2012-03-08 Luis Machado <lgustavo@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
CommitLineData
d031aafb 1/* Target-dependent code for Morpho mt processor, for GDB.
61def6bd 2
0b302171 3 Copyright (C) 2005, 2007-2012 Free Software Foundation, Inc.
61def6bd
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
61def6bd
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
61def6bd
KB
19
20/* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "dis-asm.h"
28#include "arch-utils.h"
29#include "gdbtypes.h"
30#include "gdb_string.h"
31#include "regcache.h"
32#include "reggroups.h"
33#include "gdbcore.h"
34#include "trad-frame.h"
35#include "inferior.h"
36#include "dwarf2-frame.h"
37#include "infcall.h"
38#include "gdb_assert.h"
d8ca156b 39#include "language.h"
79a45b7d 40#include "valprint.h"
61def6bd 41
d031aafb 42enum mt_arch_constants
61def6bd 43{
d031aafb 44 MT_MAX_STRUCT_SIZE = 16
61def6bd
KB
45};
46
d031aafb 47enum mt_gdb_regnums
61def6bd 48{
d031aafb
NS
49 MT_R0_REGNUM, /* 32 bit regs. */
50 MT_R1_REGNUM,
51 MT_1ST_ARGREG = MT_R1_REGNUM,
52 MT_R2_REGNUM,
53 MT_R3_REGNUM,
54 MT_R4_REGNUM,
55 MT_LAST_ARGREG = MT_R4_REGNUM,
56 MT_R5_REGNUM,
57 MT_R6_REGNUM,
58 MT_R7_REGNUM,
59 MT_R8_REGNUM,
60 MT_R9_REGNUM,
61 MT_R10_REGNUM,
62 MT_R11_REGNUM,
63 MT_R12_REGNUM,
64 MT_FP_REGNUM = MT_R12_REGNUM,
65 MT_R13_REGNUM,
66 MT_SP_REGNUM = MT_R13_REGNUM,
67 MT_R14_REGNUM,
68 MT_RA_REGNUM = MT_R14_REGNUM,
69 MT_R15_REGNUM,
70 MT_IRA_REGNUM = MT_R15_REGNUM,
71 MT_PC_REGNUM,
61def6bd
KB
72
73 /* Interrupt Enable pseudo-register, exported by SID. */
d031aafb 74 MT_INT_ENABLE_REGNUM,
61def6bd
KB
75 /* End of CPU regs. */
76
d031aafb 77 MT_NUM_CPU_REGS,
61def6bd
KB
78
79 /* Co-processor registers. */
d031aafb
NS
80 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
81 MT_CPR0_REGNUM,
82 MT_CPR1_REGNUM,
83 MT_CPR2_REGNUM,
84 MT_CPR3_REGNUM,
85 MT_CPR4_REGNUM,
86 MT_CPR5_REGNUM,
87 MT_CPR6_REGNUM,
88 MT_CPR7_REGNUM,
89 MT_CPR8_REGNUM,
90 MT_CPR9_REGNUM,
91 MT_CPR10_REGNUM,
92 MT_CPR11_REGNUM,
93 MT_CPR12_REGNUM,
94 MT_CPR13_REGNUM,
95 MT_CPR14_REGNUM,
96 MT_CPR15_REGNUM,
97 MT_BYPA_REGNUM, /* 32 bit regs. */
98 MT_BYPB_REGNUM,
99 MT_BYPC_REGNUM,
100 MT_FLAG_REGNUM,
101 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
61def6bd 102 six bytes). */
d031aafb
NS
103 MT_MAC_REGNUM, /* 32 bits. */
104 MT_Z1_REGNUM, /* 16 bits. */
105 MT_Z2_REGNUM, /* 16 bits. */
106 MT_ICHANNEL_REGNUM, /* 32 bits. */
107 MT_ISCRAMB_REGNUM, /* 32 bits. */
108 MT_QSCRAMB_REGNUM, /* 32 bits. */
109 MT_OUT_REGNUM, /* 16 bits. */
110 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
111 MT_QCHANNEL_REGNUM, /* 32 bits. */
03a73f77
MM
112 MT_ZI2_REGNUM, /* 16 bits. */
113 MT_ZQ2_REGNUM, /* 16 bits. */
114 MT_CHANNEL2_REGNUM, /* 32 bits. */
115 MT_ISCRAMB2_REGNUM, /* 32 bits. */
116 MT_QSCRAMB2_REGNUM, /* 32 bits. */
117 MT_QCHANNEL2_REGNUM, /* 32 bits. */
61def6bd
KB
118
119 /* Number of real registers. */
d031aafb 120 MT_NUM_REGS,
61def6bd
KB
121
122 /* Pseudo-registers. */
d031aafb
NS
123 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
124 MT_MAC_PSEUDOREG_REGNUM,
60e81fcc
NS
125 MT_COPRO_PSEUDOREG_ARRAY,
126
127 MT_COPRO_PSEUDOREG_DIM_1 = 2,
128 MT_COPRO_PSEUDOREG_DIM_2 = 8,
03a73f77
MM
129 /* The number of pseudo-registers for each coprocessor. These
130 include the real coprocessor registers, the pseudo-registe for
131 the coprocessor number, and the pseudo-register for the MAC. */
132 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
133 /* The register number of the MAC, relative to a given coprocessor. */
134 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
61def6bd
KB
135
136 /* Two pseudo-regs ('coprocessor' and 'mac'). */
60e81fcc
NS
137 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
138 * MT_COPRO_PSEUDOREG_DIM_1
139 * MT_COPRO_PSEUDOREG_DIM_2)
61def6bd
KB
140};
141
df4df182
UW
142/* The tdep structure. */
143struct gdbarch_tdep
144{
145 /* ISA-specific types. */
146 struct type *copro_type;
147};
148
149
61def6bd
KB
150/* Return name of register number specified by REGNUM. */
151
152static const char *
d93859e2 153mt_register_name (struct gdbarch *gdbarch, int regnum)
61def6bd 154{
58b78171 155 static const char *const register_names[] = {
61def6bd
KB
156 /* CPU regs. */
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "pc", "IE",
160 /* Co-processor regs. */
161 "", /* copro register. */
162 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
163 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
164 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
165 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
03a73f77 166 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
61def6bd
KB
167 /* Pseudo-registers. */
168 "coprocessor", "MAC"
169 };
60e81fcc
NS
170 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
171 * MT_COPRO_PSEUDOREG_DIM_1
172 * MT_COPRO_PSEUDOREG_DIM_2];
173
174 if (regnum < 0)
175 return "";
176 if (regnum < ARRAY_SIZE (register_names))
177 return register_names[regnum];
178 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
179 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
180
181 {
