Fix PR python/20129 - use of non-existing variable
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
CommitLineData
d031aafb 1/* Target-dependent code for Morpho mt processor, for GDB.
61def6bd 2
618f726f 3 Copyright (C) 2005-2016 Free Software Foundation, Inc.
61def6bd
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
61def6bd
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
61def6bd
KB
19
20/* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "dis-asm.h"
28#include "arch-utils.h"
29#include "gdbtypes.h"
61def6bd
KB
30#include "regcache.h"
31#include "reggroups.h"
32#include "gdbcore.h"
33#include "trad-frame.h"
34#include "inferior.h"
35#include "dwarf2-frame.h"
36#include "infcall.h"
d8ca156b 37#include "language.h"
79a45b7d 38#include "valprint.h"
61def6bd 39
d031aafb 40enum mt_arch_constants
61def6bd 41{
d031aafb 42 MT_MAX_STRUCT_SIZE = 16
61def6bd
KB
43};
44
d031aafb 45enum mt_gdb_regnums
61def6bd 46{
d031aafb
NS
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
61def6bd
KB
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
d031aafb 72 MT_INT_ENABLE_REGNUM,
61def6bd
KB
73 /* End of CPU regs. */
74
d031aafb 75 MT_NUM_CPU_REGS,
61def6bd
KB
76
77 /* Co-processor registers. */
d031aafb
NS
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
61def6bd 100 six bytes). */
d031aafb
NS
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
03a73f77
MM
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
61def6bd
KB
116
117 /* Number of real registers. */
d031aafb 118 MT_NUM_REGS,
61def6bd
KB
119
120 /* Pseudo-registers. */
d031aafb
NS
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
60e81fcc
NS
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
03a73f77
MM
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
61def6bd
KB
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
60e81fcc
NS
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
61def6bd
KB
138};
139
df4df182
UW
140/* The tdep structure. */
141struct gdbarch_tdep
142{
143 /* ISA-specific types. */
144 struct type *copro_type;
145};
146
147
61def6bd
KB
148/* Return name of register number specified by REGNUM. */
149
150static const char *
d93859e2 151mt_register_name (struct gdbarch *gdbarch, int regnum)
61def6bd 152{
58b78171 153 static const char *const register_names[] = {
61def6bd
KB
154 /* CPU regs. */
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
157 "pc", "IE",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
03a73f77 164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
61def6bd
KB
165 /* Pseudo-registers. */
166 "coprocessor", "MAC"
167 };
60e81fcc
NS
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
171
172 if (regnum < 0)
173 return "";
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178
179 {
180 char *name;
181 const char *stub;
182 unsigned dim_1;
183 unsigned dim_2;
184 unsigned index;
185
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
191
03a73f77 192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
03a73f77 194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
60e81fcc
NS
195 stub = "";
196 else
197 stub = register_names[index + MT_CPR0_REGNUM];
198 if (!*stub)
199 {
200 array_names[regnum] = stub;
201 return stub;
202 }
224c3ddb 203 name = (char *) xmalloc (30);
60e81fcc
NS
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
206 return name;
207 }
208}
61def6bd 209
60e81fcc
NS
210/* Return the type of a coprocessor register. */
211
212static struct type *
213mt_copro_register_type (struct gdbarch *arch, int regnum)
214{
215 switch (regnum)
216 {
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
df4df182 222 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
223 case MT_BYPA_REGNUM:
224 case MT_BYPB_REGNUM:
225 case MT_BYPC_REGNUM:
226 case MT_Z1_REGNUM:
227 case MT_Z2_REGNUM:
228 case MT_OUT_REGNUM:
03a73f77
MM
229 case MT_ZI2_REGNUM:
230 case MT_ZQ2_REGNUM:
df4df182 231 return builtin_type (arch)->builtin_int16;
60e81fcc
NS
232 case MT_EXMAC_REGNUM:
233 case MT_MAC_REGNUM:
df4df182 234 return builtin_type (arch)->builtin_uint32;
60e81fcc 235 case MT_CONTEXT_REGNUM:
0dfff4cb 236 return builtin_type (arch)->builtin_long_long;
60e81fcc 237 case MT_FLAG_REGNUM:
0dfff4cb 238 return builtin_type (arch)->builtin_unsigned_char;
60e81fcc
NS
239 default:
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
df4df182 241 return builtin_type (arch)->builtin_int16;
03a73f77 242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc
NS
243 {
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
df4df182 246 return builtin_type (arch)->builtin_uint64;
60e81fcc 247 else
df4df182 248 return builtin_type (arch)->builtin_uint32;
60e81fcc
NS
249 }
250 else
df4df182 251 return builtin_type (arch)->builtin_uint32;
60e81fcc 252 }
61def6bd
KB
253}
254
255/* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
257
