Commit | Line | Data |
---|---|---|
342ee437 MS |
1 | /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. |
2 | ||
6aba47ca DJ |
3 | Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, |
4 | 2007 Free Software Foundation, Inc. | |
342ee437 MS |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
20 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
21 | Boston, MA 02110-1301, USA. */ | |
342ee437 | 22 | |
342ee437 MS |
23 | #include "defs.h" |
24 | #include "arch-utils.h" | |
25 | #include "dis-asm.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "regcache.h" | |
28 | #include "gdb_string.h" | |
29 | #include "gdb_assert.h" | |
30 | #include "gdbcore.h" /* for write_memory_unsigned_integer */ | |
31 | #include "value.h" | |
32 | #include "gdbtypes.h" | |
33 | #include "frame.h" | |
34 | #include "frame-unwind.h" | |
35 | #include "frame-base.h" | |
36 | #include "trad-frame.h" | |
37 | #include "symtab.h" | |
38 | #include "dwarf2-frame.h" | |
697e3bc9 | 39 | #include "osabi.h" |
342ee437 MS |
40 | |
41 | #include "mn10300-tdep.h" | |
42 | ||
9cacebf5 MS |
43 | /* Forward decl. */ |
44 | extern struct trad_frame_cache *mn10300_frame_unwind_cache (struct frame_info*, | |
45 | void **); | |
342ee437 MS |
46 | |
47 | /* Compute the alignment required by a type. */ | |
48 | ||
49 | static int | |
50 | mn10300_type_align (struct type *type) | |
51 | { | |
52 | int i, align = 1; | |
53 | ||
54 | switch (TYPE_CODE (type)) | |
55 | { | |
56 | case TYPE_CODE_INT: | |
57 | case TYPE_CODE_ENUM: | |
58 | case TYPE_CODE_SET: | |
59 | case TYPE_CODE_RANGE: | |
60 | case TYPE_CODE_CHAR: | |
61 | case TYPE_CODE_BOOL: | |
62 | case TYPE_CODE_FLT: | |
63 | case TYPE_CODE_PTR: | |
64 | case TYPE_CODE_REF: | |
65 | return TYPE_LENGTH (type); | |
66 | ||
67 | case TYPE_CODE_COMPLEX: | |
68 | return TYPE_LENGTH (type) / 2; | |
69 | ||
70 | case TYPE_CODE_STRUCT: | |
71 | case TYPE_CODE_UNION: | |
72 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
73 | { | |
74 | int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i)); | |
75 | while (align < falign) | |
76 | align <<= 1; | |
77 | } | |
78 | return align; | |
79 | ||
80 | case TYPE_CODE_ARRAY: | |
81 | /* HACK! Structures containing arrays, even small ones, are not | |
82 | elligible for returning in registers. */ | |
83 | return 256; | |
84 | ||
85 | case TYPE_CODE_TYPEDEF: | |
86 | return mn10300_type_align (check_typedef (type)); | |
87 | ||
88 | default: | |
89 | internal_error (__FILE__, __LINE__, _("bad switch")); | |
90 | } | |
91 | } | |
92 | ||
342ee437 | 93 | /* Should call_function allocate stack space for a struct return? */ |
342ee437 | 94 | static int |
99fe5f9d | 95 | mn10300_use_struct_convention (struct type *type) |
342ee437 MS |
96 | { |
97 | /* Structures bigger than a pair of words can't be returned in | |
98 | registers. */ | |
99 | if (TYPE_LENGTH (type) > 8) | |
100 | return 1; | |
101 | ||
102 | switch (TYPE_CODE (type)) | |
103 | { | |
104 | case TYPE_CODE_STRUCT: | |
105 | case TYPE_CODE_UNION: | |
106 | /* Structures with a single field are handled as the field | |
107 | itself. */ | |
108 | if (TYPE_NFIELDS (type) == 1) | |
99fe5f9d | 109 | return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0)); |
342ee437 MS |
110 | |
111 | /* Structures with word or double-word size are passed in memory, as | |
112 | long as they require at least word alignment. */ | |
113 | if (mn10300_type_align (type) >= 4) | |
114 | return 0; | |
115 | ||
116 | return 1; | |
117 | ||
118 | /* Arrays are addressable, so they're never returned in | |
119 | registers. This condition can only hold when the array is | |
120 | the only field of a struct or union. */ | |
121 | case TYPE_CODE_ARRAY: | |
122 | return 1; | |
123 | ||
124 | case TYPE_CODE_TYPEDEF: | |
99fe5f9d | 125 | return mn10300_use_struct_convention (check_typedef (type)); |
342ee437 MS |
126 | |
127 | default: | |
128 | return 0; | |
129 | } | |
130 | } | |
131 | ||
342ee437 | 132 | static void |
99fe5f9d | 133 | mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type, |
342ee437 MS |
134 | struct regcache *regcache, const void *valbuf) |
135 | { | |
342ee437 MS |
136 | int len = TYPE_LENGTH (type); |
137 | int reg, regsz; | |
138 | ||
139 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
140 | reg = 4; | |
141 | else | |
142 | reg = 0; | |
143 | ||
144 | regsz = register_size (gdbarch, reg); | |
145 | ||
146 | if (len <= regsz) | |
147 | regcache_raw_write_part (regcache, reg, 0, len, valbuf); | |
148 | else if (len <= 2 * regsz) | |
149 | { | |
150 | regcache_raw_write (regcache, reg, valbuf); | |
151 | gdb_assert (regsz == register_size (gdbarch, reg + 1)); | |
152 | regcache_raw_write_part (regcache, reg+1, 0, | |
153 | len - regsz, (char *) valbuf + regsz); | |
154 | } | |
155 | else | |
156 | internal_error (__FILE__, __LINE__, | |
157 | _("Cannot store return value %d bytes long."), len); | |
158 | } | |
159 | ||
342ee437 | 160 | static void |
99fe5f9d | 161 | mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
342ee437 MS |
162 | struct regcache *regcache, void *valbuf) |
163 | { | |
342ee437 MS |
164 | char buf[MAX_REGISTER_SIZE]; |
165 | int len = TYPE_LENGTH (type); | |
166 | int reg, regsz; | |
167 | ||
168 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
169 | reg = 4; | |
170 | else | |
171 | reg = 0; | |
172 | ||
173 | regsz = register_size (gdbarch, reg); | |
174 | if (len <= regsz) | |
175 | { | |
176 | regcache_raw_read (regcache, reg, buf); | |
177 | memcpy (valbuf, buf, len); | |
178 | } | |
179 | else if (len <= 2 * regsz) | |
180 | { | |
