*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mt-tdep.c
CommitLineData
d031aafb 1/* Target-dependent code for Morpho mt processor, for GDB.
61def6bd 2
6aba47ca 3 Copyright (C) 2005, 2007 Free Software Foundation, Inc.
61def6bd
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
61def6bd
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
61def6bd
KB
19
20/* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22#include "defs.h"
23#include "frame.h"
24#include "frame-unwind.h"
25#include "frame-base.h"
26#include "symtab.h"
27#include "dis-asm.h"
28#include "arch-utils.h"
29#include "gdbtypes.h"
30#include "gdb_string.h"
31#include "regcache.h"
32#include "reggroups.h"
33#include "gdbcore.h"
34#include "trad-frame.h"
35#include "inferior.h"
36#include "dwarf2-frame.h"
37#include "infcall.h"
38#include "gdb_assert.h"
39
d031aafb 40enum mt_arch_constants
61def6bd 41{
d031aafb 42 MT_MAX_STRUCT_SIZE = 16
61def6bd
KB
43};
44
d031aafb 45enum mt_gdb_regnums
61def6bd 46{
d031aafb
NS
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
61def6bd
KB
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
d031aafb 72 MT_INT_ENABLE_REGNUM,
61def6bd
KB
73 /* End of CPU regs. */
74
d031aafb 75 MT_NUM_CPU_REGS,
61def6bd
KB
76
77 /* Co-processor registers. */
d031aafb
NS
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
61def6bd 100 six bytes). */
d031aafb
NS
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
03a73f77
MM
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
61def6bd
KB
116
117 /* Number of real registers. */
d031aafb 118 MT_NUM_REGS,
61def6bd
KB
119
120 /* Pseudo-registers. */
d031aafb
NS
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
60e81fcc
NS
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
03a73f77
MM
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
61def6bd
KB
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
60e81fcc
NS
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
61def6bd
KB
138};
139
140/* Return name of register number specified by REGNUM. */
141
142static const char *
d93859e2 143mt_register_name (struct gdbarch *gdbarch, int regnum)
61def6bd 144{
58b78171 145 static const char *const register_names[] = {
61def6bd
KB
146 /* CPU regs. */
147 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
148 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
149 "pc", "IE",
150 /* Co-processor regs. */
151 "", /* copro register. */
152 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
153 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
154 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
155 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
03a73f77 156 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
61def6bd
KB
157 /* Pseudo-registers. */
158 "coprocessor", "MAC"
159 };
60e81fcc
NS
160 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
161 * MT_COPRO_PSEUDOREG_DIM_1
162 * MT_COPRO_PSEUDOREG_DIM_2];
163
164 if (regnum < 0)
165 return "";
166 if (regnum < ARRAY_SIZE (register_names))
167 return register_names[regnum];
168 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
169 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
170
171 {
172 char *name;
173 const char *stub;
174 unsigned dim_1;
175 unsigned dim_2;
176 unsigned index;
177
178 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
179 index = regnum % MT_COPRO_PSEUDOREG_REGS;
180 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
181 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
182 % MT_COPRO_PSEUDOREG_DIM_1);
183
03a73f77 184 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 185 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
03a73f77 186 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
60e81fcc
NS
187 stub = "";
188 else
189 stub = register_names[index + MT_CPR0_REGNUM];
190 if (!*stub)
191 {
192 array_names[regnum] = stub;
193 return stub;
194 }
195 name = xmalloc (30);
196 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
197 array_names[regnum] = name;
198 return name;
199 }
200}
61def6bd 201
60e81fcc
NS
202/* Return the type of a coprocessor register. */
203
204static struct type *
205mt_copro_register_type (struct gdbarch *arch, int regnum)
206{
207 switch (regnum)
208 {
209 case MT_INT_ENABLE_REGNUM:
210 case MT_ICHANNEL_REGNUM:
211 case MT_QCHANNEL_REGNUM:
212 case MT_ISCRAMB_REGNUM:
213 case MT_QSCRAMB_REGNUM:
214 return builtin_type_int32;
215 case MT_BYPA_REGNUM:
216 case MT_BYPB_REGNUM:
217 case MT_BYPC_REGNUM:
218 case MT_Z1_REGNUM:
219 case MT_Z2_REGNUM:
220 case MT_OUT_REGNUM:
03a73f77
MM
221 case MT_ZI2_REGNUM:
222 case MT_ZQ2_REGNUM:
60e81fcc
NS
223 return builtin_type_int16;
224 case MT_EXMAC_REGNUM:
225 case MT_MAC_REGNUM:
226 return builtin_type_uint32;
227 case MT_CONTEXT_REGNUM:
228 return builtin_type_long_long;
229 case MT_FLAG_REGNUM:
230 return builtin_type_unsigned_char;
231 default:
232 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
233 return builtin_type_int16;