258static struct type *
d031aafb 259mt_register_type (struct gdbarch *arch, int regnum)
61def6bd 260{
df4df182 261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
61def6bd 262
d031aafb 263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
61def6bd 264 {
61def6bd
KB
265 switch (regnum)
266 {
d031aafb
NS
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
fde6c819 270 return builtin_type (arch)->builtin_func_ptr;
d031aafb
NS
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
fde6c819 273 return builtin_type (arch)->builtin_data_ptr;
d031aafb
NS
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
df4df182
UW
276 if (tdep->copro_type == NULL)
277 {
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
280 }
281 return tdep->copro_type;
d031aafb 282 case MT_MAC_PSEUDOREG_REGNUM:
60e81fcc
NS
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
03a73f77 285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
61def6bd 286 default:
d031aafb 287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
df4df182 288 return builtin_type (arch)->builtin_int32;
60e81fcc
NS
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
61def6bd
KB
298 }
299 }
300 internal_error (__FILE__, __LINE__,
d031aafb 301 _("mt_register_type: illegal register number %d"), regnum);
61def6bd
KB
302}
303
304/* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307static int
d031aafb 308mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
61def6bd
KB
309 struct reggroup *group)
310{
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
d031aafb 314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
d93859e2 315 && mt_register_name (gdbarch, regnum)[0] != '\0');
61def6bd
KB
316
317 if (group == general_reggroup)
d031aafb 318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
61def6bd
KB
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328}
329
330/* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335static enum return_value_convention
6a3a010b 336mt_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
61def6bd 339{
e17a4113
UW
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341
61def6bd
KB
342 if (TYPE_LENGTH (type) > 4)
343 {
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
346 if (readbuf)
347 {
348 ULONGEST addr;
349
d031aafb 350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
352 }
353
354 if (writebuf)
355 {
356 ULONGEST addr;
357
d031aafb 358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
360 }
361
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
363 }
364 else
365 {
366 if (readbuf)
367 {
368 ULONGEST temp;
369
370 /* Return values of <= 4 bytes are returned in R11. */
d031aafb 371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
e17a4113
UW
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
373 byte_order, temp);
61def6bd
KB
374 }
375
376 if (writebuf)
377 {
378 if (TYPE_LENGTH (type) < 4)
379 {
380 gdb_byte buf[4];
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
d031aafb 385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
61def6bd
KB
386 }
387 else /* (TYPE_LENGTH (type) == 4 */
d031aafb 388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
61def6bd
KB
389 }
390
391 return RETURN_VALUE_REGISTER_CONVENTION;
392 }
393}
394
395/* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
397 address.
398
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
402 call. */
403
404static CORE_ADDR
6093d2eb 405mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
61def6bd 406{
e17a4113 407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd 408 CORE_ADDR func_addr = 0, func_end = 0;
2c02bd72 409 const char *func_name;
61def6bd
KB
410 unsigned long instr;
411
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
413 {
414 struct symtab_and_line sal;
415 struct symbol *sym;
416
417 /* Found a function. */
835a09d9 418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
61def6bd
KB
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
420 {
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
423
424 if (sal.end && sal.end < func_end)
425 {
426 /* Found a line number, use it as end of prologue. */
427 return sal.end;
428 }
429 }
430 }
431
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
433 for (;; pc += 4)
434 {
e17a4113 435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
61def6bd
KB
436 if (instr == 0x12000000) /* nop */
437 continue;
438 if (instr == 0x12ddc000) /* copy sp into fp */
439 continue;
440 instr >>= 16;
441 if (instr == 0x05dd) /* subi sp, sp, imm */
442 continue;
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
444 continue;
445 /* Not an obvious prologue instruction. */
446 break;
447 }
448
449 return pc;
450}
451
452/* The breakpoint instruction must be the same size as the smallest
453 instruction in the instruction set.
454
3950dc3f 455 The BP for ms1 is defined as 0x68000000 (BREAK).
