2003-06-21 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
cda5a58a 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1e698235 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
bf64bfd6 5
c906108c
SS
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "gdb_string.h"
5e2e9765 28#include "gdb_assert.h"
c906108c
SS
29#include "frame.h"
30#include "inferior.h"
31#include "symtab.h"
32#include "value.h"
33#include "gdbcmd.h"
34#include "language.h"
35#include "gdbcore.h"
36#include "symfile.h"
37#include "objfiles.h"
38#include "gdbtypes.h"
39#include "target.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
70f80edf 42#include "osabi.h"
d1973055 43#include "mips-tdep.h"
fe898f56 44#include "block.h"
c906108c
SS
45
46#include "opcode/mips.h"
c2d11a7d
JM
47#include "elf/mips.h"
48#include "elf-bfd.h"
2475bac3 49#include "symcat.h"
c906108c 50
e0f7ec59
AC
51static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
52
dd824b04
DJ
53/* A useful bit in the CP0 status register (PS_REGNUM). */
54/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55#define ST0_FR (1 << 26)
56
b0069a17
AC
57/* The sizes of floating point registers. */
58
59enum
60{
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
63};
64
0dadbba0 65
2e4ebe70
DJ
66static const char *mips_abi_string;
67
68static const char *mips_abi_strings[] = {
69 "auto",
70 "n32",
71 "o32",
28d169de 72 "n64",
2e4ebe70
DJ
73 "o64",
74 "eabi32",
75 "eabi64",
76 NULL
77};
78
cce74817 79struct frame_extra_info
c5aa993b
JM
80 {
81 mips_extra_func_info_t proc_desc;
82 int num_args;
83 };
cce74817 84
d929b26f
AC
85/* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
87 them. */
88
53904c9e
AC
89static const char size_auto[] = "auto";
90static const char size_32[] = "32";
91static const char size_64[] = "64";
d929b26f 92
53904c9e 93static const char *size_enums[] = {
d929b26f
AC
94 size_auto,
95 size_32,
96 size_64,
a5ea2558
AC
97 0
98};
99
7a292a7a
SS
100/* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
c906108c
SS
103
104enum mips_fpu_type
c5aa993b
JM
105 {
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
109 };
c906108c
SS
110
111#ifndef MIPS_DEFAULT_FPU_TYPE
112#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
113#endif
114static int mips_fpu_type_auto = 1;
115static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 116
9ace0497 117static int mips_debug = 0;
7a292a7a 118
c2d11a7d
JM
119/* MIPS specific per-architecture information */
120struct gdbarch_tdep
121 {
122 /* from the elf header */
123 int elf_flags;
70f80edf 124
c2d11a7d 125 /* mips options */
0dadbba0 126 enum mips_abi mips_abi;
2e4ebe70 127 enum mips_abi found_abi;
c2d11a7d
JM
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
a5ea2558 131 int mips_default_saved_regsize;
c2d11a7d 132 int mips_fp_register_double;
d929b26f 133 int mips_default_stack_argsize;
5213ab06 134 int gdb_target_is_mips64;
4014092b 135 int default_mask_address_p;
c2d11a7d
JM
136 };
137
0dadbba0 138#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 140
c2d11a7d 141#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 142
c2d11a7d 143#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 144
c2d11a7d 145#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 146
d929b26f
AC
147/* Return the currently configured (or set) saved register size. */
148
a5ea2558 149#define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
c2d11a7d 150
53904c9e 151static const char *mips_saved_regsize_string = size_auto;
d929b26f
AC
152
153#define MIPS_SAVED_REGSIZE (mips_saved_regsize())
154
95404a3e
AC
155/* MIPS16 function addresses are odd (bit 0 is set). Here are some
156 functions to test, set, or clear bit 0 of addresses. */
157
158static CORE_ADDR
159is_mips16_addr (CORE_ADDR addr)
160{
161 return ((addr) & 1);
162}
163
164static CORE_ADDR
165make_mips16_addr (CORE_ADDR addr)
166{
167 return ((addr) | 1);
168}
169
170static CORE_ADDR
171unmake_mips16_addr (CORE_ADDR addr)
172{
173 return ((addr) & ~1);
174}
175
22540ece
AC
176/* Return the contents of register REGNUM as a signed integer. */
177
178static LONGEST
179read_signed_register (int regnum)
180{
181 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
182 deprecated_read_register_gen (regnum, buf);
183 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
184}
185
186static LONGEST
187read_signed_register_pid (int regnum, ptid_t ptid)
188{
189 ptid_t save_ptid;
190 LONGEST retval;
191
192 if (ptid_equal (ptid, inferior_ptid))
193 return read_signed_register (regnum);
194
195 save_ptid = inferior_ptid;
196
197 inferior_ptid = ptid;
198
199 retval = read_signed_register (regnum);
200
201 inferior_ptid = save_ptid;
202
203 return retval;
204}
205
d1973055
KB
206/* Return the MIPS ABI associated with GDBARCH. */
207enum mips_abi
208mips_abi (struct gdbarch *gdbarch)
209{
210 return gdbarch_tdep (gdbarch)->mips_abi;
211}
212
d929b26f 213static unsigned int
acdb74a0 214mips_saved_regsize (void)
d929b26f
AC
215{
216 if (mips_saved_regsize_string == size_auto)
217 return MIPS_DEFAULT_SAVED_REGSIZE;
218 else if (mips_saved_regsize_string == size_64)
219 return 8;
220 else /* if (mips_saved_regsize_string == size_32) */
221 return 4;
222}
223
71b8ef93 224/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa
MS
225 marks it as 16-bit function. The MSB of the minimal symbol's
226 "info" field is used for this purpose. This field is already
227 being used to store the symbol size, so the assumption is
228 that the symbol size cannot exceed 2^31.
229
230 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
231 i.e. refers to a 16-bit function, and sets a "special" bit in a
232 minimal symbol to mark it as a 16-bit function
233
234 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
235 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
236 the "info" field with the "special" bit masked out */
237
5a89d8aa
MS
238static void
239mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
240{
241 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
242 {
243 MSYMBOL_INFO (msym) = (char *)
244 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
245 SYMBOL_VALUE_ADDRESS (msym) |= 1;
246 }
247}
248
71b8ef93
MS
249static int
250msymbol_is_special (struct minimal_symbol *msym)
251{
252 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
253}
254
255static long
256msymbol_size (struct minimal_symbol *msym)
257{
258 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
259}
260
88658117
AC
261/* XFER a value from the big/little/left end of the register.
262 Depending on the size of the value it might occupy the entire
263 register or just part of it. Make an allowance for this, aligning
264 things accordingly. */
265
266static void
267mips_xfer_register (struct regcache *regcache, int reg_num, int length,
268 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
269 int buf_offset)
270{
d9d9c31f 271 bfd_byte reg[MAX_REGISTER_SIZE];
88658117 272 int reg_offset = 0;
cb1d2653
AC
273 /* Need to transfer the left or right part of the register, based on
274 the targets byte order. */
88658117
AC
275 switch (endian)
276 {
277 case BFD_ENDIAN_BIG:
278 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
279 break;
280 case BFD_ENDIAN_LITTLE:
281 reg_offset = 0;
282 break;
283 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
284 reg_offset = 0;
285 break;
286 default:
287 internal_error (__FILE__, __LINE__, "bad switch");
288 }
289 if (mips_debug)
cb1d2653
AC
290 fprintf_unfiltered (gdb_stderr,
291 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
292 reg_num, reg_offset, buf_offset, length);
88658117
AC
293 if (mips_debug && out != NULL)
294 {
295 int i;
cb1d2653 296 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 297 for (i = 0; i < length; i++)
cb1d2653 298 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
299 }
300 if (in != NULL)
301 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
302 if (out != NULL)
303 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
304 if (mips_debug && in != NULL)
305 {
306 int i;
cb1d2653 307 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 308 for (i = 0; i < length; i++)
cb1d2653 309 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
310 }
311 if (mips_debug)
312 fprintf_unfiltered (gdb_stdlog, "\n");
313}
314
dd824b04
DJ
315/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
316 compatiblity mode. A return value of 1 means that we have
317 physical 64-bit registers, but should treat them as 32-bit registers. */
318
319static int
320mips2_fp_compat (void)
321{
322 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
323 meaningful. */
324 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
325 return 0;
326
327#if 0
328 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
329 in all the places we deal with FP registers. PR gdb/413. */
330 /* Otherwise check the FR bit in the status register - it controls
331 the FP compatiblity mode. If it is clear we are in compatibility
332 mode. */
333 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
334 return 1;
335#endif
361d1df0 336
dd824b04
DJ
337 return 0;
338}
339
c2d11a7d
JM
340/* Indicate that the ABI makes use of double-precision registers
341 provided by the FPU (rather than combining pairs of registers to
342 form double-precision values). Do not use "TARGET_IS_MIPS64" to
343 determine if the ABI is using double-precision registers. See also
344 MIPS_FPU_TYPE. */
c2d11a7d 345#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
c2d11a7d 346
d929b26f
AC
347/* The amount of space reserved on the stack for registers. This is
348 different to MIPS_SAVED_REGSIZE as it determines the alignment of
349 data allocated after the registers have run out. */
350
0dadbba0 351#define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
d929b26f
AC
352
353#define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
354
53904c9e 355static const char *mips_stack_argsize_string = size_auto;
d929b26f
AC
356
357static unsigned int
358mips_stack_argsize (void)
359{
360 if (mips_stack_argsize_string == size_auto)
361 return MIPS_DEFAULT_STACK_ARGSIZE;
362 else if (mips_stack_argsize_string == size_64)
363 return 8;
364 else /* if (mips_stack_argsize_string == size_32) */
365 return 4;
366}
367
5213ab06 368#define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
c2d11a7d 369
92e1c15c 370#define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
92e1c15c 371
7a292a7a 372#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 373
a14ed312 374int gdb_print_insn_mips (bfd_vma, disassemble_info *);
c906108c 375
570b8f7c
AC
376static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
377 struct frame_info *, int);
c906108c 378
a14ed312 379static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 380
a14ed312 381static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 382
5a89d8aa 383static int mips_set_processor_type (char *);
c906108c 384
a14ed312 385static void mips_show_processor_type_command (char *, int);
c906108c 386
a14ed312 387static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 388
570b8f7c
AC
389static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
390 struct frame_info *next_frame,
391 int cur_frame);
c906108c 392
a14ed312
KB
393static CORE_ADDR after_prologue (CORE_ADDR pc,
394 mips_extra_func_info_t proc_desc);
c906108c 395
67b2c998
DJ
396static struct type *mips_float_register_type (void);
397static struct type *mips_double_register_type (void);
398
c906108c
SS
399/* This value is the model of MIPS in use. It is derived from the value
400 of the PrID register. */
401
402char *mips_processor_type;
403
404char *tmp_mips_processor_type;
405
acdb74a0
AC
406/* The list of available "set mips " and "show mips " commands */
407
408static struct cmd_list_element *setmipscmdlist = NULL;
409static struct cmd_list_element *showmipscmdlist = NULL;
410
c906108c
SS
411/* A set of original names, to be used when restoring back to generic
412 registers from a specific set. */
5e2e9765 413static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
c906108c 414
5e2e9765
KB
415/* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the sets of register names assigned to
418 mips_processor_reg_names. */
419static char **mips_processor_reg_names = mips_generic_reg_names;
cce74817 420
5e2e9765 421/* Return the name of the register corresponding to REGNO. */
5a89d8aa 422static const char *
5e2e9765 423mips_register_name (int regno)
cce74817 424{
5e2e9765
KB
425 /* GPR names for all ABIs other than n32/n64. */
426 static char *mips_gpr_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
431 };
432
433 /* GPR names for n32 and n64 ABIs. */
434 static char *mips_n32_n64_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
439 };
440
441 enum mips_abi abi = mips_abi (current_gdbarch);
442
443 /* The MIPS integer registers are always mapped from 0 to 31. The
444 names of the registers (which reflects the conventions regarding
445 register use) vary depending on the ABI. */
446 if (0 <= regno && regno < 32)
447 {
448 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
449 return mips_n32_n64_gpr_names[regno];
450 else
451 return mips_gpr_names[regno];
452 }
b006a9e9 453 else if (32 <= regno && regno < NUM_REGS)
5e2e9765
KB
454 return mips_processor_reg_names[regno - 32];
455 else
456 internal_error (__FILE__, __LINE__,
457 "mips_register_name: bad register number %d", regno);
cce74817 458}
5e2e9765 459
9846de1b 460/* *INDENT-OFF* */
c906108c
SS
461/* Names of IDT R3041 registers. */
462
463char *mips_r3041_reg_names[] = {
c906108c
SS
464 "sr", "lo", "hi", "bad", "cause","pc",
465 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
466 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
467 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
468 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 469 "fsr", "fir", "",/*"fp"*/ "",
c906108c
SS
470 "", "", "bus", "ccfg", "", "", "", "",
471 "", "", "port", "cmp", "", "", "epc", "prid",
472};
473
474/* Names of IDT R3051 registers. */
475
476char *mips_r3051_reg_names[] = {
c906108c
SS
477 "sr", "lo", "hi", "bad", "cause","pc",
478 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
479 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
480 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
481 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 482 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
483 "inx", "rand", "elo", "", "ctxt", "", "", "",
484 "", "", "ehi", "", "", "", "epc", "prid",
485};
486
487/* Names of IDT R3081 registers. */
488
489char *mips_r3081_reg_names[] = {
c906108c
SS
490 "sr", "lo", "hi", "bad", "cause","pc",
491 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
492 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
493 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
494 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
a094c6fb 495 "fsr", "fir", ""/*"fp"*/, "",
c906108c
SS
496 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
497 "", "", "ehi", "", "", "", "epc", "prid",
498};
499
500/* Names of LSI 33k registers. */
501
502char *mips_lsi33k_reg_names[] = {
c906108c
SS
503 "epc", "hi", "lo", "sr", "cause","badvaddr",
504 "dcic", "bpc", "bda", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "", "", "", "", "",
507 "", "", "", "", "", "", "", "",
508 "", "", "", "",
509 "", "", "", "", "", "", "", "",
510 "", "", "", "", "", "", "", "",
511};
512
513struct {
514 char *name;
515 char **regnames;
516} mips_processor_type_table[] = {
517 { "generic", mips_generic_reg_names },
518 { "r3041", mips_r3041_reg_names },
519 { "r3051", mips_r3051_reg_names },
520 { "r3071", mips_r3081_reg_names },
521 { "r3081", mips_r3081_reg_names },
522 { "lsi33k", mips_lsi33k_reg_names },
523 { NULL, NULL }
524};
9846de1b 525/* *INDENT-ON* */
c906108c 526
c5aa993b
JM
527
528
529
c906108c 530/* Table to translate MIPS16 register field to actual register number. */
c5aa993b
JM
531static int mips16_to_32_reg[8] =
532{16, 17, 2, 3, 4, 5, 6, 7};
c906108c
SS
533
534/* Heuristic_proc_start may hunt through the text section for a long
535 time across a 2400 baud serial line. Allows the user to limit this
536 search. */
537
538static unsigned int heuristic_fence_post = 0;
539
c5aa993b
JM
540#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
541#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
c906108c
SS
542#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
543#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
544#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
545#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
546#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
547#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
548#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
549#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
6c0d6680
DJ
550/* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
551 this will corrupt pdr.iline. Fortunately we don't use it. */
c906108c
SS
552#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
553#define _PROC_MAGIC_ 0x0F0F0F0F
554#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
555#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
556
557struct linked_proc_info
c5aa993b
JM
558 {
559 struct mips_extra_func_info info;
560 struct linked_proc_info *next;
561 }
562 *linked_proc_desc_table = NULL;
c906108c 563
cce74817 564void
acdb74a0 565mips_print_extra_frame_info (struct frame_info *fi)
cce74817
JM
566{
567 if (fi
da50a4b7
AC
568 && get_frame_extra_info (fi)
569 && get_frame_extra_info (fi)->proc_desc
570 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
d4f3574e 571 printf_filtered (" frame pointer is at %s+%s\n",
da50a4b7
AC
572 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
573 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
cce74817 574}
c906108c 575
46cd78fb
AC
576/* Number of bytes of storage in the actual machine representation for
577 register N. NOTE: This indirectly defines the register size
578 transfered by the GDB protocol. */
43e526b9
JM
579
580static int mips64_transfers_32bit_regs_p = 0;
581
f7ab6ec6 582static int
acdb74a0 583mips_register_raw_size (int reg_nr)
43e526b9
JM
584{
585 if (mips64_transfers_32bit_regs_p)
586 return REGISTER_VIRTUAL_SIZE (reg_nr);
d02ee681
AC
587 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
588 && FP_REGISTER_DOUBLE)
589 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
590 registers. */
591 return 8;
43e526b9
JM
592 else
593 return MIPS_REGSIZE;
594}
595
46cd78fb
AC
596/* Convert between RAW and VIRTUAL registers. The RAW register size
597 defines the remote-gdb packet. */
598
d05285fa 599static int
acdb74a0 600mips_register_convertible (int reg_nr)
43e526b9
JM
601{
602 if (mips64_transfers_32bit_regs_p)
603 return 0;
604 else
605 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
606}
607
d05285fa 608static void
acdb74a0
AC
609mips_register_convert_to_virtual (int n, struct type *virtual_type,
610 char *raw_buf, char *virt_buf)
43e526b9 611{
d7449b42 612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
613 memcpy (virt_buf,
614 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
615 TYPE_LENGTH (virtual_type));
616 else
617 memcpy (virt_buf,
618 raw_buf,
619 TYPE_LENGTH (virtual_type));
620}
621
d05285fa 622static void
acdb74a0 623mips_register_convert_to_raw (struct type *virtual_type, int n,
781a750d 624 const char *virt_buf, char *raw_buf)
43e526b9
JM
625{
626 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
d7449b42 627 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
628 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
629 virt_buf,
630 TYPE_LENGTH (virtual_type));
631 else
632 memcpy (raw_buf,
633 virt_buf,
634 TYPE_LENGTH (virtual_type));
635}
636
ff2e87ac
AC
637static int
638mips_convert_register_p (int regnum, struct type *type)
639{
640 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
641 && REGISTER_RAW_SIZE (regnum) == 4
642 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
643 && TYPE_CODE(type) == TYPE_CODE_FLT
644 && TYPE_LENGTH(type) == 8);
645}
646
42c466d7 647static void
ff2e87ac
AC
648mips_register_to_value (struct frame_info *frame, int regnum,
649 struct type *type, void *to)
102182a9 650{
ff2e87ac
AC
651 frame_read_register (frame, regnum + 0, (char *) to + 4);
652 frame_read_register (frame, regnum + 1, (char *) to + 0);
102182a9
MS
653}
654
42c466d7 655static void
ff2e87ac
AC
656mips_value_to_register (struct frame_info *frame, int regnum,
657 struct type *type, const void *from)
102182a9 658{
ff2e87ac
AC
659 put_frame_register (frame, regnum + 0, (const char *) from + 4);
660 put_frame_register (frame, regnum + 1, (const char *) from + 0);
102182a9
MS
661}
662
78fde5f8
KB
663/* Return the GDB type object for the "standard" data type
664 of data in register REG.
665
666 Note: kevinb/2002-08-01: The definition below should faithfully
667 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
0ba6dca9
AC
668 definitions found in config/mips/tm-*.h. I'm concerned about the
669 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
670 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
78fde5f8
KB
671 that this code is correct for the 64-bit case. */
672
673static struct type *
674mips_register_virtual_type (int reg)
675{
676 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
a6425924
KB
677 {
678 /* Floating point registers... */
679 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
680 return builtin_type_ieee_double_big;
681 else
682 return builtin_type_ieee_double_little;
683 }
78fde5f8
KB
684 else if (reg == PS_REGNUM /* CR */)
685 return builtin_type_uint32;
686 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
687 return builtin_type_uint32;
688 else
689 {
a6425924
KB
690 /* Everything else...
691 Return type appropriate for width of register. */
692 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
693 return builtin_type_uint64;
78fde5f8 694 else
a6425924 695 return builtin_type_uint32;
78fde5f8
KB
696 }
697}
698
bcb0cc15
MS
699/* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
700
701static CORE_ADDR
702mips_read_sp (void)
703{
e227b13c 704 return read_signed_register (SP_REGNUM);
bcb0cc15
MS
705}
706
c906108c 707/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 708enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
709
710static int
711mips_mask_address_p (void)
712{
713 switch (mask_address_var)
714 {
7f19b9a2 715 case AUTO_BOOLEAN_TRUE:
4014092b 716 return 1;
7f19b9a2 717 case AUTO_BOOLEAN_FALSE:
4014092b
AC
718 return 0;
719 break;
7f19b9a2 720 case AUTO_BOOLEAN_AUTO:
92e1c15c 721 return MIPS_DEFAULT_MASK_ADDRESS_P;
4014092b 722 default:
8e65ff28
AC
723 internal_error (__FILE__, __LINE__,
724 "mips_mask_address_p: bad switch");
4014092b 725 return -1;
361d1df0 726 }
4014092b
AC
727}
728
729static void
e9e68a56 730show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
4014092b
AC
731{
732 switch (mask_address_var)
733 {
7f19b9a2 734 case AUTO_BOOLEAN_TRUE:
4014092b
AC
735 printf_filtered ("The 32 bit mips address mask is enabled\n");
736 break;
7f19b9a2 737 case AUTO_BOOLEAN_FALSE:
4014092b
AC
738 printf_filtered ("The 32 bit mips address mask is disabled\n");
739 break;
7f19b9a2 740 case AUTO_BOOLEAN_AUTO:
4014092b
AC
741 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
742 mips_mask_address_p () ? "enabled" : "disabled");
743 break;
744 default:
8e65ff28
AC
745 internal_error (__FILE__, __LINE__,
746 "show_mask_address: bad switch");
4014092b 747 break;
361d1df0 748 }
4014092b 749}
c906108c
SS
750
751/* Should call_function allocate stack space for a struct return? */
cb811fe7 752
f7ab6ec6 753static int
cb811fe7 754mips_eabi_use_struct_convention (int gcc_p, struct type *type)
c906108c 755{
cb811fe7
MS
756 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
757}
758
f7ab6ec6 759static int
cb811fe7
MS
760mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
761{
b78bcb18 762 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
cb811fe7
MS
763}
764
8b389c40
MS
765/* Should call_function pass struct by reference?
