Commit | Line | Data |
---|---|---|
d031aafb | 1 | /* Target-dependent code for Morpho mt processor, for GDB. |
61def6bd | 2 | |
ecd75fc8 | 3 | Copyright (C) 2005-2014 Free Software Foundation, Inc. |
61def6bd KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
61def6bd KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
61def6bd KB |
19 | |
20 | /* Contributed by Michael Snyder, msnyder@redhat.com. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "frame-base.h" | |
26 | #include "symtab.h" | |
27 | #include "dis-asm.h" | |
28 | #include "arch-utils.h" | |
29 | #include "gdbtypes.h" | |
0e9f083f | 30 | #include <string.h> |
61def6bd KB |
31 | #include "regcache.h" |
32 | #include "reggroups.h" | |
33 | #include "gdbcore.h" | |
34 | #include "trad-frame.h" | |
35 | #include "inferior.h" | |
36 | #include "dwarf2-frame.h" | |
37 | #include "infcall.h" | |
38 | #include "gdb_assert.h" | |
d8ca156b | 39 | #include "language.h" |
79a45b7d | 40 | #include "valprint.h" |
61def6bd | 41 | |
d031aafb | 42 | enum mt_arch_constants |
61def6bd | 43 | { |
d031aafb | 44 | MT_MAX_STRUCT_SIZE = 16 |
61def6bd KB |
45 | }; |
46 | ||
d031aafb | 47 | enum mt_gdb_regnums |
61def6bd | 48 | { |
d031aafb NS |
49 | MT_R0_REGNUM, /* 32 bit regs. */ |
50 | MT_R1_REGNUM, | |
51 | MT_1ST_ARGREG = MT_R1_REGNUM, | |
52 | MT_R2_REGNUM, | |
53 | MT_R3_REGNUM, | |
54 | MT_R4_REGNUM, | |
55 | MT_LAST_ARGREG = MT_R4_REGNUM, | |
56 | MT_R5_REGNUM, | |
57 | MT_R6_REGNUM, | |
58 | MT_R7_REGNUM, | |
59 | MT_R8_REGNUM, | |
60 | MT_R9_REGNUM, | |
61 | MT_R10_REGNUM, | |
62 | MT_R11_REGNUM, | |
63 | MT_R12_REGNUM, | |
64 | MT_FP_REGNUM = MT_R12_REGNUM, | |
65 | MT_R13_REGNUM, | |
66 | MT_SP_REGNUM = MT_R13_REGNUM, | |
67 | MT_R14_REGNUM, | |
68 | MT_RA_REGNUM = MT_R14_REGNUM, | |
69 | MT_R15_REGNUM, | |
70 | MT_IRA_REGNUM = MT_R15_REGNUM, | |
71 | MT_PC_REGNUM, | |
61def6bd KB |
72 | |
73 | /* Interrupt Enable pseudo-register, exported by SID. */ | |
d031aafb | 74 | MT_INT_ENABLE_REGNUM, |
61def6bd KB |
75 | /* End of CPU regs. */ |
76 | ||
d031aafb | 77 | MT_NUM_CPU_REGS, |
61def6bd KB |
78 | |
79 | /* Co-processor registers. */ | |
d031aafb NS |
80 | MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */ |
81 | MT_CPR0_REGNUM, | |
82 | MT_CPR1_REGNUM, | |
83 | MT_CPR2_REGNUM, | |
84 | MT_CPR3_REGNUM, | |
85 | MT_CPR4_REGNUM, | |
86 | MT_CPR5_REGNUM, | |
87 | MT_CPR6_REGNUM, | |
88 | MT_CPR7_REGNUM, | |
89 | MT_CPR8_REGNUM, | |
90 | MT_CPR9_REGNUM, | |
91 | MT_CPR10_REGNUM, | |
92 | MT_CPR11_REGNUM, | |
93 | MT_CPR12_REGNUM, | |
94 | MT_CPR13_REGNUM, | |
95 | MT_CPR14_REGNUM, | |
96 | MT_CPR15_REGNUM, | |
97 | MT_BYPA_REGNUM, /* 32 bit regs. */ | |
98 | MT_BYPB_REGNUM, | |
99 | MT_BYPC_REGNUM, | |
100 | MT_FLAG_REGNUM, | |
101 | MT_CONTEXT_REGNUM, /* 38 bits (treat as array of | |
61def6bd | 102 | six bytes). */ |
d031aafb NS |
103 | MT_MAC_REGNUM, /* 32 bits. */ |
104 | MT_Z1_REGNUM, /* 16 bits. */ | |
105 | MT_Z2_REGNUM, /* 16 bits. */ | |
106 | MT_ICHANNEL_REGNUM, /* 32 bits. */ | |
107 | MT_ISCRAMB_REGNUM, /* 32 bits. */ | |
108 | MT_QSCRAMB_REGNUM, /* 32 bits. */ | |
109 | MT_OUT_REGNUM, /* 16 bits. */ | |
110 | MT_EXMAC_REGNUM, /* 32 bits (8 used). */ | |
111 | MT_QCHANNEL_REGNUM, /* 32 bits. */ | |
03a73f77 MM |
112 | MT_ZI2_REGNUM, /* 16 bits. */ |
113 | MT_ZQ2_REGNUM, /* 16 bits. */ | |
114 | MT_CHANNEL2_REGNUM, /* 32 bits. */ | |
115 | MT_ISCRAMB2_REGNUM, /* 32 bits. */ | |
116 | MT_QSCRAMB2_REGNUM, /* 32 bits. */ | |
117 | MT_QCHANNEL2_REGNUM, /* 32 bits. */ | |
61def6bd KB |
118 | |
119 | /* Number of real registers. */ | |
d031aafb | 120 | MT_NUM_REGS, |
61def6bd KB |
121 | |
122 | /* Pseudo-registers. */ | |
d031aafb NS |
123 | MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS, |
124 | MT_MAC_PSEUDOREG_REGNUM, | |
60e81fcc NS |
125 | MT_COPRO_PSEUDOREG_ARRAY, |
126 | ||
127 | MT_COPRO_PSEUDOREG_DIM_1 = 2, | |
128 | MT_COPRO_PSEUDOREG_DIM_2 = 8, | |
03a73f77 MM |
129 | /* The number of pseudo-registers for each coprocessor. These |
130 | include the real coprocessor registers, the pseudo-registe for | |
131 | the coprocessor number, and the pseudo-register for the MAC. */ | |
132 | MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2, | |
133 | /* The register number of the MAC, relative to a given coprocessor. */ | |
134 | MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1, | |
61def6bd KB |
135 | |
136 | /* Two pseudo-regs ('coprocessor' and 'mac'). */ | |
60e81fcc NS |
137 | MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS |
138 | * MT_COPRO_PSEUDOREG_DIM_1 | |
139 | * MT_COPRO_PSEUDOREG_DIM_2) | |
61def6bd KB |
140 | }; |
141 | ||
df4df182 UW |
142 | /* The tdep structure. */ |
143 | struct gdbarch_tdep | |
144 | { | |
145 | /* ISA-specific types. */ | |
146 | struct type *copro_type; | |
147 | }; | |
148 | ||
149 | ||
61def6bd KB |
150 | /* Return name of register number specified by REGNUM. */ |
151 | ||
152 | static const char * | |
d93859e2 | 153 | mt_register_name (struct gdbarch *gdbarch, int regnum) |
61def6bd | 154 | { |
58b78171 | 155 | static const char *const register_names[] = { |
61def6bd KB |
156 | /* CPU regs. */ |
157 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
158 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
159 | "pc", "IE", | |
160 | /* Co-processor regs. */ | |
161 | "", /* copro register. */ | |
162 | "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", | |
163 | "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15", | |
164 | "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2", | |
165 | "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel", | |
03a73f77 | 166 | "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2", |
61def6bd KB |
167 | /* Pseudo-registers. */ |
168 | "coprocessor", "MAC" | |
169 | }; | |
60e81fcc NS |
170 | static const char *array_names[MT_COPRO_PSEUDOREG_REGS |
171 | * MT_COPRO_PSEUDOREG_DIM_1 | |
172 | * MT_COPRO_PSEUDOREG_DIM_2]; | |
173 | ||
174 | if (regnum < 0) | |
175 | return ""; | |
176 | if (regnum < ARRAY_SIZE (register_names)) | |
177 | return register_names[regnum]; | |
178 | if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY]) | |