025bb325 456 The BP for ms2 is defined as 0x69000000 (illegal). */
61def6bd
KB
457
458static const gdb_byte *
67d57894
MD
459mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
460 int *bp_size)
61def6bd 461{
3950dc3f
NS
462 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
463 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
61def6bd
KB
464
465 *bp_size = 4;
67d57894 466 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
3950dc3f
NS
467 return ms2_breakpoint;
468
469 return ms1_breakpoint;
61def6bd
KB
470}
471
60e81fcc
NS
472/* Select the correct coprocessor register bank. Return the pseudo
473 regnum we really want to read. */
474
475static int
476mt_select_coprocessor (struct gdbarch *gdbarch,
477 struct regcache *regcache, int regno)
478{
e17a4113 479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
60e81fcc
NS
480 unsigned index, base;
481 gdb_byte copro[4];
482
025bb325 483 /* Get the copro pseudo regnum. */
60e81fcc 484 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
e17a4113
UW
485 base = ((extract_signed_integer (&copro[0], 2, byte_order)
486 * MT_COPRO_PSEUDOREG_DIM_2)
487 + extract_signed_integer (&copro[2], 2, byte_order));
60e81fcc
NS
488
489 regno -= MT_COPRO_PSEUDOREG_ARRAY;
490 index = regno % MT_COPRO_PSEUDOREG_REGS;
491 regno /= MT_COPRO_PSEUDOREG_REGS;
492 if (base != regno)
493 {
494 /* Select the correct coprocessor register bank. Invalidate the
495 coprocessor register cache. */
496 unsigned ix;
497
e17a4113
UW
498 store_signed_integer (&copro[0], 2, byte_order,
499 regno / MT_COPRO_PSEUDOREG_DIM_2);
500 store_signed_integer (&copro[2], 2, byte_order,
501 regno % MT_COPRO_PSEUDOREG_DIM_2);
60e81fcc
NS
502 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
503
504 /* We must flush the cache, as it is now invalid. */
505 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
9c5ea4d9 506 regcache_invalidate (regcache, ix);
60e81fcc
NS
507 }
508
509 return index;
510}
511
61def6bd
KB
512/* Fetch the pseudo registers:
513
60e81fcc 514 There are two regular pseudo-registers:
61def6bd
KB
515 1) The 'coprocessor' pseudo-register (which mirrors the
516 "real" coprocessor register sent by the target), and
517 2) The 'MAC' pseudo-register (which represents the union
518 of the original 32 bit target MAC register and the new
60e81fcc
NS
519 8-bit extended-MAC register).
520
521 Additionally there is an array of coprocessor registers which track
522 the coprocessor registers for each coprocessor. */
61def6bd 523
05d1431c 524static enum register_status
d031aafb 525mt_pseudo_register_read (struct gdbarch *gdbarch,
05d1431c 526 struct regcache *regcache, int regno, gdb_byte *buf)
61def6bd 527{
e17a4113
UW
528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
529
61def6bd
KB
530 switch (regno)
531 {
d031aafb
NS
532 case MT_COPRO_REGNUM:
533 case MT_COPRO_PSEUDOREG_REGNUM:
05d1431c 534 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
d031aafb
NS
535 case MT_MAC_REGNUM:
536 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
537 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
538 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 539 {
05d1431c 540 enum register_status status;
61def6bd
KB
541 ULONGEST oldmac = 0, ext_mac = 0;
542 ULONGEST newmac;
543
05d1431c
PA
544 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
545 if (status != REG_VALID)
546 return status;
547
d031aafb 548 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
05d1431c
PA
549 if (status != REG_VALID)
550 return status;
551
61def6bd
KB
552 newmac =
553 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
e17a4113 554 store_signed_integer (buf, 8, byte_order, newmac);
05d1431c
PA
555
556 return REG_VALID;
61def6bd
KB
557 }
558 else
05d1431c 559 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
560 break;
561 default:
60e81fcc
NS
562 {
563 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
564
03a73f77 565 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
05d1431c
PA
566 return mt_pseudo_register_read (gdbarch, regcache,
567 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc 568 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
05d1431c
PA
569 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
570 else
571 /* ??? */
572 return REG_VALID;
60e81fcc 573 }
61def6bd
KB
574 break;
575 }
576}
577
578/* Write the pseudo registers:
579
d031aafb 580 Mt pseudo-registers are stored directly to the target. The
61def6bd
KB
581 'coprocessor' register is special, because when it is modified, all
582 the other coprocessor regs must be flushed from the reg cache. */
583
584static void
d031aafb 585mt_pseudo_register_write (struct gdbarch *gdbarch,
61def6bd
KB
586 struct regcache *regcache,