182 char *name;
183 const char *stub;
184 unsigned dim_1;
185 unsigned dim_2;
186 unsigned index;
187
188 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
189 index = regnum % MT_COPRO_PSEUDOREG_REGS;
190 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
191 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
192 % MT_COPRO_PSEUDOREG_DIM_1);
193
03a73f77 194 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 195 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
03a73f77 196 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
60e81fcc
NS
197 stub = "";
198 else
199 stub = register_names[index + MT_CPR0_REGNUM];
200 if (!*stub)
201 {
202 array_names[regnum] = stub;
203 return stub;
204 }
205 name = xmalloc (30);
206 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
207 array_names[regnum] = name;
208 return name;
209 }
210}
61def6bd 211
60e81fcc
NS
212/* Return the type of a coprocessor register. */
213
214static struct type *
215mt_copro_register_type (struct gdbarch *arch, int regnum)
216{
217 switch (regnum)
218 {
219 case MT_INT_ENABLE_REGNUM:
220 case MT_ICHANNEL_REGNUM:
221 case MT_QCHANNEL_REGNUM:
222 case MT_ISCRAMB_REGNUM:
223 case MT_QSCRAMB_REGNUM:
df4df182 224 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
225 case MT_BYPA_REGNUM:
226 case MT_BYPB_REGNUM:
227 case MT_BYPC_REGNUM:
228 case MT_Z1_REGNUM:
229 case MT_Z2_REGNUM:
230 case MT_OUT_REGNUM:
03a73f77
MM
231 case MT_ZI2_REGNUM:
232 case MT_ZQ2_REGNUM:
df4df182 233 return builtin_type (arch)->builtin_int16;
60e81fcc
NS
234 case MT_EXMAC_REGNUM:
235 case MT_MAC_REGNUM:
df4df182 236 return builtin_type (arch)->builtin_uint32;
60e81fcc 237 case MT_CONTEXT_REGNUM:
0dfff4cb 238 return builtin_type (arch)->builtin_long_long;
60e81fcc 239 case MT_FLAG_REGNUM:
0dfff4cb 240 return builtin_type (arch)->builtin_unsigned_char;
60e81fcc
NS
241 default:
242 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
df4df182 243 return builtin_type (arch)->builtin_int16;
03a73f77 244 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc
NS
245 {
246 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
247 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
df4df182 248 return builtin_type (arch)->builtin_uint64;
60e81fcc 249 else
df4df182 250 return builtin_type (arch)->builtin_uint32;
60e81fcc
NS
251 }
252 else
df4df182 253 return builtin_type (arch)->builtin_uint32;
60e81fcc 254 }
61def6bd
KB
255}
256
257/* Given ARCH and a register number specified by REGNUM, return the
258 type of that register. */
259
260static struct type *
d031aafb 261mt_register_type (struct gdbarch *arch, int regnum)
61def6bd 262{
df4df182 263 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
61def6bd 264
d031aafb 265 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
61def6bd 266 {
61def6bd
KB
267 switch (regnum)
268 {
d031aafb
NS
269 case MT_PC_REGNUM:
270 case MT_RA_REGNUM:
271 case MT_IRA_REGNUM:
fde6c819 272 return builtin_type (arch)->builtin_func_ptr;
d031aafb
NS
273 case MT_SP_REGNUM:
274 case MT_FP_REGNUM:
fde6c819 275 return builtin_type (arch)->builtin_data_ptr;
d031aafb
NS
276 case MT_COPRO_REGNUM:
277 case MT_COPRO_PSEUDOREG_REGNUM:
df4df182
UW
278 if (tdep->copro_type == NULL)
279 {
280 struct type *elt = builtin_type (arch)->builtin_int16;
281 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
282 }
283 return tdep->copro_type;
d031aafb 284 case MT_MAC_PSEUDOREG_REGNUM:
60e81fcc
NS
285 return mt_copro_register_type (arch,
286 MT_CPR0_REGNUM
03a73f77 287 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
61def6bd 288 default:
d031aafb 289 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
df4df182 290 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
291 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
292 return mt_copro_register_type (arch, regnum);
293 else
294 {
295 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
296 regnum %= MT_COPRO_PSEUDOREG_REGS;
297 regnum += MT_CPR0_REGNUM;
298 return mt_copro_register_type (arch, regnum);
299 }
61def6bd
KB
300 }
301 }
302 internal_error (__FILE__, __LINE__,
d031aafb 303 _("mt_register_type: illegal register number %d"), regnum);
61def6bd
KB
304}
305
306/* Return true if register REGNUM is a member of the register group
307 specified by GROUP. */
308
309static int
d031aafb 310mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
61def6bd
KB
311 struct reggroup *group)
312{
313 /* Groups of registers that can be displayed via "info reg". */
314 if (group == all_reggroup)
315 return (regnum >= 0
d031aafb 316 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
d93859e2 317 && mt_register_name (gdbarch, regnum)[0] != '\0');
61def6bd
KB
318
319 if (group == general_reggroup)
d031aafb 320 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
61def6bd
KB
321
322 if (group == float_reggroup)
323 return 0; /* No float regs. */
324
325 if (group == vector_reggroup)
326 return 0; /* No vector regs. */
327
328 /* For any that are not handled above. */
329 return default_register_reggroup_p (gdbarch, regnum, group);
330}
331
332/* Return the return value convention used for a given type TYPE.
