYPE_CODE_UNION) &&
2867 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2868 longword_offset = MIPS_STACK_ARGSIZE - len;
2869 }
2870
2871 if (mips_debug)
2872 {
2873 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2874 paddr_nz (stack_offset));
2875 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2876 paddr_nz (longword_offset));
2877 }
2878
2879 addr = sp + stack_offset + longword_offset;
2880
2881 if (mips_debug)
2882 {
2883 int i;
2884 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2885 paddr_nz (addr));
2886 for (i = 0; i < partial_len; i++)
2887 {
2888 fprintf_unfiltered (gdb_stdlog, "%02x",
2889 val[i] & 0xff);
2890 }
2891 }
2892 write_memory (addr, val, partial_len);
2893 }
2894
2895 /* Note!!! This is NOT an else clause. Odd sized
2896 structs may go thru BOTH paths. Floating point
2897 arguments will not. */
2898 /* Write this portion of the argument to a general
2899 purpose register. */
2900 if (argreg <= MIPS_LAST_ARG_REGNUM
2901 && !fp_register_arg_p (typecode, arg_type))
2902 {
2903 LONGEST regval = extract_unsigned_integer (val, partial_len);
2904
2905 /* A non-floating-point argument being passed in a
2906 general register. If a struct or union, and if
2907 the remaining length is smaller than the register
2908 size, we have to adjust the register value on
2909 big endian targets.
2910
2911 It does not seem to be necessary to do the
2912 same for integral types.
2913
2914 cagney/2001-07-23: gdb/179: Also, GCC, when
2915 outputting LE O32 with sizeof (struct) <
2916 MIPS_SAVED_REGSIZE, generates a left shift as
2917 part of storing the argument in a register a
2918 register (the left shift isn't generated when
2919 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
2920 is quite possible that this is GCC contradicting
2921 the LE/O32 ABI, GDB has not been adjusted to
2922 accommodate this. Either someone needs to
2923 demonstrate that the LE/O32 ABI specifies such a
2924 left shift OR this new ABI gets identified as
2925 such and GDB gets tweaked accordingly. */
2926
2927 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2928 && partial_len < MIPS_SAVED_REGSIZE
2929 && (typecode == TYPE_CODE_STRUCT ||
2930 typecode == TYPE_CODE_UNION))
2931 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2932 TARGET_CHAR_BIT);
2933
2934 if (mips_debug)
2935 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2936 argreg,
2937 phex (regval, MIPS_SAVED_REGSIZE));
2938 write_register (argreg, regval);
2939 argreg++;
2940 }
2941
2942 len -= partial_len;
2943 val += partial_len;
2944
2945 /* Compute the the offset into the stack at which we
2946 will copy the next parameter.
2947
2948 In N32 (N64?), the stack_offset only needs to be
2949 adjusted when it has been used. */
2950
2951 if (stack_used_p)
2952 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2953 }
2954 }
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog, "\n");
2957 }
2958
2959 /* Return adjusted stack pointer. */
2960 return sp;
2961}
2962
46cac009 2963/* O32 version of push_arguments. */
ebafbe83 2964
46cac009
AC
2965static CORE_ADDR
2966mips_o32_push_arguments (int nargs,
2967 struct value **args,
2968 CORE_ADDR sp,
2969 int struct_return,
2970 CORE_ADDR struct_addr)
ebafbe83
MS
2971{
2972 int argreg;
2973 int float_argreg;
2974 int argnum;
2975 int len = 0;
2976 int stack_offset = 0;
ebafbe83
MS
2977
2978 /* First ensure that the stack and structure return address (if any)
2979 are properly aligned. The stack has to be at least 64-bit
2980 aligned even on 32-bit machines, because doubles must be 64-bit
2981 aligned. For n32 and n64, stack frames need to be 128-bit
2982 aligned, so we round to this widest known alignment. */
2983
2984 sp = ROUND_DOWN (sp, 16);
2985 struct_addr = ROUND_DOWN (struct_addr, 16);
2986
2987 /* Now make space on the stack for the args. */
2988 for (argnum = 0; argnum < nargs; argnum++)
2989 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2990 MIPS_STACK_ARGSIZE);
2991 sp -= ROUND_UP (len, 16);
2992
2993 if (mips_debug)
2994 fprintf_unfiltered (gdb_stdlog,
46cac009 2995 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
ebafbe83
MS
2996 paddr_nz (sp), ROUND_UP (len, 16));
2997
2998 /* Initialize the integer and float register pointers. */
2999 argreg = A0_REGNUM;
3000 float_argreg = FPA0_REGNUM;
3001
bcb0cc15 3002 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3003 if (struct_return)
3004 {
3005 if (mips_debug)
3006 fprintf_unfiltered (gdb_stdlog,
46cac009 3007 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3008 argreg, paddr_nz (struct_addr));
3009 write_register (argreg++, struct_addr);
3010 stack_offset += MIPS_STACK_ARGSIZE;
3011 }
3012
3013 /* Now load as many as possible of the first arguments into
3014 registers, and push the rest onto the stack. Loop thru args
3015 from first to last. */
3016 for (argnum = 0; argnum < nargs; argnum++)
3017 {
3018 char *val;
3019 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3020 struct value *arg = args[argnum];
3021 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3022 int len = TYPE_LENGTH (arg_type);
3023 enum type_code typecode = TYPE_CODE (arg_type);
3024
3025 if (mips_debug)
3026 fprintf_unfiltered (gdb_stdlog,
46cac009
AC
3027 "mips_o32_push_arguments: %d len=%d type=%d",
3028 argnum + 1, len, (int) typecode);
3029
3030 val = (char *) VALUE_CONTENTS (arg);
3031
3032 /* 32-bit ABIs always start floating point arguments in an
3033 even-numbered floating point register. Round the FP register
3034 up before the check to see if there are any FP registers
3035 left. O32/O64 targets also pass the FP in the integer
3036 registers so also round up normal registers. */
3037 if (!FP_REGISTER_DOUBLE
3038 && fp_register_arg_p (typecode, arg_type))
3039 {
3040 if ((float_argreg & 1))
3041 float_argreg++;
3042 }
3043
3044 /* Floating point arguments passed in registers have to be
3045 treated specially. On 32-bit architectures, doubles
3046 are passed in register pairs; the even register gets
3047 the low word, and the odd register gets the high word.
3048 On O32/O64, the first two floating point arguments are
3049 also copied to general registers, because MIPS16 functions
3050 don't use float registers for arguments. This duplication of
3051 arguments in general registers can't hurt non-MIPS16 functions
3052 because those registers are normally skipped. */
3053
3054 if (fp_register_arg_p (typecode, arg_type)
3055 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3056 {
3057 if (!FP_REGISTER_DOUBLE && len == 8)
3058 {
3059 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3060 unsigned long regval;
3061
3062 /* Write the low word of the double to the even register(s). */
3063 regval = extract_unsigned_integer (val + low_offset, 4);
3064 if (mips_debug)
3065 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3066 float_argreg, phex (regval, 4));
3067 write_register (float_argreg++, regval);
3068 if (mips_debug)
3069 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3070 argreg, phex (regval, 4));
3071 write_register (argreg++, regval);
3072
3073 /* Write the high word of the double to the odd register(s). */
3074 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3075 if (mips_debug)
3076 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3077 float_argreg, phex (regval, 4));
3078 write_register (float_argreg++, regval);
3079
3080 if (mips_debug)
3081 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3082 argreg, phex (regval, 4));
3083 write_register (argreg++, regval);
3084 }
3085 else
3086 {
3087 /* This is a floating point value that fits entirely
3088 in a single register. */
3089 /* On 32 bit ABI's the float_argreg is further adjusted
3090 above to ensure that it is even register aligned. */
3091 LONGEST regval = extract_unsigned_integer (val, len);
3092 if (mips_debug)
3093 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3094 float_argreg, phex (regval, len));
3095 write_register (float_argreg++, regval);
3096 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3097 registers for each argument. The below is (my
3098 guess) to ensure that the corresponding integer
3099 register has reserved the same space. */
3100 if (mips_debug)
3101 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3102 argreg, phex (regval, len));
3103 write_register (argreg, regval);
3104 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3105 }
3106 /* Reserve space for the FP register. */
3107 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3108 }
3109 else
3110 {
3111 /* Copy the argument to general registers or the stack in
3112 register-sized pieces. Large arguments are split between
3113 registers and stack. */
3114 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3115 are treated specially: Irix cc passes them in registers
3116 where gcc sometimes puts them on the stack. For maximum
3117 compatibility, we will put them in both places. */
3118 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3119 (len % MIPS_SAVED_REGSIZE != 0));
3120 /* Structures should be aligned to eight bytes (even arg registers)
3121 on MIPS_ABI_O32, if their first member has double precision. */
3122 if (MIPS_SAVED_REGSIZE < 8
3123 && mips_type_needs_double_align (arg_type))
3124 {
3125 if ((argreg & 1))
3126 argreg++;
3127 }
3128 /* Note: Floating-point values that didn't fit into an FP
3129 register are only written to memory. */
3130 while (len > 0)
3131 {
3132 /* Remember if the argument was written to the stack. */
3133 int stack_used_p = 0;
3134 int partial_len =
3135 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3136
3137 if (mips_debug)
3138 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3139 partial_len);
3140
3141 /* Write this portion of the argument to the stack. */
3142 if (argreg > MIPS_LAST_ARG_REGNUM
3143 || odd_sized_struct
3144 || fp_register_arg_p (typecode, arg_type))
3145 {
3146 /* Should shorter than int integer values be
3147 promoted to int before being stored? */
3148 int longword_offset = 0;
3149 CORE_ADDR addr;
3150 stack_used_p = 1;
3151 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3152 {
3153 if (MIPS_STACK_ARGSIZE == 8 &&
3154 (typecode == TYPE_CODE_INT ||
3155 typecode == TYPE_CODE_PTR ||
3156 typecode == TYPE_CODE_FLT) && len <= 4)
3157 longword_offset = MIPS_STACK_ARGSIZE - len;
3158 }
3159
3160 if (mips_debug)
3161 {
3162 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3163 paddr_nz (stack_offset));
3164 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3165 paddr_nz (longword_offset));
3166 }
3167
3168 addr = sp + stack_offset + longword_offset;
3169
3170 if (mips_debug)
3171 {
3172 int i;
3173 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3174 paddr_nz (addr));
3175 for (i = 0; i < partial_len; i++)
3176 {
3177 fprintf_unfiltered (gdb_stdlog, "%02x",
3178 val[i] & 0xff);
3179 }
3180 }
3181 write_memory (addr, val, partial_len);
3182 }
3183
3184 /* Note!!! This is NOT an else clause. Odd sized
3185 structs may go thru BOTH paths. Floating point
3186 arguments will not. */
3187 /* Write this portion of the argument to a general
3188 purpose register. */
3189 if (argreg <= MIPS_LAST_ARG_REGNUM
3190 && !fp_register_arg_p (typecode, arg_type))
3191 {
3192 LONGEST regval = extract_signed_integer (val, partial_len);
3193 /* Value may need to be sign extended, because
3194 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3195
3196 /* A non-floating-point argument being passed in a
3197 general register. If a struct or union, and if
3198 the remaining length is smaller than the register
3199 size, we have to adjust the register value on
3200 big endian targets.
3201
3202 It does not seem to be necessary to do the
3203 same for integral types.
3204
3205 Also don't do this adjustment on O64 binaries.
3206
3207 cagney/2001-07-23: gdb/179: Also, GCC, when
3208 outputting LE O32 with sizeof (struct) <
3209 MIPS_SAVED_REGSIZE, generates a left shift as
3210 part of storing the argument in a register a
3211 register (the left shift isn't generated when
3212 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3213 is quite possible that this is GCC contradicting
3214 the LE/O32 ABI, GDB has not been adjusted to
3215 accommodate this. Either someone needs to
3216 demonstrate that the LE/O32 ABI specifies such a
3217 left shift OR this new ABI gets identified as
3218 such and GDB gets tweaked accordingly. */
3219
3220 if (MIPS_SAVED_REGSIZE < 8
3221 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3222 && partial_len < MIPS_SAVED_REGSIZE
3223 && (typecode == TYPE_CODE_STRUCT ||
3224 typecode == TYPE_CODE_UNION))
3225 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3226 TARGET_CHAR_BIT);
3227
3228 if (mips_debug)
3229 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3230 argreg,
3231 phex (regval, MIPS_SAVED_REGSIZE));
3232 write_register (argreg, regval);
3233 argreg++;
3234
3235 /* Prevent subsequent floating point arguments from
3236 being passed in floating point registers. */
3237 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3238 }
3239
3240 len -= partial_len;
3241 val += partial_len;
3242
3243 /* Compute the the offset into the stack at which we
3244 will copy the next parameter.
