Protoization.
[deliverable/binutils-gdb.git] / gdb / mn10300-tdep.c
CommitLineData
c906108c
SS
1/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
2 Copyright 1996, 1997, 1998 Free Software Foundation, Inc.
3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include "frame.h"
23#include "inferior.h"
24#include "obstack.h"
25#include "target.h"
26#include "value.h"
27#include "bfd.h"
28#include "gdb_string.h"
29#include "gdbcore.h"
30#include "symfile.h"
31
c2c6d25f 32extern void _initialize_mn10300_tdep (void);
a14ed312
KB
33static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
34 CORE_ADDR pc);
c906108c
SS
35
36/* Additional info used by the frame */
37
38struct frame_extra_info
c5aa993b
JM
39 {
40 int status;
41 int stack_size;
42 };
c906108c 43
0f71a2f6 44
c5aa993b
JM
45static char *mn10300_generic_register_names[] =
46{"d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
47 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
48 "", "", "", "", "", "", "", "",
49 "", "", "", "", "", "", "", "fp"};
0f71a2f6
JM
50
51static char **mn10300_register_names = mn10300_generic_register_names;
c2d11a7d
JM
52static char *am33_register_names[] =
53{
54 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
55 "sp", "pc", "mdr", "psw", "lir", "lar", "",
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""};
58static int am33_mode;
0f71a2f6
JM
59
60char *
fba45db2 61mn10300_register_name (int i)
0f71a2f6
JM
62{
63 return mn10300_register_names[i];
64}
65
66CORE_ADDR
fba45db2 67mn10300_saved_pc_after_call (struct frame_info *fi)
0f71a2f6
JM
68{
69 return read_memory_integer (read_register (SP_REGNUM), 4);
70}
71
72void
fba45db2 73mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
0f71a2f6
JM
74{
75 if (TYPE_CODE (type) == TYPE_CODE_PTR)
76 memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
77 else
78 memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
79}
80
81CORE_ADDR
fba45db2 82mn10300_extract_struct_value_address (char *regbuf)
0f71a2f6
JM
83{
84 return extract_address (regbuf + REGISTER_BYTE (4),
85 REGISTER_RAW_SIZE (4));
86}
87
88void
fba45db2 89mn10300_store_return_value (struct type *type, char *valbuf)
0f71a2f6
JM
90{
91 if (TYPE_CODE (type) == TYPE_CODE_PTR)
92 write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
93 else
94 write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
95}
96
a14ed312 97static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
c906108c 98static struct frame_info *
fba45db2 99analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
c906108c
SS
100{
101 static struct frame_info *dummy = NULL;
102 if (dummy == NULL)
103 {
104 dummy = xmalloc (sizeof (struct frame_info));
105 dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
106 dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
107 }
108 dummy->next = NULL;
109 dummy->prev = NULL;
110 dummy->pc = pc;
111 dummy->frame = frame;
112 dummy->extra_info->status = 0;
113 dummy->extra_info->stack_size = 0;
114 memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
115 mn10300_analyze_prologue (dummy, 0);
116 return dummy;
117}
118
119/* Values for frame_info.status */
120
121#define MY_FRAME_IN_SP 0x1
122#define MY_FRAME_IN_FP 0x2
123#define NO_MORE_FRAMES 0x4
124
125
126/* Should call_function allocate stack space for a struct return? */
127int
fba45db2 128mn10300_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
129{
130 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
131}
132
133/* The breakpoint instruction must be the same size as the smallest
134 instruction in the instruction set.
135
136 The Matsushita mn10x00 processors have single byte instructions
137 so we need a single byte breakpoint. Matsushita hasn't defined
138 one, so we defined it ourselves. */
139
140unsigned char *
fba45db2 141mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 142{
c5aa993b
JM
143 static char breakpoint[] =
144 {0xff};
c906108c
SS
145 *bp_size = 1;
146 return breakpoint;
147}
148
149
150/* Fix fi->frame if it's bogus at this point. This is a helper
151 function for mn10300_analyze_prologue. */
152
153static void
fba45db2 154fix_frame_pointer (struct frame_info *fi, int stack_size)
c906108c
SS
155{
156 if (fi && fi->next == NULL)
157 {
158 if (fi->extra_info->status & MY_FRAME_IN_SP)
159 fi->frame = read_sp () - stack_size;
160 else if (fi->extra_info->status & MY_FRAME_IN_FP)
161 fi->frame = read_register (A3_REGNUM);
162 }
163}
164
165
166/* Set offsets of registers saved by movm instruction.
