Commit | Line | Data |
---|---|---|
342ee437 MS |
1 | /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. |
2 | ||
618f726f | 3 | Copyright (C) 1996-2016 Free Software Foundation, Inc. |
342ee437 MS |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
342ee437 MS |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
342ee437 | 19 | |
342ee437 MS |
20 | #include "defs.h" |
21 | #include "arch-utils.h" | |
22 | #include "dis-asm.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "regcache.h" | |
025bb325 | 25 | #include "gdbcore.h" /* For write_memory_unsigned_integer. */ |
342ee437 | 26 | #include "value.h" |
342ee437 MS |
27 | #include "frame.h" |
28 | #include "frame-unwind.h" | |
29 | #include "frame-base.h" | |
342ee437 MS |
30 | #include "symtab.h" |
31 | #include "dwarf2-frame.h" | |
697e3bc9 | 32 | #include "osabi.h" |
ee3a2f01 | 33 | #include "infcall.h" |
6c02c64c | 34 | #include "prologue-value.h" |
effa26a9 | 35 | #include "target.h" |
342ee437 MS |
36 | |
37 | #include "mn10300-tdep.h" | |
38 | ||
6c02c64c KB |
39 | |
40 | /* The am33-2 has 64 registers. */ | |
41 | #define MN10300_MAX_NUM_REGS 64 | |
42 | ||
43 | /* This structure holds the results of a prologue analysis. */ | |
44 | struct mn10300_prologue | |
45 | { | |
d80b854b UW |
46 | /* The architecture for which we generated this prologue info. */ |
47 | struct gdbarch *gdbarch; | |
48 | ||
6c02c64c KB |
49 | /* The offset from the frame base to the stack pointer --- always |
50 | zero or negative. | |
51 | ||
52 | Calling this a "size" is a bit misleading, but given that the | |
53 | stack grows downwards, using offsets for everything keeps one | |
54 | from going completely sign-crazy: you never change anything's | |
55 | sign for an ADD instruction; always change the second operand's | |
56 | sign for a SUB instruction; and everything takes care of | |
57 | itself. */ | |
58 | int frame_size; | |
59 | ||
60 | /* Non-zero if this function has initialized the frame pointer from | |
61 | the stack pointer, zero otherwise. */ | |
62 | int has_frame_ptr; | |
63 | ||
64 | /* If has_frame_ptr is non-zero, this is the offset from the frame | |
65 | base to where the frame pointer points. This is always zero or | |
66 | negative. */ | |
67 | int frame_ptr_offset; | |
68 | ||
69 | /* The address of the first instruction at which the frame has been | |
70 | set up and the arguments are where the debug info says they are | |
71 | --- as best as we can tell. */ | |
72 | CORE_ADDR prologue_end; | |
73 | ||
74 | /* reg_offset[R] is the offset from the CFA at which register R is | |
75 | saved, or 1 if register R has not been saved. (Real values are | |
76 | always zero or negative.) */ | |
77 | int reg_offset[MN10300_MAX_NUM_REGS]; | |
78 | }; | |
79 | ||
342ee437 MS |
80 | |
81 | /* Compute the alignment required by a type. */ | |
82 | ||
83 | static int | |
84 | mn10300_type_align (struct type *type) | |
85 | { | |
86 | int i, align = 1; | |
87 | ||
88 | switch (TYPE_CODE (type)) | |
89 | { | |
90 | case TYPE_CODE_INT: | |
91 | case TYPE_CODE_ENUM: | |
92 | case TYPE_CODE_SET: | |
93 | case TYPE_CODE_RANGE: | |
94 | case TYPE_CODE_CHAR: | |
95 | case TYPE_CODE_BOOL: | |
96 | case TYPE_CODE_FLT: | |
97 | case TYPE_CODE_PTR: | |
98 | case TYPE_CODE_REF: | |
99 | return TYPE_LENGTH (type); | |
100 | ||
101 | case TYPE_CODE_COMPLEX: | |
102 | return TYPE_LENGTH (type) / 2; | |
103 | ||
104 | case TYPE_CODE_STRUCT: | |
105 | case TYPE_CODE_UNION: | |
106 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
107 | { | |
108 | int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i)); | |
109 | while (align < falign) | |
110 | align <<= 1; | |
111 | } | |
112 | return align; | |
113 | ||
114 | case TYPE_CODE_ARRAY: | |
115 | /* HACK! Structures containing arrays, even small ones, are not | |
116 | elligible for returning in registers. */ | |
117 | return 256; | |
118 | ||
119 | case TYPE_CODE_TYPEDEF: | |
120 | return mn10300_type_align (check_typedef (type)); | |
121 | ||
122 | default: | |
123 | internal_error (__FILE__, __LINE__, _("bad switch")); | |
124 | } | |
125 | } | |
126 | ||
342ee437 | 127 | /* Should call_function allocate stack space for a struct return? */ |
342ee437 | 128 | static int |
99fe5f9d | 129 | mn10300_use_struct_convention (struct type *type) |
342ee437 MS |
130 | { |
131 | /* Structures bigger than a pair of words can't be returned in | |
132 | registers. */ | |
133 | if (TYPE_LENGTH (type) > 8) | |
134 | return 1; | |
135 | ||
136 | switch (TYPE_CODE (type)) | |
137 | { | |
138 | case TYPE_CODE_STRUCT: | |
139 | case TYPE_CODE_UNION: | |
140 | /* Structures with a single field are handled as the field | |
141 | itself. */ | |
142 | if (TYPE_NFIELDS (type) == 1) | |
99fe5f9d | 143 | return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0)); |
342ee437 MS |
144 | |
145 | /* Structures with word or double-word size are passed in memory, as | |
146 | long as they require at least word alignment. */ | |
147 | if (mn10300_type_align (type) >= 4) | |
148 | return 0; | |
149 | ||
150 | return 1; | |
151 | ||
152 | /* Arrays are addressable, so they're never returned in | |
153 | registers. This condition can only hold when the array is | |
154 | the only field of a struct or union. */ | |
155 | case TYPE_CODE_ARRAY: | |
156 | return 1; | |
157 | ||
158 | case TYPE_CODE_TYPEDEF: | |
99fe5f9d | 159 | return mn10300_use_struct_convention (check_typedef (type)); |
342ee437 MS |
160 | |
161 | default: | |
162 | return 0; | |
163 | } | |
164 | } | |
165 | ||
342ee437 | 166 | static void |
99fe5f9d | 167 | mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type, |
948f8e3d | 168 | struct regcache *regcache, const gdb_byte *valbuf) |
342ee437 | 169 | { |
342ee437 MS |
170 | int len = TYPE_LENGTH (type); |
171 | int reg, regsz; | |
172 | ||
173 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
174 | reg = 4; | |
175 | else | |
176 | reg = 0; | |
177 | ||
178 | regsz = register_size (gdbarch, reg); | |
179 | ||
180 | if (len <= regsz) | |
181 | regcache_raw_write_part (regcache, reg, 0, len, valbuf); | |
182 | else if (len <= 2 * regsz) | |
183 | { | |
184 | regcache_raw_write (regcache, reg, valbuf); | |
185 | gdb_assert (regsz == register_size (gdbarch, reg + 1)); | |
186 | regcache_raw_write_part (regcache, reg+1, 0, | |
948f8e3d | 187 | len - regsz, valbuf + regsz); |
342ee437 MS |
188 | } |
189 | else | |
190 | internal_error (__FILE__, __LINE__, | |
191 | _("Cannot store return value %d bytes long."), len); | |
192 | } | |
193 | ||
342ee437 | 194 | static void |
99fe5f9d | 195 | mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
342ee437 MS |
196 | struct regcache *regcache, void *valbuf) |
197 | { | |
e362b510 | 198 | gdb_byte buf[MAX_REGISTER_SIZE]; |
342ee437 MS |
199 | int len = TYPE_LENGTH (type); |
200 | int reg, regsz; | |
201 | ||
202 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
