* elf64-ppc.c (ppc_build_one_stub): Don't duplicate relocs
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
bf64bfd6 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
47a35522 5 Free Software Foundation, Inc.
bf64bfd6 6
c906108c
SS
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
c5aa993b 10 This file is part of GDB.
c906108c 11
c5aa993b
JM
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
a9762ec7 14 the Free Software Foundation; either version 3 of the License, or
c5aa993b 15 (at your option) any later version.
c906108c 16
c5aa993b
JM
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
c906108c 21
c5aa993b 22 You should have received a copy of the GNU General Public License
a9762ec7 23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
5e2e9765 27#include "gdb_assert.h"
c906108c
SS
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "language.h"
34#include "gdbcore.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdbtypes.h"
38#include "target.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
70f80edf 41#include "osabi.h"
d1973055 42#include "mips-tdep.h"
fe898f56 43#include "block.h"
a4b8ebc8 44#include "reggroups.h"
c906108c 45#include "opcode/mips.h"
c2d11a7d
JM
46#include "elf/mips.h"
47#include "elf-bfd.h"
2475bac3 48#include "symcat.h"
a4b8ebc8 49#include "sim-regno.h"
a89aa300 50#include "dis-asm.h"
edfae063
AC
51#include "frame-unwind.h"
52#include "frame-base.h"
53#include "trad-frame.h"
7d9b040b 54#include "infcall.h"
fed7ba43 55#include "floatformat.h"
29709017
DJ
56#include "remote.h"
57#include "target-descriptions.h"
2bd0c3d7 58#include "dwarf2-frame.h"
f8b73d13 59#include "user-regs.h"
c906108c 60
8d5f9dcb
DJ
61static const struct objfile_data *mips_pdr_data;
62
5bbcb741 63static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
e0f7ec59 64
24e05951 65/* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
dd824b04
DJ
66/* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67#define ST0_FR (1 << 26)
68
b0069a17
AC
69/* The sizes of floating point registers. */
70
71enum
72{
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75};
76
1a69e1e4
DJ
77enum
78{
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81};
0dadbba0 82
2e4ebe70
DJ
83static const char *mips_abi_string;
84
85static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
28d169de 89 "n64",
2e4ebe70
DJ
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94};
95
f8b73d13
DJ
96/* The standard register names, and all the valid aliases for them. */
97struct register_alias
98{
99 const char *name;
100 int regnum;
101};
102
103/* Aliases for o32 and most other ABIs. */
104const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109};
110
111/* Aliases for n32 and n64. */
112const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117};
118
119/* Aliases for ABI-independent registers. */
120const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123#define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128#undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143};
144
7a292a7a 145/* Some MIPS boards don't support floating point while others only
ceae6e75 146 support single-precision floating-point operations. */
c906108c
SS
147
148enum mips_fpu_type
6d82d43b
AC
149{
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153};
c906108c
SS
154
155#ifndef MIPS_DEFAULT_FPU_TYPE
156#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157#endif
158static int mips_fpu_type_auto = 1;
159static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
7a292a7a 160
9ace0497 161static int mips_debug = 0;
7a292a7a 162
29709017
DJ
163/* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165#define PROPERTY_GP32 "internal: transfers-32bit-registers"
166#define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
4eb0ad19
DJ
168struct target_desc *mips_tdesc_gp32;
169struct target_desc *mips_tdesc_gp64;
170
c2d11a7d
JM
171/* MIPS specific per-architecture information */
172struct gdbarch_tdep
6d82d43b
AC
173{
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
6d82d43b
AC
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
29709017
DJ
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
6d82d43b 200};
c2d11a7d 201
fed7ba43
JB
202static int
203n32n64_floatformat_always_valid (const struct floatformat *fmt,
2244f671 204 const void *from)
fed7ba43
JB
205{
206 return 1;
207}
208
209/* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220static const struct floatformat floatformat_n32n64_long_double_big =
221{
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
8da61cc4 224 "floatformat_n32n64_long_double_big",
fed7ba43
JB
225 n32n64_floatformat_always_valid
226};
227
8da61cc4
DJ
228static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229{
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232};
233
56cea623
AC
234const struct mips_regnum *
235mips_regnum (struct gdbarch *gdbarch)
236{
237 return gdbarch_tdep (gdbarch)->regnum;
238}
239
240static int
241mips_fpa0_regnum (struct gdbarch *gdbarch)
242{
243 return mips_regnum (gdbarch)->fp0 + 12;
244}
245
0dadbba0 246#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
216a600b 247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
c2d11a7d 248
c2d11a7d 249#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
c2d11a7d 250
c2d11a7d 251#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
c2d11a7d 252
c2d11a7d 253#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
c2d11a7d 254
95404a3e
AC
255/* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258static CORE_ADDR
259is_mips16_addr (CORE_ADDR addr)
260{
261 return ((addr) & 1);
262}
263
95404a3e
AC
264static CORE_ADDR
265unmake_mips16_addr (CORE_ADDR addr)
266{
5b652102 267 return ((addr) & ~(CORE_ADDR) 1);
95404a3e
AC
268}
269
d1973055
KB
270/* Return the MIPS ABI associated with GDBARCH. */
271enum mips_abi
272mips_abi (struct gdbarch *gdbarch)
273{
274 return gdbarch_tdep (gdbarch)->mips_abi;
275}
276
4246e332 277int
1b13c4f6 278mips_isa_regsize (struct gdbarch *gdbarch)
4246e332 279{
29709017
DJ
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
4246e332
AC
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289}
290
480d3dd2
AC
291/* Return the currently configured (or set) saved register size. */
292
e6bc2e8a 293unsigned int
13326b4e 294mips_abi_regsize (struct gdbarch *gdbarch)
d929b26f 295{
1a69e1e4
DJ
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
d929b26f
AC
311}
312
71b8ef93 313/* Functions for setting and testing a bit in a minimal symbol that
5a89d8aa 314 marks it as 16-bit function. The MSB of the minimal symbol's
f594e5e9 315 "info" field is used for this purpose.
5a89d8aa 316
95f1da47 317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
5a89d8aa
MS
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
f594e5e9 321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
5a89d8aa 322
5a89d8aa 323static void
6d82d43b
AC
324mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325{
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
5a89d8aa
MS
332}
333
71b8ef93
MS
334static int
335msymbol_is_special (struct minimal_symbol *msym)
336{
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338}
339
88658117
AC
340/* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345static void
ba32f989
DJ
346mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
347 int reg_num, int length,
870cd05e
MK
348 enum bfd_endian endian, gdb_byte *in,
349 const gdb_byte *out, int buf_offset)
88658117 350{
88658117 351 int reg_offset = 0;
72a155b4
UW
352
353 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
cb1d2653
AC
354 /* Need to transfer the left or right part of the register, based on
355 the targets byte order. */
88658117
AC
356 switch (endian)
357 {
358 case BFD_ENDIAN_BIG:
72a155b4 359 reg_offset = register_size (gdbarch, reg_num) - length;
88658117
AC
360 break;
361 case BFD_ENDIAN_LITTLE:
362 reg_offset = 0;
363 break;
6d82d43b 364 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
88658117
AC
365 reg_offset = 0;
366 break;
367 default:
e2e0b3e5 368 internal_error (__FILE__, __LINE__, _("bad switch"));
88658117
AC
369 }
370 if (mips_debug)
cb1d2653
AC
371 fprintf_unfiltered (gdb_stderr,
372 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
373 reg_num, reg_offset, buf_offset, length);
88658117
AC
374 if (mips_debug && out != NULL)
375 {
376 int i;
cb1d2653 377 fprintf_unfiltered (gdb_stdlog, "out ");
88658117 378 for (i = 0; i < length; i++)
cb1d2653 379 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
88658117
AC
380 }
381 if (in != NULL)
6d82d43b
AC
382 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
383 in + buf_offset);
88658117 384 if (out != NULL)
6d82d43b
AC
385 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
386 out + buf_offset);
88658117
AC
387 if (mips_debug && in != NULL)
388 {
389 int i;
cb1d2653 390 fprintf_unfiltered (gdb_stdlog, "in ");
88658117 391 for (i = 0; i < length; i++)
cb1d2653 392 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
88658117
AC
393 }
394 if (mips_debug)
395 fprintf_unfiltered (gdb_stdlog, "\n");
396}
397
dd824b04
DJ
398/* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
399 compatiblity mode. A return value of 1 means that we have
400 physical 64-bit registers, but should treat them as 32-bit registers. */
401
402static int
9c9acae0 403mips2_fp_compat (struct frame_info *frame)
dd824b04 404{
72a155b4 405 struct gdbarch *gdbarch = get_frame_arch (frame);
dd824b04
DJ
406 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
407 meaningful. */
72a155b4 408 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
dd824b04
DJ
409 return 0;
410
411#if 0
412 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
413 in all the places we deal with FP registers. PR gdb/413. */
414 /* Otherwise check the FR bit in the status register - it controls
415 the FP compatiblity mode. If it is clear we are in compatibility
416 mode. */
9c9acae0 417 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
dd824b04
DJ
418 return 1;
419#endif
361d1df0 420
dd824b04
DJ
421 return 0;
422}
423
7a292a7a 424#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
c906108c 425
a14ed312 426static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 427
a14ed312 428static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 429
67b2c998
DJ
430static struct type *mips_float_register_type (void);
431static struct type *mips_double_register_type (void);
432
acdb74a0
AC
433/* The list of available "set mips " and "show mips " commands */
434
435static struct cmd_list_element *setmipscmdlist = NULL;
436static struct cmd_list_element *showmipscmdlist = NULL;
437
5e2e9765
KB
438/* Integer registers 0 thru 31 are handled explicitly by
439 mips_register_name(). Processor specific registers 32 and above
8a9fc081 440 are listed in the following tables. */
691c0433 441
6d82d43b
AC
442enum
443{ NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
691c0433
AC
444
445/* Generic MIPS. */
446
447static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
448 "sr", "lo", "hi", "bad", "cause", "pc",
449 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
450 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
451 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
452 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
453 "fsr", "fir", "" /*"fp" */ , "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "", "", "", "", "",
691c0433
AC
456};
457
458/* Names of IDT R3041 registers. */
459
460static const char *mips_r3041_reg_names[] = {
6d82d43b
AC
461 "sr", "lo", "hi", "bad", "cause", "pc",
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "fsr", "fir", "", /*"fp" */ "",
467 "", "", "bus", "ccfg", "", "", "", "",
468 "", "", "port", "cmp", "", "", "epc", "prid",
691c0433
AC
469};
470
471/* Names of tx39 registers. */
472
473static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
474 "sr", "lo", "hi", "bad", "cause", "pc",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "", "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "", "",
480 "", "", "", "", "", "", "", "",
481 "", "", "config", "cache", "debug", "depc", "epc", ""
691c0433
AC
482};
483
484/* Names of IRIX registers. */
485static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
6d82d43b
AC
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
691c0433
AC
491};
492
cce74817 493
5e2e9765 494/* Return the name of the register corresponding to REGNO. */
5a89d8aa 495static const char *
5e2e9765 496mips_register_name (int regno)
cce74817 497{
691c0433 498 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5e2e9765
KB
499 /* GPR names for all ABIs other than n32/n64. */
500 static char *mips_gpr_names[] = {
6d82d43b
AC
501 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
502 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
503 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
504 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
5e2e9765
KB
505 };
506
507 /* GPR names for n32 and n64 ABIs. */
508 static char *mips_n32_n64_gpr_names[] = {
6d82d43b
AC
509 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
510 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
511 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
512 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
5e2e9765
KB
513 };
514
515 enum mips_abi abi = mips_abi (current_gdbarch);
516
f57d151a
UW
517 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
518 but then don't make the raw register names visible. */
519 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
520 if (regno < gdbarch_num_regs (current_gdbarch))
a4b8ebc8
AC
521 return "";
522
5e2e9765
KB
523 /* The MIPS integer registers are always mapped from 0 to 31. The
524 names of the registers (which reflects the conventions regarding
525 register use) vary depending on the ABI. */
a4b8ebc8 526 if (0 <= rawnum && rawnum < 32)
5e2e9765
KB
527 {
528 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
a4b8ebc8 529 return mips_n32_n64_gpr_names[rawnum];
5e2e9765 530 else
a4b8ebc8 531 return mips_gpr_names[rawnum];
5e2e9765 532 }
f8b73d13
DJ
533 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
534 return tdesc_register_name (rawnum);
f57d151a 535 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
691c0433
AC
536 {
537 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
538 return tdep->mips_processor_reg_names[rawnum - 32];
539 }
5e2e9765
KB
540 else
541 internal_error (__FILE__, __LINE__,
e2e0b3e5 542 _("mips_register_name: bad register number %d"), rawnum);
cce74817 543}
5e2e9765 544
a4b8ebc8 545/* Return the groups that a MIPS register can be categorised into. */
c5aa993b 546
a4b8ebc8
AC
547static int
548mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
549 struct reggroup *reggroup)
550{
551 int vector_p;
552 int float_p;
553 int raw_p;
72a155b4
UW
554 int rawnum = regnum % gdbarch_num_regs (gdbarch);
555 int pseudo = regnum / gdbarch_num_regs (gdbarch);
a4b8ebc8
AC
556 if (reggroup == all_reggroup)
557 return pseudo;
558 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
559 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
560 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
561 (gdbarch), as not all architectures are multi-arch. */
72a155b4
UW
562 raw_p = rawnum < gdbarch_num_regs (gdbarch);
563 if (gdbarch_register_name (gdbarch, regnum) == NULL
564 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
a4b8ebc8
AC
565 return 0;
566 if (reggroup == float_reggroup)
567 return float_p && pseudo;
568 if (reggroup == vector_reggroup)
569 return vector_p && pseudo;
570 if (reggroup == general_reggroup)
571 return (!vector_p && !float_p) && pseudo;
572 /* Save the pseudo registers. Need to make certain that any code
573 extracting register values from a saved register cache also uses
574 pseudo registers. */
575 if (reggroup == save_reggroup)
576 return raw_p && pseudo;
577 /* Restore the same pseudo register. */
578 if (reggroup == restore_reggroup)
579 return raw_p && pseudo;
6d82d43b 580 return 0;
a4b8ebc8
AC
581}
582
f8b73d13
DJ
583/* Return the groups that a MIPS register can be categorised into.
584 This version is only used if we have a target description which
585 describes real registers (and their groups). */
586
587static int
588mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 struct reggroup *reggroup)
590{
591 int rawnum = regnum % gdbarch_num_regs (gdbarch);
592 int pseudo = regnum / gdbarch_num_regs (gdbarch);
593 int ret;
594
595 /* Only save, restore, and display the pseudo registers. Need to
596 make certain that any code extracting register values from a
597 saved register cache also uses pseudo registers.
598
599 Note: saving and restoring the pseudo registers is slightly
600 strange; if we have 64 bits, we should save and restore all
601 64 bits. But this is hard and has little benefit. */
602 if (!pseudo)
603 return 0;
604
605 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
606 if (ret != -1)
607 return ret;
608
609 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
610}
611
a4b8ebc8 612/* Map the symbol table registers which live in the range [1 *
f57d151a 613 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
47ebcfbe 614 registers. Take care of alignment and size problems. */
c5aa993b 615
a4b8ebc8
AC
616static void
617mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
47a35522 618 int cookednum, gdb_byte *buf)
a4b8ebc8 619{
72a155b4
UW
620 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
621 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
622 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 623 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 624 regcache_raw_read (regcache, rawnum, buf);
6d82d43b
AC
625 else if (register_size (gdbarch, rawnum) >
626 register_size (gdbarch, cookednum))
47ebcfbe
AC
627 {
628 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 629 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
630 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
631 else
632 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
633 }
634 else
e2e0b3e5 635 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8
AC
636}
637
638static void
6d82d43b
AC
639mips_pseudo_register_write (struct gdbarch *gdbarch,
640 struct regcache *regcache, int cookednum,
47a35522 641 const gdb_byte *buf)
a4b8ebc8 642{
72a155b4
UW
643 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
644 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
645 && cookednum < 2 * gdbarch_num_regs (gdbarch));
47ebcfbe 646 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
de38af99 647 regcache_raw_write (regcache, rawnum, buf);
6d82d43b
AC
648 else if (register_size (gdbarch, rawnum) >
649 register_size (gdbarch, cookednum))
47ebcfbe
AC
650 {
651 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
72a155b4 652 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
47ebcfbe
AC
653 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
654 else
655 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
656 }
657 else
e2e0b3e5 658 internal_error (__FILE__, __LINE__, _("bad register size"));
a4b8ebc8 659}
c5aa993b 660
c906108c 661/* Table to translate MIPS16 register field to actual register number. */
6d82d43b 662static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
c906108c
SS
663
664/* Heuristic_proc_start may hunt through the text section for a long
665 time across a 2400 baud serial line. Allows the user to limit this
666 search. */
667
668static unsigned int heuristic_fence_post = 0;
669
46cd78fb 670/* Number of bytes of storage in the actual machine representation for
719ec221
AC
671 register N. NOTE: This defines the pseudo register type so need to
672 rebuild the architecture vector. */
43e526b9
JM
673
674static int mips64_transfers_32bit_regs_p = 0;
675
719ec221
AC
676static void
677set_mips64_transfers_32bit_regs (char *args, int from_tty,
678 struct cmd_list_element *c)
43e526b9 679{
719ec221
AC
680 struct gdbarch_info info;
681 gdbarch_info_init (&info);
682 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
683 instead of relying on globals. Doing that would let generic code
684 handle the search for this specific architecture. */
685 if (!gdbarch_update_p (info))
a4b8ebc8 686 {
719ec221 687 mips64_transfers_32bit_regs_p = 0;
8a3fe4f8 688 error (_("32-bit compatibility mode not supported"));
a4b8ebc8 689 }
a4b8ebc8
AC
690}
691
47ebcfbe 692/* Convert to/from a register and the corresponding memory value. */
43e526b9 693
ff2e87ac
AC
694static int
695mips_convert_register_p (int regnum, struct type *type)
696{
4c6b5505 697 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
719ec221 698 && register_size (current_gdbarch, regnum) == 4
f57d151a
UW
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 >= mips_regnum (current_gdbarch)->fp0
701 && (regnum % gdbarch_num_regs (current_gdbarch))
702 < mips_regnum (current_gdbarch)->fp0 + 32
6d82d43b 703 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
ff2e87ac
AC
704}
705
42c466d7 706static void
ff2e87ac 707mips_register_to_value (struct frame_info *frame, int regnum,
47a35522 708 struct type *type, gdb_byte *to)
102182a9 709{
47a35522
MK
710 get_frame_register (frame, regnum + 0, to + 4);
711 get_frame_register (frame, regnum + 1, to + 0);
102182a9
MS
712}
713
42c466d7 714static void
ff2e87ac 715mips_value_to_register (struct frame_info *frame, int regnum,
47a35522 716 struct type *type, const gdb_byte *from)
102182a9 717{
47a35522
MK
718 put_frame_register (frame, regnum + 0, from + 4);
719 put_frame_register (frame, regnum + 1, from + 0);
102182a9
MS
720}
721
a4b8ebc8
AC
722/* Return the GDB type object for the "standard" data type of data in
723 register REG. */
78fde5f8
KB
724
725static struct type *
a4b8ebc8
AC
726mips_register_type (struct gdbarch *gdbarch, int regnum)
727{
72a155b4
UW
728 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
729 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
730 && (regnum % gdbarch_num_regs (gdbarch))
731 < mips_regnum (gdbarch)->fp0 + 32)
a6425924 732 {
5ef80fb0 733 /* The floating-point registers raw, or cooked, always match
1b13c4f6 734 mips_isa_regsize(), and also map 1:1, byte for byte. */
8da61cc4
DJ
735 if (mips_isa_regsize (gdbarch) == 4)
736 return builtin_type_ieee_single;
737 else
738 return builtin_type_ieee_double;
a6425924 739 }
72a155b4 740 else if (regnum < gdbarch_num_regs (gdbarch))
d5ac5a39
AC
741 {
742 /* The raw or ISA registers. These are all sized according to
743 the ISA regsize. */
744 if (mips_isa_regsize (gdbarch) == 4)
745 return builtin_type_int32;
746 else
747 return builtin_type_int64;
748 }
78fde5f8 749 else
d5ac5a39
AC
750 {
751 /* The cooked or ABI registers. These are sized according to
752 the ABI (with a few complications). */
72a155b4
UW
753 if (regnum >= (gdbarch_num_regs (gdbarch)
754 + mips_regnum (gdbarch)->fp_control_status)
755 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
d5ac5a39
AC
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
78fde5f8
KB
772}
773
f8b73d13
DJ
774/* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779static struct type *
780mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781{
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826}
bcb0cc15 827
c906108c 828/* Should the upper word of 64-bit addresses be zeroed? */
7f19b9a2 829enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
4014092b
AC
830
831static int
480d3dd2 832mips_mask_address_p (struct gdbarch_tdep *tdep)
4014092b
AC
833{
834 switch (mask_address_var)
835 {
7f19b9a2 836 case AUTO_BOOLEAN_TRUE:
4014092b 837 return 1;
7f19b9a2 838 case AUTO_BOOLEAN_FALSE:
4014092b
AC
839 return 0;
840 break;
7f19b9a2 841 case AUTO_BOOLEAN_AUTO:
480d3dd2 842 return tdep->default_mask_address_p;
4014092b 843 default:
e2e0b3e5 844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
4014092b 845 return -1;
361d1df0 846 }
4014092b
AC
847}
848
849static void
08546159
AC
850show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
4014092b 852{
480d3dd2 853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
08546159
AC
854
855 deprecated_show_value_hack (file, from_tty, c, value);
4014092b
AC
856 switch (mask_address_var)
857 {
7f19b9a2 858 case AUTO_BOOLEAN_TRUE:
4014092b
AC
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
7f19b9a2 861 case AUTO_BOOLEAN_FALSE:
4014092b
AC
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
7f19b9a2 864 case AUTO_BOOLEAN_AUTO:
6d82d43b
AC
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
4014092b
AC
868 break;
869 default:
e2e0b3e5 870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
4014092b 871 break;
361d1df0 872 }
4014092b 873}
c906108c 874
c906108c
SS
875/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
0fe7e7c8
AC
877int
878mips_pc_is_mips16 (CORE_ADDR memaddr)
c906108c
SS
879{
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
95404a3e 883 if (is_mips16_addr (memaddr))
c906108c
SS
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
71b8ef93 891 return msymbol_is_special (sym);
c906108c
SS
892 else
893 return 0;
894}
895
b2fa5097 896/* MIPS believes that the PC has a sign extended value. Perhaps the
6c997a34
AC
897 all registers should be sign extended for simplicity? */
898
899static CORE_ADDR
61a1198a 900mips_read_pc (struct regcache *regcache)
6c997a34 901{
61a1198a
UW
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
b6cb9035
AC
906}
907
58dfe9ff
AC
908static CORE_ADDR
909mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910{
72a155b4
UW
911 return frame_unwind_register_signed
912 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
edfae063
AC
913}
914
30244cd8
UW
915static CORE_ADDR
916mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
917{
72a155b4
UW
918 return frame_unwind_register_signed
919 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
30244cd8
UW
920}
921
edfae063
AC
922/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
923 dummy frame. The frame ID's base needs to match the TOS value
924 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
925 breakpoint. */
926
927static struct frame_id
928mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
929{
f57d151a
UW
930 return frame_id_build
931 (frame_unwind_register_signed (next_frame,
72a155b4 932 gdbarch_num_regs (gdbarch)
f57d151a
UW
933 + MIPS_SP_REGNUM),
934 frame_pc_unwind (next_frame));
58dfe9ff
AC
935}
936
b6cb9035 937static void
61a1198a 938mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
b6cb9035 939{
61a1198a
UW
940 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
941 regcache_cooked_write_unsigned (regcache, regnum, pc);
6c997a34 942}
c906108c 943
c906108c
SS
944/* Fetch and return instruction from the specified location. If the PC
945 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
946
d37cca3d 947static ULONGEST
acdb74a0 948mips_fetch_instruction (CORE_ADDR addr)
c906108c 949{
47a35522 950 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
951 int instlen;
952 int status;
953
0fe7e7c8 954 if (mips_pc_is_mips16 (addr))
c906108c 955 {
95ac2dcf 956 instlen = MIPS_INSN16_SIZE;
95404a3e 957 addr = unmake_mips16_addr (addr);
c906108c
SS
958 }
959 else
95ac2dcf 960 instlen = MIPS_INSN32_SIZE;
359a9262 961 status = read_memory_nobpt (addr, buf, instlen);
c906108c
SS
962 if (status)
963 memory_error (status, addr);
964 return extract_unsigned_integer (buf, instlen);
965}
966
c906108c 967/* These the fields of 32 bit mips instructions */
e135b889
DJ
968#define mips32_op(x) (x >> 26)
969#define itype_op(x) (x >> 26)
970#define itype_rs(x) ((x >> 21) & 0x1f)
c906108c 971#define itype_rt(x) ((x >> 16) & 0x1f)
e135b889 972#define itype_immediate(x) (x & 0xffff)
c906108c 973
e135b889
DJ
974#define jtype_op(x) (x >> 26)
975#define jtype_target(x) (x & 0x03ffffff)
c906108c 976
e135b889
DJ
977#define rtype_op(x) (x >> 26)
978#define rtype_rs(x) ((x >> 21) & 0x1f)
979#define rtype_rt(x) ((x >> 16) & 0x1f)
980#define rtype_rd(x) ((x >> 11) & 0x1f)
981#define rtype_shamt(x) ((x >> 6) & 0x1f)
982#define rtype_funct(x) (x & 0x3f)
c906108c 983
06987e64
MK
984static LONGEST
985mips32_relative_offset (ULONGEST inst)
c5aa993b 986{
06987e64 987 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
c906108c
SS
988}
989
f49e4e6d
MS
990/* Determine where to set a single step breakpoint while considering
991 branch prediction. */
5a89d8aa 992static CORE_ADDR
0b1b3e42 993mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
c5aa993b
JM
994{
995 unsigned long inst;
996 int op;
997 inst = mips_fetch_instruction (pc);
e135b889 998 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
c5aa993b 999 {
e135b889 1000 if (itype_op (inst) >> 2 == 5)
6d82d43b 1001 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
c5aa993b 1002 {
e135b889 1003 op = (itype_op (inst) & 0x03);
c906108c
SS
1004 switch (op)
1005 {
e135b889
DJ
1006 case 0: /* BEQL */
1007 goto equal_branch;
1008 case 1: /* BNEL */
1009 goto neq_branch;
1010 case 2: /* BLEZL */
1011 goto less_branch;
313628cc 1012 case 3: /* BGTZL */
e135b889 1013 goto greater_branch;
c5aa993b
JM
1014 default:
1015 pc += 4;
c906108c
SS
1016 }
1017 }
e135b889 1018 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
6d82d43b 1019 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
e135b889
DJ
1020 {
1021 int tf = itype_rt (inst) & 0x01;
1022 int cnum = itype_rt (inst) >> 2;
6d82d43b 1023 int fcrcs =
72a155b4
UW
1024 get_frame_register_signed (frame,
1025 mips_regnum (get_frame_arch (frame))->
0b1b3e42 1026 fp_control_status);
e135b889
DJ
1027 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1028
1029 if (((cond >> cnum) & 0x01) == tf)
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 }
c5aa993b
JM
1034 else
1035 pc += 4; /* Not a branch, next instruction is easy */
c906108c
SS
1036 }
1037 else
c5aa993b
JM
1038 { /* This gets way messy */
1039
c906108c 1040 /* Further subdivide into SPECIAL, REGIMM and other */
e135b889 1041 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
c906108c 1042 {
c5aa993b
JM
1043 case 0: /* SPECIAL */
1044 op = rtype_funct (inst);
1045 switch (op)
1046 {
1047 case 8: /* JR */
1048 case 9: /* JALR */
6c997a34 1049 /* Set PC to that address */
0b1b3e42 1050 pc = get_frame_register_signed (frame, rtype_rs (inst));
c5aa993b
JM
1051 break;
1052 default:
1053 pc += 4;
1054 }
1055
6d82d43b 1056 break; /* end SPECIAL */
c5aa993b 1057 case 1: /* REGIMM */
c906108c 1058 {
e135b889
DJ
1059 op = itype_rt (inst); /* branch condition */
1060 switch (op)
c906108c 1061 {
c5aa993b 1062 case 0: /* BLTZ */
e135b889
DJ
1063 case 2: /* BLTZL */
1064 case 16: /* BLTZAL */
c5aa993b 1065 case 18: /* BLTZALL */
c906108c 1066 less_branch:
0b1b3e42 1067 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
c5aa993b
JM
1068 pc += mips32_relative_offset (inst) + 4;
1069 else
1070 pc += 8; /* after the delay slot */
1071 break;
e135b889 1072 case 1: /* BGEZ */
c5aa993b
JM
1073 case 3: /* BGEZL */
1074 case 17: /* BGEZAL */
1075 case 19: /* BGEZALL */
0b1b3e42 1076 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
c5aa993b
JM
1077 pc += mips32_relative_offset (inst) + 4;
1078 else
1079 pc += 8; /* after the delay slot */
1080 break;
e135b889 1081 /* All of the other instructions in the REGIMM category */
c5aa993b
JM
1082 default:
1083 pc += 4;
c906108c
SS
1084 }
1085 }
6d82d43b 1086 break; /* end REGIMM */
c5aa993b
JM
1087 case 2: /* J */
1088 case 3: /* JAL */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
e135b889 1092 /* Upper four bits get never changed... */
5b652102 1093 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
c906108c 1094 }
c5aa993b
JM
1095 break;
1096 /* FIXME case JALX : */
1097 {
1098 unsigned long reg;
1099 reg = jtype_target (inst) << 2;
5b652102 1100 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
c906108c
SS
1101 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1102 }
c5aa993b 1103 break; /* The new PC will be alternate mode */
e135b889 1104 case 4: /* BEQ, BEQL */
c5aa993b 1105 equal_branch:
0b1b3e42
UW
1106 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1107 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
e135b889 1112 case 5: /* BNE, BNEL */
c5aa993b 1113 neq_branch:
0b1b3e42
UW
1114 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1115 get_frame_register_signed (frame, itype_rt (inst)))
c5aa993b
JM
1116 pc += mips32_relative_offset (inst) + 4;
1117 else
1118 pc += 8;
1119 break;
e135b889 1120 case 6: /* BLEZ, BLEZL */
0b1b3e42 1121 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
c5aa993b
JM
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
1126 case 7:
e135b889
DJ
1127 default:
1128 greater_branch: /* BGTZ, BGTZL */
0b1b3e42 1129 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
c5aa993b
JM
1130 pc += mips32_relative_offset (inst) + 4;
1131 else
1132 pc += 8;
1133 break;
c5aa993b
JM
1134 } /* switch */
1135 } /* else */
1136 return pc;
1137} /* mips32_next_pc */
c906108c
SS
1138
1139/* Decoding the next place to set a breakpoint is irregular for the
e26cc349 1140 mips 16 variant, but fortunately, there fewer instructions. We have to cope
c906108c
SS
1141 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1142 We dont want to set a single step instruction on the extend instruction
1143 either.