587 int regno, const gdb_byte *buf)
588{
e17a4113 589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61def6bd
KB
590 int i;
591
592 switch (regno)
593 {
d031aafb
NS
594 case MT_COPRO_REGNUM:
595 case MT_COPRO_PSEUDOREG_REGNUM:
596 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
597 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
9c5ea4d9 598 regcache_invalidate (regcache, i);
61def6bd 599 break;
d031aafb
NS
600 case MT_MAC_REGNUM:
601 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
602 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
603 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
604 {
605 /* The 8-byte MAC pseudo-register must be broken down into two
606 32-byte registers. */
607 unsigned int oldmac, ext_mac;
608 ULONGEST newmac;
609
e17a4113 610 newmac = extract_unsigned_integer (buf, 8, byte_order);
61def6bd
KB
611 oldmac = newmac & 0xffffffff;
612 ext_mac = (newmac >> 32) & 0xff;
d031aafb
NS
613 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
614 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
61def6bd
KB
615 }
616 else
d031aafb 617 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
618 break;
619 default:
60e81fcc
NS
620 {
621 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
622
03a73f77 623 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 624 mt_pseudo_register_write (gdbarch, regcache,
03a73f77 625 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
626 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
627 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
628 }
61def6bd
KB
629 break;
630 }
631}
632
633static CORE_ADDR
d031aafb 634mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
61def6bd
KB
635{
636 /* Register size is 4 bytes. */
637 return align_down (sp, 4);
638}
639
640/* Implements the "info registers" command. When ``all'' is non-zero,
641 the coprocessor registers will be printed in addition to the rest
642 of the registers. */
643
644static void
d031aafb 645mt_registers_info (struct gdbarch *gdbarch,
d93859e2
UW
646 struct ui_file *file,
647 struct frame_info *frame, int regnum, int all)
61def6bd 648{
e17a4113
UW
649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
650
61def6bd
KB
651 if (regnum == -1)
652 {
653 int lim;
654
d031aafb 655 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
61def6bd
KB
656
657 for (regnum = 0; regnum < lim; regnum++)
658 {
659 /* Don't display the Qchannel register since it will be displayed
660 along with Ichannel. (See below.) */
d031aafb 661 if (regnum == MT_QCHANNEL_REGNUM)
61def6bd
KB
662 continue;
663
d031aafb 664 mt_registers_info (gdbarch, file, frame, regnum, all);
61def6bd
KB
665
666 /* Display the Qchannel register immediately after Ichannel. */
d031aafb
NS
667 if (regnum == MT_ICHANNEL_REGNUM)
668 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
61def6bd
KB
669 }
670 }
671 else
672 {
d031aafb 673 if (regnum == MT_EXMAC_REGNUM)
61def6bd 674 return;
d031aafb 675 else if (regnum == MT_CONTEXT_REGNUM)
61def6bd
KB
676 {
677 /* Special output handling for 38-bit context register. */
678 unsigned char *buff;
870f88f7 679 unsigned int i, regsize;
61def6bd
KB
680
681 regsize = register_size (gdbarch, regnum);
682
224c3ddb 683 buff = (unsigned char *) alloca (regsize);
61def6bd 684
ca9d61b9 685 deprecated_frame_register_read (frame, regnum, buff);
61def6bd 686
c9f4d572 687 fputs_filtered (gdbarch_register_name
d93859e2 688 (gdbarch, regnum), file);
c9f4d572 689 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 690 (gdbarch, regnum)),
c9f4d572 691 file);
61def6bd
KB
692 fputs_filtered ("0x", file);
693
694 for (i = 0; i < regsize; i++)
695 fprintf_filtered (file, "%02x", (unsigned int)
e17a4113 696 extract_unsigned_integer (buff + i, 1, byte_order));
61def6bd
KB
697 fputs_filtered ("\t", file);
698 print_longest (file, 'd', 0,
e17a4113 699 extract_unsigned_integer (buff, regsize, byte_order));
61def6bd
KB
700 fputs_filtered ("\n", file);
701 }
d031aafb
NS
702 else if (regnum == MT_COPRO_REGNUM
703 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
61def6bd
KB
704 {
705 /* Special output handling for the 'coprocessor' register. */
58b78171 706 gdb_byte *buf;
79a45b7d 707 struct value_print_options opts;
61def6bd 708
224c3ddb 709 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
ca9d61b9 710 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
61def6bd 711 /* And print. */
d031aafb 712 regnum = MT_COPRO_PSEUDOREG_REGNUM;
d93859e2 713 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
714 file);
715 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 716 (gdbarch, regnum)),
c9f4d572 717 file);
915dd369 718 get_no_prettyformat_print_options (&opts);
79a45b7d 719 opts.deref_ref = 1;