203 | reg = 4; | |
204 | else | |
205 | reg = 0; | |
206 | ||
207 | regsz = register_size (gdbarch, reg); | |
208 | if (len <= regsz) | |
209 | { | |
210 | regcache_raw_read (regcache, reg, buf); | |
211 | memcpy (valbuf, buf, len); | |
212 | } | |
213 | else if (len <= 2 * regsz) | |
214 | { | |
215 | regcache_raw_read (regcache, reg, buf); | |
216 | memcpy (valbuf, buf, regsz); | |
217 | gdb_assert (regsz == register_size (gdbarch, reg + 1)); | |
218 | regcache_raw_read (regcache, reg + 1, buf); | |
219 | memcpy ((char *) valbuf + regsz, buf, len - regsz); | |
220 | } | |
221 | else | |
222 | internal_error (__FILE__, __LINE__, | |
223 | _("Cannot extract return value %d bytes long."), len); | |
224 | } | |
225 | ||
99fe5f9d KB |
226 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
227 | should be returned. If it is supposed to be returned in registers, | |
228 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
229 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
230 | from WRITEBUF into REGCACHE. */ | |
231 | ||
232 | static enum return_value_convention | |
6a3a010b | 233 | mn10300_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
234 | struct type *type, struct regcache *regcache, |
235 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
99fe5f9d KB |
236 | { |
237 | if (mn10300_use_struct_convention (type)) | |
238 | return RETURN_VALUE_STRUCT_CONVENTION; | |
239 | ||
240 | if (readbuf) | |
241 | mn10300_extract_return_value (gdbarch, type, regcache, readbuf); | |
242 | if (writebuf) | |
243 | mn10300_store_return_value (gdbarch, type, regcache, writebuf); | |
244 | ||
245 | return RETURN_VALUE_REGISTER_CONVENTION; | |
246 | } | |
247 | ||
342ee437 MS |
248 | static char * |
249 | register_name (int reg, char **regs, long sizeof_regs) | |
250 | { | |
251 | if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0])) | |
252 | return NULL; | |
253 | else | |
254 | return regs[reg]; | |
255 | } | |
256 | ||
257 | static const char * | |
d93859e2 | 258 | mn10300_generic_register_name (struct gdbarch *gdbarch, int reg) |
342ee437 MS |
259 | { |
260 | static char *regs[] = | |
261 | { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
262 | "sp", "pc", "mdr", "psw", "lir", "lar", "", "", | |
263 | "", "", "", "", "", "", "", "", | |
264 | "", "", "", "", "", "", "", "fp" | |
265 | }; | |
266 | return register_name (reg, regs, sizeof regs); | |
267 | } | |
268 | ||
269 | ||
270 | static const char * | |
d93859e2 | 271 | am33_register_name (struct gdbarch *gdbarch, int reg) |
342ee437 MS |
272 | { |
273 | static char *regs[] = | |
274 | { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
275 | "sp", "pc", "mdr", "psw", "lir", "lar", "", | |
276 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
277 | "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", "" | |
278 | }; | |
279 | return register_name (reg, regs, sizeof regs); | |
280 | } | |
281 | ||
4640dd91 | 282 | static const char * |
d93859e2 | 283 | am33_2_register_name (struct gdbarch *gdbarch, int reg) |
4640dd91 KB |
284 | { |
285 | static char *regs[] = | |
286 | { | |
287 | "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", | |
288 | "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0", | |
289 | "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp", | |
290 | "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "", | |
291 | "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", | |
292 | "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", | |
293 | "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", | |
294 | "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" | |
295 | }; | |
296 | return register_name (reg, regs, sizeof regs); | |
297 | } | |
342ee437 MS |
298 | |
299 | static struct type * | |
300 | mn10300_register_type (struct gdbarch *gdbarch, int reg) | |
301 | { | |
0dfff4cb | 302 | return builtin_type (gdbarch)->builtin_int; |
342ee437 MS |
303 | } |
304 | ||
305 | static CORE_ADDR | |
61a1198a | 306 | mn10300_read_pc (struct regcache *regcache) |
342ee437 | 307 | { |
61a1198a UW |
308 | ULONGEST val; |
309 | regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val); | |
310 | return val; | |
342ee437 MS |
311 | } |
312 | ||
313 | static void | |
61a1198a | 314 | mn10300_write_pc (struct regcache *regcache, CORE_ADDR val) |
342ee437 | 315 | { |
61a1198a | 316 | regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val); |
342ee437 MS |
317 | } |
318 | ||
319 | /* The breakpoint instruction must be the same size as the smallest | |
320 | instruction in the instruction set. | |
321 | ||
322 | The Matsushita mn10x00 processors have single byte instructions | |
323 | so we need a single byte breakpoint. Matsushita hasn't defined | |
324 | one, so we defined it ourselves. */ | |
325 | ||
44d100c3 | 326 | static const unsigned char * |
67d57894 MD |
327 | mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, |
328 | int *bp_size) | |
342ee437 | 329 | { |
948f8e3d | 330 | static gdb_byte breakpoint[] = {0xff}; |
342ee437 MS |
331 | *bp_size = 1; |
332 | return breakpoint; | |
333 | } | |
334 | ||
6c02c64c KB |
335 | /* Model the semantics of pushing a register onto the stack. This |
336 | is a helper function for mn10300_analyze_prologue, below. */ | |
337 | static void | |
338 | push_reg (pv_t *regs, struct pv_area *stack, int regnum) | |
339 | { | |
340 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); | |
341 | pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]); | |
342 | } | |
343 | ||
344 | /* Translate an "r" register number extracted from an instruction encoding | |
345 | into a GDB register number. Adapted from a simulator function | |
346 | of the same name; see am33.igen. */ | |
347 | static int | |
348 | translate_rreg (int rreg) | |
349 | { | |
350 | /* The higher register numbers actually correspond to the | |
351 | basic machine's address and data registers. */ | |
352 | if (rreg > 7 && rreg < 12) | |
353 | return E_A0_REGNUM + rreg - 8; | |
354 | else if (rreg > 11 && rreg < 16) | |
355 | return E_D0_REGNUM + rreg - 12; | |
356 | else | |
357 | return E_E0_REGNUM + rreg; | |
358 | } | |
359 | ||
360 | /* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan. | |
9cacebf5 | 361 | |
6c02c64c KB |
362 | If VALUE is a saved register, ADDR says it was saved at a constant |
363 | offset from the frame base, and SIZE indicates that the whole | |
364 | register was saved, record its offset in RESULT_UNTYPED. */ | |
9cacebf5 | 365 | static void |
6c02c64c | 366 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) |
9cacebf5 | 367 | { |
6c02c64c | 368 | struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped; |
9cacebf5 | 369 | |
6c02c64c KB |
370 | if (value.kind == pvk_register |
371 | && value.k == 0 | |
372 | && pv_is_register (addr, E_SP_REGNUM) | |
