Commit | Line | Data |
---|---|---|
a1217d97 | 1 | /* Target-machine dependent code for Nios II, for GDB. |
e2882c85 | 2 | Copyright (C) 2012-2018 Free Software Foundation, Inc. |
a1217d97 SL |
3 | Contributed by Peter Brookes (pbrookes@altera.com) |
4 | and Andrew Draper (adraper@altera.com). | |
5 | Contributed by Mentor Graphics, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "frame.h" | |
24 | #include "frame-unwind.h" | |
25 | #include "frame-base.h" | |
26 | #include "trad-frame.h" | |
27 | #include "dwarf2-frame.h" | |
28 | #include "symtab.h" | |
29 | #include "inferior.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcore.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "osabi.h" | |
34 | #include "target.h" | |
35 | #include "dis-asm.h" | |
36 | #include "regcache.h" | |
37 | #include "value.h" | |
38 | #include "symfile.h" | |
39 | #include "arch-utils.h" | |
a1217d97 SL |
40 | #include "infcall.h" |
41 | #include "regset.h" | |
42 | #include "target-descriptions.h" | |
43 | ||
44 | /* To get entry_point_address. */ | |
45 | #include "objfiles.h" | |
325fac50 | 46 | #include <algorithm> |
a1217d97 | 47 | |
a1217d97 SL |
48 | /* Nios II specific header. */ |
49 | #include "nios2-tdep.h" | |
50 | ||
51 | #include "features/nios2.c" | |
52 | ||
53 | /* Control debugging information emitted in this file. */ | |
54 | ||
55 | static int nios2_debug = 0; | |
56 | ||
57 | /* The following structures are used in the cache for prologue | |
58 | analysis; see the reg_value and reg_saved tables in | |
59 | struct nios2_unwind_cache, respectively. */ | |
60 | ||
61 | /* struct reg_value is used to record that a register has the same value | |
62 | as reg at the given offset from the start of a function. */ | |
63 | ||
64 | struct reg_value | |
65 | { | |
66 | int reg; | |
67 | unsigned int offset; | |
68 | }; | |
69 | ||
70 | /* struct reg_saved is used to record that a register value has been saved at | |
71 | basereg + addr, for basereg >= 0. If basereg < 0, that indicates | |
72 | that the register is not known to have been saved. Note that when | |
73 | basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0), | |
74 | addr is an absolute address. */ | |
75 | ||
76 | struct reg_saved | |
77 | { | |
78 | int basereg; | |
79 | CORE_ADDR addr; | |
80 | }; | |
81 | ||
82 | struct nios2_unwind_cache | |
83 | { | |
84 | /* The frame's base, optionally used by the high-level debug info. */ | |
85 | CORE_ADDR base; | |
86 | ||
87 | /* The previous frame's inner most stack address. Used as this | |
88 | frame ID's stack_addr. */ | |
89 | CORE_ADDR cfa; | |
90 | ||
91 | /* The address of the first instruction in this function. */ | |
92 | CORE_ADDR pc; | |
93 | ||
94 | /* Which register holds the return address for the frame. */ | |
95 | int return_regnum; | |
96 | ||
97 | /* Table indicating what changes have been made to each register. */ | |
98 | struct reg_value reg_value[NIOS2_NUM_REGS]; | |
99 | ||
100 | /* Table indicating where each register has been saved. */ | |
101 | struct reg_saved reg_saved[NIOS2_NUM_REGS]; | |
102 | }; | |
103 | ||
104 | ||
105 | /* This array is a mapping from Dwarf-2 register numbering to GDB's. */ | |
106 | ||
107 | static int nios2_dwarf2gdb_regno_map[] = | |
108 | { | |
109 | 0, 1, 2, 3, | |
110 | 4, 5, 6, 7, | |
111 | 8, 9, 10, 11, | |
112 | 12, 13, 14, 15, | |
113 | 16, 17, 18, 19, | |
114 | 20, 21, 22, 23, | |
115 | 24, 25, | |
116 | NIOS2_GP_REGNUM, /* 26 */ | |
117 | NIOS2_SP_REGNUM, /* 27 */ | |
118 | NIOS2_FP_REGNUM, /* 28 */ | |
119 | NIOS2_EA_REGNUM, /* 29 */ | |
120 | NIOS2_BA_REGNUM, /* 30 */ | |
121 | NIOS2_RA_REGNUM, /* 31 */ | |
122 | NIOS2_PC_REGNUM, /* 32 */ | |
123 | NIOS2_STATUS_REGNUM, /* 33 */ | |
124 | NIOS2_ESTATUS_REGNUM, /* 34 */ | |
125 | NIOS2_BSTATUS_REGNUM, /* 35 */ | |
126 | NIOS2_IENABLE_REGNUM, /* 36 */ | |
127 | NIOS2_IPENDING_REGNUM, /* 37 */ | |
128 | NIOS2_CPUID_REGNUM, /* 38 */ | |
129 | 39, /* CTL6 */ /* 39 */ | |
130 | NIOS2_EXCEPTION_REGNUM, /* 40 */ | |
131 | NIOS2_PTEADDR_REGNUM, /* 41 */ | |
132 | NIOS2_TLBACC_REGNUM, /* 42 */ | |
133 | NIOS2_TLBMISC_REGNUM, /* 43 */ | |
134 | NIOS2_ECCINJ_REGNUM, /* 44 */ | |
135 | NIOS2_BADADDR_REGNUM, /* 45 */ | |
136 | NIOS2_CONFIG_REGNUM, /* 46 */ | |
137 | NIOS2_MPUBASE_REGNUM, /* 47 */ | |
138 | NIOS2_MPUACC_REGNUM /* 48 */ | |
139 | }; | |
140 | ||
0fde2c53 | 141 | gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS); |
a1217d97 SL |
142 | |
143 | /* Implement the dwarf2_reg_to_regnum gdbarch method. */ | |
144 | ||
145 | static int | |
146 | nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg) | |
147 | { | |
0fde2c53 DE |
148 | if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS) |
149 | return -1; | |
a1217d97 SL |
150 | |
151 | return nios2_dwarf2gdb_regno_map[dw_reg]; | |
152 | } | |
153 | ||
154 | /* Canonical names for the 49 registers. */ | |
155 | ||
156 | static const char *const nios2_reg_names[NIOS2_NUM_REGS] = | |
157 | { | |
158 | "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7", | |
159 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
160 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
0b76b0ce | 161 | "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra", |
a1217d97 SL |
162 | "pc", |
163 | "status", "estatus", "bstatus", "ienable", | |
164 | "ipending", "cpuid", "ctl6", "exception", | |
165 | "pteaddr", "tlbacc", "tlbmisc", "eccinj", | |
166 | "badaddr", "config", "mpubase", "mpuacc" | |
167 | }; | |
168 | ||
169 | /* Implement the register_name gdbarch method. */ | |
170 | ||
171 | static const char * | |
172 | nios2_register_name (struct gdbarch *gdbarch, int regno) | |
173 | { | |
174 | /* Use mnemonic aliases for GPRs. */ | |
175 | if (regno >= 0 && regno < NIOS2_NUM_REGS) | |
176 | return nios2_reg_names[regno]; | |
177 | else | |
178 | return tdesc_register_name (gdbarch, regno); | |
179 | } | |
180 | ||
181 | /* Implement the register_type gdbarch method. */ | |
182 | ||
183 | static struct type * | |
184 | nios2_register_type (struct gdbarch *gdbarch, int regno) | |
185 | { | |
186 | /* If the XML description has register information, use that to | |
187 | determine the register type. */ | |
188 | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | |
189 | return tdesc_register_type (gdbarch, regno); | |
190 | ||
191 | if (regno == NIOS2_PC_REGNUM) | |
192 | return builtin_type (gdbarch)->builtin_func_ptr; | |
193 | else if (regno == NIOS2_SP_REGNUM) | |
194 | return builtin_type (gdbarch)->builtin_data_ptr; | |
195 | else | |
196 | return builtin_type (gdbarch)->builtin_uint32; | |
197 | } | |
198 | ||
199 | /* Given a return value in REGCACHE with a type VALTYPE, | |
200 | extract and copy its value into VALBUF. */ | |
201 | ||
202 | static void | |
203 | nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
204 | struct regcache *regcache, gdb_byte *valbuf) | |
205 | { | |
206 | int len = TYPE_LENGTH (valtype); | |
207 | ||
208 | /* Return values of up to 8 bytes are returned in $r2 $r3. */ | |
209 | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | |
210 | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); | |
211 | else | |
212 | { | |
213 | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | |
214 | + register_size (gdbarch, NIOS2_R3_REGNUM))); | |
215 | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); | |
216 | regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4); | |
217 | } | |
218 | } | |
219 | ||
220 | /* Write into appropriate registers a function return value | |
221 | of type TYPE, given in virtual format. */ | |
222 | ||
223 | static void | |
224 | nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
225 | struct regcache *regcache, const gdb_byte *valbuf) | |
226 | { | |
227 | int len = TYPE_LENGTH (valtype); | |
228 | ||
229 | /* Return values of up to 8 bytes are returned in $r2 $r3. */ | |
230 | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | |
231 | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); | |
232 | else | |
233 | { | |
234 | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | |
235 | + register_size (gdbarch, NIOS2_R3_REGNUM))); | |
236 | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); | |
237 | regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4); | |
238 | } | |
239 | } | |
240 | ||
241 | ||
242 | /* Set up the default values of the registers. */ | |