03a73f77 234 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc
NS
235 {
236 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
237 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
238 return builtin_type_uint64;
239 else
240 return builtin_type_uint32;
241 }
242 else
243 return builtin_type_uint32;
244 }
61def6bd
KB
245}
246
247/* Given ARCH and a register number specified by REGNUM, return the
248 type of that register. */
249
250static struct type *
d031aafb 251mt_register_type (struct gdbarch *arch, int regnum)
61def6bd
KB
252{
253 static struct type *void_func_ptr = NULL;
254 static struct type *void_ptr = NULL;
255 static struct type *copro_type;
256
d031aafb 257 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
61def6bd
KB
258 {
259 if (void_func_ptr == NULL)
260 {
261 struct type *temp;
262
263 void_ptr = lookup_pointer_type (builtin_type_void);
264 void_func_ptr =
265 lookup_pointer_type (lookup_function_type (builtin_type_void));
266 temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
267 copro_type = create_array_type (NULL, builtin_type_int16, temp);
268 }
269 switch (regnum)
270 {
d031aafb
NS
271 case MT_PC_REGNUM:
272 case MT_RA_REGNUM:
273 case MT_IRA_REGNUM:
61def6bd 274 return void_func_ptr;
d031aafb
NS
275 case MT_SP_REGNUM:
276 case MT_FP_REGNUM:
61def6bd 277 return void_ptr;
d031aafb
NS
278 case MT_COPRO_REGNUM:
279 case MT_COPRO_PSEUDOREG_REGNUM:
61def6bd 280 return copro_type;
d031aafb 281 case MT_MAC_PSEUDOREG_REGNUM:
60e81fcc
NS
282 return mt_copro_register_type (arch,
283 MT_CPR0_REGNUM
03a73f77 284 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
61def6bd 285 default:
d031aafb 286 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
61def6bd 287 return builtin_type_int32;
60e81fcc
NS
288 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
289 return mt_copro_register_type (arch, regnum);
290 else
291 {
292 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
293 regnum %= MT_COPRO_PSEUDOREG_REGS;
294 regnum += MT_CPR0_REGNUM;
295 return mt_copro_register_type (arch, regnum);
296 }
61def6bd
KB
297 }
298 }
299 internal_error (__FILE__, __LINE__,
d031aafb 300 _("mt_register_type: illegal register number %d"), regnum);
61def6bd
KB
301}
302
303/* Return true if register REGNUM is a member of the register group
304 specified by GROUP. */
305
306static int
d031aafb 307mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
61def6bd
KB
308 struct reggroup *group)
309{
310 /* Groups of registers that can be displayed via "info reg". */
311 if (group == all_reggroup)
312 return (regnum >= 0
d031aafb 313 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
d93859e2 314 && mt_register_name (gdbarch, regnum)[0] != '\0');
61def6bd
KB
315
316 if (group == general_reggroup)
d031aafb 317 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
61def6bd
KB
318
319 if (group == float_reggroup)
320 return 0; /* No float regs. */
321
322 if (group == vector_reggroup)
323 return 0; /* No vector regs. */
324
325 /* For any that are not handled above. */
326 return default_register_reggroup_p (gdbarch, regnum, group);
327}
328
329/* Return the return value convention used for a given type TYPE.
330 Optionally, fetch or set the return value via READBUF or
331 WRITEBUF respectively using REGCACHE for the register
332 values. */
333
334static enum return_value_convention
d031aafb 335mt_return_value (struct gdbarch *gdbarch, struct type *type,
61def6bd
KB
336 struct regcache *regcache, gdb_byte *readbuf,
337 const gdb_byte *writebuf)
338{
339 if (TYPE_LENGTH (type) > 4)
340 {
341 /* Return values > 4 bytes are returned in memory,
342 pointed to by R11. */
343 if (readbuf)
344 {
345 ULONGEST addr;
346
d031aafb 347 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
348 read_memory (addr, readbuf, TYPE_LENGTH (type));
349 }
350
351 if (writebuf)
352 {
353 ULONGEST addr;
354
d031aafb 355 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
61def6bd
KB
356 write_memory (addr, writebuf, TYPE_LENGTH (type));
357 }
358
359 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
360 }
361 else
362 {
363 if (readbuf)
364 {
365 ULONGEST temp;
366
367 /* Return values of <= 4 bytes are returned in R11. */
d031aafb 368 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
61def6bd
KB
369 store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
370 }
371
372 if (writebuf)
373 {
374 if (TYPE_LENGTH (type) < 4)
375 {
376 gdb_byte buf[4];
377 /* Add leading zeros to the value. */
378 memset (buf, 0, sizeof (buf));
379 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
380 writebuf, TYPE_LENGTH (type));
d031aafb 381 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
61def6bd
KB
382 }
383 else /* (TYPE_LENGTH (type) == 4 */
d031aafb 384 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
61def6bd
KB
385 }
386
387 return RETURN_VALUE_REGISTER_CONVENTION;
388 }
389}
390
391/* If the input address, PC, is in a function prologue, return the
392 address of the end of the prologue, otherwise return the input
393 address.