d80b854b | 373 | && size == register_size (result->gdbarch, value.reg)) |
6c02c64c KB |
374 | result->reg_offset[value.reg] = addr.k; |
375 | } | |
9cacebf5 | 376 | |
6c02c64c KB |
377 | /* Analyze the prologue to determine where registers are saved, |
378 | the end of the prologue, etc. The result of this analysis is | |
379 | returned in RESULT. See struct mn10300_prologue above for more | |
380 | information. */ | |
381 | static void | |
382 | mn10300_analyze_prologue (struct gdbarch *gdbarch, | |
383 | CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
384 | struct mn10300_prologue *result) | |
385 | { | |
e17a4113 | 386 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
22e048c9 | 387 | CORE_ADDR pc; |
6c02c64c KB |
388 | int rn; |
389 | pv_t regs[MN10300_MAX_NUM_REGS]; | |
390 | struct pv_area *stack; | |
391 | struct cleanup *back_to; | |
392 | CORE_ADDR after_last_frame_setup_insn = start_pc; | |
393 | int am33_mode = AM33_MODE (gdbarch); | |
394 | ||
395 | memset (result, 0, sizeof (*result)); | |
d80b854b | 396 | result->gdbarch = gdbarch; |
9cacebf5 | 397 | |
6c02c64c | 398 | for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++) |
4640dd91 | 399 | { |
6c02c64c KB |
400 | regs[rn] = pv_register (rn, 0); |
401 | result->reg_offset[rn] = 1; | |
4640dd91 | 402 | } |
55f960e1 | 403 | stack = make_pv_area (E_SP_REGNUM, gdbarch_addr_bit (gdbarch)); |
6c02c64c KB |
404 | back_to = make_cleanup_free_pv_area (stack); |
405 | ||
406 | /* The typical call instruction will have saved the return address on the | |
407 | stack. Space for the return address has already been preallocated in | |
408 | the caller's frame. It's possible, such as when using -mrelax with gcc | |
409 | that other registers were saved as well. If this happens, we really | |
410 | have no chance of deciphering the frame. DWARF info can save the day | |
411 | when this happens. */ | |
412 | pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]); | |
413 | ||
414 | pc = start_pc; | |
415 | while (pc < limit_pc) | |
4640dd91 | 416 | { |
6c02c64c KB |
417 | int status; |
418 | gdb_byte instr[2]; | |
4640dd91 | 419 | |
6c02c64c KB |
420 | /* Instructions can be as small as one byte; however, we usually |
421 | need at least two bytes to do the decoding, so fetch that many | |
422 | to begin with. */ | |
423 | status = target_read_memory (pc, instr, 2); | |
424 | if (status != 0) | |
425 | break; | |
4640dd91 | 426 | |
6c02c64c KB |
427 | /* movm [regs], sp */ |
428 | if (instr[0] == 0xcf) | |
4640dd91 | 429 | { |
6c02c64c KB |
430 | gdb_byte save_mask; |
431 | ||
432 | save_mask = instr[1]; | |
433 | ||
434 | if ((save_mask & movm_exreg0_bit) && am33_mode) | |
435 | { | |
436 | push_reg (regs, stack, E_E2_REGNUM); | |
437 | push_reg (regs, stack, E_E3_REGNUM); | |
438 | } | |
439 | if ((save_mask & movm_exreg1_bit) && am33_mode) | |
4640dd91 | 440 | { |
6c02c64c KB |
441 | push_reg (regs, stack, E_E4_REGNUM); |
442 | push_reg (regs, stack, E_E5_REGNUM); | |
443 | push_reg (regs, stack, E_E6_REGNUM); | |
444 | push_reg (regs, stack, E_E7_REGNUM); | |
4640dd91 | 445 | } |
6c02c64c KB |
446 | if ((save_mask & movm_exother_bit) && am33_mode) |
447 | { | |
448 | push_reg (regs, stack, E_E0_REGNUM); | |
449 | push_reg (regs, stack, E_E1_REGNUM); | |
450 | push_reg (regs, stack, E_MDRQ_REGNUM); | |
451 | push_reg (regs, stack, E_MCRH_REGNUM); | |
452 | push_reg (regs, stack, E_MCRL_REGNUM); | |
453 | push_reg (regs, stack, E_MCVF_REGNUM); | |
454 | } | |
455 | if (save_mask & movm_d2_bit) | |
456 | push_reg (regs, stack, E_D2_REGNUM); | |
457 | if (save_mask & movm_d3_bit) | |
458 | push_reg (regs, stack, E_D3_REGNUM); | |
459 | if (save_mask & movm_a2_bit) | |
460 | push_reg (regs, stack, E_A2_REGNUM); | |
461 | if (save_mask & movm_a3_bit) | |
462 | push_reg (regs, stack, E_A3_REGNUM); | |
463 | if (save_mask & movm_other_bit) | |
464 | { | |
465 | push_reg (regs, stack, E_D0_REGNUM); | |
466 | push_reg (regs, stack, E_D1_REGNUM); | |
467 | push_reg (regs, stack, E_A0_REGNUM); | |
468 | push_reg (regs, stack, E_A1_REGNUM); | |
469 | push_reg (regs, stack, E_MDR_REGNUM); | |
470 | push_reg (regs, stack, E_LIR_REGNUM); | |
471 | push_reg (regs, stack, E_LAR_REGNUM); | |
472 | /* The `other' bit leaves a blank area of four bytes at | |
473 | the beginning of its block of saved registers, making | |
474 | it 32 bytes long in total. */ | |
475 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4); | |
476 | } | |
477 | ||
478 | pc += 2; | |
479 | after_last_frame_setup_insn = pc; | |
4640dd91 | 480 | } |
6c02c64c KB |
481 | /* mov sp, aN */ |
482 | else if ((instr[0] & 0xfc) == 0x3c) | |
483 | { | |
484 | int aN = instr[0] & 0x03; | |
4640dd91 | 485 | |
6c02c64c | 486 | regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM]; |
4640dd91 | 487 | |
6c02c64c KB |
488 | pc += 1; |
489 | if (aN == 3) | |
490 | after_last_frame_setup_insn = pc; | |
491 | } | |
492 | /* mov aM, aN */ | |
493 | else if ((instr[0] & 0xf0) == 0x90 | |
494 | && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) | |
495 | { | |
496 | int aN = instr[0] & 0x03; | |
497 | int aM = (instr[0] & 0x0c) >> 2; | |
9cacebf5 | 498 | |
6c02c64c | 499 | regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM]; |
9cacebf5 | 500 | |
6c02c64c KB |
501 | pc += 1; |
502 | } | |
503 | /* mov dM, dN */ | |
504 | else if ((instr[0] & 0xf0) == 0x80 | |
505 | && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2)) | |
506 | { | |
507 | int dN = instr[0] & 0x03; | |
508 | int dM = (instr[0] & 0x0c) >> 2; | |
9cacebf5 | 509 | |
6c02c64c | 510 | regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM]; |
9cacebf5 | 511 | |
6c02c64c KB |
512 | pc += 1; |
513 | } | |
514 | /* mov aM, dN */ | |
515 | else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0) | |
516 | { | |
517 | int dN = instr[1] & 0x03; | |
518 | int aM = (instr[1] & 0x0c) >> 2; | |
9cacebf5 | 519 | |
6c02c64c | 520 | regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM]; |
9cacebf5 | 521 | |
6c02c64c KB |
522 | pc += 2; |
523 | } | |
524 | /* mov dM, aN */ | |
525 | else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0) | |
526 | { | |
527 | int aN = instr[1] & 0x03; | |
528 | int dM = (instr[1] & 0x0c) >> 2; | |
9cacebf5 | 529 | |
6c02c64c | 530 | regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM]; |
9cacebf5 | 531 | |
6c02c64c KB |
532 | pc += 2; |
533 | } | |
534 | /* add imm8, SP */ | |
535 | else if (instr[0] == 0xf8 && instr[1] == 0xfe) | |
536 | { | |
537 | gdb_byte buf[1]; | |
538 | LONGEST imm8; | |
9cacebf5 | 539 | |
9cacebf5 | 540 | |
6c02c64c KB |
541 | status = target_read_memory (pc + 2, buf, 1); |
542 | if (status != 0) | |
543 | break; | |
9cacebf5 | 544 | |
e17a4113 | 545 | imm8 = extract_signed_integer (buf, 1, byte_order); |
6c02c64c | 546 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8); |
9cacebf5 | 547 | |
6c02c64c KB |
548 | pc += 3; |