167 This is a helper function for mn10300_analyze_prologue. */
168
169static void
fba45db2 170set_movm_offsets (struct frame_info *fi, int movm_args)
c906108c
SS
171{
172 int offset = 0;
173
174 if (fi == NULL || movm_args == 0)
175 return;
176
177 if (movm_args & 0x10)
178 {
179 fi->saved_regs[A3_REGNUM] = fi->frame + offset;
180 offset += 4;
181 }
182 if (movm_args & 0x20)
183 {
184 fi->saved_regs[A2_REGNUM] = fi->frame + offset;
185 offset += 4;
186 }
187 if (movm_args & 0x40)
188 {
189 fi->saved_regs[D3_REGNUM] = fi->frame + offset;
190 offset += 4;
191 }
192 if (movm_args & 0x80)
193 {
194 fi->saved_regs[D2_REGNUM] = fi->frame + offset;
195 offset += 4;
196 }
c2d11a7d
JM
197 if (am33_mode && movm_args & 0x02)
198 {
199 fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
200 fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
201 fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
202 fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
203 }
c906108c
SS
204}
205
206
207/* The main purpose of this file is dealing with prologues to extract
208 information about stack frames and saved registers.
209
210 For reference here's how prologues look on the mn10300:
211
c5aa993b
JM
212 With frame pointer:
213 movm [d2,d3,a2,a3],sp
214 mov sp,a3
215 add <size>,sp
c906108c 216
c5aa993b
JM
217 Without frame pointer:
218 movm [d2,d3,a2,a3],sp (if needed)
219 add <size>,sp
c906108c
SS
220
221 One day we might keep the stack pointer constant, that won't
222 change the code for prologues, but it will make the frame
223 pointerless case much more common. */
c5aa993b 224
c906108c
SS
225/* Analyze the prologue to determine where registers are saved,
226 the end of the prologue, etc etc. Return the end of the prologue
227 scanned.
228
229 We store into FI (if non-null) several tidbits of information:
230
c5aa993b
JM
231 * stack_size -- size of this stack frame. Note that if we stop in
232 certain parts of the prologue/epilogue we may claim the size of the
233 current frame is zero. This happens when the current frame has
234 not been allocated yet or has already been deallocated.
c906108c 235
c5aa993b 236 * fsr -- Addresses of registers saved in the stack by this frame.
c906108c 237
c5aa993b
JM
238 * status -- A (relatively) generic status indicator. It's a bitmask
239 with the following bits:
c906108c 240
c5aa993b
JM
241 MY_FRAME_IN_SP: The base of the current frame is actually in
242 the stack pointer. This can happen for frame pointerless
243 functions, or cases where we're stopped in the prologue/epilogue
244 itself. For these cases mn10300_analyze_prologue will need up
245 update fi->frame before returning or analyzing the register
246 save instructions.
c906108c 247
c5aa993b
JM
248 MY_FRAME_IN_FP: The base of the current frame is in the
249 frame pointer register ($a2).
c906108c 250
c5aa993b
JM
251 NO_MORE_FRAMES: Set this if the current frame is "start" or
252 if the first instruction looks like mov <imm>,sp. This tells
253 frame chain to not bother trying to unwind past this frame. */
c906108c
SS
254
255static CORE_ADDR
fba45db2 256mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
c906108c
SS
257{
258 CORE_ADDR func_addr, func_end, addr, stop;
259 CORE_ADDR stack_size;
260 int imm_size;
261 unsigned char buf[4];
262 int status, movm_args = 0;
263 char *name;
264
265 /* Use the PC in the frame if it's provided to look up the
266 start of this function. */
267 pc = (fi ? fi->pc : pc);
268
269 /* Find the start of this function. */
270 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
271
272 /* Do nothing if we couldn't find the start of this function or if we're
273 stopped at the first instruction in the prologue. */
274 if (status == 0)
43ff13b4
JM
275 {
276 return pc;
277 }
c906108c
SS
278
279 /* If we're in start, then give up. */
280 if (strcmp (name, "start") == 0)
281 {
282 if (fi != NULL)
283 fi->extra_info->status = NO_MORE_FRAMES;
284 return pc;
285 }
286
287 /* At the start of a function our frame is in the stack pointer. */
288 if (fi)
289 fi->extra_info->status = MY_FRAME_IN_SP;
290
291 /* Get the next two bytes into buf, we need two because rets is a two
292 byte insn and the first isn't enough to uniquely identify it. */
293 status = read_memory_nobpt (pc, buf, 2);
294 if (status != 0)
295 return pc;
296
297 /* If we're physically on an "rets" instruction, then our frame has
298 already been deallocated. Note this can also be true for retf
299 and ret if they specify a size of zero.