179 | return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY]; | |
180 | ||
181 | { | |
182 | char *name; | |
183 | const char *stub; | |
184 | unsigned dim_1; | |
185 | unsigned dim_2; | |
186 | unsigned index; | |
187 | ||
188 | regnum -= MT_COPRO_PSEUDOREG_ARRAY; | |
189 | index = regnum % MT_COPRO_PSEUDOREG_REGS; | |
190 | dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2; | |
191 | dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2) | |
192 | % MT_COPRO_PSEUDOREG_DIM_1); | |
193 | ||
03a73f77 | 194 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 195 | stub = register_names[MT_MAC_PSEUDOREG_REGNUM]; |
03a73f77 | 196 | else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM) |
60e81fcc NS |
197 | stub = ""; |
198 | else | |
199 | stub = register_names[index + MT_CPR0_REGNUM]; | |
200 | if (!*stub) | |
201 | { | |
202 | array_names[regnum] = stub; | |
203 | return stub; | |
204 | } | |
205 | name = xmalloc (30); | |
206 | sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub); | |
207 | array_names[regnum] = name; | |
208 | return name; | |
209 | } | |
210 | } | |
61def6bd | 211 | |
60e81fcc NS |
212 | /* Return the type of a coprocessor register. */ |
213 | ||
214 | static struct type * | |
215 | mt_copro_register_type (struct gdbarch *arch, int regnum) | |
216 | { | |
217 | switch (regnum) | |
218 | { | |
219 | case MT_INT_ENABLE_REGNUM: | |
220 | case MT_ICHANNEL_REGNUM: | |
221 | case MT_QCHANNEL_REGNUM: | |
222 | case MT_ISCRAMB_REGNUM: | |
223 | case MT_QSCRAMB_REGNUM: | |
df4df182 | 224 | return builtin_type (arch)->builtin_int32; |
60e81fcc NS |
225 | case MT_BYPA_REGNUM: |
226 | case MT_BYPB_REGNUM: | |
227 | case MT_BYPC_REGNUM: | |
228 | case MT_Z1_REGNUM: | |
229 | case MT_Z2_REGNUM: | |
230 | case MT_OUT_REGNUM: | |
03a73f77 MM |
231 | case MT_ZI2_REGNUM: |
232 | case MT_ZQ2_REGNUM: | |
df4df182 | 233 | return builtin_type (arch)->builtin_int16; |
60e81fcc NS |
234 | case MT_EXMAC_REGNUM: |
235 | case MT_MAC_REGNUM: | |
df4df182 | 236 | return builtin_type (arch)->builtin_uint32; |
60e81fcc | 237 | case MT_CONTEXT_REGNUM: |
0dfff4cb | 238 | return builtin_type (arch)->builtin_long_long; |
60e81fcc | 239 | case MT_FLAG_REGNUM: |
0dfff4cb | 240 | return builtin_type (arch)->builtin_unsigned_char; |
60e81fcc NS |
241 | default: |
242 | if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM) | |
df4df182 | 243 | return builtin_type (arch)->builtin_int16; |
03a73f77 | 244 | else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc NS |
245 | { |
246 | if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2 | |
247 | || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2) | |
df4df182 | 248 | return builtin_type (arch)->builtin_uint64; |
60e81fcc | 249 | else |
df4df182 | 250 | return builtin_type (arch)->builtin_uint32; |
60e81fcc NS |
251 | } |
252 | else | |
df4df182 | 253 | return builtin_type (arch)->builtin_uint32; |
60e81fcc | 254 | } |
61def6bd KB |
255 | } |
256 | ||
257 | /* Given ARCH and a register number specified by REGNUM, return the | |
258 | type of that register. */ | |
259 | ||
260 | static struct type * | |
d031aafb | 261 | mt_register_type (struct gdbarch *arch, int regnum) |
61def6bd | 262 | { |
df4df182 | 263 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); |
61def6bd | 264 | |
d031aafb | 265 | if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS) |
61def6bd | 266 | { |
61def6bd KB |
267 | switch (regnum) |
268 | { | |
d031aafb NS |
269 | case MT_PC_REGNUM: |
270 | case MT_RA_REGNUM: | |
271 | case MT_IRA_REGNUM: | |
fde6c819 | 272 | return builtin_type (arch)->builtin_func_ptr; |
d031aafb NS |
273 | case MT_SP_REGNUM: |
274 | case MT_FP_REGNUM: | |
fde6c819 | 275 | return builtin_type (arch)->builtin_data_ptr; |
d031aafb NS |
276 | case MT_COPRO_REGNUM: |
277 | case MT_COPRO_PSEUDOREG_REGNUM: | |
df4df182 UW |
278 | if (tdep->copro_type == NULL) |
279 | { | |
280 | struct type *elt = builtin_type (arch)->builtin_int16; | |
281 | tdep->copro_type = lookup_array_range_type (elt, 0, 1); | |
282 | } | |
283 | return tdep->copro_type; | |
d031aafb | 284 | case MT_MAC_PSEUDOREG_REGNUM: |
60e81fcc NS |
285 | return mt_copro_register_type (arch, |
286 | MT_CPR0_REGNUM | |
03a73f77 | 287 | + MT_COPRO_PSEUDOREG_MAC_REGNUM); |
61def6bd | 288 | default: |
d031aafb | 289 | if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM) |
df4df182 | 290 | return builtin_type (arch)->builtin_int32; |
60e81fcc NS |
291 | else if (regnum < MT_COPRO_PSEUDOREG_ARRAY) |
292 | return mt_copro_register_type (arch, regnum); | |
293 | else | |
294 | { | |
295 | regnum -= MT_COPRO_PSEUDOREG_ARRAY; | |
296 | regnum %= MT_COPRO_PSEUDOREG_REGS; | |
297 | regnum += MT_CPR0_REGNUM; | |
298 | return mt_copro_register_type (arch, regnum); | |
299 | } | |
61def6bd KB |
300 | } |
301 | } | |
302 | internal_error (__FILE__, __LINE__, | |
d031aafb | 303 | _("mt_register_type: illegal register number %d"), regnum); |
61def6bd KB |
304 | } |
305 | ||
306 | /* Return true if register REGNUM is a member of the register group | |
307 | specified by GROUP. */ | |
308 | ||
309 | static int | |
d031aafb | 310 | mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
61def6bd KB |
311 | struct reggroup *group) |
312 | { | |
313 | /* Groups of registers that can be displayed via "info reg". */ | |
314 | if (group == all_reggroup) | |
315 | return (regnum >= 0 | |
d031aafb | 316 | && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS |
d93859e2 | 317 | && mt_register_name (gdbarch, regnum)[0] != '\0'); |
61def6bd KB |
318 | |
319 | if (group == general_reggroup) | |
d031aafb | 320 | return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM); |
61def6bd KB |
321 | |
322 | if (group == float_reggroup) | |
323 | return 0; /* No float regs. */ | |
324 | ||
325 | if (group == vector_reggroup) | |
326 | return 0; /* No vector regs. */ | |
327 | ||
328 | /* For any that are not handled above. */ | |
329 | return default_register_reggroup_p (gdbarch, regnum, group); | |
330 | } | |
331 | ||
332 | /* Return the return value convention used for a given type TYPE. | |
333 | Optionally, fetch or set the return value via READBUF or | |