549 | /* Stack pointer adjustments are frame related. */ | |
550 | after_last_frame_setup_insn = pc; | |
551 | } | |
552 | /* add imm16, SP */ | |
553 | else if (instr[0] == 0xfa && instr[1] == 0xfe) | |
554 | { | |
555 | gdb_byte buf[2]; | |
556 | LONGEST imm16; | |
9cacebf5 | 557 | |
6c02c64c KB |
558 | status = target_read_memory (pc + 2, buf, 2); |
559 | if (status != 0) | |
560 | break; | |
9cacebf5 | 561 | |
e17a4113 | 562 | imm16 = extract_signed_integer (buf, 2, byte_order); |
6c02c64c | 563 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16); |
9cacebf5 | 564 | |
6c02c64c KB |
565 | pc += 4; |
566 | /* Stack pointer adjustments are frame related. */ | |
567 | after_last_frame_setup_insn = pc; | |
568 | } | |
569 | /* add imm32, SP */ | |
570 | else if (instr[0] == 0xfc && instr[1] == 0xfe) | |
571 | { | |
572 | gdb_byte buf[4]; | |
573 | LONGEST imm32; | |
9cacebf5 | 574 | |
6c02c64c KB |
575 | status = target_read_memory (pc + 2, buf, 4); |
576 | if (status != 0) | |
577 | break; | |
9cacebf5 | 578 | |
9cacebf5 | 579 | |
e17a4113 | 580 | imm32 = extract_signed_integer (buf, 4, byte_order); |
6c02c64c | 581 | regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32); |
9cacebf5 | 582 | |
6c02c64c KB |
583 | pc += 6; |
584 | /* Stack pointer adjustments are frame related. */ | |
585 | after_last_frame_setup_insn = pc; | |
586 | } | |
587 | /* add imm8, aN */ | |
588 | else if ((instr[0] & 0xfc) == 0x20) | |
589 | { | |
590 | int aN; | |
591 | LONGEST imm8; | |
9cacebf5 | 592 | |
6c02c64c | 593 | aN = instr[0] & 0x03; |
e17a4113 | 594 | imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
9cacebf5 | 595 | |
6c02c64c KB |
596 | regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
597 | imm8); | |
9cacebf5 | 598 | |
6c02c64c KB |
599 | pc += 2; |
600 | } | |
601 | /* add imm16, aN */ | |
602 | else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0) | |
603 | { | |
604 | int aN; | |
605 | LONGEST imm16; | |
606 | gdb_byte buf[2]; | |
9cacebf5 | 607 | |
6c02c64c | 608 | aN = instr[1] & 0x03; |
9cacebf5 | 609 | |
6c02c64c KB |
610 | status = target_read_memory (pc + 2, buf, 2); |
611 | if (status != 0) | |
612 | break; | |
9cacebf5 | 613 | |
9cacebf5 | 614 | |
e17a4113 | 615 | imm16 = extract_signed_integer (buf, 2, byte_order); |
9cacebf5 | 616 | |
6c02c64c KB |
617 | regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
618 | imm16); | |
9cacebf5 | 619 | |
6c02c64c KB |
620 | pc += 4; |
621 | } | |
622 | /* add imm32, aN */ | |
623 | else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0) | |
624 | { | |
625 | int aN; | |
626 | LONGEST imm32; | |
627 | gdb_byte buf[4]; | |
9cacebf5 | 628 | |
6c02c64c | 629 | aN = instr[1] & 0x03; |
9cacebf5 | 630 | |
6c02c64c KB |
631 | status = target_read_memory (pc + 2, buf, 4); |
632 | if (status != 0) | |
633 | break; | |
9cacebf5 | 634 | |
e17a4113 | 635 | imm32 = extract_signed_integer (buf, 2, byte_order); |
9cacebf5 | 636 | |
6c02c64c KB |
637 | regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN], |
638 | imm32); | |
639 | pc += 6; | |
640 | } | |
641 | /* fmov fsM, (rN) */ | |
642 | else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30) | |
643 | { | |
644 | int fsM, sM, Y, rN; | |
645 | gdb_byte buf[1]; | |
9cacebf5 | 646 | |
6c02c64c | 647 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 648 | |
6c02c64c KB |
649 | status = target_read_memory (pc + 2, buf, 1); |
650 | if (status != 0) | |
651 | break; | |
9cacebf5 | 652 | |
6c02c64c KB |
653 | sM = (buf[0] & 0xf0) >> 4; |
654 | rN = buf[0] & 0x0f; | |
655 | fsM = (Y << 4) | sM; | |
9cacebf5 | 656 | |
6c02c64c KB |
657 | pv_area_store (stack, regs[translate_rreg (rN)], 4, |
658 | regs[E_FS0_REGNUM + fsM]); | |
9cacebf5 | 659 | |
6c02c64c KB |
660 | pc += 3; |
661 | } | |
662 | /* fmov fsM, (sp) */ | |
663 | else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34) | |
664 | { | |
665 | int fsM, sM, Y; | |
666 | gdb_byte buf[1]; | |
9cacebf5 | 667 | |
6c02c64c | 668 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 669 | |
6c02c64c KB |
670 | status = target_read_memory (pc + 2, buf, 1); |
671 | if (status != 0) | |
672 | break; | |
9cacebf5 | 673 | |
6c02c64c KB |
674 | sM = (buf[0] & 0xf0) >> 4; |
675 | fsM = (Y << 4) | sM; | |
9cacebf5 | 676 | |
6c02c64c KB |
677 | pv_area_store (stack, regs[E_SP_REGNUM], 4, |
678 | regs[E_FS0_REGNUM + fsM]); | |
9cacebf5 | 679 | |
6c02c64c KB |
680 | pc += 3; |
681 | } | |
682 | /* fmov fsM, (rN, rI) */ | |
683 | else if (instr[0] == 0xfb && instr[1] == 0x37) | |
684 | { | |
685 | int fsM, sM, Z, rN, rI; | |
686 | gdb_byte buf[2]; | |
9cacebf5 | 687 | |
9cacebf5 | 688 | |
6c02c64c KB |
689 | status = target_read_memory (pc + 2, buf, 2); |
690 | if (status != 0) | |
691 | break; | |
83845630 | 692 | |
6c02c64c KB |
693 | rI = (buf[0] & 0xf0) >> 4; |
694 | rN = buf[0] & 0x0f; | |
695 | sM = (buf[1] & 0xf0) >> 4; | |
696 | Z = (buf[1] & 0x02) >> 1; | |
697 | fsM = (Z << 4) | sM; | |
83845630 | 698 | |
6c02c64c KB |
699 | pv_area_store (stack, |
700 | pv_add (regs[translate_rreg (rN)], | |
701 | regs[translate_rreg (rI)]), | |
702 | 4, regs[E_FS0_REGNUM + fsM]); | |
83845630 | 703 | |
6c02c64c KB |
704 | pc += 4; |
705 | } | |
706 | /* fmov fsM, (d8, rN) */ | |
707 | else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30) | |
4640dd91 | 708 | { |
6c02c64c KB |
709 | int fsM, sM, Y, rN; |
710 | LONGEST d8; | |
711 | gdb_byte buf[2]; | |
712 | ||
713 | Y = (instr[1] & 0x02) >> 1; | |
714 | ||
715 | status = target_read_memory (pc + 2, buf, 2); | |
716 | if (status != 0) | |
717 | break; | |
718 | ||
719 | sM = (buf[0] & 0xf0) >> 4; | |
720 | rN = buf[0] & 0x0f; | |
721 | fsM = (Y << 4) | sM; | |
e17a4113 | 722 | d8 = extract_signed_integer (&buf[1], 1, byte_order); |
6c02c64c KB |
723 | |
724 | pv_area_store (stack, | |
725 | pv_add_constant (regs[translate_rreg (rN)], d8), | |
726 | 4, regs[E_FS0_REGNUM + fsM]); | |
727 | ||
728 | pc += 4; | |
4640dd91 | 729 | } |
6c02c64c KB |
730 | /* fmov fsM, (d24, rN) */ |
731 | else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30) | |
83845630 | 732 | { |
6c02c64c KB |
733 | int fsM, sM, Y, rN; |
734 | LONGEST d24; | |
735 | gdb_byte buf[4]; | |
736 | ||
737 | Y = (instr[1] & 0x02) >> 1; | |
738 | ||
739 | status = target_read_memory (pc + 2, buf, 4); | |
83845630 | 740 | if (status != 0) |
6c02c64c KB |
741 | break; |
742 | ||
743 | sM = (buf[0] & 0xf0) >> 4; | |
744 | rN = buf[0] & 0x0f; | |
745 | fsM = (Y << 4) | sM; | |
e17a4113 | 746 | d24 = extract_signed_integer (&buf[1], 3, byte_order); |
6c02c64c KB |
747 | |
748 | pv_area_store (stack, | |
749 | pv_add_constant (regs[translate_rreg (rN)], d24), | |
750 | 4, regs[E_FS0_REGNUM + fsM]); | |
751 | ||
752 | pc += 6; | |
83845630 | 753 | } |
6c02c64c KB |
754 | /* fmov fsM, (d32, rN) */ |
755 | else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30) | |
756 | { | |
757 | int fsM, sM, Y, rN; | |