333 Optionally, fetch or set the return value via READBUF or
334 WRITEBUF respectively using REGCACHE for the register
335 values. */
336
337static enum return_value_convention
c055b101
CV
338mt_return_value (struct gdbarch *gdbarch, struct type *func_type,
339 struct type *type, struct regcache *regcache,
340 gdb_byte *readbuf, const gdb_byte *writebuf)
61def6bd 341{
e17a4113
UW
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343
61def6bd
KB
344 if (TYPE_LENGTH (type) > 4)
345 {
346 /* Return values > 4 bytes are returned in memory,
347 pointed to by R11. */
348 if (readbuf)
349 {
350 ULONGEST addr;
351
d031aafb 352 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
353 read_memory (addr, readbuf, TYPE_LENGTH (type));
354 }
355
356 if (writebuf)
357 {
358 ULONGEST addr;
359
d031aafb 360 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
361 write_memory (addr, writebuf, TYPE_LENGTH (type));
362 }
363
364 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
365 }
366 else
367 {
368 if (readbuf)
369 {
370 ULONGEST temp;
371
372 /* Return values of <= 4 bytes are returned in R11. */
d031aafb 373 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
e17a4113
UW
374 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
375 byte_order, temp);
61def6bd
KB
376 }
377
378 if (writebuf)
379 {
380 if (TYPE_LENGTH (type) < 4)
381 {
382 gdb_byte buf[4];
383 /* Add leading zeros to the value. */
384 memset (buf, 0, sizeof (buf));
385 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
386 writebuf, TYPE_LENGTH (type));
d031aafb 387 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
61def6bd
KB
388 }
389 else /* (TYPE_LENGTH (type) == 4 */
d031aafb 390 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
61def6bd
KB
391 }
392
393 return RETURN_VALUE_REGISTER_CONVENTION;
394 }
395}
396
397/* If the input address, PC, is in a function prologue, return the
398 address of the end of the prologue, otherwise return the input
399 address.
400
401 Note: PC is likely to be the function start, since this function
402 is mainly used for advancing a breakpoint to the first line, or
403 stepping to the first line when we have stepped into a function
404 call. */
405
406static CORE_ADDR
6093d2eb 407mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
61def6bd 408{
e17a4113 409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd 410 CORE_ADDR func_addr = 0, func_end = 0;
2c02bd72 411 const char *func_name;
61def6bd
KB
412 unsigned long instr;
413
414 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
415 {
416 struct symtab_and_line sal;
417 struct symbol *sym;
418
419 /* Found a function. */
2570f2b7 420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
61def6bd
KB
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
425
426 if (sal.end && sal.end < func_end)
427 {
428 /* Found a line number, use it as end of prologue. */
429 return sal.end;
430 }
431 }
432 }
433
434 /* No function symbol, or no line symbol. Use prologue scanning method. */
435 for (;; pc += 4)
436 {
e17a4113 437 instr = read_memory_unsigned_integer (pc, 4, byte_order);
61def6bd
KB
438 if (instr == 0x12000000) /* nop */
439 continue;
440 if (instr == 0x12ddc000) /* copy sp into fp */
441 continue;
442 instr >>= 16;
443 if (instr == 0x05dd) /* subi sp, sp, imm */
444 continue;
445 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
446 continue;
447 /* Not an obvious prologue instruction. */
448 break;
449 }
450
451 return pc;
452}
453
454/* The breakpoint instruction must be the same size as the smallest
455 instruction in the instruction set.
456
3950dc3f 457 The BP for ms1 is defined as 0x68000000 (BREAK).