766 For each architecture, structs are passed either by
767 value or by reference, depending on their size. */
768
769static int
770mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
771{
772 enum type_code typecode = TYPE_CODE (check_typedef (type));
773 int len = TYPE_LENGTH (check_typedef (type));
774
775 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
776 return (len > MIPS_SAVED_REGSIZE);
777
778 return 0;
779}
780
781static int
782mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
783{
784 return 0; /* Assumption: N32/N64 never passes struct by ref. */
785}
786
f7ab6ec6 787static int
8b389c40
MS
788mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
789{
790 return 0; /* Assumption: O32/O64 never passes struct by ref. */
791}
792
c906108c
SS
793/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
794
795static int
796pc_is_mips16 (bfd_vma memaddr)
797{
798 struct minimal_symbol *sym;
799
800 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 801 if (is_mips16_addr (memaddr))
c906108c
SS
802 return 1;
803
804 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
805 the high bit of the info field. Use this to decide if the function is
806 MIPS16 or normal MIPS. */
807 sym = lookup_minimal_symbol_by_pc (memaddr);
808 if (sym)
71b8ef93 809 return msymbol_is_special (sym);
c906108c
SS
810 else
811 return 0;
812}
813
6c997a34
AC
814/* MIPS believes that the PC has a sign extended value. Perhaphs the
815 all registers should be sign extended for simplicity? */
816
817static CORE_ADDR
39f77062 818mips_read_pc (ptid_t ptid)
6c997a34 819{
39f77062 820 return read_signed_register_pid (PC_REGNUM, ptid);
6c997a34 821}
c906108c
SS
822
823/* This returns the PC of the first inst after the prologue. If we can't
824 find the prologue, then return 0. */
825
826static CORE_ADDR
acdb74a0
AC
827after_prologue (CORE_ADDR pc,
828 mips_extra_func_info_t proc_desc)
c906108c
SS
829{
830 struct symtab_and_line sal;
831 CORE_ADDR func_addr, func_end;
832
479412cd
DJ
833 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
834 to read the stack pointer from the current machine state, because
835 the current machine state has nothing to do with the information
836 we need from the proc_desc; and the process may or may not exist
837 right now. */
c906108c 838 if (!proc_desc)
479412cd 839 proc_desc = find_proc_desc (pc, NULL, 0);
c906108c
SS
840
841 if (proc_desc)
842 {
843 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 844 strongly suspect that frameless always means prologueless... */
c906108c
SS
845 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
846 && PROC_FRAME_OFFSET (proc_desc) == 0)
847 return 0;
848 }
849
850 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
851 return 0; /* Unknown */
852
853 sal = find_pc_line (func_addr, 0);
854
855 if (sal.end < func_end)
856 return sal.end;
857
858 /* The line after the prologue is after the end of the function. In this
859 case, tell the caller to find the prologue the hard way. */
860
861 return 0;
862}
863
864/* Decode a MIPS32 instruction that saves a register in the stack, and
865 set the appropriate bit in the general register mask or float register mask
866 to indicate which register is saved. This is a helper function
867 for mips_find_saved_regs. */
868
869static void
acdb74a0
AC
870mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
871 unsigned long *float_mask)
c906108c
SS
872{
873 int reg;
874
875 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
876 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
877 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
878 {
879 /* It might be possible to use the instruction to
c5aa993b
JM
880 find the offset, rather than the code below which
881 is based on things being in a certain order in the
882 frame, but figuring out what the instruction's offset
883 is relative to might be a little tricky. */
c906108c
SS
884 reg = (inst & 0x001f0000) >> 16;
885 *gen_mask |= (1 << reg);
886 }
887 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
c5aa993b
JM
888 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
889 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
c906108c
SS
890
891 {
892 reg = ((inst & 0x001f0000) >> 16);
893 *float_mask |= (1 << reg);
894 }
895}
896
897/* Decode a MIPS16 instruction that saves a register in the stack, and
898 set the appropriate bit in the general register or float register mask
899 to indicate which register is saved. This is a helper function
900 for mips_find_saved_regs. */
901
902static void
acdb74a0 903mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
c906108c 904{
c5aa993b 905 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
c906108c
SS
906 {
907 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
908 *gen_mask |= (1 << reg);
909 }
c5aa993b 910 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
c906108c
SS
911 {
912 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
913 *gen_mask |= (1 << reg);
914 }
c5aa993b 915 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
c906108c
SS
916 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
917 *gen_mask |= (1 << RA_REGNUM);
918}
919
920
921/* Fetch and return instruction from the specified location. If the PC
922 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
923
924static t_inst
acdb74a0 925mips_fetch_instruction (CORE_ADDR addr)
c906108c
SS
926{
927 char buf[MIPS_INSTLEN];
928 int instlen;
929 int status;
930
931 if (pc_is_mips16 (addr))
932 {
933 instlen = MIPS16_INSTLEN;
95404a3e 934 addr = unmake_mips16_addr (addr);
c906108c
SS
935 }
936 else
c5aa993b 937 instlen = MIPS_INSTLEN;
c906108c
SS
938 status = read_memory_nobpt (addr, buf, instlen);
939 if (status)
940 memory_error (status, addr);
941 return extract_unsigned_integer (buf, instlen);
942}
943
944
945/* These the fields of 32 bit mips instructions */
e135b889
DJ
946#define mips32_op(x) (x >> 26)
947#define itype_op(x) (x >> 26)
948#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 949#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 950#define itype_immediate(x) (x & 0xffff)
c906108c 951
e135b889
DJ
952#define jtype_op(x) (x >> 26)
953#define jtype_target(x) (x & 0x03ffffff)
c906108c 954
e135b889
DJ
955#define rtype_op(x) (x >> 26)
956#define rtype_rs(x) ((x >> 21) & 0x1f)
957#define rtype_rt(x) ((x >> 16) & 0x1f)
958#define rtype_rd(x) ((x >> 11) & 0x1f)
959#define rtype_shamt(x) ((x >> 6) & 0x1f)
960#define rtype_funct(x) (x & 0x3f)
c906108c
SS
961
962static CORE_ADDR
c5aa993b
JM
963mips32_relative_offset (unsigned long inst)
964{
965 long x;
966 x = itype_immediate (inst);
967 if (x & 0x8000) /* sign bit set */
c906108c 968 {
c5aa993b 969 x |= 0xffff0000; /* sign extension */
c906108c 970 }
c5aa993b
JM
971 x = x << 2;
972 return x;
c906108c
SS
973}
974
975/* Determine whate to set a single step breakpoint while considering
976 branch prediction */
5a89d8aa 977static CORE_ADDR
c5aa993b
JM
978mips32_next_pc (CORE_ADDR pc)
979{
980 unsigned long inst;
981 int op;
982 inst = mips_fetch_instruction (pc);
e135b889 983 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 984 {
e135b889
DJ
985 if (itype_op (inst) >> 2 == 5)
986 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 987 {
e135b889 988 op = (itype_op (inst) & 0x03);
c906108c
SS
989 switch (op)
990 {
e135b889
DJ
991 case 0: /* BEQL */
992 goto equal_branch;
993 case 1: /* BNEL */
994 goto neq_branch;
995 case 2: /* BLEZL */
996 goto less_branch;
997 case 3: /* BGTZ */
998 goto greater_branch;
c5aa993b
JM
999 default:
1000 pc += 4;
c906108c
SS
1001 }
1002 }
e135b889
DJ
1003 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1004 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1005 {
1006 int tf = itype_rt (inst) & 0x01;
1007 int cnum = itype_rt (inst) >> 2;
1008 int fcrcs = read_signed_register (FCRCS_REGNUM);
1009 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1010
1011 if (((cond >> cnum) & 0x01) == tf)
1012 pc += mips32_relative_offset (inst) + 4;
1013 else
1014 pc += 8;
1015 }
c5aa993b
JM
1016 else
1017 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1018 }
1019 else
c5aa993b
JM
1020 { /* This gets way messy */
1021
c906108c 1022 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1023 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1024 {
c5aa993b
JM
1025 case 0: /* SPECIAL */
1026 op = rtype_funct (inst);
1027 switch (op)
1028 {
1029 case 8: /* JR */
1030 case 9: /* JALR */
6c997a34
AC
1031 /* Set PC to that address */
1032 pc = read_signed_register (rtype_rs (inst));
c5aa993b
JM
1033 break;
1034 default:
1035 pc += 4;
1036 }
1037
e135b889 1038 break; /* end SPECIAL */
c5aa993b 1039 case 1: /* REGIMM */
c906108c 1040 {
e135b889
DJ
1041 op = itype_rt (inst); /* branch condition */
1042 switch (op)
c906108c 1043 {
c5aa993b 1044 case 0: /* BLTZ */
e135b889
DJ
1045 case 2: /* BLTZL */
1046 case 16: /* BLTZAL */
c5aa993b 1047 case 18: /* BLTZALL */
c906108c 1048 less_branch:
6c997a34 1049 if (read_signed_register (itype_rs (inst)) < 0)
c5aa993b
JM
1050 pc += mips32_relative_offset (inst) + 4;
1051 else
1052 pc += 8; /* after the delay slot */
1053 break;
e135b889 1054 case 1: /* BGEZ */
c5aa993b
JM
1055 case 3: /* BGEZL */
1056 case 17: /* BGEZAL */
1057 case 19: /* BGEZALL */
c906108c 1058 greater_equal_branch:
6c997a34 1059 if (read_signed_register (itype_rs (inst)) >= 0)
c5aa993b
JM
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8; /* after the delay slot */
1063 break;
e135b889 1064 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1065 default:
1066 pc += 4;
c906108c
SS
1067 }
1068 }
e135b889 1069 break; /* end REGIMM */
c5aa993b
JM
1070 case 2: /* J */
1071 case 3: /* JAL */
1072 {
1073 unsigned long reg;
1074 reg = jtype_target (inst) << 2;
e135b889 1075 /* Upper four bits get never changed... */
c5aa993b 1076 pc = reg + ((pc + 4) & 0xf0000000);
c906108c 1077 }
c5aa993b
JM
1078 break;
1079 /* FIXME case JALX : */
1080 {
1081 unsigned long reg;
1082 reg = jtype_target (inst) << 2;
1083 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
c906108c
SS
1084 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1085 }
c5aa993b 1086 break; /* The new PC will be alternate mode */
e135b889 1087 case 4: /* BEQ, BEQL */
c5aa993b 1088 equal_branch:
6c997a34
AC
1089 if (read_signed_register (itype_rs (inst)) ==
1090 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1091 pc += mips32_relative_offset (inst) + 4;
1092 else
1093 pc += 8;
1094 break;
e135b889 1095 case 5: /* BNE, BNEL */
c5aa993b 1096 neq_branch:
6c997a34 1097 if (read_signed_register (itype_rs (inst)) !=
e135b889 1098 read_signed_register (itype_rt (inst)))
c5aa993b
JM
1099 pc += mips32_relative_offset (inst) + 4;
1100 else
1101 pc += 8;
1102 break;
e135b889 1103 case 6: /* BLEZ, BLEZL */
c906108c 1104 less_zero_branch:
6c997a34 1105 if (read_signed_register (itype_rs (inst) <= 0))
c5aa993b
JM
1106 pc += mips32_relative_offset (inst) + 4;
1107 else
1108 pc += 8;
1109 break;
1110 case 7:
e135b889
DJ
1111 default:
1112 greater_branch: /* BGTZ, BGTZL */
6c997a34 1113 if (read_signed_register (itype_rs (inst) > 0))
c5aa993b
JM
1114 pc += mips32_relative_offset (inst) + 4;
1115 else
1116 pc += 8;
1117 break;
c5aa993b
JM
1118 } /* switch */
1119 } /* else */
1120 return pc;
1121} /* mips32_next_pc */
c906108c
SS
1122
1123/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1124 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1125 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1126 We dont want to set a single step instruction on the extend instruction
1127 either.
c5aa993b 1128 */
c906108c
SS
1129
1130/* Lots of mips16 instruction formats */
1131/* Predicting jumps requires itype,ritype,i8type
1132 and their extensions extItype,extritype,extI8type
c5aa993b 1133 */
c906108c
SS
1134enum mips16_inst_fmts
1135{
c5aa993b
JM
1136 itype, /* 0 immediate 5,10 */
1137 ritype, /* 1 5,3,8 */
1138 rrtype, /* 2 5,3,3,5 */
1139 rritype, /* 3 5,3,3,5 */
1140 rrrtype, /* 4 5,3,3,3,2 */
1141 rriatype, /* 5 5,3,3,1,4 */
1142 shifttype, /* 6 5,3,3,3,2 */
1143 i8type, /* 7 5,3,8 */
1144 i8movtype, /* 8 5,3,3,5 */
1145 i8mov32rtype, /* 9 5,3,5,3 */
1146 i64type, /* 10 5,3,8 */
1147 ri64type, /* 11 5,3,3,5 */
1148 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1149 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1150 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1151 extRRItype, /* 15 5,5,5,5,3,3,5 */
1152 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1153 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1154 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1155 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1156 extRi64type, /* 20 5,6,5,5,3,3,5 */
1157 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1158};
12f02c2a
AC
1159/* I am heaping all the fields of the formats into one structure and
1160 then, only the fields which are involved in instruction extension */
c906108c 1161struct upk_mips16
c5aa993b 1162 {
12f02c2a 1163 CORE_ADDR offset;
c5aa993b
JM
1164 unsigned int regx; /* Function in i8 type */
1165 unsigned int regy;
1166 };
c906108c
SS
1167
1168
12f02c2a
AC
1169/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1170 for the bits which make up the immediatate extension. */
c906108c 1171
12f02c2a
AC
1172static CORE_ADDR
1173extended_offset (unsigned int extension)
c906108c 1174{
12f02c2a 1175 CORE_ADDR value;
c5aa993b
JM
1176 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1177 value = value << 6;
1178 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1179 value = value << 5;
1180 value |= extension & 0x01f; /* extract 4:0 */
1181 return value;
c906108c
SS
1182}
1183
1184/* Only call this function if you know that this is an extendable
1185 instruction, It wont malfunction, but why make excess remote memory references?
1186 If the immediate operands get sign extended or somthing, do it after
1187 the extension is performed.
c5aa993b 1188 */
c906108c
SS
1189/* FIXME: Every one of these cases needs to worry about sign extension
1190 when the offset is to be used in relative addressing */
1191
1192
12f02c2a 1193static unsigned int
c5aa993b 1194fetch_mips_16 (CORE_ADDR pc)
c906108c 1195{
c5aa993b
JM
1196 char buf[8];
1197 pc &= 0xfffffffe; /* clear the low order bit */
1198 target_read_memory (pc, buf, 2);
1199 return extract_unsigned_integer (buf, 2);
c906108c
SS
1200}
1201
1202static void
c5aa993b 1203unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1204 unsigned int extension,
1205 unsigned int inst,
1206 enum mips16_inst_fmts insn_format,
c5aa993b 1207 struct upk_mips16 *upk)
c906108c 1208{
12f02c2a
AC
1209 CORE_ADDR offset;
1210 int regx;
1211 int regy;
1212 switch (insn_format)
c906108c 1213 {
c5aa993b 1214 case itype:
c906108c 1215 {
12f02c2a
AC
1216 CORE_ADDR value;
1217 if (extension)
c5aa993b
JM
1218 {
1219 value = extended_offset (extension);
1220 value = value << 11; /* rom for the original value */
12f02c2a 1221 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1222 }
1223 else
c5aa993b 1224 {
12f02c2a 1225 value = inst & 0x7ff;
c5aa993b 1226 /* FIXME : Consider sign extension */
c906108c 1227 }
12f02c2a
AC
1228 offset = value;
1229 regx = -1;
1230 regy = -1;
c906108c 1231 }
c5aa993b
JM
1232 break;
1233 case ritype:
1234 case i8type:
1235 { /* A register identifier and an offset */
c906108c
SS
1236 /* Most of the fields are the same as I type but the
1237 immediate value is of a different length */
12f02c2a
AC
1238 CORE_ADDR value;
1239 if (extension)
c906108c 1240 {
c5aa993b
JM
1241 value = extended_offset (extension);
1242 value = value << 8; /* from the original instruction */
12f02c2a
AC
1243 value |= inst & 0xff; /* eleven bits from instruction */
1244 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1245 if (value & 0x4000) /* test the sign bit , bit 26 */
1246 {
1247 value &= ~0x3fff; /* remove the sign bit */
1248 value = -value;
c906108c
SS
1249 }
1250 }
c5aa993b
JM
1251 else
1252 {
12f02c2a
AC
1253 value = inst & 0xff; /* 8 bits */
1254 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1255 /* FIXME: Do sign extension , this format needs it */
1256 if (value & 0x80) /* THIS CONFUSES ME */
1257 {
1258 value &= 0xef; /* remove the sign bit */
1259 value = -value;
1260 }
c5aa993b 1261 }
12f02c2a
AC
1262 offset = value;
1263 regy = -1;
c5aa993b 1264 break;
c906108c 1265 }
c5aa993b 1266 case jalxtype:
c906108c 1267 {
c5aa993b 1268 unsigned long value;
12f02c2a
AC
1269 unsigned int nexthalf;
1270 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1271 value = value << 16;
1272 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1273 value |= nexthalf;
12f02c2a
AC
1274 offset = value;
1275 regx = -1;
1276 regy = -1;
c5aa993b 1277 break;
c906108c
SS
1278 }
1279 default:
8e65ff28
AC
1280 internal_error (__FILE__, __LINE__,
1281 "bad switch");
c906108c 1282 }
12f02c2a
AC
1283 upk->offset = offset;
1284 upk->regx = regx;
1285 upk->regy = regy;
c906108c
SS
1286}
1287
1288
c5aa993b
JM
1289static CORE_ADDR
1290add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1291{
c5aa993b 1292 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
c906108c
SS
1293}
1294
12f02c2a
AC
1295static CORE_ADDR
1296extended_mips16_next_pc (CORE_ADDR pc,
1297 unsigned int extension,
1298 unsigned int insn)
c906108c 1299{
12f02c2a
AC
1300 int op = (insn >> 11);
1301 switch (op)
c906108c 1302 {
12f02c2a
AC
1303 case 2: /* Branch */
1304 {
1305 CORE_ADDR offset;
1306 struct upk_mips16 upk;
1307 unpack_mips16 (pc, extension, insn, itype, &upk);
1308 offset = upk.offset;
1309 if (offset & 0x800)
1310 {
1311 offset &= 0xeff;
1312 offset = -offset;
1313 }
1314 pc += (offset << 1) + 2;
1315 break;
1316 }
1317 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1318 {
1319 struct upk_mips16 upk;
1320 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1321 pc = add_offset_16 (pc, upk.offset);
1322 if ((insn >> 10) & 0x01) /* Exchange mode */
1323 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1324 else
1325 pc |= 0x01;
1326 break;
1327 }
1328 case 4: /* beqz */
1329 {
1330 struct upk_mips16 upk;
1331 int reg;
1332 unpack_mips16 (pc, extension, insn, ritype, &upk);
1333 reg = read_signed_register (upk.regx);
1334 if (reg == 0)
1335 pc += (upk.offset << 1) + 2;
1336 else
1337 pc += 2;
1338 break;
1339 }
1340 case 5: /* bnez */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = read_signed_register (upk.regx);
1346 if (reg != 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 12: /* I8 Formats btez btnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, i8type, &upk);
1357 /* upk.regx contains the opcode */
1358 reg = read_signed_register (24); /* Test register is 24 */
1359 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1360 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1361 /* pc = add_offset_16(pc,upk.offset) ; */
1362 pc += (upk.offset << 1) + 2;
1363 else
1364 pc += 2;
1365 break;
1366 }
1367 case 29: /* RR Formats JR, JALR, JALR-RA */
1368 {
1369 struct upk_mips16 upk;
1370 /* upk.fmt = rrtype; */
1371 op = insn & 0x1f;
1372 if (op == 0)
c5aa993b 1373 {
12f02c2a
AC
1374 int reg;
1375 upk.regx = (insn >> 8) & 0x07;
1376 upk.regy = (insn >> 5) & 0x07;
1377 switch (upk.regy)
c5aa993b 1378 {
12f02c2a
AC
1379 case 0:
1380 reg = upk.regx;
1381 break;
1382 case 1:
1383 reg = 31;
1384 break; /* Function return instruction */
1385 case 2:
1386 reg = upk.regx;
1387 break;
1388 default:
1389 reg = 31;
1390 break; /* BOGUS Guess */
c906108c 1391 }
12f02c2a 1392 pc = read_signed_register (reg);
c906108c 1393 }
12f02c2a 1394 else
c5aa993b 1395 pc += 2;
12f02c2a
AC
1396 break;
1397 }
1398 case 30:
1399 /* This is an instruction extension. Fetch the real instruction
1400 (which follows the extension) and decode things based on
1401 that. */
1402 {
1403 pc += 2;
1404 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1405 break;
1406 }
1407 default:
1408 {
1409 pc += 2;
1410 break;
1411 }
c906108c 1412 }
c5aa993b 1413 return pc;
12f02c2a 1414}
c906108c 1415
5a89d8aa 1416static CORE_ADDR
12f02c2a
AC
1417mips16_next_pc (CORE_ADDR pc)
1418{
1419 unsigned int insn = fetch_mips_16 (pc);
1420 return extended_mips16_next_pc (pc, 0, insn);
1421}
1422
1423/* The mips_next_pc function supports single_step when the remote
7e73cedf 1424 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1425 It works by decoding the current instruction and predicting where a
1426 branch will go. This isnt hard because all the data is available.
1427 The MIPS32 and MIPS16 variants are quite different */
c5aa993b
JM
1428CORE_ADDR
1429mips_next_pc (CORE_ADDR pc)
c906108c 1430{
c5aa993b
JM
1431 if (pc & 0x01)
1432 return mips16_next_pc (pc);
1433 else
1434 return mips32_next_pc (pc);
12f02c2a 1435}
c906108c 1436
e0f7ec59
AC
1437/* Set up the 'saved_regs' array. This is a data structure containing
1438 the addresses on the stack where each register has been saved, for
1439 each stack frame. Registers that have not been saved will have
1440 zero here. The stack pointer register is special: rather than the
1441 address where the stack register has been saved,
1442 saved_regs[SP_REGNUM] will have the actual value of the previous
1443 frame's stack register. */
c906108c 1444
d28e01f4 1445static void
acdb74a0 1446mips_find_saved_regs (struct frame_info *fci)
c906108c
SS
1447{
1448 int ireg;
c906108c
SS
1449 /* r0 bit means kernel trap */
1450 int kernel_trap;
1451 /* What registers have been saved? Bitmasks. */
1452 unsigned long gen_mask, float_mask;
1453 mips_extra_func_info_t proc_desc;
1454 t_inst inst;
e0f7ec59 1455 CORE_ADDR *saved_regs;
c906108c 1456
e0f7ec59
AC
1457 if (get_frame_saved_regs (fci) != NULL)
1458 return;
1459 saved_regs = frame_saved_regs_zalloc (fci);
c906108c
SS
1460
1461 /* If it is the frame for sigtramp, the saved registers are located
e0f7ec59
AC
1462 in a sigcontext structure somewhere on the stack. If the stack
1463 layout for sigtramp changes we might have to change these
1464 constants and the companion fixup_sigtramp in mdebugread.c */
c906108c 1465#ifndef SIGFRAME_BASE
e0f7ec59
AC
1466 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1467 above the sigtramp frame. */
c906108c
SS
1468#define SIGFRAME_BASE MIPS_REGSIZE
1469/* FIXME! Are these correct?? */
1470#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1471#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1472#define SIGFRAME_FPREGSAVE_OFF \
1473 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1474#endif
1475#ifndef SIGFRAME_REG_SIZE
e0f7ec59 1476 /* FIXME! Is this correct?? */
c906108c
SS
1477#define SIGFRAME_REG_SIZE MIPS_REGSIZE
1478#endif
5a203e44 1479 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
c906108c
SS
1480 {
1481 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1482 {
e0f7ec59
AC
1483 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1484 + ireg * SIGFRAME_REG_SIZE);
1485 set_reg_offset (saved_regs, ireg, reg_position);
c906108c
SS
1486 }
1487 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1488 {
e0f7ec59
AC
1489 CORE_ADDR reg_position = (get_frame_base (fci)
1490 + SIGFRAME_FPREGSAVE_OFF
1491 + ireg * SIGFRAME_REG_SIZE);
1492 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
c906108c 1493 }
e0f7ec59
AC
1494
1495 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1496 /* SP_REGNUM, contains the value and not the address. */
1497 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
c906108c
SS
1498 return;
1499 }
1500
da50a4b7 1501 proc_desc = get_frame_extra_info (fci)->proc_desc;
c906108c 1502 if (proc_desc == NULL)
e0f7ec59
AC
1503 /* I'm not sure how/whether this can happen. Normally when we
1504 can't find a proc_desc, we "synthesize" one using
1505 heuristic_proc_desc and set the saved_regs right away. */
c906108c
SS
1506 return;
1507
c5aa993b
JM
1508 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1509 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1510 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
c906108c 1511
e0f7ec59
AC
1512 if (/* In any frame other than the innermost or a frame interrupted
1513 by a signal, we assume that all registers have been saved.
1514 This assumes that all register saves in a function happen
1515 before the first function call. */
11c02a10
AC
1516 (get_next_frame (fci) == NULL
1517 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
c906108c 1518
e0f7ec59 1519 /* In a dummy frame we know exactly where things are saved. */
c5aa993b 1520 && !PROC_DESC_IS_DUMMY (proc_desc)
c906108c 1521
e0f7ec59
AC
1522 /* Don't bother unless we are inside a function prologue.
1523 Outside the prologue, we know where everything is. */
c906108c 1524
50abf9e5 1525 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
c906108c 1526
e0f7ec59
AC
1527 /* Not sure exactly what kernel_trap means, but if it means the
1528 kernel saves the registers without a prologue doing it, we
1529 better not examine the prologue to see whether registers
1530 have been saved yet. */
c5aa993b 1531 && !kernel_trap)
c906108c 1532 {
e0f7ec59
AC
1533 /* We need to figure out whether the registers that the
1534 proc_desc claims are saved have been saved yet. */
c906108c
SS
1535
1536 CORE_ADDR addr;
1537
1538 /* Bitmasks; set if we have found a save for the register. */
1539 unsigned long gen_save_found = 0;
1540 unsigned long float_save_found = 0;
1541 int instlen;
1542
1543 /* If the address is odd, assume this is MIPS16 code. */
1544 addr = PROC_LOW_ADDR (proc_desc);
1545 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1546
e0f7ec59
AC
1547 /* Scan through this function's instructions preceding the
1548 current PC, and look for those that save registers. */
50abf9e5 1549 while (addr < get_frame_pc (fci))
c906108c
SS
1550 {
1551 inst = mips_fetch_instruction (addr);
1552 if (pc_is_mips16 (addr))
1553 mips16_decode_reg_save (inst, &gen_save_found);
1554 else
1555 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1556 addr += instlen;
1557 }
1558 gen_mask = gen_save_found;
1559 float_mask = float_save_found;
1560 }
1561
e0f7ec59
AC
1562 /* Fill in the offsets for the registers which gen_mask says were
1563 saved. */
1564 {
1565 CORE_ADDR reg_position = (get_frame_base (fci)
1566 + PROC_REG_OFFSET (proc_desc));
1567 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1568 if (gen_mask & 0x80000000)
1569 {
1570 set_reg_offset (saved_regs, ireg, reg_position);
1571 reg_position -= MIPS_SAVED_REGSIZE;
1572 }
1573 }
c906108c 1574
e0f7ec59
AC
1575 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1576 order of that normally used by gcc. Therefore, we have to fetch
1577 the first instruction of the function, and if it's an entry
1578 instruction that saves $s0 or $s1, correct their saved addresses. */
c906108c
SS
1579 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1580 {
1581 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
e0f7ec59
AC
1582 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1583 /* entry */
c906108c
SS
1584 {
1585 int reg;
1586 int sreg_count = (inst >> 6) & 3;
c5aa993b 1587
c906108c 1588 /* Check if the ra register was pushed on the stack. */
e0f7ec59
AC
1589 CORE_ADDR reg_position = (get_frame_base (fci)
1590 + PROC_REG_OFFSET (proc_desc));
c906108c 1591 if (inst & 0x20)
7a292a7a 1592 reg_position -= MIPS_SAVED_REGSIZE;
c906108c 1593
e0f7ec59
AC
1594 /* Check if the s0 and s1 registers were pushed on the
1595 stack. */
c5aa993b 1596 for (reg = 16; reg < sreg_count + 16; reg++)
c906108c 1597 {
e0f7ec59 1598 set_reg_offset (saved_regs, reg, reg_position);
7a292a7a 1599 reg_position -= MIPS_SAVED_REGSIZE;
c906108c
SS
1600 }
1601 }
1602 }
1603
e0f7ec59
AC
1604 /* Fill in the offsets for the registers which float_mask says were
1605 saved. */
1606 {
1607 CORE_ADDR reg_position = (get_frame_base (fci)
1608 + PROC_FREG_OFFSET (proc_desc));
6acdf5c7 1609
e0f7ec59
AC
1610 /* Apparently, the freg_offset gives the offset to the first 64
1611 bit saved.
6acdf5c7 1612
e0f7ec59
AC
1613 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1614 designates the first saved 64 bit register.
6acdf5c7 1615
e0f7ec59
AC
1616 When the ABI specifies 32 bit saved registers, the ``64 bit
1617 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1618 FREG_OFFSET, designates the address of the lower register of
1619 the register pair. Adjust the offset so that it designates the
1620 upper register of the pair -- i.e., the address of the first
1621 saved 32 bit register. */
c906108c 1622
e0f7ec59
AC
1623 if (MIPS_SAVED_REGSIZE == 4)
1624 reg_position += MIPS_SAVED_REGSIZE;
c906108c 1625
e0f7ec59
AC
1626 /* Fill in the offsets for the float registers which float_mask
1627 says were saved. */
1628 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1629 if (float_mask & 0x80000000)
1630 {
1631 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1632 reg_position -= MIPS_SAVED_REGSIZE;
1633 }
c906108c 1634
e0f7ec59
AC
1635 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1636 }
d28e01f4 1637
e0f7ec59
AC
1638 /* SP_REGNUM, contains the value and not the address. */
1639 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
d28e01f4
KB
1640}
1641
c906108c 1642static CORE_ADDR
acdb74a0 1643read_next_frame_reg (struct frame_info *fi, int regno)
c906108c 1644{
64159455
AC
1645 int optimized;
1646 CORE_ADDR addr;
1647 int realnum;
1648 enum lval_type lval;
d9d9c31f 1649 char raw_buffer[MAX_REGISTER_SIZE];
f796e4be
KB
1650
1651 if (fi == NULL)
c906108c 1652 {
f796e4be
KB
1653 regcache_cooked_read (current_regcache, regno, raw_buffer);
1654 }
1655 else
1656 {
1657 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1658 raw_buffer);
1659 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1660 should have a pseudo register range that correspons to the ABI's,
1661 rather than the ISA's, view of registers. These registers would
1662 then implicitly describe their size and hence could be used
1663 without the below munging. */
1664 if (lval == lval_memory)
c906108c 1665 {
f796e4be
KB
1666 if (regno < 32)
1667 {
1668 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1669 saved. */
1670 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1671 }
c906108c
SS
1672 }
1673 }
64159455
AC
1674
1675 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
c906108c
SS
1676}
1677
1678/* mips_addr_bits_remove - remove useless address bits */
1679
875e1767 1680static CORE_ADDR
acdb74a0 1681mips_addr_bits_remove (CORE_ADDR addr)
c906108c 1682{
5213ab06
AC
1683 if (GDB_TARGET_IS_MIPS64)
1684 {
4014092b 1685 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
5213ab06
AC
1686 {
1687 /* This hack is a work-around for existing boards using
1688 PMON, the simulator, and any other 64-bit targets that
1689 doesn't have true 64-bit addressing. On these targets,
1690 the upper 32 bits of addresses are ignored by the
1691 hardware. Thus, the PC or SP are likely to have been
1692 sign extended to all 1s by instruction sequences that
1693 load 32-bit addresses. For example, a typical piece of
4014092b
AC
1694 code that loads an address is this:
1695 lui $r2, <upper 16 bits>
1696 ori $r2, <lower 16 bits>
1697 But the lui sign-extends the value such that the upper 32
1698 bits may be all 1s. The workaround is simply to mask off
1699 these bits. In the future, gcc may be changed to support
1700 true 64-bit addressing, and this masking will have to be
1701 disabled. */
5213ab06
AC
1702 addr &= (CORE_ADDR) 0xffffffff;
1703 }
1704 }
4014092b 1705 else if (mips_mask_address_p ())
5213ab06 1706 {
4014092b
AC
1707 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1708 masking off bits, instead, the actual target should be asking
1709 for the address to be converted to a valid pointer. */
5213ab06
AC
1710 /* Even when GDB is configured for some 32-bit targets
1711 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1712 so CORE_ADDR is 64 bits. So we still have to mask off
1713 useless bits from addresses. */
c5aa993b 1714 addr &= (CORE_ADDR) 0xffffffff;
c906108c 1715 }
c906108c
SS
1716 return addr;
1717}
1718
9022177c
DJ
1719/* mips_software_single_step() is called just before we want to resume
1720 the inferior, if we want to single-step it but there is no hardware
75c9abc6 1721 or kernel single-step support (MIPS on GNU/Linux for example). We find
9022177c
DJ
1722 the target of the coming instruction and breakpoint it.