758 | LONGEST d32; | |
759 | gdb_byte buf[5]; | |
4640dd91 | 760 | |
6c02c64c KB |
761 | Y = (instr[1] & 0x02) >> 1; |
762 | ||
763 | status = target_read_memory (pc + 2, buf, 5); | |
764 | if (status != 0) | |
765 | break; | |
766 | ||
767 | sM = (buf[0] & 0xf0) >> 4; | |
768 | rN = buf[0] & 0x0f; | |
769 | fsM = (Y << 4) | sM; | |
e17a4113 | 770 | d32 = extract_signed_integer (&buf[1], 4, byte_order); |
9cacebf5 | 771 | |
6c02c64c KB |
772 | pv_area_store (stack, |
773 | pv_add_constant (regs[translate_rreg (rN)], d32), | |
774 | 4, regs[E_FS0_REGNUM + fsM]); | |
775 | ||
776 | pc += 7; | |
777 | } | |
778 | /* fmov fsM, (d8, SP) */ | |
779 | else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34) | |
9cacebf5 | 780 | { |
6c02c64c KB |
781 | int fsM, sM, Y; |
782 | LONGEST d8; | |
783 | gdb_byte buf[2]; | |
784 | ||
785 | Y = (instr[1] & 0x02) >> 1; | |
786 | ||
787 | status = target_read_memory (pc + 2, buf, 2); | |
788 | if (status != 0) | |
789 | break; | |
790 | ||
791 | sM = (buf[0] & 0xf0) >> 4; | |
792 | fsM = (Y << 4) | sM; | |
e17a4113 | 793 | d8 = extract_signed_integer (&buf[1], 1, byte_order); |
6c02c64c KB |
794 | |
795 | pv_area_store (stack, | |
796 | pv_add_constant (regs[E_SP_REGNUM], d8), | |
797 | 4, regs[E_FS0_REGNUM + fsM]); | |
798 | ||
799 | pc += 4; | |
9cacebf5 | 800 | } |
6c02c64c KB |
801 | /* fmov fsM, (d24, SP) */ |
802 | else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34) | |
803 | { | |
804 | int fsM, sM, Y; | |
805 | LONGEST d24; | |
806 | gdb_byte buf[4]; | |
9cacebf5 | 807 | |
6c02c64c | 808 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 809 | |
6c02c64c KB |
810 | status = target_read_memory (pc + 2, buf, 4); |
811 | if (status != 0) | |
812 | break; | |
9cacebf5 | 813 | |
6c02c64c KB |
814 | sM = (buf[0] & 0xf0) >> 4; |
815 | fsM = (Y << 4) | sM; | |
e17a4113 | 816 | d24 = extract_signed_integer (&buf[1], 3, byte_order); |
9cacebf5 | 817 | |
6c02c64c KB |
818 | pv_area_store (stack, |
819 | pv_add_constant (regs[E_SP_REGNUM], d24), | |
820 | 4, regs[E_FS0_REGNUM + fsM]); | |
9cacebf5 | 821 | |
6c02c64c KB |
822 | pc += 6; |
823 | } | |
824 | /* fmov fsM, (d32, SP) */ | |
825 | else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34) | |
826 | { | |
827 | int fsM, sM, Y; | |
828 | LONGEST d32; | |
829 | gdb_byte buf[5]; | |
9cacebf5 | 830 | |
6c02c64c | 831 | Y = (instr[1] & 0x02) >> 1; |
9cacebf5 | 832 | |
6c02c64c KB |
833 | status = target_read_memory (pc + 2, buf, 5); |
834 | if (status != 0) | |
835 | break; | |
836 | ||
837 | sM = (buf[0] & 0xf0) >> 4; | |
838 | fsM = (Y << 4) | sM; | |
e17a4113 | 839 | d32 = extract_signed_integer (&buf[1], 4, byte_order); |
6c02c64c KB |
840 | |
841 | pv_area_store (stack, | |
842 | pv_add_constant (regs[E_SP_REGNUM], d32), | |
843 | 4, regs[E_FS0_REGNUM + fsM]); | |
844 | ||
845 | pc += 7; | |
846 | } | |
847 | /* fmov fsM, (rN+) */ | |
848 | else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31) | |
849 | { | |
850 | int fsM, sM, Y, rN, rN_regnum; | |
851 | gdb_byte buf[1]; | |
852 | ||
853 | Y = (instr[1] & 0x02) >> 1; | |
854 | ||
855 | status = target_read_memory (pc + 2, buf, 1); | |
856 | if (status != 0) | |
857 | break; | |
858 | ||
859 | sM = (buf[0] & 0xf0) >> 4; | |
860 | rN = buf[0] & 0x0f; | |
861 | fsM = (Y << 4) | sM; | |
862 | ||
863 | rN_regnum = translate_rreg (rN); | |
864 | ||
865 | pv_area_store (stack, regs[rN_regnum], 4, | |
866 | regs[E_FS0_REGNUM + fsM]); | |
867 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4); | |
868 | ||
869 | pc += 3; | |
870 | } | |
871 | /* fmov fsM, (rN+, imm8) */ | |
872 | else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31) | |
873 | { | |
874 | int fsM, sM, Y, rN, rN_regnum; | |
875 | LONGEST imm8; | |
876 | gdb_byte buf[2]; | |
877 | ||
878 | Y = (instr[1] & 0x02) >> 1; | |
879 | ||
880 | status = target_read_memory (pc + 2, buf, 2); | |
881 | if (status != 0) | |
882 | break; | |
883 | ||
884 | sM = (buf[0] & 0xf0) >> 4; | |
885 | rN = buf[0] & 0x0f; | |
886 | fsM = (Y << 4) | sM; | |
e17a4113 | 887 | imm8 = extract_signed_integer (&buf[1], 1, byte_order); |
6c02c64c KB |
888 | |
889 | rN_regnum = translate_rreg (rN); | |
890 | ||
891 | pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); | |
892 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8); | |
893 | ||
894 | pc += 4; | |
895 | } | |
896 | /* fmov fsM, (rN+, imm24) */ | |
897 | else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31) | |
898 | { | |
899 | int fsM, sM, Y, rN, rN_regnum; | |
900 | LONGEST imm24; | |
901 | gdb_byte buf[4]; | |
902 | ||
903 | Y = (instr[1] & 0x02) >> 1; | |
904 | ||
905 | status = target_read_memory (pc + 2, buf, 4); | |
906 | if (status != 0) | |
907 | break; | |
908 | ||
909 | sM = (buf[0] & 0xf0) >> 4; | |
910 | rN = buf[0] & 0x0f; | |
911 | fsM = (Y << 4) | sM; | |
e17a4113 | 912 | imm24 = extract_signed_integer (&buf[1], 3, byte_order); |
6c02c64c KB |
913 | |
914 | rN_regnum = translate_rreg (rN); | |
915 | ||
916 | pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); | |
917 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24); | |
918 | ||
919 | pc += 6; | |
920 | } | |
921 | /* fmov fsM, (rN+, imm32) */ | |
922 | else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31) | |
923 | { | |
924 | int fsM, sM, Y, rN, rN_regnum; | |
925 | LONGEST imm32; | |
926 | gdb_byte buf[5]; | |
927 | ||
928 | Y = (instr[1] & 0x02) >> 1; | |
929 | ||
930 | status = target_read_memory (pc + 2, buf, 5); | |
931 | if (status != 0) | |
932 | break; | |
933 | ||
934 | sM = (buf[0] & 0xf0) >> 4; | |
935 | rN = buf[0] & 0x0f; | |
936 | fsM = (Y << 4) | sM; | |
e17a4113 | 937 | imm32 = extract_signed_integer (&buf[1], 4, byte_order); |
6c02c64c KB |
938 | |
939 | rN_regnum = translate_rreg (rN); | |
940 | ||
941 | pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]); | |
942 | regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32); | |
943 | ||
944 | pc += 7; | |
945 | } | |
946 | /* mov imm8, aN */ | |
947 | else if ((instr[0] & 0xf0) == 0x90) | |
948 | { | |
949 | int aN = instr[0] & 0x03; | |
950 | LONGEST imm8; | |
9cacebf5 | 951 | |
e17a4113 | 952 | imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
9cacebf5 | 953 | |
6c02c64c KB |
954 | regs[E_A0_REGNUM + aN] = pv_constant (imm8); |
955 | pc += 2; | |
956 | } | |
957 | /* mov imm16, aN */ | |
958 | else if ((instr[0] & 0xfc) == 0x24) | |
959 | { | |
960 | int aN = instr[0] & 0x03; | |
961 | gdb_byte buf[2]; | |
962 | LONGEST imm16; | |
963 | ||
964 | status = target_read_memory (pc + 1, buf, 2); | |
965 | if (status != 0) | |
966 | break; | |
967 | ||
e17a4113 | 968 | imm16 = extract_signed_integer (buf, 2, byte_order); |
6c02c64c KB |
969 | regs[E_A0_REGNUM + aN] = pv_constant (imm16); |
970 | pc += 3; | |
971 | } | |
972 | /* mov imm32, aN */ | |
973 | else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc)) | |
974 | { | |