025bb325 458 The BP for ms2 is defined as 0x69000000 (illegal). */
61def6bd
KB
459
460static const gdb_byte *
67d57894
MD
461mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
462 int *bp_size)
61def6bd 463{
3950dc3f
NS
464 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
465 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
61def6bd
KB
466
467 *bp_size = 4;
67d57894 468 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
3950dc3f
NS
469 return ms2_breakpoint;
470
471 return ms1_breakpoint;
61def6bd
KB
472}
473
60e81fcc
NS
474/* Select the correct coprocessor register bank. Return the pseudo
475 regnum we really want to read. */
476
477static int
478mt_select_coprocessor (struct gdbarch *gdbarch,
479 struct regcache *regcache, int regno)
480{
e17a4113 481 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
60e81fcc
NS
482 unsigned index, base;
483 gdb_byte copro[4];
484
025bb325 485 /* Get the copro pseudo regnum. */
60e81fcc 486 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
e17a4113
UW
487 base = ((extract_signed_integer (&copro[0], 2, byte_order)
488 * MT_COPRO_PSEUDOREG_DIM_2)
489 + extract_signed_integer (&copro[2], 2, byte_order));
60e81fcc
NS
490
491 regno -= MT_COPRO_PSEUDOREG_ARRAY;
492 index = regno % MT_COPRO_PSEUDOREG_REGS;
493 regno /= MT_COPRO_PSEUDOREG_REGS;
494 if (base != regno)
495 {
496 /* Select the correct coprocessor register bank. Invalidate the
497 coprocessor register cache. */
498 unsigned ix;
499
e17a4113
UW
500 store_signed_integer (&copro[0], 2, byte_order,
501 regno / MT_COPRO_PSEUDOREG_DIM_2);
502 store_signed_integer (&copro[2], 2, byte_order,
503 regno % MT_COPRO_PSEUDOREG_DIM_2);
60e81fcc
NS
504 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
505
506 /* We must flush the cache, as it is now invalid. */
507 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
9c5ea4d9 508 regcache_invalidate (regcache, ix);
60e81fcc
NS
509 }
510
511 return index;
512}
513
61def6bd
KB
514/* Fetch the pseudo registers:
515
60e81fcc 516 There are two regular pseudo-registers:
61def6bd
KB
517 1) The 'coprocessor' pseudo-register (which mirrors the
518 "real" coprocessor register sent by the target), and
519 2) The 'MAC' pseudo-register (which represents the union
520 of the original 32 bit target MAC register and the new
60e81fcc
NS
521 8-bit extended-MAC register).
522
523 Additionally there is an array of coprocessor registers which track
524 the coprocessor registers for each coprocessor. */
61def6bd 525
05d1431c 526static enum register_status
d031aafb 527mt_pseudo_register_read (struct gdbarch *gdbarch,
05d1431c 528 struct regcache *regcache, int regno, gdb_byte *buf)
61def6bd 529{
e17a4113
UW
530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
531
61def6bd
KB
532 switch (regno)
533 {
d031aafb
NS
534 case MT_COPRO_REGNUM:
535 case MT_COPRO_PSEUDOREG_REGNUM:
05d1431c 536 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
d031aafb
NS
537 case MT_MAC_REGNUM:
538 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
539 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
540 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 541 {
05d1431c 542 enum register_status status;
61def6bd
KB
543 ULONGEST oldmac = 0, ext_mac = 0;
544 ULONGEST newmac;
545
05d1431c
PA
546 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
547 if (status != REG_VALID)
548 return status;
549
d031aafb 550 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
05d1431c
PA
551 if (status != REG_VALID)
552 return status;
553
61def6bd
KB
554 newmac =
555 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
e17a4113 556 store_signed_integer (buf, 8, byte_order, newmac);
05d1431c
PA
557
558 return REG_VALID;
61def6bd
KB
559 }
560 else
05d1431c 561 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
562 break;
563 default:
60e81fcc
NS
564 {
565 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
566
03a73f77 567 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
05d1431c
PA
568 return mt_pseudo_register_read (gdbarch, regcache,
569 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc 570 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
05d1431c
PA
571 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
572 else
573 /* ??? */
574 return REG_VALID;
60e81fcc 575 }
61def6bd
KB
576 break;
577 }
578}
579
580/* Write the pseudo registers:
581
d031aafb 582 Mt pseudo-registers are stored directly to the target. The
61def6bd
KB
583 'coprocessor' register is special, because when it is modified, all
584 the other coprocessor regs must be flushed from the reg cache. */
585
586static void
d031aafb 587mt_pseudo_register_write (struct gdbarch *gdbarch,
61def6bd
KB
588 struct regcache *regcache,
589 int regno, const gdb_byte *buf)
590{
e17a4113 591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd
KB
592 int i;
593
594 switch (regno)
595 {
d031aafb
NS
596 case MT_COPRO_REGNUM:
597 case MT_COPRO_PSEUDOREG_REGNUM:
598 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
599 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
9c5ea4d9 600 regcache_invalidate (regcache, i);
61def6bd 601 break;
d031aafb
NS
602 case MT_MAC_REGNUM:
603 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
604 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
605 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
606 {
607 /* The 8-byte MAC pseudo-register must be broken down into two
608 32-byte registers. */
609 unsigned int oldmac, ext_mac;
610 ULONGEST newmac;
611
e17a4113 612 newmac = extract_unsigned_integer (buf, 8, byte_order);
61def6bd
KB
613 oldmac = newmac & 0xffffffff;