c5aa993b 1144 */
c906108c
SS
1145
1146/* Lots of mips16 instruction formats */
1147/* Predicting jumps requires itype,ritype,i8type
1148 and their extensions extItype,extritype,extI8type
c5aa993b 1149 */
c906108c
SS
1150enum mips16_inst_fmts
1151{
c5aa993b
JM
1152 itype, /* 0 immediate 5,10 */
1153 ritype, /* 1 5,3,8 */
1154 rrtype, /* 2 5,3,3,5 */
1155 rritype, /* 3 5,3,3,5 */
1156 rrrtype, /* 4 5,3,3,3,2 */
1157 rriatype, /* 5 5,3,3,1,4 */
1158 shifttype, /* 6 5,3,3,3,2 */
1159 i8type, /* 7 5,3,8 */
1160 i8movtype, /* 8 5,3,3,5 */
1161 i8mov32rtype, /* 9 5,3,5,3 */
1162 i64type, /* 10 5,3,8 */
1163 ri64type, /* 11 5,3,3,5 */
1164 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1165 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1166 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1167 extRRItype, /* 15 5,5,5,5,3,3,5 */
1168 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1169 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1170 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1171 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1172 extRi64type, /* 20 5,6,5,5,3,3,5 */
1173 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1174};
12f02c2a
AC
1175/* I am heaping all the fields of the formats into one structure and
1176 then, only the fields which are involved in instruction extension */
c906108c 1177struct upk_mips16
6d82d43b
AC
1178{
1179 CORE_ADDR offset;
1180 unsigned int regx; /* Function in i8 type */
1181 unsigned int regy;
1182};
c906108c
SS
1183
1184
12f02c2a
AC
1185/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1186 for the bits which make up the immediatate extension. */
c906108c 1187
12f02c2a
AC
1188static CORE_ADDR
1189extended_offset (unsigned int extension)
c906108c 1190{
12f02c2a 1191 CORE_ADDR value;
c5aa993b
JM
1192 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1193 value = value << 6;
1194 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1195 value = value << 5;
1196 value |= extension & 0x01f; /* extract 4:0 */
1197 return value;
c906108c
SS
1198}
1199
1200/* Only call this function if you know that this is an extendable
bcf1ea1e
MR
1201 instruction. It won't malfunction, but why make excess remote memory
1202 references? If the immediate operands get sign extended or something,
1203 do it after the extension is performed. */
c906108c 1204/* FIXME: Every one of these cases needs to worry about sign extension
bcf1ea1e 1205 when the offset is to be used in relative addressing. */
c906108c 1206
12f02c2a 1207static unsigned int
c5aa993b 1208fetch_mips_16 (CORE_ADDR pc)
c906108c 1209{
47a35522 1210 gdb_byte buf[8];
c5aa993b
JM
1211 pc &= 0xfffffffe; /* clear the low order bit */
1212 target_read_memory (pc, buf, 2);
1213 return extract_unsigned_integer (buf, 2);
c906108c
SS
1214}
1215
1216static void
c5aa993b 1217unpack_mips16 (CORE_ADDR pc,
12f02c2a
AC
1218 unsigned int extension,
1219 unsigned int inst,
6d82d43b 1220 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
c906108c 1221{
12f02c2a
AC
1222 CORE_ADDR offset;
1223 int regx;
1224 int regy;
1225 switch (insn_format)
c906108c 1226 {
c5aa993b 1227 case itype:
c906108c 1228 {
12f02c2a
AC
1229 CORE_ADDR value;
1230 if (extension)
c5aa993b
JM
1231 {
1232 value = extended_offset (extension);
1233 value = value << 11; /* rom for the original value */
6d82d43b 1234 value |= inst & 0x7ff; /* eleven bits from instruction */
c906108c
SS
1235 }
1236 else
c5aa993b 1237 {
12f02c2a 1238 value = inst & 0x7ff;
c5aa993b 1239 /* FIXME : Consider sign extension */
c906108c 1240 }
12f02c2a
AC
1241 offset = value;
1242 regx = -1;
1243 regy = -1;
c906108c 1244 }
c5aa993b
JM
1245 break;
1246 case ritype:
1247 case i8type:
1248 { /* A register identifier and an offset */
c906108c
SS
1249 /* Most of the fields are the same as I type but the
1250 immediate value is of a different length */
12f02c2a
AC
1251 CORE_ADDR value;
1252 if (extension)
c906108c 1253 {
c5aa993b
JM
1254 value = extended_offset (extension);
1255 value = value << 8; /* from the original instruction */
12f02c2a
AC
1256 value |= inst & 0xff; /* eleven bits from instruction */
1257 regx = (extension >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1258 if (value & 0x4000) /* test the sign bit , bit 26 */
1259 {
1260 value &= ~0x3fff; /* remove the sign bit */
1261 value = -value;
c906108c
SS
1262 }
1263 }
c5aa993b
JM
1264 else
1265 {
12f02c2a
AC
1266 value = inst & 0xff; /* 8 bits */
1267 regx = (inst >> 8) & 0x07; /* or i8 funct */
c5aa993b
JM
1268 /* FIXME: Do sign extension , this format needs it */
1269 if (value & 0x80) /* THIS CONFUSES ME */
1270 {
1271 value &= 0xef; /* remove the sign bit */
1272 value = -value;
1273 }
c5aa993b 1274 }
12f02c2a
AC
1275 offset = value;
1276 regy = -1;
c5aa993b 1277 break;
c906108c 1278 }
c5aa993b 1279 case jalxtype:
c906108c 1280 {
c5aa993b 1281 unsigned long value;
12f02c2a
AC
1282 unsigned int nexthalf;
1283 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
c5aa993b
JM
1284 value = value << 16;
1285 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 value |= nexthalf;
12f02c2a
AC
1287 offset = value;
1288 regx = -1;
1289 regy = -1;
c5aa993b 1290 break;
c906108c
SS
1291 }
1292 default:
e2e0b3e5 1293 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c 1294 }
12f02c2a
AC
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
c906108c
SS
1298}
1299
1300
c5aa993b
JM
1301static CORE_ADDR
1302add_offset_16 (CORE_ADDR pc, int offset)
c906108c 1303{
5b652102 1304 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
c906108c
SS
1305}
1306
12f02c2a 1307static CORE_ADDR
0b1b3e42 1308extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
6d82d43b 1309 unsigned int extension, unsigned int insn)
c906108c 1310{
12f02c2a
AC
1311 int op = (insn >> 11);
1312 switch (op)
c906108c 1313 {
6d82d43b 1314 case 2: /* Branch */
12f02c2a
AC
1315 {
1316 CORE_ADDR offset;
1317 struct upk_mips16 upk;
1318 unpack_mips16 (pc, extension, insn, itype, &upk);
1319 offset = upk.offset;
1320 if (offset & 0x800)
1321 {
1322 offset &= 0xeff;
1323 offset = -offset;
1324 }
1325 pc += (offset << 1) + 2;
1326 break;
1327 }
6d82d43b 1328 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
12f02c2a
AC
1329 {
1330 struct upk_mips16 upk;
1331 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1332 pc = add_offset_16 (pc, upk.offset);
1333 if ((insn >> 10) & 0x01) /* Exchange mode */
1334 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1335 else
1336 pc |= 0x01;
1337 break;
1338 }
6d82d43b 1339 case 4: /* beqz */
12f02c2a
AC
1340 {
1341 struct upk_mips16 upk;
1342 int reg;
1343 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1344 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1345 if (reg == 0)
1346 pc += (upk.offset << 1) + 2;
1347 else
1348 pc += 2;
1349 break;
1350 }
6d82d43b 1351 case 5: /* bnez */
12f02c2a
AC
1352 {
1353 struct upk_mips16 upk;
1354 int reg;
1355 unpack_mips16 (pc, extension, insn, ritype, &upk);
0b1b3e42 1356 reg = get_frame_register_signed (frame, upk.regx);
12f02c2a
AC
1357 if (reg != 0)
1358 pc += (upk.offset << 1) + 2;
1359 else
1360 pc += 2;
1361 break;
1362 }
6d82d43b 1363 case 12: /* I8 Formats btez btnez */
12f02c2a
AC
1364 {
1365 struct upk_mips16 upk;
1366 int reg;
1367 unpack_mips16 (pc, extension, insn, i8type, &upk);
1368 /* upk.regx contains the opcode */
0b1b3e42 1369 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
12f02c2a
AC
1370 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1371 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1372 /* pc = add_offset_16(pc,upk.offset) ; */
1373 pc += (upk.offset << 1) + 2;
1374 else
1375 pc += 2;
1376 break;
1377 }
6d82d43b 1378 case 29: /* RR Formats JR, JALR, JALR-RA */
12f02c2a
AC
1379 {
1380 struct upk_mips16 upk;
1381 /* upk.fmt = rrtype; */
1382 op = insn & 0x1f;
1383 if (op == 0)
c5aa993b 1384 {
12f02c2a
AC
1385 int reg;
1386 upk.regx = (insn >> 8) & 0x07;
1387 upk.regy = (insn >> 5) & 0x07;
1388 switch (upk.regy)
c5aa993b 1389 {
12f02c2a
AC
1390 case 0:
1391 reg = upk.regx;
1392 break;
1393 case 1:
1394 reg = 31;
6d82d43b 1395 break; /* Function return instruction */
12f02c2a
AC
1396 case 2:
1397 reg = upk.regx;
1398 break;
1399 default:
1400 reg = 31;
6d82d43b 1401 break; /* BOGUS Guess */
c906108c 1402 }
0b1b3e42 1403 pc = get_frame_register_signed (frame, reg);
c906108c 1404 }
12f02c2a 1405 else
c5aa993b 1406 pc += 2;
12f02c2a
AC
1407 break;
1408 }
1409 case 30:
1410 /* This is an instruction extension. Fetch the real instruction
1411 (which follows the extension) and decode things based on
1412 that. */
1413 {
1414 pc += 2;
0b1b3e42 1415 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
12f02c2a
AC
1416 break;
1417 }
1418 default:
1419 {
1420 pc += 2;
1421 break;
1422 }
c906108c 1423 }
c5aa993b 1424 return pc;
12f02c2a 1425}
c906108c 1426
5a89d8aa 1427static CORE_ADDR
0b1b3e42 1428mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
12f02c2a
AC
1429{
1430 unsigned int insn = fetch_mips_16 (pc);
0b1b3e42 1431 return extended_mips16_next_pc (frame, pc, 0, insn);
12f02c2a
AC
1432}
1433
1434/* The mips_next_pc function supports single_step when the remote
7e73cedf 1435 target monitor or stub is not developed enough to do a single_step.
12f02c2a
AC
1436 It works by decoding the current instruction and predicting where a
1437 branch will go. This isnt hard because all the data is available.
ce1f96de 1438 The MIPS32 and MIPS16 variants are quite different. */
ad527d2e 1439static CORE_ADDR
0b1b3e42 1440mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1441{
ce1f96de 1442 if (is_mips16_addr (pc))
0b1b3e42 1443 return mips16_next_pc (frame, pc);
c5aa993b 1444 else
0b1b3e42 1445 return mips32_next_pc (frame, pc);
12f02c2a 1446}
c906108c 1447
edfae063
AC
1448struct mips_frame_cache
1449{
1450 CORE_ADDR base;
1451 struct trad_frame_saved_reg *saved_regs;
1452};
1453
29639122
JB
1454/* Set a register's saved stack address in temp_saved_regs. If an
1455 address has already been set for this register, do nothing; this
1456 way we will only recognize the first save of a given register in a
1457 function prologue.
eec63939 1458
f57d151a
UW
1459 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1460 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1461 Strictly speaking, only the second range is used as it is only second
1462 range (the ABI instead of ISA registers) that comes into play when finding
1463 saved registers in a frame. */
eec63939
AC
1464
1465static void
29639122
JB
1466set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1467 CORE_ADDR offset)
eec63939 1468{
29639122
JB
1469 if (this_cache != NULL
1470 && this_cache->saved_regs[regnum].addr == -1)
1471 {
f57d151a
UW
1472 this_cache->saved_regs[regnum
1473 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1474 = offset;
1475 this_cache->saved_regs[regnum
1476 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1477 = offset;
29639122 1478 }
eec63939
AC
1479}
1480
eec63939 1481
29639122
JB
1482/* Fetch the immediate value from a MIPS16 instruction.
1483 If the previous instruction was an EXTEND, use it to extend
1484 the upper bits of the immediate value. This is a helper function
1485 for mips16_scan_prologue. */
eec63939 1486
29639122
JB
1487static int
1488mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1489 unsigned short inst, /* current instruction */
1490 int nbits, /* number of bits in imm field */
1491 int scale, /* scale factor to be applied to imm */
1492 int is_signed) /* is the imm field signed? */
eec63939 1493{
29639122 1494 int offset;
eec63939 1495
29639122
JB
1496 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1497 {
1498 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1499 if (offset & 0x8000) /* check for negative extend */
1500 offset = 0 - (0x10000 - (offset & 0xffff));
1501 return offset | (inst & 0x1f);
1502 }
eec63939 1503 else
29639122
JB
1504 {
1505 int max_imm = 1 << nbits;
1506 int mask = max_imm - 1;
1507 int sign_bit = max_imm >> 1;
45c9dd44 1508
29639122
JB
1509 offset = inst & mask;
1510 if (is_signed && (offset & sign_bit))
1511 offset = 0 - (max_imm - offset);
1512 return offset * scale;
1513 }
1514}
eec63939 1515
65596487 1516
29639122
JB
1517/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1518 the associated FRAME_CACHE if not null.