181 | regcache_raw_read (regcache, reg, buf); | |
182 | memcpy (valbuf, buf, regsz); | |
183 | gdb_assert (regsz == register_size (gdbarch, reg + 1)); | |
184 | regcache_raw_read (regcache, reg + 1, buf); | |
185 | memcpy ((char *) valbuf + regsz, buf, len - regsz); | |
186 | } | |
187 | else | |
188 | internal_error (__FILE__, __LINE__, | |
189 | _("Cannot extract return value %d bytes long."), len); | |
190 | } | |
191 | ||
99fe5f9d KB |
192 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
193 | should be returned. If it is supposed to be returned in registers, | |
194 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
195 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
196 | from WRITEBUF into REGCACHE. */ | |
197 | ||
198 | static enum return_value_convention | |
199 | mn10300_return_value (struct gdbarch *gdbarch, struct type *type, | |
200 | struct regcache *regcache, gdb_byte *readbuf, | |
201 | const gdb_byte *writebuf) | |
202 | { | |
203 | if (mn10300_use_struct_convention (type)) | |
204 | return RETURN_VALUE_STRUCT_CONVENTION; | |
205 | ||
206 | if (readbuf) | |
207 | mn10300_extract_return_value (gdbarch, type, regcache, readbuf); | |
208 | if (writebuf) | |
209 | mn10300_store_return_value (gdbarch, type, regcache, writebuf); | |
210 | ||
211 | return RETURN_VALUE_REGISTER_CONVENTION; | |
212 | } | |
213 | ||
342ee437 MS |
214 | static char * |
215 | register_name (int reg, char **regs, long sizeof_regs) | |
216 | { | |
217 | if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0])) | |
218 | return NULL; | |
219 | else | |
220 | return regs[reg]; | |
221 | } | |
222 | ||
223 | static const char * | |
224 | mn10300_generic_register_name (int reg) | |
225 | { | |
226 | static char *regs[] = | |
227 | { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
228 | "sp", "pc", "mdr", "psw", "lir", "lar", "", "", | |
229 | "", "", "", "", "", "", "", "", | |
230 | "", "", "", "", "", "", "", "fp" | |
231 | }; | |
232 | return register_name (reg, regs, sizeof regs); | |
233 | } | |
234 | ||
235 | ||
236 | static const char * | |
237 | am33_register_name (int reg) | |
238 | { | |
239 | static char *regs[] = | |
240 | { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
241 | "sp", "pc", "mdr", "psw", "lir", "lar", "", | |
242 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
243 | "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", "" | |
244 | }; | |
245 | return register_name (reg, regs, sizeof regs); | |
246 | } | |
247 | ||
4640dd91 KB |
248 | static const char * |
249 | am33_2_register_name (int reg) | |
250 | { | |
251 | static char *regs[] = | |
252 | { | |
253 | "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
254 | "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0", | |
255 | "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp", | |
256 | "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "", | |
257 | "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", | |
258 | "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", | |
259 | "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", | |
260 | "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" | |
261 | }; | |
262 | return register_name (reg, regs, sizeof regs); | |
263 | } | |
342ee437 MS |
264 | |
265 | static struct type * | |
266 | mn10300_register_type (struct gdbarch *gdbarch, int reg) | |
267 | { | |
268 | return builtin_type_int; | |
269 | } | |
270 | ||
271 | static CORE_ADDR | |
61a1198a | 272 | mn10300_read_pc (struct regcache *regcache) |
342ee437 | 273 | { |
61a1198a UW |
274 | ULONGEST val; |
275 | regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val); | |
276 | return val; | |
342ee437 MS |
277 | } |
278 | ||
279 | static void | |
61a1198a | 280 | mn10300_write_pc (struct regcache *regcache, CORE_ADDR val) |
342ee437 | 281 | { |
61a1198a | 282 | regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val); |
342ee437 MS |
283 | } |
284 | ||
285 | /* The breakpoint instruction must be the same size as the smallest | |
286 | instruction in the instruction set. | |
287 | ||
288 | The Matsushita mn10x00 processors have single byte instructions | |
289 | so we need a single byte breakpoint. Matsushita hasn't defined | |
290 | one, so we defined it ourselves. */ | |
291 | ||
292 | const static unsigned char * | |
293 | mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) | |
294 | { | |
295 | static char breakpoint[] = {0xff}; | |
296 | *bp_size = 1; | |
297 | return breakpoint; | |
298 | } | |
299 | ||
4640dd91 | 300 | /* Set offsets of saved registers. |
9cacebf5 MS |
301 | This is a helper function for mn10300_analyze_prologue. */ |
302 | ||
303 | static void | |
4640dd91 | 304 | set_reg_offsets (struct frame_info *fi, |
9cacebf5 | 305 | void **this_cache, |
4640dd91 KB |
306 | int movm_args, |
307 | int fpregmask, | |
308 | int stack_extra_size, | |
309 | int frame_in_fp) | |
9cacebf5 MS |
310 | { |
311 | struct trad_frame_cache *cache; | |
312 | int offset = 0; | |
313 | CORE_ADDR base; | |
314 | ||
315 | if (fi == NULL || this_cache == NULL) | |
316 | return; | |
317 | ||
318 | cache = mn10300_frame_unwind_cache (fi, this_cache); | |
319 | if (cache == NULL) | |
320 | return; | |
321 | ||
4640dd91 KB |
322 | if (frame_in_fp) |
323 | { | |
324 | base = frame_unwind_register_unsigned (fi, E_A3_REGNUM); | |
325 | } | |
326 | else | |
327 | { | |
328 | base = frame_unwind_register_unsigned (fi, E_SP_REGNUM) + stack_extra_size; | |
329 | } | |
330 | ||
331 | trad_frame_set_this_base (cache, base); | |
332 | ||
333 | if (AM33_MODE == 2) | |
334 | { | |