1723
1724 single_step is also called just after the inferior stops. If we had
1725 set up a simulated single-step, we undo our damage. */
1726
1727void
1728mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1729{
1730 static CORE_ADDR next_pc;
1731 typedef char binsn_quantum[BREAKPOINT_MAX];
1732 static binsn_quantum break_mem;
1733 CORE_ADDR pc;
1734
1735 if (insert_breakpoints_p)
1736 {
1737 pc = read_register (PC_REGNUM);
1738 next_pc = mips_next_pc (pc);
1739
1740 target_insert_breakpoint (next_pc, break_mem);
1741 }
1742 else
1743 target_remove_breakpoint (next_pc, break_mem);
1744}
1745
97f46953 1746static CORE_ADDR
acdb74a0 1747mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
c906108c
SS
1748{
1749 CORE_ADDR pc, tmp;
1750
11c02a10 1751 pc = ((fromleaf)
6913c89a 1752 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
11c02a10 1753 : get_next_frame (prev)
8bedc050 1754 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
11c02a10 1755 : read_pc ());
5a89d8aa 1756 tmp = SKIP_TRAMPOLINE_CODE (pc);
97f46953 1757 return tmp ? tmp : pc;
c906108c
SS
1758}
1759
1760
f7ab6ec6 1761static CORE_ADDR
acdb74a0 1762mips_frame_saved_pc (struct frame_info *frame)
c906108c
SS
1763{
1764 CORE_ADDR saved_pc;
da50a4b7 1765 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
c906108c
SS
1766 /* We have to get the saved pc from the sigcontext
1767 if it is a signal handler frame. */
5a203e44 1768 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
c5aa993b 1769 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
c906108c 1770
50abf9e5 1771 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
1772 {
1773 LONGEST tmp;
1774 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1775 saved_pc = tmp;
1776 }
1777 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1e2330ba 1778 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
c906108c 1779 else
7a292a7a 1780 saved_pc = read_next_frame_reg (frame, pcreg);
c906108c
SS
1781
1782 return ADDR_BITS_REMOVE (saved_pc);
1783}
1784
1785static struct mips_extra_func_info temp_proc_desc;
fe29b929
KB
1786
1787/* This hack will go away once the get_prev_frame() code has been
1788 modified to set the frame's type first. That is BEFORE init extra
1789 frame info et.al. is called. This is because it will become
1790 possible to skip the init extra info call for sigtramp and dummy
1791 frames. */
1792static CORE_ADDR *temp_saved_regs;
c906108c 1793
e0f7ec59
AC
1794/* Set a register's saved stack address in temp_saved_regs. If an
1795 address has already been set for this register, do nothing; this
1796 way we will only recognize the first save of a given register in a
1797 function prologue. */
c906108c
SS
1798
1799static void
e0f7ec59 1800set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
c906108c 1801{
e0f7ec59
AC
1802 if (saved_regs[regno] == 0)
1803 saved_regs[regno] = offset;
c906108c
SS
1804}
1805
1806
1807/* Test whether the PC points to the return instruction at the
1808 end of a function. */
1809
c5aa993b 1810static int
acdb74a0 1811mips_about_to_return (CORE_ADDR pc)
c906108c
SS
1812{
1813 if (pc_is_mips16 (pc))
1814 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1815 generates a "jr $ra"; other times it generates code to load
1816 the return address from the stack to an accessible register (such
1817 as $a3), then a "jr" using that register. This second case
1818 is almost impossible to distinguish from an indirect jump
1819 used for switch statements, so we don't even try. */
1820 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1821 else
1822 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1823}
1824
1825
1826/* This fencepost looks highly suspicious to me. Removing it also
1827 seems suspicious as it could affect remote debugging across serial
1828 lines. */
1829
1830static CORE_ADDR
acdb74a0 1831heuristic_proc_start (CORE_ADDR pc)
c906108c 1832{
c5aa993b
JM
1833 CORE_ADDR start_pc;
1834 CORE_ADDR fence;
1835 int instlen;
1836 int seen_adjsp = 0;
c906108c 1837
c5aa993b
JM
1838 pc = ADDR_BITS_REMOVE (pc);
1839 start_pc = pc;
1840 fence = start_pc - heuristic_fence_post;
1841 if (start_pc == 0)
1842 return 0;
c906108c 1843
c5aa993b
JM
1844 if (heuristic_fence_post == UINT_MAX
1845 || fence < VM_MIN_ADDRESS)
1846 fence = VM_MIN_ADDRESS;
c906108c 1847
c5aa993b 1848 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
c906108c 1849
c5aa993b
JM
1850 /* search back for previous return */
1851 for (start_pc -= instlen;; start_pc -= instlen)
1852 if (start_pc < fence)
1853 {
1854 /* It's not clear to me why we reach this point when
c0236d92 1855 stop_soon, but with this test, at least we
c5aa993b
JM
1856 don't print out warnings for every child forked (eg, on
1857 decstation). 22apr93 rich@cygnus.com. */
c0236d92 1858 if (stop_soon == NO_STOP_QUIETLY)
c906108c 1859 {
c5aa993b
JM
1860 static int blurb_printed = 0;
1861
1862 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1863 paddr_nz (pc));
1864
1865 if (!blurb_printed)
c906108c 1866 {
c5aa993b
JM
1867 /* This actually happens frequently in embedded
1868 development, when you first connect to a board
1869 and your stack pointer and pc are nowhere in
1870 particular. This message needs to give people
1871 in that situation enough information to
1872 determine that it's no big deal. */
1873 printf_filtered ("\n\
cd0fc7c3
SS
1874 GDB is unable to find the start of the function at 0x%s\n\
1875and thus can't determine the size of that function's stack frame.\n\
1876This means that GDB may be unable to access that stack frame, or\n\
1877the frames below it.\n\
1878 This problem is most likely caused by an invalid program counter or\n\
1879stack pointer.\n\
1880 However, if you think GDB should simply search farther back\n\
1881from 0x%s for code which looks like the beginning of a\n\
1882function, you can increase the range of the search using the `set\n\
1883heuristic-fence-post' command.\n",
c5aa993b
JM
1884 paddr_nz (pc), paddr_nz (pc));
1885 blurb_printed = 1;
c906108c 1886 }
c906108c
SS
1887 }
1888
c5aa993b
JM
1889 return 0;
1890 }
1891 else if (pc_is_mips16 (start_pc))
1892 {
1893 unsigned short inst;
1894
1895 /* On MIPS16, any one of the following is likely to be the
1896 start of a function:
1897 entry
1898 addiu sp,-n
1899 daddiu sp,-n
1900 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1901 inst = mips_fetch_instruction (start_pc);
1902 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1903 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1904 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1905 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1906 break;
1907 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1908 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1909 seen_adjsp = 1;
1910 else
1911 seen_adjsp = 0;
1912 }
1913 else if (mips_about_to_return (start_pc))
1914 {
1915 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1916 break;
1917 }
1918
c5aa993b 1919 return start_pc;
c906108c
SS
1920}
1921
1922/* Fetch the immediate value from a MIPS16 instruction.
1923 If the previous instruction was an EXTEND, use it to extend
1924 the upper bits of the immediate value. This is a helper function
1925 for mips16_heuristic_proc_desc. */
1926
1927static int
acdb74a0
AC
1928mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1929 unsigned short inst, /* current instruction */
1930 int nbits, /* number of bits in imm field */
1931 int scale, /* scale factor to be applied to imm */
1932 int is_signed) /* is the imm field signed? */
c906108c
SS
1933{
1934 int offset;
1935
1936 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1937 {
1938 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
c5aa993b 1939 if (offset & 0x8000) /* check for negative extend */
c906108c
SS
1940 offset = 0 - (0x10000 - (offset & 0xffff));
1941 return offset | (inst & 0x1f);
1942 }
1943 else
1944 {
1945 int max_imm = 1 << nbits;
1946 int mask = max_imm - 1;
1947 int sign_bit = max_imm >> 1;
1948
1949 offset = inst & mask;
1950 if (is_signed && (offset & sign_bit))
1951 offset = 0 - (max_imm - offset);
1952 return offset * scale;
1953 }
1954}
1955
1956
1957/* Fill in values in temp_proc_desc based on the MIPS16 instruction
1958 stream from start_pc to limit_pc. */
1959
1960static void
acdb74a0
AC
1961mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1962 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
1963{
1964 CORE_ADDR cur_pc;
1965 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1966 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1967 unsigned inst = 0; /* current instruction */
1968 unsigned entry_inst = 0; /* the entry instruction */
1969 int reg, offset;
1970
c5aa993b
JM
1971 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1972 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
c906108c
SS
1973
1974 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1975 {
1976 /* Save the previous instruction. If it's an EXTEND, we'll extract
1977 the immediate offset extension from it in mips16_get_imm. */
1978 prev_inst = inst;
1979
1980 /* Fetch and decode the instruction. */
1981 inst = (unsigned short) mips_fetch_instruction (cur_pc);
c5aa993b 1982 if ((inst & 0xff00) == 0x6300 /* addiu sp */
c906108c
SS
1983 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1984 {
1985 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
c5aa993b
JM
1986 if (offset < 0) /* negative stack adjustment? */
1987 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
c906108c
SS
1988 else
1989 /* Exit loop if a positive stack adjustment is found, which
1990 usually means that the stack cleanup code in the function
1991 epilogue is reached. */
1992 break;
1993 }
1994 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1995 {
1996 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1997 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
c5aa993b 1998 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 1999 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2000 }
2001 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2002 {
2003 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2004 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2005 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
e0f7ec59 2006 set_reg_offset (temp_saved_regs, reg, sp + offset);
c906108c
SS
2007 }
2008 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2009 {
2010 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
c5aa993b 2011 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2012 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c
SS
2013 }
2014 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2015 {
2016 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
c5aa993b 2017 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
e0f7ec59 2018 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c906108c 2019 }
c5aa993b 2020 else if (inst == 0x673d) /* move $s1, $sp */
c906108c
SS
2021 {
2022 frame_addr = sp;
2023 PROC_FRAME_REG (&temp_proc_desc) = 17;
2024 }
2025 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2026 {
2027 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2028 frame_addr = sp + offset;
2029 PROC_FRAME_REG (&temp_proc_desc) = 17;
2030 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2031 }
2032 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2033 {
2034 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2035 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2036 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2037 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c
SS
2038 }
2039 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2040 {
2041 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2042 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
c5aa993b 2043 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2044 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
c906108c 2045 }
c5aa993b
JM
2046 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2047 entry_inst = inst; /* save for later processing */
c906108c 2048 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
c5aa993b 2049 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
c906108c
SS
2050 }
2051
c5aa993b
JM
2052 /* The entry instruction is typically the first instruction in a function,
2053 and it stores registers at offsets relative to the value of the old SP
2054 (before the prologue). But the value of the sp parameter to this
2055 function is the new SP (after the prologue has been executed). So we
2056 can't calculate those offsets until we've seen the entire prologue,
2057 and can calculate what the old SP must have been. */
2058 if (entry_inst != 0)
2059 {
2060 int areg_count = (entry_inst >> 8) & 7;
2061 int sreg_count = (entry_inst >> 6) & 3;
c906108c 2062
c5aa993b
JM
2063 /* The entry instruction always subtracts 32 from the SP. */
2064 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
c906108c 2065
c5aa993b
JM
2066 /* Now we can calculate what the SP must have been at the
2067 start of the function prologue. */
2068 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
c906108c 2069
c5aa993b
JM
2070 /* Check if a0-a3 were saved in the caller's argument save area. */
2071 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2072 {
2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2074 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2075 offset += MIPS_SAVED_REGSIZE;
2076 }
c906108c 2077
c5aa993b
JM
2078 /* Check if the ra register was pushed on the stack. */
2079 offset = -4;
2080 if (entry_inst & 0x20)
2081 {
2082 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
e0f7ec59 2083 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
c5aa993b
JM
2084 offset -= MIPS_SAVED_REGSIZE;
2085 }
c906108c 2086
c5aa993b
JM
2087 /* Check if the s0 and s1 registers were pushed on the stack. */
2088 for (reg = 16; reg < sreg_count + 16; reg++)
2089 {
2090 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2091 set_reg_offset (temp_saved_regs, reg, sp + offset);
c5aa993b
JM
2092 offset -= MIPS_SAVED_REGSIZE;
2093 }
2094 }
c906108c
SS
2095}
2096
2097static void
fba45db2
KB
2098mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2099 struct frame_info *next_frame, CORE_ADDR sp)
c906108c
SS
2100{
2101 CORE_ADDR cur_pc;
c5aa993b 2102 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
c906108c 2103restart:
fe29b929 2104 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
cce74817 2105 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b 2106 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
c906108c
SS
2107 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2108 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2109 {
2110 unsigned long inst, high_word, low_word;
2111 int reg;
2112
2113 /* Fetch the instruction. */
2114 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2115
2116 /* Save some code by pre-extracting some useful fields. */
2117 high_word = (inst >> 16) & 0xffff;
2118 low_word = inst & 0xffff;
2119 reg = high_word & 0x1f;
2120
c5aa993b 2121 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
c906108c
SS
2122 || high_word == 0x23bd /* addi $sp,$sp,-i */
2123 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2124 {
2125 if (low_word & 0x8000) /* negative stack adjustment? */
c5aa993b 2126 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
c906108c
SS
2127 else
2128 /* Exit loop if a positive stack adjustment is found, which
2129 usually means that the stack cleanup code in the function
2130 epilogue is reached. */
2131 break;
2132 }
2133 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2134 {
c5aa993b 2135 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2136 set_reg_offset (temp_saved_regs, reg, sp + low_word);
c906108c
SS
2137 }
2138 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2139 {
2140 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2141 but the register size used is only 32 bits. Make the address
2142 for the saved register point to the lower 32 bits. */
c5aa993b 2143 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2144 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
c906108c 2145 }
c5aa993b 2146 else if (high_word == 0x27be) /* addiu $30,$sp,size */
c906108c
SS
2147 {
2148 /* Old gcc frame, r30 is virtual frame pointer. */
c5aa993b
JM
2149 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2150 frame_addr = sp + low_word;
c906108c
SS
2151 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2152 {
2153 unsigned alloca_adjust;
2154 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2155 frame_addr = read_next_frame_reg (next_frame, 30);
2156 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
c906108c
SS
2157 if (alloca_adjust > 0)
2158 {
2159 /* FP > SP + frame_size. This may be because
2160 * of an alloca or somethings similar.
2161 * Fix sp to "pre-alloca" value, and try again.
2162 */
2163 sp += alloca_adjust;
2164 goto restart;
2165 }
2166 }
2167 }
c5aa993b
JM
2168 /* move $30,$sp. With different versions of gas this will be either
2169 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2170 Accept any one of these. */
c906108c
SS
2171 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2172 {
2173 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2174 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2175 {
2176 unsigned alloca_adjust;
2177 PROC_FRAME_REG (&temp_proc_desc) = 30;
c5aa993b
JM
2178 frame_addr = read_next_frame_reg (next_frame, 30);
2179 alloca_adjust = (unsigned) (frame_addr - sp);
c906108c
SS
2180 if (alloca_adjust > 0)
2181 {
2182 /* FP > SP + frame_size. This may be because
2183 * of an alloca or somethings similar.
2184 * Fix sp to "pre-alloca" value, and try again.
2185 */
2186 sp += alloca_adjust;
2187 goto restart;
2188 }
2189 }
2190 }
c5aa993b 2191 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
c906108c 2192 {
c5aa993b 2193 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
e0f7ec59 2194 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
c906108c
SS
2195 }
2196 }
2197}
2198
2199static mips_extra_func_info_t
acdb74a0 2200heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
479412cd 2201 struct frame_info *next_frame, int cur_frame)
c906108c 2202{
479412cd
DJ
2203 CORE_ADDR sp;
2204
2205 if (cur_frame)
2206 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2207 else
2208 sp = 0;
c906108c 2209
c5aa993b
JM
2210 if (start_pc == 0)
2211 return NULL;
2212 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
fe29b929 2213 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
3758ac48 2214 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2215 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2216 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2217 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2218
2219 if (start_pc + 200 < limit_pc)
2220 limit_pc = start_pc + 200;
2221 if (pc_is_mips16 (start_pc))
2222 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2223 else
2224 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2225 return &temp_proc_desc;
2226}
2227
6c0d6680
DJ
2228struct mips_objfile_private
2229{
2230 bfd_size_type size;
2231 char *contents;
2232};
2233
2234/* Global used to communicate between non_heuristic_proc_desc and
2235 compare_pdr_entries within qsort (). */
2236static bfd *the_bfd;
2237
2238static int
2239compare_pdr_entries (const void *a, const void *b)
2240{
2241 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2242 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2243
2244 if (lhs < rhs)
2245 return -1;
2246 else if (lhs == rhs)
2247 return 0;
2248 else
2249 return 1;
2250}
2251
c906108c 2252static mips_extra_func_info_t
acdb74a0 2253non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
c906108c
SS
2254{
2255 CORE_ADDR startaddr;
2256 mips_extra_func_info_t proc_desc;
c5aa993b 2257 struct block *b = block_for_pc (pc);
c906108c 2258 struct symbol *sym;
6c0d6680
DJ
2259 struct obj_section *sec;
2260 struct mips_objfile_private *priv;
2261
ae45cd16 2262 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
6c0d6680 2263 return NULL;
c906108c
SS
2264
2265 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2266 if (addrptr)
2267 *addrptr = startaddr;
6c0d6680
DJ
2268
2269 priv = NULL;
2270
2271 sec = find_pc_section (pc);
2272 if (sec != NULL)
c906108c 2273 {
6c0d6680
DJ
2274 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2275
2276 /* Search the ".pdr" section generated by GAS. This includes most of
2277 the information normally found in ECOFF PDRs. */
2278
2279 the_bfd = sec->objfile->obfd;
2280 if (priv == NULL
2281 && (the_bfd->format == bfd_object
2282 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2283 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2284 {
2285 /* Right now GAS only outputs the address as a four-byte sequence.
2286 This means that we should not bother with this method on 64-bit
2287 targets (until that is fixed). */
2288
2289 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2290 sizeof (struct mips_objfile_private));
2291 priv->size = 0;
2292 sec->objfile->obj_private = priv;
2293 }
2294 else if (priv == NULL)
2295 {
2296 asection *bfdsec;
2297
2298 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2299 sizeof (struct mips_objfile_private));
2300
2301 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2302 if (bfdsec != NULL)
2303 {
2304 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2305 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2306 priv->size);
2307 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2308 priv->contents, 0, priv->size);
2309
2310 /* In general, the .pdr section is sorted. However, in the
2311 presence of multiple code sections (and other corner cases)
2312 it can become unsorted. Sort it so that we can use a faster
2313 binary search. */
2314 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2315 }
2316 else
2317 priv->size = 0;
2318
2319 sec->objfile->obj_private = priv;
2320 }
2321 the_bfd = NULL;
2322
2323 if (priv->size != 0)
2324 {
2325 int low, mid, high;
2326 char *ptr;
2327
2328 low = 0;
2329 high = priv->size / 32;
2330
2331 do
2332 {
2333 CORE_ADDR pdr_pc;
2334
2335 mid = (low + high) / 2;
2336
2337 ptr = priv->contents + mid * 32;
2338 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2339 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2340 SECT_OFF_TEXT (sec->objfile));
2341 if (pdr_pc == startaddr)
2342 break;
2343 if (pdr_pc > startaddr)
2344 high = mid;
2345 else
2346 low = mid + 1;
2347 }
2348 while (low != high);
2349
2350 if (low != high)
2351 {
2352 struct symbol *sym = find_pc_function (pc);
2353
2354 /* Fill in what we need of the proc_desc. */
2355 proc_desc = (mips_extra_func_info_t)
2356 obstack_alloc (&sec->objfile->psymbol_obstack,
2357 sizeof (struct mips_extra_func_info));
2358 PROC_LOW_ADDR (proc_desc) = startaddr;
2359
2360 /* Only used for dummy frames. */
2361 PROC_HIGH_ADDR (proc_desc) = 0;
2362
2363 PROC_FRAME_OFFSET (proc_desc)
2364 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2365 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2366 ptr + 24);
2367 PROC_FRAME_ADJUST (proc_desc) = 0;
2368 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2369 ptr + 4);
2370 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2371 ptr + 12);
2372 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2373 ptr + 8);
2374 PROC_FREG_OFFSET (proc_desc)
2375 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2376 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2377 ptr + 28);
2378 proc_desc->pdr.isym = (long) sym;
2379
2380 return proc_desc;
2381 }
2382 }
c906108c
SS
2383 }
2384
6c0d6680
DJ
2385 if (b == NULL)
2386 return NULL;
2387
2388 if (startaddr > BLOCK_START (b))
2389 {
2390 /* This is the "pathological" case referred to in a comment in
2391 print_frame_info. It might be better to move this check into
2392 symbol reading. */
2393 return NULL;
2394 }
2395
176620f1 2396 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
6c0d6680 2397
c906108c
SS
2398 /* If we never found a PDR for this function in symbol reading, then
2399 examine prologues to find the information. */
2400 if (sym)
2401 {
2402 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2403 if (PROC_FRAME_REG (proc_desc) == -1)
2404 return NULL;
2405 else
2406 return proc_desc;
2407 }
2408 else
2409 return NULL;
2410}
2411
2412
2413static mips_extra_func_info_t
479412cd 2414find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
c906108c
SS
2415{
2416 mips_extra_func_info_t proc_desc;
4e0df2df 2417 CORE_ADDR startaddr = 0;
c906108c
SS
2418
2419 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2420
2421 if (proc_desc)
2422 {
2423 /* IF this is the topmost frame AND
2424 * (this proc does not have debugging information OR
2425 * the PC is in the procedure prologue)
2426 * THEN create a "heuristic" proc_desc (by analyzing
2427 * the actual code) to replace the "official" proc_desc.
2428 */
2429 if (next_frame == NULL)
2430 {
2431 struct symtab_and_line val;
2432 struct symbol *proc_symbol =
c86b5b38 2433 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
c906108c
SS
2434
2435 if (proc_symbol)
2436 {
2437 val = find_pc_line (BLOCK_START
c5aa993b 2438 (SYMBOL_BLOCK_VALUE (proc_symbol)),
c906108c
SS
2439 0);
2440 val.pc = val.end ? val.end : pc;
2441 }
2442 if (!proc_symbol || pc < val.pc)
2443 {
2444 mips_extra_func_info_t found_heuristic =
c86b5b38
MS
2445 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2446 pc, next_frame, cur_frame);
c906108c
SS
2447 if (found_heuristic)
2448 proc_desc = found_heuristic;
2449 }
2450 }
2451 }
2452 else
2453 {
2454 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
2455 by procedure call dummys. However, the procedures being called ought
2456 to have their own proc_descs, and even if they don't,
2457 heuristic_proc_desc knows how to create them! */
c906108c
SS
2458
2459 register struct linked_proc_info *link;
2460
2461 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
2462 if (PROC_LOW_ADDR (&link->info) <= pc
2463 && PROC_HIGH_ADDR (&link->info) > pc)
c906108c
SS
2464 return &link->info;
2465
2466 if (startaddr == 0)
2467 startaddr = heuristic_proc_start (pc);
2468
2469 proc_desc =
479412cd 2470 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
c906108c
SS
2471 }
2472 return proc_desc;
2473}
2474
2475static CORE_ADDR
acdb74a0
AC
2476get_frame_pointer (struct frame_info *frame,
2477 mips_extra_func_info_t proc_desc)
c906108c 2478{
e227b13c
AC
2479 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2480 + PROC_FRAME_OFFSET (proc_desc)
2481 - PROC_FRAME_ADJUST (proc_desc));
c906108c
SS
2482}
2483
5a89d8aa 2484static mips_extra_func_info_t cached_proc_desc;
c906108c 2485
f7ab6ec6 2486static CORE_ADDR
acdb74a0 2487mips_frame_chain (struct frame_info *frame)
c906108c
SS
2488{
2489 mips_extra_func_info_t proc_desc;
2490 CORE_ADDR tmp;
8bedc050 2491 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
c906108c
SS
2492
2493 if (saved_pc == 0 || inside_entry_file (saved_pc))
2494 return 0;
2495
2496 /* Check if the PC is inside a call stub. If it is, fetch the
2497 PC of the caller of that stub. */
5a89d8aa 2498 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
c906108c
SS
2499 saved_pc = tmp;
2500
ae45cd16 2501 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
cedea778
AC
2502 {
2503 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2504 is well, frame->frame the bottom of the current frame will
2505 contain that value. */
1e2330ba 2506 return get_frame_base (frame);
cedea778
AC
2507 }
2508
c906108c 2509 /* Look up the procedure descriptor for this PC. */
479412cd 2510 proc_desc = find_proc_desc (saved_pc, frame, 1);
c906108c
SS
2511 if (!proc_desc)
2512 return 0;
2513
2514 cached_proc_desc = proc_desc;
2515
2516 /* If no frame pointer and frame size is zero, we must be at end
2517 of stack (or otherwise hosed). If we don't check frame size,
2518 we loop forever if we see a zero size frame. */
2519 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2520 && PROC_FRAME_OFFSET (proc_desc) == 0
7807aa61
MS
2521 /* The previous frame from a sigtramp frame might be frameless
2522 and have frame size zero. */
5a203e44 2523 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
cedea778
AC
2524 /* For a generic dummy frame, let get_frame_pointer() unwind a
2525 register value saved as part of the dummy frame call. */
50abf9e5 2526 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
c906108c
SS
2527 return 0;
2528 else
2529 return get_frame_pointer (frame, proc_desc);
2530}
2531
f7ab6ec6 2532static void
acdb74a0 2533mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
c906108c
SS
2534{
2535 int regnum;
f2c16bd6
KB
2536 mips_extra_func_info_t proc_desc;
2537
2538 if (get_frame_type (fci) == DUMMY_FRAME)
2539 return;
c906108c 2540
f796e4be
KB
2541 /* Use proc_desc calculated in frame_chain. When there is no
2542 next frame, i.e, get_next_frame (fci) == NULL, we call
2543 find_proc_desc () to calculate it, passing an explicit
2544 NULL as the frame parameter. */
f2c16bd6 2545 proc_desc =
11c02a10
AC
2546 get_next_frame (fci)
2547 ? cached_proc_desc
f796e4be
KB
2548 : find_proc_desc (get_frame_pc (fci),
2549 NULL /* i.e, get_next_frame (fci) */,
2550 1);
c906108c 2551
a00a19e9 2552 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
cce74817 2553
7b5849cc 2554 deprecated_set_frame_saved_regs_hack (fci, NULL);
da50a4b7 2555 get_frame_extra_info (fci)->proc_desc =
c906108c
SS
2556 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2557 if (proc_desc)
2558 {
2559 /* Fixup frame-pointer - only needed for top frame */
2560 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
2561 Get the value of the frame relative sp, procedure might have been
2562 interrupted by a signal at it's very start. */
50abf9e5 2563 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
c906108c 2564 && !PROC_DESC_IS_DUMMY (proc_desc))
11c02a10 2565 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
50abf9e5 2566 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
cedea778
AC
2567 /* Do not ``fix'' fci->frame. It will have the value of the
2568 generic dummy frame's top-of-stack (since the draft
2569 fci->frame is obtained by returning the unwound stack
2570 pointer) and that is what we want. That way the fci->frame
2571 value will match the top-of-stack value that was saved as
2572 part of the dummy frames data. */
2573 /* Do nothing. */;
c906108c 2574 else
11c02a10 2575 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
c906108c
SS
2576
2577 if (proc_desc == &temp_proc_desc)
2578 {
2579 char *name;
2580
2581 /* Do not set the saved registers for a sigtramp frame,
5a203e44
AC
2582 mips_find_saved_registers will do that for us. We can't
2583 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2584 yet set. */
2585 /* FIXME: cagney/2002-11-18: This problem will go away once
2586 frame.c:get_prev_frame() is modified to set the frame's
2587 type before calling functions like this. */
50abf9e5 2588 find_pc_partial_function (get_frame_pc (fci), &name,
c5aa993b 2589 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
50abf9e5 2590 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
c906108c 2591 {
c5aa993b 2592 frame_saved_regs_zalloc (fci);
e0f7ec59
AC
2593 /* Set value of previous frame's stack pointer.