1519 Return the address of the first instruction past the prologue. */
eec63939 1520
29639122
JB
1521static CORE_ADDR
1522mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1523 struct frame_info *next_frame,
1524 struct mips_frame_cache *this_cache)
1525{
1526 CORE_ADDR cur_pc;
1527 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1528 CORE_ADDR sp;
1529 long frame_offset = 0; /* Size of stack frame. */
1530 long frame_adjust = 0; /* Offset of FP from SP. */
1531 int frame_reg = MIPS_SP_REGNUM;
1532 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1533 unsigned inst = 0; /* current instruction */
1534 unsigned entry_inst = 0; /* the entry instruction */
1535 int reg, offset;
a343eb3c 1536
29639122
JB
1537 int extend_bytes = 0;
1538 int prev_extend_bytes;
1539 CORE_ADDR end_prologue_addr = 0;
72a155b4 1540 struct gdbarch *gdbarch = get_frame_arch (next_frame);
a343eb3c 1541
29639122
JB
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
d2ca4222 1545 sp = frame_unwind_register_signed (next_frame,
72a155b4 1546 gdbarch_num_regs (gdbarch)
d2ca4222 1547 + MIPS_SP_REGNUM);
29639122
JB
1548 else
1549 sp = 0;
eec63939 1550
29639122
JB
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
eec63939 1553
95ac2dcf 1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
29639122
JB
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
eec63939 1559
29639122
JB
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
eec63939 1562
29639122
JB
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
95ac2dcf 1570 extend_bytes = MIPS_INSN16_SIZE;
29639122
JB
1571 continue;
1572 }
eec63939 1573
29639122
JB
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
eec63939 1576
29639122
JB
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
4c7d22cb 1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
4c7d22cb 1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
29639122
JB
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
95ac2dcf 1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
29639122
JB
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
eec63939 1654
29639122
JB
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
eec63939 1665
29639122
JB
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
72a155b4 1677 offset += mips_abi_regsize (gdbarch);
29639122
JB
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
4c7d22cb 1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
72a155b4 1685 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
72a155b4 1692 offset -= mips_abi_regsize (gdbarch);
29639122
JB
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
f57d151a 1699 (frame_unwind_register_signed (next_frame,
72a155b4 1700 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
1701 + frame_offset - frame_adjust);
1702 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1703 be able to get rid of the assignment below, evetually. But it's
1704 still needed for now. */
72a155b4
UW
1705 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1706 + mips_regnum (gdbarch)->pc]
1707 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
29639122
JB
1708 }
1709
1710 /* If we didn't reach the end of the prologue when scanning the function
1711 instructions, then set end_prologue_addr to the address of the
1712 instruction immediately after the last one we scanned. */
1713 if (end_prologue_addr == 0)
1714 end_prologue_addr = cur_pc;
1715
1716 return end_prologue_addr;
eec63939
AC
1717}
1718
29639122
JB
1719/* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1720 Procedures that use the 32-bit instruction set are handled by the
1721 mips_insn32 unwinder. */
1722
1723static struct mips_frame_cache *
1724mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
eec63939 1725{
29639122 1726 struct mips_frame_cache *cache;
eec63939
AC
1727
1728 if ((*this_cache) != NULL)
1729 return (*this_cache);
29639122
JB
1730 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1731 (*this_cache) = cache;
1732 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
eec63939 1733
29639122
JB
1734 /* Analyze the function prologue. */
1735 {
6de5b849
JB
1736 const CORE_ADDR pc =
1737 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 1738 CORE_ADDR start_addr;
eec63939 1739
29639122
JB
1740 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1741 if (start_addr == 0)
1742 start_addr = heuristic_proc_start (pc);
1743 /* We can't analyze the prologue if we couldn't find the begining
1744 of the function. */
1745 if (start_addr == 0)
1746 return cache;
eec63939 1747
29639122
JB
1748 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1749 }
1750
3e8c568d 1751 /* gdbarch_sp_regnum contains the value and not the address. */
72a155b4
UW
1752 trad_frame_set_value (cache->saved_regs,
1753 gdbarch_num_regs (get_frame_arch (next_frame))
1754 + MIPS_SP_REGNUM,
1755 cache->base);
eec63939 1756
29639122 1757 return (*this_cache);
eec63939
AC
1758}
1759
1760static void
29639122
JB
1761mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
eec63939 1763{
29639122
JB
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
93d42b30
DJ
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
eec63939
AC
1768}
1769
1770static void
29639122 1771mips_insn16_frame_prev_register (struct frame_info *next_frame,
eec63939
AC
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 1775 int *realnump, gdb_byte *valuep)
eec63939 1776{
29639122
JB
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
eec63939
AC
1781}
1782
29639122 1783static const struct frame_unwind mips_insn16_frame_unwind =
eec63939
AC
1784{
1785 NORMAL_FRAME,
29639122
JB
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
eec63939
AC
1788};
1789
1790static const struct frame_unwind *
29639122 1791mips_insn16_frame_sniffer (struct frame_info *next_frame)
eec63939 1792{
6de5b849 1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 1794 if (mips_pc_is_mips16 (pc))
29639122
JB
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
eec63939
AC
1797}
1798
1799static CORE_ADDR
29639122
JB
1800mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
eec63939 1802{
29639122
JB
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
eec63939
AC
1806}
1807
29639122 1808static const struct frame_base mips_insn16_frame_base =
eec63939 1809{
29639122
JB
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
eec63939
AC
1814};
1815
1816static const struct frame_base *
29639122 1817mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
eec63939 1818{
29639122
JB
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
eec63939
AC
1821 else
1822 return NULL;
edfae063
AC
1823}
1824
29639122
JB
1825/* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828void
1829reset_saved_regs (struct mips_frame_cache *this_cache)
c906108c 1830{
29639122
JB
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
f57d151a 1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
29639122 1836 int i;
64159455 1837
29639122
JB
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
c906108c
SS
1843}
1844
29639122
JB
1845/* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
c906108c 1848
875e1767 1849static CORE_ADDR
29639122
JB
1850mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
c906108c 1853{
29639122
JB
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
8fa9cfa1 1859
29639122
JB
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
72a155b4 1863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
8fa9cfa1 1864
29639122
JB
1865 /* Can be called when there's no process, and hence when there's no
1866 NEXT_FRAME. */
1867 if (next_frame != NULL)
d2ca4222 1868 sp = frame_unwind_register_signed (next_frame,
72a155b4 1869 gdbarch_num_regs (gdbarch)
d2ca4222 1870 + MIPS_SP_REGNUM);
8fa9cfa1 1871 else
29639122 1872 sp = 0;
9022177c 1873
29639122
JB
1874 if (limit_pc > start_pc + 200)
1875 limit_pc = start_pc + 200;
9022177c 1876
29639122 1877restart:
9022177c 1878
29639122 1879 frame_offset = 0;
95ac2dcf 1880 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
9022177c 1881 {
29639122
JB
1882 unsigned long inst, high_word, low_word;
1883 int reg;
9022177c 1884
29639122
JB
1885 /* Fetch the instruction. */
1886 inst = (unsigned long) mips_fetch_instruction (cur_pc);
9022177c 1887
29639122
JB
1888 /* Save some code by pre-extracting some useful fields. */
1889 high_word = (inst >> 16) & 0xffff;
1890 low_word = inst & 0xffff;
1891 reg = high_word & 0x1f;
fe29b929 1892
29639122
JB
1893 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1894 || high_word == 0x23bd /* addi $sp,$sp,-i */
1895 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1896 {
1897 if (low_word & 0x8000) /* negative stack adjustment? */
1898 frame_offset += 0x10000 - low_word;
1899 else
1900 /* Exit loop if a positive stack adjustment is found, which
1901 usually means that the stack cleanup code in the function
1902 epilogue is reached. */
1903 break;
1904 seen_sp_adjust = 1;
1905 }
1906 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1907 {
1908 set_reg_offset (this_cache, reg, sp + low_word);
1909 }
1910 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1911 {
1912 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1913 set_reg_offset (this_cache, reg, sp + low_word);
1914 }
1915 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1916 {
1917 /* Old gcc frame, r30 is virtual frame pointer. */
1918 if ((long) low_word != frame_offset)
1919 frame_addr = sp + low_word;
d2ca4222 1920 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1921 {
1922 unsigned alloca_adjust;
a4b8ebc8 1923
29639122 1924 frame_reg = 30;
d2ca4222 1925 frame_addr = frame_unwind_register_signed
72a155b4 1926 (next_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1927
29639122
JB
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
d2ca4222 1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
29639122
JB
1951 {
1952 unsigned alloca_adjust;
c906108c 1953
29639122 1954 frame_reg = 30;
d2ca4222 1955 frame_addr = frame_unwind_register_signed
72a155b4 1956 (next_frame, gdbarch_num_regs (gdbarch) + 30);
d2ca4222 1957
29639122
JB
1958 alloca_adjust = (unsigned) (frame_addr - sp);
1959 if (alloca_adjust > 0)
1960 {
1961 /* FP > SP + frame_size. This may be because of
1962 an alloca or somethings similar. Fix sp to
1963 "pre-alloca" value, and try again. */
1964 sp = frame_addr;
1965 /* Need to reset the status of all registers. Otherwise,
1966 we will hit a guard that prevents the new address
1967 for each register to be recomputed during the second
1968 pass. */
1969 reset_saved_regs (this_cache);
1970 goto restart;
1971 }
1972 }
1973 }
1974 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1975 {
1976 set_reg_offset (this_cache, reg, frame_addr + low_word);
1977 }
1978 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1979 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1980 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1981 || high_word == 0x3c1c /* lui $gp,n */
1982 || high_word == 0x279c /* addiu $gp,$gp,n */
1983 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1984 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1985 )
1986 {
1987 /* These instructions are part of the prologue, but we don't
1988 need to do anything special to handle them. */
1989 }
1990 /* The instructions below load $at or $t0 with an immediate
1991 value in preparation for a stack adjustment via
1992 subu $sp,$sp,[$at,$t0]. These instructions could also
1993 initialize a local variable, so we accept them only before
1994 a stack adjustment instruction was seen. */
1995 else if (!seen_sp_adjust
1996 && (high_word == 0x3c01 /* lui $at,n */
1997 || high_word == 0x3c08 /* lui $t0,n */
1998 || high_word == 0x3421 /* ori $at,$at,n */
1999 || high_word == 0x3508 /* ori $t0,$t0,n */
2000 || high_word == 0x3401 /* ori $at,$zero,n */
2001 || high_word == 0x3408 /* ori $t0,$zero,n */
2002 ))
2003 {
95ac2dcf 2004 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
29639122
JB
2005 }
2006 else
2007 {
2008 /* This instruction is not an instruction typically found
2009 in a prologue, so we must have reached the end of the
2010 prologue. */
2011 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2012 loop now? Why would we need to continue scanning the function
2013 instructions? */
2014 if (end_prologue_addr == 0)
2015 end_prologue_addr = cur_pc;
2016 }
a4b8ebc8 2017 }
c906108c 2018
29639122
JB
2019 if (this_cache != NULL)
2020 {
2021 this_cache->base =
f57d151a 2022 (frame_unwind_register_signed (next_frame,
72a155b4 2023 gdbarch_num_regs (gdbarch) + frame_reg)
29639122
JB
2024 + frame_offset);
2025 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2026 this assignment below, eventually. But it's still needed
2027 for now. */
72a155b4
UW
2028 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2029 + mips_regnum (gdbarch)->pc]
2030 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
f57d151a 2031 + MIPS_RA_REGNUM];
29639122 2032 }
c906108c 2033
29639122
JB
2034 /* If we didn't reach the end of the prologue when scanning the function
2035 instructions, then set end_prologue_addr to the address of the
2036 instruction immediately after the last one we scanned. */
2037 /* brobecker/2004-10-10: I don't think this would ever happen, but
2038 we may as well be careful and do our best if we have a null
2039 end_prologue_addr. */
2040 if (end_prologue_addr == 0)
2041 end_prologue_addr = cur_pc;
2042
2043 /* In a frameless function, we might have incorrectly
2044 skipped some load immediate instructions. Undo the skipping
2045 if the load immediate was not followed by a stack adjustment. */
2046 if (load_immediate_bytes && !seen_sp_adjust)
2047 end_prologue_addr -= load_immediate_bytes;
c906108c 2048
29639122 2049 return end_prologue_addr;
c906108c
SS
2050}
2051
29639122
JB
2052/* Heuristic unwinder for procedures using 32-bit instructions (covers
2053 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2054 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2055 unwinder. */
c906108c 2056
29639122
JB
2057static struct mips_frame_cache *
2058mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
c906108c 2059{
29639122 2060 struct mips_frame_cache *cache;
c906108c 2061
29639122
JB
2062 if ((*this_cache) != NULL)
2063 return (*this_cache);
c5aa993b 2064
29639122
JB
2065 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2066 (*this_cache) = cache;
2067 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c5aa993b 2068
29639122
JB
2069 /* Analyze the function prologue. */
2070 {
6de5b849
JB
2071 const CORE_ADDR pc =
2072 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
29639122 2073 CORE_ADDR start_addr;
c906108c 2074
29639122
JB
2075 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2076 if (start_addr == 0)
2077 start_addr = heuristic_proc_start (pc);
2078 /* We can't analyze the prologue if we couldn't find the begining
2079 of the function. */
2080 if (start_addr == 0)
2081 return cache;
c5aa993b 2082
29639122
JB
2083 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2084 }
2085
3e8c568d 2086 /* gdbarch_sp_regnum contains the value and not the address. */
f57d151a 2087 trad_frame_set_value (cache->saved_regs,
72a155b4
UW
2088 gdbarch_num_regs (get_frame_arch (next_frame))
2089 + MIPS_SP_REGNUM,
f57d151a 2090 cache->base);
c5aa993b 2091
29639122 2092 return (*this_cache);
c906108c
SS
2093}
2094
29639122
JB
2095static void
2096mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2097 struct frame_id *this_id)
c906108c 2098{
29639122
JB
2099 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2100 this_cache);
93d42b30
DJ
2101 (*this_id) = frame_id_build (info->base,
2102 frame_func_unwind (next_frame, NORMAL_FRAME));
29639122 2103}
c906108c 2104
29639122
JB
2105static void
2106mips_insn32_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2110 int *realnump, gdb_byte *valuep)
29639122
JB
2111{
2112 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2113 this_cache);
2114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
c906108c
SS
2116}
2117
29639122
JB
2118static const struct frame_unwind mips_insn32_frame_unwind =
2119{
2120 NORMAL_FRAME,
2121 mips_insn32_frame_this_id,
2122 mips_insn32_frame_prev_register
2123};
c906108c 2124
29639122
JB
2125static const struct frame_unwind *
2126mips_insn32_frame_sniffer (struct frame_info *next_frame)
2127{
6de5b849 2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
0fe7e7c8 2129 if (! mips_pc_is_mips16 (pc))
29639122
JB
2130 return &mips_insn32_frame_unwind;
2131 return NULL;
2132}
c906108c 2133
1c645fec 2134static CORE_ADDR
29639122
JB
2135mips_insn32_frame_base_address (struct frame_info *next_frame,
2136 void **this_cache)
c906108c 2137{
29639122
JB
2138 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2139 this_cache);
2140 return info->base;
2141}
c906108c 2142
29639122
JB
2143static const struct frame_base mips_insn32_frame_base =
2144{
2145 &mips_insn32_frame_unwind,
2146 mips_insn32_frame_base_address,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address
2149};
1c645fec 2150
29639122
JB
2151static const struct frame_base *
2152mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2153{
2154 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2155 return &mips_insn32_frame_base;
a65bbe44 2156 else
29639122
JB
2157 return NULL;
2158}
a65bbe44 2159
29639122
JB
2160static struct trad_frame_cache *
2161mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2162{
2163 CORE_ADDR pc;
2164 CORE_ADDR start_addr;
2165 CORE_ADDR stack_addr;
2166 struct trad_frame_cache *this_trad_cache;
72a155b4 2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
c906108c 2168
29639122
JB
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
1c645fec 2173
29639122 2174 /* The return address is in the link register. */
3e8c568d 2175 trad_frame_set_reg_realreg (this_trad_cache,
72a155b4
UW
2176 gdbarch_pc_regnum (gdbarch),
2177 (gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM));
1c645fec 2178
29639122
JB
2179 /* Frame ID, since it's a frameless / stackless function, no stack
2180 space is allocated and SP on entry is the current SP. */
2181 pc = frame_pc_unwind (next_frame);
2182 find_pc_partial_function (pc, NULL, &start_addr, NULL);
4c7d22cb 2183 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
aa6c981f 2184 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
1c645fec 2185
29639122
JB
2186 /* Assume that the frame's base is the same as the
2187 stack-pointer. */
2188 trad_frame_set_this_base (this_trad_cache, stack_addr);
c906108c 2189
29639122
JB
2190 return this_trad_cache;
2191}
c906108c 2192
29639122
JB
2193static void
2194mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2195 struct frame_id *this_id)
2196{
2197 struct trad_frame_cache *this_trad_cache
2198 = mips_stub_frame_cache (next_frame, this_cache);
2199 trad_frame_get_id (this_trad_cache, this_id);
2200}
c906108c 2201
29639122
JB
2202static void
2203mips_stub_frame_prev_register (struct frame_info *next_frame,
2204 void **this_cache,
2205 int regnum, int *optimizedp,
2206 enum lval_type *lvalp, CORE_ADDR *addrp,
a8a0fc4c 2207 int *realnump, gdb_byte *valuep)
29639122
JB
2208{
2209 struct trad_frame_cache *this_trad_cache
2210 = mips_stub_frame_cache (next_frame, this_cache);
2211 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2212 lvalp, addrp, realnump, valuep);
2213}
c906108c 2214
29639122
JB
2215static const struct frame_unwind mips_stub_frame_unwind =
2216{
2217 NORMAL_FRAME,
2218 mips_stub_frame_this_id,
2219 mips_stub_frame_prev_register
2220};
c906108c 2221
29639122
JB
2222static const struct frame_unwind *
2223mips_stub_frame_sniffer (struct frame_info *next_frame)
2224{
aa6c981f 2225 gdb_byte dummy[4];
979b38e0 2226 struct obj_section *s;
93d42b30 2227 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
979b38e0 2228
aa6c981f
DJ
2229 /* Use the stub unwinder for unreadable code. */
2230 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2231 return &mips_stub_frame_unwind;
2232
29639122
JB
2233 if (in_plt_section (pc, NULL))
2234 return &mips_stub_frame_unwind;
979b38e0
DJ
2235
2236 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2237 s = find_pc_section (pc);
2238
2239 if (s != NULL
2240 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2241 ".MIPS.stubs") == 0)
2242 return &mips_stub_frame_unwind;
2243
2244 return NULL;
29639122 2245}
c906108c 2246
29639122
JB
2247static CORE_ADDR
2248mips_stub_frame_base_address (struct frame_info *next_frame,
2249 void **this_cache)
2250{
2251 struct trad_frame_cache *this_trad_cache
2252 = mips_stub_frame_cache (next_frame, this_cache);
2253 return trad_frame_get_this_base (this_trad_cache);
2254}
0fce0821 2255
29639122
JB
2256static const struct frame_base mips_stub_frame_base =
2257{
2258 &mips_stub_frame_unwind,
2259 mips_stub_frame_base_address,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address
2262};
2263
2264static const struct frame_base *
2265mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2266{
2267 if (mips_stub_frame_sniffer (next_frame) != NULL)
2268 return &mips_stub_frame_base;
2269 else
2270 return NULL;
2271}
2272
29639122 2273/* mips_addr_bits_remove - remove useless address bits */
65596487 2274
29639122
JB
2275static CORE_ADDR
2276mips_addr_bits_remove (CORE_ADDR addr)
65596487 2277{
29639122
JB
2278 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2279 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2280 /* This hack is a work-around for existing boards using PMON, the
2281 simulator, and any other 64-bit targets that doesn't have true
2282 64-bit addressing. On these targets, the upper 32 bits of
2283 addresses are ignored by the hardware. Thus, the PC or SP are
2284 likely to have been sign extended to all 1s by instruction
2285 sequences that load 32-bit addresses. For example, a typical
2286 piece of code that loads an address is this:
65596487 2287
29639122
JB
2288 lui $r2, <upper 16 bits>
2289 ori $r2, <lower 16 bits>
65596487 2290
29639122
JB
2291 But the lui sign-extends the value such that the upper 32 bits
2292 may be all 1s. The workaround is simply to mask off these
2293 bits. In the future, gcc may be changed to support true 64-bit
2294 addressing, and this masking will have to be disabled. */
2295 return addr &= 0xffffffffUL;
2296 else
2297 return addr;
65596487
JB
2298}
2299
29639122
JB
2300/* mips_software_single_step() is called just before we want to resume
2301 the inferior, if we want to single-step it but there is no hardware
2302 or kernel single-step support (MIPS on GNU/Linux for example). We find
e0cd558a 2303 the target of the coming instruction and breakpoint it. */
29639122 2304
e6590a1b 2305int
0b1b3e42 2306mips_software_single_step (struct frame_info *frame)
c906108c 2307{
8181d85f 2308 CORE_ADDR pc, next_pc;
65596487 2309
0b1b3e42
UW
2310 pc = get_frame_pc (frame);
2311 next_pc = mips_next_pc (frame, pc);
e6590a1b 2312
e0cd558a 2313 insert_single_step_breakpoint (next_pc);
e6590a1b 2314 return 1;
29639122 2315}
a65bbe44 2316
29639122
JB
2317/* Test whether the PC points to the return instruction at the
2318 end of a function. */
65596487 2319
29639122
JB
2320static int
2321mips_about_to_return (CORE_ADDR pc)
2322{
0fe7e7c8 2323 if (mips_pc_is_mips16 (pc))
29639122
JB
2324 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2325 generates a "jr $ra"; other times it generates code to load
2326 the return address from the stack to an accessible register (such
2327 as $a3), then a "jr" using that register. This second case
2328 is almost impossible to distinguish from an indirect jump
2329 used for switch statements, so we don't even try. */
2330 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2331 else
2332 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2333}
c906108c 2334
c906108c 2335
29639122
JB
2336/* This fencepost looks highly suspicious to me. Removing it also
2337 seems suspicious as it could affect remote debugging across serial
2338 lines. */
c906108c 2339
29639122
JB
2340static CORE_ADDR
2341heuristic_proc_start (CORE_ADDR pc)
2342{
2343 CORE_ADDR start_pc;
2344 CORE_ADDR fence;
2345 int instlen;
2346 int seen_adjsp = 0;
65596487 2347
bf6ae464 2348 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
29639122
JB
2349 start_pc = pc;
2350 fence = start_pc - heuristic_fence_post;
2351 if (start_pc == 0)
2352 return 0;
65596487 2353
29639122
JB
2354 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2355 fence = VM_MIN_ADDRESS;
65596487 2356
95ac2dcf 2357 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
98b4dd94 2358
29639122
JB
2359 /* search back for previous return */
2360 for (start_pc -= instlen;; start_pc -= instlen)
2361 if (start_pc < fence)
2362 {
2363 /* It's not clear to me why we reach this point when
2364 stop_soon, but with this test, at least we
2365 don't print out warnings for every child forked (eg, on
2366 decstation). 22apr93 rich@cygnus.com. */
2367 if (stop_soon == NO_STOP_QUIETLY)
2368 {
2369 static int blurb_printed = 0;
98b4dd94 2370
8a3fe4f8 2371 warning (_("GDB can't find the start of the function at 0x%s."),
29639122
JB
2372 paddr_nz (pc));
2373
2374 if (!blurb_printed)
2375 {
2376 /* This actually happens frequently in embedded
2377 development, when you first connect to a board
2378 and your stack pointer and pc are nowhere in
2379 particular. This message needs to give people
2380 in that situation enough information to
2381 determine that it's no big deal. */
2382 printf_filtered ("\n\
2383 GDB is unable to find the start of the function at 0x%s\n\
2384and thus can't determine the size of that function's stack frame.\n\
2385This means that GDB may be unable to access that stack frame, or\n\
2386the frames below it.\n\
2387 This problem is most likely caused by an invalid program counter or\n\
2388stack pointer.\n\
2389 However, if you think GDB should simply search farther back\n\
2390from 0x%s for code which looks like the beginning of a\n\
2391function, you can increase the range of the search using the `set\n\
2392heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2393 blurb_printed = 1;
2394 }
2395 }
2396
2397 return 0;
2398 }
0fe7e7c8 2399 else if (mips_pc_is_mips16 (start_pc))
29639122
JB
2400 {
2401 unsigned short inst;
2402
2403 /* On MIPS16, any one of the following is likely to be the
2404 start of a function:
193774b3
MR
2405 extend save
2406 save
29639122
JB
2407 entry
2408 addiu sp,-n
2409 daddiu sp,-n
2410 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2411 inst = mips_fetch_instruction (start_pc);
193774b3
MR
2412 if ((inst & 0xff80) == 0x6480) /* save */
2413 {
2414 if (start_pc - instlen >= fence)
2415 {
2416 inst = mips_fetch_instruction (start_pc - instlen);
2417 if ((inst & 0xf800) == 0xf000) /* extend */
2418 start_pc -= instlen;
2419 }
2420 break;
2421 }
2422 else if (((inst & 0xf81f) == 0xe809
2423 && (inst & 0x700) != 0x700) /* entry */
2424 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2425 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2426 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
29639122
JB
2427 break;
2428 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2429 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2430 seen_adjsp = 1;
2431 else
2432 seen_adjsp = 0;
2433 }
2434 else if (mips_about_to_return (start_pc))
2435 {
4c7d22cb 2436 /* Skip return and its delay slot. */
95ac2dcf 2437 start_pc += 2 * MIPS_INSN32_SIZE;
29639122
JB
2438 break;
2439 }
2440
2441 return start_pc;
c906108c
SS
2442}
2443
6c0d6680
DJ
2444struct mips_objfile_private
2445{
2446 bfd_size_type size;
2447 char *contents;
2448};
2449
f09ded24
AC
2450/* According to the current ABI, should the type be passed in a
2451 floating-point register (assuming that there is space)? When there
a1f5b845 2452 is no FPU, FP are not even considered as possible candidates for
f09ded24
AC
2453 FP registers and, consequently this returns false - forces FP
2454 arguments into integer registers. */
2455
2456static int
2457fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2458{
2459 return ((typecode == TYPE_CODE_FLT
2460 || (MIPS_EABI
6d82d43b
AC
2461 && (typecode == TYPE_CODE_STRUCT
2462 || typecode == TYPE_CODE_UNION)
f09ded24 2463 && TYPE_NFIELDS (arg_type) == 1
b2d6f210
MS
2464 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2465 == TYPE_CODE_FLT))
c86b5b38 2466 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
f09ded24
AC
2467}
2468
49e790b0
DJ
2469/* On o32, argument passing in GPRs depends on the alignment of the type being
2470 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2471
2472static int
2473mips_type_needs_double_align (struct type *type)
2474{
2475 enum type_code typecode = TYPE_CODE (type);
361d1df0 2476
49e790b0
DJ
2477 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2478 return 1;
2479 else if (typecode == TYPE_CODE_STRUCT)
2480 {
2481 if (TYPE_NFIELDS (type) < 1)
2482 return 0;
2483 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2484 }
2485 else if (typecode == TYPE_CODE_UNION)
2486 {
361d1df0 2487 int i, n;
49e790b0
DJ
2488
2489 n = TYPE_NFIELDS (type);
2490 for (i = 0; i < n; i++)
2491 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2492 return 1;
2493 return 0;
2494 }
2495 return 0;
2496}
2497
dc604539
AC
2498/* Adjust the address downward (direction of stack growth) so that it
2499 is correctly aligned for a new stack frame. */
2500static CORE_ADDR
2501mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2502{
5b03f266 2503 return align_down (addr, 16);
dc604539
AC
2504}
2505
f7ab6ec6 2506static CORE_ADDR
7d9b040b 2507mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2508 struct regcache *regcache, CORE_ADDR bp_addr,
2509 int nargs, struct value **args, CORE_ADDR sp,
2510 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
2511{
2512 int argreg;
2513 int float_argreg;
2514 int argnum;
2515 int len = 0;
2516 int stack_offset = 0;
480d3dd2 2517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2518 CORE_ADDR func_addr = find_function_addr (function, NULL);
1a69e1e4 2519 int regsize = mips_abi_regsize (gdbarch);
c906108c 2520
25ab4790
AC
2521 /* For shared libraries, "t9" needs to point at the function
2522 address. */
4c7d22cb 2523 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2524
2525 /* Set the return address register to point to the entry point of
2526 the program, where a breakpoint lies in wait. */
4c7d22cb 2527 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2528
c906108c 2529 /* First ensure that the stack and structure return address (if any)
cb3d25d1
MS
2530 are properly aligned. The stack has to be at least 64-bit
2531 aligned even on 32-bit machines, because doubles must be 64-bit
2532 aligned. For n32 and n64, stack frames need to be 128-bit
2533 aligned, so we round to this widest known alignment. */
2534
5b03f266
AC
2535 sp = align_down (sp, 16);
2536 struct_addr = align_down (struct_addr, 16);
c5aa993b 2537
46e0f506 2538 /* Now make space on the stack for the args. We allocate more
c906108c 2539 than necessary for EABI, because the first few arguments are
46e0f506 2540 passed in registers, but that's OK. */
c906108c 2541 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2542 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
5b03f266 2543 sp -= align_up (len, 16);
c906108c 2544
9ace0497 2545 if (mips_debug)
6d82d43b 2546 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2547 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2548 paddr_nz (sp), (long) align_up (len, 16));
9ace0497 2549
c906108c 2550 /* Initialize the integer and float register pointers. */
4c7d22cb 2551 argreg = MIPS_A0_REGNUM;
72a155b4 2552 float_argreg = mips_fpa0_regnum (gdbarch);
c906108c 2553
46e0f506 2554 /* The struct_return pointer occupies the first parameter-passing reg. */
c906108c 2555 if (struct_return)
9ace0497
AC
2556 {
2557 if (mips_debug)
2558 fprintf_unfiltered (gdb_stdlog,
25ab4790 2559 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2560 argreg, paddr_nz (struct_addr));
9c9acae0 2561 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
9ace0497 2562 }
c906108c
SS
2563
2564 /* Now load as many as possible of the first arguments into
2565 registers, and push the rest onto the stack. Loop thru args
2566 from first to last. */
2567 for (argnum = 0; argnum < nargs; argnum++)
2568 {
47a35522
MK
2569 const gdb_byte *val;
2570 gdb_byte valbuf[MAX_REGISTER_SIZE];
ea7c478f 2571 struct value *arg = args[argnum];
4991999e 2572 struct type *arg_type = check_typedef (value_type (arg));
c906108c
SS
2573 int len = TYPE_LENGTH (arg_type);
2574 enum type_code typecode = TYPE_CODE (arg_type);
2575
9ace0497
AC
2576 if (mips_debug)
2577 fprintf_unfiltered (gdb_stdlog,
25ab4790 2578 "mips_eabi_push_dummy_call: %d len=%d type=%d",
acdb74a0 2579 argnum + 1, len, (int) typecode);
9ace0497 2580
c906108c 2581 /* The EABI passes structures that do not fit in a register by
46e0f506 2582 reference. */
1a69e1e4 2583 if (len > regsize
9ace0497 2584 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
c906108c 2585 {
1a69e1e4 2586 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
c906108c 2587 typecode = TYPE_CODE_PTR;
1a69e1e4 2588 len = regsize;
c906108c 2589 val = valbuf;
9ace0497
AC
2590 if (mips_debug)
2591 fprintf_unfiltered (gdb_stdlog, " push");
c906108c
SS
2592 }
2593 else
47a35522 2594 val = value_contents (arg);
c906108c
SS
2595
2596 /* 32-bit ABIs always start floating point arguments in an
acdb74a0
AC
2597 even-numbered floating point register. Round the FP register
2598 up before the check to see if there are any FP registers
46e0f506
MS
2599 left. Non MIPS_EABI targets also pass the FP in the integer
2600 registers so also round up normal registers. */
1a69e1e4 2601 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
acdb74a0
AC
2602 {
2603 if ((float_argreg & 1))
2604 float_argreg++;
2605 }
c906108c
SS
2606
2607 /* Floating point arguments passed in registers have to be
2608 treated specially. On 32-bit architectures, doubles
c5aa993b
JM
2609 are passed in register pairs; the even register gets
2610 the low word, and the odd register gets the high word.