300
301 In this case fi->frame is bogus, we need to fix it. */
302 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
303 {
304 if (fi->next == NULL)
305 fi->frame = read_sp ();
306 return fi->pc;
307 }
308
309 /* Similarly if we're stopped on the first insn of a prologue as our
310 frame hasn't been allocated yet. */
311 if (fi && fi->pc == func_addr)
312 {
313 if (fi->next == NULL)
314 fi->frame = read_sp ();
315 return fi->pc;
316 }
317
318 /* Figure out where to stop scanning. */
319 stop = fi ? fi->pc : func_end;
320
321 /* Don't walk off the end of the function. */
322 stop = stop > func_end ? func_end : stop;
323
324 /* Start scanning on the first instruction of this function. */
325 addr = func_addr;
326
327 /* Suck in two bytes. */
328 status = read_memory_nobpt (addr, buf, 2);
329 if (status != 0)
330 {
331 fix_frame_pointer (fi, 0);
332 return addr;
333 }
334
335 /* First see if this insn sets the stack pointer; if so, it's something
336 we won't understand, so quit now. */
337 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
338 {
339 if (fi)
340 fi->extra_info->status = NO_MORE_FRAMES;
341 return addr;
342 }
343
344 /* Now look for movm [regs],sp, which saves the callee saved registers.
345
346 At this time we don't know if fi->frame is valid, so we only note
347 that we encountered a movm instruction. Later, we'll set the entries
348 in fsr.regs as needed. */
349 if (buf[0] == 0xcf)
350 {
351 /* Extract the register list for the movm instruction. */
352 status = read_memory_nobpt (addr + 1, buf, 1);
353 movm_args = *buf;
354
355 addr += 2;
356
357 /* Quit now if we're beyond the stop point. */
358 if (addr >= stop)
359 {
360 /* Fix fi->frame since it's bogus at this point. */
361 if (fi && fi->next == NULL)
362 fi->frame = read_sp ();
363
364 /* Note if/where callee saved registers were saved. */
365 set_movm_offsets (fi, movm_args);
366 return addr;
367 }
368
369 /* Get the next two bytes so the prologue scan can continue. */
370 status = read_memory_nobpt (addr, buf, 2);
371 if (status != 0)
372 {
373 /* Fix fi->frame since it's bogus at this point. */
374 if (fi && fi->next == NULL)
375 fi->frame = read_sp ();
376
377 /* Note if/where callee saved registers were saved. */
378 set_movm_offsets (fi, movm_args);
379 return addr;
380 }
381 }
382
383 /* Now see if we set up a frame pointer via "mov sp,a3" */
384 if (buf[0] == 0x3f)
385 {
386 addr += 1;
387
388 /* The frame pointer is now valid. */
389 if (fi)
390 {
391 fi->extra_info->status |= MY_FRAME_IN_FP;
392 fi->extra_info->status &= ~MY_FRAME_IN_SP;
393 }
394
395 /* Quit now if we're beyond the stop point. */
396 if (addr >= stop)
397 {
398 /* Fix fi->frame if it's bogus at this point. */
399 fix_frame_pointer (fi, 0);
400
401 /* Note if/where callee saved registers were saved. */
402 set_movm_offsets (fi, movm_args);
403 return addr;
404 }
405
406 /* Get two more bytes so scanning can continue. */
407 status = read_memory_nobpt (addr, buf, 2);
408 if (status != 0)
409 {
410 /* Fix fi->frame if it's bogus at this point. */
411 fix_frame_pointer (fi, 0);
412
413 /* Note if/where callee saved registers were saved. */
414 set_movm_offsets (fi, movm_args);
415 return addr;
416 }
417 }
c5aa993b 418
c906108c
SS
419 /* Next we should allocate the local frame. No more prologue insns
420 are found after allocating the local frame.
c5aa993b 421
c906108c 422 Search for add imm8,sp (0xf8feXX)
c5aa993b
JM
423 or add imm16,sp (0xfafeXXXX)
424 or add imm32,sp (0xfcfeXXXXXXXX).