2594 Remember that saved_regs[SP_REGNUM] is special in
2595 that it contains the value of the stack pointer
2596 register. The other saved_regs values are addresses
2597 (in the inferior) at which a given register's value
2598 may be found. */
2599 set_reg_offset (temp_saved_regs, SP_REGNUM,
2600 get_frame_base (fci));
2601 set_reg_offset (temp_saved_regs, PC_REGNUM,
2602 temp_saved_regs[RA_REGNUM]);
2603 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2604 SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
2605 }
2606 }
2607
2608 /* hack: if argument regs are saved, guess these contain args */
cce74817 2609 /* assume we can't tell how many args for now */
da50a4b7 2610 get_frame_extra_info (fci)->num_args = -1;
c906108c
SS
2611 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2612 {
c5aa993b 2613 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c 2614 {
da50a4b7 2615 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
c906108c
SS
2616 break;
2617 }
c5aa993b 2618 }
c906108c
SS
2619 }
2620}
2621
2622/* MIPS stack frames are almost impenetrable. When execution stops,
2623 we basically have to look at symbol information for the function
2624 that we stopped in, which tells us *which* register (if any) is
2625 the base of the frame pointer, and what offset from that register
361d1df0 2626 the frame itself is at.
c906108c
SS
2627
2628 This presents a problem when trying to examine a stack in memory
2629 (that isn't executing at the moment), using the "frame" command. We
2630 don't have a PC, nor do we have any registers except SP.
2631
2632 This routine takes two arguments, SP and PC, and tries to make the
2633 cached frames look as if these two arguments defined a frame on the
2634 cache. This allows the rest of info frame to extract the important
2635 arguments without difficulty. */
2636
2637struct frame_info *
acdb74a0 2638setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
2639{
2640 if (argc != 2)
2641 error ("MIPS frame specifications require two arguments: sp and pc");
2642
2643 return create_new_frame (argv[0], argv[1]);
2644}
2645
f09ded24
AC
2646/* According to the current ABI, should the type be passed in a
2647 floating-point register (assuming that there is space)? When there
2648 is no FPU, FP are not even considered as possibile candidates for
2649 FP registers and, consequently this returns false - forces FP
2650 arguments into integer registers. */
2651
2652static int
2653fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2654{
2655 return ((typecode == TYPE_CODE_FLT
2656 || (MIPS_EABI
2657 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2658 && TYPE_NFIELDS (arg_type) == 1
2659 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
c86b5b38 2660 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2661}
2662
49e790b0
DJ
2663/* On o32, argument passing in GPRs depends on the alignment of the type being
2664 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2665
2666static int
2667mips_type_needs_double_align (struct type *type)
2668{
2669 enum type_code typecode = TYPE_CODE (type);
361d1df0 2670
49e790b0
DJ
2671 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2672 return 1;
2673 else if (typecode == TYPE_CODE_STRUCT)
2674 {
2675 if (TYPE_NFIELDS (type) < 1)
2676 return 0;
2677 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2678 }
2679 else if (typecode == TYPE_CODE_UNION)
2680 {
361d1df0 2681 int i, n;
49e790b0
DJ
2682
2683 n = TYPE_NFIELDS (type);
2684 for (i = 0; i < n; i++)
2685 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2686 return 1;
2687 return 0;
2688 }
2689 return 0;
2690}
2691
cb3d25d1
MS
2692/* Macros to round N up or down to the next A boundary;
2693 A must be a power of two. */
2694
2695#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2696#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2697
dc604539
AC
2698/* Adjust the address downward (direction of stack growth) so that it
2699 is correctly aligned for a new stack frame. */
2700static CORE_ADDR
2701mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2702{
2703 return ROUND_DOWN (addr, 16);
2704}
2705
f7ab6ec6 2706static CORE_ADDR
25ab4790
AC
2707mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2708 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2709 struct value **args, CORE_ADDR sp, int struct_return,
2710 CORE_ADDR struct_addr)
c906108c
SS
2711{
2712 int argreg;
2713 int float_argreg;
2714 int argnum;
2715 int len = 0;
2716 int stack_offset = 0;
2717
25ab4790
AC
2718 /* For shared libraries, "t9" needs to point at the function
2719 address. */
2720 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2721
2722 /* Set the return address register to point to the entry point of
2723 the program, where a breakpoint lies in wait. */
2724 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2725
c906108c 2726 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2727 are properly aligned. The stack has to be at least 64-bit
2728 aligned even on 32-bit machines, because doubles must be 64-bit
2729 aligned. For n32 and n64, stack frames need to be 128-bit
2730 aligned, so we round to this widest known alignment. */
2731
c906108c 2732 sp = ROUND_DOWN (sp, 16);
cce41527 2733 struct_addr = ROUND_DOWN (struct_addr, 16);
c5aa993b 2734
46e0f506 2735 /* Now make space on the stack for the args. We allocate more
c906108c 2736 than necessary for EABI, because the first few arguments are
46e0f506 2737 passed in registers, but that's OK. */
c906108c 2738 for (argnum = 0; argnum < nargs; argnum++)
46e0f506
MS
2739 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2740 MIPS_STACK_ARGSIZE);
c906108c
SS
2741 sp -= ROUND_UP (len, 16);
2742
9ace0497 2743 if (mips_debug)
46e0f506 2744 fprintf_unfiltered (gdb_stdlog,
25ab4790 2745 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1 2746 paddr_nz (sp), ROUND_UP (len, 16));
9ace0497 2747
c906108c
SS
2748 /* Initialize the integer and float register pointers. */
2749 argreg = A0_REGNUM;
2750 float_argreg = FPA0_REGNUM;
2751
46e0f506 2752 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2753 if (struct_return)
9ace0497
AC
2754 {
2755 if (mips_debug)
2756 fprintf_unfiltered (gdb_stdlog,
25ab4790 2757 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2758 argreg, paddr_nz (struct_addr));
9ace0497
AC
2759 write_register (argreg++, struct_addr);
2760 }
c906108c
SS
2761
2762 /* Now load as many as possible of the first arguments into
2763 registers, and push the rest onto the stack. Loop thru args
2764 from first to last. */
2765 for (argnum = 0; argnum < nargs; argnum++)
2766 {
2767 char *val;
d9d9c31f 2768 char valbuf[MAX_REGISTER_SIZE];
ea7c478f 2769 struct value *arg = args[argnum];
c906108c
SS
2770 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2771 int len = TYPE_LENGTH (arg_type);
2772 enum type_code typecode = TYPE_CODE (arg_type);
2773
9ace0497
AC
2774 if (mips_debug)
2775 fprintf_unfiltered (gdb_stdlog,
25ab4790 2776 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2777 argnum + 1, len, (int) typecode);
9ace0497 2778
c906108c 2779 /* The EABI passes structures that do not fit in a register by
46e0f506
MS
2780 reference. */
2781 if (len > MIPS_SAVED_REGSIZE
9ace0497 2782 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2783 {
fbd9dcd3 2784 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
c906108c 2785 typecode = TYPE_CODE_PTR;
7a292a7a 2786 len = MIPS_SAVED_REGSIZE;
c906108c 2787 val = valbuf;
9ace0497
AC
2788 if (mips_debug)
2789 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2790 }
2791 else
c5aa993b 2792 val = (char *) VALUE_CONTENTS (arg);
c906108c
SS
2793
2794 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2795 even-numbered floating point register. Round the FP register
2796 up before the check to see if there are any FP registers
46e0f506
MS
2797 left. Non MIPS_EABI targets also pass the FP in the integer
2798 registers so also round up normal registers. */
acdb74a0
AC
2799 if (!FP_REGISTER_DOUBLE
2800 && fp_register_arg_p (typecode, arg_type))
2801 {
2802 if ((float_argreg & 1))
2803 float_argreg++;
2804 }
c906108c
SS
2805
2806 /* Floating point arguments passed in registers have to be
2807 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2808 are passed in register pairs; the even register gets
2809 the low word, and the odd register gets the high word.
2810 On non-EABI processors, the first two floating point arguments are
2811 also copied to general registers, because MIPS16 functions
2812 don't use float registers for arguments. This duplication of
2813 arguments in general registers can't hurt non-MIPS16 functions
2814 because those registers are normally skipped. */
1012bd0e
EZ
2815 /* MIPS_EABI squeezes a struct that contains a single floating
2816 point value into an FP register instead of pushing it onto the
46e0f506 2817 stack. */
f09ded24
AC
2818 if (fp_register_arg_p (typecode, arg_type)
2819 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c
SS
2820 {
2821 if (!FP_REGISTER_DOUBLE && len == 8)
2822 {
d7449b42 2823 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2824 unsigned long regval;
2825
2826 /* Write the low word of the double to the even register(s). */
c5aa993b 2827 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2828 if (mips_debug)
acdb74a0 2829 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2830 float_argreg, phex (regval, 4));
c906108c 2831 write_register (float_argreg++, regval);
c906108c
SS
2832
2833 /* Write the high word of the double to the odd register(s). */
c5aa993b 2834 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2835 if (mips_debug)
acdb74a0 2836 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2837 float_argreg, phex (regval, 4));
c906108c 2838 write_register (float_argreg++, regval);
c906108c
SS
2839 }
2840 else
2841 {
2842 /* This is a floating point value that fits entirely
2843 in a single register. */
53a5351d 2844 /* On 32 bit ABI's the float_argreg is further adjusted
46e0f506 2845 above to ensure that it is even register aligned. */
9ace0497
AC
2846 LONGEST regval = extract_unsigned_integer (val, len);
2847 if (mips_debug)
acdb74a0 2848 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2849 float_argreg, phex (regval, len));
c906108c 2850 write_register (float_argreg++, regval);
c906108c
SS
2851 }
2852 }
2853 else
2854 {
2855 /* Copy the argument to general registers or the stack in
2856 register-sized pieces. Large arguments are split between
2857 registers and stack. */
2858 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2859 are treated specially: Irix cc passes them in registers
2860 where gcc sometimes puts them on the stack. For maximum
2861 compatibility, we will put them in both places. */
c5aa993b 2862 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
7a292a7a 2863 (len % MIPS_SAVED_REGSIZE != 0));
46e0f506 2864
f09ded24 2865 /* Note: Floating-point values that didn't fit into an FP
46e0f506 2866 register are only written to memory. */
c906108c
SS
2867 while (len > 0)
2868 {
ebafbe83 2869 /* Remember if the argument was written to the stack. */
566f0f7a 2870 int stack_used_p = 0;
46e0f506
MS
2871 int partial_len =
2872 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
c906108c 2873
acdb74a0
AC
2874 if (mips_debug)
2875 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2876 partial_len);
2877
566f0f7a 2878 /* Write this portion of the argument to the stack. */
f09ded24
AC
2879 if (argreg > MIPS_LAST_ARG_REGNUM
2880 || odd_sized_struct
2881 || fp_register_arg_p (typecode, arg_type))
c906108c 2882 {
c906108c
SS
2883 /* Should shorter than int integer values be
2884 promoted to int before being stored? */
c906108c 2885 int longword_offset = 0;
9ace0497 2886 CORE_ADDR addr;
566f0f7a 2887 stack_used_p = 1;
d7449b42 2888 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
7a292a7a 2889 {
d929b26f 2890 if (MIPS_STACK_ARGSIZE == 8 &&
7a292a7a
SS
2891 (typecode == TYPE_CODE_INT ||
2892 typecode == TYPE_CODE_PTR ||
2893 typecode == TYPE_CODE_FLT) && len <= 4)
d929b26f 2894 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a
SS
2895 else if ((typecode == TYPE_CODE_STRUCT ||
2896 typecode == TYPE_CODE_UNION) &&
d929b26f
AC
2897 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2898 longword_offset = MIPS_STACK_ARGSIZE - len;
7a292a7a 2899 }
c5aa993b 2900
9ace0497
AC
2901 if (mips_debug)
2902 {
cb3d25d1
MS
2903 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2904 paddr_nz (stack_offset));
2905 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2906 paddr_nz (longword_offset));
9ace0497 2907 }
361d1df0 2908
9ace0497
AC
2909 addr = sp + stack_offset + longword_offset;
2910
2911 if (mips_debug)
2912 {
2913 int i;
cb3d25d1
MS
2914 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2915 paddr_nz (addr));
9ace0497
AC
2916 for (i = 0; i < partial_len; i++)
2917 {
cb3d25d1
MS
2918 fprintf_unfiltered (gdb_stdlog, "%02x",
2919 val[i] & 0xff);
9ace0497
AC
2920 }
2921 }
2922 write_memory (addr, val, partial_len);
c906108c
SS
2923 }
2924
f09ded24
AC
2925 /* Note!!! This is NOT an else clause. Odd sized
2926 structs may go thru BOTH paths. Floating point
46e0f506 2927 arguments will not. */
566f0f7a 2928 /* Write this portion of the argument to a general
46e0f506 2929 purpose register. */
f09ded24
AC
2930 if (argreg <= MIPS_LAST_ARG_REGNUM
2931 && !fp_register_arg_p (typecode, arg_type))
c906108c 2932 {
9ace0497 2933 LONGEST regval = extract_unsigned_integer (val, partial_len);
c906108c 2934
9ace0497 2935 if (mips_debug)
acdb74a0 2936 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497
AC
2937 argreg,
2938 phex (regval, MIPS_SAVED_REGSIZE));
c906108c
SS
2939 write_register (argreg, regval);
2940 argreg++;
c906108c 2941 }
c5aa993b 2942
c906108c
SS
2943 len -= partial_len;
2944 val += partial_len;
2945
566f0f7a
AC
2946 /* Compute the the offset into the stack at which we
2947 will copy the next parameter.
2948
566f0f7a 2949 In the new EABI (and the NABI32), the stack_offset
46e0f506 2950 only needs to be adjusted when it has been used. */
c906108c 2951
46e0f506 2952 if (stack_used_p)
d929b26f 2953 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
c906108c
SS
2954 }
2955 }
9ace0497
AC
2956 if (mips_debug)
2957 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2958 }
2959
310e9b6a
AC
2960 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2961
0f71a2f6
JM
2962 /* Return adjusted stack pointer. */
2963 return sp;
2964}
2965
25ab4790 2966/* N32/N64 version of push_dummy_call. */
ebafbe83 2967
f7ab6ec6 2968static CORE_ADDR
25ab4790
AC
2969mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2970 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2971 struct value **args, CORE_ADDR sp, int struct_return,
2972 CORE_ADDR struct_addr)
cb3d25d1
MS
2973{
2974 int argreg;
2975 int float_argreg;
2976 int argnum;
2977 int len = 0;
2978 int stack_offset = 0;
2979
25ab4790
AC
2980 /* For shared libraries, "t9" needs to point at the function
2981 address. */
2982 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2983
2984 /* Set the return address register to point to the entry point of
2985 the program, where a breakpoint lies in wait. */
2986 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2987
cb3d25d1
MS
2988 /* First ensure that the stack and structure return address (if any)
2989 are properly aligned. The stack has to be at least 64-bit
2990 aligned even on 32-bit machines, because doubles must be 64-bit
2991 aligned. For n32 and n64, stack frames need to be 128-bit
2992 aligned, so we round to this widest known alignment. */
2993
2994 sp = ROUND_DOWN (sp, 16);
2995 struct_addr = ROUND_DOWN (struct_addr, 16);
2996
2997 /* Now make space on the stack for the args. */
2998 for (argnum = 0; argnum < nargs; argnum++)
2999 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3000 MIPS_STACK_ARGSIZE);
3001 sp -= ROUND_UP (len, 16);
3002
3003 if (mips_debug)
3004 fprintf_unfiltered (gdb_stdlog,
25ab4790 3005 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
cb3d25d1
MS
3006 paddr_nz (sp), ROUND_UP (len, 16));
3007
3008 /* Initialize the integer and float register pointers. */
3009 argreg = A0_REGNUM;
3010 float_argreg = FPA0_REGNUM;
3011
46e0f506 3012 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
3013 if (struct_return)
3014 {
3015 if (mips_debug)
3016 fprintf_unfiltered (gdb_stdlog,
25ab4790 3017 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1
MS
3018 argreg, paddr_nz (struct_addr));
3019 write_register (argreg++, struct_addr);
3020 }
3021
3022 /* Now load as many as possible of the first arguments into
3023 registers, and push the rest onto the stack. Loop thru args
3024 from first to last. */
3025 for (argnum = 0; argnum < nargs; argnum++)
3026 {
3027 char *val;
d9d9c31f 3028 char valbuf[MAX_REGISTER_SIZE];
cb3d25d1
MS
3029 struct value *arg = args[argnum];
3030 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3031 int len = TYPE_LENGTH (arg_type);
3032 enum type_code typecode = TYPE_CODE (arg_type);
3033
3034 if (mips_debug)
3035 fprintf_unfiltered (gdb_stdlog,
25ab4790 3036 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
3037 argnum + 1, len, (int) typecode);
3038
3039 val = (char *) VALUE_CONTENTS (arg);
3040
3041 if (fp_register_arg_p (typecode, arg_type)
3042 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3043 {
3044 /* This is a floating point value that fits entirely
3045 in a single register. */
3046 /* On 32 bit ABI's the float_argreg is further adjusted
3047 above to ensure that it is even register aligned. */
3048 LONGEST regval = extract_unsigned_integer (val, len);
3049 if (mips_debug)
3050 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3051 float_argreg, phex (regval, len));
3052 write_register (float_argreg++, regval);
3053
3054 if (mips_debug)
3055 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3056 argreg, phex (regval, len));
3057 write_register (argreg, regval);
3058 argreg += 1;
3059 }
3060 else
3061 {
3062 /* Copy the argument to general registers or the stack in
3063 register-sized pieces. Large arguments are split between
3064 registers and stack. */
3065 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3066 are treated specially: Irix cc passes them in registers
3067 where gcc sometimes puts them on the stack. For maximum
3068 compatibility, we will put them in both places. */
3069 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3070 (len % MIPS_SAVED_REGSIZE != 0));
3071 /* Note: Floating-point values that didn't fit into an FP
3072 register are only written to memory. */
3073 while (len > 0)
3074 {
3075 /* Rememer if the argument was written to the stack. */
3076 int stack_used_p = 0;
3077 int partial_len = len < MIPS_SAVED_REGSIZE ?
3078 len : MIPS_SAVED_REGSIZE;
3079
3080 if (mips_debug)
3081 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3082 partial_len);
3083
3084 /* Write this portion of the argument to the stack. */
3085 if (argreg > MIPS_LAST_ARG_REGNUM
3086 || odd_sized_struct
3087 || fp_register_arg_p (typecode, arg_type))
3088 {
3089 /* Should shorter than int integer values be
3090 promoted to int before being stored? */
3091 int longword_offset = 0;
3092 CORE_ADDR addr;
3093 stack_used_p = 1;
3094 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3095 {
3096 if (MIPS_STACK_ARGSIZE == 8 &&
3097 (typecode == TYPE_CODE_INT ||
3098 typecode == TYPE_CODE_PTR ||
3099 typecode == TYPE_CODE_FLT) && len <= 4)
3100 longword_offset = MIPS_STACK_ARGSIZE - len;
cb3d25d1
MS
3101 }
3102
3103 if (mips_debug)
3104 {
3105 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3106 paddr_nz (stack_offset));
3107 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3108 paddr_nz (longword_offset));
3109 }
3110
3111 addr = sp + stack_offset + longword_offset;
3112
3113 if (mips_debug)
3114 {
3115 int i;
3116 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3117 paddr_nz (addr));
3118 for (i = 0; i < partial_len; i++)
3119 {
3120 fprintf_unfiltered (gdb_stdlog, "%02x",
3121 val[i] & 0xff);
3122 }
3123 }
3124 write_memory (addr, val, partial_len);
3125 }
3126
3127 /* Note!!! This is NOT an else clause. Odd sized
3128 structs may go thru BOTH paths. Floating point
3129 arguments will not. */
3130 /* Write this portion of the argument to a general
3131 purpose register. */
3132 if (argreg <= MIPS_LAST_ARG_REGNUM
3133 && !fp_register_arg_p (typecode, arg_type))
3134 {
3135 LONGEST regval = extract_unsigned_integer (val, partial_len);
3136
3137 /* A non-floating-point argument being passed in a
3138 general register. If a struct or union, and if
3139 the remaining length is smaller than the register
3140 size, we have to adjust the register value on
3141 big endian targets.
3142
3143 It does not seem to be necessary to do the
3144 same for integral types.
3145
3146 cagney/2001-07-23: gdb/179: Also, GCC, when
3147 outputting LE O32 with sizeof (struct) <
3148 MIPS_SAVED_REGSIZE, generates a left shift as
3149 part of storing the argument in a register a
3150 register (the left shift isn't generated when
3151 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3152 is quite possible that this is GCC contradicting
3153 the LE/O32 ABI, GDB has not been adjusted to
3154 accommodate this. Either someone needs to
3155 demonstrate that the LE/O32 ABI specifies such a
3156 left shift OR this new ABI gets identified as
3157 such and GDB gets tweaked accordingly. */
3158
3159 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3160 && partial_len < MIPS_SAVED_REGSIZE
3161 && (typecode == TYPE_CODE_STRUCT ||
3162 typecode == TYPE_CODE_UNION))
3163 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3164 TARGET_CHAR_BIT);
3165
3166 if (mips_debug)
3167 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3168 argreg,
3169 phex (regval, MIPS_SAVED_REGSIZE));
3170 write_register (argreg, regval);
3171 argreg++;
3172 }
3173
3174 len -= partial_len;
3175 val += partial_len;
3176
3177 /* Compute the the offset into the stack at which we
3178 will copy the next parameter.
3179
3180 In N32 (N64?), the stack_offset only needs to be
3181 adjusted when it has been used. */
3182
3183 if (stack_used_p)
3184 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3185 }
3186 }
3187 if (mips_debug)
3188 fprintf_unfiltered (gdb_stdlog, "\n");
3189 }
3190
310e9b6a
AC
3191 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3192
cb3d25d1
MS
3193 /* Return adjusted stack pointer. */
3194 return sp;
3195}
3196
25ab4790 3197/* O32 version of push_dummy_call. */
ebafbe83 3198
46cac009 3199static CORE_ADDR
25ab4790
AC
3200mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3201 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3202 struct value **args, CORE_ADDR sp, int struct_return,
3203 CORE_ADDR struct_addr)
ebafbe83
MS
3204{
3205 int argreg;
3206 int float_argreg;
3207 int argnum;
3208 int len = 0;
3209 int stack_offset = 0;
ebafbe83 3210
25ab4790
AC
3211 /* For shared libraries, "t9" needs to point at the function
3212 address. */
3213 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3214
3215 /* Set the return address register to point to the entry point of
3216 the program, where a breakpoint lies in wait. */
3217 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3218
ebafbe83
MS
3219 /* First ensure that the stack and structure return address (if any)
3220 are properly aligned. The stack has to be at least 64-bit
3221 aligned even on 32-bit machines, because doubles must be 64-bit
3222 aligned. For n32 and n64, stack frames need to be 128-bit
3223 aligned, so we round to this widest known alignment. */
3224
3225 sp = ROUND_DOWN (sp, 16);
3226 struct_addr = ROUND_DOWN (struct_addr, 16);
3227
3228 /* Now make space on the stack for the args. */
3229 for (argnum = 0; argnum < nargs; argnum++)
3230 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3231 MIPS_STACK_ARGSIZE);
3232 sp -= ROUND_UP (len, 16);
3233
3234 if (mips_debug)
3235 fprintf_unfiltered (gdb_stdlog,
25ab4790 3236 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
ebafbe83
MS
3237 paddr_nz (sp), ROUND_UP (len, 16));
3238
3239 /* Initialize the integer and float register pointers. */
3240 argreg = A0_REGNUM;
3241 float_argreg = FPA0_REGNUM;
3242
bcb0cc15 3243 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3244 if (struct_return)
3245 {
3246 if (mips_debug)
3247 fprintf_unfiltered (gdb_stdlog,
25ab4790 3248 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83
MS
3249 argreg, paddr_nz (struct_addr));
3250 write_register (argreg++, struct_addr);
3251 stack_offset += MIPS_STACK_ARGSIZE;
3252 }
3253
3254 /* Now load as many as possible of the first arguments into
3255 registers, and push the rest onto the stack. Loop thru args
3256 from first to last. */
3257 for (argnum = 0; argnum < nargs; argnum++)
3258 {
3259 char *val;
d9d9c31f 3260 char valbuf[MAX_REGISTER_SIZE];
ebafbe83
MS
3261 struct value *arg = args[argnum];
3262 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3263 int len = TYPE_LENGTH (arg_type);
3264 enum type_code typecode = TYPE_CODE (arg_type);
3265
3266 if (mips_debug)
3267 fprintf_unfiltered (gdb_stdlog,
25ab4790 3268 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3269 argnum + 1, len, (int) typecode);
3270
3271 val = (char *) VALUE_CONTENTS (arg);
3272
3273 /* 32-bit ABIs always start floating point arguments in an
3274 even-numbered floating point register. Round the FP register
3275 up before the check to see if there are any FP registers
3276 left. O32/O64 targets also pass the FP in the integer
3277 registers so also round up normal registers. */
3278 if (!FP_REGISTER_DOUBLE
3279 && fp_register_arg_p (typecode, arg_type))
3280 {
3281 if ((float_argreg & 1))
3282 float_argreg++;
3283 }
3284
3285 /* Floating point arguments passed in registers have to be
3286 treated specially. On 32-bit architectures, doubles
3287 are passed in register pairs; the even register gets
3288 the low word, and the odd register gets the high word.