975 | int aN = instr[1] & 0x03; | |
976 | gdb_byte buf[4]; | |
977 | LONGEST imm32; | |
978 | ||
979 | status = target_read_memory (pc + 2, buf, 4); | |
980 | if (status != 0) | |
981 | break; | |
982 | ||
e17a4113 | 983 | imm32 = extract_signed_integer (buf, 4, byte_order); |
6c02c64c KB |
984 | regs[E_A0_REGNUM + aN] = pv_constant (imm32); |
985 | pc += 6; | |
986 | } | |
987 | /* mov imm8, dN */ | |
988 | else if ((instr[0] & 0xf0) == 0x80) | |
989 | { | |
990 | int dN = instr[0] & 0x03; | |
991 | LONGEST imm8; | |
992 | ||
e17a4113 | 993 | imm8 = extract_signed_integer (&instr[1], 1, byte_order); |
6c02c64c KB |
994 | |
995 | regs[E_D0_REGNUM + dN] = pv_constant (imm8); | |
996 | pc += 2; | |
997 | } | |
998 | /* mov imm16, dN */ | |
999 | else if ((instr[0] & 0xfc) == 0x2c) | |
1000 | { | |
1001 | int dN = instr[0] & 0x03; | |
1002 | gdb_byte buf[2]; | |
1003 | LONGEST imm16; | |
1004 | ||
1005 | status = target_read_memory (pc + 1, buf, 2); | |
1006 | if (status != 0) | |
1007 | break; | |
1008 | ||
e17a4113 | 1009 | imm16 = extract_signed_integer (buf, 2, byte_order); |
6c02c64c KB |
1010 | regs[E_D0_REGNUM + dN] = pv_constant (imm16); |
1011 | pc += 3; | |
1012 | } | |
1013 | /* mov imm32, dN */ | |
1014 | else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc)) | |
1015 | { | |
1016 | int dN = instr[1] & 0x03; | |
1017 | gdb_byte buf[4]; | |
1018 | LONGEST imm32; | |
1019 | ||
1020 | status = target_read_memory (pc + 2, buf, 4); | |
1021 | if (status != 0) | |
1022 | break; | |
1023 | ||
e17a4113 | 1024 | imm32 = extract_signed_integer (buf, 4, byte_order); |
6c02c64c KB |
1025 | regs[E_D0_REGNUM + dN] = pv_constant (imm32); |
1026 | pc += 6; | |
1027 | } | |
1028 | else | |
1029 | { | |
1030 | /* We've hit some instruction that we don't recognize. Hopefully, | |
1031 | we have enough to do prologue analysis. */ | |
1032 | break; | |
1033 | } | |
1034 | } | |
1035 | ||
1036 | /* Is the frame size (offset, really) a known constant? */ | |
1037 | if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM)) | |
1038 | result->frame_size = regs[E_SP_REGNUM].k; | |
9cacebf5 | 1039 | |
6c02c64c KB |
1040 | /* Was the frame pointer initialized? */ |
1041 | if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM)) | |
1042 | { | |
1043 | result->has_frame_ptr = 1; | |
1044 | result->frame_ptr_offset = regs[E_A3_REGNUM].k; | |
9cacebf5 | 1045 | } |
6c02c64c KB |
1046 | |
1047 | /* Record where all the registers were saved. */ | |
1048 | pv_area_scan (stack, check_for_saved, (void *) result); | |
1049 | ||
1050 | result->prologue_end = after_last_frame_setup_insn; | |
1051 | ||
1052 | do_cleanups (back_to); | |
9cacebf5 MS |
1053 | } |
1054 | ||
342ee437 MS |
1055 | /* Function: skip_prologue |
1056 | Return the address of the first inst past the prologue of the function. */ | |
1057 | ||
1058 | static CORE_ADDR | |
6093d2eb | 1059 | mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
342ee437 | 1060 | { |
2c02bd72 | 1061 | const char *name; |
6c02c64c KB |
1062 | CORE_ADDR func_addr, func_end; |
1063 | struct mn10300_prologue p; | |
1064 | ||
1065 | /* Try to find the extent of the function that contains PC. */ | |
1066 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
1067 | return pc; | |
1068 | ||
1069 | mn10300_analyze_prologue (gdbarch, pc, func_end, &p); | |
1070 | return p.prologue_end; | |
342ee437 MS |
1071 | } |
1072 | ||
6c02c64c KB |
1073 | /* Wrapper for mn10300_analyze_prologue: find the function start; |
1074 | use the current frame PC as the limit, then | |
1075 | invoke mn10300_analyze_prologue and return its result. */ | |
1076 | static struct mn10300_prologue * | |
1077 | mn10300_analyze_frame_prologue (struct frame_info *this_frame, | |
1078 | void **this_prologue_cache) | |
342ee437 | 1079 | { |
6c02c64c | 1080 | if (!*this_prologue_cache) |
93d42b30 | 1081 | { |
6c02c64c KB |
1082 | CORE_ADDR func_start, stop_addr; |
1083 | ||
1084 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue); | |
1085 | ||
1086 | func_start = get_frame_func (this_frame); | |
1087 | stop_addr = get_frame_pc (this_frame); | |
1088 | ||
1089 | /* If we couldn't find any function containing the PC, then | |
1090 | just initialize the prologue cache, but don't do anything. */ | |
1091 | if (!func_start) | |
1092 | stop_addr = func_start; | |
1093 | ||
1094 | mn10300_analyze_prologue (get_frame_arch (this_frame), | |
19ba03f4 SM |
1095 | func_start, stop_addr, |
1096 | ((struct mn10300_prologue *) | |
1097 | *this_prologue_cache)); | |
93d42b30 | 1098 | } |
342ee437 | 1099 | |
19ba03f4 | 1100 | return (struct mn10300_prologue *) *this_prologue_cache; |
6c02c64c KB |
1101 | } |
1102 | ||
1103 | /* Given the next frame and a prologue cache, return this frame's | |
1104 | base. */ | |
1105 | static CORE_ADDR | |
1106 | mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | |
1107 | { | |
1108 | struct mn10300_prologue *p | |
1109 | = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); | |
1110 | ||
1111 | /* In functions that use alloca, the distance between the stack | |
1112 | pointer and the frame base varies dynamically, so we can't use | |
1113 | the SP plus static information like prologue analysis to find the | |
1114 | frame base. However, such functions must have a frame pointer, | |
1115 | to be able to restore the SP on exit. So whenever we do have a | |
1116 | frame pointer, use that to find the base. */ | |
1117 | if (p->has_frame_ptr) | |
1118 | { | |
1119 | CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM); | |
1120 | return fp - p->frame_ptr_offset; | |
1121 | } | |
1122 | else | |
1123 | { | |
1124 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM); | |
1125 | return sp - p->frame_size; | |
1126 | } | |
342ee437 MS |
1127 | } |
1128 | ||
1129 | /* Here is a dummy implementation. */ | |
1130 | static struct frame_id | |
94afd7a6 | 1131 | mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
342ee437 | 1132 | { |
94afd7a6 UW |
1133 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM); |
1134 | CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM); | |
1135 | return frame_id_build (sp, pc); | |
342ee437 MS |
1136 | } |
1137 | ||
342ee437 | 1138 | static void |
94afd7a6 | 1139 | mn10300_frame_this_id (struct frame_info *this_frame, |
342ee437 MS |
1140 | void **this_prologue_cache, |
1141 | struct frame_id *this_id) | |
1142 | { | |
025bb325 MS |
1143 | *this_id = frame_id_build (mn10300_frame_base (this_frame, |
1144 | this_prologue_cache), | |
6c02c64c | 1145 | get_frame_func (this_frame)); |
342ee437 | 1146 | |
342ee437 MS |
1147 | } |
1148 | ||
94afd7a6 UW |
1149 | static struct value * |
1150 | mn10300_frame_prev_register (struct frame_info *this_frame, | |
6c02c64c | 1151 | void **this_prologue_cache, int regnum) |
342ee437 | 1152 | { |
6c02c64c KB |
1153 | struct mn10300_prologue *p |
1154 | = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache); | |