3245
3246 In older ABIs, the caller reserved space for
3247 registers that contained arguments. This was loosely
3248 refered to as their "home". Consequently, space is
3249 always allocated. */
3250
3251 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3252 }
3253 }
3254 if (mips_debug)
3255 fprintf_unfiltered (gdb_stdlog, "\n");
3256 }
3257
3258 /* Return adjusted stack pointer. */
3259 return sp;
3260}
3261
3262/* O64 version of push_arguments. */
3263
3264static CORE_ADDR
3265mips_o64_push_arguments (int nargs,
3266 struct value **args,
3267 CORE_ADDR sp,
3268 int struct_return,
3269 CORE_ADDR struct_addr)
3270{
3271 int argreg;
3272 int float_argreg;
3273 int argnum;
3274 int len = 0;
3275 int stack_offset = 0;
3276
3277 /* First ensure that the stack and structure return address (if any)
3278 are properly aligned. The stack has to be at least 64-bit
3279 aligned even on 32-bit machines, because doubles must be 64-bit
3280 aligned. For n32 and n64, stack frames need to be 128-bit
3281 aligned, so we round to this widest known alignment. */
3282
3283 sp = ROUND_DOWN (sp, 16);
3284 struct_addr = ROUND_DOWN (struct_addr, 16);
3285
3286 /* Now make space on the stack for the args. */
3287 for (argnum = 0; argnum < nargs; argnum++)
3288 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3289 MIPS_STACK_ARGSIZE);
3290 sp -= ROUND_UP (len, 16);
3291
3292 if (mips_debug)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3295 paddr_nz (sp), ROUND_UP (len, 16));
3296
3297 /* Initialize the integer and float register pointers. */
3298 argreg = A0_REGNUM;
3299 float_argreg = FPA0_REGNUM;
3300
3301 /* The struct_return pointer occupies the first parameter-passing reg. */
3302 if (struct_return)
3303 {
3304 if (mips_debug)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3307 argreg, paddr_nz (struct_addr));
3308 write_register (argreg++, struct_addr);
3309 stack_offset += MIPS_STACK_ARGSIZE;
3310 }
3311
3312 /* Now load as many as possible of the first arguments into
3313 registers, and push the rest onto the stack. Loop thru args
3314 from first to last. */
3315 for (argnum = 0; argnum < nargs; argnum++)
3316 {
3317 char *val;
3318 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3319 struct value *arg = args[argnum];
3320 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3321 int len = TYPE_LENGTH (arg_type);
3322 enum type_code typecode = TYPE_CODE (arg_type);
3323
3324 if (mips_debug)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "mips_o64_push_arguments: %d len=%d type=%d",
ebafbe83
MS
3327 argnum + 1, len, (int) typecode);
3328
3329 val = (char *) VALUE_CONTENTS (arg);
3330
3331 /* 32-bit ABIs always start floating point arguments in an
3332 even-numbered floating point register. Round the FP register
3333 up before the check to see if there are any FP registers
3334 left. O32/O64 targets also pass the FP in the integer
3335 registers so also round up normal registers. */
3336 if (!FP_REGISTER_DOUBLE
3337 && fp_register_arg_p (typecode, arg_type))
3338 {
3339 if ((float_argreg & 1))
3340 float_argreg++;
3341 }
3342
3343 /* Floating point arguments passed in registers have to be
3344 treated specially. On 32-bit architectures, doubles
3345 are passed in register pairs; the even register gets
3346 the low word, and the odd register gets the high word.
3347 On O32/O64, the first two floating point arguments are
3348 also copied to general registers, because MIPS16 functions
3349 don't use float registers for arguments. This duplication of
3350 arguments in general registers can't hurt non-MIPS16 functions
3351 because those registers are normally skipped. */
3352
3353 if (fp_register_arg_p (typecode, arg_type)
3354 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3355 {
3356 if (!FP_REGISTER_DOUBLE && len == 8)
3357 {
3358 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3359 unsigned long regval;
3360
3361 /* Write the low word of the double to the even register(s). */
3362 regval = extract_unsigned_integer (val + low_offset, 4);
3363 if (mips_debug)
3364 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3365 float_argreg, phex (regval, 4));
3366 write_register (float_argreg++, regval);
3367 if (mips_debug)
3368 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3369 argreg, phex (regval, 4));
3370 write_register (argreg++, regval);
3371
3372 /* Write the high word of the double to the odd register(s). */
3373 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3374 if (mips_debug)
3375 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3376 float_argreg, phex (regval, 4));
3377 write_register (float_argreg++, regval);
3378
3379 if (mips_debug)
3380 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3381 argreg, phex (regval, 4));
3382 write_register (argreg++, regval);
3383 }
3384 else
3385 {
3386 /* This is a floating point value that fits entirely
3387 in a single register. */
3388 /* On 32 bit ABI's the float_argreg is further adjusted
3389 above to ensure that it is even register aligned. */
3390 LONGEST regval = extract_unsigned_integer (val, len);
3391 if (mips_debug)
3392 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3393 float_argreg, phex (regval, len));
3394 write_register (float_argreg++, regval);
3395 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3396 registers for each argument. The below is (my
3397 guess) to ensure that the corresponding integer
3398 register has reserved the same space. */
3399 if (mips_debug)
3400 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3401 argreg, phex (regval, len));
3402 write_register (argreg, regval);
3403 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3404 }
3405 /* Reserve space for the FP register. */
3406 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3407 }
3408 else
3409 {
3410 /* Copy the argument to general registers or the stack in
3411 register-sized pieces. Large arguments are split between
3412 registers and stack. */
3413 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3414 are treated specially: Irix cc passes them in registers
3415 where gcc sometimes puts them on the stack. For maximum
3416 compatibility, we will put them in both places. */
3417 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3418 (len % MIPS_SAVED_REGSIZE != 0));
3419 /* Structures should be aligned to eight bytes (even arg registers)
3420 on MIPS_ABI_O32, if their first member has double precision. */
3421 if (MIPS_SAVED_REGSIZE < 8
3422 && mips_type_needs_double_align (arg_type))
3423 {
3424 if ((argreg & 1))
3425 argreg++;
3426 }
3427 /* Note: Floating-point values that didn't fit into an FP
3428 register are only written to memory. */
3429 while (len > 0)
3430 {
3431 /* Remember if the argument was written to the stack. */
3432 int stack_used_p = 0;
3433 int partial_len =
3434 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3435
3436 if (mips_debug)
3437 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3438 partial_len);
3439
3440 /* Write this portion of the argument to the stack. */
3441 if (argreg > MIPS_LAST_ARG_REGNUM
3442 || odd_sized_struct
3443 || fp_register_arg_p (typecode, arg_type))
3444 {
3445 /* Should shorter than int integer values be
3446 promoted to int before being stored? */
3447 int longword_offset = 0;
3448 CORE_ADDR addr;
3449 stack_used_p = 1;
3450 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3451 {
3452 if (MIPS_STACK_ARGSIZE == 8 &&
3453 (typecode == TYPE_CODE_INT ||
3454 typecode == TYPE_CODE_PTR ||
3455 typecode == TYPE_CODE_FLT) && len <= 4)
3456 longword_offset = MIPS_STACK_ARGSIZE - len;
3457 }
3458
3459 if (mips_debug)
3460 {
3461 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3462 paddr_nz (stack_offset));
3463 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3464 paddr_nz (longword_offset));
3465 }
3466
3467 addr = sp + stack_offset + longword_offset;
3468
3469 if (mips_debug)
3470 {
3471 int i;
3472 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3473 paddr_nz (addr));
3474 for (i = 0; i < partial_len; i++)
3475 {
3476 fprintf_unfiltered (gdb_stdlog, "%02x",
3477 val[i] & 0xff);
3478 }
3479 }
3480 write_memory (addr, val, partial_len);
3481 }
3482
3483 /* Note!!! This is NOT an else clause. Odd sized
3484 structs may go thru BOTH paths. Floating point
3485 arguments will not. */
3486 /* Write this portion of the argument to a general
3487 purpose register. */
3488 if (argreg <= MIPS_LAST_ARG_REGNUM
3489 && !fp_register_arg_p (typecode, arg_type))
3490 {
3491 LONGEST regval = extract_signed_integer (val, partial_len);
3492 /* Value may need to be sign extended, because
3493 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3494
3495 /* A non-floating-point argument being passed in a
3496 general register. If a struct or union, and if
3497 the remaining length is smaller than the register
3498 size, we have to adjust the register value on
3499 big endian targets.
3500
3501 It does not seem to be necessary to do the
3502 same for integral types.
3503
3504 Also don't do this adjustment on O64 binaries.
3505
3506 cagney/2001-07-23: gdb/179: Also, GCC, when
3507 outputting LE O32 with sizeof (struct) <
3508 MIPS_SAVED_REGSIZE, generates a left shift as
3509 part of storing the argument in a register a
3510 register (the left shift isn't generated when
3511 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3512 is quite possible that this is GCC contradicting
3513 the LE/O32 ABI, GDB has not been adjusted to
3514 accommodate this. Either someone needs to
3515 demonstrate that the LE/O32 ABI specifies such a
3516 left shift OR this new ABI gets identified as
3517 such and GDB gets tweaked accordingly. */
3518
3519 if (MIPS_SAVED_REGSIZE < 8
3520 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3521 && partial_len < MIPS_SAVED_REGSIZE
3522 && (typecode == TYPE_CODE_STRUCT ||
3523 typecode == TYPE_CODE_UNION))
3524 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3525 TARGET_CHAR_BIT);
3526
3527 if (mips_debug)
3528 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3529 argreg,
3530 phex (regval, MIPS_SAVED_REGSIZE));
3531 write_register (argreg, regval);
3532 argreg++;
3533
3534 /* Prevent subsequent floating point arguments from
3535 being passed in floating point registers. */
3536 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3537 }
3538
3539 len -= partial_len;
3540 val += partial_len;
3541
3542 /* Compute the the offset into the stack at which we
3543 will copy the next parameter.
3544
3545 In older ABIs, the caller reserved space for
3546 registers that contained arguments. This was loosely
3547 refered to as their "home". Consequently, space is
3548 always allocated. */
3549
3550 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3551 }
3552 }
3553 if (mips_debug)
3554 fprintf_unfiltered (gdb_stdlog, "\n");
3555 }
3556
3557 /* Return adjusted stack pointer. */
3558 return sp;
3559}
3560
0f71a2f6 3561CORE_ADDR
acdb74a0 3562mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
0f71a2f6 3563{
c906108c
SS
3564 /* Set the return address register to point to the entry
3565 point of the program, where a breakpoint lies in wait. */
c5aa993b 3566 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
c906108c
SS
3567 return sp;
3568}
3569
3570static void
c5aa993b 3571mips_push_register (CORE_ADDR * sp, int regno)
c906108c 3572{
cb3d25d1 3573 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
3574 int regsize;
3575 int offset;
3576 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3577 {
3578 regsize = MIPS_SAVED_REGSIZE;
d7449b42 3579 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
3580 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3581 : 0);
3582 }
3583 else
3584 {
3585 regsize = REGISTER_RAW_SIZE (regno);
3586 offset = 0;
3587 }
c906108c
SS
3588 *sp -= regsize;
3589 read_register_gen (regno, buffer);
7a292a7a 3590 write_memory (*sp, buffer + offset, regsize);
c906108c
SS
3591}
3592
3593/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3594#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3595
3596void
acdb74a0 3597mips_push_dummy_frame (void)
c906108c
SS
3598{
3599 int ireg;
c5aa993b
JM
3600 struct linked_proc_info *link = (struct linked_proc_info *)
3601 xmalloc (sizeof (struct linked_proc_info));
c906108c 3602 mips_extra_func_info_t proc_desc = &link->info;
6c997a34 3603 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
c906108c
SS
3604 CORE_ADDR old_sp = sp;
3605 link->next = linked_proc_desc_table;
3606 linked_proc_desc_table = link;
3607
3608/* FIXME! are these correct ? */
c5aa993b 3609#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
c906108c
SS
3610#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3611#define FLOAT_REG_SAVE_MASK MASK(0,19)
3612#define FLOAT_SINGLE_REG_SAVE_MASK \
3613 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3614 /*
3615 * The registers we must save are all those not preserved across
3616 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3617 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3618 * and FP Control/Status registers.
361d1df0 3619 *
c906108c
SS
3620 *
3621 * Dummy frame layout:
3622 * (high memory)
c5aa993b
JM
3623 * Saved PC
3624 * Saved MMHI, MMLO, FPC_CSR
3625 * Saved R31
3626 * Saved R28
3627 * ...
3628 * Saved R1
c906108c
SS
3629 * Saved D18 (i.e. F19, F18)
3630 * ...
3631 * Saved D0 (i.e. F1, F0)
c5aa993b 3632 * Argument build area and stack arguments written via mips_push_arguments
c906108c
SS
3633 * (low memory)
3634 */
3635
3636 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
c5aa993b
JM
3637 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3638 PROC_FRAME_OFFSET (proc_desc) = 0;
3639 PROC_FRAME_ADJUST (proc_desc) = 0;
c906108c
SS
3640 mips_push_register (&sp, PC_REGNUM);
3641 mips_push_register (&sp, HI_REGNUM);
3642 mips_push_register (&sp, LO_REGNUM);
3643 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3644
3645 /* Save general CPU registers */
c5aa993b 3646 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
c906108c 3647 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
c5aa993b
JM
3648 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3649 for (ireg = 32; --ireg >= 0;)
3650 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3651 mips_push_register (&sp, ireg);
3652
3653 /* Save floating point registers starting with high order word */
c5aa993b 3654 PROC_FREG_MASK (proc_desc) =
c906108c
SS
3655 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3656 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3657 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3658 from FP. */
c5aa993b
JM
3659 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3660 for (ireg = 32; --ireg >= 0;)
3661 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
c906108c
SS
3662 mips_push_register (&sp, ireg + FP0_REGNUM);
3663
3664 /* Update the frame pointer for the call dummy and the stack pointer.
3665 Set the procedure's starting and ending addresses to point to the
3666 call dummy address at the entry point. */
3667 write_register (PUSH_FP_REGNUM, old_sp);
3668 write_register (SP_REGNUM, sp);
c5aa993b
JM
3669 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3670 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3671 SET_PROC_DESC_IS_DUMMY (proc_desc);
3672 PROC_PC_REG (proc_desc) = RA_REGNUM;
c906108c
SS
3673}
3674
3675void
acdb74a0 3676mips_pop_frame (void)
c906108c
SS
3677{
3678 register int regnum;
3679 struct frame_info *frame = get_current_frame ();
3680 CORE_ADDR new_sp = FRAME_FP (frame);
3681
cce74817 3682 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 3683
c5aa993b 3684 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c 3685 if (frame->saved_regs == NULL)
ffabd70d 3686 FRAME_INIT_SAVED_REGS (frame);
c906108c 3687 for (regnum = 0; regnum < NUM_REGS; regnum++)
bf1f5b4c
MS
3688 {
3689 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3690 && frame->saved_regs[regnum])
3691 write_register (regnum,
3692 read_memory_integer (frame->saved_regs[regnum],
3693 MIPS_SAVED_REGSIZE));
3694 }
c906108c
SS
3695 write_register (SP_REGNUM, new_sp);
3696 flush_cached_frames ();
3697
c5aa993b 3698 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3699 {
3700 struct linked_proc_info *pi_ptr, *prev_ptr;
3701
3702 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3703 pi_ptr != NULL;
3704 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3705 {
3706 if (&pi_ptr->info == proc_desc)
3707 break;
3708 }
3709
3710 if (pi_ptr == NULL)
3711 error ("Can't locate dummy extra frame info\n");
3712
3713 if (prev_ptr != NULL)
3714 prev_ptr->next = pi_ptr->next;
3715 else
3716 linked_proc_desc_table = pi_ptr->next;
3717
b8c9b27d 3718 xfree (pi_ptr);
c906108c
SS
3719
3720 write_register (HI_REGNUM,
c5aa993b 3721 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3722 MIPS_SAVED_REGSIZE));
c906108c 3723 write_register (LO_REGNUM,
c5aa993b 3724 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3725 MIPS_SAVED_REGSIZE));
c906108c
SS
3726 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3727 write_register (FCRCS_REGNUM,
c5aa993b 3728 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3729 MIPS_SAVED_REGSIZE));
c906108c
SS
3730 }
3731}
3732
dd824b04
DJ
3733/* Floating point register management.