334 | WRITEBUF respectively using REGCACHE for the register | |
335 | values. */ | |
336 | ||
337 | static enum return_value_convention | |
6a3a010b | 338 | mt_return_value (struct gdbarch *gdbarch, struct value *function, |
c055b101 CV |
339 | struct type *type, struct regcache *regcache, |
340 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
61def6bd | 341 | { |
e17a4113 UW |
342 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
343 | ||
61def6bd KB |
344 | if (TYPE_LENGTH (type) > 4) |
345 | { | |
346 | /* Return values > 4 bytes are returned in memory, | |
347 | pointed to by R11. */ | |
348 | if (readbuf) | |
349 | { | |
350 | ULONGEST addr; | |
351 | ||
d031aafb | 352 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr); |
61def6bd KB |
353 | read_memory (addr, readbuf, TYPE_LENGTH (type)); |
354 | } | |
355 | ||
356 | if (writebuf) | |
357 | { | |
358 | ULONGEST addr; | |
359 | ||
d031aafb | 360 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr); |
61def6bd KB |
361 | write_memory (addr, writebuf, TYPE_LENGTH (type)); |
362 | } | |
363 | ||
364 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
365 | } | |
366 | else | |
367 | { | |
368 | if (readbuf) | |
369 | { | |
370 | ULONGEST temp; | |
371 | ||
372 | /* Return values of <= 4 bytes are returned in R11. */ | |
d031aafb | 373 | regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp); |
e17a4113 UW |
374 | store_unsigned_integer (readbuf, TYPE_LENGTH (type), |
375 | byte_order, temp); | |
61def6bd KB |
376 | } |
377 | ||
378 | if (writebuf) | |
379 | { | |
380 | if (TYPE_LENGTH (type) < 4) | |
381 | { | |
382 | gdb_byte buf[4]; | |
383 | /* Add leading zeros to the value. */ | |
384 | memset (buf, 0, sizeof (buf)); | |
385 | memcpy (buf + sizeof (buf) - TYPE_LENGTH (type), | |
386 | writebuf, TYPE_LENGTH (type)); | |
d031aafb | 387 | regcache_cooked_write (regcache, MT_R11_REGNUM, buf); |
61def6bd KB |
388 | } |
389 | else /* (TYPE_LENGTH (type) == 4 */ | |
d031aafb | 390 | regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf); |
61def6bd KB |
391 | } |
392 | ||
393 | return RETURN_VALUE_REGISTER_CONVENTION; | |
394 | } | |
395 | } | |
396 | ||
397 | /* If the input address, PC, is in a function prologue, return the | |
398 | address of the end of the prologue, otherwise return the input | |
399 | address. | |
400 | ||
401 | Note: PC is likely to be the function start, since this function | |
402 | is mainly used for advancing a breakpoint to the first line, or | |
403 | stepping to the first line when we have stepped into a function | |
404 | call. */ | |
405 | ||
406 | static CORE_ADDR | |
6093d2eb | 407 | mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
61def6bd | 408 | { |
e17a4113 | 409 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
61def6bd | 410 | CORE_ADDR func_addr = 0, func_end = 0; |
2c02bd72 | 411 | const char *func_name; |
61def6bd KB |
412 | unsigned long instr; |
413 | ||
414 | if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) | |
415 | { | |
416 | struct symtab_and_line sal; | |
417 | struct symbol *sym; | |
418 | ||
419 | /* Found a function. */ | |
2570f2b7 | 420 | sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL); |
61def6bd KB |
421 | if (sym && SYMBOL_LANGUAGE (sym) != language_asm) |
422 | { | |
423 | /* Don't use this trick for assembly source files. */ | |
424 | sal = find_pc_line (func_addr, 0); | |
425 | ||
426 | if (sal.end && sal.end < func_end) | |
427 | { | |
428 | /* Found a line number, use it as end of prologue. */ | |
429 | return sal.end; | |
430 | } | |
431 | } | |
432 | } | |
433 | ||
434 | /* No function symbol, or no line symbol. Use prologue scanning method. */ | |
435 | for (;; pc += 4) | |
436 | { | |
e17a4113 | 437 | instr = read_memory_unsigned_integer (pc, 4, byte_order); |
61def6bd KB |
438 | if (instr == 0x12000000) /* nop */ |
439 | continue; | |
440 | if (instr == 0x12ddc000) /* copy sp into fp */ | |
441 | continue; | |
442 | instr >>= 16; | |
443 | if (instr == 0x05dd) /* subi sp, sp, imm */ | |
444 | continue; | |
445 | if (instr >= 0x43c0 && instr <= 0x43df) /* push */ | |
446 | continue; | |
447 | /* Not an obvious prologue instruction. */ | |
448 | break; | |
449 | } | |
450 | ||
451 | return pc; | |
452 | } | |
453 | ||
454 | /* The breakpoint instruction must be the same size as the smallest | |
455 | instruction in the instruction set. | |
456 | ||
3950dc3f | 457 | The BP for ms1 is defined as 0x68000000 (BREAK). |
025bb325 | 458 | The BP for ms2 is defined as 0x69000000 (illegal). */ |
61def6bd KB |
459 | |
460 | static const gdb_byte * | |
67d57894 MD |
461 | mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, |
462 | int *bp_size) | |
61def6bd | 463 | { |
3950dc3f NS |
464 | static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 }; |
465 | static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 }; | |
61def6bd KB |
466 | |
467 | *bp_size = 4; | |
67d57894 | 468 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) |
3950dc3f NS |
469 | return ms2_breakpoint; |
470 | ||
471 | return ms1_breakpoint; | |
61def6bd KB |
472 | } |
473 | ||
60e81fcc NS |
474 | /* Select the correct coprocessor register bank. Return the pseudo |
475 | regnum we really want to read. */ | |
476 | ||
477 | static int | |
478 | mt_select_coprocessor (struct gdbarch *gdbarch, | |
479 | struct regcache *regcache, int regno) | |
480 | { | |
e17a4113 | 481 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
60e81fcc NS |
482 | unsigned index, base; |
483 | gdb_byte copro[4]; | |
484 | ||
025bb325 | 485 | /* Get the copro pseudo regnum. */ |
60e81fcc | 486 | regcache_raw_read (regcache, MT_COPRO_REGNUM, copro); |
e17a4113 UW |
487 | base = ((extract_signed_integer (&copro[0], 2, byte_order) |
488 | * MT_COPRO_PSEUDOREG_DIM_2) | |
489 | + extract_signed_integer (&copro[2], 2, byte_order)); | |
60e81fcc NS |
490 | |
491 | regno -= MT_COPRO_PSEUDOREG_ARRAY; | |
492 | index = regno % MT_COPRO_PSEUDOREG_REGS; | |
493 | regno /= MT_COPRO_PSEUDOREG_REGS; | |
494 | if (base != regno) | |
495 | { | |
496 | /* Select the correct coprocessor register bank. Invalidate the | |