335 | /* If bit N is set in fpregmask, fsN is saved on the stack. | |
336 | The floating point registers are saved in ascending order. | |
337 | For example: fs16 <- Frame Pointer | |
338 | fs17 Frame Pointer + 4 */ | |
339 | if (fpregmask != 0) | |
340 | { | |
341 | int i; | |
342 | for (i = 0; i < 32; i++) | |
343 | { | |
344 | if (fpregmask & (1 << i)) | |
345 | { | |
346 | trad_frame_set_reg_addr (cache, E_FS0_REGNUM + i, base + offset); | |
347 | offset += 4; | |
348 | } | |
349 | } | |
350 | } | |
351 | } | |
352 | ||
353 | ||
9cacebf5 MS |
354 | if (movm_args & movm_other_bit) |
355 | { | |
356 | /* The `other' bit leaves a blank area of four bytes at the | |
357 | beginning of its block of saved registers, making it 32 bytes | |
358 | long in total. */ | |
359 | trad_frame_set_reg_addr (cache, E_LAR_REGNUM, base + offset + 4); | |
360 | trad_frame_set_reg_addr (cache, E_LIR_REGNUM, base + offset + 8); | |
361 | trad_frame_set_reg_addr (cache, E_MDR_REGNUM, base + offset + 12); | |
362 | trad_frame_set_reg_addr (cache, E_A0_REGNUM + 1, base + offset + 16); | |
363 | trad_frame_set_reg_addr (cache, E_A0_REGNUM, base + offset + 20); | |
364 | trad_frame_set_reg_addr (cache, E_D0_REGNUM + 1, base + offset + 24); | |
365 | trad_frame_set_reg_addr (cache, E_D0_REGNUM, base + offset + 28); | |
366 | offset += 32; | |
367 | } | |
368 | ||
369 | if (movm_args & movm_a3_bit) | |
370 | { | |
371 | trad_frame_set_reg_addr (cache, E_A3_REGNUM, base + offset); | |
372 | offset += 4; | |
373 | } | |
374 | if (movm_args & movm_a2_bit) | |
375 | { | |
376 | trad_frame_set_reg_addr (cache, E_A2_REGNUM, base + offset); | |
377 | offset += 4; | |
378 | } | |
379 | if (movm_args & movm_d3_bit) | |
380 | { | |
381 | trad_frame_set_reg_addr (cache, E_D3_REGNUM, base + offset); | |
382 | offset += 4; | |
383 | } | |
384 | if (movm_args & movm_d2_bit) | |
385 | { | |
386 | trad_frame_set_reg_addr (cache, E_D2_REGNUM, base + offset); | |
387 | offset += 4; | |
388 | } | |
389 | if (AM33_MODE) | |
390 | { | |
391 | if (movm_args & movm_exother_bit) | |
392 | { | |
393 | trad_frame_set_reg_addr (cache, E_MCVF_REGNUM, base + offset); | |
394 | trad_frame_set_reg_addr (cache, E_MCRL_REGNUM, base + offset + 4); | |
395 | trad_frame_set_reg_addr (cache, E_MCRH_REGNUM, base + offset + 8); | |
396 | trad_frame_set_reg_addr (cache, E_MDRQ_REGNUM, base + offset + 12); | |
397 | trad_frame_set_reg_addr (cache, E_E1_REGNUM, base + offset + 16); | |
398 | trad_frame_set_reg_addr (cache, E_E0_REGNUM, base + offset + 20); | |
399 | offset += 24; | |
400 | } | |
401 | if (movm_args & movm_exreg1_bit) | |
402 | { | |
403 | trad_frame_set_reg_addr (cache, E_E7_REGNUM, base + offset); | |
404 | trad_frame_set_reg_addr (cache, E_E6_REGNUM, base + offset + 4); | |
405 | trad_frame_set_reg_addr (cache, E_E5_REGNUM, base + offset + 8); | |
406 | trad_frame_set_reg_addr (cache, E_E4_REGNUM, base + offset + 12); | |
407 | offset += 16; | |
408 | } | |
409 | if (movm_args & movm_exreg0_bit) | |
410 | { | |
411 | trad_frame_set_reg_addr (cache, E_E3_REGNUM, base + offset); | |
412 | trad_frame_set_reg_addr (cache, E_E2_REGNUM, base + offset + 4); | |
413 | offset += 8; | |
414 | } | |
415 | } | |
416 | /* The last (or first) thing on the stack will be the PC. */ | |
417 | trad_frame_set_reg_addr (cache, E_PC_REGNUM, base + offset); | |
418 | /* Save the SP in the 'traditional' way. | |
419 | This will be the same location where the PC is saved. */ | |
420 | trad_frame_set_reg_value (cache, E_SP_REGNUM, base + offset); | |
421 | } | |
422 | ||
423 | /* The main purpose of this file is dealing with prologues to extract | |
424 | information about stack frames and saved registers. | |
425 | ||
426 | In gcc/config/mn13000/mn10300.c, the expand_prologue prologue | |
427 | function is pretty readable, and has a nice explanation of how the | |
428 | prologue is generated. The prologues generated by that code will | |
429 | have the following form (NOTE: the current code doesn't handle all | |
430 | this!): | |
431 | ||
432 | + If this is an old-style varargs function, then its arguments | |
433 | need to be flushed back to the stack: | |
434 | ||
435 | mov d0,(4,sp) | |
436 | mov d1,(4,sp) | |
437 | ||
438 | + If we use any of the callee-saved registers, save them now. | |
439 | ||
440 | movm [some callee-saved registers],(sp) | |
441 | ||
442 | + If we have any floating-point registers to save: | |
443 | ||
444 | - Decrement the stack pointer to reserve space for the registers. | |
445 | If the function doesn't need a frame pointer, we may combine | |
446 | this with the adjustment that reserves space for the frame. | |
447 | ||
448 | add -SIZE, sp | |
449 | ||
450 | - Save the floating-point registers. We have two possible | |
451 | strategies: | |
452 | ||
453 | . Save them at fixed offset from the SP: | |
454 | ||
455 | fmov fsN,(OFFSETN,sp) | |
456 | fmov fsM,(OFFSETM,sp) | |
457 | ... | |
458 | ||
459 | Note that, if OFFSETN happens to be zero, you'll get the | |
460 | different opcode: fmov fsN,(sp) | |
461 | ||
462 | . Or, set a0 to the start of the save area, and then use | |
463 | post-increment addressing to save the FP registers. | |
464 | ||
465 | mov sp, a0 | |
466 | add SIZE, a0 | |
467 | fmov fsN,(a0+) | |
468 | fmov fsM,(a0+) | |
469 | ... | |
470 | ||
471 | + If the function needs a frame pointer, we set it here. | |
472 | ||
473 | mov sp, a3 | |
474 | ||
475 | + Now we reserve space for the stack frame proper. This could be | |
476 | merged into the `add -SIZE, sp' instruction for FP saves up | |