1155 | CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache); | |
6c02c64c KB |
1156 | |
1157 | if (regnum == E_SP_REGNUM) | |
1158 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
1159 | ||
1160 | /* If prologue analysis says we saved this register somewhere, | |
1161 | return a description of the stack slot holding it. */ | |
1162 | if (p->reg_offset[regnum] != 1) | |
1163 | return frame_unwind_got_memory (this_frame, regnum, | |
1164 | frame_base + p->reg_offset[regnum]); | |
1165 | ||
1166 | /* Otherwise, presume we haven't changed the value of this | |
1167 | register, and get it from the next frame. */ | |
1168 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
342ee437 MS |
1169 | } |
1170 | ||
1171 | static const struct frame_unwind mn10300_frame_unwind = { | |
1172 | NORMAL_FRAME, | |
8fbca658 | 1173 | default_frame_unwind_stop_reason, |
342ee437 | 1174 | mn10300_frame_this_id, |
94afd7a6 UW |
1175 | mn10300_frame_prev_register, |
1176 | NULL, | |
1177 | default_frame_sniffer | |
342ee437 MS |
1178 | }; |
1179 | ||
1180 | static CORE_ADDR | |
6c02c64c | 1181 | mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) |
342ee437 MS |
1182 | { |
1183 | ULONGEST pc; | |
1184 | ||
6c02c64c | 1185 | pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM); |
342ee437 MS |
1186 | return pc; |
1187 | } | |
1188 | ||
1189 | static CORE_ADDR | |
6c02c64c | 1190 | mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) |
342ee437 MS |
1191 | { |
1192 | ULONGEST sp; | |
1193 | ||
6c02c64c | 1194 | sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM); |
342ee437 MS |
1195 | return sp; |
1196 | } | |
1197 | ||
1198 | static void | |
1199 | mn10300_frame_unwind_init (struct gdbarch *gdbarch) | |
1200 | { | |
94afd7a6 UW |
1201 | dwarf2_append_unwinders (gdbarch); |
1202 | frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind); | |
94afd7a6 | 1203 | set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id); |
342ee437 MS |
1204 | set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc); |
1205 | set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp); | |
1206 | } | |
1207 | ||
1208 | /* Function: push_dummy_call | |
1209 | * | |
1210 | * Set up machine state for a target call, including | |
1211 | * function arguments, stack, return address, etc. | |
1212 | * | |
1213 | */ | |
1214 | ||
1215 | static CORE_ADDR | |
1216 | mn10300_push_dummy_call (struct gdbarch *gdbarch, | |
1217 | struct value *target_func, | |
1218 | struct regcache *regcache, | |
1219 | CORE_ADDR bp_addr, | |
1220 | int nargs, struct value **args, | |
1221 | CORE_ADDR sp, | |
1222 | int struct_return, | |
1223 | CORE_ADDR struct_addr) | |
1224 | { | |
e17a4113 | 1225 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
342ee437 | 1226 | const int push_size = register_size (gdbarch, E_PC_REGNUM); |
1fb1ca27 | 1227 | int regs_used; |
342ee437 MS |
1228 | int len, arg_len; |
1229 | int stack_offset = 0; | |
1230 | int argnum; | |
948f8e3d PA |
1231 | const gdb_byte *val; |
1232 | gdb_byte valbuf[MAX_REGISTER_SIZE]; | |
342ee437 | 1233 | |
342ee437 MS |
1234 | /* This should be a nop, but align the stack just in case something |
1235 | went wrong. Stacks are four byte aligned on the mn10300. */ | |
1236 | sp &= ~3; | |
1237 | ||
1238 | /* Now make space on the stack for the args. | |
1239 | ||
1240 | XXX This doesn't appear to handle pass-by-invisible reference | |
1241 | arguments. */ | |
1fb1ca27 | 1242 | regs_used = struct_return ? 1 : 0; |
342ee437 MS |
1243 | for (len = 0, argnum = 0; argnum < nargs; argnum++) |
1244 | { | |
1245 | arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3; | |
342ee437 MS |
1246 | while (regs_used < 2 && arg_len > 0) |
1247 | { | |
1248 | regs_used++; | |
1249 | arg_len -= push_size; | |
1250 | } | |
1251 | len += arg_len; | |
1252 | } | |
1253 | ||
1254 | /* Allocate stack space. */ | |
1255 | sp -= len; | |
1256 | ||
1fb1ca27 MS |
1257 | if (struct_return) |
1258 | { | |
1259 | regs_used = 1; | |
9c9acae0 | 1260 | regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr); |
1fb1ca27 MS |
1261 | } |
1262 | else | |
1263 | regs_used = 0; | |
1264 | ||
025bb325 | 1265 | /* Push all arguments onto the stack. */ |
342ee437 MS |
1266 | for (argnum = 0; argnum < nargs; argnum++) |
1267 | { | |
1fb1ca27 MS |
1268 | /* FIXME what about structs? Unions? */ |
1269 | if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT | |
1270 | && TYPE_LENGTH (value_type (*args)) > 8) | |
1271 | { | |
1272 | /* Change to pointer-to-type. */ | |
1273 | arg_len = push_size; | |
e17a4113 | 1274 | store_unsigned_integer (valbuf, push_size, byte_order, |
42ae5230 | 1275 | value_address (*args)); |
1fb1ca27 MS |
1276 | val = &valbuf[0]; |
1277 | } | |
1278 | else | |
1279 | { | |
1280 | arg_len = TYPE_LENGTH (value_type (*args)); | |
948f8e3d | 1281 | val = value_contents (*args); |
1fb1ca27 | 1282 | } |
342ee437 MS |
1283 | |
1284 | while (regs_used < 2 && arg_len > 0) | |
1285 | { | |
9c9acae0 | 1286 | regcache_cooked_write_unsigned (regcache, regs_used, |
e17a4113 | 1287 | extract_unsigned_integer (val, push_size, byte_order)); |
342ee437 MS |
1288 | val += push_size; |
1289 | arg_len -= push_size; | |
1290 | regs_used++; | |
1291 | } | |
1292 | ||
1293 | while (arg_len > 0) | |
1294 | { | |
1295 | write_memory (sp + stack_offset, val, push_size); | |
1296 | arg_len -= push_size; | |
1297 | val += push_size; | |
1298 | stack_offset += push_size; | |
1299 | } | |
1300 | ||
1301 | args++; | |
1302 | } | |
1303 | ||
1304 | /* Make space for the flushback area. */ | |
1305 | sp -= 8; | |
1306 | ||
1307 | /* Push the return address that contains the magic breakpoint. */ | |
1308 | sp -= 4; | |
e17a4113 | 1309 | write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr); |
a64ae7e0 CV |
1310 | |
1311 | /* The CPU also writes the return address always into the | |
1312 | MDR register on "call". */ | |
1313 | regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr); | |
1314 | ||
342ee437 MS |
1315 | /* Update $sp. */ |
1316 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | |
ee3a2f01 KB |
1317 | |
1318 | /* On the mn10300, it's possible to move some of the stack adjustment | |
1319 | and saving of the caller-save registers out of the prologue and | |
1320 | into the call sites. (When using gcc, this optimization can | |
1321 | occur when using the -mrelax switch.) If this occurs, the dwarf2 | |
1322 | info will reflect this fact. We can test to see if this is the | |
1323 | case by creating a new frame using the current stack pointer and | |
1324 | the address of the function that we're about to call. We then | |
1325 | unwind SP and see if it's different than the SP of our newly | |
1326 | created frame. If the SP values are the same, the caller is not | |
1327 | expected to allocate any additional stack. On the other hand, if | |