3289 On O32/O64, the first two floating point arguments are
3290 also copied to general registers, because MIPS16 functions
3291 don't use float registers for arguments. This duplication of
3292 arguments in general registers can't hurt non-MIPS16 functions
3293 because those registers are normally skipped. */
3294
3295 if (fp_register_arg_p (typecode, arg_type)
3296 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3297 {
3298 if (!FP_REGISTER_DOUBLE && len == 8)
3299 {
3300 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3301 unsigned long regval;
3302
3303 /* Write the low word of the double to the even register(s). */
3304 regval = extract_unsigned_integer (val + low_offset, 4);
3305 if (mips_debug)
3306 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3307 float_argreg, phex (regval, 4));
3308 write_register (float_argreg++, regval);
3309 if (mips_debug)
3310 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3311 argreg, phex (regval, 4));
3312 write_register (argreg++, regval);
3313
3314 /* Write the high word of the double to the odd register(s). */
3315 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3316 if (mips_debug)
3317 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3318 float_argreg, phex (regval, 4));
3319 write_register (float_argreg++, regval);
3320
3321 if (mips_debug)
3322 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3323 argreg, phex (regval, 4));
3324 write_register (argreg++, regval);
3325 }
3326 else
3327 {
3328 /* This is a floating point value that fits entirely
3329 in a single register. */
3330 /* On 32 bit ABI's the float_argreg is further adjusted
3331 above to ensure that it is even register aligned. */
3332 LONGEST regval = extract_unsigned_integer (val, len);
3333 if (mips_debug)
3334 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3335 float_argreg, phex (regval, len));
3336 write_register (float_argreg++, regval);
3337 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3338 registers for each argument. The below is (my
3339 guess) to ensure that the corresponding integer
3340 register has reserved the same space. */
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3343 argreg, phex (regval, len));
3344 write_register (argreg, regval);
3345 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3346 }
3347 /* Reserve space for the FP register. */
3348 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3349 }
3350 else
3351 {
3352 /* Copy the argument to general registers or the stack in
3353 register-sized pieces. Large arguments are split between
3354 registers and stack. */
3355 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3356 are treated specially: Irix cc passes them in registers
3357 where gcc sometimes puts them on the stack. For maximum
3358 compatibility, we will put them in both places. */
3359 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3360 (len % MIPS_SAVED_REGSIZE != 0));
3361 /* Structures should be aligned to eight bytes (even arg registers)
3362 on MIPS_ABI_O32, if their first member has double precision. */
3363 if (MIPS_SAVED_REGSIZE < 8
3364 && mips_type_needs_double_align (arg_type))
3365 {
3366 if ((argreg & 1))
3367 argreg++;
3368 }
3369 /* Note: Floating-point values that didn't fit into an FP
3370 register are only written to memory. */
3371 while (len > 0)
3372 {
3373 /* Remember if the argument was written to the stack. */
3374 int stack_used_p = 0;
3375 int partial_len =
3376 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3377
3378 if (mips_debug)
3379 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3380 partial_len);
3381
3382 /* Write this portion of the argument to the stack. */
3383 if (argreg > MIPS_LAST_ARG_REGNUM
3384 || odd_sized_struct
3385 || fp_register_arg_p (typecode, arg_type))
3386 {
3387 /* Should shorter than int integer values be
3388 promoted to int before being stored? */
3389 int longword_offset = 0;
3390 CORE_ADDR addr;
3391 stack_used_p = 1;
3392 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3393 {
3394 if (MIPS_STACK_ARGSIZE == 8 &&
3395 (typecode == TYPE_CODE_INT ||
3396 typecode == TYPE_CODE_PTR ||
3397 typecode == TYPE_CODE_FLT) && len <= 4)
3398 longword_offset = MIPS_STACK_ARGSIZE - len;
3399 }
3400
3401 if (mips_debug)
3402 {
3403 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3404 paddr_nz (stack_offset));
3405 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3406 paddr_nz (longword_offset));
3407 }
3408
3409 addr = sp + stack_offset + longword_offset;
3410
3411 if (mips_debug)
3412 {
3413 int i;
3414 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3415 paddr_nz (addr));
3416 for (i = 0; i < partial_len; i++)
3417 {
3418 fprintf_unfiltered (gdb_stdlog, "%02x",
3419 val[i] & 0xff);
3420 }
3421 }
3422 write_memory (addr, val, partial_len);
3423 }
3424
3425 /* Note!!! This is NOT an else clause. Odd sized
3426 structs may go thru BOTH paths. Floating point
3427 arguments will not. */
3428 /* Write this portion of the argument to a general
3429 purpose register. */
3430 if (argreg <= MIPS_LAST_ARG_REGNUM
3431 && !fp_register_arg_p (typecode, arg_type))
3432 {
3433 LONGEST regval = extract_signed_integer (val, partial_len);
3434 /* Value may need to be sign extended, because
3435 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3436
3437 /* A non-floating-point argument being passed in a
3438 general register. If a struct or union, and if
3439 the remaining length is smaller than the register
3440 size, we have to adjust the register value on
3441 big endian targets.
3442
3443 It does not seem to be necessary to do the
3444 same for integral types.
3445
3446 Also don't do this adjustment on O64 binaries.
3447
3448 cagney/2001-07-23: gdb/179: Also, GCC, when
3449 outputting LE O32 with sizeof (struct) <
3450 MIPS_SAVED_REGSIZE, generates a left shift as
3451 part of storing the argument in a register a
3452 register (the left shift isn't generated when
3453 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3454 is quite possible that this is GCC contradicting
3455 the LE/O32 ABI, GDB has not been adjusted to
3456 accommodate this. Either someone needs to
3457 demonstrate that the LE/O32 ABI specifies such a
3458 left shift OR this new ABI gets identified as
3459 such and GDB gets tweaked accordingly. */
3460
3461 if (MIPS_SAVED_REGSIZE < 8
3462 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3463 && partial_len < MIPS_SAVED_REGSIZE
3464 && (typecode == TYPE_CODE_STRUCT ||
3465 typecode == TYPE_CODE_UNION))
3466 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3467 TARGET_CHAR_BIT);
3468
3469 if (mips_debug)
3470 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3471 argreg,
3472 phex (regval, MIPS_SAVED_REGSIZE));
3473 write_register (argreg, regval);
3474 argreg++;
3475
3476 /* Prevent subsequent floating point arguments from
3477 being passed in floating point registers. */
3478 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3479 }
3480
3481 len -= partial_len;
3482 val += partial_len;
3483
3484 /* Compute the the offset into the stack at which we
3485 will copy the next parameter.
3486
3487 In older ABIs, the caller reserved space for
3488 registers that contained arguments. This was loosely
3489 refered to as their "home". Consequently, space is
3490 always allocated. */
3491
3492 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3493 }
3494 }
3495 if (mips_debug)
3496 fprintf_unfiltered (gdb_stdlog, "\n");
3497 }
3498
310e9b6a
AC
3499 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3500
46cac009
AC
3501 /* Return adjusted stack pointer. */
3502 return sp;
3503}
3504
25ab4790 3505/* O64 version of push_dummy_call. */
46cac009
AC
3506
3507static CORE_ADDR
25ab4790
AC
3508mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3509 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3510 struct value **args, CORE_ADDR sp, int struct_return,
3511 CORE_ADDR struct_addr)
46cac009
AC
3512{
3513 int argreg;
3514 int float_argreg;
3515 int argnum;
3516 int len = 0;
3517 int stack_offset = 0;
3518
25ab4790
AC
3519 /* For shared libraries, "t9" needs to point at the function
3520 address. */
3521 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3522
3523 /* Set the return address register to point to the entry point of
3524 the program, where a breakpoint lies in wait. */
3525 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3526
46cac009
AC
3527 /* First ensure that the stack and structure return address (if any)
3528 are properly aligned. The stack has to be at least 64-bit
3529 aligned even on 32-bit machines, because doubles must be 64-bit
3530 aligned. For n32 and n64, stack frames need to be 128-bit
3531 aligned, so we round to this widest known alignment. */
3532
3533 sp = ROUND_DOWN (sp, 16);
3534 struct_addr = ROUND_DOWN (struct_addr, 16);
3535
3536 /* Now make space on the stack for the args. */
3537 for (argnum = 0; argnum < nargs; argnum++)
3538 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3539 MIPS_STACK_ARGSIZE);
3540 sp -= ROUND_UP (len, 16);
3541
3542 if (mips_debug)
3543 fprintf_unfiltered (gdb_stdlog,
25ab4790 3544 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
46cac009
AC
3545 paddr_nz (sp), ROUND_UP (len, 16));
3546
3547 /* Initialize the integer and float register pointers. */
3548 argreg = A0_REGNUM;
3549 float_argreg = FPA0_REGNUM;
3550
3551 /* The struct_return pointer occupies the first parameter-passing reg. */
3552 if (struct_return)
3553 {
3554 if (mips_debug)
3555 fprintf_unfiltered (gdb_stdlog,
25ab4790 3556 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009
AC
3557 argreg, paddr_nz (struct_addr));
3558 write_register (argreg++, struct_addr);
3559 stack_offset += MIPS_STACK_ARGSIZE;
3560 }
3561
3562 /* Now load as many as possible of the first arguments into
3563 registers, and push the rest onto the stack. Loop thru args
3564 from first to last. */
3565 for (argnum = 0; argnum < nargs; argnum++)
3566 {
3567 char *val;
d9d9c31f 3568 char valbuf[MAX_REGISTER_SIZE];
46cac009
AC
3569 struct value *arg = args[argnum];
3570 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3571 int len = TYPE_LENGTH (arg_type);
3572 enum type_code typecode = TYPE_CODE (arg_type);
3573
3574 if (mips_debug)
3575 fprintf_unfiltered (gdb_stdlog,
25ab4790 3576 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3577 argnum + 1, len, (int) typecode);
3578
3579 val = (char *) VALUE_CONTENTS (arg);
3580
3581 /* 32-bit ABIs always start floating point arguments in an
3582 even-numbered floating point register. Round the FP register
3583 up before the check to see if there are any FP registers
3584 left. O32/O64 targets also pass the FP in the integer
3585 registers so also round up normal registers. */
3586 if (!FP_REGISTER_DOUBLE
3587 && fp_register_arg_p (typecode, arg_type))
3588 {
3589 if ((float_argreg & 1))
3590 float_argreg++;
3591 }
3592
3593 /* Floating point arguments passed in registers have to be
3594 treated specially. On 32-bit architectures, doubles
3595 are passed in register pairs; the even register gets
3596 the low word, and the odd register gets the high word.
3597 On O32/O64, the first two floating point arguments are
3598 also copied to general registers, because MIPS16 functions
3599 don't use float registers for arguments. This duplication of
3600 arguments in general registers can't hurt non-MIPS16 functions
3601 because those registers are normally skipped. */
3602
3603 if (fp_register_arg_p (typecode, arg_type)
3604 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3605 {
3606 if (!FP_REGISTER_DOUBLE && len == 8)
3607 {
3608 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3609 unsigned long regval;
3610
3611 /* Write the low word of the double to the even register(s). */
3612 regval = extract_unsigned_integer (val + low_offset, 4);
3613 if (mips_debug)
3614 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3615 float_argreg, phex (regval, 4));
3616 write_register (float_argreg++, regval);
3617 if (mips_debug)
3618 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3619 argreg, phex (regval, 4));
3620 write_register (argreg++, regval);
3621
3622 /* Write the high word of the double to the odd register(s). */
3623 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3624 if (mips_debug)
3625 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3626 float_argreg, phex (regval, 4));
3627 write_register (float_argreg++, regval);
3628
3629 if (mips_debug)
3630 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3631 argreg, phex (regval, 4));
3632 write_register (argreg++, regval);
3633 }
3634 else
3635 {
3636 /* This is a floating point value that fits entirely
3637 in a single register. */
3638 /* On 32 bit ABI's the float_argreg is further adjusted
3639 above to ensure that it is even register aligned. */
3640 LONGEST regval = extract_unsigned_integer (val, len);
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3643 float_argreg, phex (regval, len));
3644 write_register (float_argreg++, regval);
3645 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3646 registers for each argument. The below is (my
3647 guess) to ensure that the corresponding integer
3648 register has reserved the same space. */
3649 if (mips_debug)
3650 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3651 argreg, phex (regval, len));
3652 write_register (argreg, regval);
3653 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3654 }
3655 /* Reserve space for the FP register. */
3656 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3657 }
3658 else
3659 {
3660 /* Copy the argument to general registers or the stack in
3661 register-sized pieces. Large arguments are split between
3662 registers and stack. */
3663 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3664 are treated specially: Irix cc passes them in registers
3665 where gcc sometimes puts them on the stack. For maximum
3666 compatibility, we will put them in both places. */
3667 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3668 (len % MIPS_SAVED_REGSIZE != 0));
3669 /* Structures should be aligned to eight bytes (even arg registers)
3670 on MIPS_ABI_O32, if their first member has double precision. */
3671 if (MIPS_SAVED_REGSIZE < 8
3672 && mips_type_needs_double_align (arg_type))
3673 {
3674 if ((argreg & 1))
3675 argreg++;
3676 }
3677 /* Note: Floating-point values that didn't fit into an FP
3678 register are only written to memory. */
3679 while (len > 0)
3680 {
3681 /* Remember if the argument was written to the stack. */
3682 int stack_used_p = 0;
3683 int partial_len =
3684 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3685
3686 if (mips_debug)
3687 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3688 partial_len);
3689
3690 /* Write this portion of the argument to the stack. */
3691 if (argreg > MIPS_LAST_ARG_REGNUM
3692 || odd_sized_struct
3693 || fp_register_arg_p (typecode, arg_type))
3694 {
3695 /* Should shorter than int integer values be
3696 promoted to int before being stored? */
3697 int longword_offset = 0;
3698 CORE_ADDR addr;
3699 stack_used_p = 1;
3700 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3701 {
3702 if (MIPS_STACK_ARGSIZE == 8 &&
3703 (typecode == TYPE_CODE_INT ||
3704 typecode == TYPE_CODE_PTR ||
3705 typecode == TYPE_CODE_FLT) && len <= 4)
3706 longword_offset = MIPS_STACK_ARGSIZE - len;
3707 }
3708
3709 if (mips_debug)
3710 {
3711 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3712 paddr_nz (stack_offset));
3713 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3714 paddr_nz (longword_offset));
3715 }
3716
3717 addr = sp + stack_offset + longword_offset;
3718
3719 if (mips_debug)
3720 {
3721 int i;
3722 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3723 paddr_nz (addr));
3724 for (i = 0; i < partial_len; i++)
3725 {
3726 fprintf_unfiltered (gdb_stdlog, "%02x",
3727 val[i] & 0xff);
3728 }
3729 }
3730 write_memory (addr, val, partial_len);
3731 }
3732
3733 /* Note!!! This is NOT an else clause. Odd sized
3734 structs may go thru BOTH paths. Floating point
3735 arguments will not. */
3736 /* Write this portion of the argument to a general
3737 purpose register. */
3738 if (argreg <= MIPS_LAST_ARG_REGNUM
3739 && !fp_register_arg_p (typecode, arg_type))
3740 {
3741 LONGEST regval = extract_signed_integer (val, partial_len);
3742 /* Value may need to be sign extended, because
3743 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3744
3745 /* A non-floating-point argument being passed in a
3746 general register. If a struct or union, and if
3747 the remaining length is smaller than the register
3748 size, we have to adjust the register value on
3749 big endian targets.
3750
3751 It does not seem to be necessary to do the
3752 same for integral types.
3753
3754 Also don't do this adjustment on O64 binaries.
3755
3756 cagney/2001-07-23: gdb/179: Also, GCC, when
3757 outputting LE O32 with sizeof (struct) <
3758 MIPS_SAVED_REGSIZE, generates a left shift as
3759 part of storing the argument in a register a
3760 register (the left shift isn't generated when
3761 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3762 is quite possible that this is GCC contradicting
3763 the LE/O32 ABI, GDB has not been adjusted to
3764 accommodate this. Either someone needs to
3765 demonstrate that the LE/O32 ABI specifies such a
3766 left shift OR this new ABI gets identified as
3767 such and GDB gets tweaked accordingly. */
3768
3769 if (MIPS_SAVED_REGSIZE < 8
3770 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3771 && partial_len < MIPS_SAVED_REGSIZE
3772 && (typecode == TYPE_CODE_STRUCT ||
3773 typecode == TYPE_CODE_UNION))
3774 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3775 TARGET_CHAR_BIT);
3776
3777 if (mips_debug)
3778 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3779 argreg,
3780 phex (regval, MIPS_SAVED_REGSIZE));
3781 write_register (argreg, regval);
3782 argreg++;
3783
3784 /* Prevent subsequent floating point arguments from
3785 being passed in floating point registers. */
3786 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3787 }
3788
3789 len -= partial_len;
3790 val += partial_len;
3791
3792 /* Compute the the offset into the stack at which we
3793 will copy the next parameter.
3794
3795 In older ABIs, the caller reserved space for
3796 registers that contained arguments. This was loosely
3797 refered to as their "home". Consequently, space is
3798 always allocated. */
3799
3800 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3801 }
3802 }
3803 if (mips_debug)
3804 fprintf_unfiltered (gdb_stdlog, "\n");
3805 }
3806
310e9b6a
AC
3807 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3808
ebafbe83
MS
3809 /* Return adjusted stack pointer. */
3810 return sp;
3811}
3812
f7ab6ec6 3813static void
acdb74a0 3814mips_pop_frame (void)
c906108c
SS
3815{
3816 register int regnum;
3817 struct frame_info *frame = get_current_frame ();
c193f6ac 3818 CORE_ADDR new_sp = get_frame_base (frame);
e227b13c 3819 mips_extra_func_info_t proc_desc;
c906108c 3820
50abf9e5 3821 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
cedea778
AC
3822 {
3823 generic_pop_dummy_frame ();
3824 flush_cached_frames ();
3825 return;
3826 }
3827
e227b13c 3828 proc_desc = get_frame_extra_info (frame)->proc_desc;
8bedc050 3829 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
e0f7ec59 3830 mips_find_saved_regs (frame);
c906108c 3831 for (regnum = 0; regnum < NUM_REGS; regnum++)
21f87145 3832 if (regnum != SP_REGNUM && regnum != PC_REGNUM
b2fb4676 3833 && get_frame_saved_regs (frame)[regnum])
21f87145
MS
3834 {
3835 /* Floating point registers must not be sign extended,
3836 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3837
3838 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3839 write_register (regnum,
b2fb4676 3840 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3841 MIPS_SAVED_REGSIZE));
3842 else
3843 write_register (regnum,
b2fb4676 3844 read_memory_integer (get_frame_saved_regs (frame)[regnum],
21f87145
MS
3845 MIPS_SAVED_REGSIZE));
3846 }
757a7cc6 3847
c906108c
SS
3848 write_register (SP_REGNUM, new_sp);
3849 flush_cached_frames ();
3850
c5aa993b 3851 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
c906108c
SS
3852 {
3853 struct linked_proc_info *pi_ptr, *prev_ptr;
3854
3855 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3856 pi_ptr != NULL;
3857 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3858 {
3859 if (&pi_ptr->info == proc_desc)
3860 break;
3861 }
3862
3863 if (pi_ptr == NULL)
3864 error ("Can't locate dummy extra frame info\n");
3865
3866 if (prev_ptr != NULL)
3867 prev_ptr->next = pi_ptr->next;
3868 else
3869 linked_proc_desc_table = pi_ptr->next;
3870
b8c9b27d 3871 xfree (pi_ptr);
c906108c
SS
3872
3873 write_register (HI_REGNUM,
c5aa993b 3874 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
7a292a7a 3875 MIPS_SAVED_REGSIZE));
c906108c 3876 write_register (LO_REGNUM,
c5aa993b 3877 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
7a292a7a 3878 MIPS_SAVED_REGSIZE));
c906108c
SS
3879 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3880 write_register (FCRCS_REGNUM,
c5aa993b 3881 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
7a292a7a 3882 MIPS_SAVED_REGSIZE));
c906108c
SS
3883 }
3884}
3885
dd824b04
DJ
3886/* Floating point register management.
3887
3888 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3889 64bit operations, these early MIPS cpus treat fp register pairs
3890 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3891 registers and offer a compatibility mode that emulates the MIPS2 fp
3892 model. When operating in MIPS2 fp compat mode, later cpu's split
3893 double precision floats into two 32-bit chunks and store them in
3894 consecutive fp regs. To display 64-bit floats stored in this
3895 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3896 Throw in user-configurable endianness and you have a real mess.
3897
3898 The way this works is:
3899 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3900 double-precision value will be split across two logical registers.
3901 The lower-numbered logical register will hold the low-order bits,
3902 regardless of the processor's endianness.
3903 - If we are on a 64-bit processor, and we are looking for a
3904 single-precision value, it will be in the low ordered bits
3905 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3906 save slot in memory.
3907 - If we are in 64-bit mode, everything is straightforward.
3908
3909 Note that this code only deals with "live" registers at the top of the
3910 stack. We will attempt to deal with saved registers later, when
3911 the raw/cooked register interface is in place. (We need a general
3912 interface that can deal with dynamic saved register sizes -- fp
3913 regs could be 32 bits wide in one frame and 64 on the frame above
3914 and below). */
3915
67b2c998
DJ
3916static struct type *
3917mips_float_register_type (void)
3918{
361d1df0 3919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3920 return builtin_type_ieee_single_big;
3921 else
3922 return builtin_type_ieee_single_little;
3923}
3924
3925static struct type *
3926mips_double_register_type (void)
3927{
361d1df0 3928 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
67b2c998
DJ
3929 return builtin_type_ieee_double_big;
3930 else
3931 return builtin_type_ieee_double_little;
3932}
3933
dd824b04
DJ
3934/* Copy a 32-bit single-precision value from the current frame
3935 into rare_buffer. */
3936
3937static void
e11c53d2
AC
3938mips_read_fp_register_single (struct frame_info *frame, int regno,
3939 char *rare_buffer)
dd824b04
DJ
3940{
3941 int raw_size = REGISTER_RAW_SIZE (regno);
3942 char *raw_buffer = alloca (raw_size);
3943
e11c53d2 3944 if (!frame_register_read (frame, regno, raw_buffer))
dd824b04
DJ
3945 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3946 if (raw_size == 8)
3947 {
3948 /* We have a 64-bit value for this register. Find the low-order
3949 32 bits. */
3950 int offset;
3951
3952 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3953 offset = 4;
3954 else
3955 offset = 0;
3956
3957 memcpy (rare_buffer, raw_buffer + offset, 4);
3958 }
3959 else
3960 {
3961 memcpy (rare_buffer, raw_buffer, 4);
3962 }
3963}
3964
3965/* Copy a 64-bit double-precision value from the current frame into
3966 rare_buffer. This may include getting half of it from the next
3967 register. */
3968
3969static void
e11c53d2
AC
3970mips_read_fp_register_double (struct frame_info *frame, int regno,
3971 char *rare_buffer)
dd824b04
DJ
3972{
3973 int raw_size = REGISTER_RAW_SIZE (regno);
3974
3975 if (raw_size == 8 && !mips2_fp_compat ())
3976 {
3977 /* We have a 64-bit value for this register, and we should use
3978 all 64 bits. */
e11c53d2 3979 if (!frame_register_read (frame, regno, rare_buffer))
dd824b04
DJ
3980 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3981 }
3982 else
3983 {
3984 if ((regno - FP0_REGNUM) & 1)
3985 internal_error (__FILE__, __LINE__,
3986 "mips_read_fp_register_double: bad access to "
3987 "odd-numbered FP register");
3988
3989 /* mips_read_fp_register_single will find the correct 32 bits from
3990 each register. */
3991 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3992 {
e11c53d2
AC
3993 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3994 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 3995 }
361d1df0 3996 else
dd824b04 3997 {
e11c53d2
AC
3998 mips_read_fp_register_single (frame, regno, rare_buffer);
3999 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4000 }
4001 }
4002}
4003
c906108c 4004static void
e11c53d2
AC
4005mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4006 int regnum)
c5aa993b 4007{ /* do values for FP (float) regs */
dd824b04 4008 char *raw_buffer;
c906108c 4009 double doub, flt1, flt2; /* doubles extracted from raw hex data */
f0ef6b29 4010 int inv1, inv2, namelen;
c5aa993b 4011
dd824b04 4012 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
c906108c 4013
e11c53d2
AC
4014 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4015 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4016 "");
f0ef6b29 4017
dd824b04 4018 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
c906108c 4019 {
f0ef6b29
KB
4020 /* 4-byte registers: Print hex and floating. Also print even
4021 numbered registers as doubles. */
e11c53d2 4022 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4023 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4024
e11c53d2 4025 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
dd824b04 4026
e11c53d2 4027 fprintf_filtered (file, " flt: ");
1adad886 4028 if (inv1)
e11c53d2 4029 fprintf_filtered (file, " <invalid float> ");
1adad886 4030 else
e11c53d2 4031 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4032
f0ef6b29
KB
4033 if (regnum % 2 == 0)
4034 {
e11c53d2 4035 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4036 doub = unpack_double (mips_double_register_type (), raw_buffer,
4037 &inv2);
1adad886 4038
e11c53d2 4039 fprintf_filtered (file, " dbl: ");
f0ef6b29 4040 if (inv2)
e11c53d2 4041 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4042 else
e11c53d2 4043 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4044 }
c906108c
SS
4045 }
4046 else
dd824b04 4047 {
f0ef6b29 4048 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4049 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4050 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4051
e11c53d2 4052 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4053 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4054
361d1df0 4055
e11c53d2 4056 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
f0ef6b29 4057
e11c53d2 4058 fprintf_filtered (file, " flt: ");
1adad886 4059 if (inv1)
e11c53d2 4060 fprintf_filtered (file, "<invalid float>");
1adad886 4061 else
e11c53d2 4062 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4063
e11c53d2 4064 fprintf_filtered (file, " dbl: ");
f0ef6b29 4065 if (inv2)
e11c53d2 4066 fprintf_filtered (file, "<invalid double>");
1adad886 4067 else
e11c53d2 4068 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4069 }
4070}
4071
4072static void
e11c53d2
AC
4073mips_print_register (struct ui_file *file, struct frame_info *frame,
4074 int regnum, int all)
f0ef6b29 4075{
d9d9c31f 4076 char raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4077 int offset;
1adad886 4078
f0ef6b29
KB
4079 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4080 {
e11c53d2 4081 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4082 return;
4083 }
4084
4085 /* Get the data in raw format. */
e11c53d2 4086 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4087 {
e11c53d2 4088 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
f0ef6b29 4089 return;
c906108c 4090 }
f0ef6b29 4091
e11c53d2 4092 fputs_filtered (REGISTER_NAME (regnum), file);
f0ef6b29
KB
4093
4094 /* The problem with printing numeric register names (r26, etc.) is that
4095 the user can't use them on input. Probably the best solution is to
4096 fix it so that either the numeric or the funky (a2, etc.) names
4097 are accepted on input. */
4098 if (regnum < MIPS_NUMREGS)
e11c53d2 4099 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4100 else
e11c53d2 4101 fprintf_filtered (file, ": ");
f0ef6b29
KB
4102
4103 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4104 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4105 else
4106 offset = 0;
4107
4108 print_scalar_formatted (raw_buffer + offset,
4109 REGISTER_VIRTUAL_TYPE (regnum),
e11c53d2 4110 'x', 0, file);
c906108c
SS
4111}
4112
f0ef6b29
KB
4113/* Replacement for generic do_registers_info.