2611 On non-EABI processors, the first two floating point arguments are
2612 also copied to general registers, because MIPS16 functions
2613 don't use float registers for arguments. This duplication of
2614 arguments in general registers can't hurt non-MIPS16 functions
2615 because those registers are normally skipped. */
1012bd0e
EZ
2616 /* MIPS_EABI squeezes a struct that contains a single floating
2617 point value into an FP register instead of pushing it onto the
46e0f506 2618 stack. */
f09ded24
AC
2619 if (fp_register_arg_p (typecode, arg_type)
2620 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
c906108c 2621 {
6da397e0
KB
2622 /* EABI32 will pass doubles in consecutive registers, even on
2623 64-bit cores. At one time, we used to check the size of
2624 `float_argreg' to determine whether or not to pass doubles
2625 in consecutive registers, but this is not sufficient for
2626 making the ABI determination. */
2627 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
c906108c 2628 {
72a155b4 2629 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 2630 == BFD_ENDIAN_BIG ? 4 : 0;
c906108c
SS
2631 unsigned long regval;
2632
2633 /* Write the low word of the double to the even register(s). */
c5aa993b 2634 regval = extract_unsigned_integer (val + low_offset, 4);
9ace0497 2635 if (mips_debug)
acdb74a0 2636 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2637 float_argreg, phex (regval, 4));
9c9acae0 2638 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2639
2640 /* Write the high word of the double to the odd register(s). */
c5aa993b 2641 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
9ace0497 2642 if (mips_debug)
acdb74a0 2643 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2644 float_argreg, phex (regval, 4));
9c9acae0 2645 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2646 }
2647 else
2648 {
2649 /* This is a floating point value that fits entirely
2650 in a single register. */
53a5351d 2651 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 2652 above to ensure that it is even register aligned. */
9ace0497
AC
2653 LONGEST regval = extract_unsigned_integer (val, len);
2654 if (mips_debug)
acdb74a0 2655 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
9ace0497 2656 float_argreg, phex (regval, len));
9c9acae0 2657 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
c906108c
SS
2658 }
2659 }
2660 else
2661 {
2662 /* Copy the argument to general registers or the stack in
2663 register-sized pieces. Large arguments are split between
2664 registers and stack. */
1a69e1e4
DJ
2665 /* Note: structs whose size is not a multiple of regsize
2666 are treated specially: Irix cc passes
d5ac5a39
AC
2667 them in registers where gcc sometimes puts them on the
2668 stack. For maximum compatibility, we will put them in
2669 both places. */
1a69e1e4 2670 int odd_sized_struct = (len > regsize && len % regsize != 0);
46e0f506 2671
f09ded24 2672 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2673 register are only written to memory. */
c906108c
SS
2674 while (len > 0)
2675 {
ebafbe83 2676 /* Remember if the argument was written to the stack. */
566f0f7a 2677 int stack_used_p = 0;
1a69e1e4 2678 int partial_len = (len < regsize ? len : regsize);
c906108c 2679
acdb74a0
AC
2680 if (mips_debug)
2681 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2682 partial_len);
2683
566f0f7a 2684 /* Write this portion of the argument to the stack. */
f09ded24
AC
2685 if (argreg > MIPS_LAST_ARG_REGNUM
2686 || odd_sized_struct
2687 || fp_register_arg_p (typecode, arg_type))
c906108c 2688 {
c906108c
SS
2689 /* Should shorter than int integer values be
2690 promoted to int before being stored? */
c906108c 2691 int longword_offset = 0;
9ace0497 2692 CORE_ADDR addr;
566f0f7a 2693 stack_used_p = 1;
72a155b4 2694 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7a292a7a 2695 {
1a69e1e4 2696 if (regsize == 8
480d3dd2
AC
2697 && (typecode == TYPE_CODE_INT
2698 || typecode == TYPE_CODE_PTR
6d82d43b 2699 || typecode == TYPE_CODE_FLT) && len <= 4)
1a69e1e4 2700 longword_offset = regsize - len;
480d3dd2
AC
2701 else if ((typecode == TYPE_CODE_STRUCT
2702 || typecode == TYPE_CODE_UNION)
1a69e1e4
DJ
2703 && TYPE_LENGTH (arg_type) < regsize)
2704 longword_offset = regsize - len;
7a292a7a 2705 }
c5aa993b 2706
9ace0497
AC
2707 if (mips_debug)
2708 {
cb3d25d1
MS
2709 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2710 paddr_nz (stack_offset));
2711 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2712 paddr_nz (longword_offset));
9ace0497 2713 }
361d1df0 2714
9ace0497
AC
2715 addr = sp + stack_offset + longword_offset;
2716
2717 if (mips_debug)
2718 {
2719 int i;
6d82d43b 2720 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1 2721 paddr_nz (addr));
9ace0497
AC
2722 for (i = 0; i < partial_len; i++)
2723 {
6d82d43b 2724 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1 2725 val[i] & 0xff);
9ace0497
AC
2726 }
2727 }
2728 write_memory (addr, val, partial_len);
c906108c
SS
2729 }
2730
f09ded24
AC
2731 /* Note!!! This is NOT an else clause. Odd sized
2732 structs may go thru BOTH paths. Floating point
46e0f506 2733 arguments will not. */
566f0f7a 2734 /* Write this portion of the argument to a general
6d82d43b 2735 purpose register. */
f09ded24
AC
2736 if (argreg <= MIPS_LAST_ARG_REGNUM
2737 && !fp_register_arg_p (typecode, arg_type))
c906108c 2738 {
6d82d43b
AC
2739 LONGEST regval =
2740 extract_unsigned_integer (val, partial_len);
c906108c 2741
9ace0497 2742 if (mips_debug)
acdb74a0 2743 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
9ace0497 2744 argreg,
1a69e1e4 2745 phex (regval, regsize));
9c9acae0 2746 regcache_cooked_write_unsigned (regcache, argreg, regval);
c906108c 2747 argreg++;
c906108c 2748 }
c5aa993b 2749
c906108c
SS
2750 len -= partial_len;
2751 val += partial_len;
2752
566f0f7a 2753 /* Compute the the offset into the stack at which we
6d82d43b 2754 will copy the next parameter.
566f0f7a 2755
566f0f7a 2756 In the new EABI (and the NABI32), the stack_offset
46e0f506 2757 only needs to be adjusted when it has been used. */
c906108c 2758
46e0f506 2759 if (stack_used_p)
1a69e1e4 2760 stack_offset += align_up (partial_len, regsize);
c906108c
SS
2761 }
2762 }
9ace0497
AC
2763 if (mips_debug)
2764 fprintf_unfiltered (gdb_stdlog, "\n");
c906108c
SS
2765 }
2766
f10683bb 2767 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 2768
0f71a2f6
JM
2769 /* Return adjusted stack pointer. */
2770 return sp;
2771}
2772
a1f5b845 2773/* Determine the return value convention being used. */
6d82d43b 2774
9c8fdbfa
AC
2775static enum return_value_convention
2776mips_eabi_return_value (struct gdbarch *gdbarch,
2777 struct type *type, struct regcache *regcache,
47a35522 2778 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 2779{
9c8fdbfa
AC
2780 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2781 return RETURN_VALUE_STRUCT_CONVENTION;
2782 if (readbuf)
2783 memset (readbuf, 0, TYPE_LENGTH (type));
2784 return RETURN_VALUE_REGISTER_CONVENTION;
6d82d43b
AC
2785}
2786
6d82d43b
AC
2787
2788/* N32/N64 ABI stuff. */
ebafbe83 2789
8d26208a
DJ
2790/* Search for a naturally aligned double at OFFSET inside a struct
2791 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2792 registers. */
2793
2794static int
2795mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2796{
2797 int i;
2798
2799 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2800 return 0;
2801
2802 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2803 return 0;
2804
2805 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2806 return 0;
2807
2808 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2809 {
2810 int pos;
2811 struct type *field_type;
2812
2813 /* We're only looking at normal fields. */
2814 if (TYPE_FIELD_STATIC (arg_type, i)
2815 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2816 continue;
2817
2818 /* If we have gone past the offset, there is no double to pass. */
2819 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2820 if (pos > offset)
2821 return 0;
2822
2823 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2824
2825 /* If this field is entirely before the requested offset, go
2826 on to the next one. */
2827 if (pos + TYPE_LENGTH (field_type) <= offset)
2828 continue;
2829
2830 /* If this is our special aligned double, we can stop. */
2831 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2832 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2833 return 1;
2834
2835 /* This field starts at or before the requested offset, and
2836 overlaps it. If it is a structure, recurse inwards. */
2837 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2838 }
2839
2840 return 0;
2841}
2842
f7ab6ec6 2843static CORE_ADDR
7d9b040b 2844mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
2845 struct regcache *regcache, CORE_ADDR bp_addr,
2846 int nargs, struct value **args, CORE_ADDR sp,
2847 int struct_return, CORE_ADDR struct_addr)
cb3d25d1
MS
2848{
2849 int argreg;
2850 int float_argreg;
2851 int argnum;
2852 int len = 0;
2853 int stack_offset = 0;
480d3dd2 2854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 2855 CORE_ADDR func_addr = find_function_addr (function, NULL);
cb3d25d1 2856
25ab4790
AC
2857 /* For shared libraries, "t9" needs to point at the function
2858 address. */
4c7d22cb 2859 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
2860
2861 /* Set the return address register to point to the entry point of
2862 the program, where a breakpoint lies in wait. */
4c7d22cb 2863 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 2864
cb3d25d1
MS
2865 /* First ensure that the stack and structure return address (if any)
2866 are properly aligned. The stack has to be at least 64-bit
2867 aligned even on 32-bit machines, because doubles must be 64-bit
2868 aligned. For n32 and n64, stack frames need to be 128-bit
2869 aligned, so we round to this widest known alignment. */
2870
5b03f266
AC
2871 sp = align_down (sp, 16);
2872 struct_addr = align_down (struct_addr, 16);
cb3d25d1
MS
2873
2874 /* Now make space on the stack for the args. */
2875 for (argnum = 0; argnum < nargs; argnum++)
1a69e1e4 2876 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
5b03f266 2877 sp -= align_up (len, 16);
cb3d25d1
MS
2878
2879 if (mips_debug)
6d82d43b 2880 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
2881 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2882 paddr_nz (sp), (long) align_up (len, 16));
cb3d25d1
MS
2883
2884 /* Initialize the integer and float register pointers. */
4c7d22cb 2885 argreg = MIPS_A0_REGNUM;
72a155b4 2886 float_argreg = mips_fpa0_regnum (gdbarch);
cb3d25d1 2887
46e0f506 2888 /* The struct_return pointer occupies the first parameter-passing reg. */
cb3d25d1
MS
2889 if (struct_return)
2890 {
2891 if (mips_debug)
2892 fprintf_unfiltered (gdb_stdlog,
25ab4790 2893 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
cb3d25d1 2894 argreg, paddr_nz (struct_addr));
9c9acae0 2895 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
cb3d25d1
MS
2896 }
2897
2898 /* Now load as many as possible of the first arguments into
2899 registers, and push the rest onto the stack. Loop thru args
2900 from first to last. */
2901 for (argnum = 0; argnum < nargs; argnum++)
2902 {
47a35522 2903 const gdb_byte *val;
cb3d25d1 2904 struct value *arg = args[argnum];
4991999e 2905 struct type *arg_type = check_typedef (value_type (arg));
cb3d25d1
MS
2906 int len = TYPE_LENGTH (arg_type);
2907 enum type_code typecode = TYPE_CODE (arg_type);
2908
2909 if (mips_debug)
2910 fprintf_unfiltered (gdb_stdlog,
25ab4790 2911 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
cb3d25d1
MS
2912 argnum + 1, len, (int) typecode);
2913
47a35522 2914 val = value_contents (arg);
cb3d25d1
MS
2915
2916 if (fp_register_arg_p (typecode, arg_type)
8d26208a 2917 && argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2918 {
2919 /* This is a floating point value that fits entirely
2920 in a single register. */
cb3d25d1
MS
2921 LONGEST regval = extract_unsigned_integer (val, len);
2922 if (mips_debug)
2923 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2924 float_argreg, phex (regval, len));
8d26208a 2925 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
cb3d25d1
MS
2926
2927 if (mips_debug)
2928 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2929 argreg, phex (regval, len));
9c9acae0 2930 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
2931 float_argreg++;
2932 argreg++;
cb3d25d1
MS
2933 }
2934 else
2935 {
2936 /* Copy the argument to general registers or the stack in
2937 register-sized pieces. Large arguments are split between
2938 registers and stack. */
ab2e1992
MR
2939 /* For N32/N64, structs, unions, or other composite types are
2940 treated as a sequence of doublewords, and are passed in integer
2941 or floating point registers as though they were simple scalar
2942 parameters to the extent that they fit, with any excess on the
2943 stack packed according to the normal memory layout of the
2944 object.
2945 The caller does not reserve space for the register arguments;
2946 the callee is responsible for reserving it if required. */
cb3d25d1 2947 /* Note: Floating-point values that didn't fit into an FP
6d82d43b 2948 register are only written to memory. */
cb3d25d1
MS
2949 while (len > 0)
2950 {
ad018eee 2951 /* Remember if the argument was written to the stack. */
cb3d25d1 2952 int stack_used_p = 0;
1a69e1e4 2953 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
cb3d25d1
MS
2954
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2957 partial_len);
2958
8d26208a
DJ
2959 if (fp_register_arg_p (typecode, arg_type))
2960 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2961
cb3d25d1 2962 /* Write this portion of the argument to the stack. */
ab2e1992 2963 if (argreg > MIPS_LAST_ARG_REGNUM)
cb3d25d1
MS
2964 {
2965 /* Should shorter than int integer values be
2966 promoted to int before being stored? */
2967 int longword_offset = 0;
2968 CORE_ADDR addr;
2969 stack_used_p = 1;
72a155b4 2970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
cb3d25d1 2971 {
1a69e1e4
DJ
2972 if ((typecode == TYPE_CODE_INT
2973 || typecode == TYPE_CODE_PTR
2974 || typecode == TYPE_CODE_FLT)
2975 && len <= 4)
2976 longword_offset = MIPS64_REGSIZE - len;
cb3d25d1
MS
2977 }
2978
2979 if (mips_debug)
2980 {
2981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2982 paddr_nz (stack_offset));
2983 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2984 paddr_nz (longword_offset));
2985 }
2986
2987 addr = sp + stack_offset + longword_offset;
2988
2989 if (mips_debug)
2990 {
2991 int i;
6d82d43b 2992 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
cb3d25d1
MS
2993 paddr_nz (addr));
2994 for (i = 0; i < partial_len; i++)
2995 {
6d82d43b 2996 fprintf_unfiltered (gdb_stdlog, "%02x",
cb3d25d1
MS
2997 val[i] & 0xff);
2998 }
2999 }
3000 write_memory (addr, val, partial_len);
3001 }
3002
3003 /* Note!!! This is NOT an else clause. Odd sized
8d26208a 3004 structs may go thru BOTH paths. */
cb3d25d1 3005 /* Write this portion of the argument to a general
6d82d43b 3006 purpose register. */
8d26208a 3007 if (argreg <= MIPS_LAST_ARG_REGNUM)
cb3d25d1 3008 {
6d82d43b
AC
3009 LONGEST regval =
3010 extract_unsigned_integer (val, partial_len);
cb3d25d1
MS
3011
3012 /* A non-floating-point argument being passed in a
3013 general register. If a struct or union, and if
3014 the remaining length is smaller than the register
3015 size, we have to adjust the register value on
3016 big endian targets.
3017
3018 It does not seem to be necessary to do the
1a69e1e4 3019 same for integral types. */
cb3d25d1 3020
72a155b4 3021 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3022 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3023 && (typecode == TYPE_CODE_STRUCT
3024 || typecode == TYPE_CODE_UNION))
1a69e1e4 3025 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3026 * TARGET_CHAR_BIT);
cb3d25d1
MS
3027
3028 if (mips_debug)
3029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3030 argreg,
1a69e1e4 3031 phex (regval, MIPS64_REGSIZE));
9c9acae0 3032 regcache_cooked_write_unsigned (regcache, argreg, regval);
8d26208a
DJ
3033
3034 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3035 TYPE_LENGTH (arg_type) - len))
3036 {
3037 if (mips_debug)
3038 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3039 float_argreg,
3040 phex (regval, MIPS64_REGSIZE));
3041 regcache_cooked_write_unsigned (regcache, float_argreg,
3042 regval);
3043 }
3044
3045 float_argreg++;
cb3d25d1
MS
3046 argreg++;
3047 }
3048
3049 len -= partial_len;
3050 val += partial_len;
3051
3052 /* Compute the the offset into the stack at which we
6d82d43b 3053 will copy the next parameter.
cb3d25d1
MS
3054
3055 In N32 (N64?), the stack_offset only needs to be
3056 adjusted when it has been used. */
3057
3058 if (stack_used_p)
1a69e1e4 3059 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
cb3d25d1
MS
3060 }
3061 }
3062 if (mips_debug)
3063 fprintf_unfiltered (gdb_stdlog, "\n");
3064 }
3065
f10683bb 3066 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3067
cb3d25d1
MS
3068 /* Return adjusted stack pointer. */
3069 return sp;
3070}
3071
6d82d43b
AC
3072static enum return_value_convention
3073mips_n32n64_return_value (struct gdbarch *gdbarch,
3074 struct type *type, struct regcache *regcache,
47a35522 3075 gdb_byte *readbuf, const gdb_byte *writebuf)
ebafbe83 3076{
72a155b4 3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
b18bb924
MR
3078
3079 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3080
3081 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3082 if needed), as appropriate for the type. Composite results (struct,
3083 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3084 following rules:
3085
3086 * A struct with only one or two floating point fields is returned in $f0
3087 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3088 case.
3089
3090 * Any other struct or union results of at most 128 bits are returned in
3091 $2 (first 64 bits) and $3 (remainder, if necessary).
3092
3093 * Larger composite results are handled by converting the function to a
3094 procedure with an implicit first parameter, which is a pointer to an area
3095 reserved by the caller to receive the result. [The o32-bit ABI requires
3096 that all composite results be handled by conversion to implicit first
3097 parameters. The MIPS/SGI Fortran implementation has always made a
3098 specific exception to return COMPLEX results in the floating point
3099 registers.] */
3100
3101 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1a69e1e4 3102 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
6d82d43b 3103 return RETURN_VALUE_STRUCT_CONVENTION;
d05f6826
DJ
3104 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3105 && TYPE_LENGTH (type) == 16
3106 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3107 {
3108 /* A 128-bit floating-point value fills both $f0 and $f2. The
3109 two registers are used in the same as memory order, so the
3110 eight bytes with the lower memory address are in $f0. */
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
ba32f989 3113 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3114 gdbarch_num_regs (gdbarch)
3115 + mips_regnum (gdbarch)->fp0,
3116 8, gdbarch_byte_order (gdbarch),
4c6b5505 3117 readbuf, writebuf, 0);
ba32f989 3118 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3119 gdbarch_num_regs (gdbarch)
3120 + mips_regnum (gdbarch)->fp0 + 2,
3121 8, gdbarch_byte_order (gdbarch),
4c6b5505 3122 readbuf ? readbuf + 8 : readbuf,
d05f6826
DJ
3123 writebuf ? writebuf + 8 : writebuf, 0);
3124 return RETURN_VALUE_REGISTER_CONVENTION;
3125 }
6d82d43b
AC
3126 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3127 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3128 {
59aa1faa 3129 /* A single or double floating-point value that fits in FP0. */
6d82d43b
AC
3130 if (mips_debug)
3131 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3132 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3133 gdbarch_num_regs (gdbarch)
3134 + mips_regnum (gdbarch)->fp0,
6d82d43b 3135 TYPE_LENGTH (type),
72a155b4 3136 gdbarch_byte_order (gdbarch),
4c6b5505 3137 readbuf, writebuf, 0);
6d82d43b
AC
3138 return RETURN_VALUE_REGISTER_CONVENTION;
3139 }
3140 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3141 && TYPE_NFIELDS (type) <= 2
3142 && TYPE_NFIELDS (type) >= 1
3143 && ((TYPE_NFIELDS (type) == 1
b18bb924 3144 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b
AC
3145 == TYPE_CODE_FLT))
3146 || (TYPE_NFIELDS (type) == 2
b18bb924 3147 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
6d82d43b 3148 == TYPE_CODE_FLT)
b18bb924 3149 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
6d82d43b
AC
3150 == TYPE_CODE_FLT)))
3151 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3152 {
3153 /* A struct that contains one or two floats. Each value is part
3154 in the least significant part of their floating point
3155 register.. */
6d82d43b
AC
3156 int regnum;
3157 int field;
72a155b4 3158 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3159 field < TYPE_NFIELDS (type); field++, regnum += 2)
3160 {
3161 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3162 / TARGET_CHAR_BIT);
3163 if (mips_debug)
3164 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3165 offset);
ba32f989
DJ
3166 mips_xfer_register (gdbarch, regcache,
3167 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 3168 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3169 gdbarch_byte_order (gdbarch),
4c6b5505 3170 readbuf, writebuf, offset);
6d82d43b
AC
3171 }
3172 return RETURN_VALUE_REGISTER_CONVENTION;
3173 }
3174 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3175 || TYPE_CODE (type) == TYPE_CODE_UNION)
3176 {
3177 /* A structure or union. Extract the left justified value,
3178 regardless of the byte order. I.e. DO NOT USE
3179 mips_xfer_lower. */
3180 int offset;
3181 int regnum;
4c7d22cb 3182 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3183 offset < TYPE_LENGTH (type);
72a155b4 3184 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3185 {
72a155b4 3186 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3187 if (offset + xfer > TYPE_LENGTH (type))
3188 xfer = TYPE_LENGTH (type) - offset;
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3191 offset, xfer, regnum);
ba32f989
DJ
3192 mips_xfer_register (gdbarch, regcache,
3193 gdbarch_num_regs (gdbarch) + regnum,
72a155b4
UW
3194 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3195 offset);
6d82d43b
AC
3196 }
3197 return RETURN_VALUE_REGISTER_CONVENTION;
3198 }
3199 else
3200 {
3201 /* A scalar extract each part but least-significant-byte
3202 justified. */
3203 int offset;
3204 int regnum;
4c7d22cb 3205 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3206 offset < TYPE_LENGTH (type);
72a155b4 3207 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3208 {
72a155b4 3209 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3210 if (offset + xfer > TYPE_LENGTH (type))
3211 xfer = TYPE_LENGTH (type) - offset;
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3214 offset, xfer, regnum);
ba32f989
DJ
3215 mips_xfer_register (gdbarch, regcache,
3216 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 3217 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 3218 readbuf, writebuf, offset);
6d82d43b
AC
3219 }
3220 return RETURN_VALUE_REGISTER_CONVENTION;
3221 }
3222}
3223
3224/* O32 ABI stuff. */
3225
3226static CORE_ADDR
7d9b040b 3227mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3228 struct regcache *regcache, CORE_ADDR bp_addr,
3229 int nargs, struct value **args, CORE_ADDR sp,
3230 int struct_return, CORE_ADDR struct_addr)
3231{
3232 int argreg;
3233 int float_argreg;
3234 int argnum;
3235 int len = 0;
3236 int stack_offset = 0;
3237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3238 CORE_ADDR func_addr = find_function_addr (function, NULL);
6d82d43b
AC
3239
3240 /* For shared libraries, "t9" needs to point at the function
3241 address. */
4c7d22cb 3242 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
6d82d43b
AC
3243
3244 /* Set the return address register to point to the entry point of
3245 the program, where a breakpoint lies in wait. */
4c7d22cb 3246 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
6d82d43b
AC
3247
3248 /* First ensure that the stack and structure return address (if any)
3249 are properly aligned. The stack has to be at least 64-bit
3250 aligned even on 32-bit machines, because doubles must be 64-bit
ebafbe83
MS
3251 aligned. For n32 and n64, stack frames need to be 128-bit
3252 aligned, so we round to this widest known alignment. */
3253
5b03f266
AC
3254 sp = align_down (sp, 16);
3255 struct_addr = align_down (struct_addr, 16);
ebafbe83
MS
3256
3257 /* Now make space on the stack for the args. */
3258 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3259 {
3260 struct type *arg_type = check_typedef (value_type (args[argnum]));
3261 int arglen = TYPE_LENGTH (arg_type);
3262
3263 /* Align to double-word if necessary. */
2afd3f0a 3264 if (mips_type_needs_double_align (arg_type))
1a69e1e4 3265 len = align_up (len, MIPS32_REGSIZE * 2);
968b5391 3266 /* Allocate space on the stack. */
1a69e1e4 3267 len += align_up (arglen, MIPS32_REGSIZE);
968b5391 3268 }
5b03f266 3269 sp -= align_up (len, 16);
ebafbe83
MS
3270
3271 if (mips_debug)
6d82d43b 3272 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3273 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3274 paddr_nz (sp), (long) align_up (len, 16));
ebafbe83
MS
3275
3276 /* Initialize the integer and float register pointers. */
4c7d22cb 3277 argreg = MIPS_A0_REGNUM;
72a155b4 3278 float_argreg = mips_fpa0_regnum (gdbarch);
ebafbe83 3279
bcb0cc15 3280 /* The struct_return pointer occupies the first parameter-passing reg. */
ebafbe83
MS
3281 if (struct_return)
3282 {
3283 if (mips_debug)
3284 fprintf_unfiltered (gdb_stdlog,
25ab4790 3285 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
ebafbe83 3286 argreg, paddr_nz (struct_addr));
9c9acae0 3287 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3288 stack_offset += MIPS32_REGSIZE;
ebafbe83
MS
3289 }
3290
3291 /* Now load as many as possible of the first arguments into
3292 registers, and push the rest onto the stack. Loop thru args
3293 from first to last. */
3294 for (argnum = 0; argnum < nargs; argnum++)
3295 {
47a35522 3296 const gdb_byte *val;
ebafbe83 3297 struct value *arg = args[argnum];
4991999e 3298 struct type *arg_type = check_typedef (value_type (arg));
ebafbe83
MS
3299 int len = TYPE_LENGTH (arg_type);
3300 enum type_code typecode = TYPE_CODE (arg_type);
3301
3302 if (mips_debug)
3303 fprintf_unfiltered (gdb_stdlog,
25ab4790 3304 "mips_o32_push_dummy_call: %d len=%d type=%d",
46cac009
AC
3305 argnum + 1, len, (int) typecode);
3306
47a35522 3307 val = value_contents (arg);
46cac009
AC
3308
3309 /* 32-bit ABIs always start floating point arguments in an
3310 even-numbered floating point register. Round the FP register
3311 up before the check to see if there are any FP registers
3312 left. O32/O64 targets also pass the FP in the integer
3313 registers so also round up normal registers. */
2afd3f0a 3314 if (fp_register_arg_p (typecode, arg_type))
46cac009
AC
3315 {
3316 if ((float_argreg & 1))
3317 float_argreg++;
3318 }
3319
3320 /* Floating point arguments passed in registers have to be
3321 treated specially. On 32-bit architectures, doubles
3322 are passed in register pairs; the even register gets
3323 the low word, and the odd register gets the high word.