394
395 Note: PC is likely to be the function start, since this function
396 is mainly used for advancing a breakpoint to the first line, or
397 stepping to the first line when we have stepped into a function
398 call. */
399
400static CORE_ADDR
d031aafb 401mt_skip_prologue (CORE_ADDR pc)
61def6bd
KB
402{
403 CORE_ADDR func_addr = 0, func_end = 0;
404 char *func_name;
405 unsigned long instr;
406
407 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
408 {
409 struct symtab_and_line sal;
410 struct symbol *sym;
411
412 /* Found a function. */
413 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
414 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
415 {
416 /* Don't use this trick for assembly source files. */
417 sal = find_pc_line (func_addr, 0);
418
419 if (sal.end && sal.end < func_end)
420 {
421 /* Found a line number, use it as end of prologue. */
422 return sal.end;
423 }
424 }
425 }
426
427 /* No function symbol, or no line symbol. Use prologue scanning method. */
428 for (;; pc += 4)
429 {
430 instr = read_memory_unsigned_integer (pc, 4);
431 if (instr == 0x12000000) /* nop */
432 continue;
433 if (instr == 0x12ddc000) /* copy sp into fp */
434 continue;
435 instr >>= 16;
436 if (instr == 0x05dd) /* subi sp, sp, imm */
437 continue;
438 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
439 continue;
440 /* Not an obvious prologue instruction. */
441 break;
442 }
443
444 return pc;
445}
446
447/* The breakpoint instruction must be the same size as the smallest
448 instruction in the instruction set.
449
3950dc3f
NS
450 The BP for ms1 is defined as 0x68000000 (BREAK).
451 The BP for ms2 is defined as 0x69000000 (illegal) */
61def6bd
KB
452
453static const gdb_byte *
67d57894
MD
454mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
455 int *bp_size)
61def6bd 456{
3950dc3f
NS
457 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
458 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
61def6bd
KB
459
460 *bp_size = 4;
67d57894 461 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
3950dc3f
NS
462 return ms2_breakpoint;
463
464 return ms1_breakpoint;
61def6bd
KB
465}
466
60e81fcc
NS
467/* Select the correct coprocessor register bank. Return the pseudo
468 regnum we really want to read. */
469
470static int
471mt_select_coprocessor (struct gdbarch *gdbarch,
472 struct regcache *regcache, int regno)
473{
474 unsigned index, base;
475 gdb_byte copro[4];
476
477 /* Get the copro pseudo regnum. */
478 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
479 base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
480 + extract_signed_integer (&copro[2], 2));
481
482 regno -= MT_COPRO_PSEUDOREG_ARRAY;
483 index = regno % MT_COPRO_PSEUDOREG_REGS;
484 regno /= MT_COPRO_PSEUDOREG_REGS;
485 if (base != regno)
486 {
487 /* Select the correct coprocessor register bank. Invalidate the
488 coprocessor register cache. */
489 unsigned ix;
490
491 store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
492 store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
493 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
494
495 /* We must flush the cache, as it is now invalid. */
496 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
9c5ea4d9 497 regcache_invalidate (regcache, ix);
60e81fcc
NS
498 }
499
500 return index;
501}
502
61def6bd
KB
503/* Fetch the pseudo registers:
504
60e81fcc 505 There are two regular pseudo-registers:
61def6bd
KB
506 1) The 'coprocessor' pseudo-register (which mirrors the
507 "real" coprocessor register sent by the target), and
508 2) The 'MAC' pseudo-register (which represents the union
509 of the original 32 bit target MAC register and the new
60e81fcc
NS
510 8-bit extended-MAC register).