3734
3735 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3736 64bit operations, these early MIPS cpus treat fp register pairs
3737 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3738 registers and offer a compatibility mode that emulates the MIPS2 fp
3739 model. When operating in MIPS2 fp compat mode, later cpu's split
3740 double precision floats into two 32-bit chunks and store them in
3741 consecutive fp regs. To display 64-bit floats stored in this
3742 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3743 Throw in user-configurable endianness and you have a real mess.
3744
3745 The way this works is:
3746 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3747 double-precision value will be split across two logical registers.
3748 The lower-numbered logical register will hold the low-order bits,
3749 regardless of the processor's endianness.
3750 - If we are on a 64-bit processor, and we are looking for a
3751 single-precision value, it will be in the low ordered bits
3752 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3753 save slot in memory.
3754 - If we are in 64-bit mode, everything is straightforward.
3755
3756 Note that this code only deals with "live" registers at the top of the
3757 stack. We will attempt to deal with saved registers later, when
3758 the raw/cooked register interface is in place. (We need a general
3759 interface that can deal with dynamic saved register sizes -- fp
3760 regs could be 32 bits wide in one frame and 64 on the frame above
3761 and below). */
3762
67b2c998
DJ
3763static struct type *
3764mips_float_register_type (void)
3765{
361d1df0 3766 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3767 return builtin_type_ieee_single_big;
3768 else
3769 return builtin_type_ieee_single_little;
3770}
3771
3772static struct type *
3773mips_double_register_type (void)
3774{
361d1df0 3775 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3776 return builtin_type_ieee_double_big;
3777 else
3778 return builtin_type_ieee_double_little;
3779}
3780
dd824b04
DJ
3781/* Copy a 32-bit single-precision value from the current frame
3782 into rare_buffer. */
3783
3784static void
3785mips_read_fp_register_single (int regno, char *rare_buffer)
3786{
3787 int raw_size = REGISTER_RAW_SIZE (regno);
3788 char *raw_buffer = alloca (raw_size);
3789
cda5a58a 3790 if (!frame_register_read (selected_frame, regno, raw_buffer))
dd824b04
DJ
3791 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3792 if (raw_size == 8)
3793 {
3794 /* We have a 64-bit value for this register. Find the low-order
3795 32 bits. */
3796 int offset;
3797
3798 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3799 offset = 4;
3800 else
3801 offset = 0;
3802
3803 memcpy (rare_buffer, raw_buffer + offset, 4);
3804 }
3805 else
3806 {
3807 memcpy (rare_buffer, raw_buffer, 4);
3808 }
3809}
3810
3811/* Copy a 64-bit double-precision value from the current frame into
3812 rare_buffer. This may include getting half of it from the next
3813 register. */
3814
3815static void
3816mips_read_fp_register_double (int regno, char *rare_buffer)
3817{
3818 int raw_size = REGISTER_RAW_SIZE (regno);
3819
3820 if (raw_size == 8 && !mips2_fp_compat ())
3821 {
3822 /* We have a 64-bit value for this register, and we should use
3823 all 64 bits. */
cda5a58a 3824 if (!frame_register_read (selected_frame, regno, rare_buffer))
dd824b04
DJ
3825 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3826 }
3827 else
3828 {
3829 if ((regno - FP0_REGNUM) & 1)
3830 internal_error (__FILE__, __LINE__,
3831 "mips_read_fp_register_double: bad access to "
3832 "odd-numbered FP register");
3833
3834 /* mips_read_fp_register_single will find the correct 32 bits from
3835 each register. */
3836 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3837 {
3838 mips_read_fp_register_single (regno, rare_buffer + 4);
3839 mips_read_fp_register_single (regno + 1, rare_buffer);
3840 }
361d1df0 3841 else
dd824b04
DJ
3842 {
3843 mips_read_fp_register_single (regno, rare_buffer);
3844 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3845 }
3846 }
3847}
3848
c906108c 3849static void
acdb74a0 3850mips_print_register (int regnum, int all)
c906108c 3851{
119d55d8 3852 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
3853
3854 /* Get the data in raw format. */
cda5a58a 3855 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
3856 {
3857 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3858 return;
3859 }
3860
dd824b04
DJ
3861 /* If we have a actual 32-bit floating point register (or we are in
3862 32-bit compatibility mode), and the register is even-numbered,
3863 also print it as a double (spanning two registers). */
c906108c 3864 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
dd824b04
DJ
3865 && (REGISTER_RAW_SIZE (regnum) == 4
3866 || mips2_fp_compat ())
c5aa993b 3867 && !((regnum - FP0_REGNUM) & 1))
dd824b04 3868 {
cb3d25d1 3869 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
c906108c 3870
dd824b04 3871 mips_read_fp_register_double (regnum, dbuffer);
c906108c 3872
dd824b04 3873 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
67b2c998 3874 val_print (mips_double_register_type (), dbuffer, 0, 0,
dd824b04
DJ
3875 gdb_stdout, 0, 1, 0, Val_pretty_default);
3876 printf_filtered ("); ");
3877 }
c906108c
SS
3878 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3879
3880 /* The problem with printing numeric register names (r26, etc.) is that
3881 the user can't use them on input. Probably the best solution is to
3882 fix it so that either the numeric or the funky (a2, etc.) names
3883 are accepted on input. */
3884 if (regnum < MIPS_NUMREGS)
3885 printf_filtered ("(r%d): ", regnum);
3886 else
3887 printf_filtered (": ");
3888
3889 /* If virtual format is floating, print it that way. */
3890 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
dd824b04
DJ
3891 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
3892 {
3893 /* We have a meaningful 64-bit value in this register. Show
3894 it as a 32-bit float and a 64-bit double. */
d7449b42 3895 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
c906108c
SS
3896
3897 printf_filtered (" (float) ");
67b2c998 3898 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
c906108c
SS
3899 gdb_stdout, 0, 1, 0, Val_pretty_default);
3900 printf_filtered (", (double) ");
67b2c998 3901 val_print (mips_double_register_type (), raw_buffer, 0, 0,
c906108c
SS
3902 gdb_stdout, 0, 1, 0, Val_pretty_default);
3903 }
3904 else
3905 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
3906 gdb_stdout, 0, 1, 0, Val_pretty_default);
3907 /* Else print as integer in hex. */
3908 else
ed9a39eb
JM
3909 {
3910 int offset;
3911
d7449b42 3912 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
ed9a39eb
JM
3913 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
3914 else
3915 offset = 0;
361d1df0 3916
ed9a39eb
JM
3917 print_scalar_formatted (raw_buffer + offset,
3918 REGISTER_VIRTUAL_TYPE (regnum),
3919 'x', 0, gdb_stdout);
3920 }
c906108c
SS
3921}
3922
361d1df0 3923/* Replacement for generic do_registers_info.
c906108c
SS
3924 Print regs in pretty columns. */
3925
3926static int
acdb74a0 3927do_fp_register_row (int regnum)
c5aa993b 3928{ /* do values for FP (float) regs */
dd824b04 3929 char *raw_buffer;
c906108c
SS
3930 double doub, flt1, flt2; /* doubles extracted from raw hex data */
3931 int inv1, inv2, inv3;
c5aa993b 3932
dd824b04 3933 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 3934
dd824b04 3935 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 3936 {
dd824b04
DJ
3937 /* 4-byte registers: we can fit two registers per row. */
3938 /* Also print every pair of 4-byte regs as an 8-byte double. */
3939 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 3940 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 3941
dd824b04 3942 mips_read_fp_register_single (regnum + 1, raw_buffer);
67b2c998 3943 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
dd824b04
DJ
3944
3945 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 3946 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 3947
1adad886
AC
3948 printf_filtered (" %-5s", REGISTER_NAME (regnum));
3949 if (inv1)
3950 printf_filtered (": <invalid float>");
3951 else
3952 printf_filtered ("%-17.9g", flt1);
3953
3954 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
3955 if (inv2)
3956 printf_filtered (": <invalid float>");
3957 else
3958 printf_filtered ("%-17.9g", flt2);
3959
3960 printf_filtered (" dbl: ");
3961 if (inv3)
3962 printf_filtered ("<invalid double>");
3963 else
3964 printf_filtered ("%-24.17g", doub);
3965 printf_filtered ("\n");
3966
c906108c 3967 /* may want to do hex display here (future enhancement) */
c5aa993b 3968 regnum += 2;
c906108c
SS
3969 }
3970 else
dd824b04
DJ
3971 {
3972 /* Eight byte registers: print each one as float AND as double. */
3973 mips_read_fp_register_single (regnum, raw_buffer);
67b2c998 3974 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
c906108c 3975
dd824b04 3976 mips_read_fp_register_double (regnum, raw_buffer);
67b2c998 3977 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
361d1df0 3978
1adad886
AC
3979 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
3980 if (inv1)
3981 printf_filtered ("<invalid float>");
3982 else
3983 printf_filtered ("flt: %-17.9g", flt1);
3984
3985 printf_filtered (" dbl: ");
3986 if (inv3)
3987 printf_filtered ("<invalid double>");
3988 else
3989 printf_filtered ("%-24.17g", doub);
3990
3991 printf_filtered ("\n");
c906108c
SS
3992 /* may want to do hex display here (future enhancement) */
3993 regnum++;
3994 }
3995 return regnum;
3996}
3997
3998/* Print a row's worth of GP (int) registers, with name labels above */
3999
4000static int
acdb74a0 4001do_gp_register_row (int regnum)
c906108c
SS
4002{
4003 /* do values for GP (int) regs */
cb3d25d1 4004 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
c906108c
SS
4005 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4006 int col, byte;
4007 int start_regnum = regnum;
4008 int numregs = NUM_REGS;
4009
4010
4011 /* For GP registers, we print a separate row of names above the vals */
4012 printf_filtered (" ");
4013 for (col = 0; col < ncols && regnum < numregs; regnum++)
4014 {
4015 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4016 continue; /* unused register */
c906108c 4017 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b
JM
4018 break; /* end the row: reached FP register */
4019 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
c906108c
SS
4020 REGISTER_NAME (regnum));
4021 col++;
4022 }
c5aa993b 4023 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
c906108c
SS
4024 start_regnum); /* print the R0 to R31 names */
4025
4026 regnum = start_regnum; /* go back to start of row */
4027 /* now print the values in hex, 4 or 8 to the row */
4028 for (col = 0; col < ncols && regnum < numregs; regnum++)
4029 {
4030 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4031 continue; /* unused register */
c906108c 4032 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4033 break; /* end row: reached FP register */
c906108c 4034 /* OK: get the data in raw format. */
cda5a58a 4035 if (!frame_register_read (selected_frame, regnum, raw_buffer))
c906108c
SS
4036 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4037 /* pad small registers */
43e526b9 4038 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4039 printf_filtered (" ");
4040 /* Now print the register value in hex, endian order. */
d7449b42 4041 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4042 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4043 byte < REGISTER_RAW_SIZE (regnum);
4044 byte++)
c906108c
SS
4045 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4046 else
43e526b9
JM
4047 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4048 byte >= 0;
4049 byte--)
c906108c
SS
4050 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4051 printf_filtered (" ");
4052 col++;
4053 }
c5aa993b 4054 if (col > 0) /* ie. if we actually printed anything... */
c906108c
SS
4055 printf_filtered ("\n");
4056
4057 return regnum;
4058}
4059
4060/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4061
bf1f5b4c 4062static void
acdb74a0 4063mips_do_registers_info (int regnum, int fpregs)
c906108c 4064{
c5aa993b 4065 if (regnum != -1) /* do one specified register */
c906108c
SS
4066 {
4067 if (*(REGISTER_NAME (regnum)) == '\0')
4068 error ("Not a valid register for the current processor type");
4069
4070 mips_print_register (regnum, 0);
4071 printf_filtered ("\n");
4072 }
c5aa993b
JM
4073 else
4074 /* do all (or most) registers */
c906108c
SS
4075 {
4076 regnum = 0;
4077 while (regnum < NUM_REGS)
4078 {
c5aa993b
JM
4079 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4080 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
c906108c
SS
4081 regnum = do_fp_register_row (regnum); /* FP regs */
4082 else
4083 regnum += MIPS_NUMREGS; /* skip floating point regs */
4084 else
4085 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4086 }
4087 }
4088}
4089
4090/* Return number of args passed to a frame. described by FIP.
4091 Can return -1, meaning no way to tell. */
4092
4093int
acdb74a0 4094mips_frame_num_args (struct frame_info *frame)
c906108c 4095{
c906108c
SS
4096 return -1;
4097}
4098
4099/* Is this a branch with a delay slot? */
4100
a14ed312 4101static int is_delayed (unsigned long);
c906108c
SS
4102
4103static int
acdb74a0 4104is_delayed (unsigned long insn)
c906108c
SS
4105{
4106 int i;
4107 for (i = 0; i < NUMOPCODES; ++i)
4108 if (mips_opcodes[i].pinfo != INSN_MACRO
4109 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4110 break;
4111 return (i < NUMOPCODES
4112 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4113 | INSN_COND_BRANCH_DELAY
4114 | INSN_COND_BRANCH_LIKELY)));
4115}
4116
4117int
acdb74a0 4118mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4119{
4120 char buf[MIPS_INSTLEN];
4121
4122 /* There is no branch delay slot on MIPS16. */
4123 if (pc_is_mips16 (pc))
4124 return 0;
4125
4126 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4127 /* If error reading memory, guess that it is not a delayed branch. */
4128 return 0;
c5aa993b 4129 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4130}
4131
4132
4133/* Skip the PC past function prologue instructions (32-bit version).