243 | ||
244 | static void | |
245 | nios2_setup_default (struct nios2_unwind_cache *cache) | |
246 | { | |
247 | int i; | |
248 | ||
249 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
250 | { | |
251 | /* All registers start off holding their previous values. */ | |
252 | cache->reg_value[i].reg = i; | |
253 | cache->reg_value[i].offset = 0; | |
254 | ||
255 | /* All registers start off not saved. */ | |
256 | cache->reg_saved[i].basereg = -1; | |
257 | cache->reg_saved[i].addr = 0; | |
258 | } | |
259 | } | |
260 | ||
261 | /* Initialize the unwind cache. */ | |
262 | ||
263 | static void | |
264 | nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc) | |
265 | { | |
266 | cache->base = 0; | |
267 | cache->cfa = 0; | |
268 | cache->pc = pc; | |
269 | cache->return_regnum = NIOS2_RA_REGNUM; | |
270 | nios2_setup_default (cache); | |
271 | } | |
272 | ||
d53c26c7 SL |
273 | /* Read and identify an instruction at PC. If INSNP is non-null, |
274 | store the instruction word into that location. Return the opcode | |
275 | pointer or NULL if the memory couldn't be read or disassembled. */ | |
276 | ||
277 | static const struct nios2_opcode * | |
278 | nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc, | |
279 | unsigned int *insnp) | |
280 | { | |
281 | LONGEST memword; | |
282 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
283 | unsigned int insn; | |
284 | ||
af60a1ef SL |
285 | if (mach == bfd_mach_nios2r2) |
286 | { | |
287 | if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, | |
288 | BFD_ENDIAN_LITTLE, &memword) | |
289 | && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE, | |
290 | BFD_ENDIAN_LITTLE, &memword)) | |
291 | return NULL; | |
292 | } | |
293 | else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE, | |
294 | gdbarch_byte_order (gdbarch), &memword)) | |
d53c26c7 SL |
295 | return NULL; |
296 | ||
297 | insn = (unsigned int) memword; | |
298 | if (insnp) | |
299 | *insnp = insn; | |
300 | return nios2_find_opcode_hash (insn, mach); | |
301 | } | |
302 | ||
303 | ||
304 | /* Match and disassemble an ADD-type instruction, with 3 register operands. | |
305 | Returns true on success, and fills in the operand pointers. */ | |
306 | ||
307 | static int | |
308 | nios2_match_add (uint32_t insn, const struct nios2_opcode *op, | |
309 | unsigned long mach, int *ra, int *rb, int *rc) | |
310 | { | |
af60a1ef SL |
311 | int is_r2 = (mach == bfd_mach_nios2r2); |
312 | ||
313 | if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV)) | |
d53c26c7 SL |
314 | { |
315 | *ra = GET_IW_R_A (insn); | |
316 | *rb = GET_IW_R_B (insn); | |
317 | *rc = GET_IW_R_C (insn); | |
318 | return 1; | |
319 | } | |
af60a1ef SL |
320 | else if (!is_r2) |
321 | return 0; | |
322 | else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV) | |
323 | { | |
324 | *ra = GET_IW_F3X6L5_A (insn); | |
325 | *rb = GET_IW_F3X6L5_B (insn); | |
326 | *rc = GET_IW_F3X6L5_C (insn); | |
327 | return 1; | |
328 | } | |
329 | else if (op->match == MATCH_R2_ADD_N) | |
330 | { | |
331 | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; | |
332 | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; | |
333 | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; | |
334 | return 1; | |
335 | } | |
336 | else if (op->match == MATCH_R2_MOV_N) | |
337 | { | |
338 | *ra = GET_IW_F2_A (insn); | |
339 | *rb = 0; | |
340 | *rc = GET_IW_F2_B (insn); | |
341 | return 1; | |
342 | } | |
d53c26c7 SL |
343 | return 0; |
344 | } | |
345 | ||
346 | /* Match and disassemble a SUB-type instruction, with 3 register operands. | |
347 | Returns true on success, and fills in the operand pointers. */ | |
348 | ||
349 | static int | |
350 | nios2_match_sub (uint32_t insn, const struct nios2_opcode *op, | |
351 | unsigned long mach, int *ra, int *rb, int *rc) | |
352 | { | |
af60a1ef SL |
353 | int is_r2 = (mach == bfd_mach_nios2r2); |
354 | ||
355 | if (!is_r2 && op->match == MATCH_R1_SUB) | |
d53c26c7 SL |
356 | { |
357 | *ra = GET_IW_R_A (insn); | |
358 | *rb = GET_IW_R_B (insn); | |
359 | *rc = GET_IW_R_C (insn); | |
360 | return 1; | |
361 | } | |
af60a1ef SL |
362 | else if (!is_r2) |
363 | return 0; | |
364 | else if (op->match == MATCH_R2_SUB) | |
365 | { | |
366 | *ra = GET_IW_F3X6L5_A (insn); | |
367 | *rb = GET_IW_F3X6L5_B (insn); | |
368 | *rc = GET_IW_F3X6L5_C (insn); | |
369 | return 1; | |
370 | } | |
371 | else if (op->match == MATCH_R2_SUB_N) | |
372 | { | |
373 | *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)]; | |
374 | *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)]; | |
375 | *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)]; | |
376 | return 1; | |
377 | } | |
d53c26c7 SL |
378 | return 0; |
379 | } | |
380 | ||
381 | /* Match and disassemble an ADDI-type instruction, with 2 register operands | |
382 | and one immediate operand. | |
383 | Returns true on success, and fills in the operand pointers. */ | |
384 | ||
385 | static int | |
386 | nios2_match_addi (uint32_t insn, const struct nios2_opcode *op, | |
387 | unsigned long mach, int *ra, int *rb, int *imm) | |
388 | { | |
af60a1ef SL |
389 | int is_r2 = (mach == bfd_mach_nios2r2); |
390 | ||
391 | if (!is_r2 && op->match == MATCH_R1_ADDI) | |
d53c26c7 SL |
392 | { |
393 | *ra = GET_IW_I_A (insn); | |
394 | *rb = GET_IW_I_B (insn); | |
395 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
396 | return 1; | |
397 | } | |
af60a1ef SL |
398 | else if (!is_r2) |
399 | return 0; | |
400 | else if (op->match == MATCH_R2_ADDI) | |
401 | { | |
402 | *ra = GET_IW_F2I16_A (insn); | |
403 | *rb = GET_IW_F2I16_B (insn); | |
404 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
405 | return 1; | |
406 | } | |
407 | else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N) | |
408 | { | |
409 | *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)]; | |
410 | *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)]; | |
411 | *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)]; | |
412 | if (op->match == MATCH_R2_SUBI_N) | |
413 | *imm = - (*imm); | |
414 | return 1; | |
415 | } | |
416 | else if (op->match == MATCH_R2_SPADDI_N) | |
417 | { | |
418 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | |
419 | *rb = NIOS2_SP_REGNUM; | |
420 | *imm = GET_IW_T1I7_IMM7 (insn) << 2; | |
421 | return 1; | |
422 | } | |
423 | else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N) | |
424 | { | |
425 | *ra = NIOS2_SP_REGNUM; | |
426 | *rb = NIOS2_SP_REGNUM; | |
427 | *imm = GET_IW_X1I7_IMM7 (insn) << 2; | |
428 | if (op->match == MATCH_R2_SPDECI_N) | |
429 | *imm = - (*imm); | |
430 | return 1; | |
431 | } | |
d53c26c7 SL |
432 | return 0; |
433 | } | |
434 | ||
435 | /* Match and disassemble an ORHI-type instruction, with 2 register operands | |
436 | and one unsigned immediate operand. | |
437 | Returns true on success, and fills in the operand pointers. */ | |
438 | ||
439 | static int | |
440 | nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op, | |
441 | unsigned long mach, int *ra, int *rb, unsigned int *uimm) | |
442 | { | |
af60a1ef SL |
443 | int is_r2 = (mach == bfd_mach_nios2r2); |
444 | ||
445 | if (!is_r2 && op->match == MATCH_R1_ORHI) | |
d53c26c7 SL |
446 | { |
447 | *ra = GET_IW_I_A (insn); | |
448 | *rb = GET_IW_I_B (insn); | |
449 | *uimm = GET_IW_I_IMM16 (insn); | |
450 | return 1; | |
451 | } | |
af60a1ef SL |
452 | else if (!is_r2) |
453 | return 0; | |
454 | else if (op->match == MATCH_R2_ORHI) | |
455 | { | |
456 | *ra = GET_IW_F2I16_A (insn); | |
457 | *rb = GET_IW_F2I16_B (insn); | |
458 | *uimm = GET_IW_F2I16_IMM16 (insn); | |
459 | return 1; | |
460 | } | |
d53c26c7 SL |
461 | return 0; |
462 | } | |
463 | ||
464 | /* Match and disassemble a STW-type instruction, with 2 register operands | |
465 | and one immediate operand. | |
466 | Returns true on success, and fills in the operand pointers. */ | |
467 | ||
468 | static int | |
469 | nios2_match_stw (uint32_t insn, const struct nios2_opcode *op, | |
470 | unsigned long mach, int *ra, int *rb, int *imm) | |
471 | { | |
af60a1ef SL |
472 | int is_r2 = (mach == bfd_mach_nios2r2); |
473 | ||
474 | if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO)) | |
d53c26c7 SL |
475 | { |
476 | *ra = GET_IW_I_A (insn); | |
477 | *rb = GET_IW_I_B (insn); | |
478 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
479 | return 1; | |