477 | above, unless we needed to set the frame pointer in the previous | |
478 | step, or the frame is so large that allocating the whole thing at | |
479 | once would put the FP register save slots out of reach of the | |
480 | addressing mode (128 bytes). | |
481 | ||
482 | add -SIZE, sp | |
483 | ||
484 | One day we might keep the stack pointer constant, that won't | |
485 | change the code for prologues, but it will make the frame | |
486 | pointerless case much more common. */ | |
487 | ||
488 | /* Analyze the prologue to determine where registers are saved, | |
489 | the end of the prologue, etc etc. Return the end of the prologue | |
490 | scanned. | |
491 | ||
492 | We store into FI (if non-null) several tidbits of information: | |
493 | ||
494 | * stack_size -- size of this stack frame. Note that if we stop in | |
495 | certain parts of the prologue/epilogue we may claim the size of the | |
496 | current frame is zero. This happens when the current frame has | |
497 | not been allocated yet or has already been deallocated. | |
498 | ||
499 | * fsr -- Addresses of registers saved in the stack by this frame. | |
500 | ||
501 | * status -- A (relatively) generic status indicator. It's a bitmask | |
502 | with the following bits: | |
503 | ||
504 | MY_FRAME_IN_SP: The base of the current frame is actually in | |
505 | the stack pointer. This can happen for frame pointerless | |
506 | functions, or cases where we're stopped in the prologue/epilogue | |
507 | itself. For these cases mn10300_analyze_prologue will need up | |
508 | update fi->frame before returning or analyzing the register | |
509 | save instructions. | |
510 | ||
511 | MY_FRAME_IN_FP: The base of the current frame is in the | |
512 | frame pointer register ($a3). | |
513 | ||
514 | NO_MORE_FRAMES: Set this if the current frame is "start" or | |
515 | if the first instruction looks like mov <imm>,sp. This tells | |
516 | frame chain to not bother trying to unwind past this frame. */ | |
517 | ||
518 | static CORE_ADDR | |
519 | mn10300_analyze_prologue (struct frame_info *fi, | |
520 | void **this_cache, | |
521 | CORE_ADDR pc) | |
522 | { | |
523 | CORE_ADDR func_addr, func_end, addr, stop; | |
4640dd91 | 524 | long stack_extra_size = 0; |
9cacebf5 MS |
525 | int imm_size; |
526 | unsigned char buf[4]; | |
4640dd91 KB |
527 | int status; |
528 | int movm_args = 0; | |
529 | int fpregmask = 0; | |
9cacebf5 | 530 | char *name; |
4640dd91 | 531 | int frame_in_fp = 0; |
9cacebf5 MS |
532 | |
533 | /* Use the PC in the frame if it's provided to look up the | |
534 | start of this function. | |
535 | ||
536 | Note: kevinb/2003-07-16: We used to do the following here: | |
537 | pc = (fi ? get_frame_pc (fi) : pc); | |
538 | But this is (now) badly broken when called from analyze_dummy_frame(). | |
539 | */ | |
540 | if (fi) | |
541 | { | |
542 | pc = (pc ? pc : get_frame_pc (fi)); | |
9cacebf5 MS |
543 | } |
544 | ||
545 | /* Find the start of this function. */ | |
546 | status = find_pc_partial_function (pc, &name, &func_addr, &func_end); | |
547 | ||
548 | /* Do nothing if we couldn't find the start of this function | |
549 | ||
550 | MVS: comment went on to say "or if we're stopped at the first | |
551 | instruction in the prologue" -- but code doesn't reflect that, | |
552 | and I don't want to do that anyway. */ | |
553 | if (status == 0) | |
554 | { | |
4640dd91 KB |
555 | addr = pc; |
556 | goto finish_prologue; | |
9cacebf5 MS |
557 | } |
558 | ||
559 | /* If we're in start, then give up. */ | |
560 | if (strcmp (name, "start") == 0) | |
561 | { | |
4640dd91 KB |
562 | addr = pc; |
563 | goto finish_prologue; | |
9cacebf5 MS |
564 | } |
565 | ||
9cacebf5 MS |
566 | /* Figure out where to stop scanning. */ |
567 | stop = fi ? pc : func_end; | |
568 | ||
569 | /* Don't walk off the end of the function. */ | |
570 | stop = stop > func_end ? func_end : stop; | |
571 | ||
572 | /* Start scanning on the first instruction of this function. */ | |
573 | addr = func_addr; | |
574 | ||
575 | /* Suck in two bytes. */ | |
4640dd91 | 576 | if (addr + 2 > stop || !safe_frame_unwind_memory (fi, addr, buf, 2)) |
9cacebf5 MS |
577 | goto finish_prologue; |
578 | ||
579 | /* First see if this insn sets the stack pointer from a register; if | |
580 | so, it's probably the initialization of the stack pointer in _start, | |
581 | so mark this as the bottom-most frame. */ | |
582 | if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0) | |
583 | { | |
9cacebf5 MS |
584 | goto finish_prologue; |
585 | } | |
586 | ||
587 | /* Now look for movm [regs],sp, which saves the callee saved registers. | |
588 | ||
589 | At this time we don't know if fi->frame is valid, so we only note | |
590 | that we encountered a movm instruction. Later, we'll set the entries | |
591 | in fsr.regs as needed. */ | |
592 | if (buf[0] == 0xcf) | |
593 | { | |
594 | /* Extract the register list for the movm instruction. */ | |
595 | movm_args = buf[1]; | |
596 | ||
597 | addr += 2; | |
598 | ||
599 | /* Quit now if we're beyond the stop point. */ | |
600 | if (addr >= stop) | |
601 | goto finish_prologue; | |
602 | ||
603 | /* Get the next two bytes so the prologue scan can continue. */ | |
f2c8bc43 | 604 | if (!safe_frame_unwind_memory (fi, addr, buf, 2)) |
9cacebf5 MS |
605 | goto finish_prologue; |
606 | } | |
607 | ||
4640dd91 KB |
608 | if (AM33_MODE == 2) |
609 | { | |
610 | /* Determine if any floating point registers are to be saved. | |
611 | Look for one of the following three prologue formats: | |
612 | ||
613 | [movm [regs],(sp)] [movm [regs],(sp)] [movm [regs],(sp)] | |
614 | ||