3324 On O32/O64, the first two floating point arguments are
3325 also copied to general registers, because MIPS16 functions
3326 don't use float registers for arguments. This duplication of
3327 arguments in general registers can't hurt non-MIPS16 functions
3328 because those registers are normally skipped. */
3329
3330 if (fp_register_arg_p (typecode, arg_type)
3331 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3332 {
8b07f6d8 3333 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
46cac009 3334 {
72a155b4 3335 int low_offset = gdbarch_byte_order (gdbarch)
4c6b5505 3336 == BFD_ENDIAN_BIG ? 4 : 0;
46cac009
AC
3337 unsigned long regval;
3338
3339 /* Write the low word of the double to the even register(s). */
3340 regval = extract_unsigned_integer (val + low_offset, 4);
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3343 float_argreg, phex (regval, 4));
9c9acae0 3344 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3345 if (mips_debug)
3346 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3347 argreg, phex (regval, 4));
9c9acae0 3348 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3349
3350 /* Write the high word of the double to the odd register(s). */
3351 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3352 if (mips_debug)
3353 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3354 float_argreg, phex (regval, 4));
9c9acae0 3355 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009
AC
3356
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, 4));
9c9acae0 3360 regcache_cooked_write_unsigned (regcache, argreg++, regval);
46cac009
AC
3361 }
3362 else
3363 {
3364 /* This is a floating point value that fits entirely
3365 in a single register. */
3366 /* On 32 bit ABI's the float_argreg is further adjusted
6d82d43b 3367 above to ensure that it is even register aligned. */
46cac009
AC
3368 LONGEST regval = extract_unsigned_integer (val, len);
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3371 float_argreg, phex (regval, len));
9c9acae0 3372 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
46cac009 3373 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
6d82d43b
AC
3374 registers for each argument. The below is (my
3375 guess) to ensure that the corresponding integer
3376 register has reserved the same space. */
46cac009
AC
3377 if (mips_debug)
3378 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3379 argreg, phex (regval, len));
9c9acae0 3380 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3381 argreg += 2;
46cac009
AC
3382 }
3383 /* Reserve space for the FP register. */
1a69e1e4 3384 stack_offset += align_up (len, MIPS32_REGSIZE);
46cac009
AC
3385 }
3386 else
3387 {
3388 /* Copy the argument to general registers or the stack in
3389 register-sized pieces. Large arguments are split between
3390 registers and stack. */
1a69e1e4
DJ
3391 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3392 are treated specially: Irix cc passes
d5ac5a39
AC
3393 them in registers where gcc sometimes puts them on the
3394 stack. For maximum compatibility, we will put them in
3395 both places. */
1a69e1e4
DJ
3396 int odd_sized_struct = (len > MIPS32_REGSIZE
3397 && len % MIPS32_REGSIZE != 0);
46cac009
AC
3398 /* Structures should be aligned to eight bytes (even arg registers)
3399 on MIPS_ABI_O32, if their first member has double precision. */
2afd3f0a 3400 if (mips_type_needs_double_align (arg_type))
46cac009
AC
3401 {
3402 if ((argreg & 1))
968b5391
MR
3403 {
3404 argreg++;
1a69e1e4 3405 stack_offset += MIPS32_REGSIZE;
968b5391 3406 }
46cac009 3407 }
46cac009
AC
3408 while (len > 0)
3409 {
3410 /* Remember if the argument was written to the stack. */
3411 int stack_used_p = 0;
1a69e1e4 3412 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
46cac009
AC
3413
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3416 partial_len);
3417
3418 /* Write this portion of the argument to the stack. */
3419 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3420 || odd_sized_struct)
46cac009
AC
3421 {
3422 /* Should shorter than int integer values be
3423 promoted to int before being stored? */
3424 int longword_offset = 0;
3425 CORE_ADDR addr;
3426 stack_used_p = 1;
46cac009
AC
3427
3428 if (mips_debug)
3429 {
3430 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3431 paddr_nz (stack_offset));
3432 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3433 paddr_nz (longword_offset));
3434 }
3435
3436 addr = sp + stack_offset + longword_offset;
3437
3438 if (mips_debug)
3439 {
3440 int i;
6d82d43b 3441 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
46cac009
AC
3442 paddr_nz (addr));
3443 for (i = 0; i < partial_len; i++)
3444 {
6d82d43b 3445 fprintf_unfiltered (gdb_stdlog, "%02x",
46cac009
AC
3446 val[i] & 0xff);
3447 }
3448 }
3449 write_memory (addr, val, partial_len);
3450 }
3451
3452 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3453 structs may go thru BOTH paths. */
46cac009 3454 /* Write this portion of the argument to a general
6d82d43b 3455 purpose register. */
968b5391 3456 if (argreg <= MIPS_LAST_ARG_REGNUM)
46cac009
AC
3457 {
3458 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3459 /* Value may need to be sign extended, because
1b13c4f6 3460 mips_isa_regsize() != mips_abi_regsize(). */
46cac009
AC
3461
3462 /* A non-floating-point argument being passed in a
3463 general register. If a struct or union, and if
3464 the remaining length is smaller than the register
3465 size, we have to adjust the register value on
3466 big endian targets.
3467
3468 It does not seem to be necessary to do the
3469 same for integral types.
3470
3471 Also don't do this adjustment on O64 binaries.
3472
3473 cagney/2001-07-23: gdb/179: Also, GCC, when
3474 outputting LE O32 with sizeof (struct) <
e914cb17
MR
3475 mips_abi_regsize(), generates a left shift
3476 as part of storing the argument in a register
3477 (the left shift isn't generated when
1b13c4f6 3478 sizeof (struct) >= mips_abi_regsize()). Since
480d3dd2
AC
3479 it is quite possible that this is GCC
3480 contradicting the LE/O32 ABI, GDB has not been
3481 adjusted to accommodate this. Either someone
3482 needs to demonstrate that the LE/O32 ABI
3483 specifies such a left shift OR this new ABI gets
3484 identified as such and GDB gets tweaked
3485 accordingly. */
3486
72a155b4 3487 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3488 && partial_len < MIPS32_REGSIZE
06f9a1af
MR
3489 && (typecode == TYPE_CODE_STRUCT
3490 || typecode == TYPE_CODE_UNION))
1a69e1e4 3491 regval <<= ((MIPS32_REGSIZE - partial_len)
9ecf7166 3492 * TARGET_CHAR_BIT);
46cac009
AC
3493
3494 if (mips_debug)
3495 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3496 argreg,
1a69e1e4 3497 phex (regval, MIPS32_REGSIZE));
9c9acae0 3498 regcache_cooked_write_unsigned (regcache, argreg, regval);
46cac009
AC
3499 argreg++;
3500
3501 /* Prevent subsequent floating point arguments from
3502 being passed in floating point registers. */
3503 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3504 }
3505
3506 len -= partial_len;
3507 val += partial_len;
3508
3509 /* Compute the the offset into the stack at which we
6d82d43b 3510 will copy the next parameter.
46cac009 3511
6d82d43b
AC
3512 In older ABIs, the caller reserved space for
3513 registers that contained arguments. This was loosely
3514 refered to as their "home". Consequently, space is
3515 always allocated. */
46cac009 3516
1a69e1e4 3517 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
46cac009
AC
3518 }
3519 }
3520 if (mips_debug)
3521 fprintf_unfiltered (gdb_stdlog, "\n");
3522 }
3523
f10683bb 3524 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3525
46cac009
AC
3526 /* Return adjusted stack pointer. */
3527 return sp;
3528}
3529
6d82d43b
AC
3530static enum return_value_convention
3531mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3532 struct regcache *regcache,
47a35522 3533 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3534{
72a155b4 3535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6d82d43b
AC
3536
3537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3538 || TYPE_CODE (type) == TYPE_CODE_UNION
3539 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3540 return RETURN_VALUE_STRUCT_CONVENTION;
3541 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3542 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3543 {
3544 /* A single-precision floating-point value. It fits in the
3545 least significant part of FP0. */
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3548 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3549 gdbarch_num_regs (gdbarch)
3550 + mips_regnum (gdbarch)->fp0,
6d82d43b 3551 TYPE_LENGTH (type),
72a155b4 3552 gdbarch_byte_order (gdbarch),
4c6b5505 3553 readbuf, writebuf, 0);
6d82d43b
AC
3554 return RETURN_VALUE_REGISTER_CONVENTION;
3555 }
3556 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3557 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3558 {
3559 /* A double-precision floating-point value. The most
3560 significant part goes in FP1, and the least significant in
3561 FP0. */
3562 if (mips_debug)
3563 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
72a155b4 3564 switch (gdbarch_byte_order (gdbarch))
6d82d43b
AC
3565 {
3566 case BFD_ENDIAN_LITTLE:
ba32f989 3567 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3568 gdbarch_num_regs (gdbarch)
3569 + mips_regnum (gdbarch)->fp0 +
3570 0, 4, gdbarch_byte_order (gdbarch),
4c6b5505 3571 readbuf, writebuf, 0);
ba32f989 3572 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3573 gdbarch_num_regs (gdbarch)
3574 + mips_regnum (gdbarch)->fp0 + 1,
3575 4, gdbarch_byte_order (gdbarch),
4c6b5505 3576 readbuf, writebuf, 4);
6d82d43b
AC
3577 break;
3578 case BFD_ENDIAN_BIG:
ba32f989 3579 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3580 gdbarch_num_regs (gdbarch)
3581 + mips_regnum (gdbarch)->fp0 + 1,
3582 4, gdbarch_byte_order (gdbarch),
4c6b5505 3583 readbuf, writebuf, 0);
ba32f989 3584 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3585 gdbarch_num_regs (gdbarch)
3586 + mips_regnum (gdbarch)->fp0 + 0,
3587 4, gdbarch_byte_order (gdbarch),
4c6b5505 3588 readbuf, writebuf, 4);
6d82d43b
AC
3589 break;
3590 default:
e2e0b3e5 3591 internal_error (__FILE__, __LINE__, _("bad switch"));
6d82d43b
AC
3592 }
3593 return RETURN_VALUE_REGISTER_CONVENTION;
3594 }
3595#if 0
3596 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3597 && TYPE_NFIELDS (type) <= 2
3598 && TYPE_NFIELDS (type) >= 1
3599 && ((TYPE_NFIELDS (type) == 1
3600 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3601 == TYPE_CODE_FLT))
3602 || (TYPE_NFIELDS (type) == 2
3603 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3604 == TYPE_CODE_FLT)
3605 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3606 == TYPE_CODE_FLT)))
3607 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3608 {
3609 /* A struct that contains one or two floats. Each value is part
3610 in the least significant part of their floating point
3611 register.. */
870cd05e 3612 gdb_byte reg[MAX_REGISTER_SIZE];
6d82d43b
AC
3613 int regnum;
3614 int field;
72a155b4 3615 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
6d82d43b
AC
3616 field < TYPE_NFIELDS (type); field++, regnum += 2)
3617 {
3618 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3619 / TARGET_CHAR_BIT);
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3622 offset);
ba32f989
DJ
3623 mips_xfer_register (gdbarch, regcache,
3624 gdbarch_num_regs (gdbarch) + regnum,
6d82d43b 3625 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
72a155b4 3626 gdbarch_byte_order (gdbarch),
4c6b5505 3627 readbuf, writebuf, offset);
6d82d43b
AC
3628 }
3629 return RETURN_VALUE_REGISTER_CONVENTION;
3630 }
3631#endif
3632#if 0
3633 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3634 || TYPE_CODE (type) == TYPE_CODE_UNION)
3635 {
3636 /* A structure or union. Extract the left justified value,
3637 regardless of the byte order. I.e. DO NOT USE
3638 mips_xfer_lower. */
3639 int offset;
3640 int regnum;
4c7d22cb 3641 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3642 offset < TYPE_LENGTH (type);
72a155b4 3643 offset += register_size (gdbarch, regnum), regnum++)
6d82d43b 3644 {
72a155b4 3645 int xfer = register_size (gdbarch, regnum);
6d82d43b
AC
3646 if (offset + xfer > TYPE_LENGTH (type))
3647 xfer = TYPE_LENGTH (type) - offset;
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3650 offset, xfer, regnum);
ba32f989
DJ
3651 mips_xfer_register (gdbarch, regcache,
3652 gdbarch_num_regs (gdbarch) + regnum, xfer,
6d82d43b
AC
3653 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3654 }
3655 return RETURN_VALUE_REGISTER_CONVENTION;
3656 }
3657#endif
3658 else
3659 {
3660 /* A scalar extract each part but least-significant-byte
3661 justified. o32 thinks registers are 4 byte, regardless of
1a69e1e4 3662 the ISA. */
6d82d43b
AC
3663 int offset;
3664 int regnum;
4c7d22cb 3665 for (offset = 0, regnum = MIPS_V0_REGNUM;
6d82d43b 3666 offset < TYPE_LENGTH (type);
1a69e1e4 3667 offset += MIPS32_REGSIZE, regnum++)
6d82d43b 3668 {
1a69e1e4 3669 int xfer = MIPS32_REGSIZE;
6d82d43b
AC
3670 if (offset + xfer > TYPE_LENGTH (type))
3671 xfer = TYPE_LENGTH (type) - offset;
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3674 offset, xfer, regnum);
ba32f989
DJ
3675 mips_xfer_register (gdbarch, regcache,
3676 gdbarch_num_regs (gdbarch) + regnum, xfer,
72a155b4 3677 gdbarch_byte_order (gdbarch),
4c6b5505 3678 readbuf, writebuf, offset);
6d82d43b
AC
3679 }
3680 return RETURN_VALUE_REGISTER_CONVENTION;
3681 }
3682}
3683
3684/* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3685 ABI. */
46cac009
AC
3686
3687static CORE_ADDR
7d9b040b 3688mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6d82d43b
AC
3689 struct regcache *regcache, CORE_ADDR bp_addr,
3690 int nargs,
3691 struct value **args, CORE_ADDR sp,
3692 int struct_return, CORE_ADDR struct_addr)
46cac009
AC
3693{
3694 int argreg;
3695 int float_argreg;
3696 int argnum;
3697 int len = 0;
3698 int stack_offset = 0;
480d3dd2 3699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7d9b040b 3700 CORE_ADDR func_addr = find_function_addr (function, NULL);
46cac009 3701
25ab4790
AC
3702 /* For shared libraries, "t9" needs to point at the function
3703 address. */
4c7d22cb 3704 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
25ab4790
AC
3705
3706 /* Set the return address register to point to the entry point of
3707 the program, where a breakpoint lies in wait. */
4c7d22cb 3708 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
25ab4790 3709
46cac009
AC
3710 /* First ensure that the stack and structure return address (if any)
3711 are properly aligned. The stack has to be at least 64-bit
3712 aligned even on 32-bit machines, because doubles must be 64-bit
3713 aligned. For n32 and n64, stack frames need to be 128-bit
3714 aligned, so we round to this widest known alignment. */
3715
5b03f266
AC
3716 sp = align_down (sp, 16);
3717 struct_addr = align_down (struct_addr, 16);
46cac009
AC
3718
3719 /* Now make space on the stack for the args. */
3720 for (argnum = 0; argnum < nargs; argnum++)
968b5391
MR
3721 {
3722 struct type *arg_type = check_typedef (value_type (args[argnum]));
3723 int arglen = TYPE_LENGTH (arg_type);
3724
968b5391 3725 /* Allocate space on the stack. */
1a69e1e4 3726 len += align_up (arglen, MIPS64_REGSIZE);
968b5391 3727 }
5b03f266 3728 sp -= align_up (len, 16);
46cac009
AC
3729
3730 if (mips_debug)
6d82d43b 3731 fprintf_unfiltered (gdb_stdlog,
5b03f266
AC
3732 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3733 paddr_nz (sp), (long) align_up (len, 16));
46cac009
AC
3734
3735 /* Initialize the integer and float register pointers. */
4c7d22cb 3736 argreg = MIPS_A0_REGNUM;
72a155b4 3737 float_argreg = mips_fpa0_regnum (gdbarch);
46cac009
AC
3738
3739 /* The struct_return pointer occupies the first parameter-passing reg. */
3740 if (struct_return)
3741 {
3742 if (mips_debug)
3743 fprintf_unfiltered (gdb_stdlog,
25ab4790 3744 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
46cac009 3745 argreg, paddr_nz (struct_addr));
9c9acae0 3746 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1a69e1e4 3747 stack_offset += MIPS64_REGSIZE;
46cac009
AC
3748 }
3749
3750 /* Now load as many as possible of the first arguments into
3751 registers, and push the rest onto the stack. Loop thru args
3752 from first to last. */
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
47a35522 3755 const gdb_byte *val;
46cac009 3756 struct value *arg = args[argnum];
4991999e 3757 struct type *arg_type = check_typedef (value_type (arg));
46cac009
AC
3758 int len = TYPE_LENGTH (arg_type);
3759 enum type_code typecode = TYPE_CODE (arg_type);
3760
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog,
25ab4790 3763 "mips_o64_push_dummy_call: %d len=%d type=%d",
ebafbe83
MS
3764 argnum + 1, len, (int) typecode);
3765
47a35522 3766 val = value_contents (arg);
ebafbe83 3767
ebafbe83
MS
3768 /* Floating point arguments passed in registers have to be
3769 treated specially. On 32-bit architectures, doubles
3770 are passed in register pairs; the even register gets
3771 the low word, and the odd register gets the high word.
3772 On O32/O64, the first two floating point arguments are
3773 also copied to general registers, because MIPS16 functions
3774 don't use float registers for arguments. This duplication of
3775 arguments in general registers can't hurt non-MIPS16 functions
3776 because those registers are normally skipped. */
3777
3778 if (fp_register_arg_p (typecode, arg_type)
3779 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3780 {
2afd3f0a
MR
3781 LONGEST regval = extract_unsigned_integer (val, len);
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3784 float_argreg, phex (regval, len));
9c9acae0 3785 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2afd3f0a
MR
3786 if (mips_debug)
3787 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3788 argreg, phex (regval, len));
9c9acae0 3789 regcache_cooked_write_unsigned (regcache, argreg, regval);
2afd3f0a 3790 argreg++;
ebafbe83 3791 /* Reserve space for the FP register. */
1a69e1e4 3792 stack_offset += align_up (len, MIPS64_REGSIZE);
ebafbe83
MS
3793 }
3794 else
3795 {
3796 /* Copy the argument to general registers or the stack in
3797 register-sized pieces. Large arguments are split between
3798 registers and stack. */
1a69e1e4 3799 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
436aafc4
MR
3800 are treated specially: Irix cc passes them in registers
3801 where gcc sometimes puts them on the stack. For maximum
3802 compatibility, we will put them in both places. */
1a69e1e4
DJ
3803 int odd_sized_struct = (len > MIPS64_REGSIZE
3804 && len % MIPS64_REGSIZE != 0);
ebafbe83
MS
3805 while (len > 0)
3806 {
3807 /* Remember if the argument was written to the stack. */
3808 int stack_used_p = 0;
1a69e1e4 3809 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
ebafbe83
MS
3810
3811 if (mips_debug)
3812 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3813 partial_len);
3814
3815 /* Write this portion of the argument to the stack. */
3816 if (argreg > MIPS_LAST_ARG_REGNUM
968b5391 3817 || odd_sized_struct)
ebafbe83
MS
3818 {
3819 /* Should shorter than int integer values be
3820 promoted to int before being stored? */
3821 int longword_offset = 0;
3822 CORE_ADDR addr;
3823 stack_used_p = 1;
72a155b4 3824 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
ebafbe83 3825 {
1a69e1e4
DJ
3826 if ((typecode == TYPE_CODE_INT
3827 || typecode == TYPE_CODE_PTR
3828 || typecode == TYPE_CODE_FLT)
3829 && len <= 4)
3830 longword_offset = MIPS64_REGSIZE - len;
ebafbe83
MS
3831 }
3832
3833 if (mips_debug)
3834 {
3835 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3836 paddr_nz (stack_offset));
3837 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3838 paddr_nz (longword_offset));
3839 }
3840
3841 addr = sp + stack_offset + longword_offset;
3842
3843 if (mips_debug)
3844 {
3845 int i;
6d82d43b 3846 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
ebafbe83
MS
3847 paddr_nz (addr));
3848 for (i = 0; i < partial_len; i++)
3849 {
6d82d43b 3850 fprintf_unfiltered (gdb_stdlog, "%02x",
ebafbe83
MS
3851 val[i] & 0xff);
3852 }
3853 }
3854 write_memory (addr, val, partial_len);
3855 }
3856
3857 /* Note!!! This is NOT an else clause. Odd sized
968b5391 3858 structs may go thru BOTH paths. */
ebafbe83 3859 /* Write this portion of the argument to a general
6d82d43b 3860 purpose register. */
968b5391 3861 if (argreg <= MIPS_LAST_ARG_REGNUM)
ebafbe83
MS
3862 {
3863 LONGEST regval = extract_signed_integer (val, partial_len);
4246e332 3864 /* Value may need to be sign extended, because
1b13c4f6 3865 mips_isa_regsize() != mips_abi_regsize(). */
ebafbe83
MS
3866
3867 /* A non-floating-point argument being passed in a
3868 general register. If a struct or union, and if
3869 the remaining length is smaller than the register
3870 size, we have to adjust the register value on
3871 big endian targets.