480 | } | |
af60a1ef SL |
481 | else if (!is_r2) |
482 | return 0; | |
483 | else if (op->match == MATCH_R2_STW) | |
484 | { | |
485 | *ra = GET_IW_F2I16_A (insn); | |
486 | *rb = GET_IW_F2I16_B (insn); | |
487 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
488 | return 1; | |
489 | } | |
490 | else if (op->match == MATCH_R2_STWIO) | |
491 | { | |
492 | *ra = GET_IW_F2X4I12_A (insn); | |
493 | *rb = GET_IW_F2X4I12_B (insn); | |
494 | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; | |
495 | return 1; | |
496 | } | |
497 | else if (op->match == MATCH_R2_STW_N) | |
498 | { | |
499 | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; | |
500 | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; | |
501 | *imm = GET_IW_T2I4_IMM4 (insn) << 2; | |
502 | return 1; | |
503 | } | |
504 | else if (op->match == MATCH_R2_STWSP_N) | |
505 | { | |
506 | *ra = NIOS2_SP_REGNUM; | |
507 | *rb = GET_IW_F1I5_B (insn); | |
508 | *imm = GET_IW_F1I5_IMM5 (insn) << 2; | |
509 | return 1; | |
510 | } | |
511 | else if (op->match == MATCH_R2_STWZ_N) | |
512 | { | |
513 | *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)]; | |
514 | *rb = 0; | |
515 | *imm = GET_IW_T1X1I6_IMM6 (insn) << 2; | |
516 | return 1; | |
517 | } | |
d53c26c7 SL |
518 | return 0; |
519 | } | |
520 | ||
521 | /* Match and disassemble a LDW-type instruction, with 2 register operands | |
522 | and one immediate operand. | |
523 | Returns true on success, and fills in the operand pointers. */ | |
524 | ||
525 | static int | |
526 | nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op, | |
527 | unsigned long mach, int *ra, int *rb, int *imm) | |
528 | { | |
af60a1ef SL |
529 | int is_r2 = (mach == bfd_mach_nios2r2); |
530 | ||
531 | if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO)) | |
d53c26c7 SL |
532 | { |
533 | *ra = GET_IW_I_A (insn); | |
534 | *rb = GET_IW_I_B (insn); | |
535 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
536 | return 1; | |
537 | } | |
af60a1ef SL |
538 | else if (!is_r2) |
539 | return 0; | |
540 | else if (op->match == MATCH_R2_LDW) | |
541 | { | |
542 | *ra = GET_IW_F2I16_A (insn); | |
543 | *rb = GET_IW_F2I16_B (insn); | |
544 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
545 | return 1; | |
546 | } | |
547 | else if (op->match == MATCH_R2_LDWIO) | |
548 | { | |
549 | *ra = GET_IW_F2X4I12_A (insn); | |
550 | *rb = GET_IW_F2X4I12_B (insn); | |
551 | *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20; | |
552 | return 1; | |
553 | } | |
554 | else if (op->match == MATCH_R2_LDW_N) | |
555 | { | |
556 | *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)]; | |
557 | *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)]; | |
558 | *imm = GET_IW_T2I4_IMM4 (insn) << 2; | |
559 | return 1; | |
560 | } | |
561 | else if (op->match == MATCH_R2_LDWSP_N) | |
562 | { | |
563 | *ra = NIOS2_SP_REGNUM; | |
564 | *rb = GET_IW_F1I5_B (insn); | |
565 | *imm = GET_IW_F1I5_IMM5 (insn) << 2; | |
566 | return 1; | |
567 | } | |
d53c26c7 SL |
568 | return 0; |
569 | } | |
570 | ||
571 | /* Match and disassemble a RDCTL instruction, with 2 register operands. | |
572 | Returns true on success, and fills in the operand pointers. */ | |
573 | ||
574 | static int | |
575 | nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op, | |
576 | unsigned long mach, int *ra, int *rc) | |
577 | { | |
af60a1ef SL |
578 | int is_r2 = (mach == bfd_mach_nios2r2); |
579 | ||
580 | if (!is_r2 && (op->match == MATCH_R1_RDCTL)) | |
d53c26c7 SL |
581 | { |
582 | *ra = GET_IW_R_IMM5 (insn); | |
583 | *rc = GET_IW_R_C (insn); | |
584 | return 1; | |
585 | } | |
af60a1ef SL |
586 | else if (!is_r2) |
587 | return 0; | |
588 | else if (op->match == MATCH_R2_RDCTL) | |
589 | { | |
590 | *ra = GET_IW_F3X6L5_IMM5 (insn); | |
591 | *rc = GET_IW_F3X6L5_C (insn); | |
592 | return 1; | |
593 | } | |
d53c26c7 SL |
594 | return 0; |
595 | } | |
596 | ||
af60a1ef SL |
597 | /* Match and disassemble a PUSH.N or STWM instruction. |
598 | Returns true on success, and fills in the operand pointers. */ | |
599 | ||
600 | static int | |
601 | nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op, | |
602 | unsigned long mach, unsigned int *reglist, | |
603 | int *ra, int *imm, int *wb, int *id) | |
604 | { | |
605 | int is_r2 = (mach == bfd_mach_nios2r2); | |
606 | ||
607 | if (!is_r2) | |
608 | return 0; | |
609 | else if (op->match == MATCH_R2_PUSH_N) | |
610 | { | |
611 | *reglist = 1 << 31; | |
612 | if (GET_IW_L5I4X1_FP (insn)) | |
613 | *reglist |= (1 << 28); | |
614 | if (GET_IW_L5I4X1_CS (insn)) | |
615 | { | |
616 | int val = GET_IW_L5I4X1_REGRANGE (insn); | |
617 | *reglist |= nios2_r2_reg_range_mappings[val]; | |
618 | } | |
619 | *ra = NIOS2_SP_REGNUM; | |
620 | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; | |
621 | *wb = 1; | |
622 | *id = 0; | |
623 | return 1; | |
624 | } | |
625 | else if (op->match == MATCH_R2_STWM) | |
626 | { | |
627 | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); | |
628 | if (GET_IW_F1X4L17_RS (insn)) | |
629 | { | |
630 | *reglist = ((rawmask << 14) & 0x00ffc000); | |
631 | if (rawmask & (1 << 10)) | |
632 | *reglist |= (1 << 28); | |
633 | if (rawmask & (1 << 11)) | |
634 | *reglist |= (1 << 31); | |
635 | } | |
636 | else | |
637 | *reglist = rawmask << 2; | |
638 | *ra = GET_IW_F1X4L17_A (insn); | |
639 | *imm = 0; | |
640 | *wb = GET_IW_F1X4L17_WB (insn); | |
641 | *id = GET_IW_F1X4L17_ID (insn); | |
642 | return 1; | |
643 | } | |
644 | return 0; | |
645 | } | |
646 | ||
647 | /* Match and disassemble a POP.N or LDWM instruction. | |
648 | Returns true on success, and fills in the operand pointers. */ | |
649 | ||
650 | static int | |
651 | nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op, | |
652 | unsigned long mach, unsigned int *reglist, | |
653 | int *ra, int *imm, int *wb, int *id, int *ret) | |
654 | { | |
655 | int is_r2 = (mach == bfd_mach_nios2r2); | |
656 | ||
657 | if (!is_r2) | |
658 | return 0; | |
659 | else if (op->match == MATCH_R2_POP_N) | |
660 | { | |
661 | *reglist = 1 << 31; | |
662 | if (GET_IW_L5I4X1_FP (insn)) | |
663 | *reglist |= (1 << 28); | |
664 | if (GET_IW_L5I4X1_CS (insn)) | |
665 | { | |
666 | int val = GET_IW_L5I4X1_REGRANGE (insn); | |
667 | *reglist |= nios2_r2_reg_range_mappings[val]; | |
668 | } | |
669 | *ra = NIOS2_SP_REGNUM; | |
670 | *imm = GET_IW_L5I4X1_IMM4 (insn) << 2; | |
671 | *wb = 1; | |
672 | *id = 1; | |
673 | *ret = 1; | |
674 | return 1; | |
675 | } | |
676 | else if (op->match == MATCH_R2_LDWM) | |
677 | { | |
678 | unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn); | |
679 | if (GET_IW_F1X4L17_RS (insn)) | |
680 | { | |
681 | *reglist = ((rawmask << 14) & 0x00ffc000); | |
682 | if (rawmask & (1 << 10)) | |
683 | *reglist |= (1 << 28); | |
684 | if (rawmask & (1 << 11)) | |
685 | *reglist |= (1 << 31); | |
686 | } | |
687 | else | |
688 | *reglist = rawmask << 2; | |
689 | *ra = GET_IW_F1X4L17_A (insn); | |
690 | *imm = 0; | |
691 | *wb = GET_IW_F1X4L17_WB (insn); | |
692 | *id = GET_IW_F1X4L17_ID (insn); | |
693 | *ret = GET_IW_F1X4L17_PC (insn); | |
694 | return 1; | |
695 | } | |
696 | return 0; | |
697 | } | |
d53c26c7 SL |
698 | |
699 | /* Match and disassemble a branch instruction, with (potentially) | |
700 | 2 register operands and one immediate operand. | |
701 | Returns true on success, and fills in the operand pointers. */ | |
702 | ||
703 | enum branch_condition { | |
704 | branch_none, | |
705 | branch_eq, | |
706 | branch_ne, | |
707 | branch_ge, | |
708 | branch_geu, | |
709 | branch_lt, | |
710 | branch_ltu | |
711 | }; | |
712 | ||
713 | static int | |
714 | nios2_match_branch (uint32_t insn, const struct nios2_opcode *op, | |
715 | unsigned long mach, int *ra, int *rb, int *imm, | |
716 | enum branch_condition *cond) | |
717 | { | |
af60a1ef SL |
718 | int is_r2 = (mach == bfd_mach_nios2r2); |
719 | ||
720 | if (!is_r2) | |
d53c26c7 | 721 | { |
af60a1ef SL |
722 | switch (op->match) |
723 | { | |
724 | case MATCH_R1_BR: | |
725 | *cond = branch_none; | |
726 | break; | |
727 | case MATCH_R1_BEQ: | |
728 | *cond = branch_eq; | |
729 | break; | |
730 | case MATCH_R1_BNE: | |
731 | *cond = branch_ne; | |
732 | break; | |
733 | case MATCH_R1_BGE: | |
734 | *cond = branch_ge; | |
735 | break; | |
736 | case MATCH_R1_BGEU: | |
737 | *cond = branch_geu; | |
738 | break; | |