615 | add -SIZE,sp add -SIZE,sp add -SIZE,sp | |
616 | fmov fs#,(sp) mov sp,a0/a1 mov sp,a0/a1 | |
617 | fmov fs#,(#,sp) fmov fs#,(a0/a1+) add SIZE2,a0/a1 | |
618 | ... ... fmov fs#,(a0/a1+) | |
619 | ... ... ... | |
620 | fmov fs#,(#,sp) fmov fs#,(a0/a1+) fmov fs#,(a0/a1+) | |
621 | ||
622 | [mov sp,a3] [mov sp,a3] | |
623 | [add -SIZE2,sp] [add -SIZE2,sp] */ | |
624 | ||
e92e42f5 KB |
625 | /* Remember the address at which we started in the event that we |
626 | don't ultimately find an fmov instruction. Once we're certain | |
627 | that we matched one of the above patterns, we'll set | |
628 | ``restore_addr'' to the appropriate value. Note: At one time | |
629 | in the past, this code attempted to not adjust ``addr'' until | |
630 | there was a fair degree of certainty that the pattern would be | |
631 | matched. However, that code did not wait until an fmov instruction | |
632 | was actually encountered. As a consequence, ``addr'' would | |
633 | sometimes be advanced even when no fmov instructions were found. */ | |
634 | CORE_ADDR restore_addr = addr; | |
635 | ||
4640dd91 KB |
636 | /* First, look for add -SIZE,sp (i.e. add imm8,sp (0xf8feXX) |
637 | or add imm16,sp (0xfafeXXXX) | |
638 | or add imm32,sp (0xfcfeXXXXXXXX)) */ | |
639 | imm_size = 0; | |
640 | if (buf[0] == 0xf8 && buf[1] == 0xfe) | |
641 | imm_size = 1; | |
642 | else if (buf[0] == 0xfa && buf[1] == 0xfe) | |
643 | imm_size = 2; | |
644 | else if (buf[0] == 0xfc && buf[1] == 0xfe) | |
645 | imm_size = 4; | |
646 | if (imm_size != 0) | |
647 | { | |
648 | /* An "add -#,sp" instruction has been found. "addr + 2 + imm_size" | |
649 | is the address of the next instruction. Don't modify "addr" until | |
650 | the next "floating point prologue" instruction is found. If this | |
651 | is not a prologue that saves floating point registers we need to | |
652 | be able to back out of this bit of code and continue with the | |
653 | prologue analysis. */ | |
654 | if (addr + 2 + imm_size < stop) | |
655 | { | |
656 | if (!safe_frame_unwind_memory (fi, addr + 2 + imm_size, buf, 3)) | |
657 | goto finish_prologue; | |
658 | if ((buf[0] & 0xfc) == 0x3c) | |
659 | { | |
660 | /* Occasionally, especially with C++ code, the "fmov" | |
661 | instructions will be preceded by "mov sp,aN" | |
662 | (aN => a0, a1, a2, or a3). | |
663 | ||
664 | This is a one byte instruction: mov sp,aN = 0011 11XX | |
665 | where XX is the register number. | |
666 | ||
e92e42f5 KB |
667 | Skip this instruction by incrementing addr. The "fmov" |
668 | instructions will have the form "fmov fs#,(aN+)" in this | |
669 | case, but that will not necessitate a change in the | |
670 | "fmov" parsing logic below. */ | |
4640dd91 KB |
671 | |
672 | addr++; | |
673 | ||
674 | if ((buf[1] & 0xfc) == 0x20) | |
675 | { | |
676 | /* Occasionally, especially with C++ code compiled with | |
677 | the -fomit-frame-pointer or -O3 options, the | |
678 | "mov sp,aN" instruction will be followed by an | |
679 | "add #,aN" instruction. This indicates the | |
680 | "stack_size", the size of the portion of the stack | |
681 | containing the arguments. This instruction format is: | |
682 | add #,aN = 0010 00XX YYYY YYYY | |
683 | where XX is the register number | |
684 | YYYY YYYY is the constant. | |
685 | Note the size of the stack (as a negative number) in | |
686 | the frame info structure. */ | |
687 | if (fi) | |
688 | stack_extra_size += -buf[2]; | |
689 | ||
690 | addr += 2; | |
691 | } | |
692 | } | |
693 | ||
694 | if ((buf[0] & 0xfc) == 0x3c || | |
695 | buf[0] == 0xf9 || buf[0] == 0xfb) | |
696 | { | |
697 | /* An "fmov" instruction has been found indicating that this | |
698 | prologue saves floating point registers (or, as described | |
699 | above, a "mov sp,aN" and possible "add #,aN" have been | |
700 | found and we will assume an "fmov" follows). Process the | |
701 | consecutive "fmov" instructions. */ | |
702 | for (addr += 2 + imm_size;;addr += imm_size) | |
703 | { | |
704 | int regnum; | |
705 | ||
706 | /* Read the "fmov" instruction. */ | |
707 | if (addr >= stop || | |
708 | !safe_frame_unwind_memory (fi, addr, buf, 4)) | |
709 | goto finish_prologue; | |
710 | ||
711 | if (buf[0] != 0xf9 && buf[0] != 0xfb) | |
712 | break; | |
713 | ||
e92e42f5 KB |
714 | /* An fmov instruction has just been seen. We can |
715 | now really commit to the pattern match. Set the | |
716 | address to restore at the end of this speculative | |
717 | bit of code to the actually address that we've | |
718 | been incrementing (or not) throughout the | |
719 | speculation. */ | |
720 | restore_addr = addr; | |
721 | ||
4640dd91 KB |
722 | /* Get the floating point register number from the |
723 | 2nd and 3rd bytes of the "fmov" instruction: | |
724 | Machine Code: 0000 00X0 YYYY 0000 => | |
725 | Regnum: 000X YYYY */ | |
726 | regnum = (buf[1] & 0x02) << 3; | |
727 | regnum |= ((buf[2] & 0xf0) >> 4) & 0x0f; | |
728 | ||
729 | /* Add this register number to the bit mask of floating | |
730 | point registers that have been saved. */ | |
731 | fpregmask |= 1 << regnum; | |
732 | ||
733 | /* Determine the length of this "fmov" instruction. | |
734 | fmov fs#,(sp) => 3 byte instruction | |
735 | fmov fs#,(#,sp) => 4 byte instruction */ | |
736 | imm_size = (buf[0] == 0xf9) ? 3 : 4; | |
737 | } | |
738 | } | |
739 | else | |
740 | { | |
741 | /* No "fmov" was found. Reread the two bytes at the original | |
742 | "addr" to reset the state. */ | |
e92e42f5 | 743 | addr = restore_addr; |
4640dd91 KB |
744 | if (!safe_frame_unwind_memory (fi, addr, buf, 2)) |
745 | goto finish_prologue; | |