511
512 Additionally there is an array of coprocessor registers which track
513 the coprocessor registers for each coprocessor. */
61def6bd
KB
514
515static void
d031aafb 516mt_pseudo_register_read (struct gdbarch *gdbarch,
61def6bd
KB
517 struct regcache *regcache, int regno, gdb_byte *buf)
518{
519 switch (regno)
520 {
d031aafb
NS
521 case MT_COPRO_REGNUM:
522 case MT_COPRO_PSEUDOREG_REGNUM:
523 regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
61def6bd 524 break;
d031aafb
NS
525 case MT_MAC_REGNUM:
526 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
527 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
528 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
529 {
530 ULONGEST oldmac = 0, ext_mac = 0;
531 ULONGEST newmac;
532
d031aafb
NS
533 regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
534 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
61def6bd
KB
535 newmac =
536 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
537 store_signed_integer (buf, 8, newmac);
538 }
539 else
d031aafb 540 regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
541 break;
542 default:
60e81fcc
NS
543 {
544 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
545
03a73f77 546 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 547 mt_pseudo_register_read (gdbarch, regcache,
03a73f77 548 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
549 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
550 regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
551 }
61def6bd
KB
552 break;
553 }
554}
555
556/* Write the pseudo registers:
557
d031aafb 558 Mt pseudo-registers are stored directly to the target. The
61def6bd
KB
559 'coprocessor' register is special, because when it is modified, all
560 the other coprocessor regs must be flushed from the reg cache. */
561
562static void
d031aafb 563mt_pseudo_register_write (struct gdbarch *gdbarch,
61def6bd
KB
564 struct regcache *regcache,
565 int regno, const gdb_byte *buf)
566{
567 int i;
568
569 switch (regno)
570 {
d031aafb
NS
571 case MT_COPRO_REGNUM:
572 case MT_COPRO_PSEUDOREG_REGNUM:
573 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
574 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
9c5ea4d9 575 regcache_invalidate (regcache, i);
61def6bd 576 break;
d031aafb
NS
577 case MT_MAC_REGNUM:
578 case MT_MAC_PSEUDOREG_REGNUM:
3950dc3f
NS
579 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
580 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd
KB
581 {
582 /* The 8-byte MAC pseudo-register must be broken down into two
583 32-byte registers. */
584 unsigned int oldmac, ext_mac;
585 ULONGEST newmac;
586
587 newmac = extract_unsigned_integer (buf, 8);
588 oldmac = newmac & 0xffffffff;
589 ext_mac = (newmac >> 32) & 0xff;
d031aafb
NS
590 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
591 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
61def6bd
KB
592 }
593 else
d031aafb 594 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
61def6bd
KB
595 break;
596 default:
60e81fcc
NS
597 {
598 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
599
03a73f77 600 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
60e81fcc 601 mt_pseudo_register_write (gdbarch, regcache,
03a73f77 602 MT_MAC_PSEUDOREG_REGNUM, buf);
60e81fcc
NS
603 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
604 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
605 }
61def6bd
KB
606 break;
607 }
608}
609
610static CORE_ADDR
d031aafb 611mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
61def6bd
KB
612{
613 /* Register size is 4 bytes. */
614 return align_down (sp, 4);
615}
616
617/* Implements the "info registers" command. When ``all'' is non-zero,
618 the coprocessor registers will be printed in addition to the rest
619 of the registers. */
620
621static void
d031aafb 622mt_registers_info (struct gdbarch *gdbarch,
d93859e2
UW
623 struct ui_file *file,
624 struct frame_info *frame, int regnum, int all)
61def6bd
KB
625{
626 if (regnum == -1)
627 {
628 int lim;
629
d031aafb 630 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
61def6bd
KB
631
632 for (regnum = 0; regnum < lim; regnum++)
633 {
634 /* Don't display the Qchannel register since it will be displayed
635 along with Ichannel. (See below.) */
d031aafb 636 if (regnum == MT_QCHANNEL_REGNUM)