739 | case MATCH_R1_BLT: | |
740 | *cond = branch_lt; | |
741 | break; | |
742 | case MATCH_R1_BLTU: | |
743 | *cond = branch_ltu; | |
744 | break; | |
745 | default: | |
746 | return 0; | |
747 | } | |
748 | *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16; | |
749 | *ra = GET_IW_I_A (insn); | |
750 | *rb = GET_IW_I_B (insn); | |
751 | return 1; | |
d53c26c7 | 752 | } |
af60a1ef SL |
753 | else |
754 | { | |
755 | switch (op->match) | |
756 | { | |
757 | case MATCH_R2_BR_N: | |
758 | *cond = branch_none; | |
759 | *ra = NIOS2_Z_REGNUM; | |
760 | *rb = NIOS2_Z_REGNUM; | |
761 | *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21; | |
762 | return 1; | |
763 | case MATCH_R2_BEQZ_N: | |
764 | *cond = branch_eq; | |
765 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | |
766 | *rb = NIOS2_Z_REGNUM; | |
767 | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; | |
768 | return 1; | |
769 | case MATCH_R2_BNEZ_N: | |
770 | *cond = branch_ne; | |
771 | *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)]; | |
772 | *rb = NIOS2_Z_REGNUM; | |
773 | *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24; | |
774 | return 1; | |
775 | case MATCH_R2_BR: | |
776 | *cond = branch_none; | |
777 | break; | |
778 | case MATCH_R2_BEQ: | |
779 | *cond = branch_eq; | |
780 | break; | |
781 | case MATCH_R2_BNE: | |
782 | *cond = branch_ne; | |
783 | break; | |
784 | case MATCH_R2_BGE: | |
785 | *cond = branch_ge; | |
786 | break; | |
787 | case MATCH_R2_BGEU: | |
788 | *cond = branch_geu; | |
789 | break; | |
790 | case MATCH_R2_BLT: | |
791 | *cond = branch_lt; | |
792 | break; | |
793 | case MATCH_R2_BLTU: | |
794 | *cond = branch_ltu; | |
795 | break; | |
796 | default: | |
797 | return 0; | |
798 | } | |
799 | *ra = GET_IW_F2I16_A (insn); | |
800 | *rb = GET_IW_F2I16_B (insn); | |
801 | *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16; | |
802 | return 1; | |
803 | } | |
804 | return 0; | |
d53c26c7 SL |
805 | } |
806 | ||
807 | /* Match and disassemble a direct jump instruction, with an | |
808 | unsigned operand. Returns true on success, and fills in the operand | |
809 | pointer. */ | |
810 | ||
811 | static int | |
812 | nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op, | |
813 | unsigned long mach, unsigned int *uimm) | |
814 | { | |
af60a1ef SL |
815 | int is_r2 = (mach == bfd_mach_nios2r2); |
816 | ||
817 | if (!is_r2 && op->match == MATCH_R1_JMPI) | |
d53c26c7 SL |
818 | { |
819 | *uimm = GET_IW_J_IMM26 (insn) << 2; | |
820 | return 1; | |
821 | } | |
af60a1ef SL |
822 | else if (!is_r2) |
823 | return 0; | |
824 | else if (op->match == MATCH_R2_JMPI) | |
825 | { | |
826 | *uimm = GET_IW_L26_IMM26 (insn) << 2; | |
827 | return 1; | |
828 | } | |
d53c26c7 SL |
829 | return 0; |
830 | } | |
831 | ||
832 | /* Match and disassemble a direct call instruction, with an | |
833 | unsigned operand. Returns true on success, and fills in the operand | |
834 | pointer. */ | |
835 | ||
836 | static int | |
837 | nios2_match_calli (uint32_t insn, const struct nios2_opcode *op, | |
838 | unsigned long mach, unsigned int *uimm) | |
839 | { | |
af60a1ef SL |
840 | int is_r2 = (mach == bfd_mach_nios2r2); |
841 | ||
842 | if (!is_r2 && op->match == MATCH_R1_CALL) | |
d53c26c7 SL |
843 | { |
844 | *uimm = GET_IW_J_IMM26 (insn) << 2; | |
845 | return 1; | |
846 | } | |
af60a1ef SL |
847 | else if (!is_r2) |
848 | return 0; | |
849 | else if (op->match == MATCH_R2_CALL) | |
850 | { | |
851 | *uimm = GET_IW_L26_IMM26 (insn) << 2; | |
852 | return 1; | |
853 | } | |
d53c26c7 SL |
854 | return 0; |
855 | } | |
856 | ||
857 | /* Match and disassemble an indirect jump instruction, with a | |
858 | (possibly implicit) register operand. Returns true on success, and fills | |
859 | in the operand pointer. */ | |
860 | ||
861 | static int | |
862 | nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op, | |
863 | unsigned long mach, int *ra) | |
864 | { | |
af60a1ef SL |
865 | int is_r2 = (mach == bfd_mach_nios2r2); |
866 | ||
867 | if (!is_r2) | |
868 | switch (op->match) | |
869 | { | |
870 | case MATCH_R1_JMP: | |
871 | *ra = GET_IW_I_A (insn); | |
872 | return 1; | |
873 | case MATCH_R1_RET: | |
874 | *ra = NIOS2_RA_REGNUM; | |
875 | return 1; | |
876 | case MATCH_R1_ERET: | |
877 | *ra = NIOS2_EA_REGNUM; | |
878 | return 1; | |
879 | case MATCH_R1_BRET: | |
880 | *ra = NIOS2_BA_REGNUM; | |
881 | return 1; | |
882 | default: | |
883 | return 0; | |
884 | } | |
885 | else | |
886 | switch (op->match) | |
887 | { | |
888 | case MATCH_R2_JMP: | |
889 | *ra = GET_IW_F2I16_A (insn); | |
890 | return 1; | |
891 | case MATCH_R2_JMPR_N: | |
892 | *ra = GET_IW_F1X1_A (insn); | |
893 | return 1; | |
894 | case MATCH_R2_RET: | |
895 | case MATCH_R2_RET_N: | |
896 | *ra = NIOS2_RA_REGNUM; | |
897 | return 1; | |
898 | case MATCH_R2_ERET: | |
899 | *ra = NIOS2_EA_REGNUM; | |
900 | return 1; | |
901 | case MATCH_R2_BRET: | |
902 | *ra = NIOS2_BA_REGNUM; | |
903 | return 1; | |
904 | default: | |
905 | return 0; | |
906 | } | |
907 | return 0; | |
d53c26c7 SL |
908 | } |
909 | ||
910 | /* Match and disassemble an indirect call instruction, with a register | |
911 | operand. Returns true on success, and fills in the operand pointer. */ | |
912 | ||
913 | static int | |
914 | nios2_match_callr (uint32_t insn, const struct nios2_opcode *op, | |
915 | unsigned long mach, int *ra) | |
916 | { | |
af60a1ef SL |
917 | int is_r2 = (mach == bfd_mach_nios2r2); |
918 | ||
919 | if (!is_r2 && op->match == MATCH_R1_CALLR) | |
d53c26c7 SL |
920 | { |
921 | *ra = GET_IW_I_A (insn); | |
922 | return 1; | |
923 | } | |
af60a1ef SL |
924 | else if (!is_r2) |
925 | return 0; | |
926 | else if (op->match == MATCH_R2_CALLR) | |
927 | { | |
928 | *ra = GET_IW_F2I16_A (insn); | |
929 | return 1; | |
930 | } | |
931 | else if (op->match == MATCH_R2_CALLR_N) | |
932 | { | |
933 | *ra = GET_IW_F1X1_A (insn); | |
934 | return 1; | |
935 | } | |
d53c26c7 SL |
936 | return 0; |
937 | } | |
938 | ||
939 | /* Match and disassemble a break instruction, with an unsigned operand. | |
940 | Returns true on success, and fills in the operand pointer. */ | |
941 | ||
942 | static int | |
943 | nios2_match_break (uint32_t insn, const struct nios2_opcode *op, | |
944 | unsigned long mach, unsigned int *uimm) | |
945 | { | |
af60a1ef SL |
946 | int is_r2 = (mach == bfd_mach_nios2r2); |
947 | ||
948 | if (!is_r2 && op->match == MATCH_R1_BREAK) | |
d53c26c7 SL |
949 | { |
950 | *uimm = GET_IW_R_IMM5 (insn); | |
951 | return 1; | |
952 | } | |
af60a1ef SL |
953 | else if (!is_r2) |
954 | return 0; | |
955 | else if (op->match == MATCH_R2_BREAK) | |
956 | { | |
957 | *uimm = GET_IW_F3X6L5_IMM5 (insn); | |
958 | return 1; | |
959 | } | |
960 | else if (op->match == MATCH_R2_BREAK_N) | |
961 | { | |
962 | *uimm = GET_IW_X2L5_IMM5 (insn); | |
963 | return 1; | |
964 | } | |
d53c26c7 SL |
965 | return 0; |
966 | } | |
967 | ||
968 | /* Match and disassemble a trap instruction, with an unsigned operand. | |
969 | Returns true on success, and fills in the operand pointer. */ | |
970 | ||
971 | static int | |
972 | nios2_match_trap (uint32_t insn, const struct nios2_opcode *op, | |
973 | unsigned long mach, unsigned int *uimm) | |
974 | { | |
af60a1ef SL |
975 | int is_r2 = (mach == bfd_mach_nios2r2); |
976 | ||
977 | if (!is_r2 && op->match == MATCH_R1_TRAP) | |
d53c26c7 SL |
978 | { |
979 | *uimm = GET_IW_R_IMM5 (insn); | |
980 | return 1; | |
981 | } | |
af60a1ef SL |
982 | else if (!is_r2) |
983 | return 0; | |
984 | else if (op->match == MATCH_R2_TRAP) | |
985 | { | |
986 | *uimm = GET_IW_F3X6L5_IMM5 (insn); | |
987 | return 1; | |
988 | } | |
989 | else if (op->match == MATCH_R2_TRAP_N) | |
990 | { | |
991 | *uimm = GET_IW_X2L5_IMM5 (insn); | |
992 | return 1; | |
993 | } | |
d53c26c7 SL |
994 | return 0; |
995 | } | |
996 | ||
a1217d97 SL |
997 | /* Helper function to identify when we're in a function epilogue; |
998 | that is, the part of the function from the point at which the | |
d53c26c7 SL |
999 | stack adjustments are made, to the return or sibcall. |
1000 | Note that we may have several stack adjustment instructions, and | |
1001 | this function needs to test whether the stack teardown has already | |
1002 | started before current_pc, not whether it has completed. */ | |
a1217d97 SL |
1003 | |
1004 | static int | |
1005 | nios2_in_epilogue_p (struct gdbarch *gdbarch, | |