4114 Print regs in pretty columns. */
4115
4116static int
e11c53d2
AC
4117print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4118 int regnum)
f0ef6b29 4119{
e11c53d2
AC
4120 fprintf_filtered (file, " ");
4121 mips_print_fp_register (file, frame, regnum);
4122 fprintf_filtered (file, "\n");
f0ef6b29
KB
4123 return regnum + 1;
4124}
4125
4126
c906108c
SS
4127/* Print a row's worth of GP (int) registers, with name labels above */
4128
4129static int
e11c53d2
AC
4130print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4131 int regnum)
c906108c
SS
4132{
4133 /* do values for GP (int) regs */
d9d9c31f 4134 char raw_buffer[MAX_REGISTER_SIZE];
c906108c
SS
4135 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4136 int col, byte;
4137 int start_regnum = regnum;
4138 int numregs = NUM_REGS;
4139
4140
4141 /* For GP registers, we print a separate row of names above the vals */
e11c53d2 4142 fprintf_filtered (file, " ");
c906108c
SS
4143 for (col = 0; col < ncols && regnum < numregs; regnum++)
4144 {
4145 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4146 continue; /* unused register */
c906108c 4147 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4148 break; /* end the row: reached FP register */
e11c53d2
AC
4149 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4150 REGISTER_NAME (regnum));
c906108c
SS
4151 col++;
4152 }
e11c53d2
AC
4153 fprintf_filtered (file,
4154 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4155 start_regnum); /* print the R0 to R31 names */
c906108c
SS
4156
4157 regnum = start_regnum; /* go back to start of row */
4158 /* now print the values in hex, 4 or 8 to the row */
4159 for (col = 0; col < ncols && regnum < numregs; regnum++)
4160 {
4161 if (*REGISTER_NAME (regnum) == '\0')
c5aa993b 4162 continue; /* unused register */
c906108c 4163 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
c5aa993b 4164 break; /* end row: reached FP register */
c906108c 4165 /* OK: get the data in raw format. */
e11c53d2 4166 if (!frame_register_read (frame, regnum, raw_buffer))
c906108c
SS
4167 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4168 /* pad small registers */
43e526b9 4169 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
c906108c
SS
4170 printf_filtered (" ");
4171 /* Now print the register value in hex, endian order. */
d7449b42 4172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
43e526b9
JM
4173 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4174 byte < REGISTER_RAW_SIZE (regnum);
4175 byte++)
e11c53d2 4176 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
c906108c 4177 else
43e526b9
JM
4178 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4179 byte >= 0;
4180 byte--)
e11c53d2
AC
4181 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4182 fprintf_filtered (file, " ");
c906108c
SS
4183 col++;
4184 }
c5aa993b 4185 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4186 fprintf_filtered (file, "\n");
c906108c
SS
4187
4188 return regnum;
4189}
4190
4191/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4192
bf1f5b4c 4193static void
e11c53d2
AC
4194mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4195 struct frame_info *frame, int regnum, int all)
c906108c 4196{
c5aa993b 4197 if (regnum != -1) /* do one specified register */
c906108c
SS
4198 {
4199 if (*(REGISTER_NAME (regnum)) == '\0')
4200 error ("Not a valid register for the current processor type");
4201
e11c53d2
AC
4202 mips_print_register (file, frame, regnum, 0);
4203 fprintf_filtered (file, "\n");
c906108c 4204 }
c5aa993b
JM
4205 else
4206 /* do all (or most) registers */
c906108c
SS
4207 {
4208 regnum = 0;
4209 while (regnum < NUM_REGS)
4210 {
c5aa993b 4211 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
e11c53d2
AC
4212 {
4213 if (all) /* true for "INFO ALL-REGISTERS" command */
4214 regnum = print_fp_register_row (file, frame, regnum);
4215 else
4216 regnum += MIPS_NUMREGS; /* skip floating point regs */
4217 }
c906108c 4218 else
e11c53d2 4219 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4220 }
4221 }
4222}
4223
c906108c
SS
4224/* Is this a branch with a delay slot? */
4225
a14ed312 4226static int is_delayed (unsigned long);
c906108c
SS
4227
4228static int
acdb74a0 4229is_delayed (unsigned long insn)
c906108c
SS
4230{
4231 int i;
4232 for (i = 0; i < NUMOPCODES; ++i)
4233 if (mips_opcodes[i].pinfo != INSN_MACRO
4234 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4235 break;
4236 return (i < NUMOPCODES
4237 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4238 | INSN_COND_BRANCH_DELAY
4239 | INSN_COND_BRANCH_LIKELY)));
4240}
4241
4242int
acdb74a0 4243mips_step_skips_delay (CORE_ADDR pc)
c906108c
SS
4244{
4245 char buf[MIPS_INSTLEN];
4246
4247 /* There is no branch delay slot on MIPS16. */
4248 if (pc_is_mips16 (pc))
4249 return 0;
4250
4251 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4252 /* If error reading memory, guess that it is not a delayed branch. */
4253 return 0;
c5aa993b 4254 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
c906108c
SS
4255}
4256
4257
4258/* Skip the PC past function prologue instructions (32-bit version).
4259 This is a helper function for mips_skip_prologue. */
4260
4261static CORE_ADDR
f7b9e9fc 4262mips32_skip_prologue (CORE_ADDR pc)
c906108c 4263{
c5aa993b
JM
4264 t_inst inst;
4265 CORE_ADDR end_pc;
4266 int seen_sp_adjust = 0;
4267 int load_immediate_bytes = 0;
4268
4269 /* Skip the typical prologue instructions. These are the stack adjustment
4270 instruction and the instructions that save registers on the stack
4271 or in the gcc frame. */
4272 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4273 {
4274 unsigned long high_word;
c906108c 4275
c5aa993b
JM
4276 inst = mips_fetch_instruction (pc);
4277 high_word = (inst >> 16) & 0xffff;
c906108c 4278
c5aa993b
JM
4279 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4280 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4281 seen_sp_adjust = 1;
4282 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4283 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4284 seen_sp_adjust = 1;
4285 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4286 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4287 && (inst & 0x001F0000)) /* reg != $zero */
4288 continue;
4289
4290 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4291 continue;
4292 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4293 /* sx reg,n($s8) */
4294 continue; /* reg != $zero */
4295
4296 /* move $s8,$sp. With different versions of gas this will be either
4297 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4298 Accept any one of these. */
4299 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4300 continue;
4301
4302 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4303 continue;
4304 else if (high_word == 0x3c1c) /* lui $gp,n */
4305 continue;
4306 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4307 continue;
4308 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4309 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4310 continue;
4311 /* The following instructions load $at or $t0 with an immediate
4312 value in preparation for a stack adjustment via
4313 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4314 a local variable, so we accept them only before a stack adjustment
4315 instruction was seen. */
4316 else if (!seen_sp_adjust)
4317 {
4318 if (high_word == 0x3c01 || /* lui $at,n */
4319 high_word == 0x3c08) /* lui $t0,n */
4320 {
4321 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4322 continue;
4323 }
4324 else if (high_word == 0x3421 || /* ori $at,$at,n */
4325 high_word == 0x3508 || /* ori $t0,$t0,n */
4326 high_word == 0x3401 || /* ori $at,$zero,n */
4327 high_word == 0x3408) /* ori $t0,$zero,n */
4328 {
4329 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4330 continue;
4331 }
4332 else
4333 break;
4334 }
4335 else
4336 break;
c906108c
SS
4337 }
4338
c5aa993b
JM
4339 /* In a frameless function, we might have incorrectly
4340 skipped some load immediate instructions. Undo the skipping
4341 if the load immediate was not followed by a stack adjustment. */
4342 if (load_immediate_bytes && !seen_sp_adjust)
4343 pc -= load_immediate_bytes;
4344 return pc;
c906108c
SS
4345}
4346
4347/* Skip the PC past function prologue instructions (16-bit version).
4348 This is a helper function for mips_skip_prologue. */
4349
4350static CORE_ADDR
f7b9e9fc 4351mips16_skip_prologue (CORE_ADDR pc)
c906108c 4352{
c5aa993b
JM
4353 CORE_ADDR end_pc;
4354 int extend_bytes = 0;
4355 int prev_extend_bytes;
c906108c 4356
c5aa993b
JM
4357 /* Table of instructions likely to be found in a function prologue. */
4358 static struct
c906108c
SS
4359 {
4360 unsigned short inst;
4361 unsigned short mask;
c5aa993b
JM
4362 }
4363 table[] =
4364 {
c906108c 4365 {
c5aa993b
JM
4366 0x6300, 0xff00
4367 }
4368 , /* addiu $sp,offset */
4369 {
4370 0xfb00, 0xff00
4371 }
4372 , /* daddiu $sp,offset */
4373 {
4374 0xd000, 0xf800
4375 }
4376 , /* sw reg,n($sp) */
4377 {
4378 0xf900, 0xff00
4379 }
4380 , /* sd reg,n($sp) */
4381 {
4382 0x6200, 0xff00
4383 }
4384 , /* sw $ra,n($sp) */
4385 {
4386 0xfa00, 0xff00
4387 }
4388 , /* sd $ra,n($sp) */
4389 {
4390 0x673d, 0xffff
4391 }
4392 , /* move $s1,sp */
4393 {
4394 0xd980, 0xff80
4395 }
4396 , /* sw $a0-$a3,n($s1) */
4397 {
4398 0x6704, 0xff1c
4399 }
4400 , /* move reg,$a0-$a3 */
4401 {
4402 0xe809, 0xf81f
4403 }
4404 , /* entry pseudo-op */
4405 {
4406 0x0100, 0xff00
4407 }
4408 , /* addiu $s1,$sp,n */
4409 {
4410 0, 0
4411 } /* end of table marker */
4412 };
4413
4414 /* Skip the typical prologue instructions. These are the stack adjustment
4415 instruction and the instructions that save registers on the stack
4416 or in the gcc frame. */
4417 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4418 {
4419 unsigned short inst;
4420 int i;
c906108c 4421
c5aa993b 4422 inst = mips_fetch_instruction (pc);
c906108c 4423
c5aa993b
JM
4424 /* Normally we ignore an extend instruction. However, if it is
4425 not followed by a valid prologue instruction, we must adjust
4426 the pc back over the extend so that it won't be considered
4427 part of the prologue. */
4428 if ((inst & 0xf800) == 0xf000) /* extend */
4429 {
4430 extend_bytes = MIPS16_INSTLEN;
4431 continue;
4432 }
4433 prev_extend_bytes = extend_bytes;
4434 extend_bytes = 0;
c906108c 4435
c5aa993b
JM
4436 /* Check for other valid prologue instructions besides extend. */
4437 for (i = 0; table[i].mask != 0; i++)
4438 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4439 break;
4440 if (table[i].mask != 0) /* it was in table? */
4441 continue; /* ignore it */
4442 else
4443 /* non-prologue */
4444 {
4445 /* Return the current pc, adjusted backwards by 2 if
4446 the previous instruction was an extend. */
4447 return pc - prev_extend_bytes;
4448 }
c906108c
SS
4449 }
4450 return pc;
4451}
4452
4453/* To skip prologues, I use this predicate. Returns either PC itself
4454 if the code at PC does not look like a function prologue; otherwise
4455 returns an address that (if we're lucky) follows the prologue. If
4456 LENIENT, then we must skip everything which is involved in setting
4457 up the frame (it's OK to skip more, just so long as we don't skip
4458 anything which might clobber the registers which are being saved.
4459 We must skip more in the case where part of the prologue is in the
4460 delay slot of a non-prologue instruction). */
4461
f7ab6ec6 4462static CORE_ADDR
f7b9e9fc 4463mips_skip_prologue (CORE_ADDR pc)
c906108c
SS
4464{
4465 /* See if we can determine the end of the prologue via the symbol table.
4466 If so, then return either PC, or the PC after the prologue, whichever
4467 is greater. */
4468
4469 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4470
4471 if (post_prologue_pc != 0)
4472 return max (pc, post_prologue_pc);
4473
4474 /* Can't determine prologue from the symbol table, need to examine
4475 instructions. */
4476
4477 if (pc_is_mips16 (pc))
f7b9e9fc 4478 return mips16_skip_prologue (pc);
c906108c 4479 else
f7b9e9fc 4480 return mips32_skip_prologue (pc);
c906108c 4481}
c906108c 4482
7a292a7a
SS
4483/* Determine how a return value is stored within the MIPS register
4484 file, given the return type `valtype'. */
4485
4486struct return_value_word
4487{
4488 int len;
4489 int reg;
4490 int reg_offset;
4491 int buf_offset;
4492};
4493
7a292a7a 4494static void
acdb74a0
AC
4495return_value_location (struct type *valtype,
4496 struct return_value_word *hi,
4497 struct return_value_word *lo)
7a292a7a
SS
4498{
4499 int len = TYPE_LENGTH (valtype);
c5aa993b 4500
7a292a7a
SS
4501 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4502 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4503 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4504 {
4505 if (!FP_REGISTER_DOUBLE && len == 8)
4506 {
4507 /* We need to break a 64bit float in two 32 bit halves and
c5aa993b 4508 spread them across a floating-point register pair. */
d7449b42
AC
4509 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4510 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4511 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4512 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4513 ? 4 : 0);
4514 hi->reg_offset = lo->reg_offset;
4515 lo->reg = FP0_REGNUM + 0;
4516 hi->reg = FP0_REGNUM + 1;
4517 lo->len = 4;
4518 hi->len = 4;
4519 }
4520 else
4521 {
4522 /* The floating point value fits in a single floating-point
c5aa993b 4523 register. */
d7449b42 4524 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4525 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4526 && len == 4)
4527 ? 4 : 0);
4528 lo->reg = FP0_REGNUM;
4529 lo->len = len;
4530 lo->buf_offset = 0;
4531 hi->len = 0;
4532 hi->reg_offset = 0;
4533 hi->buf_offset = 0;
4534 hi->reg = 0;
4535 }
4536 }
4537 else
4538 {
4539 /* Locate a result possibly spread across two registers. */
4540 int regnum = 2;
4541 lo->reg = regnum + 0;
4542 hi->reg = regnum + 1;
d7449b42 4543 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4544 && len < MIPS_SAVED_REGSIZE)
4545 {
bf1f5b4c
MS
4546 /* "un-left-justify" the value in the low register */
4547 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
bcb0cc15 4548 lo->len = len;
bf1f5b4c 4549 hi->reg_offset = 0;
7a292a7a
SS
4550 hi->len = 0;
4551 }
d7449b42 4552 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4553 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4554 && len < MIPS_SAVED_REGSIZE * 2
4555 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4556 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4557 {
4558 /* "un-left-justify" the value spread across two registers. */
4559 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4560 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4561 hi->reg_offset = 0;
4562 hi->len = len - lo->len;
4563 }
4564 else
4565 {
4566 /* Only perform a partial copy of the second register. */
4567 lo->reg_offset = 0;
4568 hi->reg_offset = 0;
4569 if (len > MIPS_SAVED_REGSIZE)
4570 {
4571 lo->len = MIPS_SAVED_REGSIZE;
4572 hi->len = len - MIPS_SAVED_REGSIZE;
4573 }
4574 else
4575 {
4576 lo->len = len;
4577 hi->len = 0;
4578 }
4579 }
d7449b42 4580 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
7a292a7a
SS
4581 && REGISTER_RAW_SIZE (regnum) == 8
4582 && MIPS_SAVED_REGSIZE == 4)
4583 {
4584 /* Account for the fact that only the least-signficant part
c5aa993b 4585 of the register is being used */
7a292a7a
SS
4586 lo->reg_offset += 4;
4587 hi->reg_offset += 4;
4588 }
4589 lo->buf_offset = 0;
4590 hi->buf_offset = lo->len;
4591 }
4592}
4593
4594/* Given a return value in `regbuf' with a type `valtype', extract and
4595 copy its value into `valbuf'. */
4596
46cac009
AC
4597static void
4598mips_eabi_extract_return_value (struct type *valtype,
b8b527c5 4599 char regbuf[],
46cac009
AC
4600 char *valbuf)
4601{
4602 struct return_value_word lo;
4603 struct return_value_word hi;
4604 return_value_location (valtype, &hi, &lo);
4605
4606 memcpy (valbuf + lo.buf_offset,
4607 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4608 lo.len);
4609
4610 if (hi.len > 0)
4611 memcpy (valbuf + hi.buf_offset,
4612 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4613 hi.len);
4614}
4615
46cac009
AC
4616static void
4617mips_o64_extract_return_value (struct type *valtype,
b8b527c5 4618 char regbuf[],
46cac009
AC
4619 char *valbuf)
4620{
4621 struct return_value_word lo;
4622 struct return_value_word hi;
4623 return_value_location (valtype, &hi, &lo);
4624
4625 memcpy (valbuf + lo.buf_offset,
4626 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4627 lo.len);
4628
4629 if (hi.len > 0)
4630 memcpy (valbuf + hi.buf_offset,
4631 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4632 hi.len);
4633}
4634
7a292a7a
SS
4635/* Given a return value in `valbuf' with a type `valtype', write it's
4636 value into the appropriate register. */
4637
46cac009
AC
4638static void
4639mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4640{
d9d9c31f 4641 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4642 struct return_value_word lo;
4643 struct return_value_word hi;
4644 return_value_location (valtype, &hi, &lo);
4645
4646 memset (raw_buffer, 0, sizeof (raw_buffer));
4647 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4648 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4649 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4650
4651 if (hi.len > 0)
4652 {
4653 memset (raw_buffer, 0, sizeof (raw_buffer));
4654 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4655 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4656 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4657 }
4658}
4659
4660static void
cb1d2653 4661mips_o64_store_return_value (struct type *valtype, char *valbuf)
46cac009 4662{
d9d9c31f 4663 char raw_buffer[MAX_REGISTER_SIZE];
46cac009
AC
4664 struct return_value_word lo;
4665 struct return_value_word hi;
4666 return_value_location (valtype, &hi, &lo);
4667
4668 memset (raw_buffer, 0, sizeof (raw_buffer));
4669 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
73937e03
AC
4670 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4671 REGISTER_RAW_SIZE (lo.reg));
46cac009
AC
4672
4673 if (hi.len > 0)
4674 {
4675 memset (raw_buffer, 0, sizeof (raw_buffer));
4676 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
73937e03
AC
4677 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4678 REGISTER_RAW_SIZE (hi.reg));
46cac009
AC
4679 }
4680}
4681
cb1d2653
AC
4682/* O32 ABI stuff. */
4683
46cac009 4684static void
cb1d2653
AC
4685mips_o32_xfer_return_value (struct type *type,
4686 struct regcache *regcache,
4687 bfd_byte *in, const bfd_byte *out)
46cac009 4688{
cb1d2653
AC
4689 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4690 if (TYPE_CODE (type) == TYPE_CODE_FLT
4691 && TYPE_LENGTH (type) == 4
4692 && tdep->mips_fpu_type != MIPS_FPU_NONE)
46cac009 4693 {
cb1d2653
AC
4694 /* A single-precision floating-point value. It fits in the
4695 least significant part of FP0. */
4696 if (mips_debug)
4697 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4698 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4699 TARGET_BYTE_ORDER, in, out, 0);
4700 }
4701 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4702 && TYPE_LENGTH (type) == 8
4703 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4704 {
4705 /* A double-precision floating-point value. It fits in the
4706 least significant part of FP0/FP1 but with byte ordering
4707 based on the target (???). */
4708 if (mips_debug)
4709 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4710 switch (TARGET_BYTE_ORDER)
4711 {
4712 case BFD_ENDIAN_LITTLE:
4713 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4714 TARGET_BYTE_ORDER, in, out, 0);
4715 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4716 TARGET_BYTE_ORDER, in, out, 4);
4717 break;
4718 case BFD_ENDIAN_BIG:
4719 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4720 TARGET_BYTE_ORDER, in, out, 0);
4721 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4722 TARGET_BYTE_ORDER, in, out, 4);
4723 break;
4724 default:
4725 internal_error (__FILE__, __LINE__, "bad switch");
4726 }
4727 }
4728#if 0
4729 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4730 && TYPE_NFIELDS (type) <= 2
4731 && TYPE_NFIELDS (type) >= 1
4732 && ((TYPE_NFIELDS (type) == 1
4733 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4734 == TYPE_CODE_FLT))
4735 || (TYPE_NFIELDS (type) == 2
4736 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4737 == TYPE_CODE_FLT)
4738 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4739 == TYPE_CODE_FLT)))
4740 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4741 {
4742 /* A struct that contains one or two floats. Each value is part
4743 in the least significant part of their floating point
4744 register.. */
d9d9c31f 4745 bfd_byte reg[MAX_REGISTER_SIZE];
cb1d2653
AC
4746 int regnum;
4747 int field;
4748 for (field = 0, regnum = FP0_REGNUM;
4749 field < TYPE_NFIELDS (type);
4750 field++, regnum += 2)
4751 {
4752 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4753 / TARGET_CHAR_BIT);
4754 if (mips_debug)
4755 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4756 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4757 TARGET_BYTE_ORDER, in, out, offset);
4758 }
4759 }
4760#endif
4761#if 0
4762 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4763 || TYPE_CODE (type) == TYPE_CODE_UNION)
4764 {
4765 /* A structure or union. Extract the left justified value,
4766 regardless of the byte order. I.e. DO NOT USE
4767 mips_xfer_lower. */
4768 int offset;
4769 int regnum;
4770 for (offset = 0, regnum = V0_REGNUM;
4771 offset < TYPE_LENGTH (type);
4772 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4773 {
4774 int xfer = REGISTER_RAW_SIZE (regnum);
4775 if (offset + xfer > TYPE_LENGTH (type))
4776 xfer = TYPE_LENGTH (type) - offset;
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4779 offset, xfer, regnum);
4780 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4781 in, out, offset);
4782 }
4783 }
4784#endif
4785 else
4786 {
4787 /* A scalar extract each part but least-significant-byte
4788 justified. o32 thinks registers are 4 byte, regardless of
4789 the ISA. mips_stack_argsize controls this. */
4790 int offset;
4791 int regnum;
4792 for (offset = 0, regnum = V0_REGNUM;
4793 offset < TYPE_LENGTH (type);
4794 offset += mips_stack_argsize (), regnum++)
4795 {
4796 int xfer = mips_stack_argsize ();
4797 int pos = 0;
4798 if (offset + xfer > TYPE_LENGTH (type))