61def6bd
KB
637 continue;
638
d031aafb 639 mt_registers_info (gdbarch, file, frame, regnum, all);
61def6bd
KB
640
641 /* Display the Qchannel register immediately after Ichannel. */
d031aafb
NS
642 if (regnum == MT_ICHANNEL_REGNUM)
643 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
61def6bd
KB
644 }
645 }
646 else
647 {
d031aafb 648 if (regnum == MT_EXMAC_REGNUM)
61def6bd 649 return;
d031aafb 650 else if (regnum == MT_CONTEXT_REGNUM)
61def6bd
KB
651 {
652 /* Special output handling for 38-bit context register. */
653 unsigned char *buff;
654 unsigned int *bytes, i, regsize;
655
656 regsize = register_size (gdbarch, regnum);
657
658 buff = alloca (regsize);
659 bytes = alloca (regsize * sizeof (*bytes));
660
661 frame_register_read (frame, regnum, buff);
662
c9f4d572 663 fputs_filtered (gdbarch_register_name
d93859e2 664 (gdbarch, regnum), file);
c9f4d572 665 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 666 (gdbarch, regnum)),
c9f4d572 667 file);
61def6bd
KB
668 fputs_filtered ("0x", file);
669
670 for (i = 0; i < regsize; i++)
671 fprintf_filtered (file, "%02x", (unsigned int)
672 extract_unsigned_integer (buff + i, 1));
673 fputs_filtered ("\t", file);
674 print_longest (file, 'd', 0,
675 extract_unsigned_integer (buff, regsize));
676 fputs_filtered ("\n", file);
677 }
d031aafb
NS
678 else if (regnum == MT_COPRO_REGNUM
679 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
61def6bd
KB
680 {
681 /* Special output handling for the 'coprocessor' register. */
58b78171 682 gdb_byte *buf;
61def6bd 683
d031aafb
NS
684 buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
685 frame_register_read (frame, MT_COPRO_REGNUM, buf);
61def6bd 686 /* And print. */
d031aafb 687 regnum = MT_COPRO_PSEUDOREG_REGNUM;
d93859e2 688 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
689 file);
690 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 691 (gdbarch, regnum)),
c9f4d572 692 file);
61def6bd
KB
693 val_print (register_type (gdbarch, regnum), buf,
694 0, 0, file, 0, 1, 0, Val_no_prettyprint);
695 fputs_filtered ("\n", file);
696 }
d031aafb 697 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
61def6bd
KB
698 {
699 ULONGEST oldmac, ext_mac, newmac;
58b78171 700 gdb_byte buf[3 * sizeof (LONGEST)];
61def6bd
KB
701
702 /* Get the two "real" mac registers. */
d031aafb 703 frame_register_read (frame, MT_MAC_REGNUM, buf);
3950dc3f 704 oldmac = extract_unsigned_integer
d031aafb 705 (buf, register_size (gdbarch, MT_MAC_REGNUM));
58b78171
NS
706 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
707 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
61def6bd 708 {
d031aafb 709 frame_register_read (frame, MT_EXMAC_REGNUM, buf);
3950dc3f 710 ext_mac = extract_unsigned_integer
d031aafb 711 (buf, register_size (gdbarch, MT_EXMAC_REGNUM));
61def6bd
KB
712 }
713 else
714 ext_mac = 0;
715
716 /* Add them together. */
717 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
718
719 /* And print. */
d031aafb 720 regnum = MT_MAC_PSEUDOREG_REGNUM;
d93859e2 721 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
c9f4d572
UW
722 file);
723 print_spaces_filtered (15 - strlen (gdbarch_register_name
d93859e2 724 (gdbarch, regnum)),
c9f4d572 725 file);
61def6bd
KB
726 fputs_filtered ("0x", file);
727 print_longest (file, 'x', 0, newmac);
728 fputs_filtered ("\t", file);
729 print_longest (file, 'u', 0, newmac);
730 fputs_filtered ("\n", file);
731 }
732 else
733 default_print_registers_info (gdbarch, file, frame, regnum, all);
734 }
735}
736
737/* Set up the callee's arguments for an inferior function call. The
738 arguments are pushed on the stack or are placed in registers as
739 appropriate. It also sets up the return address (which points to
740 the call dummy breakpoint).
741
742 Returns the updated (and aligned) stack pointer. */
743
744static CORE_ADDR
d031aafb 745mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
61def6bd
KB
746 struct regcache *regcache, CORE_ADDR bp_addr,
747 int nargs, struct value **args, CORE_ADDR sp,
748 int struct_return, CORE_ADDR struct_addr)
749{
750#define wordsize 4
d031aafb
NS
751 gdb_byte buf[MT_MAX_STRUCT_SIZE];
752 int argreg = MT_1ST_ARGREG;
61def6bd
KB
753 int split_param_len = 0;
754 int stack_dest = sp;
755 int slacklen;
756 int typelen;
757 int i, j;
758
d031aafb
NS