1006 | CORE_ADDR current_pc, | |
1007 | CORE_ADDR start_pc) | |
1008 | { | |
d53c26c7 | 1009 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
af60a1ef | 1010 | int is_r2 = (mach == bfd_mach_nios2r2); |
7f1659b5 SL |
1011 | /* Maximum number of possibly-epilogue instructions to check. |
1012 | Note that this number should not be too large, else we can | |
1013 | potentially end up iterating through unmapped memory. */ | |
1014 | int ninsns, max_insns = 5; | |
d53c26c7 SL |
1015 | unsigned int insn; |
1016 | const struct nios2_opcode *op = NULL; | |
1017 | unsigned int uimm; | |
1018 | int imm; | |
af60a1ef | 1019 | int wb, id, ret; |
d53c26c7 SL |
1020 | int ra, rb, rc; |
1021 | enum branch_condition cond; | |
7f1659b5 | 1022 | CORE_ADDR pc; |
a1217d97 SL |
1023 | |
1024 | /* There has to be a previous instruction in the function. */ | |
7f1659b5 SL |
1025 | if (current_pc <= start_pc) |
1026 | return 0; | |
1027 | ||
af60a1ef SL |
1028 | /* Find the previous instruction before current_pc. For R2, it might |
1029 | be either a 16-bit or 32-bit instruction; the only way to know for | |
1030 | sure is to scan through from the beginning of the function, | |
1031 | disassembling as we go. */ | |
1032 | if (is_r2) | |
1033 | for (pc = start_pc; ; ) | |
1034 | { | |
1035 | op = nios2_fetch_insn (gdbarch, pc, &insn); | |
1036 | if (op == NULL) | |
1037 | return 0; | |
1038 | if (pc + op->size < current_pc) | |
1039 | pc += op->size; | |
1040 | else | |
1041 | break; | |
1042 | /* We can skip over insns to a forward branch target. Since | |
1043 | the branch offset is relative to the next instruction, | |
1044 | it's correct to do this after incrementing the pc above. */ | |
1045 | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) | |
1046 | && imm > 0 | |
1047 | && pc + imm < current_pc) | |
1048 | pc += imm; | |
1049 | } | |
1050 | /* Otherwise just go back to the previous 32-bit insn. */ | |
1051 | else | |
1052 | pc = current_pc - NIOS2_OPCODE_SIZE; | |
d53c26c7 | 1053 | |
7f1659b5 SL |
1054 | /* Beginning with the previous instruction we just located, check whether |
1055 | we are in a sequence of at least one stack adjustment instruction. | |
1056 | Possible instructions here include: | |
d53c26c7 SL |
1057 | ADDI sp, sp, n |
1058 | ADD sp, sp, rn | |
af60a1ef SL |
1059 | LDW sp, n(sp) |
1060 | SPINCI.N n | |
1061 | LDWSP.N sp, n(sp) | |
1062 | LDWM {reglist}, (sp)++, wb */ | |
7f1659b5 SL |
1063 | for (ninsns = 0; ninsns < max_insns; ninsns++) |
1064 | { | |
1065 | int ok = 0; | |
1066 | ||
1067 | /* Fetch the insn at pc. */ | |
1068 | op = nios2_fetch_insn (gdbarch, pc, &insn); | |
d53c26c7 SL |
1069 | if (op == NULL) |
1070 | return 0; | |
7f1659b5 | 1071 | pc += op->size; |
d53c26c7 SL |
1072 | |
1073 | /* Was it a stack adjustment? */ | |
1074 | if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) | |
1075 | ok = (rb == NIOS2_SP_REGNUM); | |
1076 | else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) | |
1077 | ok = (rc == NIOS2_SP_REGNUM); | |
1078 | else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm)) | |
1079 | ok = (rb == NIOS2_SP_REGNUM); | |
af60a1ef SL |
1080 | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, |
1081 | &imm, &wb, &ret, &id)) | |
1082 | ok = (ra == NIOS2_SP_REGNUM && wb && id); | |
d53c26c7 | 1083 | if (!ok) |
7f1659b5 | 1084 | break; |
a1217d97 | 1085 | } |
7f1659b5 SL |
1086 | |
1087 | /* No stack adjustments found. */ | |
1088 | if (ninsns == 0) | |
1089 | return 0; | |
1090 | ||
1091 | /* We found more stack adjustments than we expect GCC to be generating. | |
1092 | Since it looks like a stack unwind might be in progress tell GDB to | |
1093 | treat it as such. */ | |
1094 | if (ninsns == max_insns) | |
1095 | return 1; | |
1096 | ||
1097 | /* The next instruction following the stack adjustments must be a | |
af60a1ef SL |
1098 | return, jump, or unconditional branch, or a CDX pop.n or ldwm |
1099 | that does an implicit return. */ | |
7f1659b5 SL |
1100 | if (nios2_match_jmpr (insn, op, mach, &ra) |
1101 | || nios2_match_jmpi (insn, op, mach, &uimm) | |
af60a1ef SL |
1102 | || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) |
1103 | && ret) | |
7f1659b5 SL |
1104 | || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond) |
1105 | && cond == branch_none)) | |
1106 | return 1; | |
1107 | ||
a1217d97 SL |
1108 | return 0; |
1109 | } | |
1110 | ||
c9cf6e20 | 1111 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
a1217d97 SL |
1112 | |
1113 | static int | |
c9cf6e20 | 1114 | nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
a1217d97 SL |
1115 | { |
1116 | CORE_ADDR func_addr; | |
1117 | ||
1118 | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | |
1119 | return nios2_in_epilogue_p (gdbarch, pc, func_addr); | |
1120 | ||
1121 | return 0; | |
1122 | } | |
1123 | ||
a1217d97 SL |
1124 | /* Do prologue analysis, returning the PC of the first instruction |
1125 | after the function prologue. Assumes CACHE has already been | |
1126 | initialized. THIS_FRAME can be null, in which case we are only | |
1127 | interested in skipping the prologue. Otherwise CACHE is filled in | |
1128 | from the frame information. | |
1129 | ||
d53c26c7 SL |
1130 | The prologue may consist of the following parts: |
1131 | 1) Profiling instrumentation. For non-PIC code it looks like: | |
a1217d97 SL |
1132 | mov r8, ra |
1133 | call mcount | |
1134 | mov ra, r8 | |
1135 | ||
d53c26c7 | 1136 | 2) A stack adjustment and save of R4-R7 for varargs functions. |
af60a1ef SL |
1137 | For R2 CDX this is typically handled with a STWM, otherwise |
1138 | this is typically merged with item 3. | |
d53c26c7 | 1139 | |
af60a1ef SL |
1140 | 3) A stack adjustment and save of the callee-saved registers. |
1141 | For R2 CDX these are typically handled with a PUSH.N or STWM, | |
1142 | otherwise as an explicit SP decrement and individual register | |
d53c26c7 SL |
1143 | saves. |
1144 | ||
1145 | There may also be a stack switch here in an exception handler | |
1146 | in place of a stack adjustment. It looks like: | |
a1217d97 SL |
1147 | movhi rx, %hiadj(newstack) |
1148 | addhi rx, rx, %lo(newstack) | |
1149 | stw sp, constant(rx) | |
1150 | mov sp, rx | |
1151 | ||
9aaf8e3a | 1152 | 4) A frame pointer save, which can be either a MOV or ADDI. |
d53c26c7 | 1153 | |
9aaf8e3a SL |
1154 | 5) A further stack pointer adjustment. This is normally included |
1155 | adjustment in step 3 unless the total adjustment is too large | |
d53c26c7 SL |
1156 | to be done in one step. |
1157 | ||
1158 | 7) A stack overflow check, which can take either of these forms: | |
a1217d97 | 1159 | bgeu sp, rx, +8 |
9aaf8e3a | 1160 | trap 3 |
a1217d97 SL |
1161 | or |
1162 | bltu sp, rx, .Lstack_overflow | |
1163 | ... | |
1164 | .Lstack_overflow: | |
9aaf8e3a SL |
1165 | trap 3 |
1166 | ||
1167 | Older versions of GCC emitted "break 3" instead of "trap 3" here, | |
1168 | so we check for both cases. | |
1169 | ||
1170 | Older GCC versions emitted stack overflow checks after the SP | |
1171 | adjustments in both steps 3 and 4. Starting with GCC 6, there is | |
1172 | at most one overflow check, which is placed before the first | |
1173 | stack adjustment for R2 CDX and after the first stack adjustment | |
1174 | otherwise. | |
a1217d97 | 1175 | |
d53c26c7 SL |
1176 | The prologue instructions may be combined or interleaved with other |
1177 | instructions. | |
a1217d97 SL |
1178 | |
1179 | To cope with all this variability we decode all the instructions | |
d53c26c7 SL |
1180 | from the start of the prologue until we hit an instruction that |
1181 | cannot possibly be a prologue instruction, such as a branch, call, | |
1182 | return, or epilogue instruction. The prologue is considered to end | |
1183 | at the last instruction that can definitely be considered a | |
1184 | prologue instruction. */ | |
a1217d97 SL |
1185 | |
1186 | static CORE_ADDR | |
1187 | nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, | |
1188 | const CORE_ADDR current_pc, | |
1189 | struct nios2_unwind_cache *cache, | |
1190 | struct frame_info *this_frame) | |
1191 | { | |
d53c26c7 | 1192 | /* Maximum number of possibly-prologue instructions to check. |
a1217d97 SL |
1193 | Note that this number should not be too large, else we can |
1194 | potentially end up iterating through unmapped memory. */ | |