4134 This is a helper function for mips_skip_prologue. */
4135
4136static CORE_ADDR
f7b9e9fc 4137mips32_skip_prologue (CORE_ADDR pc)
c906108c 4138{
c5aa993b
JM
4139 t_inst inst;
4140 CORE_ADDR end_pc;
4141 int seen_sp_adjust = 0;
4142 int load_immediate_bytes = 0;
4143
4144 /* Skip the typical prologue instructions. These are the stack adjustment
4145 instruction and the instructions that save registers on the stack
4146 or in the gcc frame. */
4147 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4148 {
4149 unsigned long high_word;
c906108c 4150
c5aa993b
JM
4151 inst = mips_fetch_instruction (pc);
4152 high_word = (inst >> 16) & 0xffff;
c906108c 4153
c5aa993b
JM
4154 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4155 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4156 seen_sp_adjust = 1;
4157 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4158 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4159 seen_sp_adjust = 1;
4160 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4161 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4162 && (inst & 0x001F0000)) /* reg != $zero */
4163 continue;
4164
4165 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4166 continue;
4167 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4168 /* sx reg,n($s8) */
4169 continue; /* reg != $zero */
4170
4171 /* move $s8,$sp. With different versions of gas this will be either
4172 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4173 Accept any one of these. */
4174 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4175 continue;
4176
4177 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4178 continue;
4179 else if (high_word == 0x3c1c) /* lui $gp,n */
4180 continue;
4181 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4182 continue;
4183 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4184 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4185 continue;
4186 /* The following instructions load $at or $t0 with an immediate
4187 value in preparation for a stack adjustment via
4188 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4189 a local variable, so we accept them only before a stack adjustment
4190 instruction was seen. */
4191 else if (!seen_sp_adjust)
4192 {
4193 if (high_word == 0x3c01 || /* lui $at,n */
4194 high_word == 0x3c08) /* lui $t0,n */
4195 {
4196 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4197 continue;
4198 }
4199 else if (high_word == 0x3421 || /* ori $at,$at,n */
4200 high_word == 0x3508 || /* ori $t0,$t0,n */
4201 high_word == 0x3401 || /* ori $at,$zero,n */
4202 high_word == 0x3408) /* ori $t0,$zero,n */
4203 {
4204 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4205 continue;
4206 }
4207 else
4208 break;
4209 }
4210 else
4211 break;
c906108c
SS
4212 }
4213
c5aa993b
JM
4214 /* In a frameless function, we might have incorrectly
4215 skipped some load immediate instructions. Undo the skipping
4216 if the load immediate was not followed by a stack adjustment. */
4217 if (load_immediate_bytes && !seen_sp_adjust)
4218 pc -= load_immediate_bytes;
4219 return pc;
c906108c
SS
4220}
4221
4222/* Skip the PC past function prologue instructions (16-bit version).
4223 This is a helper function for mips_skip_prologue. */
4224
4225static CORE_ADDR
f7b9e9fc 4226mips16_skip_prologue (CORE_ADDR pc)
c906108c 4227{
c5aa993b
JM
4228 CORE_ADDR end_pc;
4229 int extend_bytes = 0;
4230 int prev_extend_bytes;
c906108c 4231
c5aa993b
JM
4232 /* Table of instructions likely to be found in a function prologue. */
4233 static struct
c906108c
SS
4234 {
4235 unsigned short inst;
4236 unsigned short mask;
c5aa993b
JM
4237 }
4238 table[] =
4239 {
c906108c 4240 {
c5aa993b
JM
4241 0x6300, 0xff00
4242 }
4243 , /* addiu $sp,offset */
4244 {
4245 0xfb00, 0xff00
4246 }
4247 , /* daddiu $sp,offset */
4248 {
4249 0xd000, 0xf800
4250 }
4251 , /* sw reg,n($sp) */
4252 {
4253 0xf900, 0xff00
4254 }
4255 , /* sd reg,n($sp) */
4256 {
4257 0x6200, 0xff00
4258 }
4259 , /* sw $ra,n($sp) */
4260 {
4261 0xfa00, 0xff00
4262 }
4263 , /* sd $ra,n($sp) */
4264 {
4265 0x673d, 0xffff
4266 }
4267 , /* move $s1,sp */
4268 {
4269 0xd980, 0xff80
4270 }
4271 , /* sw $a0-$a3,n($s1) */
4272 {
4273 0x6704, 0xff1c
4274 }
4275 , /* move reg,$a0-$a3 */
4276 {
4277 0xe809, 0xf81f
4278 }
4279 , /* entry pseudo-op */
4280 {
4281 0x0100, 0xff00
4282 }
4283 , /* addiu $s1,$sp,n */
4284 {
4285 0, 0
4286 } /* end of table marker */
4287 };
4288
4289 /* Skip the typical prologue instructions. These are the stack adjustment
4290 instruction and the instructions that save registers on the stack
4291 or in the gcc frame. */
4292 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4293 {
4294 unsigned short inst;
4295 int i;
c906108c 4296
c5aa993b 4297 inst = mips_fetch_instruction (pc);
c906108c 4298
c5aa993b
JM
4299 /* Normally we ignore an extend instruction. However, if it is
4300 not followed by a valid prologue instruction, we must adjust
4301 the pc back over the extend so that it won't be considered
4302 part of the prologue. */
4303 if ((inst & 0xf800) == 0xf000) /* extend */
4304 {
4305 extend_bytes = MIPS16_INSTLEN;
4306 continue;
4307 }
4308 prev_extend_bytes = extend_bytes;
4309 extend_bytes = 0;
c906108c 4310
c5aa993b
JM
4311 /* Check for other valid prologue instructions besides extend. */
4312 for (i = 0; table[i].mask != 0; i++)
4313 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4314 break;
4315 if (table[i].mask != 0) /* it was in table? */
4316 continue; /* ignore it */
4317 else
4318 /* non-prologue */
4319 {
4320 /* Return the current pc, adjusted backwards by 2 if
4321 the previous instruction was an extend. */
4322 return pc - prev_extend_bytes;
4323 }
c906108c
SS
4324 }
4325 return pc;
4326}
4327
4328/* To skip prologues, I use this predicate. Returns either PC itself
4329 if the code at PC does not look like a function prologue; otherwise
4330 returns an address that (if we're lucky) follows the prologue. If
4331 LENIENT, then we must skip everything which is involved in setting
4332 up the frame (it's OK to skip more, just so long as we don't skip
4333 anything which might clobber the registers which are being saved.
4334 We must skip more in the case where part of the prologue is in the
4335 delay slot of a non-prologue instruction). */
4336
4337CORE_ADDR
f7b9e9fc 4338mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4339{
4340 /* See if we can determine the end of the prologue via the symbol table.
4341 If so, then return either PC, or the PC after the prologue, whichever
4342 is greater. */
4343
4344 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4345
4346 if (post_prologue_pc != 0)
4347 return max (pc, post_prologue_pc);
4348
4349 /* Can't determine prologue from the symbol table, need to examine
4350 instructions. */
4351
4352 if (pc_is_mips16 (pc))
f7b9e9fc 4353 return mips16_skip_prologue (pc);
c906108c 4354 else
f7b9e9fc 4355 return mips32_skip_prologue (pc);
c906108c 4356}
c906108c 4357
7a292a7a
SS
4358/* Determine how a return value is stored within the MIPS register
4359 file, given the return type `valtype'. */
4360
4361struct return_value_word
4362{
4363 int len;
4364 int reg;
4365 int reg_offset;
4366 int buf_offset;
4367};
4368
7a292a7a 4369static void
acdb74a0
AC
4370return_value_location (struct type *valtype,
4371 struct return_value_word *hi,
4372 struct return_value_word *lo)
7a292a7a
SS
4373{
4374 int len = TYPE_LENGTH (valtype);
c5aa993b 4375
7a292a7a
SS
4376 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4377 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4378 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4379 {
4380 if (!FP_REGISTER_DOUBLE && len == 8)
4381 {
4382 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4383 spread them across a floating-point register pair. */
d7449b42
AC
4384 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4385 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4386 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4387 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4388 ? 4 : 0);
4389 hi->reg_offset = lo->reg_offset;
4390 lo->reg = FP0_REGNUM + 0;
4391 hi->reg = FP0_REGNUM + 1;
4392 lo->len = 4;
4393 hi->len = 4;
4394 }
4395 else
4396 {
4397 /* The floating point value fits in a single floating-point
c5aa993b 4398 register. */
d7449b42 4399 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4400 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4401 && len == 4)
4402 ? 4 : 0);
4403 lo->reg = FP0_REGNUM;
4404 lo->len = len;
4405 lo->buf_offset = 0;
4406 hi->len = 0;
4407 hi->reg_offset = 0;
4408 hi->buf_offset = 0;
4409 hi->reg = 0;
4410 }
4411 }
4412 else
4413 {
4414 /* Locate a result possibly spread across two registers. */
4415 int regnum = 2;
4416 lo->reg = regnum + 0;
4417 hi->reg = regnum + 1;
d7449b42 4418 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4419 && len < MIPS_SAVED_REGSIZE)
4420 {
bf1f5b4c
MS
4421 /* "un-left-justify" the value in the low register */
4422 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4423 lo->len = len;
bf1f5b4c 4424 hi->reg_offset = 0;
7a292a7a
SS
4425 hi->len = 0;
4426 }
d7449b42 4427 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4428 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4429 && len < MIPS_SAVED_REGSIZE * 2
4430 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4431 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4432 {
4433 /* "un-left-justify" the value spread across two registers. */
4434 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4435 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4436 hi->reg_offset = 0;
4437 hi->len = len - lo->len;
4438 }
4439 else
4440 {
4441 /* Only perform a partial copy of the second register. */
4442 lo->reg_offset = 0;
4443 hi->reg_offset = 0;
4444 if (len > MIPS_SAVED_REGSIZE)
4445 {
4446 lo->len = MIPS_SAVED_REGSIZE;
4447 hi->len = len - MIPS_SAVED_REGSIZE;
4448 }
4449 else
4450 {
4451 lo->len = len;
4452 hi->len = 0;
4453 }
4454 }
d7449b42 4455 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4456 && REGISTER_RAW_SIZE (regnum) == 8
4457 && MIPS_SAVED_REGSIZE == 4)
4458 {
4459 /* Account for the fact that only the least-signficant part
c5aa993b 4460 of the register is being used */
7a292a7a
SS
4461 lo->reg_offset += 4;
4462 hi->reg_offset += 4;
4463 }
4464 lo->buf_offset = 0;
4465 hi->buf_offset = lo->len;
4466 }
4467}
4468
4469/* Given a return value in `regbuf' with a type `valtype', extract and
4470 copy its value into `valbuf'. */
4471
46cac009
AC
4472static void
4473mips_eabi_extract_return_value (struct type *valtype,
4474 char regbuf[REGISTER_BYTES],
4475 char *valbuf)
4476{
4477 struct return_value_word lo;
4478 struct return_value_word hi;
4479 return_value_location (valtype, &hi, &lo);
4480
4481 memcpy (valbuf + lo.buf_offset,
4482 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4483 lo.len);
4484
4485 if (hi.len > 0)
4486 memcpy (valbuf + hi.buf_offset,
4487 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4488 hi.len);
4489}
4490
4491static void
4492mips_o32_extract_return_value (struct type *valtype,
4493 char regbuf[REGISTER_BYTES],
4494 char *valbuf)
4495{
4496 struct return_value_word lo;
4497 struct return_value_word hi;
4498 return_value_location (valtype, &hi, &lo);
4499
4500 memcpy (valbuf + lo.buf_offset,
4501 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4502 lo.len);
4503
4504 if (hi.len > 0)
4505 memcpy (valbuf + hi.buf_offset,
4506 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4507 hi.len);
4508}
4509
4510static void
4511mips_o64_extract_return_value (struct type *valtype,
4512 char regbuf[REGISTER_BYTES],
4513 char *valbuf)
4514{
4515 struct return_value_word lo;
4516 struct return_value_word hi;
4517 return_value_location (valtype, &hi, &lo);
4518
4519 memcpy (valbuf + lo.buf_offset,
4520 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4521 lo.len);
4522
4523 if (hi.len > 0)
4524 memcpy (valbuf + hi.buf_offset,
4525 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4526 hi.len);
4527}
4528
4529static void
4530mips_n32n64_extract_return_value (struct type *valtype,
4531 char regbuf[REGISTER_BYTES],
4532 char *valbuf)
c906108c 4533{
7a292a7a
SS
4534 struct return_value_word lo;
4535 struct return_value_word hi;
99567b1b 4536 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
4537
4538 memcpy (valbuf + lo.buf_offset,
4539 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4540 lo.len);
4541
4542 if (hi.len > 0)
4543 memcpy (valbuf + hi.buf_offset,
4544 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4545 hi.len);
c906108c
SS
4546}
4547
7a292a7a
SS
4548/* Given a return value in `valbuf' with a type `valtype', write it's
4549 value into the appropriate register. */
4550
46cac009
AC
4551static void
4552mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4553{
4554 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4555 struct return_value_word lo;
4556 struct return_value_word hi;
4557 return_value_location (valtype, &hi, &lo);
4558
4559 memset (raw_buffer, 0, sizeof (raw_buffer));
4560 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4561 write_register_bytes (REGISTER_BYTE (lo.reg),
4562 raw_buffer,
4563 REGISTER_RAW_SIZE (lo.reg));
4564
4565 if (hi.len > 0)
4566 {
4567 memset (raw_buffer, 0, sizeof (raw_buffer));
4568 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4569 write_register_bytes (REGISTER_BYTE (hi.reg),
4570 raw_buffer,
4571 REGISTER_RAW_SIZE (hi.reg));
4572 }
4573}
4574
4575static void
4576mips_o32_store_return_value (struct type *valtype, char *valbuf)
4577{
4578 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4579 struct return_value_word lo;
4580 struct return_value_word hi;
4581 return_value_location (valtype, &hi, &lo);
4582
4583 memset (raw_buffer, 0, sizeof (raw_buffer));
4584 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4585 write_register_bytes (REGISTER_BYTE (lo.reg),
4586 raw_buffer,
4587 REGISTER_RAW_SIZE (lo.reg));
4588
4589 if (hi.len > 0)
4590 {
4591 memset (raw_buffer, 0, sizeof (raw_buffer));
4592 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4593 write_register_bytes (REGISTER_BYTE (hi.reg),
4594 raw_buffer,
4595 REGISTER_RAW_SIZE (hi.reg));
4596 }
4597}
4598
4599static void
4600mips_o64_store_return_value (struct type *valtype, char *valbuf)
4601{
4602 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4603 struct return_value_word lo;
4604 struct return_value_word hi;
4605 return_value_location (valtype, &hi, &lo);
4606
4607 memset (raw_buffer, 0, sizeof (raw_buffer));
4608 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4609 write_register_bytes (REGISTER_BYTE (lo.reg),
4610 raw_buffer,
4611 REGISTER_RAW_SIZE (lo.reg));
4612
4613 if (hi.len > 0)
4614 {
4615 memset (raw_buffer, 0, sizeof (raw_buffer));
4616 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4617 write_register_bytes (REGISTER_BYTE (hi.reg),
4618 raw_buffer,
4619 REGISTER_RAW_SIZE (hi.reg));
4620 }
4621}
4622
4623static void
4624mips_n32n64_store_return_value (struct type *valtype, char *valbuf)
c906108c 4625{
cb3d25d1 4626 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
7a292a7a
SS
4627 struct return_value_word lo;
4628 struct return_value_word hi;
99567b1b 4629 return_value_location (valtype, &hi, &lo);
7a292a7a
SS
4630
4631 memset (raw_buffer, 0, sizeof (raw_buffer));
4632 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4633 write_register_bytes (REGISTER_BYTE (lo.reg),
4634 raw_buffer,
4635 REGISTER_RAW_SIZE (lo.reg));
c5aa993b 4636
7a292a7a
SS
4637 if (hi.len > 0)
4638 {
4639 memset (raw_buffer, 0, sizeof (raw_buffer));
4640 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4641 write_register_bytes (REGISTER_BYTE (hi.reg),
4642 raw_buffer,
4643 REGISTER_RAW_SIZE (hi.reg));
4644 }
c906108c
SS
4645}
4646
4647/* Exported procedure: Is PC in the signal trampoline code */
4648
102182a9
MS
4649static int
4650mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4651{
4652 if (sigtramp_address == 0)
4653 fixup_sigtramp ();
4654 return (pc >= sigtramp_address && pc < sigtramp_end);
4655}
4656
a5ea2558
AC