759 /* First handle however many args we can fit into MT_1ST_ARGREG thru
760 MT_LAST_ARGREG. */
761 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
61def6bd 762 {
58b78171 763 const gdb_byte *val;
61def6bd
KB
764 typelen = TYPE_LENGTH (value_type (args[i]));
765 switch (typelen)
766 {
767 case 1:
768 case 2:
769 case 3:
770 case 4:
771 regcache_cooked_write_unsigned (regcache, argreg++,
772 extract_unsigned_integer
773 (value_contents (args[i]),
774 wordsize));
775 break;
776 case 8:
777 case 12:
778 case 16:
779 val = value_contents (args[i]);
780 while (typelen > 0)
781 {
d031aafb 782 if (argreg <= MT_LAST_ARGREG)
61def6bd
KB
783 {
784 /* This word of the argument is passed in a register. */
785 regcache_cooked_write_unsigned (regcache, argreg++,
786 extract_unsigned_integer
787 (val, wordsize));
788 typelen -= wordsize;
789 val += wordsize;
790 }
791 else
792 {
793 /* Remainder of this arg must be passed on the stack
794 (deferred to do later). */
795 split_param_len = typelen;
796 memcpy (buf, val, typelen);
797 break; /* No more args can be handled in regs. */
798 }
799 }
800 break;
801 default:
802 /* By reverse engineering of gcc output, args bigger than
803 16 bytes go on the stack, and their address is passed
804 in the argreg. */
805 stack_dest -= typelen;
806 write_memory (stack_dest, value_contents (args[i]), typelen);
807 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
808 break;
809 }
810 }
811
812 /* Next, the rest of the arguments go onto the stack, in reverse order. */
813 for (j = nargs - 1; j >= i; j--)
814 {
58b78171
NS
815 gdb_byte *val;
816
61def6bd
KB
817 /* Right-justify the value in an aligned-length buffer. */
818 typelen = TYPE_LENGTH (value_type (args[j]));
819 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
820 val = alloca (typelen + slacklen);
821 memcpy (val, value_contents (args[j]), typelen);
822 memset (val + typelen, 0, slacklen);
823 /* Now write this data to the stack. */
824 stack_dest -= typelen + slacklen;
825 write_memory (stack_dest, val, typelen + slacklen);
826 }
827
828 /* Finally, if a param needs to be split between registers and stack,
829 write the second half to the stack now. */
830 if (split_param_len != 0)
831 {
832 stack_dest -= split_param_len;
833 write_memory (stack_dest, buf, split_param_len);
834 }
835
836 /* Set up return address (provided to us as bp_addr). */
d031aafb 837 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
61def6bd
KB
838
839 /* Store struct return address, if given. */
840 if (struct_return && struct_addr != 0)
d031aafb 841 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
61def6bd
KB
842
843 /* Set aside 16 bytes for the callee to save regs 1-4. */
844 stack_dest -= 16;
845
846 /* Update the stack pointer. */
d031aafb 847 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
61def6bd
KB
848
849 /* And that should do it. Return the new stack pointer. */
850 return stack_dest;
851}
852
853
854/* The 'unwind_cache' data structure. */
855
d031aafb 856struct mt_unwind_cache
61def6bd
KB
857{
858 /* The previous frame's inner most stack address.
859 Used as this frame ID's stack_addr. */
860 CORE_ADDR prev_sp;
861 CORE_ADDR frame_base;
862 int framesize;
863 int frameless_p;
864
865 /* Table indicating the location of each and every register. */
866 struct trad_frame_saved_reg *saved_regs;
867};
868
869/* Initialize an unwind_cache. Build up the saved_regs table etc. for
870 the frame. */
871
d031aafb
NS
872static struct mt_unwind_cache *
873mt_frame_unwind_cache (struct frame_info *next_frame,
61def6bd
KB
874 void **this_prologue_cache)
875{
876 struct gdbarch *gdbarch;
d031aafb 877 struct mt_unwind_cache *info;
61def6bd
KB
878 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
879 unsigned long instr, upper_half, delayed_store = 0;
880 int regnum, offset;
881 ULONGEST sp, fp;
882
883 if ((*this_prologue_cache))
884 return (*this_prologue_cache);
885
886 gdbarch = get_frame_arch (next_frame);
d031aafb 887 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
61def6bd
KB
888 (*this_prologue_cache) = info;
889
890 info->prev_sp = 0;
891 info->framesize = 0;
892 info->frame_base = 0;
893 info->frameless_p = 1;
894 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
895
896 /* Grab the frame-relative values of SP and FP, needed below.