497 | coprocessor register cache. */ | |
498 | unsigned ix; | |
499 | ||
e17a4113 UW |
500 | store_signed_integer (&copro[0], 2, byte_order, |
501 | regno / MT_COPRO_PSEUDOREG_DIM_2); | |
502 | store_signed_integer (&copro[2], 2, byte_order, | |
503 | regno % MT_COPRO_PSEUDOREG_DIM_2); | |
60e81fcc NS |
504 | regcache_raw_write (regcache, MT_COPRO_REGNUM, copro); |
505 | ||
506 | /* We must flush the cache, as it is now invalid. */ | |
507 | for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++) | |
9c5ea4d9 | 508 | regcache_invalidate (regcache, ix); |
60e81fcc NS |
509 | } |
510 | ||
511 | return index; | |
512 | } | |
513 | ||
61def6bd KB |
514 | /* Fetch the pseudo registers: |
515 | ||
60e81fcc | 516 | There are two regular pseudo-registers: |
61def6bd KB |
517 | 1) The 'coprocessor' pseudo-register (which mirrors the |
518 | "real" coprocessor register sent by the target), and | |
519 | 2) The 'MAC' pseudo-register (which represents the union | |
520 | of the original 32 bit target MAC register and the new | |
60e81fcc NS |
521 | 8-bit extended-MAC register). |
522 | ||
523 | Additionally there is an array of coprocessor registers which track | |
524 | the coprocessor registers for each coprocessor. */ | |
61def6bd | 525 | |
05d1431c | 526 | static enum register_status |
d031aafb | 527 | mt_pseudo_register_read (struct gdbarch *gdbarch, |
05d1431c | 528 | struct regcache *regcache, int regno, gdb_byte *buf) |
61def6bd | 529 | { |
e17a4113 UW |
530 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
531 | ||
61def6bd KB |
532 | switch (regno) |
533 | { | |
d031aafb NS |
534 | case MT_COPRO_REGNUM: |
535 | case MT_COPRO_PSEUDOREG_REGNUM: | |
05d1431c | 536 | return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf); |
d031aafb NS |
537 | case MT_MAC_REGNUM: |
538 | case MT_MAC_PSEUDOREG_REGNUM: | |
3950dc3f NS |
539 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
540 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd | 541 | { |
05d1431c | 542 | enum register_status status; |
61def6bd KB |
543 | ULONGEST oldmac = 0, ext_mac = 0; |
544 | ULONGEST newmac; | |
545 | ||
05d1431c PA |
546 | status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac); |
547 | if (status != REG_VALID) | |
548 | return status; | |
549 | ||
d031aafb | 550 | regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac); |
05d1431c PA |
551 | if (status != REG_VALID) |
552 | return status; | |
553 | ||
61def6bd KB |
554 | newmac = |
555 | (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32); | |
e17a4113 | 556 | store_signed_integer (buf, 8, byte_order, newmac); |
05d1431c PA |
557 | |
558 | return REG_VALID; | |
61def6bd KB |
559 | } |
560 | else | |
05d1431c | 561 | return regcache_raw_read (regcache, MT_MAC_REGNUM, buf); |
61def6bd KB |
562 | break; |
563 | default: | |
60e81fcc NS |
564 | { |
565 | unsigned index = mt_select_coprocessor (gdbarch, regcache, regno); | |
566 | ||
03a73f77 | 567 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
05d1431c PA |
568 | return mt_pseudo_register_read (gdbarch, regcache, |
569 | MT_MAC_PSEUDOREG_REGNUM, buf); | |
60e81fcc | 570 | else if (index < MT_NUM_REGS - MT_CPR0_REGNUM) |
05d1431c PA |
571 | return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf); |
572 | else | |
573 | /* ??? */ | |
574 | return REG_VALID; | |
60e81fcc | 575 | } |
61def6bd KB |
576 | break; |
577 | } | |
578 | } | |
579 | ||
580 | /* Write the pseudo registers: | |
581 | ||
d031aafb | 582 | Mt pseudo-registers are stored directly to the target. The |
61def6bd KB |
583 | 'coprocessor' register is special, because when it is modified, all |
584 | the other coprocessor regs must be flushed from the reg cache. */ | |
585 | ||
586 | static void | |
d031aafb | 587 | mt_pseudo_register_write (struct gdbarch *gdbarch, |
61def6bd KB |
588 | struct regcache *regcache, |
589 | int regno, const gdb_byte *buf) | |
590 | { | |
e17a4113 | 591 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
61def6bd KB |
592 | int i; |
593 | ||
594 | switch (regno) | |
595 | { | |
d031aafb NS |
596 | case MT_COPRO_REGNUM: |
597 | case MT_COPRO_PSEUDOREG_REGNUM: | |
598 | regcache_raw_write (regcache, MT_COPRO_REGNUM, buf); | |
599 | for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++) | |
9c5ea4d9 | 600 | regcache_invalidate (regcache, i); |
61def6bd | 601 | break; |
d031aafb NS |
602 | case MT_MAC_REGNUM: |
603 | case MT_MAC_PSEUDOREG_REGNUM: | |
3950dc3f NS |
604 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
605 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd KB |
606 | { |
607 | /* The 8-byte MAC pseudo-register must be broken down into two | |
608 | 32-byte registers. */ | |
609 | unsigned int oldmac, ext_mac; | |
610 | ULONGEST newmac; | |
611 | ||
e17a4113 | 612 | newmac = extract_unsigned_integer (buf, 8, byte_order); |
61def6bd KB |
613 | oldmac = newmac & 0xffffffff; |
614 | ext_mac = (newmac >> 32) & 0xff; | |
d031aafb NS |
615 | regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac); |
616 | regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac); | |
61def6bd KB |
617 | } |
618 | else | |
d031aafb | 619 | regcache_raw_write (regcache, MT_MAC_REGNUM, buf); |
61def6bd KB |
620 | break; |
621 | default: | |
60e81fcc NS |
622 | { |
623 | unsigned index = mt_select_coprocessor (gdbarch, regcache, regno); | |
624 | ||
03a73f77 | 625 | if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM) |
60e81fcc | 626 | mt_pseudo_register_write (gdbarch, regcache, |
03a73f77 | 627 | MT_MAC_PSEUDOREG_REGNUM, buf); |
60e81fcc NS |
628 | else if (index < MT_NUM_REGS - MT_CPR0_REGNUM) |
629 | regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf); | |
630 | } | |
61def6bd KB |
631 | break; |
632 | } | |
633 | } | |
634 | ||
635 | static CORE_ADDR | |
d031aafb | 636 | mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
61def6bd KB |
637 | { |
638 | /* Register size is 4 bytes. */ | |
639 | return align_down (sp, 4); | |
640 | } | |
641 | ||
642 | /* Implements the "info registers" command. When ``all'' is non-zero, | |
643 | the coprocessor registers will be printed in addition to the rest | |
644 | of the registers. */ | |