4657/* Root of all "set mips "/"show mips " commands. This will eventually be
4658 used for all MIPS-specific commands. */
4659
a5ea2558 4660static void
acdb74a0 4661show_mips_command (char *args, int from_tty)
a5ea2558
AC
4662{
4663 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4664}
4665
a5ea2558 4666static void
acdb74a0 4667set_mips_command (char *args, int from_tty)
a5ea2558
AC
4668{
4669 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4670 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4671}
4672
c906108c
SS
4673/* Commands to show/set the MIPS FPU type. */
4674
c906108c 4675static void
acdb74a0 4676show_mipsfpu_command (char *args, int from_tty)
c906108c 4677{
c906108c
SS
4678 char *fpu;
4679 switch (MIPS_FPU_TYPE)
4680 {
4681 case MIPS_FPU_SINGLE:
4682 fpu = "single-precision";
4683 break;
4684 case MIPS_FPU_DOUBLE:
4685 fpu = "double-precision";
4686 break;
4687 case MIPS_FPU_NONE:
4688 fpu = "absent (none)";
4689 break;
93d56215
AC
4690 default:
4691 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4692 }
4693 if (mips_fpu_type_auto)
4694 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4695 fpu);
4696 else
4697 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4698 fpu);
4699}
4700
4701
c906108c 4702static void
acdb74a0 4703set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
4704{
4705 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4706 show_mipsfpu_command (args, from_tty);
4707}
4708
c906108c 4709static void
acdb74a0 4710set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
4711{
4712 mips_fpu_type = MIPS_FPU_SINGLE;
4713 mips_fpu_type_auto = 0;
9e364162 4714 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
4715}
4716
c906108c 4717static void
acdb74a0 4718set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
4719{
4720 mips_fpu_type = MIPS_FPU_DOUBLE;
4721 mips_fpu_type_auto = 0;
9e364162 4722 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
4723}
4724
c906108c 4725static void
acdb74a0 4726set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
4727{
4728 mips_fpu_type = MIPS_FPU_NONE;
4729 mips_fpu_type_auto = 0;
9e364162 4730 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
4731}
4732
c906108c 4733static void
acdb74a0 4734set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4735{
4736 mips_fpu_type_auto = 1;
4737}
4738
4739/* Command to set the processor type. */
4740
4741void
acdb74a0 4742mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
4743{
4744 int i;
4745
4746 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
4747 {
4748 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
4749 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
4750 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
4751
4752 /* Restore the value. */
4fcf66da 4753 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
4754
4755 return;
4756 }
c5aa993b 4757
c906108c
SS
4758 if (!mips_set_processor_type (tmp_mips_processor_type))
4759 {
4760 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
4761 /* Restore its value. */
4fcf66da 4762 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
4763 }
4764}
4765
4766static void
acdb74a0 4767mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
4768{
4769}
4770
4771/* Modify the actual processor type. */
4772
4773int
acdb74a0 4774mips_set_processor_type (char *str)
c906108c 4775{
1012bd0e 4776 int i;
c906108c
SS
4777
4778 if (str == NULL)
4779 return 0;
4780
4781 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
4782 {
4783 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
4784 {
4785 mips_processor_type = str;
cce74817 4786 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 4787 return 1;
c906108c
SS
4788 /* FIXME tweak fpu flag too */
4789 }
4790 }
4791
4792 return 0;
4793}
4794
4795/* Attempt to identify the particular processor model by reading the
4796 processor id. */
4797
4798char *
acdb74a0 4799mips_read_processor_type (void)
c906108c
SS
4800{
4801 CORE_ADDR prid;
4802
4803 prid = read_register (PRID_REGNUM);
4804
4805 if ((prid & ~0xf) == 0x700)
c5aa993b 4806 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
4807
4808 return NULL;
4809}
4810
4811/* Just like reinit_frame_cache, but with the right arguments to be
4812 callable as an sfunc. */
4813
4814static void
acdb74a0
AC
4815reinit_frame_cache_sfunc (char *args, int from_tty,
4816 struct cmd_list_element *c)
c906108c
SS
4817{
4818 reinit_frame_cache ();
4819}
4820
4821int
acdb74a0 4822gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
4823{
4824 mips_extra_func_info_t proc_desc;
4825
4826 /* Search for the function containing this address. Set the low bit
4827 of the address when searching, in case we were given an even address
4828 that is the start of a 16-bit function. If we didn't do this,
4829 the search would fail because the symbol table says the function
4830 starts at an odd address, i.e. 1 byte past the given address. */
4831 memaddr = ADDR_BITS_REMOVE (memaddr);
4832 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
4833
4834 /* Make an attempt to determine if this is a 16-bit function. If
4835 the procedure descriptor exists and the address therein is odd,
4836 it's definitely a 16-bit function. Otherwise, we have to just
4837 guess that if the address passed in is odd, it's 16-bits. */
4838 if (proc_desc)
361d1df0 4839 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
65c11066 4840 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c 4841 else
361d1df0 4842 info->mach = pc_is_mips16 (memaddr) ?
65c11066 4843 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
c906108c
SS
4844
4845 /* Round down the instruction address to the appropriate boundary. */
65c11066 4846 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4847
c906108c 4848 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 4849 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4850 return print_insn_big_mips (memaddr, info);
4851 else
4852 return print_insn_little_mips (memaddr, info);
4853}
4854
4855/* Old-style breakpoint macros.
4856 The IDT board uses an unusual breakpoint value, and sometimes gets
4857 confused when it sees the usual MIPS breakpoint instruction. */
4858
4859#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
4860#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
4861#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
4862#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
4863#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
4864#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
4865#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
4866#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
4867
4868/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4869 counter value to determine whether a 16- or 32-bit breakpoint should be
4870 used. It returns a pointer to a string of bytes that encode a breakpoint
4871 instruction, stores the length of the string to *lenptr, and adjusts pc
4872 (if necessary) to point to the actual memory location where the
4873 breakpoint should be inserted. */
4874
f4f9705a 4875const unsigned char *
acdb74a0 4876mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 4877{
d7449b42 4878 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
4879 {
4880 if (pc_is_mips16 (*pcptr))
4881 {
1012bd0e
EZ
4882 static unsigned char mips16_big_breakpoint[] =
4883 MIPS16_BIG_BREAKPOINT;
c906108c 4884 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 4885 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4886 return mips16_big_breakpoint;
4887 }
4888 else
4889 {
1012bd0e
EZ
4890 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
4891 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
4892 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
c906108c 4893
c5aa993b 4894 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4895
4896 if (strcmp (target_shortname, "mips") == 0)
4897 return idt_big_breakpoint;
4898 else if (strcmp (target_shortname, "ddb") == 0
4899 || strcmp (target_shortname, "pmon") == 0
4900 || strcmp (target_shortname, "lsi") == 0)
4901 return pmon_big_breakpoint;
4902 else
4903 return big_breakpoint;
4904 }
4905 }
4906 else
4907 {
4908 if (pc_is_mips16 (*pcptr))
4909 {
1012bd0e
EZ
4910 static unsigned char mips16_little_breakpoint[] =
4911 MIPS16_LITTLE_BREAKPOINT;
c906108c 4912 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
c5aa993b 4913 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4914 return mips16_little_breakpoint;
4915 }
4916 else
4917 {
1012bd0e
EZ
4918 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
4919 static unsigned char pmon_little_breakpoint[] =
4920 PMON_LITTLE_BREAKPOINT;
4921 static unsigned char idt_little_breakpoint[] =
4922 IDT_LITTLE_BREAKPOINT;
c906108c 4923
c5aa993b 4924 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4925
4926 if (strcmp (target_shortname, "mips") == 0)
4927 return idt_little_breakpoint;
4928 else if (strcmp (target_shortname, "ddb") == 0
4929 || strcmp (target_shortname, "pmon") == 0
4930 || strcmp (target_shortname, "lsi") == 0)
4931 return pmon_little_breakpoint;
4932 else
4933 return little_breakpoint;
4934 }
4935 }
4936}
4937
4938/* If PC is in a mips16 call or return stub, return the address of the target
4939 PC, which is either the callee or the caller. There are several
4940 cases which must be handled:
4941
4942 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4943 target PC is in $31 ($ra).
c906108c 4944 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4945 and the target PC is in $2.
c906108c 4946 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4947 before the jal instruction, this is effectively a call stub
4948 and the the target PC is in $2. Otherwise this is effectively
4949 a return stub and the target PC is in $18.
c906108c
SS
4950
4951 See the source code for the stubs in gcc/config/mips/mips16.S for
4952 gory details.
4953
4954 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 4955 */
c906108c
SS
4956
4957CORE_ADDR
acdb74a0 4958mips_skip_stub (CORE_ADDR pc)
c906108c
SS
4959{
4960 char *name;
4961 CORE_ADDR start_addr;
4962
4963 /* Find the starting address and name of the function containing the PC. */
4964 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4965 return 0;
4966
4967 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4968 target PC is in $31 ($ra). */
4969 if (strcmp (name, "__mips16_ret_sf") == 0
4970 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 4971 return read_signed_register (RA_REGNUM);
c906108c
SS
4972
4973 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4974 {
4975 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4976 and the target PC is in $2. */
4977 if (name[19] >= '0' && name[19] <= '9')
6c997a34 4978 return read_signed_register (2);
c906108c
SS
4979
4980 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4981 before the jal instruction, this is effectively a call stub
4982 and the the target PC is in $2. Otherwise this is effectively
4983 a return stub and the target PC is in $18. */
c906108c
SS
4984 else if (name[19] == 's' || name[19] == 'd')
4985 {
4986 if (pc == start_addr)
4987 {
4988 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4989 stub. Such a stub for a function bar might have a name
4990 like __fn_stub_bar, and might look like this:
4991 mfc1 $4,$f13
4992 mfc1 $5,$f12
4993 mfc1 $6,$f15
4994 mfc1 $7,$f14
4995 la $1,bar (becomes a lui/addiu pair)
4996 jr $1
4997 So scan down to the lui/addi and extract the target
4998 address from those two instructions. */
c906108c 4999
6c997a34 5000 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5001 t_inst inst;
5002 int i;
5003
5004 /* See if the name of the target function is __fn_stub_*. */
5005 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5006 return target_pc;
5007 if (strncmp (name, "__fn_stub_", 10) != 0
5008 && strcmp (name, "etext") != 0
5009 && strcmp (name, "_etext") != 0)
5010 return target_pc;
5011
5012 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5013 The limit on the search is arbitrarily set to 20
5014 instructions. FIXME. */
c906108c
SS
5015 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5016 {
c5aa993b
JM
5017 inst = mips_fetch_instruction (target_pc);
5018 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5019 pc = (inst << 16) & 0xffff0000; /* high word */
5020 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5021 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5022 }
5023
5024 /* Couldn't find the lui/addui pair, so return stub address. */
5025 return target_pc;
5026 }
5027 else
5028 /* This is the 'return' part of a call stub. The return
5029 address is in $r18. */
6c997a34 5030 return read_signed_register (18);
c906108c
SS
5031 }
5032 }
c5aa993b 5033 return 0; /* not a stub */
c906108c
SS
5034}
5035
5036
5037/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5038 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5039
5040int
acdb74a0 5041mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5042{
5043 CORE_ADDR start_addr;
5044
5045 /* Find the starting address of the function containing the PC. If the
5046 caller didn't give us a name, look it up at the same time. */
5047 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5048 return 0;
5049
5050 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5051 {
5052 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5053 if (name[19] >= '0' && name[19] <= '9')
5054 return 1;
5055 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5056 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5057 else if (name[19] == 's' || name[19] == 'd')
5058 return pc == start_addr;
5059 }
5060
c5aa993b 5061 return 0; /* not a stub */
c906108c
SS
5062}
5063
5064
5065/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5066 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5067
5068int
acdb74a0 5069mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5070{
5071 CORE_ADDR start_addr;
5072
5073 /* Find the starting address of the function containing the PC. */
5074 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5075 return 0;
5076
5077 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5078 if (strcmp (name, "__mips16_ret_sf") == 0
5079 || strcmp (name, "__mips16_ret_df") == 0)
5080 return 1;
5081
5082 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5083 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5084 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5085 && (name[19] == 's' || name[19] == 'd')
5086 && pc != start_addr)
5087 return 1;
5088
c5aa993b 5089 return 0; /* not a stub */
c906108c
SS
5090}
5091
5092
5093/* Return non-zero if the PC is in a library helper function that should
5094 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5095
5096int
acdb74a0 5097mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5098{
5099 char *name;
5100
5101 /* Find the starting address and name of the function containing the PC. */
5102 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5103 return 0;
5104
5105 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5106 that we want to ignore. */
5107 return (strcmp (name, "__mips16_ret_sf") == 0
5108 || strcmp (name, "__mips16_ret_df") == 0);
5109}
5110
5111
5112/* Return a location where we can set a breakpoint that will be hit
5113 when an inferior function call returns. This is normally the
5114 program's entry point. Executables that don't have an entry
5115 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5116 whose address is the location where the breakpoint should be placed. */
5117
5118CORE_ADDR
acdb74a0 5119mips_call_dummy_address (void)
c906108c
SS
5120{
5121 struct minimal_symbol *sym;
5122
5123 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5124 if (sym)
5125 return SYMBOL_VALUE_ADDRESS (sym);
5126 else
5127 return entry_point_address ();
5128}
5129
5130
9dcb560c 5131/* If the current gcc for this target does not produce correct debugging
b9a8e3bf
JB
5132 information for float parameters, both prototyped and unprototyped, then
5133 define this macro. This forces gdb to always assume that floats are
5134 passed as doubles and then converted in the callee.