d53c26c7 | 1195 | int ninsns, max_insns = 50; |
a1217d97 | 1196 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
d53c26c7 | 1197 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
a1217d97 SL |
1198 | |
1199 | /* Does the frame set up the FP register? */ | |
1200 | int base_reg = 0; | |
1201 | ||
1202 | struct reg_value *value = cache->reg_value; | |
1203 | struct reg_value temp_value[NIOS2_NUM_REGS]; | |
1204 | ||
1205 | int i; | |
1206 | ||
1207 | /* Save the starting PC so we can correct the pc after running | |
1208 | through the prolog, using symbol info. */ | |
1209 | CORE_ADDR pc = start_pc; | |
1210 | ||
1211 | /* Is this an exception handler? */ | |
1212 | int exception_handler = 0; | |
1213 | ||
1214 | /* What was the original value of SP (or fake original value for | |
1215 | functions which switch stacks? */ | |
1216 | CORE_ADDR frame_high; | |
1217 | ||
d53c26c7 | 1218 | /* The last definitely-prologue instruction seen. */ |
a1217d97 SL |
1219 | CORE_ADDR prologue_end; |
1220 | ||
1221 | /* Is this the innermost function? */ | |
1222 | int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1); | |
1223 | ||
1224 | if (nios2_debug) | |
1225 | fprintf_unfiltered (gdb_stdlog, | |
1226 | "{ nios2_analyze_prologue start=%s, current=%s ", | |
1227 | paddress (gdbarch, start_pc), | |
1228 | paddress (gdbarch, current_pc)); | |
1229 | ||
1230 | /* Set up the default values of the registers. */ | |
1231 | nios2_setup_default (cache); | |
a1217d97 SL |
1232 | |
1233 | /* Find the prologue instructions. */ | |
d53c26c7 SL |
1234 | prologue_end = start_pc; |
1235 | for (ninsns = 0; ninsns < max_insns; ninsns++) | |
a1217d97 SL |
1236 | { |
1237 | /* Present instruction. */ | |
1238 | uint32_t insn; | |
d53c26c7 SL |
1239 | const struct nios2_opcode *op; |
1240 | int ra, rb, rc, imm; | |
1241 | unsigned int uimm; | |
1242 | unsigned int reglist; | |
af60a1ef | 1243 | int wb, id, ret; |
d53c26c7 | 1244 | enum branch_condition cond; |
a1217d97 SL |
1245 | |
1246 | if (pc == current_pc) | |
1247 | { | |
1248 | /* When we reach the current PC we must save the current | |
1249 | register state (for the backtrace) but keep analysing | |
1250 | because there might be more to find out (eg. is this an | |
1251 | exception handler). */ | |
1252 | memcpy (temp_value, value, sizeof (temp_value)); | |
1253 | value = temp_value; | |
1254 | if (nios2_debug) | |
1255 | fprintf_unfiltered (gdb_stdlog, "*"); | |
1256 | } | |
1257 | ||
d53c26c7 SL |
1258 | op = nios2_fetch_insn (gdbarch, pc, &insn); |
1259 | ||
1260 | /* Unknown opcode? Stop scanning. */ | |
1261 | if (op == NULL) | |
1262 | break; | |
1263 | pc += op->size; | |
a1217d97 SL |
1264 | |
1265 | if (nios2_debug) | |
af60a1ef SL |
1266 | { |
1267 | if (op->size == 2) | |
1268 | fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff); | |
1269 | else | |
1270 | fprintf_unfiltered (gdb_stdlog, "[%08X]", insn); | |
1271 | } | |
a1217d97 SL |
1272 | |
1273 | /* The following instructions can appear in the prologue. */ | |
1274 | ||
d53c26c7 | 1275 | if (nios2_match_add (insn, op, mach, &ra, &rb, &rc)) |
a1217d97 SL |
1276 | { |
1277 | /* ADD rc, ra, rb (also used for MOV) */ | |
a1217d97 SL |
1278 | if (rc == NIOS2_SP_REGNUM |
1279 | && rb == 0 | |
1280 | && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg) | |
1281 | { | |
1282 | /* If the previous value of SP is available somewhere | |
1283 | near the new stack pointer value then this is a | |
1284 | stack switch. */ | |
1285 | ||
1286 | /* If any registers were saved on the stack before then | |
1287 | we can't backtrace into them now. */ | |
1288 | for (i = 0 ; i < NIOS2_NUM_REGS ; i++) | |
1289 | { | |
1290 | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | |
1291 | cache->reg_saved[i].basereg = -1; | |
1292 | if (value[i].reg == NIOS2_SP_REGNUM) | |
1293 | value[i].reg = -1; | |
1294 | } | |
1295 | ||
1296 | /* Create a fake "high water mark" 4 bytes above where SP | |
1297 | was stored and fake up the registers to be consistent | |
1298 | with that. */ | |
1299 | value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM; | |
1300 | value[NIOS2_SP_REGNUM].offset | |
1301 | = (value[ra].offset | |
1302 | - cache->reg_saved[NIOS2_SP_REGNUM].addr | |
1303 | - 4); | |
1304 | cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM; | |
1305 | cache->reg_saved[NIOS2_SP_REGNUM].addr = -4; | |
1306 | } | |
1307 | ||
aa489395 SL |
1308 | else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) |
1309 | /* This is setting SP from FP. This only happens in the | |
1310 | function epilogue. */ | |
1311 | break; | |
1312 | ||
a1217d97 SL |
1313 | else if (rc != 0) |
1314 | { | |
1315 | if (value[rb].reg == 0) | |
1316 | value[rc].reg = value[ra].reg; | |
1317 | else if (value[ra].reg == 0) | |
1318 | value[rc].reg = value[rb].reg; | |
1319 | else | |
1320 | value[rc].reg = -1; | |
1321 | value[rc].offset = value[ra].offset + value[rb].offset; | |
1322 | } | |
a1217d97 | 1323 | |
aa489395 SL |
1324 | /* The add/move is only considered a prologue instruction |
1325 | if the destination is SP or FP. */ | |
1326 | if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM) | |
1327 | prologue_end = pc; | |
d53c26c7 SL |
1328 | } |
1329 | ||
1330 | else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc)) | |
a1217d97 SL |
1331 | { |
1332 | /* SUB rc, ra, rb */ | |
aa489395 SL |
1333 | if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM |
1334 | && value[rc].reg != 0) | |
1335 | /* If we are decrementing the SP by a non-constant amount, | |
1336 | this is alloca, not part of the prologue. */ | |
1337 | break; | |
1338 | else if (rc != 0) | |
a1217d97 SL |
1339 | { |
1340 | if (value[rb].reg == 0) | |
1341 | value[rc].reg = value[ra].reg; | |
1342 | else | |
1343 | value[rc].reg = -1; | |
1344 | value[rc].offset = value[ra].offset - value[rb].offset; | |
1345 | } | |
1346 | } | |
1347 | ||
d53c26c7 | 1348 | else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm)) |
a1217d97 | 1349 | { |
d53c26c7 | 1350 | /* ADDI rb, ra, imm */ |
a1217d97 | 1351 | |
aa489395 | 1352 | /* A positive stack adjustment has to be part of the epilogue. */ |
a1217d97 | 1353 | if (rb == NIOS2_SP_REGNUM |
aa489395 SL |
1354 | && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM)) |
1355 | break; | |
1356 | ||
1357 | /* Likewise restoring SP from FP. */ | |
1358 | else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM) | |
a1217d97 SL |
1359 | break; |
1360 | ||
1361 | if (rb != 0) | |
1362 | { | |
1363 | value[rb].reg = value[ra].reg; | |
d53c26c7 | 1364 | value[rb].offset = value[ra].offset + imm; |
a1217d97 SL |
1365 | } |
1366 | ||
aa489395 SL |
1367 | /* The add is only considered a prologue instruction |
1368 | if the destination is SP or FP. */ | |
1369 | if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM) | |
1370 | prologue_end = pc; | |
a1217d97 SL |
1371 | } |
1372 | ||
d53c26c7 | 1373 | else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm)) |
a1217d97 | 1374 | { |
d53c26c7 | 1375 | /* ORHI rb, ra, uimm (also used for MOVHI) */ |
a1217d97 SL |
1376 | if (rb != 0) |
1377 | { | |
1378 | value[rb].reg = (value[ra].reg == 0) ? 0 : -1; | |
d53c26c7 | 1379 | value[rb].offset = value[ra].offset | (uimm << 16); |
a1217d97 SL |
1380 | } |
1381 | } | |
1382 | ||
d53c26c7 | 1383 | else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm)) |
a1217d97 | 1384 | { |
d53c26c7 | 1385 | /* STW rb, imm(ra) */ |
a1217d97 | 1386 | |
d53c26c7 | 1387 | /* Are we storing the original value of a register to the stack? |
a1217d97 SL |
1388 | For exception handlers the value of EA-4 (return |
1389 | address from interrupts etc) is sometimes stored. */ | |
1390 | int orig = value[rb].reg; | |
1391 | if (orig > 0 | |
1392 | && (value[rb].offset == 0 | |
d53c26c7 | 1393 | || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4)) |
e1b5381f | 1394 | && value[ra].reg == NIOS2_SP_REGNUM) |
d53c26c7 SL |
1395 | { |
1396 | if (pc < current_pc) | |
a1217d97 | 1397 | { |
d53c26c7 SL |
1398 | /* Save off callee saved registers. */ |
1399 | cache->reg_saved[orig].basereg = value[ra].reg; | |
1400 | cache->reg_saved[orig].addr = value[ra].offset + imm; | |
a1217d97 | 1401 | } |
d53c26c7 SL |
1402 | |
1403 | prologue_end = pc; | |
1404 | ||
1405 | if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM) | |
1406 | exception_handler = 1; | |