645 | ||
646 | static void | |
d031aafb | 647 | mt_registers_info (struct gdbarch *gdbarch, |
d93859e2 UW |
648 | struct ui_file *file, |
649 | struct frame_info *frame, int regnum, int all) | |
61def6bd | 650 | { |
e17a4113 UW |
651 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
652 | ||
61def6bd KB |
653 | if (regnum == -1) |
654 | { | |
655 | int lim; | |
656 | ||
d031aafb | 657 | lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS; |
61def6bd KB |
658 | |
659 | for (regnum = 0; regnum < lim; regnum++) | |
660 | { | |
661 | /* Don't display the Qchannel register since it will be displayed | |
662 | along with Ichannel. (See below.) */ | |
d031aafb | 663 | if (regnum == MT_QCHANNEL_REGNUM) |
61def6bd KB |
664 | continue; |
665 | ||
d031aafb | 666 | mt_registers_info (gdbarch, file, frame, regnum, all); |
61def6bd KB |
667 | |
668 | /* Display the Qchannel register immediately after Ichannel. */ | |
d031aafb NS |
669 | if (regnum == MT_ICHANNEL_REGNUM) |
670 | mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all); | |
61def6bd KB |
671 | } |
672 | } | |
673 | else | |
674 | { | |
d031aafb | 675 | if (regnum == MT_EXMAC_REGNUM) |
61def6bd | 676 | return; |
d031aafb | 677 | else if (regnum == MT_CONTEXT_REGNUM) |
61def6bd KB |
678 | { |
679 | /* Special output handling for 38-bit context register. */ | |
680 | unsigned char *buff; | |
681 | unsigned int *bytes, i, regsize; | |
682 | ||
683 | regsize = register_size (gdbarch, regnum); | |
684 | ||
685 | buff = alloca (regsize); | |
686 | bytes = alloca (regsize * sizeof (*bytes)); | |
687 | ||
ca9d61b9 | 688 | deprecated_frame_register_read (frame, regnum, buff); |
61def6bd | 689 | |
c9f4d572 | 690 | fputs_filtered (gdbarch_register_name |
d93859e2 | 691 | (gdbarch, regnum), file); |
c9f4d572 | 692 | print_spaces_filtered (15 - strlen (gdbarch_register_name |
d93859e2 | 693 | (gdbarch, regnum)), |
c9f4d572 | 694 | file); |
61def6bd KB |
695 | fputs_filtered ("0x", file); |
696 | ||
697 | for (i = 0; i < regsize; i++) | |
698 | fprintf_filtered (file, "%02x", (unsigned int) | |
e17a4113 | 699 | extract_unsigned_integer (buff + i, 1, byte_order)); |
61def6bd KB |
700 | fputs_filtered ("\t", file); |
701 | print_longest (file, 'd', 0, | |
e17a4113 | 702 | extract_unsigned_integer (buff, regsize, byte_order)); |
61def6bd KB |
703 | fputs_filtered ("\n", file); |
704 | } | |
d031aafb NS |
705 | else if (regnum == MT_COPRO_REGNUM |
706 | || regnum == MT_COPRO_PSEUDOREG_REGNUM) | |
61def6bd KB |
707 | { |
708 | /* Special output handling for the 'coprocessor' register. */ | |
58b78171 | 709 | gdb_byte *buf; |
79a45b7d | 710 | struct value_print_options opts; |
61def6bd | 711 | |
d031aafb | 712 | buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM)); |
ca9d61b9 | 713 | deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf); |
61def6bd | 714 | /* And print. */ |
d031aafb | 715 | regnum = MT_COPRO_PSEUDOREG_REGNUM; |
d93859e2 | 716 | fputs_filtered (gdbarch_register_name (gdbarch, regnum), |
c9f4d572 UW |
717 | file); |
718 | print_spaces_filtered (15 - strlen (gdbarch_register_name | |
d93859e2 | 719 | (gdbarch, regnum)), |
c9f4d572 | 720 | file); |
915dd369 | 721 | get_no_prettyformat_print_options (&opts); |
79a45b7d | 722 | opts.deref_ref = 1; |
61def6bd | 723 | val_print (register_type (gdbarch, regnum), buf, |
0e03807e TT |
724 | 0, 0, file, 0, NULL, |
725 | &opts, current_language); | |
61def6bd KB |
726 | fputs_filtered ("\n", file); |
727 | } | |
d031aafb | 728 | else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM) |
61def6bd KB |
729 | { |
730 | ULONGEST oldmac, ext_mac, newmac; | |
58b78171 | 731 | gdb_byte buf[3 * sizeof (LONGEST)]; |
61def6bd KB |
732 | |
733 | /* Get the two "real" mac registers. */ | |
ca9d61b9 | 734 | deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf); |
3950dc3f | 735 | oldmac = extract_unsigned_integer |
e17a4113 | 736 | (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order); |
58b78171 NS |
737 | if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2 |
738 | || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2) | |
61def6bd | 739 | { |
ca9d61b9 | 740 | deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf); |
3950dc3f | 741 | ext_mac = extract_unsigned_integer |
e17a4113 | 742 | (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order); |
61def6bd KB |
743 | } |
744 | else | |
745 | ext_mac = 0; | |
746 | ||
747 | /* Add them together. */ | |
748 | newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32); | |
749 | ||
750 | /* And print. */ | |
d031aafb | 751 | regnum = MT_MAC_PSEUDOREG_REGNUM; |
d93859e2 | 752 | fputs_filtered (gdbarch_register_name (gdbarch, regnum), |
c9f4d572 UW |
753 | file); |
754 | print_spaces_filtered (15 - strlen (gdbarch_register_name | |
d93859e2 | 755 | (gdbarch, regnum)), |
c9f4d572 | 756 | file); |
61def6bd KB |
757 | fputs_filtered ("0x", file); |
758 | print_longest (file, 'x', 0, newmac); | |
759 | fputs_filtered ("\t", file); | |
760 | print_longest (file, 'u', 0, newmac); | |
761 | fputs_filtered ("\n", file); | |
762 | } | |
763 | else | |
764 | default_print_registers_info (gdbarch, file, frame, regnum, all); | |
765 | } | |
766 | } | |
767 | ||
768 | /* Set up the callee's arguments for an inferior function call. The | |
769 | arguments are pushed on the stack or are placed in registers as | |
770 | appropriate. It also sets up the return address (which points to | |
771 | the call dummy breakpoint). | |
772 | ||
773 | Returns the updated (and aligned) stack pointer. */ | |
774 | ||
775 | static CORE_ADDR | |
d031aafb | 776 | mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
61def6bd KB |
777 | struct regcache *regcache, CORE_ADDR bp_addr, |
778 | int nargs, struct value **args, CORE_ADDR sp, | |
779 | int struct_return, CORE_ADDR struct_addr) | |
780 | { | |
781 | #define wordsize 4 | |
e17a4113 | 782 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d031aafb NS |
783 | gdb_byte buf[MT_MAX_STRUCT_SIZE]; |
784 | int argreg = MT_1ST_ARGREG; | |
61def6bd KB |
785 | int split_param_len = 0; |
786 | int stack_dest = sp; | |
787 | int slacklen; | |