5135
5136 For the mips chip, it appears that the debug info marks the parameters as
5137 floats regardless of whether the function is prototyped, but the actual
5138 values are passed as doubles for the non-prototyped case and floats for
5139 the prototyped case. Thus we choose to make the non-prototyped case work
5140 for C and break the prototyped case, since the non-prototyped case is
5141 probably much more common. (FIXME). */
5142
5143static int
5144mips_coerce_float_to_double (struct type *formal, struct type *actual)
5145{
5146 return current_language->la_language == language_c;
5147}
5148
47a8d4ba
AC
5149/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5150 the register stored on the stack (32) is different to its real raw
5151 size (64). The below ensures that registers are fetched from the
5152 stack using their ABI size and then stored into the RAW_BUFFER
5153 using their raw size.
5154
5155 The alternative to adding this function would be to add an ABI
5156 macro - REGISTER_STACK_SIZE(). */
5157
5158static void
acdb74a0
AC
5159mips_get_saved_register (char *raw_buffer,
5160 int *optimized,
5161 CORE_ADDR *addrp,
5162 struct frame_info *frame,
5163 int regnum,
5164 enum lval_type *lval)
47a8d4ba
AC
5165{
5166 CORE_ADDR addr;
5167
5168 if (!target_has_registers)
5169 error ("No registers.");
5170
5171 /* Normal systems don't optimize out things with register numbers. */
5172 if (optimized != NULL)
5173 *optimized = 0;
5174 addr = find_saved_register (frame, regnum);
5175 if (addr != 0)
5176 {
5177 if (lval != NULL)
5178 *lval = lval_memory;
5179 if (regnum == SP_REGNUM)
5180 {
5181 if (raw_buffer != NULL)
5182 {
5183 /* Put it back in target format. */
5184 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
5185 (LONGEST) addr);
5186 }
5187 if (addrp != NULL)
5188 *addrp = 0;
5189 return;
5190 }
5191 if (raw_buffer != NULL)
5192 {
5193 LONGEST val;
5194 if (regnum < 32)
5195 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5196 saved. */
5197 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
5198 else
5199 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
5200 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5201 }
5202 }
5203 else
5204 {
5205 if (lval != NULL)
5206 *lval = lval_register;
5207 addr = REGISTER_BYTE (regnum);
5208 if (raw_buffer != NULL)
5209 read_register_gen (regnum, raw_buffer);
5210 }
5211 if (addrp != NULL)
5212 *addrp = addr;
5213}
2acceee2 5214
f7b9e9fc
AC
5215/* Immediately after a function call, return the saved pc.
5216 Can't always go through the frames for this because on some machines
5217 the new frame is not set up until the new function executes
5218 some instructions. */
5219
5220static CORE_ADDR
5221mips_saved_pc_after_call (struct frame_info *frame)
5222{
6c997a34 5223 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5224}
5225
5226
88c72b7d
AC
5227/* Convert a dbx stab register number (from `r' declaration) to a gdb
5228 REGNUM */
5229
5230static int
5231mips_stab_reg_to_regnum (int num)
5232{
5233 if (num < 32)
5234 return num;
361d1df0 5235 else
88c72b7d
AC
5236 return num + FP0_REGNUM - 38;
5237}
5238
5239/* Convert a ecoff register number to a gdb REGNUM */
5240
5241static int
5242mips_ecoff_reg_to_regnum (int num)
5243{
5244 if (num < 32)
5245 return num;
5246 else
5247 return num + FP0_REGNUM - 32;
5248}
5249
fc0c74b1
AC
5250/* Convert an integer into an address. By first converting the value
5251 into a pointer and then extracting it signed, the address is
5252 guarenteed to be correctly sign extended. */
5253
5254static CORE_ADDR
5255mips_integer_to_address (struct type *type, void *buf)
5256{
5257 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5258 LONGEST val = unpack_long (type, buf);
5259 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5260 return extract_signed_integer (tmp,
5261 TYPE_LENGTH (builtin_type_void_data_ptr));
5262}
5263
caaa3122
DJ
5264static void
5265mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5266{
5267 enum mips_abi *abip = (enum mips_abi *) obj;
5268 const char *name = bfd_get_section_name (abfd, sect);
5269
5270 if (*abip != MIPS_ABI_UNKNOWN)
5271 return;
5272
5273 if (strncmp (name, ".mdebug.", 8) != 0)
5274 return;
5275
5276 if (strcmp (name, ".mdebug.abi32") == 0)
5277 *abip = MIPS_ABI_O32;
5278 else if (strcmp (name, ".mdebug.abiN32") == 0)
5279 *abip = MIPS_ABI_N32;
e3bddbfa
KB
5280 else if (strcmp (name, ".mdebug.abiN64") == 0)
5281 *abip = MIPS_ABI_N64;
caaa3122
DJ
5282 else if (strcmp (name, ".mdebug.abiO64") == 0)
5283 *abip = MIPS_ABI_O64;
5284 else if (strcmp (name, ".mdebug.eabi32") == 0)
5285 *abip = MIPS_ABI_EABI32;
5286 else if (strcmp (name, ".mdebug.eabi64") == 0)
5287 *abip = MIPS_ABI_EABI64;
5288 else
5289 warning ("unsupported ABI %s.", name + 8);
5290}
5291
2e4ebe70
DJ
5292static enum mips_abi
5293global_mips_abi (void)
5294{
5295 int i;
5296
5297 for (i = 0; mips_abi_strings[i] != NULL; i++)
5298 if (mips_abi_strings[i] == mips_abi_string)
5299 return (enum mips_abi) i;
5300
5301 internal_error (__FILE__, __LINE__,
5302 "unknown ABI string");
5303}
5304
c2d11a7d 5305static struct gdbarch *
acdb74a0
AC
5306mips_gdbarch_init (struct gdbarch_info info,
5307 struct gdbarch_list *arches)
c2d11a7d
JM
5308{
5309 static LONGEST mips_call_dummy_words[] =
5310 {0};
5311 struct gdbarch *gdbarch;
5312 struct gdbarch_tdep *tdep;
5313 int elf_flags;
2e4ebe70 5314 enum mips_abi mips_abi, found_abi, wanted_abi;
70f80edf 5315 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
c2d11a7d 5316
1d06468c
EZ
5317 /* Reset the disassembly info, in case it was set to something
5318 non-default. */
5319 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5320 tm_print_insn_info.arch = bfd_arch_unknown;
5321 tm_print_insn_info.mach = 0;
5322
70f80edf
JT
5323 elf_flags = 0;
5324
5325 if (info.abfd)
5326 {
5327 /* First of all, extract the elf_flags, if available. */
5328 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5329 elf_flags = elf_elfheader (info.abfd)->e_flags;
5330
5331 /* Try to determine the OS ABI of the object we are loading. If
5332 we end up with `unknown', just leave it that way. */
5333 osabi = gdbarch_lookup_osabi (info.abfd);
5334 }
c2d11a7d 5335
102182a9 5336 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5337 switch ((elf_flags & EF_MIPS_ABI))
5338 {
5339 case E_MIPS_ABI_O32:
5340 mips_abi = MIPS_ABI_O32;
5341 break;
5342 case E_MIPS_ABI_O64:
5343 mips_abi = MIPS_ABI_O64;
5344 break;
5345 case E_MIPS_ABI_EABI32:
5346 mips_abi = MIPS_ABI_EABI32;
5347 break;
5348 case E_MIPS_ABI_EABI64:
4a7f7ba8 5349 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5350 break;
5351 default:
acdb74a0
AC
5352 if ((elf_flags & EF_MIPS_ABI2))
5353 mips_abi = MIPS_ABI_N32;
5354 else
5355 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5356 break;
5357 }
acdb74a0 5358
caaa3122
DJ
5359 /* GCC creates a pseudo-section whose name describes the ABI. */
5360 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5361 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5362
2e4ebe70
DJ
5363 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5364 Use the ABI from the last architecture if there is one. */
5365 if (info.abfd == NULL && arches != NULL)
5366 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5367
32a6503c 5368 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5369 if (mips_abi == MIPS_ABI_UNKNOWN
5370 && info.bfd_arch_info != NULL
5371 && info.bfd_arch_info->arch == bfd_arch_mips)
5372 {
5373 switch (info.bfd_arch_info->mach)
5374 {
5375 case bfd_mach_mips3900:
5376 mips_abi = MIPS_ABI_EABI32;
5377 break;
5378 case bfd_mach_mips4100:
5379 case bfd_mach_mips5000:
5380 mips_abi = MIPS_ABI_EABI64;
5381 break;
1d06468c
EZ
5382 case bfd_mach_mips8000:
5383 case bfd_mach_mips10000:
32a6503c
KB
5384 /* On Irix, ELF64 executables use the N64 ABI. The
5385 pseudo-sections which describe the ABI aren't present
5386 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5387 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5388 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5389 mips_abi = MIPS_ABI_N64;
5390 else
5391 mips_abi = MIPS_ABI_N32;
1d06468c 5392 break;
bf64bfd6
AC
5393 }
5394 }
2e4ebe70 5395
0dadbba0
AC
5396#ifdef MIPS_DEFAULT_ABI
5397 if (mips_abi == MIPS_ABI_UNKNOWN)
5398 mips_abi = MIPS_DEFAULT_ABI;
5399#endif
4b9b3959 5400
2e4ebe70
DJ
5401 if (mips_abi == MIPS_ABI_UNKNOWN)
5402 mips_abi = MIPS_ABI_O32;
5403
5404 /* Now that we have found what the ABI for this binary would be,
5405 check whether the user is overriding it. */
5406 found_abi = mips_abi;
5407 wanted_abi = global_mips_abi ();
5408 if (wanted_abi != MIPS_ABI_UNKNOWN)
5409 mips_abi = wanted_abi;
5410
4b9b3959
AC
5411 if (gdbarch_debug)
5412 {
5413 fprintf_unfiltered (gdb_stdlog,
9ace0497 5414 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5415 elf_flags);
4b9b3959
AC
5416 fprintf_unfiltered (gdb_stdlog,
5417 "mips_gdbarch_init: mips_abi = %d\n",
5418 mips_abi);
2e4ebe70
DJ
5419 fprintf_unfiltered (gdb_stdlog,
5420 "mips_gdbarch_init: found_mips_abi = %d\n",
5421 found_abi);
4b9b3959 5422 }
0dadbba0 5423
c2d11a7d
JM
5424 /* try to find a pre-existing architecture */
5425 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5426 arches != NULL;
5427 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5428 {
5429 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5430 using. */
9103eae0 5431 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5432 continue;
9103eae0 5433 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5434 continue;
70f80edf
JT
5435 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5436 return arches->gdbarch;
c2d11a7d
JM
5437 }
5438
102182a9 5439 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5440 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5441 gdbarch = gdbarch_alloc (&info, tdep);
5442 tdep->elf_flags = elf_flags;
70f80edf 5443 tdep->osabi = osabi;
c2d11a7d 5444
102182a9 5445 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5446 set_gdbarch_short_bit (gdbarch, 16);
5447 set_gdbarch_int_bit (gdbarch, 32);
5448 set_gdbarch_float_bit (gdbarch, 32);
5449 set_gdbarch_double_bit (gdbarch, 64);
5450 set_gdbarch_long_double_bit (gdbarch, 64);
46cd78fb 5451 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
d05285fa
MS
5452 set_gdbarch_max_register_raw_size (gdbarch, 8);
5453 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2e4ebe70 5454 tdep->found_abi = found_abi;
0dadbba0 5455 tdep->mips_abi = mips_abi;
1d06468c 5456
0dadbba0 5457 switch (mips_abi)
c2d11a7d 5458 {
0dadbba0 5459 case MIPS_ABI_O32:
46cac009
AC
5460 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5461 set_gdbarch_store_return_value (gdbarch, mips_o32_store_return_value);
5462 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5463 tdep->mips_default_saved_regsize = 4;
0dadbba0 5464 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5465 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5466 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5467 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5468 tdep->gdb_target_is_mips64 = 0;
4014092b 5469 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5470 set_gdbarch_long_bit (gdbarch, 32);
5471 set_gdbarch_ptr_bit (gdbarch, 32);
5472 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5473 set_gdbarch_reg_struct_has_addr (gdbarch,
5474 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5475 set_gdbarch_use_struct_convention (gdbarch,
5476 mips_o32_use_struct_convention);
c2d11a7d 5477 break;
0dadbba0 5478 case MIPS_ABI_O64:
46cac009
AC
5479 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5480 set_gdbarch_store_return_value (gdbarch, mips_o64_store_return_value);
5481 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5482 tdep->mips_default_saved_regsize = 8;
0dadbba0 5483 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5484 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5485 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5486 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5487 tdep->gdb_target_is_mips64 = 1;
361d1df0 5488 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5489 set_gdbarch_long_bit (gdbarch, 32);
5490 set_gdbarch_ptr_bit (gdbarch, 32);
5491 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5492 set_gdbarch_reg_struct_has_addr (gdbarch,
5493 mips_o32_reg_struct_has_addr);
cb811fe7
MS
5494 set_gdbarch_use_struct_convention (gdbarch,
5495 mips_o32_use_struct_convention);
c2d11a7d 5496 break;
0dadbba0 5497 case MIPS_ABI_EABI32:
46e0f506 5498 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
46cac009
AC
5499 set_gdbarch_store_return_value (gdbarch, mips_eabi_store_return_value);
5500 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5501 tdep->mips_default_saved_regsize = 4;
0dadbba0 5502 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5503 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5504 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5505 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5506 tdep->gdb_target_is_mips64 = 0;
4014092b 5507 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5508 set_gdbarch_long_bit (gdbarch, 32);
5509 set_gdbarch_ptr_bit (gdbarch, 32);
5510 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5511 set_gdbarch_reg_struct_has_addr (gdbarch,
5512 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5513 set_gdbarch_use_struct_convention (gdbarch,
5514 mips_eabi_use_struct_convention);
c2d11a7d 5515 break;
0dadbba0 5516 case MIPS_ABI_EABI64:
46e0f506 5517 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
46cac009
AC
5518 set_gdbarch_store_return_value (gdbarch, mips_eabi_store_return_value);
5519 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5520 tdep->mips_default_saved_regsize = 8;
0dadbba0 5521 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5522 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5523 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5524 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5525 tdep->gdb_target_is_mips64 = 1;
4014092b 5526 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5527 set_gdbarch_long_bit (gdbarch, 64);
5528 set_gdbarch_ptr_bit (gdbarch, 64);
5529 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5530 set_gdbarch_reg_struct_has_addr (gdbarch,
5531 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5532 set_gdbarch_use_struct_convention (gdbarch,
5533 mips_eabi_use_struct_convention);
c2d11a7d 5534 break;
0dadbba0 5535 case MIPS_ABI_N32:
cb3d25d1 5536 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
46cac009
AC
5537 set_gdbarch_store_return_value (gdbarch, mips_n32n64_store_return_value);
5538 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5539 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5540 tdep->mips_default_stack_argsize = 8;
5541 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5542 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5543 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5544 tdep->gdb_target_is_mips64 = 1;
4014092b 5545 tdep->default_mask_address_p = 0;
0dadbba0
AC
5546 set_gdbarch_long_bit (gdbarch, 32);