61def6bd 720 val_print (register_type (gdbarch, regnum), buf,
0e03807e
TT
721 0, 0, file, 0, NULL,
722 &opts, current_language);
61def6bd
KB
723 fputs_filtered ("\n", file);
724 }
d031aafb 725 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
61def6bd
KB
726 {
727 ULONGEST oldmac, ext_mac, newmac;
58b78171 728 gdb_byte buf[3 * sizeof (LONGEST)];
61def6bd
KB
729
730 /* Get the two "real" mac registers. */
ca9d61b9 731 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
3950dc3f 732 oldmac = extract_unsigned_integer
e17a4113 733 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
58b78171
NS
734 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
735 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 736 {
ca9d61b9 737 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
3950dc3f 738 ext_mac = extract_unsigned_integer
e17a4113 739 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
61def6bd
KB
740 }
741 else
742 ext_mac = 0;
743
744 /* Add them together. */
745 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
746
747 /* And print. */
d031aafb 748 regnum = MT_MAC_PSEUDOREG_REGNUM;
d93859e2 749 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
750 file);
751 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 752 (gdbarch, regnum)),
c9f4d572 753 file);
61def6bd
KB
754 fputs_filtered ("0x", file);
755 print_longest (file, 'x', 0, newmac);
756 fputs_filtered ("\t", file);
757 print_longest (file, 'u', 0, newmac);
758 fputs_filtered ("\n", file);
759 }
760 else
761 default_print_registers_info (gdbarch, file, frame, regnum, all);
762 }
763}
764
765/* Set up the callee's arguments for an inferior function call. The
766 arguments are pushed on the stack or are placed in registers as
767 appropriate. It also sets up the return address (which points to
768 the call dummy breakpoint).
769
770 Returns the updated (and aligned) stack pointer. */
771
772static CORE_ADDR
d031aafb 773mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
61def6bd
KB
774 struct regcache *regcache, CORE_ADDR bp_addr,
775 int nargs, struct value **args, CORE_ADDR sp,
776 int struct_return, CORE_ADDR struct_addr)
777{
778#define wordsize 4
e17a4113 779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d031aafb
NS
780 gdb_byte buf[MT_MAX_STRUCT_SIZE];
781 int argreg = MT_1ST_ARGREG;
61def6bd
KB
782 int split_param_len = 0;
783 int stack_dest = sp;
784 int slacklen;
785 int typelen;
786 int i, j;
787
d031aafb
NS
788 /* First handle however many args we can fit into MT_1ST_ARGREG thru
789 MT_LAST_ARGREG. */
790 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
61def6bd 791 {
58b78171 792 const gdb_byte *val;
61def6bd
KB
793 typelen = TYPE_LENGTH (value_type (args[i]));
794 switch (typelen)
795 {
796 case 1:
797 case 2:
798 case 3:
799 case 4:
800 regcache_cooked_write_unsigned (regcache, argreg++,
801 extract_unsigned_integer
802 (value_contents (args[i]),
e17a4113 803 wordsize, byte_order));
61def6bd
KB
804 break;
805 case 8:
806 case 12:
807 case 16:
808 val = value_contents (args[i]);
809 while (typelen > 0)
810 {
d031aafb 811 if (argreg <= MT_LAST_ARGREG)
61def6bd
KB
812 {
813 /* This word of the argument is passed in a register. */
814 regcache_cooked_write_unsigned (regcache, argreg++,
815 extract_unsigned_integer
e17a4113 816 (val, wordsize, byte_order));
61def6bd
KB
817 typelen -= wordsize;
818 val += wordsize;
819 }
820 else
821 {
822 /* Remainder of this arg must be passed on the stack
823 (deferred to do later). */
824 split_param_len = typelen;
825 memcpy (buf, val, typelen);
826 break; /* No more args can be handled in regs. */
827 }
828 }
829 break;
830 default:
831 /* By reverse engineering of gcc output, args bigger than
832 16 bytes go on the stack, and their address is passed
833 in the argreg. */
834 stack_dest -= typelen;
835 write_memory (stack_dest, value_contents (args[i]), typelen);
836 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
837 break;
838 }
839 }
840
841 /* Next, the rest of the arguments go onto the stack, in reverse order. */
842 for (j = nargs - 1; j >= i; j--)
843 {
58b78171 844 gdb_byte *val;
ecfb0d68
SP
845 struct cleanup *back_to;
846 const gdb_byte *contents = value_contents (args[j]);
58b78171 847
61def6bd
KB
848 /* Right-justify the value in an aligned-length buffer. */
849 typelen = TYPE_LENGTH (value_type (args[j]));
850 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
224c3ddb 851 val = (gdb_byte *) xmalloc (typelen + slacklen);
ecfb0d68
SP
852 back_to = make_cleanup (xfree, val);
853 memcpy (val, contents, typelen);
61def6bd
KB
854 memset (val + typelen, 0, slacklen);
855 /* Now write this data to the stack. */
856 stack_dest -= typelen + slacklen;