614 ext_mac = (newmac >> 32) & 0xff;
d031aafb
NS
615 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
616 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
61def6bd
KB
617 }
618 else
d031aafb 619 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
620 break;
621 default:
60e81fcc
NS
622 {
623 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
624
03a73f77 625 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 626 mt_pseudo_register_write (gdbarch, regcache,
03a73f77 627 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
628 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
629 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
630 }
61def6bd
KB
631 break;
632 }
633}
634
635static CORE_ADDR
d031aafb 636mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
61def6bd
KB
637{
638 /* Register size is 4 bytes. */
639 return align_down (sp, 4);
640}
641
642/* Implements the "info registers" command. When ``all'' is non-zero,
643 the coprocessor registers will be printed in addition to the rest
644 of the registers. */
645
646static void
d031aafb 647mt_registers_info (struct gdbarch *gdbarch,
d93859e2
UW
648 struct ui_file *file,
649 struct frame_info *frame, int regnum, int all)
61def6bd 650{
e17a4113
UW
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
652
61def6bd
KB
653 if (regnum == -1)
654 {
655 int lim;
656
d031aafb 657 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
61def6bd
KB
658
659 for (regnum = 0; regnum < lim; regnum++)
660 {
661 /* Don't display the Qchannel register since it will be displayed
662 along with Ichannel. (See below.) */
d031aafb 663 if (regnum == MT_QCHANNEL_REGNUM)
61def6bd
KB
664 continue;
665
d031aafb 666 mt_registers_info (gdbarch, file, frame, regnum, all);
61def6bd
KB
667
668 /* Display the Qchannel register immediately after Ichannel. */
d031aafb
NS
669 if (regnum == MT_ICHANNEL_REGNUM)
670 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
61def6bd
KB
671 }
672 }
673 else
674 {
d031aafb 675 if (regnum == MT_EXMAC_REGNUM)
61def6bd 676 return;
d031aafb 677 else if (regnum == MT_CONTEXT_REGNUM)
61def6bd
KB
678 {
679 /* Special output handling for 38-bit context register. */
680 unsigned char *buff;
681 unsigned int *bytes, i, regsize;
682
683 regsize = register_size (gdbarch, regnum);
684
685 buff = alloca (regsize);
686 bytes = alloca (regsize * sizeof (*bytes));
687
688 frame_register_read (frame, regnum, buff);
689
c9f4d572 690 fputs_filtered (gdbarch_register_name
d93859e2 691 (gdbarch, regnum), file);
c9f4d572 692 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 693 (gdbarch, regnum)),
c9f4d572 694 file);
61def6bd
KB
695 fputs_filtered ("0x", file);
696
697 for (i = 0; i < regsize; i++)
698 fprintf_filtered (file, "%02x", (unsigned int)
e17a4113 699 extract_unsigned_integer (buff + i, 1, byte_order));
61def6bd
KB
700 fputs_filtered ("\t", file);
701 print_longest (file, 'd', 0,
e17a4113 702 extract_unsigned_integer (buff, regsize, byte_order));
61def6bd
KB
703 fputs_filtered ("\n", file);
704 }
d031aafb
NS
705 else if (regnum == MT_COPRO_REGNUM
706 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
61def6bd
KB
707 {
708 /* Special output handling for the 'coprocessor' register. */
58b78171 709 gdb_byte *buf;
79a45b7d 710 struct value_print_options opts;
61def6bd 711
d031aafb
NS
712 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
713 frame_register_read (frame, MT_COPRO_REGNUM, buf);
61def6bd 714 /* And print. */
d031aafb 715 regnum = MT_COPRO_PSEUDOREG_REGNUM;
d93859e2 716 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
717 file);
718 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 719 (gdbarch, regnum)),
c9f4d572 720 file);
79a45b7d
TT
721 get_raw_print_options (&opts);
722 opts.deref_ref = 1;
61def6bd 723 val_print (register_type (gdbarch, regnum), buf,
0e03807e
TT
724 0, 0, file, 0, NULL,
725 &opts, current_language);
61def6bd
KB
726 fputs_filtered ("\n", file);
727 }
d031aafb 728 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
61def6bd
KB
729 {
730 ULONGEST oldmac, ext_mac, newmac;
58b78171 731 gdb_byte buf[3 * sizeof (LONGEST)];
61def6bd
KB
732
733 /* Get the two "real" mac registers. */
d031aafb 734 frame_register_read (frame, MT_MAC_REGNUM, buf);
3950dc3f 735 oldmac = extract_unsigned_integer
e17a4113 736 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
58b78171
NS
737 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
738 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 739 {
d031aafb 740 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
3950dc3f 741 ext_mac = extract_unsigned_integer
e17a4113 742 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
61def6bd
KB
743 }
744 else
745 ext_mac = 0;
746
747 /* Add them together. */
748 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
749
750 /* And print. */
d031aafb 751 regnum = MT_MAC_PSEUDOREG_REGNUM;
d93859e2 752 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
753 file);
754 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 755 (gdbarch, regnum)),
c9f4d572 756 file);
61def6bd
KB
757 fputs_filtered ("0x", file);
758 print_longest (file, 'x', 0, newmac);
759 fputs_filtered ("\t", file);
760 print_longest (file, 'u', 0, newmac);
761 fputs_filtered ("\n", file);
762 }
763 else
764 default_print_registers_info (gdbarch, file, frame, regnum, all);
765 }
766}
767
768/* Set up the callee's arguments for an inferior function call. The
769 arguments are pushed on the stack or are placed in registers as
770 appropriate. It also sets up the return address (which points to
771 the call dummy breakpoint).