1328 | the SP values are different, the difference determines the | |
1329 | additional stack that must be allocated. | |
1330 | ||
1331 | Note that we don't update the return value though because that's | |
1332 | the value of the stack just after pushing the arguments, but prior | |
1333 | to performing the call. This value is needed in order to | |
025bb325 | 1334 | construct the frame ID of the dummy call. */ |
ee3a2f01 KB |
1335 | { |
1336 | CORE_ADDR func_addr = find_function_addr (target_func, NULL); | |
1337 | CORE_ADDR unwound_sp | |
1338 | = mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr)); | |
1339 | if (sp != unwound_sp) | |
1340 | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, | |
1341 | sp - (unwound_sp - sp)); | |
1342 | } | |
1343 | ||
342ee437 MS |
1344 | return sp; |
1345 | } | |
1346 | ||
336c28c5 KB |
1347 | /* If DWARF2 is a register number appearing in Dwarf2 debug info, then |
1348 | mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB | |
1349 | register number. Why don't Dwarf2 and GDB use the same numbering? | |
1350 | Who knows? But since people have object files lying around with | |
1351 | the existing Dwarf2 numbering, and other people have written stubs | |
1352 | to work with the existing GDB, neither of them can change. So we | |
1353 | just have to cope. */ | |
1354 | static int | |
be8626e0 | 1355 | mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2) |
336c28c5 | 1356 | { |
c9f4d572 | 1357 | /* This table is supposed to be shaped like the gdbarch_register_name |
336c28c5 KB |
1358 | initializer in gcc/config/mn10300/mn10300.h. Registers which |
1359 | appear in GCC's numbering, but have no counterpart in GDB's | |
1360 | world, are marked with a -1. */ | |
1361 | static int dwarf2_to_gdb[] = { | |
c5bb7362 KB |
1362 | E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM, |
1363 | E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM, | |
1364 | -1, E_SP_REGNUM, | |
1365 | ||
1366 | E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM, | |
1367 | E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM, | |
1368 | ||
1369 | E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3, | |
1370 | E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7, | |
1371 | ||
1372 | E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11, | |
1373 | E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15, | |
1374 | ||
1375 | E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19, | |
1376 | E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23, | |
1377 | ||
1378 | E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27, | |
1379 | E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31, | |
1380 | ||
1381 | E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM | |
336c28c5 KB |
1382 | }; |
1383 | ||
1384 | if (dwarf2 < 0 | |
bbc1a784 | 1385 | || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb)) |
0fde2c53 | 1386 | return -1; |
336c28c5 KB |
1387 | |
1388 | return dwarf2_to_gdb[dwarf2]; | |
1389 | } | |
342ee437 MS |
1390 | |
1391 | static struct gdbarch * | |
1392 | mn10300_gdbarch_init (struct gdbarch_info info, | |
1393 | struct gdbarch_list *arches) | |
1394 | { | |
1395 | struct gdbarch *gdbarch; | |
1396 | struct gdbarch_tdep *tdep; | |
4640dd91 | 1397 | int num_regs; |
342ee437 MS |
1398 | |
1399 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1400 | if (arches != NULL) | |
1401 | return arches->gdbarch; | |
1402 | ||
8d749320 | 1403 | tdep = XNEW (struct gdbarch_tdep); |
342ee437 MS |
1404 | gdbarch = gdbarch_alloc (&info, tdep); |
1405 | ||
1406 | switch (info.bfd_arch_info->mach) | |
1407 | { | |
1408 | case 0: | |
1409 | case bfd_mach_mn10300: | |
1410 | set_gdbarch_register_name (gdbarch, mn10300_generic_register_name); | |
1411 | tdep->am33_mode = 0; | |
4640dd91 | 1412 | num_regs = 32; |
342ee437 MS |
1413 | break; |
1414 | case bfd_mach_am33: | |
1415 | set_gdbarch_register_name (gdbarch, am33_register_name); | |
1416 | tdep->am33_mode = 1; | |
4640dd91 KB |
1417 | num_regs = 32; |
1418 | break; | |
1419 | case bfd_mach_am33_2: | |
1420 | set_gdbarch_register_name (gdbarch, am33_2_register_name); | |
1421 | tdep->am33_mode = 2; | |
1422 | num_regs = 64; | |
1423 | set_gdbarch_fp0_regnum (gdbarch, 32); | |
342ee437 MS |
1424 | break; |
1425 | default: | |
1426 | internal_error (__FILE__, __LINE__, | |
1427 | _("mn10300_gdbarch_init: Unknown mn10300 variant")); | |
1428 | break; | |
1429 | } | |
1430 | ||
1b31f75d KB |
1431 | /* By default, chars are unsigned. */ |
1432 | set_gdbarch_char_signed (gdbarch, 0); | |
1433 | ||
342ee437 | 1434 | /* Registers. */ |
4640dd91 | 1435 | set_gdbarch_num_regs (gdbarch, num_regs); |
342ee437 MS |
1436 | set_gdbarch_register_type (gdbarch, mn10300_register_type); |
1437 | set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue); | |
1438 | set_gdbarch_read_pc (gdbarch, mn10300_read_pc); | |
1439 | set_gdbarch_write_pc (gdbarch, mn10300_write_pc); | |
1440 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | |
1441 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
336c28c5 | 1442 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum); |
342ee437 MS |
1443 | |
1444 | /* Stack unwinding. */ | |
1445 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1446 | /* Breakpoints. */ | |
1447 | set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc); | |
025bb325 | 1448 | /* decr_pc_after_break? */ |
342ee437 MS |
1449 | /* Disassembly. */ |
1450 | set_gdbarch_print_insn (gdbarch, print_insn_mn10300); | |
1451 | ||
1452 | /* Stage 2 */ | |
99fe5f9d | 1453 | set_gdbarch_return_value (gdbarch, mn10300_return_value); |
342ee437 MS |
1454 | |
1455 | /* Stage 3 -- get target calls working. */ | |
1456 | set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call); | |
1457 | /* set_gdbarch_return_value (store, extract) */ | |
1458 | ||
1459 | ||
1460 | mn10300_frame_unwind_init (gdbarch); | |
1461 | ||
697e3bc9 KB |
1462 | /* Hook in ABI-specific overrides, if they have been registered. */ |
1463 | gdbarch_init_osabi (info, gdbarch); | |
1464 | ||
342ee437 MS |
1465 | return gdbarch; |
1466 | } | |
1467 | ||
025bb325 | 1468 | /* Dump out the mn10300 specific architecture information. */ |
342ee437 MS |
1469 | |
1470 | static void | |
d93859e2 | 1471 | mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
342ee437 | 1472 | { |
d93859e2 | 1473 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
342ee437 MS |
1474 | fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n", |
1475 | tdep->am33_mode); | |
1476 | } | |
1477 | ||
63807e1d PA |
1478 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
1479 | extern initialize_file_ftype _initialize_mn10300_tdep; | |
1480 | ||
342ee437 MS |
1481 | void |
1482 | _initialize_mn10300_tdep (void) | |
1483 | { | |
1484 | gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep); | |
1485 | } | |
1486 |