857 write_memory (stack_dest, val, typelen + slacklen);
ecfb0d68 858 do_cleanups (back_to);
61def6bd
KB
859 }
860
861 /* Finally, if a param needs to be split between registers and stack,
862 write the second half to the stack now. */
863 if (split_param_len != 0)
864 {
865 stack_dest -= split_param_len;
866 write_memory (stack_dest, buf, split_param_len);
867 }
868
869 /* Set up return address (provided to us as bp_addr). */
d031aafb 870 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
61def6bd
KB
871
872 /* Store struct return address, if given. */
873 if (struct_return && struct_addr != 0)
d031aafb 874 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
61def6bd
KB
875
876 /* Set aside 16 bytes for the callee to save regs 1-4. */
877 stack_dest -= 16;
878
879 /* Update the stack pointer. */
d031aafb 880 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
61def6bd
KB
881
882 /* And that should do it. Return the new stack pointer. */
883 return stack_dest;
884}
885
886
887/* The 'unwind_cache' data structure. */
888
d031aafb 889struct mt_unwind_cache
61def6bd 890{
025bb325 891 /* The previous frame's inner most stack address.
61def6bd
KB
892 Used as this frame ID's stack_addr. */
893 CORE_ADDR prev_sp;
894 CORE_ADDR frame_base;
895 int framesize;
896 int frameless_p;
897
898 /* Table indicating the location of each and every register. */
899 struct trad_frame_saved_reg *saved_regs;
900};
901
902/* Initialize an unwind_cache. Build up the saved_regs table etc. for
903 the frame. */
904
d031aafb 905static struct mt_unwind_cache *
94afd7a6 906mt_frame_unwind_cache (struct frame_info *this_frame,
61def6bd
KB
907 void **this_prologue_cache)
908{
909 struct gdbarch *gdbarch;
d031aafb 910 struct mt_unwind_cache *info;
61def6bd
KB
911 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
912 unsigned long instr, upper_half, delayed_store = 0;
913 int regnum, offset;
914 ULONGEST sp, fp;
915
916 if ((*this_prologue_cache))
19ba03f4 917 return (struct mt_unwind_cache *) (*this_prologue_cache);
61def6bd 918
94afd7a6 919 gdbarch = get_frame_arch (this_frame);
d031aafb 920 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
61def6bd
KB
921 (*this_prologue_cache) = info;
922
923 info->prev_sp = 0;
924 info->framesize = 0;
925 info->frame_base = 0;
926 info->frameless_p = 1;
94afd7a6 927 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61def6bd 928
025bb325 929 /* Grab the frame-relative values of SP and FP, needed below.
61def6bd
KB
930 The frame_saved_register function will find them on the
931 stack or in the registers as appropriate. */
94afd7a6
UW
932 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
933 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
61def6bd 934
94afd7a6 935 start_addr = get_frame_func (this_frame);
61def6bd
KB
936
937 /* Return early if GDB couldn't find the function. */
938 if (start_addr == 0)
939 return info;
940
94afd7a6 941 end_addr = get_frame_pc (this_frame);
d80b854b 942 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
61def6bd
KB
943 if (end_addr == 0)
944 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
945 {
94afd7a6 946 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
025bb325 947 if (delayed_store) /* Previous instr was a push. */
61def6bd
KB
948 {
949 upper_half = delayed_store >> 16;
950 regnum = upper_half & 0xf;
951 offset = delayed_store & 0xffff;
952 switch (upper_half & 0xfff0)
953 {
025bb325 954 case 0x43c0: /* push using frame pointer. */
61def6bd
KB
955 info->saved_regs[regnum].addr = offset;
956 break;
025bb325 957 case 0x43d0: /* push using stack pointer. */
61def6bd
KB
958 info->saved_regs[regnum].addr = offset;
959 break;
960 default: /* lint */
961 break;
962 }
963 delayed_store = 0;
964 }
965
966 switch (instr)
967 {
968 case 0x12000000: /* NO-OP */
969 continue;
970 case 0x12ddc000: /* copy sp into fp */
025bb325
MS
971 info->frameless_p = 0; /* Record that the frame
972 pointer is in use. */
61def6bd
KB
973 continue;
974 default:
975 upper_half = instr >> 16;
976 if (upper_half == 0x05dd || /* subi sp, sp, imm */
977 upper_half == 0x07dd) /* subui sp, sp, imm */
978 {
979 /* Record the frame size. */
980 info->framesize = instr & 0xffff;
981 continue;
982 }
983 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
984 (upper_half & 0xfff0) == 0x43d0) /* stack push */
985 {
986 /* Save this instruction, but don't record the
987 pushed register as 'saved' until we see the
988 next instruction. That's because of deferred stores
989 on this target -- GDB won't be able to read the register
990 from the stack until one instruction later. */
991 delayed_store = instr;
992 continue;
993 }
994 /* Not a prologue instruction. Is this the end of the prologue?