772
773 Returns the updated (and aligned) stack pointer. */
774
775static CORE_ADDR
d031aafb 776mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
61def6bd
KB
777 struct regcache *regcache, CORE_ADDR bp_addr,
778 int nargs, struct value **args, CORE_ADDR sp,
779 int struct_return, CORE_ADDR struct_addr)
780{
781#define wordsize 4
e17a4113 782 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d031aafb
NS
783 gdb_byte buf[MT_MAX_STRUCT_SIZE];
784 int argreg = MT_1ST_ARGREG;
61def6bd
KB
785 int split_param_len = 0;
786 int stack_dest = sp;
787 int slacklen;
788 int typelen;
789 int i, j;
790
d031aafb
NS
791 /* First handle however many args we can fit into MT_1ST_ARGREG thru
792 MT_LAST_ARGREG. */
793 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
61def6bd 794 {
58b78171 795 const gdb_byte *val;
61def6bd
KB
796 typelen = TYPE_LENGTH (value_type (args[i]));
797 switch (typelen)
798 {
799 case 1:
800 case 2:
801 case 3:
802 case 4:
803 regcache_cooked_write_unsigned (regcache, argreg++,
804 extract_unsigned_integer
805 (value_contents (args[i]),
e17a4113 806 wordsize, byte_order));
61def6bd
KB
807 break;
808 case 8:
809 case 12:
810 case 16:
811 val = value_contents (args[i]);
812 while (typelen > 0)
813 {
d031aafb 814 if (argreg <= MT_LAST_ARGREG)
61def6bd
KB
815 {
816 /* This word of the argument is passed in a register. */
817 regcache_cooked_write_unsigned (regcache, argreg++,
818 extract_unsigned_integer
e17a4113 819 (val, wordsize, byte_order));
61def6bd
KB
820 typelen -= wordsize;
821 val += wordsize;
822 }
823 else
824 {
825 /* Remainder of this arg must be passed on the stack
826 (deferred to do later). */
827 split_param_len = typelen;
828 memcpy (buf, val, typelen);
829 break; /* No more args can be handled in regs. */
830 }
831 }
832 break;
833 default:
834 /* By reverse engineering of gcc output, args bigger than
835 16 bytes go on the stack, and their address is passed
836 in the argreg. */
837 stack_dest -= typelen;
838 write_memory (stack_dest, value_contents (args[i]), typelen);
839 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
840 break;
841 }
842 }
843
844 /* Next, the rest of the arguments go onto the stack, in reverse order. */
845 for (j = nargs - 1; j >= i; j--)
846 {
58b78171
NS
847 gdb_byte *val;
848
61def6bd
KB
849 /* Right-justify the value in an aligned-length buffer. */
850 typelen = TYPE_LENGTH (value_type (args[j]));
851 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
852 val = alloca (typelen + slacklen);
853 memcpy (val, value_contents (args[j]), typelen);
854 memset (val + typelen, 0, slacklen);
855 /* Now write this data to the stack. */
856 stack_dest -= typelen + slacklen;
857 write_memory (stack_dest, val, typelen + slacklen);
858 }
859
860 /* Finally, if a param needs to be split between registers and stack,
861 write the second half to the stack now. */
862 if (split_param_len != 0)
863 {
864 stack_dest -= split_param_len;
865 write_memory (stack_dest, buf, split_param_len);
866 }
867
868 /* Set up return address (provided to us as bp_addr). */
d031aafb 869 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
61def6bd
KB
870
871 /* Store struct return address, if given. */
872 if (struct_return && struct_addr != 0)
d031aafb 873 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
61def6bd
KB
874
875 /* Set aside 16 bytes for the callee to save regs 1-4. */
876 stack_dest -= 16;
877
878 /* Update the stack pointer. */
d031aafb 879 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
61def6bd
KB
880
881 /* And that should do it. Return the new stack pointer. */
882 return stack_dest;
883}
884
885
886/* The 'unwind_cache' data structure. */
887
d031aafb 888struct mt_unwind_cache
61def6bd 889{
025bb325 890 /* The previous frame's inner most stack address.
61def6bd
KB
891 Used as this frame ID's stack_addr. */
892 CORE_ADDR prev_sp;
893 CORE_ADDR frame_base;
894 int framesize;
895 int frameless_p;
896
897 /* Table indicating the location of each and every register. */
898 struct trad_frame_saved_reg *saved_regs;
899};
900
901/* Initialize an unwind_cache. Build up the saved_regs table etc. for
902 the frame. */
903
d031aafb 904static struct mt_unwind_cache *
94afd7a6 905mt_frame_unwind_cache (struct frame_info *this_frame,
61def6bd
KB
906 void **this_prologue_cache)
907{
908 struct gdbarch *gdbarch;
d031aafb 909 struct mt_unwind_cache *info;
61def6bd
KB
910 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
911 unsigned long instr, upper_half, delayed_store = 0;
912 int regnum, offset;
913 ULONGEST sp, fp;
914
915 if ((*this_prologue_cache))
916 return (*this_prologue_cache);
917
94afd7a6 918 gdbarch = get_frame_arch (this_frame);
d031aafb 919 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
61def6bd
KB
920 (*this_prologue_cache) = info;
921
922 info->prev_sp = 0;
923 info->framesize = 0;
924 info->frame_base = 0;
925 info->frameless_p = 1;
94afd7a6 926 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61def6bd 927
025bb325 928 /* Grab the frame-relative values of SP and FP, needed below.