788 | int typelen; | |
789 | int i, j; | |
790 | ||
d031aafb NS |
791 | /* First handle however many args we can fit into MT_1ST_ARGREG thru |
792 | MT_LAST_ARGREG. */ | |
793 | for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++) | |
61def6bd | 794 | { |
58b78171 | 795 | const gdb_byte *val; |
61def6bd KB |
796 | typelen = TYPE_LENGTH (value_type (args[i])); |
797 | switch (typelen) | |
798 | { | |
799 | case 1: | |
800 | case 2: | |
801 | case 3: | |
802 | case 4: | |
803 | regcache_cooked_write_unsigned (regcache, argreg++, | |
804 | extract_unsigned_integer | |
805 | (value_contents (args[i]), | |
e17a4113 | 806 | wordsize, byte_order)); |
61def6bd KB |
807 | break; |
808 | case 8: | |
809 | case 12: | |
810 | case 16: | |
811 | val = value_contents (args[i]); | |
812 | while (typelen > 0) | |
813 | { | |
d031aafb | 814 | if (argreg <= MT_LAST_ARGREG) |
61def6bd KB |
815 | { |
816 | /* This word of the argument is passed in a register. */ | |
817 | regcache_cooked_write_unsigned (regcache, argreg++, | |
818 | extract_unsigned_integer | |
e17a4113 | 819 | (val, wordsize, byte_order)); |
61def6bd KB |
820 | typelen -= wordsize; |
821 | val += wordsize; | |
822 | } | |
823 | else | |
824 | { | |
825 | /* Remainder of this arg must be passed on the stack | |
826 | (deferred to do later). */ | |
827 | split_param_len = typelen; | |
828 | memcpy (buf, val, typelen); | |
829 | break; /* No more args can be handled in regs. */ | |
830 | } | |
831 | } | |
832 | break; | |
833 | default: | |
834 | /* By reverse engineering of gcc output, args bigger than | |
835 | 16 bytes go on the stack, and their address is passed | |
836 | in the argreg. */ | |
837 | stack_dest -= typelen; | |
838 | write_memory (stack_dest, value_contents (args[i]), typelen); | |
839 | regcache_cooked_write_unsigned (regcache, argreg++, stack_dest); | |
840 | break; | |
841 | } | |
842 | } | |
843 | ||
844 | /* Next, the rest of the arguments go onto the stack, in reverse order. */ | |
845 | for (j = nargs - 1; j >= i; j--) | |
846 | { | |
58b78171 | 847 | gdb_byte *val; |
ecfb0d68 SP |
848 | struct cleanup *back_to; |
849 | const gdb_byte *contents = value_contents (args[j]); | |
58b78171 | 850 | |
61def6bd KB |
851 | /* Right-justify the value in an aligned-length buffer. */ |
852 | typelen = TYPE_LENGTH (value_type (args[j])); | |
853 | slacklen = (wordsize - (typelen % wordsize)) % wordsize; | |
ecfb0d68 SP |
854 | val = xmalloc (typelen + slacklen); |
855 | back_to = make_cleanup (xfree, val); | |
856 | memcpy (val, contents, typelen); | |
61def6bd KB |
857 | memset (val + typelen, 0, slacklen); |
858 | /* Now write this data to the stack. */ | |
859 | stack_dest -= typelen + slacklen; | |
860 | write_memory (stack_dest, val, typelen + slacklen); | |
ecfb0d68 | 861 | do_cleanups (back_to); |
61def6bd KB |
862 | } |
863 | ||
864 | /* Finally, if a param needs to be split between registers and stack, | |
865 | write the second half to the stack now. */ | |
866 | if (split_param_len != 0) | |
867 | { | |
868 | stack_dest -= split_param_len; | |
869 | write_memory (stack_dest, buf, split_param_len); | |
870 | } | |
871 | ||
872 | /* Set up return address (provided to us as bp_addr). */ | |
d031aafb | 873 | regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr); |
61def6bd KB |
874 | |
875 | /* Store struct return address, if given. */ | |
876 | if (struct_return && struct_addr != 0) | |
d031aafb | 877 | regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr); |
61def6bd KB |
878 | |
879 | /* Set aside 16 bytes for the callee to save regs 1-4. */ | |
880 | stack_dest -= 16; | |
881 | ||
882 | /* Update the stack pointer. */ | |
d031aafb | 883 | regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest); |
61def6bd KB |
884 | |
885 | /* And that should do it. Return the new stack pointer. */ | |
886 | return stack_dest; | |
887 | } | |
888 | ||
889 | ||
890 | /* The 'unwind_cache' data structure. */ | |
891 | ||
d031aafb | 892 | struct mt_unwind_cache |
61def6bd | 893 | { |
025bb325 | 894 | /* The previous frame's inner most stack address. |
61def6bd KB |
895 | Used as this frame ID's stack_addr. */ |
896 | CORE_ADDR prev_sp; | |
897 | CORE_ADDR frame_base; | |
898 | int framesize; | |
899 | int frameless_p; | |
900 | ||
901 | /* Table indicating the location of each and every register. */ | |
902 | struct trad_frame_saved_reg *saved_regs; | |
903 | }; | |
904 | ||
905 | /* Initialize an unwind_cache. Build up the saved_regs table etc. for | |
906 | the frame. */ | |
907 | ||
d031aafb | 908 | static struct mt_unwind_cache * |
94afd7a6 | 909 | mt_frame_unwind_cache (struct frame_info *this_frame, |
61def6bd KB |
910 | void **this_prologue_cache) |
911 | { | |
912 | struct gdbarch *gdbarch; | |
d031aafb | 913 | struct mt_unwind_cache *info; |
61def6bd KB |
914 | CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr; |
915 | unsigned long instr, upper_half, delayed_store = 0; | |
916 | int regnum, offset; | |
917 | ULONGEST sp, fp; | |
918 | ||
919 | if ((*this_prologue_cache)) | |
920 | return (*this_prologue_cache); | |
921 | ||
94afd7a6 | 922 | gdbarch = get_frame_arch (this_frame); |
d031aafb | 923 | info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache); |
61def6bd KB |
924 | (*this_prologue_cache) = info; |
925 | ||
926 | info->prev_sp = 0; | |
927 | info->framesize = 0; | |
928 | info->frame_base = 0; | |
929 | info->frameless_p = 1; | |
94afd7a6 | 930 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
61def6bd | 931 | |
025bb325 | 932 | /* Grab the frame-relative values of SP and FP, needed below. |
61def6bd KB |
933 | The frame_saved_register function will find them on the |
934 | stack or in the registers as appropriate. */ | |
94afd7a6 UW |
935 | sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM); |
936 | fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM); | |
61def6bd | 937 | |
94afd7a6 | 938 | start_addr = get_frame_func (this_frame); |
61def6bd KB |
939 | |
940 | /* Return early if GDB couldn't find the function. */ | |
941 | if (start_addr == 0) | |
942 | return info; | |
943 | ||
94afd7a6 | 944 | end_addr = get_frame_pc (this_frame); |