897 The frame_saved_register function will find them on the
898 stack or in the registers as appropriate. */
11411de3
DJ
899 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
900 fp = frame_unwind_register_unsigned (next_frame, MT_FP_REGNUM);
61def6bd 901
93d42b30 902 start_addr = frame_func_unwind (next_frame, NORMAL_FRAME);
61def6bd
KB
903
904 /* Return early if GDB couldn't find the function. */
905 if (start_addr == 0)
906 return info;
907
908 end_addr = frame_pc_unwind (next_frame);
909 prologue_end_addr = skip_prologue_using_sal (start_addr);
910 if (end_addr == 0)
911 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
912 {
913 instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
914 if (delayed_store) /* previous instr was a push */
915 {
916 upper_half = delayed_store >> 16;
917 regnum = upper_half & 0xf;
918 offset = delayed_store & 0xffff;
919 switch (upper_half & 0xfff0)
920 {
921 case 0x43c0: /* push using frame pointer */
922 info->saved_regs[regnum].addr = offset;
923 break;
924 case 0x43d0: /* push using stack pointer */
925 info->saved_regs[regnum].addr = offset;
926 break;
927 default: /* lint */
928 break;
929 }
930 delayed_store = 0;
931 }
932
933 switch (instr)
934 {
935 case 0x12000000: /* NO-OP */
936 continue;
937 case 0x12ddc000: /* copy sp into fp */
938 info->frameless_p = 0; /* Record that the frame pointer is in use. */
939 continue;
940 default:
941 upper_half = instr >> 16;
942 if (upper_half == 0x05dd || /* subi sp, sp, imm */
943 upper_half == 0x07dd) /* subui sp, sp, imm */
944 {
945 /* Record the frame size. */
946 info->framesize = instr & 0xffff;
947 continue;
948 }
949 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
950 (upper_half & 0xfff0) == 0x43d0) /* stack push */
951 {
952 /* Save this instruction, but don't record the
953 pushed register as 'saved' until we see the
954 next instruction. That's because of deferred stores
955 on this target -- GDB won't be able to read the register
956 from the stack until one instruction later. */
957 delayed_store = instr;
958 continue;
959 }
960 /* Not a prologue instruction. Is this the end of the prologue?
961 This is the most difficult decision; when to stop scanning.
962
963 If we have no line symbol, then the best thing we can do
964 is to stop scanning when we encounter an instruction that
965 is not likely to be a part of the prologue.
966
967 But if we do have a line symbol, then we should
968 keep scanning until we reach it (or we reach end_addr). */
969
970 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
971 continue; /* Keep scanning, recording saved_regs etc. */
972 else
973 break; /* Quit scanning: breakpoint can be set here. */
974 }
975 }
976
977 /* Special handling for the "saved" address of the SP:
978 The SP is of course never saved on the stack at all, so
979 by convention what we put here is simply the previous
980 _value_ of the SP (as opposed to an address where the
981 previous value would have been pushed). This will also
982 give us the frame base address. */
983
984 if (info->frameless_p)
985 {
986 info->frame_base = sp + info->framesize;
987 info->prev_sp = sp + info->framesize;
988 }
989 else
990 {
991 info->frame_base = fp + info->framesize;
992 info->prev_sp = fp + info->framesize;
993 }
994 /* Save prev_sp in saved_regs as a value, not as an address. */
d031aafb 995 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
61def6bd
KB
996
997 /* Now convert frame offsets to actual addresses (not offsets). */
d031aafb 998 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
61def6bd
KB
999 if (trad_frame_addr_p (info->saved_regs, regnum))
1000 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1001
1002 /* The call instruction moves the caller's PC in the callee's RA reg.
1003 Since this is an unwind, do the reverse. Copy the location of RA
1004 into PC (the address / regnum) so that a request for PC will be
1005 converted into a request for the RA. */
d031aafb 1006 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
61def6bd
KB
1007
1008 return info;
1009}
1010
1011static CORE_ADDR
d031aafb 1012mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1013{
1014 ULONGEST pc;
1015
11411de3 1016 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
61def6bd
KB
1017 return pc;
1018}
1019
1020static CORE_ADDR
d031aafb 1021mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd
KB
1022{
1023 ULONGEST sp;
1024
11411de3 1025 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
61def6bd
KB
1026 return sp;
1027}
1028
1029/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1030 dummy frame. The frame ID's base needs to match the TOS value
1031 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1032 breakpoint. */
1033
1034static struct frame_id
d031aafb 1035mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
61def6bd 1036{
d031aafb 1037 return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
61def6bd
KB
1038 frame_pc_unwind (next_frame));
1039}
1040
1041/* Given a GDB frame, determine the address of the calling function's
1042 frame. This will be used to create a new GDB frame struct. */
1043
1044static void
d031aafb 1045mt_frame_this_id (struct frame_info *next_frame,
61def6bd
KB
1046 void **this_prologue_cache, struct frame_id *this_id)
1047{
d031aafb
NS
1048 struct mt_unwind_cache *info =
1049 mt_frame_unwind_cache (next_frame, this_prologue_cache);
61def6bd
KB
1050
1051 if (!(info == NULL || info->prev_sp == 0))
93d42b30
DJ
1052 (*this_id) = frame_id_build (info->prev_sp,
1053 frame_func_unwind (next_frame, NORMAL_FRAME));
1054
61def6bd
KB
1055 return;
1056}
1057
1058static void
d031aafb 1059mt_frame_prev_register (struct frame_info *next_frame,
61def6bd
KB
1060 void **this_prologue_cache,
1061 int regnum, int *optimizedp,
1062 enum lval_type *lvalp, CORE_ADDR *addrp,
1063 int *realnump, gdb_byte *bufferp)
1064{
d031aafb
NS
1065 struct mt_unwind_cache *info =
1066 mt_frame_unwind_cache (next_frame, this_prologue_cache);
61def6bd
KB
1067
1068 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1069 optimizedp, lvalp, addrp, realnump, bufferp);
1070}
1071
1072static CORE_ADDR
d031aafb 1073mt_frame_base_address (struct frame_info *next_frame,
61def6bd
KB
1074 void **this_prologue_cache)
1075{
d031aafb
NS
1076 struct mt_unwind_cache *info =
1077 mt_frame_unwind_cache (next_frame, this_prologue_cache);
61def6bd
KB
1078
1079 return info->frame_base;
1080}
1081
1082/* This is a shared interface: the 'frame_unwind' object is what's
1083 returned by the 'sniffer' function, and in turn specifies how to
1084 get a frame's ID and prev_regs.