5547 set_gdbarch_ptr_bit (gdbarch, 32);
5548 set_gdbarch_long_long_bit (gdbarch, 64);
1d06468c
EZ
5549
5550 /* Set up the disassembler info, so that we get the right
28d169de
KB
5551 register names from libopcodes. */
5552 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5553 tm_print_insn_info.arch = bfd_arch_mips;
5554 if (info.bfd_arch_info != NULL
5555 && info.bfd_arch_info->arch == bfd_arch_mips
5556 && info.bfd_arch_info->mach)
5557 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5558 else
5559 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5560
5561 set_gdbarch_use_struct_convention (gdbarch,
5562 mips_n32n64_use_struct_convention);
8b389c40
MS
5563 set_gdbarch_reg_struct_has_addr (gdbarch,
5564 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5565 break;
5566 case MIPS_ABI_N64:
cb3d25d1 5567 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
46cac009
AC
5568 set_gdbarch_store_return_value (gdbarch, mips_n32n64_store_return_value);
5569 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5570 tdep->mips_default_saved_regsize = 8;
5571 tdep->mips_default_stack_argsize = 8;
5572 tdep->mips_fp_register_double = 1;
5573 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5574 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5575 tdep->gdb_target_is_mips64 = 1;
5576 tdep->default_mask_address_p = 0;
5577 set_gdbarch_long_bit (gdbarch, 64);
5578 set_gdbarch_ptr_bit (gdbarch, 64);
5579 set_gdbarch_long_long_bit (gdbarch, 64);
5580
5581 /* Set up the disassembler info, so that we get the right
1d06468c
EZ
5582 register names from libopcodes. */
5583 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5584 tm_print_insn_info.arch = bfd_arch_mips;
5585 if (info.bfd_arch_info != NULL
5586 && info.bfd_arch_info->arch == bfd_arch_mips
5587 && info.bfd_arch_info->mach)
5588 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5589 else
5590 tm_print_insn_info.mach = bfd_mach_mips8000;
cb811fe7
MS
5591
5592 set_gdbarch_use_struct_convention (gdbarch,
5593 mips_n32n64_use_struct_convention);
8b389c40
MS
5594 set_gdbarch_reg_struct_has_addr (gdbarch,
5595 mips_n32n64_reg_struct_has_addr);
0dadbba0 5596 break;
c2d11a7d 5597 default:
2e4ebe70
DJ
5598 internal_error (__FILE__, __LINE__,
5599 "unknown ABI in switch");
c2d11a7d
JM
5600 }
5601
a5ea2558
AC
5602 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5603 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5604 comment:
5605
5606 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5607 flag in object files because to do so would make it impossible to
102182a9 5608 link with libraries compiled without "-gp32". This is
a5ea2558 5609 unnecessarily restrictive.
361d1df0 5610
a5ea2558
AC
5611 We could solve this problem by adding "-gp32" multilibs to gcc,
5612 but to set this flag before gcc is built with such multilibs will
5613 break too many systems.''
5614
5615 But even more unhelpfully, the default linker output target for
5616 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5617 for 64-bit programs - you need to change the ABI to change this,
102182a9 5618 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5619 this flag to detect 32-bit mode would do the wrong thing given
5620 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5621 as 32-bit programs by default. */
a5ea2558 5622
c2d11a7d
JM
5623 /* enable/disable the MIPS FPU */
5624 if (!mips_fpu_type_auto)
5625 tdep->mips_fpu_type = mips_fpu_type;
5626 else if (info.bfd_arch_info != NULL
5627 && info.bfd_arch_info->arch == bfd_arch_mips)
5628 switch (info.bfd_arch_info->mach)
5629 {
b0069a17 5630 case bfd_mach_mips3900:
c2d11a7d 5631 case bfd_mach_mips4100:
ed9a39eb 5632 case bfd_mach_mips4111:
c2d11a7d
JM
5633 tdep->mips_fpu_type = MIPS_FPU_NONE;
5634 break;
bf64bfd6
AC
5635 case bfd_mach_mips4650:
5636 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5637 break;
c2d11a7d
JM
5638 default:
5639 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5640 break;
5641 }
5642 else
5643 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5644
5645 /* MIPS version of register names. NOTE: At present the MIPS
5646 register name management is part way between the old -
5647 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5648 Further work on it is required. */
c2d11a7d 5649 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5650 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d
JM
5651 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5652 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
bcb0cc15 5653 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d
JM
5654 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5655
102182a9
MS
5656 /* Add/remove bits from an address. The MIPS needs be careful to
5657 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5658 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5659
10312cc4
AC
5660 /* There's a mess in stack frame creation. See comments in
5661 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5662 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
7824d2f2 5663 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5664
102182a9 5665 /* Map debug register numbers onto internal register numbers. */
88c72b7d
AC
5666 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5667 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5668
c2d11a7d
JM
5669 /* Initialize a frame */
5670 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
d28e01f4 5671 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
c2d11a7d
JM
5672
5673 /* MIPS version of CALL_DUMMY */
5674
5675 set_gdbarch_call_dummy_p (gdbarch, 1);
5676 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5677 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5678 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5679 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5680 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5681 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5682 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5683 set_gdbarch_call_dummy_length (gdbarch, 0);
5684 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5685 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5686 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5687 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
bf1f5b4c 5688 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
d05285fa
MS
5689 set_gdbarch_register_convert_to_virtual (gdbarch,
5690 mips_register_convert_to_virtual);
5691 set_gdbarch_register_convert_to_raw (gdbarch,
5692 mips_register_convert_to_raw);
5693
b9a8e3bf 5694 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
c2d11a7d 5695
c4093a6a 5696 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
47a8d4ba 5697 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5698
f7b9e9fc
AC
5699 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5700 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5701 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5702
5703 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5704 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5705
fc0c74b1
AC
5706 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5707 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5708 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5709
102182a9
MS
5710 set_gdbarch_function_start_offset (gdbarch, 0);
5711
32a6503c
KB
5712 /* There are MIPS targets which do not yet use this since they still
5713 define REGISTER_VIRTUAL_TYPE. */
78fde5f8 5714 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
102182a9 5715 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
78fde5f8 5716
bf1f5b4c 5717 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
102182a9 5718 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 5719
70f80edf
JT
5720 /* Hook in OS ABI-specific overrides, if they have been registered. */
5721 gdbarch_init_osabi (info, gdbarch, osabi);
5722
4b9b3959
AC
5723 return gdbarch;
5724}
5725
2e4ebe70
DJ
5726static void
5727mips_abi_update (char *ignore_args, int from_tty,
5728 struct cmd_list_element *c)
5729{
5730 struct gdbarch_info info;
5731
5732 /* Force the architecture to update, and (if it's a MIPS architecture)
5733 mips_gdbarch_init will take care of the rest. */
5734 gdbarch_info_init (&info);
5735 gdbarch_update_p (info);
5736}
5737
4b9b3959
AC
5738static void
5739mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5740{
5741 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5742 if (tdep != NULL)
c2d11a7d 5743 {
acdb74a0
AC
5744 int ef_mips_arch;
5745 int ef_mips_32bitmode;
5746 /* determine the ISA */
5747 switch (tdep->elf_flags & EF_MIPS_ARCH)
5748 {
5749 case E_MIPS_ARCH_1:
5750 ef_mips_arch = 1;
5751 break;
5752 case E_MIPS_ARCH_2:
5753 ef_mips_arch = 2;
5754 break;
5755 case E_MIPS_ARCH_3:
5756 ef_mips_arch = 3;
5757 break;
5758 case E_MIPS_ARCH_4:
93d56215 5759 ef_mips_arch = 4;
acdb74a0
AC
5760 break;
5761 default:
93d56215 5762 ef_mips_arch = 0;
acdb74a0
AC
5763 break;
5764 }
5765 /* determine the size of a pointer */
5766 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5767 fprintf_unfiltered (file,
5768 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5769 tdep->elf_flags);
4b9b3959 5770 fprintf_unfiltered (file,
acdb74a0
AC
5771 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5772 ef_mips_32bitmode);
5773 fprintf_unfiltered (file,
5774 "mips_dump_tdep: ef_mips_arch = %d\n",
5775 ef_mips_arch);
5776 fprintf_unfiltered (file,
5777 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5778 tdep->mips_abi,
2e4ebe70 5779 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5780 fprintf_unfiltered (file,
5781 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5782 mips_mask_address_p (),
5783 tdep->default_mask_address_p);
c2d11a7d 5784 }
4b9b3959
AC
5785 fprintf_unfiltered (file,
5786 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
5787 FP_REGISTER_DOUBLE);
5788 fprintf_unfiltered (file,
5789 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5790 MIPS_DEFAULT_FPU_TYPE,
5791 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5792 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5793 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5794 : "???"));
5795 fprintf_unfiltered (file,
5796 "mips_dump_tdep: MIPS_EABI = %d\n",
5797 MIPS_EABI);
5798 fprintf_unfiltered (file,
acdb74a0
AC
5799 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
5800 MIPS_LAST_FP_ARG_REGNUM,
5801 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
5802 fprintf_unfiltered (file,
5803 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5804 MIPS_FPU_TYPE,
5805 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5806 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5807 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5808 : "???"));
5809 fprintf_unfiltered (file,
5810 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
5811 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
5812 fprintf_unfiltered (file,
5813 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
5814 FP_REGISTER_DOUBLE);
4b9b3959
AC
5815 fprintf_unfiltered (file,
5816 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
5817 MIPS_DEFAULT_STACK_ARGSIZE);
5818 fprintf_unfiltered (file,
5819 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
5820 MIPS_STACK_ARGSIZE);
5821 fprintf_unfiltered (file,
5822 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
5823 MIPS_REGSIZE);
2475bac3
AC
5824 fprintf_unfiltered (file,
5825 "mips_dump_tdep: A0_REGNUM = %d\n",
5826 A0_REGNUM);
5827 fprintf_unfiltered (file,
5828 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
5829 XSTRING (ADDR_BITS_REMOVE(ADDR)));
5830 fprintf_unfiltered (file,
5831 "mips_dump_tdep: ATTACH_DETACH # %s\n",
5832 XSTRING (ATTACH_DETACH));
5833 fprintf_unfiltered (file,
5834 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
5835 BADVADDR_REGNUM);
5836 fprintf_unfiltered (file,
5837 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
5838 fprintf_unfiltered (file,
5839 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
5840 CAUSE_REGNUM);
5841 fprintf_unfiltered (file,
5842 "mips_dump_tdep: CPLUS_MARKER = %c\n",
5843 CPLUS_MARKER);
5844 fprintf_unfiltered (file,
5845 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
5846 DEFAULT_MIPS_TYPE);
5847 fprintf_unfiltered (file,
5848 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
5849 XSTRING (DO_REGISTERS_INFO));
5850 fprintf_unfiltered (file,
5851 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
5852 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
5853 fprintf_unfiltered (file,
5854 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
5855 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
5856 fprintf_unfiltered (file,
5857 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
5858 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
5859 fprintf_unfiltered (file,
5860 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
5861 FCRCS_REGNUM);
5862 fprintf_unfiltered (file,
5863 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
5864 FCRIR_REGNUM);
5865 fprintf_unfiltered (file,
5866 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
5867 FIRST_EMBED_REGNUM);
5868 fprintf_unfiltered (file,
5869 "mips_dump_tdep: FPA0_REGNUM = %d\n",
5870 FPA0_REGNUM);
5871 fprintf_unfiltered (file,
5872 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
5873 GDB_TARGET_IS_MIPS64);
5874 fprintf_unfiltered (file,
5875 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
5876 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
5877 fprintf_unfiltered (file,
5878 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
5879 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
5880 fprintf_unfiltered (file,
5881 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
5882 GEN_REG_SAVE_MASK);
5883 fprintf_unfiltered (file,
5884 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
5885 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
5886 fprintf_unfiltered (file,
5887 "mips_dump_tdep: HI_REGNUM = %d\n",
5888 HI_REGNUM);
5889 fprintf_unfiltered (file,
5890 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
5891 fprintf_unfiltered (file,
5892 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
5893 fprintf_unfiltered (file,
5894 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
5895 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
5896 fprintf_unfiltered (file,
5897 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
5898 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
5899 fprintf_unfiltered (file,
5900 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
5901 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
5902 fprintf_unfiltered (file,
5903 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
5904 fprintf_unfiltered (file,
5905 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
5906 LAST_EMBED_REGNUM);
5907 fprintf_unfiltered (file,
5908 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
5909 fprintf_unfiltered (file,
5910 "mips_dump_tdep: LO_REGNUM = %d\n",
5911 LO_REGNUM);
5912#ifdef MACHINE_CPROC_FP_OFFSET