746 | } | |
747 | } | |
748 | /* else the prologue consists entirely of an "add -SIZE,sp" | |
749 | instruction. Handle this below. */ | |
750 | } | |
751 | /* else no "add -SIZE,sp" was found indicating no floating point | |
e92e42f5 KB |
752 | registers are saved in this prologue. */ |
753 | ||
754 | /* In the pattern match code contained within this block, `restore_addr' | |
755 | is set to the starting address at the very beginning and then | |
756 | iteratively to the next address to start scanning at once the | |
757 | pattern match has succeeded. Thus `restore_addr' will contain | |
758 | the address to rewind to if the pattern match failed. If the | |
759 | match succeeded, `restore_addr' and `addr' will already have the | |
760 | same value. */ | |
761 | addr = restore_addr; | |
4640dd91 KB |
762 | } |
763 | ||
9cacebf5 MS |
764 | /* Now see if we set up a frame pointer via "mov sp,a3" */ |
765 | if (buf[0] == 0x3f) | |
766 | { | |
767 | addr += 1; | |
768 | ||
769 | /* The frame pointer is now valid. */ | |
770 | if (fi) | |
771 | { | |
4640dd91 | 772 | frame_in_fp = 1; |
9cacebf5 MS |
773 | } |
774 | ||
775 | /* Quit now if we're beyond the stop point. */ | |
776 | if (addr >= stop) | |
777 | goto finish_prologue; | |
778 | ||
779 | /* Get two more bytes so scanning can continue. */ | |
f2c8bc43 | 780 | if (!safe_frame_unwind_memory (fi, addr, buf, 2)) |
9cacebf5 MS |
781 | goto finish_prologue; |
782 | } | |
783 | ||
784 | /* Next we should allocate the local frame. No more prologue insns | |
785 | are found after allocating the local frame. | |
786 | ||
787 | Search for add imm8,sp (0xf8feXX) | |
788 | or add imm16,sp (0xfafeXXXX) | |
789 | or add imm32,sp (0xfcfeXXXXXXXX). | |
790 | ||
791 | If none of the above was found, then this prologue has no | |
792 | additional stack. */ | |
793 | ||
794 | imm_size = 0; | |
795 | if (buf[0] == 0xf8 && buf[1] == 0xfe) | |
796 | imm_size = 1; | |
797 | else if (buf[0] == 0xfa && buf[1] == 0xfe) | |
798 | imm_size = 2; | |
799 | else if (buf[0] == 0xfc && buf[1] == 0xfe) | |
800 | imm_size = 4; | |
801 | ||
802 | if (imm_size != 0) | |
803 | { | |
804 | /* Suck in imm_size more bytes, they'll hold the size of the | |
805 | current frame. */ | |
f2c8bc43 | 806 | if (!safe_frame_unwind_memory (fi, addr + 2, buf, imm_size)) |
9cacebf5 MS |
807 | goto finish_prologue; |
808 | ||
4640dd91 | 809 | /* Note the size of the stack. */ |
e92e42f5 | 810 | stack_extra_size -= extract_signed_integer (buf, imm_size); |
9cacebf5 MS |
811 | |
812 | /* We just consumed 2 + imm_size bytes. */ | |
813 | addr += 2 + imm_size; | |
814 | ||
815 | /* No more prologue insns follow, so begin preparation to return. */ | |
816 | goto finish_prologue; | |
817 | } | |
818 | /* Do the essentials and get out of here. */ | |
819 | finish_prologue: | |
820 | /* Note if/where callee saved registers were saved. */ | |
821 | if (fi) | |
4640dd91 | 822 | set_reg_offsets (fi, this_cache, movm_args, fpregmask, stack_extra_size, frame_in_fp); |
9cacebf5 MS |
823 | return addr; |
824 | } | |
825 | ||
342ee437 MS |
826 | /* Function: skip_prologue |
827 | Return the address of the first inst past the prologue of the function. */ | |
828 | ||
829 | static CORE_ADDR | |
830 | mn10300_skip_prologue (CORE_ADDR pc) | |
831 | { | |
9b3c083c | 832 | return mn10300_analyze_prologue (NULL, NULL, pc); |
342ee437 MS |
833 | } |
834 | ||
835 | /* Simple frame_unwind_cache. | |
836 | This finds the "extra info" for the frame. */ | |
837 | struct trad_frame_cache * | |
838 | mn10300_frame_unwind_cache (struct frame_info *next_frame, | |
839 | void **this_prologue_cache) | |
840 | { | |
841 | struct trad_frame_cache *cache; | |
1fb1ca27 | 842 | CORE_ADDR pc, start, end; |
342ee437 MS |
843 | |
844 | if (*this_prologue_cache) | |
845 | return (*this_prologue_cache); | |
846 | ||
847 | cache = trad_frame_cache_zalloc (next_frame); | |
848 | pc = gdbarch_unwind_pc (current_gdbarch, next_frame); | |
849 | mn10300_analyze_prologue (next_frame, (void **) &cache, pc); | |
1fb1ca27 MS |
850 | if (find_pc_partial_function (pc, NULL, &start, &end)) |
851 | trad_frame_set_id (cache, | |
852 | frame_id_build (trad_frame_get_this_base (cache), | |
853 | start)); | |
854 | else | |
93d42b30 DJ |
855 | { |
856 | start = frame_func_unwind (next_frame, NORMAL_FRAME); | |
857 | trad_frame_set_id (cache, | |
858 | frame_id_build (trad_frame_get_this_base (cache), | |
859 | start)); | |
860 | } | |
342ee437 MS |
861 | |
862 | (*this_prologue_cache) = cache; | |
863 | return cache; | |
864 | } | |
865 | ||
866 | /* Here is a dummy implementation. */ | |
867 | static struct frame_id | |
868 | mn10300_unwind_dummy_id (struct gdbarch *gdbarch, | |
869 | struct frame_info *next_frame) | |
870 | { | |
871 | return frame_id_build (frame_sp_unwind (next_frame), | |
872 | frame_pc_unwind (next_frame)); | |
873 | } | |
874 | ||
875 | /* Trad frame implementation. */ | |
876 | static void | |
877 | mn10300_frame_this_id (struct frame_info *next_frame, | |
878 | void **this_prologue_cache, | |
879 | struct frame_id *this_id) | |
880 | { | |
881 | struct trad_frame_cache *cache = | |
882 | mn10300_frame_unwind_cache (next_frame, this_prologue_cache); | |
883 | ||
884 | trad_frame_get_id (cache, this_id); | |
885 | } | |
886 | ||
887 | static void | |
888 | mn10300_frame_prev_register (struct frame_info *next_frame, | |
889 | void **this_prologue_cache, | |
890 | int regnum, int *optimizedp, | |
891 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
3e6b1689 | 892 | int *realnump, gdb_byte *bufferp) |
342ee437 MS |
893 | { |