4799 xfer = TYPE_LENGTH (type) - offset;
4800 if (mips_debug)
4801 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4802 offset, xfer, regnum);
4803 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4804 in, out, offset);
4805 }
46cac009
AC
4806 }
4807}
4808
cb1d2653
AC
4809static void
4810mips_o32_extract_return_value (struct type *type,
4811 struct regcache *regcache,
ebba8386 4812 void *valbuf)
cb1d2653
AC
4813{
4814 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4815}
4816
4817static void
4818mips_o32_store_return_value (struct type *type, char *valbuf)
4819{
4820 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4821}
4822
4823/* N32/N44 ABI stuff. */
4824
46cac009 4825static void
88658117
AC
4826mips_n32n64_xfer_return_value (struct type *type,
4827 struct regcache *regcache,
4828 bfd_byte *in, const bfd_byte *out)
c906108c 4829{
88658117
AC
4830 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4831 if (TYPE_CODE (type) == TYPE_CODE_FLT
4832 && tdep->mips_fpu_type != MIPS_FPU_NONE)
7a292a7a 4833 {
88658117
AC
4834 /* A floating-point value belongs in the least significant part
4835 of FP0. */
4836 if (mips_debug)
4837 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4838 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4839 TARGET_BYTE_ORDER, in, out, 0);
4840 }
4841 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4842 && TYPE_NFIELDS (type) <= 2
4843 && TYPE_NFIELDS (type) >= 1
4844 && ((TYPE_NFIELDS (type) == 1
4845 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4846 == TYPE_CODE_FLT))
4847 || (TYPE_NFIELDS (type) == 2
4848 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4849 == TYPE_CODE_FLT)
4850 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4851 == TYPE_CODE_FLT)))
4852 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4853 {
4854 /* A struct that contains one or two floats. Each value is part
4855 in the least significant part of their floating point
4856 register.. */
d9d9c31f 4857 bfd_byte reg[MAX_REGISTER_SIZE];
88658117
AC
4858 int regnum;
4859 int field;
4860 for (field = 0, regnum = FP0_REGNUM;
4861 field < TYPE_NFIELDS (type);
4862 field++, regnum += 2)
4863 {
4864 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4865 / TARGET_CHAR_BIT);
4866 if (mips_debug)
4867 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4868 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4869 TARGET_BYTE_ORDER, in, out, offset);
4870 }
7a292a7a 4871 }
88658117
AC
4872 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4873 || TYPE_CODE (type) == TYPE_CODE_UNION)
4874 {
4875 /* A structure or union. Extract the left justified value,
4876 regardless of the byte order. I.e. DO NOT USE
4877 mips_xfer_lower. */
4878 int offset;
4879 int regnum;
4880 for (offset = 0, regnum = V0_REGNUM;
4881 offset < TYPE_LENGTH (type);
4882 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4883 {
4884 int xfer = REGISTER_RAW_SIZE (regnum);
4885 if (offset + xfer > TYPE_LENGTH (type))
4886 xfer = TYPE_LENGTH (type) - offset;
4887 if (mips_debug)
4888 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4889 offset, xfer, regnum);
4890 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4891 in, out, offset);
4892 }
4893 }
4894 else
4895 {
4896 /* A scalar extract each part but least-significant-byte
4897 justified. */
4898 int offset;
4899 int regnum;
4900 for (offset = 0, regnum = V0_REGNUM;
4901 offset < TYPE_LENGTH (type);
4902 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4903 {
4904 int xfer = REGISTER_RAW_SIZE (regnum);
4905 int pos = 0;
4906 if (offset + xfer > TYPE_LENGTH (type))
4907 xfer = TYPE_LENGTH (type) - offset;
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4910 offset, xfer, regnum);
4911 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4912 in, out, offset);
4913 }
4914 }
4915}
4916
4917static void
4918mips_n32n64_extract_return_value (struct type *type,
4919 struct regcache *regcache,
ebba8386 4920 void *valbuf)
88658117
AC
4921{
4922 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4923}
4924
4925static void
4926mips_n32n64_store_return_value (struct type *type, char *valbuf)
4927{
4928 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
c906108c
SS
4929}
4930
2f1488ce 4931static CORE_ADDR
6672060b 4932mips_extract_struct_value_address (struct regcache *regcache)
2f1488ce
MS
4933{
4934 /* FIXME: This will only work at random. The caller passes the
4935 struct_return address in V0, but it is not preserved. It may
4936 still be there, or this may be a random value. */
77d8f2b4
MS
4937 LONGEST val;
4938
4939 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
6672060b 4940 return val;
2f1488ce
MS
4941}
4942
c906108c
SS
4943/* Exported procedure: Is PC in the signal trampoline code */
4944
102182a9
MS
4945static int
4946mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
c906108c
SS
4947{
4948 if (sigtramp_address == 0)
4949 fixup_sigtramp ();
4950 return (pc >= sigtramp_address && pc < sigtramp_end);
4951}
4952
a5ea2558
AC
4953/* Root of all "set mips "/"show mips " commands. This will eventually be
4954 used for all MIPS-specific commands. */
4955
a5ea2558 4956static void
acdb74a0 4957show_mips_command (char *args, int from_tty)
a5ea2558
AC
4958{
4959 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4960}
4961
a5ea2558 4962static void
acdb74a0 4963set_mips_command (char *args, int from_tty)
a5ea2558
AC
4964{
4965 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4966 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4967}
4968
c906108c
SS
4969/* Commands to show/set the MIPS FPU type. */
4970
c906108c 4971static void
acdb74a0 4972show_mipsfpu_command (char *args, int from_tty)
c906108c 4973{
c906108c
SS
4974 char *fpu;
4975 switch (MIPS_FPU_TYPE)
4976 {
4977 case MIPS_FPU_SINGLE:
4978 fpu = "single-precision";
4979 break;
4980 case MIPS_FPU_DOUBLE:
4981 fpu = "double-precision";
4982 break;
4983 case MIPS_FPU_NONE:
4984 fpu = "absent (none)";
4985 break;
93d56215
AC
4986 default:
4987 internal_error (__FILE__, __LINE__, "bad switch");
c906108c
SS
4988 }
4989 if (mips_fpu_type_auto)
4990 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4991 fpu);
4992 else
4993 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4994 fpu);
4995}
4996
4997
c906108c 4998static void
acdb74a0 4999set_mipsfpu_command (char *args, int from_tty)
c906108c
SS
5000{
5001 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5002 show_mipsfpu_command (args, from_tty);
5003}
5004
c906108c 5005static void
acdb74a0 5006set_mipsfpu_single_command (char *args, int from_tty)
c906108c
SS
5007{
5008 mips_fpu_type = MIPS_FPU_SINGLE;
5009 mips_fpu_type_auto = 0;
9e364162 5010 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
c906108c
SS
5011}
5012
c906108c 5013static void
acdb74a0 5014set_mipsfpu_double_command (char *args, int from_tty)
c906108c
SS
5015{
5016 mips_fpu_type = MIPS_FPU_DOUBLE;
5017 mips_fpu_type_auto = 0;
9e364162 5018 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
c906108c
SS
5019}
5020
c906108c 5021static void
acdb74a0 5022set_mipsfpu_none_command (char *args, int from_tty)
c906108c
SS
5023{
5024 mips_fpu_type = MIPS_FPU_NONE;
5025 mips_fpu_type_auto = 0;
9e364162 5026 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
c906108c
SS
5027}
5028
c906108c 5029static void
acdb74a0 5030set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
5031{
5032 mips_fpu_type_auto = 1;
5033}
5034
5035/* Command to set the processor type. */
5036
5037void
acdb74a0 5038mips_set_processor_type_command (char *args, int from_tty)
c906108c
SS
5039{
5040 int i;
5041
5042 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5043 {
5044 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5045 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5046 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5047
5048 /* Restore the value. */
4fcf66da 5049 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5050
5051 return;
5052 }
c5aa993b 5053
c906108c
SS
5054 if (!mips_set_processor_type (tmp_mips_processor_type))
5055 {
5056 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5057 /* Restore its value. */
4fcf66da 5058 tmp_mips_processor_type = xstrdup (mips_processor_type);
c906108c
SS
5059 }
5060}
5061
5062static void
acdb74a0 5063mips_show_processor_type_command (char *args, int from_tty)
c906108c
SS
5064{
5065}
5066
5067/* Modify the actual processor type. */
5068
5a89d8aa 5069static int
acdb74a0 5070mips_set_processor_type (char *str)
c906108c 5071{
1012bd0e 5072 int i;
c906108c
SS
5073
5074 if (str == NULL)
5075 return 0;
5076
5077 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5078 {
5079 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5080 {
5081 mips_processor_type = str;
cce74817 5082 mips_processor_reg_names = mips_processor_type_table[i].regnames;
c906108c 5083 return 1;
c906108c
SS
5084 /* FIXME tweak fpu flag too */
5085 }
5086 }
5087
5088 return 0;
5089}
5090
5091/* Attempt to identify the particular processor model by reading the
5092 processor id. */
5093
5094char *
acdb74a0 5095mips_read_processor_type (void)
c906108c
SS
5096{
5097 CORE_ADDR prid;
5098
5099 prid = read_register (PRID_REGNUM);
5100
5101 if ((prid & ~0xf) == 0x700)
c5aa993b 5102 return savestring ("r3041", strlen ("r3041"));
c906108c
SS
5103
5104 return NULL;
5105}
5106
5107/* Just like reinit_frame_cache, but with the right arguments to be
5108 callable as an sfunc. */
5109
5110static void
acdb74a0
AC
5111reinit_frame_cache_sfunc (char *args, int from_tty,
5112 struct cmd_list_element *c)
c906108c
SS
5113{
5114 reinit_frame_cache ();
5115}
5116
5117int
acdb74a0 5118gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
5119{
5120 mips_extra_func_info_t proc_desc;
5121
5122 /* Search for the function containing this address. Set the low bit
5123 of the address when searching, in case we were given an even address
5124 that is the start of a 16-bit function. If we didn't do this,
5125 the search would fail because the symbol table says the function
5126 starts at an odd address, i.e. 1 byte past the given address. */
5127 memaddr = ADDR_BITS_REMOVE (memaddr);
95404a3e 5128 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
c906108c
SS
5129
5130 /* Make an attempt to determine if this is a 16-bit function. If
5131 the procedure descriptor exists and the address therein is odd,
5132 it's definitely a 16-bit function. Otherwise, we have to just
5133 guess that if the address passed in is odd, it's 16-bits. */
5134 if (proc_desc)
361d1df0 5135 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
95404a3e 5136 bfd_mach_mips16 : 0;
c906108c 5137 else
361d1df0 5138 info->mach = pc_is_mips16 (memaddr) ?
95404a3e 5139 bfd_mach_mips16 : 0;
c906108c
SS
5140
5141 /* Round down the instruction address to the appropriate boundary. */
65c11066 5142 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 5143
c906108c 5144 /* Call the appropriate disassembler based on the target endian-ness. */
d7449b42 5145 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5146 return print_insn_big_mips (memaddr, info);
5147 else
5148 return print_insn_little_mips (memaddr, info);
5149}
5150
c906108c
SS
5151/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5152 counter value to determine whether a 16- or 32-bit breakpoint should be
5153 used. It returns a pointer to a string of bytes that encode a breakpoint
5154 instruction, stores the length of the string to *lenptr, and adjusts pc
5155 (if necessary) to point to the actual memory location where the
5156 breakpoint should be inserted. */
5157
f7ab6ec6 5158static const unsigned char *
acdb74a0 5159mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
c906108c 5160{
d7449b42 5161 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
5162 {
5163 if (pc_is_mips16 (*pcptr))
5164 {
aaab4dba 5165 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
95404a3e 5166 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5167 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
5168 return mips16_big_breakpoint;
5169 }
5170 else
5171 {
aaab4dba
AC
5172 /* The IDT board uses an unusual breakpoint value, and
5173 sometimes gets confused when it sees the usual MIPS
5174 breakpoint instruction. */
5175 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5176 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5177 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
c906108c 5178
c5aa993b 5179 *lenptr = sizeof (big_breakpoint);
c906108c
SS
5180
5181 if (strcmp (target_shortname, "mips") == 0)
5182 return idt_big_breakpoint;
5183 else if (strcmp (target_shortname, "ddb") == 0
5184 || strcmp (target_shortname, "pmon") == 0
5185 || strcmp (target_shortname, "lsi") == 0)
5186 return pmon_big_breakpoint;
5187 else
5188 return big_breakpoint;
5189 }
5190 }
5191 else
5192 {
5193 if (pc_is_mips16 (*pcptr))
5194 {
aaab4dba 5195 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
95404a3e 5196 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 5197 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
5198 return mips16_little_breakpoint;
5199 }
5200 else
5201 {
aaab4dba
AC
5202 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5203 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5204 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
c906108c 5205
c5aa993b 5206 *lenptr = sizeof (little_breakpoint);
c906108c
SS
5207
5208 if (strcmp (target_shortname, "mips") == 0)
5209 return idt_little_breakpoint;
5210 else if (strcmp (target_shortname, "ddb") == 0
5211 || strcmp (target_shortname, "pmon") == 0
5212 || strcmp (target_shortname, "lsi") == 0)
5213 return pmon_little_breakpoint;
5214 else
5215 return little_breakpoint;
5216 }
5217 }
5218}
5219
5220/* If PC is in a mips16 call or return stub, return the address of the target
5221 PC, which is either the callee or the caller. There are several
5222 cases which must be handled:
5223
5224 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 5225 target PC is in $31 ($ra).
c906108c 5226 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 5227 and the target PC is in $2.
c906108c 5228 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5229 before the jal instruction, this is effectively a call stub
5230 and the the target PC is in $2. Otherwise this is effectively
5231 a return stub and the target PC is in $18.
c906108c
SS
5232
5233 See the source code for the stubs in gcc/config/mips/mips16.S for
5234 gory details.
5235
5236 This function implements the SKIP_TRAMPOLINE_CODE macro.
c5aa993b 5237 */
c906108c 5238
757a7cc6 5239static CORE_ADDR
acdb74a0 5240mips_skip_stub (CORE_ADDR pc)
c906108c
SS
5241{
5242 char *name;
5243 CORE_ADDR start_addr;
5244
5245 /* Find the starting address and name of the function containing the PC. */
5246 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5247 return 0;
5248
5249 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5250 target PC is in $31 ($ra). */
5251 if (strcmp (name, "__mips16_ret_sf") == 0
5252 || strcmp (name, "__mips16_ret_df") == 0)
6c997a34 5253 return read_signed_register (RA_REGNUM);
c906108c
SS
5254
5255 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5256 {
5257 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5258 and the target PC is in $2. */
5259 if (name[19] >= '0' && name[19] <= '9')
6c997a34 5260 return read_signed_register (2);
c906108c
SS
5261
5262 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
5263 before the jal instruction, this is effectively a call stub
5264 and the the target PC is in $2. Otherwise this is effectively
5265 a return stub and the target PC is in $18. */
c906108c
SS
5266 else if (name[19] == 's' || name[19] == 'd')
5267 {
5268 if (pc == start_addr)
5269 {
5270 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
5271 stub. Such a stub for a function bar might have a name
5272 like __fn_stub_bar, and might look like this:
5273 mfc1 $4,$f13
5274 mfc1 $5,$f12
5275 mfc1 $6,$f15
5276 mfc1 $7,$f14
5277 la $1,bar (becomes a lui/addiu pair)
5278 jr $1
5279 So scan down to the lui/addi and extract the target
5280 address from those two instructions. */
c906108c 5281
6c997a34 5282 CORE_ADDR target_pc = read_signed_register (2);
c906108c
SS
5283 t_inst inst;
5284 int i;
5285
5286 /* See if the name of the target function is __fn_stub_*. */
5287 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5288 return target_pc;
5289 if (strncmp (name, "__fn_stub_", 10) != 0
5290 && strcmp (name, "etext") != 0
5291 && strcmp (name, "_etext") != 0)
5292 return target_pc;
5293
5294 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
5295 The limit on the search is arbitrarily set to 20
5296 instructions. FIXME. */
c906108c
SS
5297 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5298 {
c5aa993b
JM
5299 inst = mips_fetch_instruction (target_pc);
5300 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5301 pc = (inst << 16) & 0xffff0000; /* high word */
5302 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5303 return pc | (inst & 0xffff); /* low word */
c906108c
SS
5304 }
5305
5306 /* Couldn't find the lui/addui pair, so return stub address. */
5307 return target_pc;
5308 }
5309 else
5310 /* This is the 'return' part of a call stub. The return
5311 address is in $r18. */
6c997a34 5312 return read_signed_register (18);
c906108c
SS
5313 }
5314 }
c5aa993b 5315 return 0; /* not a stub */
c906108c
SS
5316}
5317
5318
5319/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5320 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5321
757a7cc6 5322static int
acdb74a0 5323mips_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
5324{
5325 CORE_ADDR start_addr;
5326
5327 /* Find the starting address of the function containing the PC. If the
5328 caller didn't give us a name, look it up at the same time. */
5329 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5330 return 0;
5331
5332 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5333 {
5334 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5335 if (name[19] >= '0' && name[19] <= '9')
5336 return 1;
5337 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b 5338 before the jal instruction, this is effectively a call stub. */
c906108c
SS
5339 else if (name[19] == 's' || name[19] == 'd')
5340 return pc == start_addr;
5341 }
5342
c5aa993b 5343 return 0; /* not a stub */
c906108c
SS
5344}
5345
5346
5347/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5348 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5349
e41b17f0 5350static int
acdb74a0 5351mips_in_return_stub (CORE_ADDR pc, char *name)
c906108c
SS
5352{
5353 CORE_ADDR start_addr;
5354
5355 /* Find the starting address of the function containing the PC. */
5356 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5357 return 0;
5358
5359 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5360 if (strcmp (name, "__mips16_ret_sf") == 0
5361 || strcmp (name, "__mips16_ret_df") == 0)
5362 return 1;
5363
5364 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
c5aa993b 5365 i.e. after the jal instruction, this is effectively a return stub. */
c906108c
SS
5366 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5367 && (name[19] == 's' || name[19] == 'd')
5368 && pc != start_addr)
5369 return 1;
5370
c5aa993b 5371 return 0; /* not a stub */
c906108c
SS
5372}
5373
5374
5375/* Return non-zero if the PC is in a library helper function that should
5376 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5377
5378int
acdb74a0 5379mips_ignore_helper (CORE_ADDR pc)
c906108c
SS
5380{
5381 char *name;
5382
5383 /* Find the starting address and name of the function containing the PC. */
5384 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5385 return 0;
5386
5387 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5388 that we want to ignore. */
5389 return (strcmp (name, "__mips16_ret_sf") == 0
5390 || strcmp (name, "__mips16_ret_df") == 0);
5391}
5392
5393
5394/* Return a location where we can set a breakpoint that will be hit
5395 when an inferior function call returns. This is normally the
5396 program's entry point. Executables that don't have an entry
5397 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5398 whose address is the location where the breakpoint should be placed. */
5399
f7ab6ec6 5400static CORE_ADDR
acdb74a0 5401mips_call_dummy_address (void)
c906108c
SS
5402{
5403 struct minimal_symbol *sym;
5404
5405 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5406 if (sym)
5407 return SYMBOL_VALUE_ADDRESS (sym);
5408 else
5409 return entry_point_address ();
5410}
5411
5412
47a8d4ba
AC
5413/* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5414 the register stored on the stack (32) is different to its real raw
5415 size (64). The below ensures that registers are fetched from the
5416 stack using their ABI size and then stored into the RAW_BUFFER
5417 using their raw size.
5418
5419 The alternative to adding this function would be to add an ABI
5420 macro - REGISTER_STACK_SIZE(). */
5421
5422static void
acdb74a0 5423mips_get_saved_register (char *raw_buffer,
795e1e11 5424 int *optimizedp,
acdb74a0
AC
5425 CORE_ADDR *addrp,
5426 struct frame_info *frame,
5427 int regnum,
795e1e11 5428 enum lval_type *lvalp)
47a8d4ba 5429{
795e1e11
AC
5430 CORE_ADDR addrx;
5431 enum lval_type lvalx;
5432 int optimizedx;
47a8d4ba
AC
5433
5434 if (!target_has_registers)
5435 error ("No registers.");
5436
795e1e11
AC
5437 /* Make certain that all needed parameters are present. */
5438 if (addrp == NULL)
5439 addrp = &addrx;
5440 if (lvalp == NULL)
5441 lvalp = &lvalx;
5442 if (optimizedp == NULL)
5443 optimizedp = &optimizedx;
248de703
AC
5444 deprecated_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5445 regnum, lvalp);
795e1e11
AC
5446 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5447 have a pseudo register range that correspons to the ABI's, rather
5448 than the ISA's, view of registers. These registers would then
5449 implicitly describe their size and hence could be used without
5450 the below munging. */
5451 if ((*lvalp) == lval_memory)
47a8d4ba 5452 {
47a8d4ba
AC
5453 if (raw_buffer != NULL)
5454 {
47a8d4ba 5455 if (regnum < 32)
795e1e11
AC
5456 {
5457 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5458 saved. */
5459 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
fbd9dcd3 5460 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
795e1e11 5461 }
47a8d4ba
AC
5462 }
5463 }
47a8d4ba 5464}
2acceee2 5465
f7b9e9fc
AC
5466/* Immediately after a function call, return the saved pc.