61def6bd
KB
929 The frame_saved_register function will find them on the
930 stack or in the registers as appropriate. */
94afd7a6
UW
931 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
932 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
61def6bd 933
94afd7a6 934 start_addr = get_frame_func (this_frame);
61def6bd
KB
935
936 /* Return early if GDB couldn't find the function. */
937 if (start_addr == 0)
938 return info;
939
94afd7a6 940 end_addr = get_frame_pc (this_frame);
d80b854b 941 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
61def6bd
KB
942 if (end_addr == 0)
943 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
944 {
94afd7a6 945 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
025bb325 946 if (delayed_store) /* Previous instr was a push. */
61def6bd
KB
947 {
948 upper_half = delayed_store >> 16;
949 regnum = upper_half & 0xf;
950 offset = delayed_store & 0xffff;
951 switch (upper_half & 0xfff0)
952 {
025bb325 953 case 0x43c0: /* push using frame pointer. */
61def6bd
KB
954 info->saved_regs[regnum].addr = offset;
955 break;
025bb325 956 case 0x43d0: /* push using stack pointer. */
61def6bd
KB
957 info->saved_regs[regnum].addr = offset;
958 break;
959 default: /* lint */
960 break;
961 }
962 delayed_store = 0;
963 }
964
965 switch (instr)
966 {
967 case 0x12000000: /* NO-OP */
968 continue;
969 case 0x12ddc000: /* copy sp into fp */
025bb325
MS
970 info->frameless_p = 0; /* Record that the frame
971 pointer is in use. */
61def6bd
KB
972 continue;
973 default:
974 upper_half = instr >> 16;
975 if (upper_half == 0x05dd || /* subi sp, sp, imm */
976 upper_half == 0x07dd) /* subui sp, sp, imm */
977 {
978 /* Record the frame size. */
979 info->framesize = instr & 0xffff;
980 continue;
981 }
982 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
983 (upper_half & 0xfff0) == 0x43d0) /* stack push */
984 {
985 /* Save this instruction, but don't record the
986 pushed register as 'saved' until we see the
987 next instruction. That's because of deferred stores
988 on this target -- GDB won't be able to read the register
989 from the stack until one instruction later. */
990 delayed_store = instr;
991 continue;
992 }
993 /* Not a prologue instruction. Is this the end of the prologue?
994 This is the most difficult decision; when to stop scanning.
995
996 If we have no line symbol, then the best thing we can do
997 is to stop scanning when we encounter an instruction that
998 is not likely to be a part of the prologue.
999
1000 But if we do have a line symbol, then we should
1001 keep scanning until we reach it (or we reach end_addr). */
1002
1003 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
025bb325 1004 continue; /* Keep scanning, recording saved_regs etc. */
61def6bd 1005 else
025bb325 1006 break; /* Quit scanning: breakpoint can be set here. */
61def6bd
KB
1007 }
1008 }
1009
1010 /* Special handling for the "saved" address of the SP:
1011 The SP is of course never saved on the stack at all, so
1012 by convention what we put here is simply the previous
1013 _value_ of the SP (as opposed to an address where the
1014 previous value would have been pushed). This will also
1015 give us the frame base address. */
1016
1017 if (info->frameless_p)
1018 {
1019 info->frame_base = sp + info->framesize;
1020 info->prev_sp = sp + info->framesize;
1021 }
1022 else
1023 {
1024 info->frame_base = fp + info->framesize;
1025 info->prev_sp = fp + info->framesize;
1026 }
1027 /* Save prev_sp in saved_regs as a value, not as an address. */
d031aafb 1028 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
61def6bd
KB
1029
1030 /* Now convert frame offsets to actual addresses (not offsets). */
d031aafb 1031 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
61def6bd
KB
1032 if (trad_frame_addr_p (info->saved_regs, regnum))
1033 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1034
1035 /* The call instruction moves the caller's PC in the callee's RA reg.