3872
3873 It does not seem to be necessary to do the
401835eb 3874 same for integral types. */
480d3dd2 3875
72a155b4 3876 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
1a69e1e4 3877 && partial_len < MIPS64_REGSIZE
06f9a1af
MR
3878 && (typecode == TYPE_CODE_STRUCT
3879 || typecode == TYPE_CODE_UNION))
1a69e1e4 3880 regval <<= ((MIPS64_REGSIZE - partial_len)
9ecf7166 3881 * TARGET_CHAR_BIT);
ebafbe83
MS
3882
3883 if (mips_debug)
3884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3885 argreg,
1a69e1e4 3886 phex (regval, MIPS64_REGSIZE));
9c9acae0 3887 regcache_cooked_write_unsigned (regcache, argreg, regval);
ebafbe83
MS
3888 argreg++;
3889
3890 /* Prevent subsequent floating point arguments from
3891 being passed in floating point registers. */
3892 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3893 }
3894
3895 len -= partial_len;
3896 val += partial_len;
3897
3898 /* Compute the the offset into the stack at which we
6d82d43b 3899 will copy the next parameter.
ebafbe83 3900
6d82d43b
AC
3901 In older ABIs, the caller reserved space for
3902 registers that contained arguments. This was loosely
3903 refered to as their "home". Consequently, space is
3904 always allocated. */
ebafbe83 3905
1a69e1e4 3906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
ebafbe83
MS
3907 }
3908 }
3909 if (mips_debug)
3910 fprintf_unfiltered (gdb_stdlog, "\n");
3911 }
3912
f10683bb 3913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
310e9b6a 3914
ebafbe83
MS
3915 /* Return adjusted stack pointer. */
3916 return sp;
3917}
3918
9c8fdbfa
AC
3919static enum return_value_convention
3920mips_o64_return_value (struct gdbarch *gdbarch,
3921 struct type *type, struct regcache *regcache,
47a35522 3922 gdb_byte *readbuf, const gdb_byte *writebuf)
6d82d43b 3923{
72a155b4 3924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a076fd2
FF
3925
3926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3927 || TYPE_CODE (type) == TYPE_CODE_UNION
3928 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3929 return RETURN_VALUE_STRUCT_CONVENTION;
3930 else if (fp_register_arg_p (TYPE_CODE (type), type))
3931 {
3932 /* A floating-point value. It fits in the least significant
3933 part of FP0. */
3934 if (mips_debug)
3935 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
ba32f989 3936 mips_xfer_register (gdbarch, regcache,
72a155b4
UW
3937 gdbarch_num_regs (gdbarch)
3938 + mips_regnum (gdbarch)->fp0,
7a076fd2 3939 TYPE_LENGTH (type),
72a155b4 3940 gdbarch_byte_order (gdbarch),
4c6b5505 3941 readbuf, writebuf, 0);
7a076fd2
FF
3942 return RETURN_VALUE_REGISTER_CONVENTION;
3943 }
3944 else
3945 {
3946 /* A scalar extract each part but least-significant-byte
3947 justified. */
3948 int offset;
3949 int regnum;
3950 for (offset = 0, regnum = MIPS_V0_REGNUM;
3951 offset < TYPE_LENGTH (type);
1a69e1e4 3952 offset += MIPS64_REGSIZE, regnum++)
7a076fd2 3953 {
1a69e1e4 3954 int xfer = MIPS64_REGSIZE;
7a076fd2
FF
3955 if (offset + xfer > TYPE_LENGTH (type))
3956 xfer = TYPE_LENGTH (type) - offset;
3957 if (mips_debug)
3958 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3959 offset, xfer, regnum);
ba32f989
DJ
3960 mips_xfer_register (gdbarch, regcache,
3961 gdbarch_num_regs (gdbarch) + regnum,
72a155b4 3962 xfer, gdbarch_byte_order (gdbarch),
4c6b5505 3963 readbuf, writebuf, offset);
7a076fd2
FF
3964 }
3965 return RETURN_VALUE_REGISTER_CONVENTION;
3966 }
6d82d43b
AC
3967}
3968
dd824b04
DJ
3969/* Floating point register management.
3970
3971 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3972 64bit operations, these early MIPS cpus treat fp register pairs
3973 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3974 registers and offer a compatibility mode that emulates the MIPS2 fp
3975 model. When operating in MIPS2 fp compat mode, later cpu's split
3976 double precision floats into two 32-bit chunks and store them in
3977 consecutive fp regs. To display 64-bit floats stored in this
3978 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3979 Throw in user-configurable endianness and you have a real mess.
3980
3981 The way this works is:
3982 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3983 double-precision value will be split across two logical registers.
3984 The lower-numbered logical register will hold the low-order bits,
3985 regardless of the processor's endianness.
3986 - If we are on a 64-bit processor, and we are looking for a
3987 single-precision value, it will be in the low ordered bits
3988 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3989 save slot in memory.
3990 - If we are in 64-bit mode, everything is straightforward.
3991
3992 Note that this code only deals with "live" registers at the top of the
3993 stack. We will attempt to deal with saved registers later, when
3994 the raw/cooked register interface is in place. (We need a general
3995 interface that can deal with dynamic saved register sizes -- fp
3996 regs could be 32 bits wide in one frame and 64 on the frame above
3997 and below). */
3998
67b2c998
DJ
3999static struct type *
4000mips_float_register_type (void)
4001{
8da61cc4 4002 return builtin_type_ieee_single;
67b2c998
DJ
4003}
4004
4005static struct type *
4006mips_double_register_type (void)
4007{
8da61cc4 4008 return builtin_type_ieee_double;
67b2c998
DJ
4009}
4010
dd824b04
DJ
4011/* Copy a 32-bit single-precision value from the current frame
4012 into rare_buffer. */
4013
4014static void
e11c53d2 4015mips_read_fp_register_single (struct frame_info *frame, int regno,
47a35522 4016 gdb_byte *rare_buffer)
dd824b04 4017{
72a155b4
UW
4018 struct gdbarch *gdbarch = get_frame_arch (frame);
4019 int raw_size = register_size (gdbarch, regno);
47a35522 4020 gdb_byte *raw_buffer = alloca (raw_size);
dd824b04 4021
e11c53d2 4022 if (!frame_register_read (frame, regno, raw_buffer))
c9f4d572 4023 error (_("can't read register %d (%s)"),
72a155b4 4024 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4025 if (raw_size == 8)
4026 {
4027 /* We have a 64-bit value for this register. Find the low-order
6d82d43b 4028 32 bits. */
dd824b04
DJ
4029 int offset;
4030
72a155b4 4031 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04
DJ
4032 offset = 4;
4033 else
4034 offset = 0;
4035
4036 memcpy (rare_buffer, raw_buffer + offset, 4);
4037 }
4038 else
4039 {
4040 memcpy (rare_buffer, raw_buffer, 4);
4041 }
4042}
4043
4044/* Copy a 64-bit double-precision value from the current frame into
4045 rare_buffer. This may include getting half of it from the next
4046 register. */
4047
4048static void
e11c53d2 4049mips_read_fp_register_double (struct frame_info *frame, int regno,
47a35522 4050 gdb_byte *rare_buffer)
dd824b04 4051{
72a155b4
UW
4052 struct gdbarch *gdbarch = get_frame_arch (frame);
4053 int raw_size = register_size (gdbarch, regno);
dd824b04 4054
9c9acae0 4055 if (raw_size == 8 && !mips2_fp_compat (frame))
dd824b04
DJ
4056 {
4057 /* We have a 64-bit value for this register, and we should use
6d82d43b 4058 all 64 bits. */
e11c53d2 4059 if (!frame_register_read (frame, regno, rare_buffer))
c9f4d572 4060 error (_("can't read register %d (%s)"),
72a155b4 4061 regno, gdbarch_register_name (gdbarch, regno));
dd824b04
DJ
4062 }
4063 else
4064 {
72a155b4 4065 int rawnum = regno % gdbarch_num_regs (gdbarch);
82e91389 4066
72a155b4 4067 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
dd824b04 4068 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
4069 _("mips_read_fp_register_double: bad access to "
4070 "odd-numbered FP register"));
dd824b04
DJ
4071
4072 /* mips_read_fp_register_single will find the correct 32 bits from
6d82d43b 4073 each register. */
72a155b4 4074 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
dd824b04 4075 {
e11c53d2
AC
4076 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4077 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
dd824b04 4078 }
361d1df0 4079 else
dd824b04 4080 {
e11c53d2
AC
4081 mips_read_fp_register_single (frame, regno, rare_buffer);
4082 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
dd824b04
DJ
4083 }
4084 }
4085}
4086
c906108c 4087static void
e11c53d2
AC
4088mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4089 int regnum)
c5aa993b 4090{ /* do values for FP (float) regs */
72a155b4 4091 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4092 gdb_byte *raw_buffer;
3903d437
AC
4093 double doub, flt1; /* doubles extracted from raw hex data */
4094 int inv1, inv2;
c5aa993b 4095
72a155b4 4096 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
c906108c 4097
72a155b4 4098 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
c9f4d572 4099 fprintf_filtered (file, "%*s",
72a155b4 4100 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
e11c53d2 4101 "");
f0ef6b29 4102
72a155b4 4103 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
c906108c 4104 {
f0ef6b29
KB
4105 /* 4-byte registers: Print hex and floating. Also print even
4106 numbered registers as doubles. */
e11c53d2 4107 mips_read_fp_register_single (frame, regnum, raw_buffer);
67b2c998 4108 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c5aa993b 4109
6d82d43b
AC
4110 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4111 file);
dd824b04 4112
e11c53d2 4113 fprintf_filtered (file, " flt: ");
1adad886 4114 if (inv1)
e11c53d2 4115 fprintf_filtered (file, " <invalid float> ");
1adad886 4116 else
e11c53d2 4117 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4118
72a155b4 4119 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
f0ef6b29 4120 {
e11c53d2 4121 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29 4122 doub = unpack_double (mips_double_register_type (), raw_buffer,
6d82d43b 4123 &inv2);
1adad886 4124
e11c53d2 4125 fprintf_filtered (file, " dbl: ");
f0ef6b29 4126 if (inv2)
e11c53d2 4127 fprintf_filtered (file, "<invalid double>");
f0ef6b29 4128 else
e11c53d2 4129 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29 4130 }
c906108c
SS
4131 }
4132 else
dd824b04 4133 {
f0ef6b29 4134 /* Eight byte registers: print each one as hex, float and double. */
e11c53d2 4135 mips_read_fp_register_single (frame, regnum, raw_buffer);
2f38ef89 4136 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
c906108c 4137
e11c53d2 4138 mips_read_fp_register_double (frame, regnum, raw_buffer);
f0ef6b29
KB
4139 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4140
361d1df0 4141
6d82d43b
AC
4142 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4143 file);
f0ef6b29 4144
e11c53d2 4145 fprintf_filtered (file, " flt: ");
1adad886 4146 if (inv1)
e11c53d2 4147 fprintf_filtered (file, "<invalid float>");
1adad886 4148 else
e11c53d2 4149 fprintf_filtered (file, "%-17.9g", flt1);
1adad886 4150
e11c53d2 4151 fprintf_filtered (file, " dbl: ");
f0ef6b29 4152 if (inv2)
e11c53d2 4153 fprintf_filtered (file, "<invalid double>");
1adad886 4154 else
e11c53d2 4155 fprintf_filtered (file, "%-24.17g", doub);
f0ef6b29
KB
4156 }
4157}
4158
4159static void
e11c53d2 4160mips_print_register (struct ui_file *file, struct frame_info *frame,
0cc93a06 4161 int regnum)
f0ef6b29 4162{
a4b8ebc8 4163 struct gdbarch *gdbarch = get_frame_arch (frame);
47a35522 4164 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
f0ef6b29 4165 int offset;
1adad886 4166
7b9ee6a8 4167 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
f0ef6b29 4168 {
e11c53d2 4169 mips_print_fp_register (file, frame, regnum);
f0ef6b29
KB
4170 return;
4171 }
4172
4173 /* Get the data in raw format. */
e11c53d2 4174 if (!frame_register_read (frame, regnum, raw_buffer))
f0ef6b29 4175 {
c9f4d572 4176 fprintf_filtered (file, "%s: [Invalid]",
72a155b4 4177 gdbarch_register_name (gdbarch, regnum));
f0ef6b29 4178 return;
c906108c 4179 }
f0ef6b29 4180
72a155b4 4181 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
f0ef6b29
KB
4182
4183 /* The problem with printing numeric register names (r26, etc.) is that
4184 the user can't use them on input. Probably the best solution is to
4185 fix it so that either the numeric or the funky (a2, etc.) names
4186 are accepted on input. */
4187 if (regnum < MIPS_NUMREGS)
e11c53d2 4188 fprintf_filtered (file, "(r%d): ", regnum);
f0ef6b29 4189 else
e11c53d2 4190 fprintf_filtered (file, ": ");
f0ef6b29 4191
72a155b4 4192 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4193 offset =
72a155b4 4194 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
f0ef6b29
KB
4195 else
4196 offset = 0;
4197
6d82d43b 4198 print_scalar_formatted (raw_buffer + offset,
7b9ee6a8 4199 register_type (gdbarch, regnum), 'x', 0,
6d82d43b 4200 file);
c906108c
SS
4201}
4202
f0ef6b29
KB
4203/* Replacement for generic do_registers_info.
4204 Print regs in pretty columns. */
4205
4206static int
e11c53d2
AC
4207print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4208 int regnum)
f0ef6b29 4209{
e11c53d2
AC
4210 fprintf_filtered (file, " ");
4211 mips_print_fp_register (file, frame, regnum);
4212 fprintf_filtered (file, "\n");
f0ef6b29
KB
4213 return regnum + 1;
4214}
4215
4216
c906108c
SS
4217/* Print a row's worth of GP (int) registers, with name labels above */
4218
4219static int
e11c53d2 4220print_gp_register_row (struct ui_file *file, struct frame_info *frame,
a4b8ebc8 4221 int start_regnum)
c906108c 4222{
a4b8ebc8 4223 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c 4224 /* do values for GP (int) regs */
47a35522 4225 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
d5ac5a39 4226 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
c906108c 4227 int col, byte;
a4b8ebc8 4228 int regnum;
c906108c
SS
4229
4230 /* For GP registers, we print a separate row of names above the vals */
a4b8ebc8 4231 for (col = 0, regnum = start_regnum;
72a155b4
UW
4232 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4233 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4234 regnum++)
c906108c 4235 {
72a155b4 4236 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4237 continue; /* unused register */
7b9ee6a8 4238 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4239 TYPE_CODE_FLT)
c5aa993b 4240 break; /* end the row: reached FP register */
0cc93a06 4241 /* Large registers are handled separately. */
72a155b4 4242 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4243 {
4244 if (col > 0)
4245 break; /* End the row before this register. */
4246
4247 /* Print this register on a row by itself. */
4248 mips_print_register (file, frame, regnum);
4249 fprintf_filtered (file, "\n");
4250 return regnum + 1;
4251 }
d05f6826
DJ
4252 if (col == 0)
4253 fprintf_filtered (file, " ");
6d82d43b 4254 fprintf_filtered (file,
72a155b4
UW
4255 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4256 gdbarch_register_name (gdbarch, regnum));
c906108c
SS
4257 col++;
4258 }
d05f6826
DJ
4259
4260 if (col == 0)
4261 return regnum;
4262
a4b8ebc8 4263 /* print the R0 to R31 names */
72a155b4 4264 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
f57d151a 4265 fprintf_filtered (file, "\n R%-4d",
72a155b4 4266 start_regnum % gdbarch_num_regs (gdbarch));
20e6603c
AC
4267 else
4268 fprintf_filtered (file, "\n ");
c906108c 4269
c906108c 4270 /* now print the values in hex, 4 or 8 to the row */
a4b8ebc8 4271 for (col = 0, regnum = start_regnum;
72a155b4
UW
4272 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4273 + gdbarch_num_pseudo_regs (gdbarch);
f57d151a 4274 regnum++)
c906108c 4275 {
72a155b4 4276 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
c5aa993b 4277 continue; /* unused register */
7b9ee6a8 4278 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4279 TYPE_CODE_FLT)
c5aa993b 4280 break; /* end row: reached FP register */
72a155b4 4281 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
0cc93a06
DJ
4282 break; /* End row: large register. */
4283
c906108c 4284 /* OK: get the data in raw format. */
e11c53d2 4285 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 4286 error (_("can't read register %d (%s)"),
72a155b4 4287 regnum, gdbarch_register_name (gdbarch, regnum));
c906108c 4288 /* pad small registers */
4246e332 4289 for (byte = 0;
72a155b4
UW
4290 byte < (mips_abi_regsize (gdbarch)
4291 - register_size (gdbarch, regnum)); byte++)
c906108c
SS
4292 printf_filtered (" ");
4293 /* Now print the register value in hex, endian order. */
72a155b4 4294 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6d82d43b 4295 for (byte =
72a155b4
UW
4296 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4297 byte < register_size (gdbarch, regnum); byte++)
47a35522 4298 fprintf_filtered (file, "%02x", raw_buffer[byte]);
c906108c 4299 else
72a155b4 4300 for (byte = register_size (gdbarch, regnum) - 1;
6d82d43b 4301 byte >= 0; byte--)
47a35522 4302 fprintf_filtered (file, "%02x", raw_buffer[byte]);
e11c53d2 4303 fprintf_filtered (file, " ");
c906108c
SS
4304 col++;
4305 }
c5aa993b 4306 if (col > 0) /* ie. if we actually printed anything... */
e11c53d2 4307 fprintf_filtered (file, "\n");
c906108c
SS
4308
4309 return regnum;
4310}
4311
4312/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4313
bf1f5b4c 4314static void
e11c53d2
AC
4315mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4316 struct frame_info *frame, int regnum, int all)
c906108c 4317{
c5aa993b 4318 if (regnum != -1) /* do one specified register */
c906108c 4319 {
72a155b4
UW
4320 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4321 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
8a3fe4f8 4322 error (_("Not a valid register for the current processor type"));
c906108c 4323
0cc93a06 4324 mips_print_register (file, frame, regnum);
e11c53d2 4325 fprintf_filtered (file, "\n");
c906108c 4326 }
c5aa993b
JM
4327 else
4328 /* do all (or most) registers */
c906108c 4329 {
72a155b4
UW
4330 regnum = gdbarch_num_regs (gdbarch);
4331 while (regnum < gdbarch_num_regs (gdbarch)
4332 + gdbarch_num_pseudo_regs (gdbarch))
c906108c 4333 {
7b9ee6a8 4334 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
6d82d43b 4335 TYPE_CODE_FLT)
e11c53d2
AC
4336 {
4337 if (all) /* true for "INFO ALL-REGISTERS" command */
4338 regnum = print_fp_register_row (file, frame, regnum);
4339 else
4340 regnum += MIPS_NUMREGS; /* skip floating point regs */
4341 }
c906108c 4342 else
e11c53d2 4343 regnum = print_gp_register_row (file, frame, regnum);
c906108c
SS
4344 }
4345 }
4346}
4347
c906108c
SS
4348/* Is this a branch with a delay slot? */
4349
c906108c 4350static int
acdb74a0 4351is_delayed (unsigned long insn)
c906108c
SS
4352{
4353 int i;
4354 for (i = 0; i < NUMOPCODES; ++i)
4355 if (mips_opcodes[i].pinfo != INSN_MACRO
4356 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4357 break;
4358 return (i < NUMOPCODES
4359 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4360 | INSN_COND_BRANCH_DELAY
4361 | INSN_COND_BRANCH_LIKELY)));
4362}
4363
4364int
3352ef37
AC
4365mips_single_step_through_delay (struct gdbarch *gdbarch,
4366 struct frame_info *frame)
c906108c 4367{
3352ef37 4368 CORE_ADDR pc = get_frame_pc (frame);
47a35522 4369 gdb_byte buf[MIPS_INSN32_SIZE];
c906108c
SS
4370
4371 /* There is no branch delay slot on MIPS16. */
0fe7e7c8 4372 if (mips_pc_is_mips16 (pc))
c906108c
SS
4373 return 0;
4374
06648491
MK
4375 if (!breakpoint_here_p (pc + 4))
4376 return 0;
4377
3352ef37
AC
4378 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4379 /* If error reading memory, guess that it is not a delayed
4380 branch. */
c906108c 4381 return 0;
4c7d22cb 4382 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
c906108c
SS
4383}
4384
6d82d43b
AC
4385/* To skip prologues, I use this predicate. Returns either PC itself
4386 if the code at PC does not look like a function prologue; otherwise
4387 returns an address that (if we're lucky) follows the prologue. If
4388 LENIENT, then we must skip everything which is involved in setting
4389 up the frame (it's OK to skip more, just so long as we don't skip
4390 anything which might clobber the registers which are being saved.
4391 We must skip more in the case where part of the prologue is in the
4392 delay slot of a non-prologue instruction). */
4393
4394static CORE_ADDR
4395mips_skip_prologue (CORE_ADDR pc)
4396{
8b622e6a
AC
4397 CORE_ADDR limit_pc;
4398 CORE_ADDR func_addr;
4399
6d82d43b
AC
4400 /* See if we can determine the end of the prologue via the symbol table.
4401 If so, then return either PC, or the PC after the prologue, whichever
4402 is greater. */
8b622e6a
AC
4403 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4404 {
4405 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4406 if (post_prologue_pc != 0)
4407 return max (pc, post_prologue_pc);
4408 }
6d82d43b
AC
4409
4410 /* Can't determine prologue from the symbol table, need to examine
4411 instructions. */
4412
98b4dd94
JB
4413 /* Find an upper limit on the function prologue using the debug
4414 information. If the debug information could not be used to provide
4415 that bound, then use an arbitrary large number as the upper bound. */
4416 limit_pc = skip_prologue_using_sal (pc);
4417 if (limit_pc == 0)
4418 limit_pc = pc + 100; /* Magic. */
4419
0fe7e7c8 4420 if (mips_pc_is_mips16 (pc))
a65bbe44 4421 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
6d82d43b 4422 else
a65bbe44 4423 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
88658117
AC
4424}
4425
97ab0fdd
MR
4426/* Check whether the PC is in a function epilogue (32-bit version).
4427 This is a helper function for mips_in_function_epilogue_p. */
4428static int
4429mips32_in_function_epilogue_p (CORE_ADDR pc)
4430{
4431 CORE_ADDR func_addr = 0, func_end = 0;
4432
4433 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4434 {
4435 /* The MIPS epilogue is max. 12 bytes long. */
4436 CORE_ADDR addr = func_end - 12;
4437
4438 if (addr < func_addr + 4)
4439 addr = func_addr + 4;
4440 if (pc < addr)
4441 return 0;
4442
4443 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4444 {
4445 unsigned long high_word;
4446 unsigned long inst;
4447
4448 inst = mips_fetch_instruction (pc);
4449 high_word = (inst >> 16) & 0xffff;
4450
4451 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4452 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4453 && inst != 0x03e00008 /* jr $ra */
4454 && inst != 0x00000000) /* nop */
4455 return 0;
4456 }
4457
4458 return 1;
4459 }
4460
4461 return 0;
4462}
4463
4464/* Check whether the PC is in a function epilogue (16-bit version).