425
c906108c
SS
426 If none of the above was found, then this prologue has no
427 additional stack. */
428
429 status = read_memory_nobpt (addr, buf, 2);
430 if (status != 0)
431 {
432 /* Fix fi->frame if it's bogus at this point. */
433 fix_frame_pointer (fi, 0);
434
435 /* Note if/where callee saved registers were saved. */
436 set_movm_offsets (fi, movm_args);
437 return addr;
438 }
439
440 imm_size = 0;
441 if (buf[0] == 0xf8 && buf[1] == 0xfe)
442 imm_size = 1;
443 else if (buf[0] == 0xfa && buf[1] == 0xfe)
444 imm_size = 2;
445 else if (buf[0] == 0xfc && buf[1] == 0xfe)
446 imm_size = 4;
447
448 if (imm_size != 0)
449 {
450 /* Suck in imm_size more bytes, they'll hold the size of the
451 current frame. */
452 status = read_memory_nobpt (addr + 2, buf, imm_size);
453 if (status != 0)
454 {
455 /* Fix fi->frame if it's bogus at this point. */
456 fix_frame_pointer (fi, 0);
457
458 /* Note if/where callee saved registers were saved. */
459 set_movm_offsets (fi, movm_args);
460 return addr;
461 }
462
463 /* Note the size of the stack in the frame info structure. */
464 stack_size = extract_signed_integer (buf, imm_size);
465 if (fi)
466 fi->extra_info->stack_size = stack_size;
467
468 /* We just consumed 2 + imm_size bytes. */
469 addr += 2 + imm_size;
470
471 /* No more prologue insns follow, so begin preparation to return. */
472 /* Fix fi->frame if it's bogus at this point. */
473 fix_frame_pointer (fi, stack_size);
474
475 /* Note if/where callee saved registers were saved. */
476 set_movm_offsets (fi, movm_args);
477 return addr;
478 }
479
480 /* We never found an insn which allocates local stack space, regardless
481 this is the end of the prologue. */
482 /* Fix fi->frame if it's bogus at this point. */
483 fix_frame_pointer (fi, 0);
484
485 /* Note if/where callee saved registers were saved. */
486 set_movm_offsets (fi, movm_args);
487 return addr;
488}
c5aa993b 489
c906108c
SS
490/* Function: frame_chain
491 Figure out and return the caller's frame pointer given current
492 frame_info struct.
493
494 We don't handle dummy frames yet but we would probably just return the
495 stack pointer that was in use at the time the function call was made? */
496
497CORE_ADDR
fba45db2 498mn10300_frame_chain (struct frame_info *fi)
c906108c
SS
499{
500 struct frame_info *dummy;
501 /* Walk through the prologue to determine the stack size,
502 location of saved registers, end of the prologue, etc. */
503 if (fi->extra_info->status == 0)
c5aa993b 504 mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
c906108c
SS
505
506 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
507 if (fi->extra_info->status & NO_MORE_FRAMES)
508 return 0;
509
510 /* Now that we've analyzed our prologue, determine the frame
511 pointer for our caller.
512
c5aa993b
JM
513 If our caller has a frame pointer, then we need to
514 find the entry value of $a3 to our function.
515
516 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
517 location pointed to by fsr.regs[A3_REGNUM].
c906108c 518
c5aa993b 519 Else it's still in $a3.
c906108c 520
c5aa993b
JM
521 If our caller does not have a frame pointer, then his
522 frame base is fi->frame + -caller's stack size. */
c906108c 523
c906108c
SS
524 /* The easiest way to get that info is to analyze our caller's frame.