894 | struct trad_frame_cache *cache = | |
895 | mn10300_frame_unwind_cache (next_frame, this_prologue_cache); | |
896 | ||
897 | trad_frame_get_register (cache, next_frame, regnum, optimizedp, | |
898 | lvalp, addrp, realnump, bufferp); | |
899 | /* Or... | |
900 | trad_frame_get_prev_register (next_frame, cache->prev_regs, regnum, | |
901 | optimizedp, lvalp, addrp, realnump, bufferp); | |
902 | */ | |
903 | } | |
904 | ||
905 | static const struct frame_unwind mn10300_frame_unwind = { | |
906 | NORMAL_FRAME, | |
907 | mn10300_frame_this_id, | |
908 | mn10300_frame_prev_register | |
909 | }; | |
910 | ||
911 | static CORE_ADDR | |
912 | mn10300_frame_base_address (struct frame_info *next_frame, | |
913 | void **this_prologue_cache) | |
914 | { | |
915 | struct trad_frame_cache *cache = | |
916 | mn10300_frame_unwind_cache (next_frame, this_prologue_cache); | |
917 | ||
918 | return trad_frame_get_this_base (cache); | |
919 | } | |
920 | ||
921 | static const struct frame_unwind * | |
922 | mn10300_frame_sniffer (struct frame_info *next_frame) | |
923 | { | |
924 | return &mn10300_frame_unwind; | |
925 | } | |
926 | ||
927 | static const struct frame_base mn10300_frame_base = { | |
928 | &mn10300_frame_unwind, | |
929 | mn10300_frame_base_address, | |
930 | mn10300_frame_base_address, | |
931 | mn10300_frame_base_address | |
932 | }; | |
933 | ||
934 | static CORE_ADDR | |
935 | mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
936 | { | |
937 | ULONGEST pc; | |
938 | ||
939 | frame_unwind_unsigned_register (next_frame, E_PC_REGNUM, &pc); | |
940 | return pc; | |
941 | } | |
942 | ||
943 | static CORE_ADDR | |
944 | mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
945 | { | |
946 | ULONGEST sp; | |
947 | ||
948 | frame_unwind_unsigned_register (next_frame, E_SP_REGNUM, &sp); | |
949 | return sp; | |
950 | } | |
951 | ||
952 | static void | |
953 | mn10300_frame_unwind_init (struct gdbarch *gdbarch) | |
954 | { | |
955 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
956 | frame_unwind_append_sniffer (gdbarch, mn10300_frame_sniffer); | |
957 | frame_base_set_default (gdbarch, &mn10300_frame_base); | |
958 | set_gdbarch_unwind_dummy_id (gdbarch, mn10300_unwind_dummy_id); | |
959 | set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc); | |
960 | set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp); | |
961 | } | |
962 | ||
963 | /* Function: push_dummy_call | |
964 | * | |
965 | * Set up machine state for a target call, including | |
966 | * function arguments, stack, return address, etc. | |
967 | * | |
968 | */ | |
969 | ||
970 | static CORE_ADDR | |
971 | mn10300_push_dummy_call (struct gdbarch *gdbarch, | |
972 | struct value *target_func, | |
973 | struct regcache *regcache, | |
974 | CORE_ADDR bp_addr, | |
975 | int nargs, struct value **args, | |
976 | CORE_ADDR sp, | |
977 | int struct_return, | |
978 | CORE_ADDR struct_addr) | |
979 | { | |
980 | const int push_size = register_size (gdbarch, E_PC_REGNUM); | |
1fb1ca27 | 981 | int regs_used; |
342ee437 MS |
982 | int len, arg_len; |
983 | int stack_offset = 0; | |
984 | int argnum; | |
1fb1ca27 | 985 | char *val, valbuf[MAX_REGISTER_SIZE]; |
342ee437 | 986 | |
342ee437 MS |
987 | /* This should be a nop, but align the stack just in case something |
988 | went wrong. Stacks are four byte aligned on the mn10300. */ | |
989 | sp &= ~3; | |
990 | ||
991 | /* Now make space on the stack for the args. | |
992 | ||
993 | XXX This doesn't appear to handle pass-by-invisible reference | |
994 | arguments. */ | |
1fb1ca27 | 995 | regs_used = struct_return ? 1 : 0; |
342ee437 MS |
996 | for (len = 0, argnum = 0; argnum < nargs; argnum++) |
997 | { | |
998 | arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3; | |
342ee437 MS |
999 | while (regs_used < 2 && arg_len > 0) |
1000 | { | |
1001 | regs_used++; | |
1002 | arg_len -= push_size; | |
1003 | } | |
1004 | len += arg_len; | |
1005 | } | |
1006 | ||
1007 | /* Allocate stack space. */ | |
1008 | sp -= len; | |
1009 | ||
1fb1ca27 MS |
1010 | if (struct_return) |
1011 | { | |
1012 | regs_used = 1; | |
9c9acae0 | 1013 | regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr); |
1fb1ca27 MS |
1014 | } |
1015 | else | |
1016 | regs_used = 0; | |
1017 | ||
342ee437 MS |
1018 | /* Push all arguments onto the stack. */ |
1019 | for (argnum = 0; argnum < nargs; argnum++) | |
1020 | { | |
1fb1ca27 MS |
1021 | /* FIXME what about structs? Unions? */ |
1022 | if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT | |
1023 | && TYPE_LENGTH (value_type (*args)) > 8) | |
1024 | { | |
1025 | /* Change to pointer-to-type. */ | |
1026 | arg_len = push_size; | |
1027 | store_unsigned_integer (valbuf, push_size, | |
1028 | VALUE_ADDRESS (*args)); | |
1029 | val = &valbuf[0]; | |
1030 | } | |
1031 | else | |
1032 | { | |
1033 | arg_len = TYPE_LENGTH (value_type (*args)); | |
1034 | val = (char *) value_contents (*args); | |
1035 | } | |
342ee437 MS |
1036 | |
1037 | while (regs_used < 2 && arg_len > 0) | |
1038 | { | |
9c9acae0 UW |
1039 | regcache_cooked_write_unsigned (regcache, regs_used, |
1040 | extract_unsigned_integer (val, push_size)); | |
342ee437 MS |
1041 | val += push_size; |
1042 | arg_len -= push_size; | |
1043 | regs_used++; | |
1044 | } | |
1045 | ||
1046 | while (arg_len > 0) | |
1047 | { | |
1048 | write_memory (sp + stack_offset, val, push_size); | |
1049 | arg_len -= push_size; | |
1050 | val += push_size; | |
1051 | stack_offset += push_size; | |
1052 | } | |
1053 | ||
1054 | args++; | |
1055 | } | |
1056 | ||
1057 | /* Make space for the flushback area. */ | |