4465 This is a helper function for mips_in_function_epilogue_p. */
4466static int
4467mips16_in_function_epilogue_p (CORE_ADDR pc)
4468{
4469 CORE_ADDR func_addr = 0, func_end = 0;
4470
4471 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4472 {
4473 /* The MIPS epilogue is max. 12 bytes long. */
4474 CORE_ADDR addr = func_end - 12;
4475
4476 if (addr < func_addr + 4)
4477 addr = func_addr + 4;
4478 if (pc < addr)
4479 return 0;
4480
4481 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4482 {
4483 unsigned short inst;
4484
4485 inst = mips_fetch_instruction (pc);
4486
4487 if ((inst & 0xf800) == 0xf000) /* extend */
4488 continue;
4489
4490 if (inst != 0x6300 /* addiu $sp,offset */
4491 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4492 && inst != 0xe820 /* jr $ra */
4493 && inst != 0xe8a0 /* jrc $ra */
4494 && inst != 0x6500) /* nop */
4495 return 0;
4496 }
4497
4498 return 1;
4499 }
4500
4501 return 0;
4502}
4503
4504/* The epilogue is defined here as the area at the end of a function,
4505 after an instruction which destroys the function's stack frame. */
4506static int
4507mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4508{
4509 if (mips_pc_is_mips16 (pc))
4510 return mips16_in_function_epilogue_p (pc);
4511 else
4512 return mips32_in_function_epilogue_p (pc);
4513}
4514
a5ea2558
AC
4515/* Root of all "set mips "/"show mips " commands. This will eventually be
4516 used for all MIPS-specific commands. */
4517
a5ea2558 4518static void
acdb74a0 4519show_mips_command (char *args, int from_tty)
a5ea2558
AC
4520{
4521 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4522}
4523
a5ea2558 4524static void
acdb74a0 4525set_mips_command (char *args, int from_tty)
a5ea2558 4526{
6d82d43b
AC
4527 printf_unfiltered
4528 ("\"set mips\" must be followed by an appropriate subcommand.\n");
a5ea2558
AC
4529 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4530}
4531
c906108c
SS
4532/* Commands to show/set the MIPS FPU type. */
4533
c906108c 4534static void
acdb74a0 4535show_mipsfpu_command (char *args, int from_tty)
c906108c 4536{
c906108c
SS
4537 char *fpu;
4538 switch (MIPS_FPU_TYPE)
4539 {
4540 case MIPS_FPU_SINGLE:
4541 fpu = "single-precision";
4542 break;
4543 case MIPS_FPU_DOUBLE:
4544 fpu = "double-precision";
4545 break;
4546 case MIPS_FPU_NONE:
4547 fpu = "absent (none)";
4548 break;
93d56215 4549 default:
e2e0b3e5 4550 internal_error (__FILE__, __LINE__, _("bad switch"));
c906108c
SS
4551 }
4552 if (mips_fpu_type_auto)
6d82d43b
AC
4553 printf_unfiltered
4554 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4555 fpu);
c906108c 4556 else
6d82d43b
AC
4557 printf_unfiltered
4558 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
c906108c
SS
4559}
4560
4561
c906108c 4562static void
acdb74a0 4563set_mipsfpu_command (char *args, int from_tty)
c906108c 4564{
6d82d43b
AC
4565 printf_unfiltered
4566 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
c906108c
SS
4567 show_mipsfpu_command (args, from_tty);
4568}
4569
c906108c 4570static void
acdb74a0 4571set_mipsfpu_single_command (char *args, int from_tty)
c906108c 4572{
8d5838b5
AC
4573 struct gdbarch_info info;
4574 gdbarch_info_init (&info);
c906108c
SS
4575 mips_fpu_type = MIPS_FPU_SINGLE;
4576 mips_fpu_type_auto = 0;
8d5838b5
AC
4577 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4578 instead of relying on globals. Doing that would let generic code
4579 handle the search for this specific architecture. */
4580 if (!gdbarch_update_p (info))
e2e0b3e5 4581 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4582}
4583
c906108c 4584static void
acdb74a0 4585set_mipsfpu_double_command (char *args, int from_tty)
c906108c 4586{
8d5838b5
AC
4587 struct gdbarch_info info;
4588 gdbarch_info_init (&info);
c906108c
SS
4589 mips_fpu_type = MIPS_FPU_DOUBLE;
4590 mips_fpu_type_auto = 0;
8d5838b5
AC
4591 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4592 instead of relying on globals. Doing that would let generic code
4593 handle the search for this specific architecture. */
4594 if (!gdbarch_update_p (info))
e2e0b3e5 4595 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4596}
4597
c906108c 4598static void
acdb74a0 4599set_mipsfpu_none_command (char *args, int from_tty)
c906108c 4600{
8d5838b5
AC
4601 struct gdbarch_info info;
4602 gdbarch_info_init (&info);
c906108c
SS
4603 mips_fpu_type = MIPS_FPU_NONE;
4604 mips_fpu_type_auto = 0;
8d5838b5
AC
4605 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4606 instead of relying on globals. Doing that would let generic code
4607 handle the search for this specific architecture. */
4608 if (!gdbarch_update_p (info))
e2e0b3e5 4609 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
c906108c
SS
4610}
4611
c906108c 4612static void
acdb74a0 4613set_mipsfpu_auto_command (char *args, int from_tty)
c906108c
SS
4614{
4615 mips_fpu_type_auto = 1;
4616}
4617
c906108c 4618/* Attempt to identify the particular processor model by reading the
691c0433
AC
4619 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4620 the relevant processor still exists (it dates back to '94) and
4621 secondly this is not the way to do this. The processor type should
4622 be set by forcing an architecture change. */
c906108c 4623
691c0433
AC
4624void
4625deprecated_mips_set_processor_regs_hack (void)
c906108c 4626{
691c0433 4627 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a9614958 4628 ULONGEST prid;
c906108c 4629
594f7785 4630 regcache_cooked_read_unsigned (get_current_regcache (),
a9614958 4631 MIPS_PRID_REGNUM, &prid);
c906108c 4632 if ((prid & ~0xf) == 0x700)
691c0433 4633 tdep->mips_processor_reg_names = mips_r3041_reg_names;
c906108c
SS
4634}
4635
4636/* Just like reinit_frame_cache, but with the right arguments to be
4637 callable as an sfunc. */
4638
4639static void
acdb74a0
AC
4640reinit_frame_cache_sfunc (char *args, int from_tty,
4641 struct cmd_list_element *c)
c906108c
SS
4642{
4643 reinit_frame_cache ();
4644}
4645
a89aa300
AC
4646static int
4647gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
c906108c 4648{
e5ab0dce 4649 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 4650
d31431ed
AC
4651 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4652 disassembler needs to be able to locally determine the ISA, and
4653 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4654 work. */
ec4045ea
AC
4655 if (mips_pc_is_mips16 (memaddr))
4656 info->mach = bfd_mach_mips16;
c906108c
SS
4657
4658 /* Round down the instruction address to the appropriate boundary. */
65c11066 4659 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
c5aa993b 4660
e5ab0dce 4661 /* Set the disassembler options. */
6d82d43b 4662 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
e5ab0dce
AC
4663 {
4664 /* Set up the disassembler info, so that we get the right
6d82d43b 4665 register names from libopcodes. */
e5ab0dce
AC
4666 if (tdep->mips_abi == MIPS_ABI_N32)
4667 info->disassembler_options = "gpr-names=n32";
4668 else
4669 info->disassembler_options = "gpr-names=64";
4670 info->flavour = bfd_target_elf_flavour;
4671 }
4672 else
4673 /* This string is not recognized explicitly by the disassembler,
4674 but it tells the disassembler to not try to guess the ABI from
4675 the bfd elf headers, such that, if the user overrides the ABI
4676 of a program linked as NewABI, the disassembly will follow the
4677 register naming conventions specified by the user. */
4678 info->disassembler_options = "gpr-names=32";
4679
c906108c 4680 /* Call the appropriate disassembler based on the target endian-ness. */
4c6b5505 4681 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
4682 return print_insn_big_mips (memaddr, info);
4683 else
4684 return print_insn_little_mips (memaddr, info);
4685}
4686
3b3b875c
UW
4687/* This function implements gdbarch_breakpoint_from_pc. It uses the program
4688 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4689 It returns a pointer to a string of bytes that encode a breakpoint
4690 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4691 necessary) to point to the actual memory location where the breakpoint
4692 should be inserted. */
c906108c 4693
47a35522 4694static const gdb_byte *
6d82d43b 4695mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 4696{
4c6b5505 4697 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 4698 {
0fe7e7c8 4699 if (mips_pc_is_mips16 (*pcptr))
c906108c 4700 {
47a35522 4701 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
95404a3e 4702 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4703 *lenptr = sizeof (mips16_big_breakpoint);
c906108c
SS
4704 return mips16_big_breakpoint;
4705 }
4706 else
4707 {
aaab4dba
AC
4708 /* The IDT board uses an unusual breakpoint value, and
4709 sometimes gets confused when it sees the usual MIPS
4710 breakpoint instruction. */
47a35522
MK
4711 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4712 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4713 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
c906108c 4714
c5aa993b 4715 *lenptr = sizeof (big_breakpoint);
c906108c
SS
4716
4717 if (strcmp (target_shortname, "mips") == 0)
4718 return idt_big_breakpoint;
4719 else if (strcmp (target_shortname, "ddb") == 0
4720 || strcmp (target_shortname, "pmon") == 0
4721 || strcmp (target_shortname, "lsi") == 0)
4722 return pmon_big_breakpoint;
4723 else
4724 return big_breakpoint;
4725 }
4726 }
4727 else
4728 {
0fe7e7c8 4729 if (mips_pc_is_mips16 (*pcptr))
c906108c 4730 {
47a35522 4731 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
95404a3e 4732 *pcptr = unmake_mips16_addr (*pcptr);
c5aa993b 4733 *lenptr = sizeof (mips16_little_breakpoint);
c906108c
SS
4734 return mips16_little_breakpoint;
4735 }
4736 else
4737 {
47a35522
MK
4738 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4739 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4740 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
c906108c 4741
c5aa993b 4742 *lenptr = sizeof (little_breakpoint);
c906108c
SS
4743
4744 if (strcmp (target_shortname, "mips") == 0)
4745 return idt_little_breakpoint;
4746 else if (strcmp (target_shortname, "ddb") == 0
4747 || strcmp (target_shortname, "pmon") == 0
4748 || strcmp (target_shortname, "lsi") == 0)
4749 return pmon_little_breakpoint;
4750 else
4751 return little_breakpoint;
4752 }
4753 }
4754}
4755
4756/* If PC is in a mips16 call or return stub, return the address of the target
4757 PC, which is either the callee or the caller. There are several
4758 cases which must be handled:
4759
4760 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
c5aa993b 4761 target PC is in $31 ($ra).
c906108c 4762 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
c5aa993b 4763 and the target PC is in $2.
c906108c 4764 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4765 before the jal instruction, this is effectively a call stub
4766 and the the target PC is in $2. Otherwise this is effectively
4767 a return stub and the target PC is in $18.
c906108c
SS
4768
4769 See the source code for the stubs in gcc/config/mips/mips16.S for
e7d6a6d2 4770 gory details. */
c906108c 4771
757a7cc6 4772static CORE_ADDR
52f729a7 4773mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c
SS
4774{
4775 char *name;
4776 CORE_ADDR start_addr;
4777
4778 /* Find the starting address and name of the function containing the PC. */
4779 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4780 return 0;
4781
4782 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4783 target PC is in $31 ($ra). */
4784 if (strcmp (name, "__mips16_ret_sf") == 0
4785 || strcmp (name, "__mips16_ret_df") == 0)
52f729a7 4786 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
c906108c
SS
4787
4788 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4789 {
4790 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4791 and the target PC is in $2. */
4792 if (name[19] >= '0' && name[19] <= '9')
52f729a7 4793 return get_frame_register_signed (frame, 2);
c906108c
SS
4794
4795 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
c5aa993b
JM
4796 before the jal instruction, this is effectively a call stub
4797 and the the target PC is in $2. Otherwise this is effectively
4798 a return stub and the target PC is in $18. */
c906108c
SS
4799 else if (name[19] == 's' || name[19] == 'd')
4800 {
4801 if (pc == start_addr)
4802 {
4803 /* Check if the target of the stub is a compiler-generated
c5aa993b
JM
4804 stub. Such a stub for a function bar might have a name
4805 like __fn_stub_bar, and might look like this:
4806 mfc1 $4,$f13
4807 mfc1 $5,$f12
4808 mfc1 $6,$f15
4809 mfc1 $7,$f14
4810 la $1,bar (becomes a lui/addiu pair)
4811 jr $1
4812 So scan down to the lui/addi and extract the target
4813 address from those two instructions. */
c906108c 4814
52f729a7 4815 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
d37cca3d 4816 ULONGEST inst;
c906108c
SS
4817 int i;
4818
4819 /* See if the name of the target function is __fn_stub_*. */
6d82d43b
AC
4820 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4821 0)
c906108c
SS
4822 return target_pc;
4823 if (strncmp (name, "__fn_stub_", 10) != 0
4824 && strcmp (name, "etext") != 0
4825 && strcmp (name, "_etext") != 0)
4826 return target_pc;
4827
4828 /* Scan through this _fn_stub_ code for the lui/addiu pair.
c5aa993b
JM
4829 The limit on the search is arbitrarily set to 20
4830 instructions. FIXME. */
95ac2dcf 4831 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
c906108c 4832 {
c5aa993b
JM
4833 inst = mips_fetch_instruction (target_pc);
4834 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4835 pc = (inst << 16) & 0xffff0000; /* high word */
4836 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4837 return pc | (inst & 0xffff); /* low word */
c906108c
SS
4838 }
4839
4840 /* Couldn't find the lui/addui pair, so return stub address. */
4841 return target_pc;
4842 }
4843 else
4844 /* This is the 'return' part of a call stub. The return
4845 address is in $r18. */
52f729a7 4846 return get_frame_register_signed (frame, 18);
c906108c
SS
4847 }
4848 }
c5aa993b 4849 return 0; /* not a stub */
c906108c
SS
4850}
4851
a4b8ebc8 4852/* Convert a dbx stab register number (from `r' declaration) to a GDB
f57d151a 4853 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4854
4855static int
4856mips_stab_reg_to_regnum (int num)
4857{
a4b8ebc8 4858 int regnum;
2f38ef89 4859 if (num >= 0 && num < 32)
a4b8ebc8 4860 regnum = num;
2f38ef89 4861 else if (num >= 38 && num < 70)
56cea623 4862 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
040b99fd 4863 else if (num == 70)
56cea623 4864 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4865 else if (num == 71)
56cea623 4866 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4867 else
a4b8ebc8
AC
4868 /* This will hopefully (eventually) provoke a warning. Should
4869 we be calling complaint() here? */
f57d151a
UW
4870 return gdbarch_num_regs (current_gdbarch)
4871 + gdbarch_num_pseudo_regs (current_gdbarch);
4872 return gdbarch_num_regs (current_gdbarch) + regnum;
88c72b7d
AC
4873}
4874
2f38ef89 4875
a4b8ebc8 4876/* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
f57d151a 4877 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
88c72b7d
AC
4878
4879static int
2f38ef89 4880mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
88c72b7d 4881{
a4b8ebc8 4882 int regnum;
2f38ef89 4883 if (num >= 0 && num < 32)
a4b8ebc8 4884 regnum = num;
2f38ef89 4885 else if (num >= 32 && num < 64)
56cea623 4886 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
040b99fd 4887 else if (num == 64)
56cea623 4888 regnum = mips_regnum (current_gdbarch)->hi;
040b99fd 4889 else if (num == 65)
56cea623 4890 regnum = mips_regnum (current_gdbarch)->lo;
2f38ef89 4891 else
a4b8ebc8
AC
4892 /* This will hopefully (eventually) provoke a warning. Should we
4893 be calling complaint() here? */
f57d151a
UW
4894 return gdbarch_num_regs (current_gdbarch)
4895 + gdbarch_num_pseudo_regs (current_gdbarch);
4896 return gdbarch_num_regs (current_gdbarch) + regnum;
a4b8ebc8
AC
4897}
4898
4899static int
4900mips_register_sim_regno (int regnum)
4901{
4902 /* Only makes sense to supply raw registers. */
f57d151a 4903 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
a4b8ebc8
AC
4904 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4905 decide if it is valid. Should instead define a standard sim/gdb
4906 register numbering scheme. */
c9f4d572
UW
4907 if (gdbarch_register_name (current_gdbarch,
4908 gdbarch_num_regs
4909 (current_gdbarch) + regnum) != NULL
4910 && gdbarch_register_name (current_gdbarch,
4911 gdbarch_num_regs
4912 (current_gdbarch) + regnum)[0] != '\0')
a4b8ebc8
AC
4913 return regnum;
4914 else
6d82d43b 4915 return LEGACY_SIM_REGNO_IGNORE;
88c72b7d
AC
4916}
4917
2f38ef89 4918
4844f454
CV
4919/* Convert an integer into an address. Extracting the value signed
4920 guarantees a correctly sign extended address. */
fc0c74b1
AC
4921
4922static CORE_ADDR
79dd2d24 4923mips_integer_to_address (struct gdbarch *gdbarch,
870cd05e 4924 struct type *type, const gdb_byte *buf)
fc0c74b1 4925{
4844f454 4926 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
fc0c74b1
AC
4927}
4928
82e91389
DJ
4929/* Dummy virtual frame pointer method. This is no more or less accurate
4930 than most other architectures; we just need to be explicit about it,
4931 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
4932 an assertion failure. */
4933
4934static void
4935mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
4936{
4937 *reg = MIPS_SP_REGNUM;
4938 *offset = 0;
4939}
4940
caaa3122
DJ
4941static void
4942mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4943{
4944 enum mips_abi *abip = (enum mips_abi *) obj;
4945 const char *name = bfd_get_section_name (abfd, sect);
4946
4947 if (*abip != MIPS_ABI_UNKNOWN)
4948 return;
4949
4950 if (strncmp (name, ".mdebug.", 8) != 0)
4951 return;
4952
4953 if (strcmp (name, ".mdebug.abi32") == 0)
4954 *abip = MIPS_ABI_O32;
4955 else if (strcmp (name, ".mdebug.abiN32") == 0)
4956 *abip = MIPS_ABI_N32;
62a49b2c 4957 else if (strcmp (name, ".mdebug.abi64") == 0)
e3bddbfa 4958 *abip = MIPS_ABI_N64;
caaa3122
DJ
4959 else if (strcmp (name, ".mdebug.abiO64") == 0)
4960 *abip = MIPS_ABI_O64;
4961 else if (strcmp (name, ".mdebug.eabi32") == 0)
4962 *abip = MIPS_ABI_EABI32;
4963 else if (strcmp (name, ".mdebug.eabi64") == 0)
4964 *abip = MIPS_ABI_EABI64;
4965 else
8a3fe4f8 4966 warning (_("unsupported ABI %s."), name + 8);
caaa3122
DJ
4967}
4968
22e47e37
FF
4969static void
4970mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4971{
4972 int *lbp = (int *) obj;
4973 const char *name = bfd_get_section_name (abfd, sect);
4974
4975 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4976 *lbp = 32;
4977 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4978 *lbp = 64;
4979 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4980 warning (_("unrecognized .gcc_compiled_longXX"));
4981}
4982
2e4ebe70
DJ
4983static enum mips_abi
4984global_mips_abi (void)
4985{
4986 int i;
4987
4988 for (i = 0; mips_abi_strings[i] != NULL; i++)
4989 if (mips_abi_strings[i] == mips_abi_string)
4990 return (enum mips_abi) i;
4991
e2e0b3e5 4992 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
2e4ebe70
DJ
4993}
4994
29709017
DJ
4995static void
4996mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4997{
29709017
DJ
4998 /* If the size matches the set of 32-bit or 64-bit integer registers,
4999 assume that's what we've got. */
4eb0ad19
DJ
5000 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5001 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
29709017
DJ
5002
5003 /* If the size matches the full set of registers GDB traditionally
5004 knows about, including floating point, for either 32-bit or
5005 64-bit, assume that's what we've got. */
4eb0ad19
DJ
5006 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5007 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
29709017
DJ
5008
5009 /* Otherwise we don't have a useful guess. */
5010}
5011
f8b73d13
DJ
5012static struct value *
5013value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5014{
5015 const int *reg_p = baton;
5016 return value_of_register (*reg_p, frame);
5017}
5018
c2d11a7d 5019static struct gdbarch *
6d82d43b 5020mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
c2d11a7d 5021{
c2d11a7d
JM
5022 struct gdbarch *gdbarch;
5023 struct gdbarch_tdep *tdep;
5024 int elf_flags;
2e4ebe70 5025 enum mips_abi mips_abi, found_abi, wanted_abi;
f8b73d13 5026 int i, num_regs;
8d5838b5 5027 enum mips_fpu_type fpu_type;
f8b73d13 5028 struct tdesc_arch_data *tdesc_data = NULL;
609ca2b9 5029 int elf_fpu_type = 0;
f8b73d13
DJ
5030
5031 /* Check any target description for validity. */
5032 if (tdesc_has_registers (info.target_desc))
5033 {
5034 static const char *const mips_gprs[] = {
5035 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5036 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5037 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5038 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5039 };
5040 static const char *const mips_fprs[] = {
5041 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5042 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5043 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5044 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5045 };
5046
5047 const struct tdesc_feature *feature;
5048 int valid_p;
5049
5050 feature = tdesc_find_feature (info.target_desc,
5051 "org.gnu.gdb.mips.cpu");
5052 if (feature == NULL)
5053 return NULL;
5054
5055 tdesc_data = tdesc_data_alloc ();
5056
5057 valid_p = 1;
5058 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5059 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5060 mips_gprs[i]);
5061
5062
5063 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5064 MIPS_EMBED_LO_REGNUM, "lo");
5065 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5066 MIPS_EMBED_HI_REGNUM, "hi");
5067 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5068 MIPS_EMBED_PC_REGNUM, "pc");
5069
5070 if (!valid_p)
5071 {
5072 tdesc_data_cleanup (tdesc_data);
5073 return NULL;
5074 }
5075
5076 feature = tdesc_find_feature (info.target_desc,
5077 "org.gnu.gdb.mips.cp0");
5078 if (feature == NULL)
5079 {
5080 tdesc_data_cleanup (tdesc_data);
5081 return NULL;
5082 }
5083
5084 valid_p = 1;
5085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5086 MIPS_EMBED_BADVADDR_REGNUM,
5087 "badvaddr");
5088 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5089 MIPS_PS_REGNUM, "status");
5090 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5091 MIPS_EMBED_CAUSE_REGNUM, "cause");
5092
5093 if (!valid_p)
5094 {
5095 tdesc_data_cleanup (tdesc_data);
5096 return NULL;
5097 }
5098
5099 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5100 backend is not prepared for that, though. */
5101 feature = tdesc_find_feature (info.target_desc,
5102 "org.gnu.gdb.mips.fpu");
5103 if (feature == NULL)
5104 {
5105 tdesc_data_cleanup (tdesc_data);
5106 return NULL;
5107 }
5108
5109 valid_p = 1;
5110 for (i = 0; i < 32; i++)
5111 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5112 i + MIPS_EMBED_FP0_REGNUM,
5113 mips_fprs[i]);
5114
5115 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5116 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5117 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5118 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5119
5120 if (!valid_p)
5121 {
5122 tdesc_data_cleanup (tdesc_data);
5123 return NULL;
5124 }
5125
5126 /* It would be nice to detect an attempt to use a 64-bit ABI
5127 when only 32-bit registers are provided. */
5128 }
c2d11a7d 5129
ec03c1ac
AC
5130 /* First of all, extract the elf_flags, if available. */
5131 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5132 elf_flags = elf_elfheader (info.abfd)->e_flags;
6214a8a1
AC
5133 else if (arches != NULL)
5134 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
ec03c1ac
AC
5135 else
5136 elf_flags = 0;
5137 if (gdbarch_debug)
5138 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5139 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
c2d11a7d 5140
102182a9 5141 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
0dadbba0
AC
5142 switch ((elf_flags & EF_MIPS_ABI))
5143 {
5144 case E_MIPS_ABI_O32:
ec03c1ac 5145 found_abi = MIPS_ABI_O32;
0dadbba0
AC
5146 break;
5147 case E_MIPS_ABI_O64:
ec03c1ac 5148 found_abi = MIPS_ABI_O64;
0dadbba0
AC
5149 break;
5150 case E_MIPS_ABI_EABI32:
ec03c1ac 5151 found_abi = MIPS_ABI_EABI32;
0dadbba0
AC
5152 break;
5153 case E_MIPS_ABI_EABI64:
ec03c1ac 5154 found_abi = MIPS_ABI_EABI64;
0dadbba0
AC
5155 break;
5156 default:
acdb74a0 5157 if ((elf_flags & EF_MIPS_ABI2))
ec03c1ac 5158 found_abi = MIPS_ABI_N32;
acdb74a0 5159 else
ec03c1ac 5160 found_abi = MIPS_ABI_UNKNOWN;
0dadbba0
AC
5161 break;
5162 }
acdb74a0 5163
caaa3122 5164 /* GCC creates a pseudo-section whose name describes the ABI. */
ec03c1ac
AC
5165 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5166 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
caaa3122 5167
dc305454 5168 /* If we have no useful BFD information, use the ABI from the last
ec03c1ac
AC
5169 MIPS architecture (if there is one). */
5170 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5171 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
2e4ebe70 5172
32a6503c 5173 /* Try the architecture for any hint of the correct ABI. */
ec03c1ac 5174 if (found_abi == MIPS_ABI_UNKNOWN
bf64bfd6
AC
5175 && info.bfd_arch_info != NULL
5176 && info.bfd_arch_info->arch == bfd_arch_mips)
5177 {
5178 switch (info.bfd_arch_info->mach)
5179 {
5180 case bfd_mach_mips3900:
ec03c1ac 5181 found_abi = MIPS_ABI_EABI32;
bf64bfd6
AC
5182 break;
5183 case bfd_mach_mips4100:
5184 case bfd_mach_mips5000:
ec03c1ac 5185 found_abi = MIPS_ABI_EABI64;
bf64bfd6 5186 break;
1d06468c
EZ
5187 case bfd_mach_mips8000:
5188 case bfd_mach_mips10000:
32a6503c
KB
5189 /* On Irix, ELF64 executables use the N64 ABI. The
5190 pseudo-sections which describe the ABI aren't present
5191 on IRIX. (Even for executables created by gcc.) */
28d169de
KB
5192 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5193 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
ec03c1ac 5194 found_abi = MIPS_ABI_N64;
28d169de 5195 else
ec03c1ac 5196 found_abi = MIPS_ABI_N32;
1d06468c 5197 break;
bf64bfd6
AC
5198 }
5199 }
2e4ebe70 5200
26c53e50
DJ
5201 /* Default 64-bit objects to N64 instead of O32. */
5202 if (found_abi == MIPS_ABI_UNKNOWN
5203 && info.abfd != NULL
5204 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5205 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5206 found_abi = MIPS_ABI_N64;
5207
ec03c1ac
AC
5208 if (gdbarch_debug)
5209 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5210 found_abi);
5211
5212 /* What has the user specified from the command line? */
5213 wanted_abi = global_mips_abi ();
5214 if (gdbarch_debug)
5215 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5216 wanted_abi);
2e4ebe70
DJ
5217
5218 /* Now that we have found what the ABI for this binary would be,
5219 check whether the user is overriding it. */
2e4ebe70
DJ
5220 if (wanted_abi != MIPS_ABI_UNKNOWN)
5221 mips_abi = wanted_abi;
ec03c1ac
AC
5222 else if (found_abi != MIPS_ABI_UNKNOWN)
5223 mips_abi = found_abi;
5224 else
5225 mips_abi = MIPS_ABI_O32;
5226 if (gdbarch_debug)
5227 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5228 mips_abi);
2e4ebe70 5229
ec03c1ac 5230 /* Also used when doing an architecture lookup. */
4b9b3959 5231 if (gdbarch_debug)
ec03c1ac
AC
5232 fprintf_unfiltered (gdb_stdlog,
5233 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5234 mips64_transfers_32bit_regs_p);
0dadbba0 5235
8d5838b5 5236 /* Determine the MIPS FPU type. */
609ca2b9
DJ
5237#ifdef HAVE_ELF
5238 if (info.abfd
5239 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5240 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5241 Tag_GNU_MIPS_ABI_FP);