525 So we set up a dummy frame and call mn10300_analyze_prologue to
526 find stuff for us. */
527 dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
528
529 if (dummy->extra_info->status & MY_FRAME_IN_FP)
530 {
531 /* Our caller has a frame pointer. So find the frame in $a3 or
532 in the stack. */
533 if (fi->saved_regs[A3_REGNUM])
534 return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
535 else
536 return read_register (A3_REGNUM);
537 }
538 else
539 {
540 int adjust = 0;
541
542 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
543 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
544 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
545 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
c2d11a7d
JM
546 if (am33_mode)
547 {
548 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
549 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
550 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
551 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
552 }
c906108c
SS
553
554 /* Our caller does not have a frame pointer. So his frame starts
c5aa993b
JM
555 at the base of our frame (fi->frame) + register save space
556 + <his size>. */
c906108c
SS
557 return fi->frame + adjust + -dummy->extra_info->stack_size;
558 }
559}
560
561/* Function: skip_prologue
562 Return the address of the first inst past the prologue of the function. */
563
564CORE_ADDR
fba45db2 565mn10300_skip_prologue (CORE_ADDR pc)
c906108c
SS
566{
567 /* We used to check the debug symbols, but that can lose if
568 we have a null prologue. */
569 return mn10300_analyze_prologue (NULL, pc);
570}
571
572
573/* Function: pop_frame
574 This routine gets called when either the user uses the `return'
575 command, or the call dummy breakpoint gets hit. */
576
577void
fba45db2 578mn10300_pop_frame (struct frame_info *frame)
c906108c
SS
579{
580 int regnum;
581
c5aa993b 582 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c
SS
583 generic_pop_dummy_frame ();
584 else
585 {
586 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
587
588 /* Restore any saved registers. */
589 for (regnum = 0; regnum < NUM_REGS; regnum++)
590 if (frame->saved_regs[regnum] != 0)
591 {
592 ULONGEST value;
593
594 value = read_memory_unsigned_integer (frame->saved_regs[regnum],
c5aa993b 595 REGISTER_RAW_SIZE (regnum));
c906108c
SS
596 write_register (regnum, value);
597 }
598
599 /* Actually cut back the stack. */
600 write_register (SP_REGNUM, FRAME_FP (frame));
601
602 /* Don't we need to set the PC?!? XXX FIXME. */
603 }
604
605 /* Throw away any cached frame information. */
606 flush_cached_frames ();
607}
608
609/* Function: push_arguments
610 Setup arguments for a call to the target. Arguments go in
611 order on the stack. */
612
613CORE_ADDR
fba45db2
KB
614mn10300_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
615 unsigned char struct_return, CORE_ADDR struct_addr)
c906108c
SS
616{
617 int argnum = 0;
618 int len = 0;
619 int stack_offset = 0;
620 int regsused = struct_return ? 1 : 0;
621
622 /* This should be a nop, but align the stack just in case something
623 went wrong. Stacks are four byte aligned on the mn10300. */
624 sp &= ~3;
625
626 /* Now make space on the stack for the args.
627
628 XXX This doesn't appear to handle pass-by-invisible reference
629 arguments. */
630 for (argnum = 0; argnum < nargs; argnum++)
631 {
632 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
633
634 while (regsused < 2 && arg_length > 0)
635 {
636 regsused++;
637 arg_length -= 4;
638 }
639 len += arg_length;
640 }
641
642 /* Allocate stack space. */
643 sp -= len;
644
645 regsused = struct_return ? 1 : 0;
646 /* Push all arguments onto the stack. */
647 for (argnum = 0; argnum < nargs; argnum++)
648 {
649 int len;
650 char *val;
651
652 /* XXX Check this. What about UNIONS? */
653 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
654 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
655 {
656 /* XXX Wrong, we want a pointer to this argument. */
c5aa993b
JM
657 len = TYPE_LENGTH (VALUE_TYPE (*args));
658 val = (char *) VALUE_CONTENTS (*args);
c906108c
SS
659 }
660 else
661 {
662 len = TYPE_LENGTH (VALUE_TYPE (*args));
c5aa993b 663 val = (char *) VALUE_CONTENTS (*args);
c906108c
SS
664 }
665
666 while (regsused < 2 && len > 0)
667 {
668 write_register (regsused, extract_unsigned_integer (val, 4));
669 val += 4;
670 len -= 4;
671 regsused++;
672 }
673
674 while (len > 0)
675 {
676 write_memory (sp + stack_offset, val, 4);
677 len -= 4;
678 val += 4;
679 stack_offset += 4;
680 }
681
682 args++;
683 }
684
685 /* Make space for the flushback area. */
686 sp -= 8;
687 return sp;
688}
689
690/* Function: push_return_address (pc)