1058 | sp -= 8; | |
1059 | ||
1060 | /* Push the return address that contains the magic breakpoint. */ | |
1061 | sp -= 4; | |
1062 | write_memory_unsigned_integer (sp, push_size, bp_addr); | |
a64ae7e0 CV |
1063 | |
1064 | /* The CPU also writes the return address always into the | |
1065 | MDR register on "call". */ | |
1066 | regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr); | |
1067 | ||
342ee437 MS |
1068 | /* Update $sp. */ |
1069 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | |
1070 | return sp; | |
1071 | } | |
1072 | ||
336c28c5 KB |
1073 | /* If DWARF2 is a register number appearing in Dwarf2 debug info, then |
1074 | mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB | |
1075 | register number. Why don't Dwarf2 and GDB use the same numbering? | |
1076 | Who knows? But since people have object files lying around with | |
1077 | the existing Dwarf2 numbering, and other people have written stubs | |
1078 | to work with the existing GDB, neither of them can change. So we | |
1079 | just have to cope. */ | |
1080 | static int | |
1081 | mn10300_dwarf2_reg_to_regnum (int dwarf2) | |
1082 | { | |
c9f4d572 | 1083 | /* This table is supposed to be shaped like the gdbarch_register_name |
336c28c5 KB |
1084 | initializer in gcc/config/mn10300/mn10300.h. Registers which |
1085 | appear in GCC's numbering, but have no counterpart in GDB's | |
1086 | world, are marked with a -1. */ | |
1087 | static int dwarf2_to_gdb[] = { | |
1088 | 0, 1, 2, 3, 4, 5, 6, 7, -1, 8, | |
1089 | 15, 16, 17, 18, 19, 20, 21, 22, | |
1090 | 32, 33, 34, 35, 36, 37, 38, 39, | |
1091 | 40, 41, 42, 43, 44, 45, 46, 47, | |
1092 | 48, 49, 50, 51, 52, 53, 54, 55, | |
1093 | 56, 57, 58, 59, 60, 61, 62, 63 | |
1094 | }; | |
1095 | ||
1096 | if (dwarf2 < 0 | |
52f0b832 | 1097 | || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb) |
336c28c5 | 1098 | || dwarf2_to_gdb[dwarf2] == -1) |
154b82dc KB |
1099 | { |
1100 | warning (_("Bogus register number in debug info: %d"), dwarf2); | |
1101 | return 0; | |
1102 | } | |
336c28c5 KB |
1103 | |
1104 | return dwarf2_to_gdb[dwarf2]; | |
1105 | } | |
342ee437 MS |
1106 | |
1107 | static struct gdbarch * | |
1108 | mn10300_gdbarch_init (struct gdbarch_info info, | |
1109 | struct gdbarch_list *arches) | |
1110 | { | |
1111 | struct gdbarch *gdbarch; | |
1112 | struct gdbarch_tdep *tdep; | |
4640dd91 | 1113 | int num_regs; |
342ee437 MS |
1114 | |
1115 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1116 | if (arches != NULL) | |
1117 | return arches->gdbarch; | |
1118 | ||
1119 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); | |
1120 | gdbarch = gdbarch_alloc (&info, tdep); | |
1121 | ||
1122 | switch (info.bfd_arch_info->mach) | |
1123 | { | |
1124 | case 0: | |
1125 | case bfd_mach_mn10300: | |
1126 | set_gdbarch_register_name (gdbarch, mn10300_generic_register_name); | |
1127 | tdep->am33_mode = 0; | |
4640dd91 | 1128 | num_regs = 32; |
342ee437 MS |
1129 | break; |
1130 | case bfd_mach_am33: | |
1131 | set_gdbarch_register_name (gdbarch, am33_register_name); | |
1132 | tdep->am33_mode = 1; | |
4640dd91 KB |
1133 | num_regs = 32; |
1134 | break; | |
1135 | case bfd_mach_am33_2: | |
1136 | set_gdbarch_register_name (gdbarch, am33_2_register_name); | |
1137 | tdep->am33_mode = 2; | |
1138 | num_regs = 64; | |
1139 | set_gdbarch_fp0_regnum (gdbarch, 32); | |
342ee437 MS |
1140 | break; |
1141 | default: | |
1142 | internal_error (__FILE__, __LINE__, | |
1143 | _("mn10300_gdbarch_init: Unknown mn10300 variant")); | |
1144 | break; | |
1145 | } | |
1146 | ||
1147 | /* Registers. */ | |
4640dd91 | 1148 | set_gdbarch_num_regs (gdbarch, num_regs); |
342ee437 MS |
1149 | set_gdbarch_register_type (gdbarch, mn10300_register_type); |
1150 | set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue); | |
1151 | set_gdbarch_read_pc (gdbarch, mn10300_read_pc); | |
1152 | set_gdbarch_write_pc (gdbarch, mn10300_write_pc); | |
1153 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | |
1154 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
336c28c5 | 1155 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum); |
342ee437 MS |
1156 | |
1157 | /* Stack unwinding. */ | |
1158 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1159 | /* Breakpoints. */ | |
1160 | set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc); | |
1161 | /* decr_pc_after_break? */ | |
1162 | /* Disassembly. */ | |
1163 | set_gdbarch_print_insn (gdbarch, print_insn_mn10300); | |
1164 | ||
1165 | /* Stage 2 */ | |
99fe5f9d | 1166 | set_gdbarch_return_value (gdbarch, mn10300_return_value); |
342ee437 MS |
1167 | |
1168 | /* Stage 3 -- get target calls working. */ | |
1169 | set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call); | |
1170 | /* set_gdbarch_return_value (store, extract) */ | |
1171 | ||
1172 | ||
1173 | mn10300_frame_unwind_init (gdbarch); | |
1174 | ||
697e3bc9 KB |
1175 | /* Hook in ABI-specific overrides, if they have been registered. */ |
1176 | gdbarch_init_osabi (info, gdbarch); | |
1177 | ||
342ee437 MS |
1178 | return gdbarch; |
1179 | } | |
1180 | ||
1181 | /* Dump out the mn10300 specific architecture information. */ | |
1182 | ||
1183 | static void | |
1184 | mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
1185 | { | |
1186 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1187 | fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n", | |
1188 | tdep->am33_mode); | |
1189 | } | |
1190 | ||
1191 | void | |
1192 | _initialize_mn10300_tdep (void) | |
1193 | { | |
1194 | gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep); | |
1195 | } | |
1196 |