5467 Can't always go through the frames for this because on some machines
5468 the new frame is not set up until the new function executes
5469 some instructions. */
5470
5471static CORE_ADDR
5472mips_saved_pc_after_call (struct frame_info *frame)
5473{
6c997a34 5474 return read_signed_register (RA_REGNUM);
f7b9e9fc
AC
5475}
5476
5477
88c72b7d
AC
5478/* Convert a dbx stab register number (from `r' declaration) to a gdb
5479 REGNUM */
5480
5481static int
5482mips_stab_reg_to_regnum (int num)
5483{
2f38ef89 5484 if (num >= 0 && num < 32)
88c72b7d 5485 return num;
2f38ef89 5486 else if (num >= 38 && num < 70)
88c72b7d 5487 return num + FP0_REGNUM - 38;
040b99fd
KB
5488 else if (num == 70)
5489 return HI_REGNUM;
5490 else if (num == 71)
5491 return LO_REGNUM;
2f38ef89
KB
5492 else
5493 {
5494 /* This will hopefully (eventually) provoke a warning. Should
5495 we be calling complaint() here? */
5496 return NUM_REGS + NUM_PSEUDO_REGS;
5497 }
88c72b7d
AC
5498}
5499
2f38ef89
KB
5500
5501/* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
88c72b7d
AC
5502
5503static int
2f38ef89 5504mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 5505{
2f38ef89 5506 if (num >= 0 && num < 32)
88c72b7d 5507 return num;
2f38ef89 5508 else if (num >= 32 && num < 64)
88c72b7d 5509 return num + FP0_REGNUM - 32;
040b99fd
KB
5510 else if (num == 64)
5511 return HI_REGNUM;
5512 else if (num == 65)
5513 return LO_REGNUM;
2f38ef89
KB
5514 else
5515 {
5516 /* This will hopefully (eventually) provoke a warning. Should
5517 we be calling complaint() here? */
5518 return NUM_REGS + NUM_PSEUDO_REGS;
5519 }
88c72b7d
AC
5520}
5521
2f38ef89 5522
fc0c74b1
AC
5523/* Convert an integer into an address. By first converting the value
5524 into a pointer and then extracting it signed, the address is
5525 guarenteed to be correctly sign extended. */
5526
5527static CORE_ADDR
5528mips_integer_to_address (struct type *type, void *buf)
5529{
5530 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5531 LONGEST val = unpack_long (type, buf);
5532 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5533 return extract_signed_integer (tmp,
5534 TYPE_LENGTH (builtin_type_void_data_ptr));
5535}
5536
caaa3122
DJ
5537static void
5538mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5539{
5540 enum mips_abi *abip = (enum mips_abi *) obj;
5541 const char *name = bfd_get_section_name (abfd, sect);
5542
5543 if (*abip != MIPS_ABI_UNKNOWN)
5544 return;
5545
5546 if (strncmp (name, ".mdebug.", 8) != 0)
5547 return;
5548
5549 if (strcmp (name, ".mdebug.abi32") == 0)
5550 *abip = MIPS_ABI_O32;
5551 else if (strcmp (name, ".mdebug.abiN32") == 0)
5552 *abip = MIPS_ABI_N32;
62a49b2c 5553 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 5554 *abip = MIPS_ABI_N64;
caaa3122
DJ
5555 else if (strcmp (name, ".mdebug.abiO64") == 0)
5556 *abip = MIPS_ABI_O64;
5557 else if (strcmp (name, ".mdebug.eabi32") == 0)
5558 *abip = MIPS_ABI_EABI32;
5559 else if (strcmp (name, ".mdebug.eabi64") == 0)
5560 *abip = MIPS_ABI_EABI64;
5561 else
5562 warning ("unsupported ABI %s.", name + 8);
5563}
5564
2e4ebe70
DJ
5565static enum mips_abi
5566global_mips_abi (void)
5567{
5568 int i;
5569
5570 for (i = 0; mips_abi_strings[i] != NULL; i++)
5571 if (mips_abi_strings[i] == mips_abi_string)
5572 return (enum mips_abi) i;
5573
5574 internal_error (__FILE__, __LINE__,
5575 "unknown ABI string");
5576}
5577
c2d11a7d 5578static struct gdbarch *
acdb74a0
AC
5579mips_gdbarch_init (struct gdbarch_info info,
5580 struct gdbarch_list *arches)
c2d11a7d 5581{
c2d11a7d
JM
5582 struct gdbarch *gdbarch;
5583 struct gdbarch_tdep *tdep;
5584 int elf_flags;
2e4ebe70 5585 enum mips_abi mips_abi, found_abi, wanted_abi;
c2d11a7d 5586
1d06468c
EZ
5587 /* Reset the disassembly info, in case it was set to something
5588 non-default. */
810ecf9f
AC
5589 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5590 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5591 deprecated_tm_print_insn_info.mach = 0;
1d06468c 5592
70f80edf
JT
5593 elf_flags = 0;
5594
5595 if (info.abfd)
5596 {
5597 /* First of all, extract the elf_flags, if available. */
5598 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5599 elf_flags = elf_elfheader (info.abfd)->e_flags;
70f80edf 5600 }
c2d11a7d 5601
102182a9 5602 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5603 switch ((elf_flags & EF_MIPS_ABI))
5604 {
5605 case E_MIPS_ABI_O32:
5606 mips_abi = MIPS_ABI_O32;
5607 break;
5608 case E_MIPS_ABI_O64:
5609 mips_abi = MIPS_ABI_O64;
5610 break;
5611 case E_MIPS_ABI_EABI32:
5612 mips_abi = MIPS_ABI_EABI32;
5613 break;
5614 case E_MIPS_ABI_EABI64:
4a7f7ba8 5615 mips_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5616 break;
5617 default:
acdb74a0
AC
5618 if ((elf_flags & EF_MIPS_ABI2))
5619 mips_abi = MIPS_ABI_N32;
5620 else
5621 mips_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5622 break;
5623 }
acdb74a0 5624
caaa3122
DJ
5625 /* GCC creates a pseudo-section whose name describes the ABI. */
5626 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5627 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5628
2e4ebe70
DJ
5629 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5630 Use the ABI from the last architecture if there is one. */
5631 if (info.abfd == NULL && arches != NULL)
5632 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5633
32a6503c 5634 /* Try the architecture for any hint of the correct ABI. */
bf64bfd6
AC
5635 if (mips_abi == MIPS_ABI_UNKNOWN
5636 && info.bfd_arch_info != NULL
5637 && info.bfd_arch_info->arch == bfd_arch_mips)
5638 {
5639 switch (info.bfd_arch_info->mach)
5640 {
5641 case bfd_mach_mips3900:
5642 mips_abi = MIPS_ABI_EABI32;
5643 break;
5644 case bfd_mach_mips4100:
5645 case bfd_mach_mips5000:
5646 mips_abi = MIPS_ABI_EABI64;
5647 break;
1d06468c
EZ
5648 case bfd_mach_mips8000:
5649 case bfd_mach_mips10000:
32a6503c
KB
5650 /* On Irix, ELF64 executables use the N64 ABI. The
5651 pseudo-sections which describe the ABI aren't present
5652 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5653 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5654 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5655 mips_abi = MIPS_ABI_N64;
5656 else
5657 mips_abi = MIPS_ABI_N32;
1d06468c 5658 break;
bf64bfd6
AC
5659 }
5660 }
2e4ebe70 5661
2e4ebe70
DJ
5662 if (mips_abi == MIPS_ABI_UNKNOWN)
5663 mips_abi = MIPS_ABI_O32;
5664
5665 /* Now that we have found what the ABI for this binary would be,
5666 check whether the user is overriding it. */
5667 found_abi = mips_abi;
5668 wanted_abi = global_mips_abi ();
5669 if (wanted_abi != MIPS_ABI_UNKNOWN)
5670 mips_abi = wanted_abi;
5671
810ecf9f 5672 /* We have to set deprecated_tm_print_insn_info before looking for a
2252e863
AO
5673 pre-existing architecture, otherwise we may return before we get
5674 a chance to set it up. */
5675 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5676 {
5677 /* Set up the disassembler info, so that we get the right
5678 register names from libopcodes. */
5679 if (mips_abi == MIPS_ABI_N32)
810ecf9f 5680 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
2252e863 5681 else
810ecf9f
AC
5682 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5683 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5684 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
2252e863
AO
5685 if (info.bfd_arch_info != NULL
5686 && info.bfd_arch_info->arch == bfd_arch_mips
5687 && info.bfd_arch_info->mach)
810ecf9f 5688 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
2252e863 5689 else
810ecf9f 5690 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
2252e863
AO
5691 }
5692 else
5693 /* This string is not recognized explicitly by the disassembler,
5694 but it tells the disassembler to not try to guess the ABI from
5695 the bfd elf headers, such that, if the user overrides the ABI
5696 of a program linked as NewABI, the disassembly will follow the
5697 register naming conventions specified by the user. */
810ecf9f 5698 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
2252e863 5699
4b9b3959
AC
5700 if (gdbarch_debug)
5701 {
5702 fprintf_unfiltered (gdb_stdlog,
9ace0497 5703 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4b9b3959 5704 elf_flags);
4b9b3959
AC
5705 fprintf_unfiltered (gdb_stdlog,
5706 "mips_gdbarch_init: mips_abi = %d\n",
5707 mips_abi);
2e4ebe70
DJ
5708 fprintf_unfiltered (gdb_stdlog,
5709 "mips_gdbarch_init: found_mips_abi = %d\n",
5710 found_abi);
4b9b3959 5711 }
0dadbba0 5712
c2d11a7d
JM
5713 /* try to find a pre-existing architecture */
5714 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5715 arches != NULL;
5716 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5717 {
5718 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5719 using. */
9103eae0 5720 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5721 continue;
9103eae0 5722 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5723 continue;
4be87837 5724 return arches->gdbarch;
c2d11a7d
JM
5725 }
5726
102182a9 5727 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5728 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5729 gdbarch = gdbarch_alloc (&info, tdep);
5730 tdep->elf_flags = elf_flags;
5731
102182a9 5732 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5733 set_gdbarch_short_bit (gdbarch, 16);
5734 set_gdbarch_int_bit (gdbarch, 32);
5735 set_gdbarch_float_bit (gdbarch, 32);
5736 set_gdbarch_double_bit (gdbarch, 64);
5737 set_gdbarch_long_double_bit (gdbarch, 64);
9c04cab7 5738 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
2e4ebe70 5739 tdep->found_abi = found_abi;
0dadbba0 5740 tdep->mips_abi = mips_abi;
1d06468c 5741
f7ab6ec6
MS
5742 set_gdbarch_elf_make_msymbol_special (gdbarch,
5743 mips_elf_make_msymbol_special);
5744
4be87837 5745 if (info.osabi == GDB_OSABI_IRIX)
fe29b929
KB
5746 set_gdbarch_num_regs (gdbarch, 71);
5747 else
5748 set_gdbarch_num_regs (gdbarch, 90);
5749
0dadbba0 5750 switch (mips_abi)
c2d11a7d 5751 {
0dadbba0 5752 case MIPS_ABI_O32:
25ab4790 5753 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
ebba8386 5754 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
cb1d2653 5755 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
a5ea2558 5756 tdep->mips_default_saved_regsize = 4;
0dadbba0 5757 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5758 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5759 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5760 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5761 tdep->gdb_target_is_mips64 = 0;
4014092b 5762 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5763 set_gdbarch_long_bit (gdbarch, 32);
5764 set_gdbarch_ptr_bit (gdbarch, 32);
5765 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5766 set_gdbarch_reg_struct_has_addr (gdbarch,
5767 mips_o32_reg_struct_has_addr);
cb811fe7 5768 set_gdbarch_use_struct_convention (gdbarch,
1fd35568 5769 always_use_struct_convention);
c2d11a7d 5770 break;
0dadbba0 5771 case MIPS_ABI_O64:
25ab4790 5772 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
ebba8386 5773 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
46cac009 5774 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
a5ea2558 5775 tdep->mips_default_saved_regsize = 8;
0dadbba0 5776 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5777 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5778 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5779 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5213ab06 5780 tdep->gdb_target_is_mips64 = 1;
361d1df0 5781 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5782 set_gdbarch_long_bit (gdbarch, 32);
5783 set_gdbarch_ptr_bit (gdbarch, 32);
5784 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5785 set_gdbarch_reg_struct_has_addr (gdbarch,
5786 mips_o32_reg_struct_has_addr);
b060cbea 5787 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
c2d11a7d 5788 break;
0dadbba0 5789 case MIPS_ABI_EABI32:
25ab4790 5790 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5791 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5792 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5793 tdep->mips_default_saved_regsize = 4;
0dadbba0 5794 tdep->mips_default_stack_argsize = 4;
c2d11a7d 5795 tdep->mips_fp_register_double = 0;
acdb74a0
AC
5796 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5797 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5798 tdep->gdb_target_is_mips64 = 0;
4014092b 5799 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5800 set_gdbarch_long_bit (gdbarch, 32);
5801 set_gdbarch_ptr_bit (gdbarch, 32);
5802 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5803 set_gdbarch_reg_struct_has_addr (gdbarch,
5804 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5805 set_gdbarch_use_struct_convention (gdbarch,
5806 mips_eabi_use_struct_convention);
c2d11a7d 5807 break;
0dadbba0 5808 case MIPS_ABI_EABI64:
25ab4790 5809 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
ebba8386 5810 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
46cac009 5811 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
a5ea2558 5812 tdep->mips_default_saved_regsize = 8;
0dadbba0 5813 tdep->mips_default_stack_argsize = 8;
c2d11a7d 5814 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5815 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5816 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5213ab06 5817 tdep->gdb_target_is_mips64 = 1;
4014092b 5818 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5819 set_gdbarch_long_bit (gdbarch, 64);
5820 set_gdbarch_ptr_bit (gdbarch, 64);
5821 set_gdbarch_long_long_bit (gdbarch, 64);
8b389c40
MS
5822 set_gdbarch_reg_struct_has_addr (gdbarch,
5823 mips_eabi_reg_struct_has_addr);
cb811fe7
MS
5824 set_gdbarch_use_struct_convention (gdbarch,
5825 mips_eabi_use_struct_convention);
c2d11a7d 5826 break;
0dadbba0 5827 case MIPS_ABI_N32:
25ab4790 5828 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5829 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5830 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
63db5580 5831 tdep->mips_default_saved_regsize = 8;
0dadbba0
AC
5832 tdep->mips_default_stack_argsize = 8;
5833 tdep->mips_fp_register_double = 1;
acdb74a0
AC
5834 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5835 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
6acdf5c7 5836 tdep->gdb_target_is_mips64 = 1;
4014092b 5837 tdep->default_mask_address_p = 0;
0dadbba0
AC
5838 set_gdbarch_long_bit (gdbarch, 32);
5839 set_gdbarch_ptr_bit (gdbarch, 32);
5840 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5841 set_gdbarch_use_struct_convention (gdbarch,
5842 mips_n32n64_use_struct_convention);
8b389c40
MS
5843 set_gdbarch_reg_struct_has_addr (gdbarch,
5844 mips_n32n64_reg_struct_has_addr);
28d169de
KB
5845 break;
5846 case MIPS_ABI_N64:
25ab4790 5847 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
ebba8386 5848 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
88658117 5849 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
28d169de
KB
5850 tdep->mips_default_saved_regsize = 8;
5851 tdep->mips_default_stack_argsize = 8;
5852 tdep->mips_fp_register_double = 1;
5853 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5854 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
28d169de
KB
5855 tdep->gdb_target_is_mips64 = 1;
5856 tdep->default_mask_address_p = 0;
5857 set_gdbarch_long_bit (gdbarch, 64);
5858 set_gdbarch_ptr_bit (gdbarch, 64);
5859 set_gdbarch_long_long_bit (gdbarch, 64);
cb811fe7
MS
5860 set_gdbarch_use_struct_convention (gdbarch,
5861 mips_n32n64_use_struct_convention);
8b389c40
MS
5862 set_gdbarch_reg_struct_has_addr (gdbarch,
5863 mips_n32n64_reg_struct_has_addr);
0dadbba0 5864 break;
c2d11a7d 5865 default:
2e4ebe70
DJ
5866 internal_error (__FILE__, __LINE__,
5867 "unknown ABI in switch");
c2d11a7d
JM
5868 }
5869
a5ea2558
AC
5870 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5871 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5872 comment:
5873
5874 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5875 flag in object files because to do so would make it impossible to
102182a9 5876 link with libraries compiled without "-gp32". This is
a5ea2558 5877 unnecessarily restrictive.
361d1df0 5878
a5ea2558
AC
5879 We could solve this problem by adding "-gp32" multilibs to gcc,
5880 but to set this flag before gcc is built with such multilibs will
5881 break too many systems.''
5882
5883 But even more unhelpfully, the default linker output target for
5884 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5885 for 64-bit programs - you need to change the ABI to change this,
102182a9 5886 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5887 this flag to detect 32-bit mode would do the wrong thing given
5888 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5889 as 32-bit programs by default. */
a5ea2558 5890
c2d11a7d
JM
5891 /* enable/disable the MIPS FPU */
5892 if (!mips_fpu_type_auto)
5893 tdep->mips_fpu_type = mips_fpu_type;
5894 else if (info.bfd_arch_info != NULL
5895 && info.bfd_arch_info->arch == bfd_arch_mips)
5896 switch (info.bfd_arch_info->mach)
5897 {
b0069a17 5898 case bfd_mach_mips3900:
c2d11a7d 5899 case bfd_mach_mips4100:
ed9a39eb 5900 case bfd_mach_mips4111:
c2d11a7d
JM
5901 tdep->mips_fpu_type = MIPS_FPU_NONE;
5902 break;
bf64bfd6
AC
5903 case bfd_mach_mips4650:
5904 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5905 break;
c2d11a7d
JM
5906 default:
5907 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5908 break;
5909 }
5910 else
5911 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5912
5913 /* MIPS version of register names. NOTE: At present the MIPS
5914 register name management is part way between the old -
5915 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
102182a9 5916 Further work on it is required. */
18f81521
MS
5917 /* NOTE: many targets (esp. embedded) do not go thru the
5918 gdbarch_register_name vector at all, instead bypassing it
5919 by defining REGISTER_NAMES. */
c2d11a7d 5920 set_gdbarch_register_name (gdbarch, mips_register_name);
6c997a34 5921 set_gdbarch_read_pc (gdbarch, mips_read_pc);
c2d11a7d 5922 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
0ba6dca9 5923 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
bcb0cc15 5924 set_gdbarch_read_sp (gdbarch, mips_read_sp);
c2d11a7d 5925
102182a9
MS
5926 /* Add/remove bits from an address. The MIPS needs be careful to
5927 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5928 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5929
10312cc4 5930 /* There's a mess in stack frame creation. See comments in
2ca6c561
AC
5931 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5932 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
a5afb99f 5933 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
10312cc4 5934
102182a9 5935 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5936 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
2f38ef89
KB
5937 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5938 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5939 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
88c72b7d 5940
c2d11a7d 5941 /* Initialize a frame */
e0f7ec59 5942 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
e9582e71 5943 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
c2d11a7d
JM
5944
5945 /* MIPS version of CALL_DUMMY */
5946
c2d11a7d 5947 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
749b82f6 5948 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
dc604539 5949 set_gdbarch_frame_align (gdbarch, mips_frame_align);
a59fe496 5950 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
781a750d
AC
5951 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
5952 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
5953 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
d05285fa 5954
618ce49f 5955 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
b5d1566e
MS
5956 set_gdbarch_frameless_function_invocation (gdbarch,
5957 generic_frameless_function_invocation_not);
8bedc050 5958 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
b5d1566e
MS
5959 set_gdbarch_frame_args_skip (gdbarch, 0);
5960
129c1cd6 5961 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
c2d11a7d 5962
f7b9e9fc
AC
5963 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5964 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5965 set_gdbarch_decr_pc_after_break (gdbarch, 0);
f7b9e9fc
AC
5966
5967 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6913c89a 5968 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
f7b9e9fc 5969
fc0c74b1
AC
5970 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5971 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5972 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5973
102182a9
MS
5974 set_gdbarch_function_start_offset (gdbarch, 0);
5975
32a6503c
KB
5976 /* There are MIPS targets which do not yet use this since they still
5977 define REGISTER_VIRTUAL_TYPE. */
9c04cab7 5978 set_gdbarch_deprecated_register_virtual_type (gdbarch, mips_register_virtual_type);
78fde5f8 5979
e11c53d2 5980 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
102182a9 5981 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
bf1f5b4c 5982
70f80edf 5983 /* Hook in OS ABI-specific overrides, if they have been registered. */
4be87837 5984 gdbarch_init_osabi (info, gdbarch);
70f80edf 5985
2f1488ce
MS
5986 set_gdbarch_extract_struct_value_address (gdbarch,
5987 mips_extract_struct_value_address);
757a7cc6
MS
5988
5989 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5990
5991 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
e41b17f0 5992 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
757a7cc6 5993
4b9b3959
AC
5994 return gdbarch;
5995}
5996
2e4ebe70
DJ
5997static void
5998mips_abi_update (char *ignore_args, int from_tty,
5999 struct cmd_list_element *c)
6000{
6001 struct gdbarch_info info;
6002
6003 /* Force the architecture to update, and (if it's a MIPS architecture)
6004 mips_gdbarch_init will take care of the rest. */
6005 gdbarch_info_init (&info);
6006 gdbarch_update_p (info);
6007}
6008
ad188201
KB
6009/* Print out which MIPS ABI is in use. */
6010
6011static void
6012show_mips_abi (char *ignore_args, int from_tty)
6013{
6014 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6015 printf_filtered (
6016 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6017 else
6018 {
6019 enum mips_abi global_abi = global_mips_abi ();
6020 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6021 const char *actual_abi_str = mips_abi_strings[actual_abi];
6022
6023 if (global_abi == MIPS_ABI_UNKNOWN)
6024 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6025 actual_abi_str);
6026 else if (global_abi == actual_abi)
6027 printf_filtered (
6028 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6029 actual_abi_str);
6030 else
6031 {
6032 /* Probably shouldn't happen... */
6033 printf_filtered (
6034 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6035 actual_abi_str,
6036 mips_abi_strings[global_abi]);
6037 }
6038 }
6039}
6040
4b9b3959
AC
6041static void
6042mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6043{
6044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6045 if (tdep != NULL)
c2d11a7d 6046 {
acdb74a0
AC
6047 int ef_mips_arch;
6048 int ef_mips_32bitmode;
6049 /* determine the ISA */
6050 switch (tdep->elf_flags & EF_MIPS_ARCH)
6051 {
6052 case E_MIPS_ARCH_1:
6053 ef_mips_arch = 1;
6054 break;
6055 case E_MIPS_ARCH_2:
6056 ef_mips_arch = 2;
6057 break;
6058 case E_MIPS_ARCH_3:
6059 ef_mips_arch = 3;
6060 break;
6061 case E_MIPS_ARCH_4:
93d56215 6062 ef_mips_arch = 4;
acdb74a0
AC
6063 break;
6064 default:
93d56215 6065 ef_mips_arch = 0;
acdb74a0
AC
6066 break;
6067 }
6068 /* determine the size of a pointer */
6069 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
6070 fprintf_unfiltered (file,
6071 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 6072 tdep->elf_flags);
4b9b3959 6073 fprintf_unfiltered (file,
acdb74a0
AC
6074 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6075 ef_mips_32bitmode);
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: ef_mips_arch = %d\n",
6078 ef_mips_arch);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6081 tdep->mips_abi,
2e4ebe70 6082 mips_abi_strings[tdep->mips_abi]);
4014092b
AC
6083 fprintf_unfiltered (file,
6084 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6085 mips_mask_address_p (),
6086 tdep->default_mask_address_p);
c2d11a7d 6087 }
4b9b3959
AC
6088 fprintf_unfiltered (file,
6089 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6090 FP_REGISTER_DOUBLE);
6091 fprintf_unfiltered (file,
6092 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6093 MIPS_DEFAULT_FPU_TYPE,
6094 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6095 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6096 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6097 : "???"));
6098 fprintf_unfiltered (file,
6099 "mips_dump_tdep: MIPS_EABI = %d\n",
6100 MIPS_EABI);
6101 fprintf_unfiltered (file,
acdb74a0
AC
6102 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6103 MIPS_LAST_FP_ARG_REGNUM,
6104 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4b9b3959
AC
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6107 MIPS_FPU_TYPE,
6108 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6109 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6110 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6111 : "???"));
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6114 MIPS_DEFAULT_SAVED_REGSIZE);
4b9b3959
AC
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6117 FP_REGISTER_DOUBLE);
4b9b3959
AC
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6120 MIPS_DEFAULT_STACK_ARGSIZE);
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6123 MIPS_STACK_ARGSIZE);
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6126 MIPS_REGSIZE);
2475bac3
AC
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: A0_REGNUM = %d\n",
6129 A0_REGNUM);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6132 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6135 XSTRING (ATTACH_DETACH));
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6138 BADVADDR_REGNUM);
2475bac3
AC
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6141 CAUSE_REGNUM);
2475bac3
AC
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6144 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6147 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
2475bac3
AC
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6150 FCRCS_REGNUM);
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6153 FCRIR_REGNUM);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6156 FIRST_EMBED_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6159 FPA0_REGNUM);
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6162 GDB_TARGET_IS_MIPS64);
2475bac3
AC
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6165 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: HI_REGNUM = %d\n",
6168 HI_REGNUM);
2475bac3
AC
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6171 XSTRING (IGNORE_HELPER_CALL (PC)));
2475bac3
AC
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6174 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6177 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
2475bac3
AC
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6180 LAST_EMBED_REGNUM);
2475bac3
AC
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: LO_REGNUM = %d\n",
6183 LO_REGNUM);
6184#ifdef MACHINE_CPROC_FP_OFFSET
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6187 MACHINE_CPROC_FP_OFFSET);
6188#endif
6189#ifdef MACHINE_CPROC_PC_OFFSET
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6192 MACHINE_CPROC_PC_OFFSET);
6193#endif
6194#ifdef MACHINE_CPROC_SP_OFFSET
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6197 MACHINE_CPROC_SP_OFFSET);
6198#endif
2475bac3
AC
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6201 MIPS16_INSTLEN);
2475bac3
AC
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6208 MIPS_INSTLEN);
6209 fprintf_unfiltered (file,
acdb74a0
AC
6210 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6211 MIPS_LAST_ARG_REGNUM,
6212 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
2475bac3
AC
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6215 MIPS_NUMREGS);
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6220 MIPS_SAVED_REGSIZE);
2475bac3
AC
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: OP_LDFPR = used?\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: OP_LDGPR = used?\n");
2475bac3
AC
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: PRID_REGNUM = %d\n",
6227 PRID_REGNUM);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6230 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PROC_PC_REG = function?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: PS_REGNUM = %d\n",
6257 PS_REGNUM);
2475bac3
AC
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: RA_REGNUM = %d\n",
6260 RA_REGNUM);
2475bac3
AC
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: ROUND_DOWN = function?\n");
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: ROUND_UP = function?\n");
6267#ifdef SAVED_BYTES
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: SAVED_BYTES = %d\n",
6270 SAVED_BYTES);
6271#endif
6272#ifdef SAVED_FP
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: SAVED_FP = %d\n",
6275 SAVED_FP);
6276#endif
6277#ifdef SAVED_PC
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: SAVED_PC = %d\n",
6280 SAVED_PC);
6281#endif
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6284 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6289 SIGFRAME_BASE);
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6292 SIGFRAME_FPREGSAVE_OFF);
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6295 SIGFRAME_PC_OFF);
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6298 SIGFRAME_REGSAVE_OFF);
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6301 SIGFRAME_REG_SIZE);
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6304 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6307 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6308 fprintf_unfiltered (file,
b0ed3589
AC
6309 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6310 SOFTWARE_SINGLE_STEP_P ());
2475bac3
AC
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6313 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6314#ifdef STACK_END_ADDR
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6317 STACK_END_ADDR);
6318#endif
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6321 XSTRING (STEP_SKIPS_DELAY (PC)));
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6324 STEP_SKIPS_DELAY_P);
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6327 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: T9_REGNUM = %d\n",
6330 T9_REGNUM);
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6335 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6338 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
2475bac3
AC
6339#ifdef TRACE_CLEAR
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6342 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6343#endif
6344#ifdef TRACE_FLAVOR
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6347 TRACE_FLAVOR);
6348#endif
6349#ifdef TRACE_FLAVOR_SIZE
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6352 TRACE_FLAVOR_SIZE);
6353#endif
6354#ifdef TRACE_SET
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: TRACE_SET # %s\n",
6357 XSTRING (TRACE_SET (X,STATE)));
6358#endif
2475bac3
AC
6359#ifdef UNUSED_REGNUM
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6362 UNUSED_REGNUM);
6363#endif
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: V0_REGNUM = %d\n",
6366 V0_REGNUM);
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6369 (long) VM_MIN_ADDRESS);
6370#ifdef VX_NUM_REGS
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6373 VX_NUM_REGS);
6374#endif
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6377 ZERO_REGNUM);
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6380 _PROC_MAGIC_);
c2d11a7d
JM
6381}
6382
a78f21af
AC
6383extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6384
c906108c 6385void
acdb74a0 6386_initialize_mips_tdep (void)
c906108c
SS
6387{
6388 static struct cmd_list_element *mipsfpulist = NULL;
6389 struct cmd_list_element *c;
6390
2e4ebe70
DJ
6391 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6392 if (MIPS_ABI_LAST + 1
6393 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6394 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6395
4b9b3959 6396 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
d7a27068
AC
6397 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6398 deprecated_tm_print_insn = gdb_print_insn_mips;
c906108c 6399
a5ea2558
AC
6400 /* Add root prefix command for all "set mips"/"show mips" commands */
6401 add_prefix_cmd ("mips", no_class, set_mips_command,
6402 "Various MIPS specific commands.",
6403 &setmipscmdlist, "set mips ", 0, &setlist);
6404
6405 add_prefix_cmd ("mips", no_class, show_mips_command,
6406 "Various MIPS specific commands.",
6407 &showmipscmdlist, "show mips ", 0, &showlist);
6408
6409 /* Allow the user to override the saved register size. */
6410 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
1ed2a135
AC
6411 class_obscure,
6412 size_enums,
6413 &mips_saved_regsize_string, "\
a5ea2558
AC
6414Set size of general purpose registers saved on the stack.\n\
6415This option can be set to one of:\n\
6416 32 - Force GDB to treat saved GP registers as 32-bit\n\
6417 64 - Force GDB to treat saved GP registers as 64-bit\n\
6418 auto - Allow GDB to use the target's default setting or autodetect the\n\
6419 saved GP register size from information contained in the executable.\n\
6420 (default: auto)",
1ed2a135 6421 &setmipscmdlist),
a5ea2558
AC
6422 &showmipscmdlist);
6423
d929b26f
AC
6424 /* Allow the user to override the argument stack size. */
6425 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6426 class_obscure,
6427 size_enums,
1ed2a135 6428 &mips_stack_argsize_string, "\
d929b26f
AC
6429Set the amount of stack space reserved for each argument.\n\
6430This option can be set to one of:\n\
6431 32 - Force GDB to allocate 32-bit chunks per argument\n\
6432 64 - Force GDB to allocate 64-bit chunks per argument\n\
6433 auto - Allow GDB to determine the correct setting from the current\n\
6434 target and executable (default)",
6435 &setmipscmdlist),
6436 &showmipscmdlist);
6437
2e4ebe70
DJ
6438 /* Allow the user to override the ABI. */
6439 c = add_set_enum_cmd
6440 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6441 "Set the ABI used by this program.\n"
6442 "This option can be set to one of:\n"
6443 " auto - the default ABI associated with the current binary\n"
6444 " o32\n"
6445 " o64\n"
6446 " n32\n"
f3a7b3a5 6447 " n64\n"
2e4ebe70
DJ
6448 " eabi32\n"
6449 " eabi64",
6450 &setmipscmdlist);
2e4ebe70 6451 set_cmd_sfunc (c, mips_abi_update);
ad188201
KB
6452 add_cmd ("abi", class_obscure, show_mips_abi,
6453 "Show ABI in use by MIPS target", &showmipscmdlist);
2e4ebe70 6454
c906108c
SS
6455 /* Let the user turn off floating point and set the fence post for
6456 heuristic_proc_start. */
6457
6458 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6459 "Set use of MIPS floating-point coprocessor.",
6460 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6461 add_cmd ("single", class_support, set_mipsfpu_single_command,
6462 "Select single-precision MIPS floating-point coprocessor.",
6463 &mipsfpulist);
6464 add_cmd ("double", class_support, set_mipsfpu_double_command,
8e1a459b 6465 "Select double-precision MIPS floating-point coprocessor.",
c906108c
SS
6466 &mipsfpulist);
6467 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6468 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6469 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6470 add_cmd ("none", class_support, set_mipsfpu_none_command,
6471 "Select no MIPS floating-point coprocessor.",
6472 &mipsfpulist);
6473 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6474 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6475 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6476 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6477 "Select MIPS floating-point coprocessor automatically.",
6478 &mipsfpulist);
6479 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6480 "Show current use of MIPS floating-point coprocessor target.",
6481 &showlist);
6482
c906108c
SS
6483 /* We really would like to have both "0" and "unlimited" work, but
6484 command.c doesn't deal with that. So make it a var_zinteger
6485 because the user can always use "999999" or some such for unlimited. */
6486 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6487 (char *) &heuristic_fence_post,
6488 "\
6489Set the distance searched for the start of a function.\n\
6490If you are debugging a stripped executable, GDB needs to search through the\n\
6491program for the start of a function. This command sets the distance of the\n\
6492search. The only need to set it is when debugging a stripped executable.",
6493 &setlist);
6494 /* We need to throw away the frame cache when we set this, since it
6495 might change our ability to get backtraces. */
9f60d481 6496 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
6497 add_show_from_set (c, &showlist);
6498
6499 /* Allow the user to control whether the upper bits of 64-bit
6500 addresses should be zeroed. */
e9e68a56
AC
6501 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6502Set zeroing of upper 32 bits of 64-bit addresses.\n\
6503Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6504allow GDB to determine the correct value.\n", "\
6505Show zeroing of upper 32 bits of 64-bit addresses.",
6506 NULL, show_mask_address,
6507 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
6508
6509 /* Allow the user to control the size of 32 bit registers within the
6510 raw remote packet. */
6511 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6512 class_obscure,
6513 var_boolean,
6514 (char *)&mips64_transfers_32bit_regs_p, "\
6515Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6516Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6517that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
651864 bits for others. Use \"off\" to disable compatibility mode",
6519 &setlist),
6520 &showlist);
9ace0497
AC
6521
6522 /* Debug this files internals. */
6523 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6524 &mips_debug, "Set mips debugging.\n\
6525When non-zero, mips specific debugging is enabled.", &setdebuglist),
6526 &showdebuglist);
c906108c 6527}
This page took 0.822553 seconds and 4 git commands to generate.