d80b854b | 945 | prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr); |
61def6bd KB |
946 | if (end_addr == 0) |
947 | for (next_addr = start_addr; next_addr < end_addr; next_addr += 4) | |
948 | { | |
94afd7a6 | 949 | instr = get_frame_memory_unsigned (this_frame, next_addr, 4); |
025bb325 | 950 | if (delayed_store) /* Previous instr was a push. */ |
61def6bd KB |
951 | { |
952 | upper_half = delayed_store >> 16; | |
953 | regnum = upper_half & 0xf; | |
954 | offset = delayed_store & 0xffff; | |
955 | switch (upper_half & 0xfff0) | |
956 | { | |
025bb325 | 957 | case 0x43c0: /* push using frame pointer. */ |
61def6bd KB |
958 | info->saved_regs[regnum].addr = offset; |
959 | break; | |
025bb325 | 960 | case 0x43d0: /* push using stack pointer. */ |
61def6bd KB |
961 | info->saved_regs[regnum].addr = offset; |
962 | break; | |
963 | default: /* lint */ | |
964 | break; | |
965 | } | |
966 | delayed_store = 0; | |
967 | } | |
968 | ||
969 | switch (instr) | |
970 | { | |
971 | case 0x12000000: /* NO-OP */ | |
972 | continue; | |
973 | case 0x12ddc000: /* copy sp into fp */ | |
025bb325 MS |
974 | info->frameless_p = 0; /* Record that the frame |
975 | pointer is in use. */ | |
61def6bd KB |
976 | continue; |
977 | default: | |
978 | upper_half = instr >> 16; | |
979 | if (upper_half == 0x05dd || /* subi sp, sp, imm */ | |
980 | upper_half == 0x07dd) /* subui sp, sp, imm */ | |
981 | { | |
982 | /* Record the frame size. */ | |
983 | info->framesize = instr & 0xffff; | |
984 | continue; | |
985 | } | |
986 | if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */ | |
987 | (upper_half & 0xfff0) == 0x43d0) /* stack push */ | |
988 | { | |
989 | /* Save this instruction, but don't record the | |
990 | pushed register as 'saved' until we see the | |
991 | next instruction. That's because of deferred stores | |
992 | on this target -- GDB won't be able to read the register | |
993 | from the stack until one instruction later. */ | |
994 | delayed_store = instr; | |
995 | continue; | |
996 | } | |
997 | /* Not a prologue instruction. Is this the end of the prologue? | |
998 | This is the most difficult decision; when to stop scanning. | |
999 | ||
1000 | If we have no line symbol, then the best thing we can do | |
1001 | is to stop scanning when we encounter an instruction that | |
1002 | is not likely to be a part of the prologue. | |
1003 | ||
1004 | But if we do have a line symbol, then we should | |
1005 | keep scanning until we reach it (or we reach end_addr). */ | |
1006 | ||
1007 | if (prologue_end_addr && (prologue_end_addr > (next_addr + 4))) | |
025bb325 | 1008 | continue; /* Keep scanning, recording saved_regs etc. */ |
61def6bd | 1009 | else |
025bb325 | 1010 | break; /* Quit scanning: breakpoint can be set here. */ |
61def6bd KB |
1011 | } |
1012 | } | |
1013 | ||
1014 | /* Special handling for the "saved" address of the SP: | |
1015 | The SP is of course never saved on the stack at all, so | |
1016 | by convention what we put here is simply the previous | |
1017 | _value_ of the SP (as opposed to an address where the | |
1018 | previous value would have been pushed). This will also | |
1019 | give us the frame base address. */ | |
1020 | ||
1021 | if (info->frameless_p) | |
1022 | { | |
1023 | info->frame_base = sp + info->framesize; | |
1024 | info->prev_sp = sp + info->framesize; | |
1025 | } | |
1026 | else | |
1027 | { | |
1028 | info->frame_base = fp + info->framesize; | |
1029 | info->prev_sp = fp + info->framesize; | |
1030 | } | |
1031 | /* Save prev_sp in saved_regs as a value, not as an address. */ | |
d031aafb | 1032 | trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp); |
61def6bd KB |
1033 | |
1034 | /* Now convert frame offsets to actual addresses (not offsets). */ | |
d031aafb | 1035 | for (regnum = 0; regnum < MT_NUM_REGS; regnum++) |
61def6bd KB |
1036 | if (trad_frame_addr_p (info->saved_regs, regnum)) |
1037 | info->saved_regs[regnum].addr += info->frame_base - info->framesize; | |
1038 | ||
1039 | /* The call instruction moves the caller's PC in the callee's RA reg. | |
1040 | Since this is an unwind, do the reverse. Copy the location of RA | |
1041 | into PC (the address / regnum) so that a request for PC will be | |
1042 | converted into a request for the RA. */ | |
d031aafb | 1043 | info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM]; |
61def6bd KB |
1044 | |
1045 | return info; | |
1046 | } | |
1047 | ||
1048 | static CORE_ADDR | |
d031aafb | 1049 | mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd KB |
1050 | { |
1051 | ULONGEST pc; | |
1052 | ||
11411de3 | 1053 | pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM); |
61def6bd KB |
1054 | return pc; |
1055 | } | |
1056 | ||
1057 | static CORE_ADDR | |
d031aafb | 1058 | mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) |
61def6bd KB |
1059 | { |
1060 | ULONGEST sp; | |
1061 | ||
11411de3 | 1062 | sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM); |
61def6bd KB |
1063 | return sp; |
1064 | } | |
1065 | ||
94afd7a6 UW |
1066 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1067 | frame. The frame ID's base needs to match the TOS value saved by | |
1068 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
61def6bd KB |
1069 | |
1070 | static struct frame_id | |
94afd7a6 | 1071 | mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
61def6bd | 1072 | { |
94afd7a6 UW |
1073 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM); |
1074 | return frame_id_build (sp, get_frame_pc (this_frame)); | |
61def6bd KB |
1075 | } |
1076 | ||
1077 | /* Given a GDB frame, determine the address of the calling function's | |
1078 | frame. This will be used to create a new GDB frame struct. */ | |
1079 | ||
1080 | static void | |
94afd7a6 | 1081 | mt_frame_this_id (struct frame_info *this_frame, |
61def6bd KB |
1082 | void **this_prologue_cache, struct frame_id *this_id) |
1083 | { | |
d031aafb | 1084 | struct mt_unwind_cache *info = |
94afd7a6 | 1085 | mt_frame_unwind_cache (this_frame, this_prologue_cache); |
61def6bd KB |
1086 | |
1087 | if (!(info == NULL || info->prev_sp == 0)) | |