a1217d97 SL |
1407 | } |
1408 | else | |
d53c26c7 SL |
1409 | /* Non-stack memory writes cannot appear in the prologue. */ |
1410 | break; | |
a1217d97 SL |
1411 | } |
1412 | ||
af60a1ef SL |
1413 | else if (nios2_match_stwm (insn, op, mach, |
1414 | ®list, &ra, &imm, &wb, &id)) | |
1415 | { | |
1416 | /* PUSH.N {reglist}, adjust | |
1417 | or | |
1418 | STWM {reglist}, --(SP)[, writeback] */ | |
1419 | int i; | |
1420 | int off = 0; | |
1421 | ||
1422 | if (ra != NIOS2_SP_REGNUM || id != 0) | |
1423 | /* This is a non-stack-push memory write and cannot be | |
1424 | part of the prologue. */ | |
1425 | break; | |
1426 | ||
1427 | for (i = 31; i >= 0; i--) | |
1428 | if (reglist & (1 << i)) | |
1429 | { | |
1430 | int orig = value[i].reg; | |
1431 | ||
1432 | off += 4; | |
1433 | if (orig > 0 && value[i].offset == 0 && pc < current_pc) | |
1434 | { | |
1435 | cache->reg_saved[orig].basereg | |
1436 | = value[NIOS2_SP_REGNUM].reg; | |
1437 | cache->reg_saved[orig].addr | |
1438 | = value[NIOS2_SP_REGNUM].offset - off; | |
1439 | } | |
1440 | } | |
1441 | ||
1442 | if (wb) | |
1443 | value[NIOS2_SP_REGNUM].offset -= off; | |
1444 | value[NIOS2_SP_REGNUM].offset -= imm; | |
1445 | ||
1446 | prologue_end = pc; | |
1447 | } | |
1448 | ||
d53c26c7 | 1449 | else if (nios2_match_rdctl (insn, op, mach, &ra, &rc)) |
a1217d97 | 1450 | { |
d53c26c7 SL |
1451 | /* RDCTL rC, ctlN |
1452 | This can appear in exception handlers in combination with | |
1453 | a subsequent save to the stack frame. */ | |
a1217d97 SL |
1454 | if (rc != 0) |
1455 | { | |
d53c26c7 | 1456 | value[rc].reg = NIOS2_STATUS_REGNUM + ra; |
a1217d97 SL |
1457 | value[rc].offset = 0; |
1458 | } | |
a1217d97 SL |
1459 | } |
1460 | ||
d53c26c7 | 1461 | else if (nios2_match_calli (insn, op, mach, &uimm)) |
a1217d97 | 1462 | { |
d53c26c7 SL |
1463 | if (value[8].reg == NIOS2_RA_REGNUM |
1464 | && value[8].offset == 0 | |
1465 | && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM | |
1466 | && value[NIOS2_SP_REGNUM].offset == 0) | |
1467 | { | |
1468 | /* A CALL instruction. This is treated as a call to mcount | |
1469 | if ra has been stored into r8 beforehand and if it's | |
1470 | before the stack adjust. | |
1471 | Note mcount corrupts r2-r3, r9-r15 & ra. */ | |
1472 | for (i = 2 ; i <= 3 ; i++) | |
1473 | value[i].reg = -1; | |
1474 | for (i = 9 ; i <= 15 ; i++) | |
1475 | value[i].reg = -1; | |
1476 | value[NIOS2_RA_REGNUM].reg = -1; | |
1477 | ||
1478 | prologue_end = pc; | |
1479 | } | |
a1217d97 | 1480 | |
d53c26c7 | 1481 | /* Other calls are not part of the prologue. */ |
a1217d97 | 1482 | else |
d53c26c7 | 1483 | break; |
a1217d97 SL |
1484 | } |
1485 | ||
d53c26c7 | 1486 | else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) |
a1217d97 | 1487 | { |
d53c26c7 SL |
1488 | /* Branches not involving a stack overflow check aren't part of |
1489 | the prologue. */ | |
1490 | if (ra != NIOS2_SP_REGNUM) | |
1491 | break; | |
1492 | else if (cond == branch_geu) | |
a1217d97 | 1493 | { |
d53c26c7 | 1494 | /* BGEU sp, rx, +8 |
9aaf8e3a | 1495 | TRAP 3 (or BREAK 3) |
d53c26c7 SL |
1496 | This instruction sequence is used in stack checking; |
1497 | we can ignore it. */ | |
1498 | unsigned int next_insn; | |
1499 | const struct nios2_opcode *next_op | |
1500 | = nios2_fetch_insn (gdbarch, pc, &next_insn); | |
1501 | if (next_op != NULL | |
9aaf8e3a SL |
1502 | && (nios2_match_trap (next_insn, op, mach, &uimm) |
1503 | || nios2_match_break (next_insn, op, mach, &uimm))) | |
d53c26c7 SL |
1504 | pc += next_op->size; |
1505 | else | |
1506 | break; | |
a1217d97 | 1507 | } |
d53c26c7 SL |
1508 | else if (cond == branch_ltu) |
1509 | { | |
1510 | /* BLTU sp, rx, .Lstackoverflow | |
9aaf8e3a SL |
1511 | If the location branched to holds a TRAP or BREAK |
1512 | instruction then this is also stack overflow detection. */ | |
d53c26c7 SL |
1513 | unsigned int next_insn; |
1514 | const struct nios2_opcode *next_op | |
1515 | = nios2_fetch_insn (gdbarch, pc + imm, &next_insn); | |
1516 | if (next_op != NULL | |
9aaf8e3a SL |
1517 | && (nios2_match_trap (next_insn, op, mach, &uimm) |
1518 | || nios2_match_break (next_insn, op, mach, &uimm))) | |
d53c26c7 SL |
1519 | ; |
1520 | else | |
1521 | break; | |
1522 | } | |
1523 | else | |
1524 | break; | |
a1217d97 SL |
1525 | } |
1526 | ||
9aaf8e3a | 1527 | /* All other calls, jumps, returns, TRAPs, or BREAKs terminate |
d53c26c7 SL |
1528 | the prologue. */ |
1529 | else if (nios2_match_callr (insn, op, mach, &ra) | |
1530 | || nios2_match_jmpr (insn, op, mach, &ra) | |
9aaf8e3a | 1531 | || nios2_match_jmpi (insn, op, mach, &uimm) |
af60a1ef SL |
1532 | || (nios2_match_ldwm (insn, op, mach, ®list, &ra, |
1533 | &imm, &wb, &id, &ret) | |
1534 | && ret) | |
9aaf8e3a SL |
1535 | || nios2_match_trap (insn, op, mach, &uimm) |
1536 | || nios2_match_break (insn, op, mach, &uimm)) | |
d53c26c7 | 1537 | break; |
a1217d97 SL |
1538 | } |
1539 | ||
1540 | /* If THIS_FRAME is NULL, we are being called from skip_prologue | |
1541 | and are only interested in the PROLOGUE_END value, so just | |
1542 | return that now and skip over the cache updates, which depend | |
1543 | on having frame information. */ | |
1544 | if (this_frame == NULL) | |
1545 | return prologue_end; | |
1546 | ||
1547 | /* If we are in the function epilogue and have already popped | |
1548 | registers off the stack in preparation for returning, then we | |
1549 | want to go back to the original register values. */ | |
1550 | if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc)) | |
1551 | nios2_setup_default (cache); | |
1552 | ||
1553 | /* Exception handlers use a different return address register. */ | |
1554 | if (exception_handler) | |
1555 | cache->return_regnum = NIOS2_EA_REGNUM; | |
1556 | ||
1557 | if (nios2_debug) | |
1558 | fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum); | |
1559 | ||
1560 | if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM) | |
1561 | /* If the FP now holds an offset from the CFA then this is a | |
1562 | normal frame which uses the frame pointer. */ | |
1563 | base_reg = NIOS2_FP_REGNUM; | |
1564 | else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM) | |
1565 | /* FP doesn't hold an offset from the CFA. If SP still holds an | |
1566 | offset from the CFA then we might be in a function which omits | |
1567 | the frame pointer, or we might be partway through the prologue. | |
1568 | In both cases we can find the CFA using SP. */ | |
1569 | base_reg = NIOS2_SP_REGNUM; | |
1570 | else | |
1571 | { | |
1572 | /* Somehow the stack pointer has been corrupted. | |
1573 | We can't return. */ | |
1574 | if (nios2_debug) | |
1575 | fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n"); | |
1576 | return 0; | |
1577 | } | |
1578 | ||
1579 | if (cache->reg_value[base_reg].offset == 0 | |
1580 | || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM | |
1581 | || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM) | |
1582 | { | |
1583 | /* If the frame didn't adjust the stack, didn't save RA or | |
1584 | didn't save EA in an exception handler then it must either | |
1585 | be a leaf function (doesn't call any other functions) or it | |
1586 | can't return. If it has called another function then it | |
1587 | can't be a leaf, so set base == 0 to indicate that we can't | |
1588 | backtrace past it. */ | |
1589 | ||
1590 | if (!innermost) | |
1591 | { | |
1592 | /* If it isn't the innermost function then it can't be a | |
1593 | leaf, unless it was interrupted. Check whether RA for | |
1594 | this frame is the same as PC. If so then it probably | |
1595 | wasn't interrupted. */ | |
1596 | CORE_ADDR ra | |
1597 | = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM); | |
1598 | ||
1599 | if (ra == current_pc) | |
1600 | { | |
1601 | if (nios2_debug) | |
1602 | fprintf_unfiltered | |
1603 | (gdb_stdlog, | |
1604 | "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n", | |
1605 | paddress (gdbarch, cache->reg_value[base_reg].offset), | |
1606 | cache->reg_saved[NIOS2_RA_REGNUM].basereg, | |
1607 | cache->return_regnum, | |
1608 | cache->reg_saved[cache->return_regnum].basereg); | |
1609 | return 0; | |
1610 | } | |
1611 | } | |
1612 | } | |
1613 | ||
1614 | /* Get the value of whichever register we are using for the | |
1615 | base. */ | |
1616 | cache->base = get_frame_register_unsigned (this_frame, base_reg); | |