5242#endif /* HAVE_ELF */
5243
8d5838b5
AC
5244 if (!mips_fpu_type_auto)
5245 fpu_type = mips_fpu_type;
609ca2b9
DJ
5246 else if (elf_fpu_type != 0)
5247 {
5248 switch (elf_fpu_type)
5249 {
5250 case 1:
5251 fpu_type = MIPS_FPU_DOUBLE;
5252 break;
5253 case 2:
5254 fpu_type = MIPS_FPU_SINGLE;
5255 break;
5256 case 3:
5257 default:
5258 /* Soft float or unknown. */
5259 fpu_type = MIPS_FPU_NONE;
5260 break;
5261 }
5262 }
8d5838b5
AC
5263 else if (info.bfd_arch_info != NULL
5264 && info.bfd_arch_info->arch == bfd_arch_mips)
5265 switch (info.bfd_arch_info->mach)
5266 {
5267 case bfd_mach_mips3900:
5268 case bfd_mach_mips4100:
5269 case bfd_mach_mips4111:
a9d61c86 5270 case bfd_mach_mips4120:
8d5838b5
AC
5271 fpu_type = MIPS_FPU_NONE;
5272 break;
5273 case bfd_mach_mips4650:
5274 fpu_type = MIPS_FPU_SINGLE;
5275 break;
5276 default:
5277 fpu_type = MIPS_FPU_DOUBLE;
5278 break;
5279 }
5280 else if (arches != NULL)
5281 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5282 else
5283 fpu_type = MIPS_FPU_DOUBLE;
5284 if (gdbarch_debug)
5285 fprintf_unfiltered (gdb_stdlog,
6d82d43b 5286 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8d5838b5 5287
29709017
DJ
5288 /* Check for blatant incompatibilities. */
5289
5290 /* If we have only 32-bit registers, then we can't debug a 64-bit
5291 ABI. */
5292 if (info.target_desc
5293 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5294 && mips_abi != MIPS_ABI_EABI32
5295 && mips_abi != MIPS_ABI_O32)
f8b73d13
DJ
5296 {
5297 if (tdesc_data != NULL)
5298 tdesc_data_cleanup (tdesc_data);
5299 return NULL;
5300 }
29709017 5301
c2d11a7d
JM
5302 /* try to find a pre-existing architecture */
5303 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5304 arches != NULL;
5305 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5306 {
5307 /* MIPS needs to be pedantic about which ABI the object is
102182a9 5308 using. */
9103eae0 5309 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
c2d11a7d 5310 continue;
9103eae0 5311 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
0dadbba0 5312 continue;
719ec221
AC
5313 /* Need to be pedantic about which register virtual size is
5314 used. */
5315 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5316 != mips64_transfers_32bit_regs_p)
5317 continue;
8d5838b5
AC
5318 /* Be pedantic about which FPU is selected. */
5319 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5320 continue;
f8b73d13
DJ
5321
5322 if (tdesc_data != NULL)
5323 tdesc_data_cleanup (tdesc_data);
4be87837 5324 return arches->gdbarch;
c2d11a7d
JM
5325 }
5326
102182a9 5327 /* Need a new architecture. Fill in a target specific vector. */
c2d11a7d
JM
5328 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5329 gdbarch = gdbarch_alloc (&info, tdep);
5330 tdep->elf_flags = elf_flags;
719ec221 5331 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
ec03c1ac
AC
5332 tdep->found_abi = found_abi;
5333 tdep->mips_abi = mips_abi;
8d5838b5 5334 tdep->mips_fpu_type = fpu_type;
29709017
DJ
5335 tdep->register_size_valid_p = 0;
5336 tdep->register_size = 0;
5337
5338 if (info.target_desc)
5339 {
5340 /* Some useful properties can be inferred from the target. */
5341 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5342 {
5343 tdep->register_size_valid_p = 1;
5344 tdep->register_size = 4;
5345 }
5346 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5347 {
5348 tdep->register_size_valid_p = 1;
5349 tdep->register_size = 8;
5350 }
5351 }
c2d11a7d 5352
102182a9 5353 /* Initially set everything according to the default ABI/ISA. */
c2d11a7d
JM
5354 set_gdbarch_short_bit (gdbarch, 16);
5355 set_gdbarch_int_bit (gdbarch, 32);
5356 set_gdbarch_float_bit (gdbarch, 32);
5357 set_gdbarch_double_bit (gdbarch, 64);
5358 set_gdbarch_long_double_bit (gdbarch, 64);
a4b8ebc8
AC
5359 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5360 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5361 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
1d06468c 5362
6d82d43b 5363 set_gdbarch_elf_make_msymbol_special (gdbarch,
f7ab6ec6
MS
5364 mips_elf_make_msymbol_special);
5365
16e109ca 5366 /* Fill in the OS dependant register numbers and names. */
56cea623 5367 {
16e109ca 5368 const char **reg_names;
56cea623
AC
5369 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5370 struct mips_regnum);
f8b73d13
DJ
5371 if (tdesc_has_registers (info.target_desc))
5372 {
5373 regnum->lo = MIPS_EMBED_LO_REGNUM;
5374 regnum->hi = MIPS_EMBED_HI_REGNUM;
5375 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5376 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5377 regnum->pc = MIPS_EMBED_PC_REGNUM;
5378 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5379 regnum->fp_control_status = 70;
5380 regnum->fp_implementation_revision = 71;
5381 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5382 reg_names = NULL;
5383 }
5384 else if (info.osabi == GDB_OSABI_IRIX)
56cea623
AC
5385 {
5386 regnum->fp0 = 32;
5387 regnum->pc = 64;
5388 regnum->cause = 65;
5389 regnum->badvaddr = 66;
5390 regnum->hi = 67;
5391 regnum->lo = 68;
5392 regnum->fp_control_status = 69;
5393 regnum->fp_implementation_revision = 70;
5394 num_regs = 71;
16e109ca 5395 reg_names = mips_irix_reg_names;
56cea623
AC
5396 }
5397 else
5398 {
5399 regnum->lo = MIPS_EMBED_LO_REGNUM;
5400 regnum->hi = MIPS_EMBED_HI_REGNUM;
5401 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5402 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5403 regnum->pc = MIPS_EMBED_PC_REGNUM;
5404 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5405 regnum->fp_control_status = 70;
5406 regnum->fp_implementation_revision = 71;
5407 num_regs = 90;
16e109ca
AC
5408 if (info.bfd_arch_info != NULL
5409 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5410 reg_names = mips_tx39_reg_names;
5411 else
5412 reg_names = mips_generic_reg_names;
56cea623 5413 }
3e8c568d 5414 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
56cea623 5415 replaced by read_pc? */
f10683bb
MH
5416 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5417 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
56cea623
AC
5418 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5419 set_gdbarch_num_regs (gdbarch, num_regs);
5420 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
16e109ca 5421 set_gdbarch_register_name (gdbarch, mips_register_name);
82e91389 5422 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
16e109ca
AC
5423 tdep->mips_processor_reg_names = reg_names;
5424 tdep->regnum = regnum;
56cea623 5425 }
fe29b929 5426
0dadbba0 5427 switch (mips_abi)
c2d11a7d 5428 {
0dadbba0 5429 case MIPS_ABI_O32:
25ab4790 5430 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
29dfb2ac 5431 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4c7d22cb 5432 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5433 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4014092b 5434 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5435 set_gdbarch_long_bit (gdbarch, 32);
5436 set_gdbarch_ptr_bit (gdbarch, 32);
5437 set_gdbarch_long_long_bit (gdbarch, 64);
5438 break;
0dadbba0 5439 case MIPS_ABI_O64:
25ab4790 5440 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
9c8fdbfa 5441 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4c7d22cb 5442 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
56cea623 5443 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
361d1df0 5444 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5445 set_gdbarch_long_bit (gdbarch, 32);
5446 set_gdbarch_ptr_bit (gdbarch, 32);
5447 set_gdbarch_long_long_bit (gdbarch, 64);
5448 break;
0dadbba0 5449 case MIPS_ABI_EABI32:
25ab4790 5450 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5451 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5452 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5453 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5454 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5455 set_gdbarch_long_bit (gdbarch, 32);
5456 set_gdbarch_ptr_bit (gdbarch, 32);
5457 set_gdbarch_long_long_bit (gdbarch, 64);
5458 break;
0dadbba0 5459 case MIPS_ABI_EABI64:
25ab4790 5460 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
9c8fdbfa 5461 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4c7d22cb 5462 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5463 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5464 tdep->default_mask_address_p = 0;
c2d11a7d
JM
5465 set_gdbarch_long_bit (gdbarch, 64);
5466 set_gdbarch_ptr_bit (gdbarch, 64);
5467 set_gdbarch_long_long_bit (gdbarch, 64);
5468 break;
0dadbba0 5469 case MIPS_ABI_N32:
25ab4790 5470 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5471 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5472 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5473 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4014092b 5474 tdep->default_mask_address_p = 0;
0dadbba0
AC
5475 set_gdbarch_long_bit (gdbarch, 32);
5476 set_gdbarch_ptr_bit (gdbarch, 32);
5477 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5478 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5479 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
28d169de
KB
5480 break;
5481 case MIPS_ABI_N64:
25ab4790 5482 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
29dfb2ac 5483 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4c7d22cb 5484 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
56cea623 5485 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
28d169de
KB
5486 tdep->default_mask_address_p = 0;
5487 set_gdbarch_long_bit (gdbarch, 64);
5488 set_gdbarch_ptr_bit (gdbarch, 64);
5489 set_gdbarch_long_long_bit (gdbarch, 64);
fed7ba43 5490 set_gdbarch_long_double_bit (gdbarch, 128);
8da61cc4 5491 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
0dadbba0 5492 break;
c2d11a7d 5493 default:
e2e0b3e5 5494 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
c2d11a7d
JM
5495 }
5496
22e47e37
FF
5497 /* GCC creates a pseudo-section whose name specifies the size of
5498 longs, since -mlong32 or -mlong64 may be used independent of
5499 other options. How those options affect pointer sizes is ABI and
5500 architecture dependent, so use them to override the default sizes
5501 set by the ABI. This table shows the relationship between ABI,
5502 -mlongXX, and size of pointers:
5503
5504 ABI -mlongXX ptr bits
5505 --- -------- --------
5506 o32 32 32
5507 o32 64 32
5508 n32 32 32
5509 n32 64 64
5510 o64 32 32
5511 o64 64 64
5512 n64 32 32
5513 n64 64 64
5514 eabi32 32 32
5515 eabi32 64 32
5516 eabi64 32 32
5517 eabi64 64 64
5518
5519 Note that for o32 and eabi32, pointers are always 32 bits
5520 regardless of any -mlongXX option. For all others, pointers and
5521 longs are the same, as set by -mlongXX or set by defaults.
5522 */
5523
5524 if (info.abfd != NULL)
5525 {
5526 int long_bit = 0;
5527
5528 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5529 if (long_bit)
5530 {
5531 set_gdbarch_long_bit (gdbarch, long_bit);
5532 switch (mips_abi)
5533 {
5534 case MIPS_ABI_O32:
5535 case MIPS_ABI_EABI32:
5536 break;
5537 case MIPS_ABI_N32:
5538 case MIPS_ABI_O64:
5539 case MIPS_ABI_N64:
5540 case MIPS_ABI_EABI64:
5541 set_gdbarch_ptr_bit (gdbarch, long_bit);
5542 break;
5543 default:
5544 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5545 }
5546 }
5547 }
5548
a5ea2558
AC
5549 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5550 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5551 comment:
5552
5553 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5554 flag in object files because to do so would make it impossible to
102182a9 5555 link with libraries compiled without "-gp32". This is
a5ea2558 5556 unnecessarily restrictive.
361d1df0 5557
a5ea2558
AC
5558 We could solve this problem by adding "-gp32" multilibs to gcc,
5559 but to set this flag before gcc is built with such multilibs will
5560 break too many systems.''
5561
5562 But even more unhelpfully, the default linker output target for
5563 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5564 for 64-bit programs - you need to change the ABI to change this,
102182a9 5565 and not all gcc targets support that currently. Therefore using
a5ea2558
AC
5566 this flag to detect 32-bit mode would do the wrong thing given
5567 the current gcc - it would make GDB treat these 64-bit programs
102182a9 5568 as 32-bit programs by default. */
a5ea2558 5569
6c997a34 5570 set_gdbarch_read_pc (gdbarch, mips_read_pc);
b6cb9035 5571 set_gdbarch_write_pc (gdbarch, mips_write_pc);
c2d11a7d 5572
102182a9
MS
5573 /* Add/remove bits from an address. The MIPS needs be careful to
5574 ensure that all 32 bit addresses are sign extended to 64 bits. */
875e1767
AC
5575 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5576
58dfe9ff
AC
5577 /* Unwind the frame. */
5578 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
30244cd8 5579 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
edfae063 5580 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
10312cc4 5581
102182a9 5582 /* Map debug register numbers onto internal register numbers. */
88c72b7d 5583 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6d82d43b
AC
5584 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5585 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5586 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5587 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5588 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5589 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
a4b8ebc8 5590 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
88c72b7d 5591
c2d11a7d
JM
5592 /* MIPS version of CALL_DUMMY */
5593
9710e734
AC
5594 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5595 replaced by a command, and all targets will default to on stack
5596 (regardless of the stack's execute status). */
5597 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
dc604539 5598 set_gdbarch_frame_align (gdbarch, mips_frame_align);
d05285fa 5599
87783b8b
AC
5600 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5601 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5602 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5603
f7b9e9fc
AC
5604 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5605 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
f7b9e9fc
AC
5606
5607 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
f7b9e9fc 5608
97ab0fdd
MR
5609 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5610
fc0c74b1
AC
5611 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5612 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5613 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
70f80edf 5614
a4b8ebc8 5615 set_gdbarch_register_type (gdbarch, mips_register_type);
78fde5f8 5616
e11c53d2 5617 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
bf1f5b4c 5618
e5ab0dce
AC
5619 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5620
3a3bc038
AC
5621 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5622 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5623 need to all be folded into the target vector. Since they are
5624 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5625 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5626 is sitting on? */
5627 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5628
e7d6a6d2 5629 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
757a7cc6 5630
3352ef37
AC
5631 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5632
0d5de010
DJ
5633 /* Virtual tables. */
5634 set_gdbarch_vbit_in_delta (gdbarch, 1);
5635
29709017
DJ
5636 mips_register_g_packet_guesses (gdbarch);
5637
6de918a6 5638 /* Hook in OS ABI-specific overrides, if they have been registered. */
822b6570 5639 info.tdep_info = (void *) tdesc_data;
6de918a6 5640 gdbarch_init_osabi (info, gdbarch);
757a7cc6 5641
5792a79b 5642 /* Unwind the frame. */
2bd0c3d7 5643 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eec63939 5644 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
45c9dd44
AC
5645 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5646 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
2bd0c3d7 5647 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
eec63939 5648 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
45c9dd44
AC
5649 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5650 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5792a79b 5651
f8b73d13
DJ
5652 if (tdesc_data)
5653 {
5654 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
7cc46491 5655 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
f8b73d13
DJ
5656
5657 /* Override the normal target description methods to handle our
5658 dual real and pseudo registers. */
5659 set_gdbarch_register_name (gdbarch, mips_register_name);
5660 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5661
5662 num_regs = gdbarch_num_regs (gdbarch);
5663 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5664 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5665 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5666 }
5667
5668 /* Add ABI-specific aliases for the registers. */
5669 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5670 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5671 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5672 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5673 else
5674 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5675 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5676 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5677
5678 /* Add some other standard aliases. */
5679 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5680 user_reg_add (gdbarch, mips_register_aliases[i].name,
5681 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5682
4b9b3959
AC
5683 return gdbarch;
5684}
5685
2e4ebe70 5686static void
6d82d43b 5687mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
2e4ebe70
DJ
5688{
5689 struct gdbarch_info info;
5690
5691 /* Force the architecture to update, and (if it's a MIPS architecture)
5692 mips_gdbarch_init will take care of the rest. */
5693 gdbarch_info_init (&info);
5694 gdbarch_update_p (info);
5695}
5696
ad188201
KB
5697/* Print out which MIPS ABI is in use. */
5698
5699static void
1f8ca57c
JB
5700show_mips_abi (struct ui_file *file,
5701 int from_tty,
5702 struct cmd_list_element *ignored_cmd,
5703 const char *ignored_value)
ad188201
KB
5704{
5705 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
1f8ca57c
JB
5706 fprintf_filtered
5707 (file,
5708 "The MIPS ABI is unknown because the current architecture "
5709 "is not MIPS.\n");
ad188201
KB
5710 else
5711 {
5712 enum mips_abi global_abi = global_mips_abi ();
5713 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5714 const char *actual_abi_str = mips_abi_strings[actual_abi];
5715
5716 if (global_abi == MIPS_ABI_UNKNOWN)
1f8ca57c
JB
5717 fprintf_filtered
5718 (file,
5719 "The MIPS ABI is set automatically (currently \"%s\").\n",
6d82d43b 5720 actual_abi_str);
ad188201 5721 else if (global_abi == actual_abi)
1f8ca57c
JB
5722 fprintf_filtered
5723 (file,
5724 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6d82d43b 5725 actual_abi_str);
ad188201
KB
5726 else
5727 {
5728 /* Probably shouldn't happen... */
1f8ca57c
JB
5729 fprintf_filtered
5730 (file,
5731 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6d82d43b 5732 actual_abi_str, mips_abi_strings[global_abi]);
ad188201
KB
5733 }
5734 }
5735}
5736
4b9b3959 5737static void
72a155b4 5738mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4b9b3959 5739{
72a155b4 5740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4b9b3959 5741 if (tdep != NULL)
c2d11a7d 5742 {
acdb74a0
AC
5743 int ef_mips_arch;
5744 int ef_mips_32bitmode;
f49e4e6d 5745 /* Determine the ISA. */
acdb74a0
AC
5746 switch (tdep->elf_flags & EF_MIPS_ARCH)
5747 {
5748 case E_MIPS_ARCH_1:
5749 ef_mips_arch = 1;
5750 break;
5751 case E_MIPS_ARCH_2:
5752 ef_mips_arch = 2;
5753 break;
5754 case E_MIPS_ARCH_3:
5755 ef_mips_arch = 3;
5756 break;
5757 case E_MIPS_ARCH_4:
93d56215 5758 ef_mips_arch = 4;
acdb74a0
AC
5759 break;
5760 default:
93d56215 5761 ef_mips_arch = 0;
acdb74a0
AC
5762 break;
5763 }
f49e4e6d 5764 /* Determine the size of a pointer. */
acdb74a0 5765 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4b9b3959
AC
5766 fprintf_unfiltered (file,
5767 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
0dadbba0 5768 tdep->elf_flags);
4b9b3959 5769 fprintf_unfiltered (file,
acdb74a0
AC
5770 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5771 ef_mips_32bitmode);
5772 fprintf_unfiltered (file,
5773 "mips_dump_tdep: ef_mips_arch = %d\n",
5774 ef_mips_arch);
5775 fprintf_unfiltered (file,
5776 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6d82d43b 5777 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
4014092b
AC
5778 fprintf_unfiltered (file,
5779 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
480d3dd2 5780 mips_mask_address_p (tdep),
4014092b 5781 tdep->default_mask_address_p);
c2d11a7d 5782 }
4b9b3959
AC
5783 fprintf_unfiltered (file,
5784 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5785 MIPS_DEFAULT_FPU_TYPE,
5786 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5787 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5788 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5789 : "???"));
6d82d43b 5790 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
4b9b3959
AC
5791 fprintf_unfiltered (file,
5792 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5793 MIPS_FPU_TYPE,
5794 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5795 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5796 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5797 : "???"));
c2d11a7d
JM
5798}
5799
6d82d43b 5800extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
a78f21af 5801
c906108c 5802void
acdb74a0 5803_initialize_mips_tdep (void)
c906108c
SS
5804{
5805 static struct cmd_list_element *mipsfpulist = NULL;
5806 struct cmd_list_element *c;
5807
6d82d43b 5808 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
2e4ebe70
DJ
5809 if (MIPS_ABI_LAST + 1
5810 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
e2e0b3e5 5811 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
2e4ebe70 5812
4b9b3959 5813 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
c906108c 5814
8d5f9dcb
DJ
5815 mips_pdr_data = register_objfile_data ();
5816
4eb0ad19
DJ
5817 /* Create feature sets with the appropriate properties. The values
5818 are not important. */
5819 mips_tdesc_gp32 = allocate_target_description ();
5820 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5821
5822 mips_tdesc_gp64 = allocate_target_description ();
5823 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5824
a5ea2558
AC
5825 /* Add root prefix command for all "set mips"/"show mips" commands */
5826 add_prefix_cmd ("mips", no_class, set_mips_command,
1bedd215 5827 _("Various MIPS specific commands."),
a5ea2558
AC
5828 &setmipscmdlist, "set mips ", 0, &setlist);
5829
5830 add_prefix_cmd ("mips", no_class, show_mips_command,
1bedd215 5831 _("Various MIPS specific commands."),
a5ea2558
AC
5832 &showmipscmdlist, "show mips ", 0, &showlist);
5833
2e4ebe70 5834 /* Allow the user to override the ABI. */
7ab04401
AC
5835 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5836 &mips_abi_string, _("\
5837Set the MIPS ABI used by this program."), _("\
5838Show the MIPS ABI used by this program."), _("\
5839This option can be set to one of:\n\
5840 auto - the default ABI associated with the current binary\n\
5841 o32\n\
5842 o64\n\
5843 n32\n\
5844 n64\n\
5845 eabi32\n\
5846 eabi64"),
5847 mips_abi_update,
5848 show_mips_abi,
5849 &setmipscmdlist, &showmipscmdlist);
2e4ebe70 5850
c906108c
SS
5851 /* Let the user turn off floating point and set the fence post for
5852 heuristic_proc_start. */
5853
5854 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
1bedd215 5855 _("Set use of MIPS floating-point coprocessor."),
c906108c
SS
5856 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5857 add_cmd ("single", class_support, set_mipsfpu_single_command,
1a966eab 5858 _("Select single-precision MIPS floating-point coprocessor."),
c906108c
SS
5859 &mipsfpulist);
5860 add_cmd ("double", class_support, set_mipsfpu_double_command,
1a966eab 5861 _("Select double-precision MIPS floating-point coprocessor."),
c906108c
SS
5862 &mipsfpulist);
5863 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5864 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5865 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5866 add_cmd ("none", class_support, set_mipsfpu_none_command,
1a966eab 5867 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
c906108c
SS
5868 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5869 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5870 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5871 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
1a966eab 5872 _("Select MIPS floating-point coprocessor automatically."),
c906108c
SS
5873 &mipsfpulist);
5874 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
1a966eab 5875 _("Show current use of MIPS floating-point coprocessor target."),
c906108c
SS
5876 &showlist);
5877
c906108c
SS
5878 /* We really would like to have both "0" and "unlimited" work, but
5879 command.c doesn't deal with that. So make it a var_zinteger
5880 because the user can always use "999999" or some such for unlimited. */
6bcadd06 5881 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
5882 &heuristic_fence_post, _("\
5883Set the distance searched for the start of a function."), _("\
5884Show the distance searched for the start of a function."), _("\
c906108c
SS
5885If you are debugging a stripped executable, GDB needs to search through the\n\
5886program for the start of a function. This command sets the distance of the\n\
7915a72c 5887search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 5888 reinit_frame_cache_sfunc,
7915a72c 5889 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6bcadd06 5890 &setlist, &showlist);
c906108c
SS
5891
5892 /* Allow the user to control whether the upper bits of 64-bit
5893 addresses should be zeroed. */
7915a72c
AC
5894 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5895 &mask_address_var, _("\
5896Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5897Show zeroing of upper 32 bits of 64-bit addresses."), _("\
e9e68a56 5898Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
7915a72c 5899allow GDB to determine the correct value."),
08546159
AC
5900 NULL, show_mask_address,
5901 &setmipscmdlist, &showmipscmdlist);
43e526b9
JM
5902
5903 /* Allow the user to control the size of 32 bit registers within the
5904 raw remote packet. */
b3f42336 5905 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
7915a72c
AC
5906 &mips64_transfers_32bit_regs_p, _("\
5907Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5908 _("\
5909Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5910 _("\
719ec221
AC
5911Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5912that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
7915a72c 591364 bits for others. Use \"off\" to disable compatibility mode"),
2c5b56ce 5914 set_mips64_transfers_32bit_regs,
7915a72c 5915 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
7915a72c 5916 &setlist, &showlist);
9ace0497
AC
5917
5918 /* Debug this files internals. */
6bcadd06 5919 add_setshow_zinteger_cmd ("mips", class_maintenance,
7915a72c
AC
5920 &mips_debug, _("\
5921Set mips debugging."), _("\
5922Show mips debugging."), _("\
5923When non-zero, mips specific debugging is enabled."),
2c5b56ce 5924 NULL,
7915a72c 5925 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6bcadd06 5926 &setdebuglist, &showdebuglist);
c906108c 5927}
This page took 1.178006 seconds and 4 git commands to generate.