1036 Since this is an unwind, do the reverse. Copy the location of RA
1037 into PC (the address / regnum) so that a request for PC will be
1038 converted into a request for the RA. */
d031aafb 1039 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
61def6bd
KB
1040
1041 return info;
1042}
1043
1044static CORE_ADDR
d031aafb 1045mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1046{
1047 ULONGEST pc;
1048
11411de3 1049 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
61def6bd
KB
1050 return pc;
1051}
1052
1053static CORE_ADDR
d031aafb 1054mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1055{
1056 ULONGEST sp;
1057
11411de3 1058 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
61def6bd
KB
1059 return sp;
1060}
1061
94afd7a6
UW
1062/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1063 frame. The frame ID's base needs to match the TOS value saved by
1064 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
61def6bd
KB
1065
1066static struct frame_id
94afd7a6 1067mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61def6bd 1068{
94afd7a6
UW
1069 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1070 return frame_id_build (sp, get_frame_pc (this_frame));
61def6bd
KB
1071}
1072
1073/* Given a GDB frame, determine the address of the calling function's
1074 frame. This will be used to create a new GDB frame struct. */
1075
1076static void
94afd7a6 1077mt_frame_this_id (struct frame_info *this_frame,
61def6bd
KB
1078 void **this_prologue_cache, struct frame_id *this_id)
1079{
d031aafb 1080 struct mt_unwind_cache *info =
94afd7a6 1081 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1082
1083 if (!(info == NULL || info->prev_sp == 0))
94afd7a6 1084 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
93d42b30 1085
61def6bd
KB
1086 return;
1087}
1088
94afd7a6
UW
1089static struct value *
1090mt_frame_prev_register (struct frame_info *this_frame,
1091 void **this_prologue_cache, int regnum)
61def6bd 1092{
d031aafb 1093 struct mt_unwind_cache *info =
94afd7a6 1094 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd 1095
94afd7a6 1096 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61def6bd
KB
1097}
1098
1099static CORE_ADDR
94afd7a6 1100mt_frame_base_address (struct frame_info *this_frame,
61def6bd
KB
1101 void **this_prologue_cache)
1102{
d031aafb 1103 struct mt_unwind_cache *info =
94afd7a6 1104 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1105
1106 return info->frame_base;
1107}
1108
1109/* This is a shared interface: the 'frame_unwind' object is what's
1110 returned by the 'sniffer' function, and in turn specifies how to
1111 get a frame's ID and prev_regs.
1112
1113 This exports the 'prev_register' and 'this_id' methods. */
1114
d031aafb 1115static const struct frame_unwind mt_frame_unwind = {
61def6bd 1116 NORMAL_FRAME,
8fbca658 1117 default_frame_unwind_stop_reason,
d031aafb 1118 mt_frame_this_id,
94afd7a6
UW
1119 mt_frame_prev_register,
1120 NULL,
1121 default_frame_sniffer
61def6bd
KB
1122};
1123
61def6bd
KB
1124/* Another shared interface: the 'frame_base' object specifies how to
1125 unwind a frame and secure the base addresses for frame objects
1126 (locals, args). */
1127
d031aafb
NS
1128static struct frame_base mt_frame_base = {
1129 &mt_frame_unwind,
1130 mt_frame_base_address,
1131 mt_frame_base_address,
1132 mt_frame_base_address
61def6bd
KB
1133};
1134
1135static struct gdbarch *
d031aafb 1136mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
61def6bd
KB
1137{
1138 struct gdbarch *gdbarch;
df4df182 1139 struct gdbarch_tdep *tdep;
61def6bd
KB
1140
1141 /* Find a candidate among the list of pre-declared architectures. */
1142 arches = gdbarch_list_lookup_by_info (arches, &info);
1143 if (arches != NULL)
1144 return arches->gdbarch;
1145
1146 /* None found, create a new architecture from the information
1147 provided. */
df4df182
UW
1148 tdep = XCALLOC (1, struct gdbarch_tdep);
1149 gdbarch = gdbarch_alloc (&info, tdep);
61def6bd 1150
cb5c8c39
DJ
1151 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1152 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1153 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
61def6bd 1154
d031aafb
NS
1155 set_gdbarch_register_name (gdbarch, mt_register_name);
1156 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1157 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1158 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1159 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1160 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1161 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1162 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
61def6bd 1163 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
d031aafb 1164 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
61def6bd
KB
1165 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1166 set_gdbarch_frame_args_skip (gdbarch, 0);
d031aafb
NS
1167 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1168 set_gdbarch_register_type (gdbarch, mt_register_type);
1169 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
61def6bd 1170
d031aafb
NS
1171 set_gdbarch_return_value (gdbarch, mt_return_value);
1172 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
61def6bd 1173
d031aafb 1174 set_gdbarch_frame_align (gdbarch, mt_frame_align);
61def6bd 1175
d031aafb 1176 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
61def6bd 1177
d031aafb 1178 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
61def6bd
KB
1179
1180 /* Target builtin data types. */
1181 set_gdbarch_short_bit (gdbarch, 16);
1182 set_gdbarch_int_bit (gdbarch, 32);
1183 set_gdbarch_long_bit (gdbarch, 32);
1184 set_gdbarch_long_long_bit (gdbarch, 64);
1185 set_gdbarch_float_bit (gdbarch, 32);
1186 set_gdbarch_double_bit (gdbarch, 64);
1187 set_gdbarch_long_double_bit (gdbarch, 64);
1188 set_gdbarch_ptr_bit (gdbarch, 32);
1189
1190 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1191 based sniffer. */
94afd7a6
UW
1192 dwarf2_append_unwinders (gdbarch);
1193 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
d031aafb 1194 frame_base_set_default (gdbarch, &mt_frame_base);
61def6bd
KB
1195
1196 /* Register the 'unwind_pc' method. */
d031aafb
NS
1197 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1198 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
61def6bd 1199
025bb325 1200 /* Methods for saving / extracting a dummy frame's ID.
61def6bd
KB
1201 The ID's stack address must match the SP value returned by
1202 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1203 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
61def6bd
KB
1204
1205 return gdbarch;
1206}
1207
63807e1d
PA
1208/* Provide a prototype to silence -Wmissing-prototypes. */
1209extern initialize_file_ftype _initialize_mt_tdep;
1210
61def6bd 1211void
d031aafb 1212_initialize_mt_tdep (void)
61def6bd 1213{
d031aafb 1214 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
61def6bd 1215}
This page took 0.754336 seconds and 4 git commands to generate.