691 Set up the return address for the inferior function call.
692 Needed for targets where we don't actually execute a JSR/BSR instruction */
c5aa993b 693
c906108c 694CORE_ADDR
fba45db2 695mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c
SS
696{
697 unsigned char buf[4];
698
699 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
700 write_memory (sp - 4, buf, 4);
701 return sp - 4;
702}
703
704/* Function: store_struct_return (addr,sp)
705 Store the structure value return address for an inferior function
706 call. */
c5aa993b 707
c906108c 708CORE_ADDR
fba45db2 709mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
c906108c
SS
710{
711 /* The structure return address is passed as the first argument. */
712 write_register (0, addr);
713 return sp;
714}
c5aa993b 715
c906108c
SS
716/* Function: frame_saved_pc
717 Find the caller of this frame. We do this by seeing if RP_REGNUM
718 is saved in the stack anywhere, otherwise we get it from the
719 registers. If the inner frame is a dummy frame, return its PC
720 instead of RP, because that's where "caller" of the dummy-frame
721 will be found. */
722
723CORE_ADDR
fba45db2 724mn10300_frame_saved_pc (struct frame_info *fi)
c906108c
SS
725{
726 int adjust = 0;
727
728 adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
729 adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
730 adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
731 adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
c2d11a7d
JM
732 if (am33_mode)
733 {
734 adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
735 adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
736 adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
737 adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
738 }
c906108c
SS
739
740 return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
741}
742
c906108c
SS
743/* Function: mn10300_init_extra_frame_info
744 Setup the frame's frame pointer, pc, and frame addresses for saved
745 registers. Most of the work is done in mn10300_analyze_prologue().
746
747 Note that when we are called for the last frame (currently active frame),
748 that fi->pc and fi->frame will already be setup. However, fi->frame will
749 be valid only if this routine uses FP. For previous frames, fi-frame will
750 always be correct. mn10300_analyze_prologue will fix fi->frame if
751 it's not valid.
752
753 We can be called with the PC in the call dummy under two circumstances.
754 First, during normal backtracing, second, while figuring out the frame
755 pointer just prior to calling the target function (see run_stack_dummy). */
756
757void
fba45db2 758mn10300_init_extra_frame_info (struct frame_info *fi)
c906108c
SS
759{
760 if (fi->next)
761 fi->pc = FRAME_SAVED_PC (fi->next);
762
763 frame_saved_regs_zalloc (fi);
764 fi->extra_info = (struct frame_extra_info *)
765 frame_obstack_alloc (sizeof (struct frame_extra_info));
766
767 fi->extra_info->status = 0;
768 fi->extra_info->stack_size = 0;
769
770 mn10300_analyze_prologue (fi, 0);
771}
772
773/* Function: mn10300_virtual_frame_pointer
774 Return the register that the function uses for a frame pointer,
775 plus any necessary offset to be applied to the register before
776 any frame pointer offsets. */
777
778void
fba45db2 779mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
c906108c
SS
780{
781 struct frame_info *dummy = analyze_dummy_frame (pc, 0);
782 /* Set up a dummy frame_info, Analyze the prolog and fill in the
783 extra info. */
784 /* Results will tell us which type of frame it uses. */
785 if (dummy->extra_info->status & MY_FRAME_IN_SP)
786 {
c5aa993b 787 *reg = SP_REGNUM;
c906108c
SS
788 *offset = -(dummy->extra_info->stack_size);
789 }
790 else
791 {
c5aa993b 792 *reg = A3_REGNUM;
c906108c
SS
793 *offset = 0;
794 }
795}
c5aa993b 796
c906108c
SS
797/* This can be made more generic later. */
798static void
fba45db2 799set_machine_hook (char *filename)
c906108c
SS
800{
801 int i;
802
803 if (bfd_get_mach (exec_bfd) == bfd_mach_mn10300
804 || bfd_get_mach (exec_bfd) == 0)
805 {
806 mn10300_register_names = mn10300_generic_register_names;
807 }
808
c2d11a7d
JM
809 am33_mode = 0;
810 if (bfd_get_mach (exec_bfd) == bfd_mach_am33)
811 {
812
813 mn10300_register_names = am33_register_names;
814 am33_mode = 1;
815 }
c906108c
SS
816}
817
818void
fba45db2 819_initialize_mn10300_tdep (void)
c906108c
SS
820{
821/* printf("_initialize_mn10300_tdep\n"); */
822
823 tm_print_insn = print_insn_mn10300;
824
825 specify_exec_file_hook (set_machine_hook);
826}
This page took 0.095576 seconds and 4 git commands to generate.