995 This is the most difficult decision; when to stop scanning.
996
997 If we have no line symbol, then the best thing we can do
998 is to stop scanning when we encounter an instruction that
999 is not likely to be a part of the prologue.
1000
1001 But if we do have a line symbol, then we should
1002 keep scanning until we reach it (or we reach end_addr). */
1003
1004 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
025bb325 1005 continue; /* Keep scanning, recording saved_regs etc. */
61def6bd 1006 else
025bb325 1007 break; /* Quit scanning: breakpoint can be set here. */
61def6bd
KB
1008 }
1009 }
1010
1011 /* Special handling for the "saved" address of the SP:
1012 The SP is of course never saved on the stack at all, so
1013 by convention what we put here is simply the previous
1014 _value_ of the SP (as opposed to an address where the
1015 previous value would have been pushed). This will also
1016 give us the frame base address. */
1017
1018 if (info->frameless_p)
1019 {
1020 info->frame_base = sp + info->framesize;
1021 info->prev_sp = sp + info->framesize;
1022 }
1023 else
1024 {
1025 info->frame_base = fp + info->framesize;
1026 info->prev_sp = fp + info->framesize;
1027 }
1028 /* Save prev_sp in saved_regs as a value, not as an address. */
d031aafb 1029 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
61def6bd
KB
1030
1031 /* Now convert frame offsets to actual addresses (not offsets). */
d031aafb 1032 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
61def6bd
KB
1033 if (trad_frame_addr_p (info->saved_regs, regnum))
1034 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1035
1036 /* The call instruction moves the caller's PC in the callee's RA reg.
1037 Since this is an unwind, do the reverse. Copy the location of RA
1038 into PC (the address / regnum) so that a request for PC will be
1039 converted into a request for the RA. */
d031aafb 1040 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
61def6bd
KB
1041
1042 return info;
1043}
1044
1045static CORE_ADDR
d031aafb 1046mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1047{
1048 ULONGEST pc;
1049
11411de3 1050 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
61def6bd
KB
1051 return pc;
1052}
1053
1054static CORE_ADDR
d031aafb 1055mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1056{
1057 ULONGEST sp;
1058
11411de3 1059 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
61def6bd
KB
1060 return sp;
1061}
1062
94afd7a6
UW
1063/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1064 frame. The frame ID's base needs to match the TOS value saved by
1065 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
61def6bd
KB
1066
1067static struct frame_id
94afd7a6 1068mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61def6bd 1069{
94afd7a6
UW
1070 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1071 return frame_id_build (sp, get_frame_pc (this_frame));
61def6bd
KB
1072}
1073
1074/* Given a GDB frame, determine the address of the calling function's
1075 frame. This will be used to create a new GDB frame struct. */
1076
1077static void
94afd7a6 1078mt_frame_this_id (struct frame_info *this_frame,
61def6bd
KB
1079 void **this_prologue_cache, struct frame_id *this_id)
1080{
d031aafb 1081 struct mt_unwind_cache *info =
94afd7a6 1082 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1083
1084 if (!(info == NULL || info->prev_sp == 0))
94afd7a6 1085 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
93d42b30 1086
61def6bd
KB
1087 return;
1088}
1089
94afd7a6
UW
1090static struct value *
1091mt_frame_prev_register (struct frame_info *this_frame,
1092 void **this_prologue_cache, int regnum)
61def6bd 1093{
d031aafb 1094 struct mt_unwind_cache *info =
94afd7a6 1095 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd 1096
94afd7a6 1097 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61def6bd
KB
1098}
1099
1100static CORE_ADDR
94afd7a6 1101mt_frame_base_address (struct frame_info *this_frame,
61def6bd
KB
1102 void **this_prologue_cache)
1103{
d031aafb 1104 struct mt_unwind_cache *info =
94afd7a6 1105 mt_frame_unwind_cache (this_frame, this_prologue_cache);
61def6bd
KB
1106
1107 return info->frame_base;
1108}
1109
1110/* This is a shared interface: the 'frame_unwind' object is what's
1111 returned by the 'sniffer' function, and in turn specifies how to
1112 get a frame's ID and prev_regs.