94afd7a6 | 1088 | (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame)); |
93d42b30 | 1089 | |
61def6bd KB |
1090 | return; |
1091 | } | |
1092 | ||
94afd7a6 UW |
1093 | static struct value * |
1094 | mt_frame_prev_register (struct frame_info *this_frame, | |
1095 | void **this_prologue_cache, int regnum) | |
61def6bd | 1096 | { |
d031aafb | 1097 | struct mt_unwind_cache *info = |
94afd7a6 | 1098 | mt_frame_unwind_cache (this_frame, this_prologue_cache); |
61def6bd | 1099 | |
94afd7a6 | 1100 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
61def6bd KB |
1101 | } |
1102 | ||
1103 | static CORE_ADDR | |
94afd7a6 | 1104 | mt_frame_base_address (struct frame_info *this_frame, |
61def6bd KB |
1105 | void **this_prologue_cache) |
1106 | { | |
d031aafb | 1107 | struct mt_unwind_cache *info = |
94afd7a6 | 1108 | mt_frame_unwind_cache (this_frame, this_prologue_cache); |
61def6bd KB |
1109 | |
1110 | return info->frame_base; | |
1111 | } | |
1112 | ||
1113 | /* This is a shared interface: the 'frame_unwind' object is what's | |
1114 | returned by the 'sniffer' function, and in turn specifies how to | |
1115 | get a frame's ID and prev_regs. | |
1116 | ||
1117 | This exports the 'prev_register' and 'this_id' methods. */ | |
1118 | ||
d031aafb | 1119 | static const struct frame_unwind mt_frame_unwind = { |
61def6bd | 1120 | NORMAL_FRAME, |
8fbca658 | 1121 | default_frame_unwind_stop_reason, |
d031aafb | 1122 | mt_frame_this_id, |
94afd7a6 UW |
1123 | mt_frame_prev_register, |
1124 | NULL, | |
1125 | default_frame_sniffer | |
61def6bd KB |
1126 | }; |
1127 | ||
61def6bd KB |
1128 | /* Another shared interface: the 'frame_base' object specifies how to |
1129 | unwind a frame and secure the base addresses for frame objects | |
1130 | (locals, args). */ | |
1131 | ||
d031aafb NS |
1132 | static struct frame_base mt_frame_base = { |
1133 | &mt_frame_unwind, | |
1134 | mt_frame_base_address, | |
1135 | mt_frame_base_address, | |
1136 | mt_frame_base_address | |
61def6bd KB |
1137 | }; |
1138 | ||
1139 | static struct gdbarch * | |
d031aafb | 1140 | mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
61def6bd KB |
1141 | { |
1142 | struct gdbarch *gdbarch; | |
df4df182 | 1143 | struct gdbarch_tdep *tdep; |
61def6bd KB |
1144 | |
1145 | /* Find a candidate among the list of pre-declared architectures. */ | |
1146 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1147 | if (arches != NULL) | |
1148 | return arches->gdbarch; | |
1149 | ||
1150 | /* None found, create a new architecture from the information | |
1151 | provided. */ | |
fc270c35 | 1152 | tdep = XCNEW (struct gdbarch_tdep); |
df4df182 | 1153 | gdbarch = gdbarch_alloc (&info, tdep); |
61def6bd | 1154 | |
cb5c8c39 DJ |
1155 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1156 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
1157 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
61def6bd | 1158 | |
d031aafb NS |
1159 | set_gdbarch_register_name (gdbarch, mt_register_name); |
1160 | set_gdbarch_num_regs (gdbarch, MT_NUM_REGS); | |
1161 | set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS); | |
1162 | set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM); | |
1163 | set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM); | |
1164 | set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read); | |
1165 | set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write); | |
1166 | set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue); | |
61def6bd | 1167 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
d031aafb | 1168 | set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc); |
61def6bd KB |
1169 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
1170 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
d031aafb NS |
1171 | set_gdbarch_print_insn (gdbarch, print_insn_mt); |
1172 | set_gdbarch_register_type (gdbarch, mt_register_type); | |
1173 | set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p); | |
61def6bd | 1174 | |
d031aafb NS |
1175 | set_gdbarch_return_value (gdbarch, mt_return_value); |
1176 | set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM); | |
61def6bd | 1177 | |
d031aafb | 1178 | set_gdbarch_frame_align (gdbarch, mt_frame_align); |
61def6bd | 1179 | |
d031aafb | 1180 | set_gdbarch_print_registers_info (gdbarch, mt_registers_info); |
61def6bd | 1181 | |
d031aafb | 1182 | set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call); |
61def6bd KB |
1183 | |
1184 | /* Target builtin data types. */ | |
1185 | set_gdbarch_short_bit (gdbarch, 16); | |
1186 | set_gdbarch_int_bit (gdbarch, 32); | |
1187 | set_gdbarch_long_bit (gdbarch, 32); | |
1188 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1189 | set_gdbarch_float_bit (gdbarch, 32); | |
1190 | set_gdbarch_double_bit (gdbarch, 64); | |
1191 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1192 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1193 | ||
1194 | /* Register the DWARF 2 sniffer first, and then the traditional prologue | |
1195 | based sniffer. */ | |
94afd7a6 UW |
1196 | dwarf2_append_unwinders (gdbarch); |
1197 | frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind); | |
d031aafb | 1198 | frame_base_set_default (gdbarch, &mt_frame_base); |
61def6bd KB |
1199 | |
1200 | /* Register the 'unwind_pc' method. */ | |
d031aafb NS |
1201 | set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc); |
1202 | set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp); | |
61def6bd | 1203 | |
025bb325 | 1204 | /* Methods for saving / extracting a dummy frame's ID. |
61def6bd KB |
1205 | The ID's stack address must match the SP value returned by |
1206 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
94afd7a6 | 1207 | set_gdbarch_dummy_id (gdbarch, mt_dummy_id); |
61def6bd KB |
1208 | |
1209 | return gdbarch; | |
1210 | } | |
1211 | ||
63807e1d PA |
1212 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
1213 | extern initialize_file_ftype _initialize_mt_tdep; | |
1214 | ||
61def6bd | 1215 | void |
d031aafb | 1216 | _initialize_mt_tdep (void) |
61def6bd | 1217 | { |
d031aafb | 1218 | register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init); |
61def6bd | 1219 | } |