1085
1086 This exports the 'prev_register' and 'this_id' methods. */
1087
d031aafb 1088static const struct frame_unwind mt_frame_unwind = {
61def6bd 1089 NORMAL_FRAME,
d031aafb
NS
1090 mt_frame_this_id,
1091 mt_frame_prev_register
61def6bd
KB
1092};
1093
1094/* The sniffer is a registered function that identifies our family of
1095 frame unwind functions (this_id and prev_register). */
1096
1097static const struct frame_unwind *
d031aafb 1098mt_frame_sniffer (struct frame_info *next_frame)
61def6bd 1099{
d031aafb 1100 return &mt_frame_unwind;
61def6bd
KB
1101}
1102
1103/* Another shared interface: the 'frame_base' object specifies how to
1104 unwind a frame and secure the base addresses for frame objects
1105 (locals, args). */
1106
d031aafb
NS
1107static struct frame_base mt_frame_base = {
1108 &mt_frame_unwind,
1109 mt_frame_base_address,
1110 mt_frame_base_address,
1111 mt_frame_base_address
61def6bd
KB
1112};
1113
1114static struct gdbarch *
d031aafb 1115mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
61def6bd
KB
1116{
1117 struct gdbarch *gdbarch;
61def6bd
KB
1118
1119 /* Find a candidate among the list of pre-declared architectures. */
1120 arches = gdbarch_list_lookup_by_info (arches, &info);
1121 if (arches != NULL)
1122 return arches->gdbarch;
1123
1124 /* None found, create a new architecture from the information
1125 provided. */
1126 gdbarch = gdbarch_alloc (&info, NULL);
1127
cb5c8c39
DJ
1128 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1129 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1130 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
61def6bd 1131
d031aafb
NS
1132 set_gdbarch_register_name (gdbarch, mt_register_name);
1133 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1134 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1135 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1136 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1137 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1138 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1139 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
61def6bd 1140 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
d031aafb 1141 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
61def6bd
KB
1142 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1143 set_gdbarch_frame_args_skip (gdbarch, 0);
d031aafb
NS
1144 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1145 set_gdbarch_register_type (gdbarch, mt_register_type);
1146 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
61def6bd 1147
d031aafb
NS
1148 set_gdbarch_return_value (gdbarch, mt_return_value);
1149 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
61def6bd 1150
d031aafb 1151 set_gdbarch_frame_align (gdbarch, mt_frame_align);
61def6bd 1152
d031aafb 1153 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
61def6bd 1154
d031aafb 1155 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
61def6bd
KB
1156
1157 /* Target builtin data types. */
1158 set_gdbarch_short_bit (gdbarch, 16);
1159 set_gdbarch_int_bit (gdbarch, 32);
1160 set_gdbarch_long_bit (gdbarch, 32);
1161 set_gdbarch_long_long_bit (gdbarch, 64);
1162 set_gdbarch_float_bit (gdbarch, 32);
1163 set_gdbarch_double_bit (gdbarch, 64);
1164 set_gdbarch_long_double_bit (gdbarch, 64);
1165 set_gdbarch_ptr_bit (gdbarch, 32);
1166
1167 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1168 based sniffer. */
1169 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
d031aafb
NS
1170 frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
1171 frame_base_set_default (gdbarch, &mt_frame_base);
61def6bd
KB
1172
1173 /* Register the 'unwind_pc' method. */
d031aafb
NS
1174 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1175 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
61def6bd
KB
1176
1177 /* Methods for saving / extracting a dummy frame's ID.
1178 The ID's stack address must match the SP value returned by
1179 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
d031aafb 1180 set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
61def6bd
KB
1181
1182 return gdbarch;
1183}
1184
1185void
d031aafb 1186_initialize_mt_tdep (void)
61def6bd 1187{
d031aafb 1188 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
61def6bd 1189}
This page took 0.249988 seconds and 4 git commands to generate.