5913 fprintf_unfiltered (file,
5914 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
5915 MACHINE_CPROC_FP_OFFSET);
5916#endif
5917#ifdef MACHINE_CPROC_PC_OFFSET
5918 fprintf_unfiltered (file,
5919 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
5920 MACHINE_CPROC_PC_OFFSET);
5921#endif
5922#ifdef MACHINE_CPROC_SP_OFFSET
5923 fprintf_unfiltered (file,
5924 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
5925 MACHINE_CPROC_SP_OFFSET);
5926#endif
5927 fprintf_unfiltered (file,
5928 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
5929 fprintf_unfiltered (file,
5930 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
5931 fprintf_unfiltered (file,
5932 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
5933 MIPS16_INSTLEN);
5934 fprintf_unfiltered (file,
5935 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
5936 fprintf_unfiltered (file,
5937 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
5938 fprintf_unfiltered (file,
5939 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
5940 fprintf_unfiltered (file,
5941 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
5942 MIPS_INSTLEN);
5943 fprintf_unfiltered (file,
acdb74a0
AC
5944 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
5945 MIPS_LAST_ARG_REGNUM,
5946 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
5947 fprintf_unfiltered (file,
5948 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
5949 MIPS_NUMREGS);
5950 fprintf_unfiltered (file,
5951 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
5952 fprintf_unfiltered (file,
5953 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
5954 MIPS_SAVED_REGSIZE);
5955 fprintf_unfiltered (file,
5956 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
5957 fprintf_unfiltered (file,
5958 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
5959 XSTRING (MSYMBOL_SIZE (MSYM)));
5960 fprintf_unfiltered (file,
5961 "mips_dump_tdep: OP_LDFPR = used?\n");
5962 fprintf_unfiltered (file,
5963 "mips_dump_tdep: OP_LDGPR = used?\n");
5964 fprintf_unfiltered (file,
5965 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
5966 fprintf_unfiltered (file,
5967 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
5968 fprintf_unfiltered (file,
5969 "mips_dump_tdep: PRID_REGNUM = %d\n",
5970 PRID_REGNUM);
5971 fprintf_unfiltered (file,
5972 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
5973 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
5974 fprintf_unfiltered (file,
5975 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
5976 fprintf_unfiltered (file,
5977 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
5978 fprintf_unfiltered (file,
5979 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
5980 fprintf_unfiltered (file,
5981 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
5982 fprintf_unfiltered (file,
5983 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
5984 fprintf_unfiltered (file,
5985 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
5986 fprintf_unfiltered (file,
5987 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
5988 fprintf_unfiltered (file,
5989 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
5990 fprintf_unfiltered (file,
5991 "mips_dump_tdep: PROC_PC_REG = function?\n");
5992 fprintf_unfiltered (file,
5993 "mips_dump_tdep: PROC_REG_MASK = function?\n");
5994 fprintf_unfiltered (file,
5995 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
5996 fprintf_unfiltered (file,
5997 "mips_dump_tdep: PROC_SYMBOL = function?\n");
5998 fprintf_unfiltered (file,
5999 "mips_dump_tdep: PS_REGNUM = %d\n",
6000 PS_REGNUM);
6001 fprintf_unfiltered (file,
6002 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6003 PUSH_FP_REGNUM);
6004 fprintf_unfiltered (file,
6005 "mips_dump_tdep: RA_REGNUM = %d\n",
6006 RA_REGNUM);
6007 fprintf_unfiltered (file,
6008 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6009 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6010 fprintf_unfiltered (file,
6011 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6012 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6013 fprintf_unfiltered (file,
6014 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6015 fprintf_unfiltered (file,
6016 "mips_dump_tdep: ROUND_DOWN = function?\n");
6017 fprintf_unfiltered (file,
6018 "mips_dump_tdep: ROUND_UP = function?\n");
6019#ifdef SAVED_BYTES
6020 fprintf_unfiltered (file,
6021 "mips_dump_tdep: SAVED_BYTES = %d\n",
6022 SAVED_BYTES);
6023#endif
6024#ifdef SAVED_FP
6025 fprintf_unfiltered (file,
6026 "mips_dump_tdep: SAVED_FP = %d\n",
6027 SAVED_FP);
6028#endif
6029#ifdef SAVED_PC
6030 fprintf_unfiltered (file,
6031 "mips_dump_tdep: SAVED_PC = %d\n",
6032 SAVED_PC);
6033#endif
6034 fprintf_unfiltered (file,
6035 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6036 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6037 fprintf_unfiltered (file,
6038 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6039 fprintf_unfiltered (file,
6040 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6041 SIGFRAME_BASE);
6042 fprintf_unfiltered (file,
6043 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6044 SIGFRAME_FPREGSAVE_OFF);
6045 fprintf_unfiltered (file,
6046 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6047 SIGFRAME_PC_OFF);
6048 fprintf_unfiltered (file,
6049 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6050 SIGFRAME_REGSAVE_OFF);
6051 fprintf_unfiltered (file,
6052 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6053 SIGFRAME_REG_SIZE);
6054 fprintf_unfiltered (file,
6055 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6056 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6057 fprintf_unfiltered (file,
6058 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6059 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6060 fprintf_unfiltered (file,
b0ed3589
AC
6061 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6062 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6063 fprintf_unfiltered (file,
6064 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6065 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6066#ifdef STACK_END_ADDR
6067 fprintf_unfiltered (file,
6068 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6069 STACK_END_ADDR);
6070#endif
6071 fprintf_unfiltered (file,
6072 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6073 XSTRING (STEP_SKIPS_DELAY (PC)));
6074 fprintf_unfiltered (file,
6075 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6076 STEP_SKIPS_DELAY_P);
6077 fprintf_unfiltered (file,
6078 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6079 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6080 fprintf_unfiltered (file,
6081 "mips_dump_tdep: T9_REGNUM = %d\n",
6082 T9_REGNUM);
6083 fprintf_unfiltered (file,
6084 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6085 fprintf_unfiltered (file,
6086 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6087 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6088 fprintf_unfiltered (file,
6089 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6090 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6091 fprintf_unfiltered (file,
6092 "mips_dump_tdep: TARGET_MIPS = used?\n");
6093 fprintf_unfiltered (file,
6094 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6095 XSTRING (TM_PRINT_INSN_MACH));
6096#ifdef TRACE_CLEAR
6097 fprintf_unfiltered (file,
6098 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6099 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6100#endif
6101#ifdef TRACE_FLAVOR
6102 fprintf_unfiltered (file,
6103 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6104 TRACE_FLAVOR);
6105#endif
6106#ifdef TRACE_FLAVOR_SIZE
6107 fprintf_unfiltered (file,
6108 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6109 TRACE_FLAVOR_SIZE);
6110#endif
6111#ifdef TRACE_SET
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: TRACE_SET # %s\n",
6114 XSTRING (TRACE_SET (X,STATE)));
6115#endif
6116 fprintf_unfiltered (file,
6117 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6118#ifdef UNUSED_REGNUM
6119 fprintf_unfiltered (file,
6120 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6121 UNUSED_REGNUM);
6122#endif
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: V0_REGNUM = %d\n",
6125 V0_REGNUM);
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6128 (long) VM_MIN_ADDRESS);
6129#ifdef VX_NUM_REGS
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6132 VX_NUM_REGS);
6133#endif
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6136 ZERO_REGNUM);
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6139 _PROC_MAGIC_);
70f80edf
JT
6140
6141 fprintf_unfiltered (file,
6142 "mips_dump_tdep: OS ABI = %s\n",
6143 gdbarch_osabi_name (tdep->osabi));
c2d11a7d
JM
6144}
6145
c906108c 6146void
acdb74a0 6147_initialize_mips_tdep (void)
c906108c
SS
6148{
6149 static struct cmd_list_element *mipsfpulist = NULL;
6150 struct cmd_list_element *c;
6151
2e4ebe70
DJ
6152 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6153 if (MIPS_ABI_LAST + 1
6154 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6155 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6156
4b9b3959 6157 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c5aa993b 6158 if (!tm_print_insn) /* Someone may have already set it */
c906108c
SS
6159 tm_print_insn = gdb_print_insn_mips;
6160
a5ea2558
AC
6161 /* Add root prefix command for all "set mips"/"show mips" commands */
6162 add_prefix_cmd ("mips", no_class, set_mips_command,
6163 "Various MIPS specific commands.",
6164 &setmipscmdlist, "set mips ", 0, &setlist);
6165
6166 add_prefix_cmd ("mips", no_class, show_mips_command,
6167 "Various MIPS specific commands.",
6168 &showmipscmdlist, "show mips ", 0, &showlist);
6169
6170 /* Allow the user to override the saved register size. */
6171 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6172 class_obscure,
6173 size_enums,
6174 &mips_saved_regsize_string, "\
a5ea2558
AC
6175Set size of general purpose registers saved on the stack.\n\
6176This option can be set to one of:\n\
6177 32 - Force GDB to treat saved GP registers as 32-bit\n\
6178 64 - Force GDB to treat saved GP registers as 64-bit\n\
6179 auto - Allow GDB to use the target's default setting or autodetect the\n\
6180 saved GP register size from information contained in the executable.\n\
6181 (default: auto)",
1ed2a135 6182 &setmipscmdlist),
a5ea2558
AC
6183 &showmipscmdlist);
6184
d929b26f
AC
6185 /* Allow the user to override the argument stack size. */
6186 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6187 class_obscure,
6188 size_enums,
1ed2a135 6189 &mips_stack_argsize_string, "\
d929b26f
AC
6190Set the amount of stack space reserved for each argument.\n\
6191This option can be set to one of:\n\
6192 32 - Force GDB to allocate 32-bit chunks per argument\n\
6193 64 - Force GDB to allocate 64-bit chunks per argument\n\
6194 auto - Allow GDB to determine the correct setting from the current\n\
6195 target and executable (default)",
6196 &setmipscmdlist),
6197 &showmipscmdlist);
6198
2e4ebe70
DJ
6199 /* Allow the user to override the ABI. */
6200 c = add_set_enum_cmd
6201 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6202 "Set the ABI used by this program.\n"
6203 "This option can be set to one of:\n"
6204 " auto - the default ABI associated with the current binary\n"
6205 " o32\n"
6206 " o64\n"
6207 " n32\n"
f3a7b3a5 6208 " n64\n"
2e4ebe70
DJ
6209 " eabi32\n"
6210 " eabi64",
6211 &setmipscmdlist);
6212 add_show_from_set (c, &showmipscmdlist);
6213 set_cmd_sfunc (c, mips_abi_update);
6214
c906108c
SS
6215 /* Let the user turn off floating point and set the fence post for
6216 heuristic_proc_start. */
6217
6218 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6219 "Set use of MIPS floating-point coprocessor.",
6220 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6221 add_cmd ("single", class_support, set_mipsfpu_single_command,
6222 "Select single-precision MIPS floating-point coprocessor.",
6223 &mipsfpulist);
6224 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6225 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6226 &mipsfpulist);
6227 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6228 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6229 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6230 add_cmd ("none", class_support, set_mipsfpu_none_command,
6231 "Select no MIPS floating-point coprocessor.",
6232 &mipsfpulist);
6233 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6234 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6235 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6236 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6237 "Select MIPS floating-point coprocessor automatically.",
6238 &mipsfpulist);
6239 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6240 "Show current use of MIPS floating-point coprocessor target.",
6241 &showlist);
6242
c906108c
SS
6243 /* We really would like to have both "0" and "unlimited" work, but
6244 command.c doesn't deal with that. So make it a var_zinteger
6245 because the user can always use "999999" or some such for unlimited. */
6246 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6247 (char *) &heuristic_fence_post,
6248 "\
6249Set the distance searched for the start of a function.\n\
6250If you are debugging a stripped executable, GDB needs to search through the\n\
6251program for the start of a function. This command sets the distance of the\n\
6252search. The only need to set it is when debugging a stripped executable.",
6253 &setlist);
6254 /* We need to throw away the frame cache when we set this, since it
6255 might change our ability to get backtraces. */
9f60d481 6256 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6257 add_show_from_set (c, &showlist);
6258
6259 /* Allow the user to control whether the upper bits of 64-bit
6260 addresses should be zeroed. */
e9e68a56
AC
6261 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6262Set zeroing of upper 32 bits of 64-bit addresses.\n\
6263Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6264allow GDB to determine the correct value.\n", "\
6265Show zeroing of upper 32 bits of 64-bit addresses.",
6266 NULL, show_mask_address,
6267 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6268
6269 /* Allow the user to control the size of 32 bit registers within the
6270 raw remote packet. */
6271 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6272 class_obscure,
6273 var_boolean,
6274 (char *)&mips64_transfers_32bit_regs_p, "\
6275Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6276Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6277that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
627864 bits for others. Use \"off\" to disable compatibility mode",
6279 &setlist),
6280 &showlist);
9ace0497
AC
6281
6282 /* Debug this files internals. */
6283 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6284 &mips_debug, "Set mips debugging.\n\
6285When non-zero, mips specific debugging is enabled.", &setdebuglist),
6286 &showdebuglist);
c906108c 6287}
This page took 0.571423 seconds and 4 git commands to generate.