1113
1114 This exports the 'prev_register' and 'this_id' methods. */
1115
d031aafb 1116static const struct frame_unwind mt_frame_unwind = {
61def6bd 1117 NORMAL_FRAME,
8fbca658 1118 default_frame_unwind_stop_reason,
d031aafb 1119 mt_frame_this_id,
94afd7a6
UW
1120 mt_frame_prev_register,
1121 NULL,
1122 default_frame_sniffer
61def6bd
KB
1123};
1124
61def6bd
KB
1125/* Another shared interface: the 'frame_base' object specifies how to
1126 unwind a frame and secure the base addresses for frame objects
1127 (locals, args). */
1128
d031aafb
NS
1129static struct frame_base mt_frame_base = {
1130 &mt_frame_unwind,
1131 mt_frame_base_address,
1132 mt_frame_base_address,
1133 mt_frame_base_address
61def6bd
KB
1134};
1135
1136static struct gdbarch *
d031aafb 1137mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
61def6bd
KB
1138{
1139 struct gdbarch *gdbarch;
df4df182 1140 struct gdbarch_tdep *tdep;
61def6bd
KB
1141
1142 /* Find a candidate among the list of pre-declared architectures. */
1143 arches = gdbarch_list_lookup_by_info (arches, &info);
1144 if (arches != NULL)
1145 return arches->gdbarch;
1146
1147 /* None found, create a new architecture from the information
1148 provided. */
fc270c35 1149 tdep = XCNEW (struct gdbarch_tdep);
df4df182 1150 gdbarch = gdbarch_alloc (&info, tdep);
61def6bd 1151
cb5c8c39
DJ
1152 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1153 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1154 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
61def6bd 1155
d031aafb
NS
1156 set_gdbarch_register_name (gdbarch, mt_register_name);
1157 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1158 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1159 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1160 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1161 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1162 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1163 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
61def6bd 1164 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
d031aafb 1165 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
61def6bd
KB
1166 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1167 set_gdbarch_frame_args_skip (gdbarch, 0);
d031aafb
NS
1168 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1169 set_gdbarch_register_type (gdbarch, mt_register_type);
1170 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
61def6bd 1171
d031aafb
NS
1172 set_gdbarch_return_value (gdbarch, mt_return_value);
1173 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
61def6bd 1174
d031aafb 1175 set_gdbarch_frame_align (gdbarch, mt_frame_align);
61def6bd 1176
d031aafb 1177 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
61def6bd 1178
d031aafb 1179 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
61def6bd
KB
1180
1181 /* Target builtin data types. */
1182 set_gdbarch_short_bit (gdbarch, 16);
1183 set_gdbarch_int_bit (gdbarch, 32);
1184 set_gdbarch_long_bit (gdbarch, 32);
1185 set_gdbarch_long_long_bit (gdbarch, 64);
1186 set_gdbarch_float_bit (gdbarch, 32);
1187 set_gdbarch_double_bit (gdbarch, 64);
1188 set_gdbarch_long_double_bit (gdbarch, 64);
1189 set_gdbarch_ptr_bit (gdbarch, 32);
1190
1191 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1192 based sniffer. */
94afd7a6
UW
1193 dwarf2_append_unwinders (gdbarch);
1194 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
d031aafb 1195 frame_base_set_default (gdbarch, &mt_frame_base);
61def6bd
KB
1196
1197 /* Register the 'unwind_pc' method. */
d031aafb
NS
1198 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1199 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
61def6bd 1200
025bb325 1201 /* Methods for saving / extracting a dummy frame's ID.
61def6bd
KB
1202 The ID's stack address must match the SP value returned by
1203 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
94afd7a6 1204 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
61def6bd
KB
1205
1206 return gdbarch;
1207}
1208
63807e1d
PA
1209/* Provide a prototype to silence -Wmissing-prototypes. */
1210extern initialize_file_ftype _initialize_mt_tdep;
1211
61def6bd 1212void
d031aafb 1213_initialize_mt_tdep (void)
61def6bd 1214{
d031aafb 1215 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
61def6bd 1216}
This page took 0.982397 seconds and 4 git commands to generate.