1617 | ||
1618 | /* What was the value of SP at the start of this function (or just | |
1619 | after the stack switch). */ | |
1620 | frame_high = cache->base - cache->reg_value[base_reg].offset; | |
1621 | ||
1622 | /* Adjust all the saved registers such that they contain addresses | |
1623 | instead of offsets. */ | |
1624 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
1625 | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | |
1626 | { | |
1627 | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | |
1628 | cache->reg_saved[i].addr += frame_high; | |
1629 | } | |
1630 | ||
1631 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
1632 | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | |
1633 | { | |
1634 | CORE_ADDR gp = get_frame_register_unsigned (this_frame, | |
1635 | NIOS2_GP_REGNUM); | |
1636 | ||
1637 | for ( ; i < NIOS2_NUM_REGS; i++) | |
1638 | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | |
1639 | { | |
1640 | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | |
1641 | cache->reg_saved[i].addr += gp; | |
1642 | } | |
1643 | } | |
1644 | ||
1645 | /* Work out what the value of SP was on the first instruction of | |
1646 | this function. If we didn't switch stacks then this can be | |
1647 | trivially computed from the base address. */ | |
1648 | if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM) | |
1649 | cache->cfa | |
1650 | = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr, | |
1651 | 4, byte_order); | |
1652 | else | |
1653 | cache->cfa = frame_high; | |
1654 | ||
1655 | /* Exception handlers restore ESTATUS into STATUS. */ | |
1656 | if (exception_handler) | |
1657 | { | |
1658 | cache->reg_saved[NIOS2_STATUS_REGNUM] | |
1659 | = cache->reg_saved[NIOS2_ESTATUS_REGNUM]; | |
1660 | cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1; | |
1661 | } | |
1662 | ||
1663 | if (nios2_debug) | |
1664 | fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n", | |
1665 | paddress (gdbarch, cache->cfa)); | |
1666 | ||
1667 | return prologue_end; | |
1668 | } | |
1669 | ||
1670 | /* Implement the skip_prologue gdbarch hook. */ | |
1671 | ||
1672 | static CORE_ADDR | |
1673 | nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | |
1674 | { | |
a1217d97 SL |
1675 | CORE_ADDR func_addr; |
1676 | ||
1677 | struct nios2_unwind_cache cache; | |
1678 | ||
1679 | /* See if we can determine the end of the prologue via the symbol | |
1680 | table. If so, then return either PC, or the PC after the | |
1681 | prologue, whichever is greater. */ | |
1682 | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | |
1683 | { | |
1684 | CORE_ADDR post_prologue_pc | |
1685 | = skip_prologue_using_sal (gdbarch, func_addr); | |
1686 | ||
1687 | if (post_prologue_pc != 0) | |
325fac50 | 1688 | return std::max (start_pc, post_prologue_pc); |
a1217d97 SL |
1689 | } |
1690 | ||
1691 | /* Prologue analysis does the rest.... */ | |
1692 | nios2_init_cache (&cache, start_pc); | |
1693 | return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL); | |
1694 | } | |
1695 | ||
cd6c3b4f YQ |
1696 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
1697 | ||
d19280ad YQ |
1698 | static int |
1699 | nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
1700 | { | |
1701 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
1702 | ||
1703 | if (mach == bfd_mach_nios2r2) | |
1704 | { | |
1705 | unsigned int insn; | |
1706 | const struct nios2_opcode *op | |
1707 | = nios2_fetch_insn (gdbarch, *pcptr, &insn); | |
1708 | ||
1709 | if (op && op->size == NIOS2_CDX_OPCODE_SIZE) | |
1710 | return NIOS2_CDX_OPCODE_SIZE; | |
1711 | else | |
1712 | return NIOS2_OPCODE_SIZE; | |
1713 | } | |
1714 | else | |
1715 | return NIOS2_OPCODE_SIZE; | |
1716 | } | |
b73c49b7 | 1717 | |
cd6c3b4f YQ |
1718 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ |
1719 | ||
d19280ad YQ |
1720 | static const gdb_byte * |
1721 | nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | |
1722 | { | |
1723 | /* The Nios II ABI for Linux says: "Userspace programs should not use | |
b73c49b7 SL |
1724 | the break instruction and userspace debuggers should not insert |
1725 | one." and "Userspace breakpoints are accomplished using the trap | |
1726 | instruction with immediate operand 31 (all ones)." | |
1727 | ||
1728 | So, we use "trap 31" consistently as the breakpoint on bare-metal | |
1729 | as well as Linux targets. */ | |
a1217d97 | 1730 | |
d19280ad YQ |
1731 | /* R2 trap encoding: |
1732 | ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0)) | |
1733 | 0xb7fd0020 | |
1734 | CDX trap.n encoding: | |
1735 | ((0xd << 12) | (0x1f << 6) | (0x9 << 0)) | |
1736 | 0xd7c9 | |
1737 | Note that code is always little-endian on R2. */ | |
1738 | *size = kind; | |
d53c26c7 | 1739 | |
d19280ad | 1740 | if (kind == NIOS2_CDX_OPCODE_SIZE) |
af60a1ef | 1741 | { |
af60a1ef | 1742 | static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7}; |
af60a1ef | 1743 | |
d19280ad YQ |
1744 | return cdx_breakpoint_le; |
1745 | } | |
1746 | else | |
1747 | { | |
1748 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
1749 | ||
1750 | if (mach == bfd_mach_nios2r2) | |
af60a1ef | 1751 | { |
d19280ad YQ |
1752 | static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7}; |
1753 | ||
1754 | return r2_breakpoint_le; | |
af60a1ef SL |
1755 | } |
1756 | else | |
1757 | { | |
d19280ad YQ |
1758 | enum bfd_endian byte_order_for_code |
1759 | = gdbarch_byte_order_for_code (gdbarch); | |
1760 | /* R1 trap encoding: | |
1761 | ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0)) | |
1762 | 0x003b6ffa */ | |
1763 | static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0}; | |
1764 | static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa}; | |
1765 | ||
1766 | if (byte_order_for_code == BFD_ENDIAN_BIG) | |
1767 | return r1_breakpoint_be; | |
1768 | else | |
1769 | return r1_breakpoint_le; | |
af60a1ef SL |
1770 | } |
1771 | } | |
a1217d97 SL |
1772 | } |
1773 | ||
a1217d97 SL |
1774 | /* Implement the frame_align gdbarch method. */ |
1775 | ||
1776 | static CORE_ADDR | |
1777 | nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
1778 | { | |
1779 | return align_down (addr, 4); | |
1780 | } | |
1781 | ||
1782 | ||
1783 | /* Implement the return_value gdbarch method. */ | |
1784 | ||
1785 | static enum return_value_convention | |
1786 | nios2_return_value (struct gdbarch *gdbarch, struct value *function, | |
1787 | struct type *type, struct regcache *regcache, | |
1788 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
1789 | { | |
1790 | if (TYPE_LENGTH (type) > 8) | |
1791 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1792 | ||
1793 | if (readbuf) | |
1794 | nios2_extract_return_value (gdbarch, type, regcache, readbuf); | |
1795 | if (writebuf) | |
1796 | nios2_store_return_value (gdbarch, type, regcache, writebuf); | |
1797 | ||
1798 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1799 | } | |
1800 | ||
1801 | /* Implement the dummy_id gdbarch method. */ | |
1802 | ||
1803 | static struct frame_id | |
1804 | nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1805 | { | |
1806 | return frame_id_build | |
1807 | (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM), | |
1808 | get_frame_pc (this_frame)); | |
1809 | } | |
1810 | ||
1811 | /* Implement the push_dummy_call gdbarch method. */ | |
1812 | ||
1813 | static CORE_ADDR | |
1814 | nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1815 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1816 | int nargs, struct value **args, CORE_ADDR sp, | |
1817 | int struct_return, CORE_ADDR struct_addr) | |
1818 | { | |
1819 | int argreg; | |
a1217d97 SL |
1820 | int argnum; |
1821 | int len = 0; | |
1822 | int stack_offset = 0; | |
1823 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
1824 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1825 | ||
1826 | /* Set the return address register to point to the entry point of | |
1827 | the program, where a breakpoint lies in wait. */ | |
1828 | regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr); | |
1829 | ||
1830 | /* Now make space on the stack for the args. */ | |
1831 | for (argnum = 0; argnum < nargs; argnum++) | |
1832 | len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4); | |
1833 | sp -= len; | |
1834 | ||
1835 | /* Initialize the register pointer. */ | |
1836 | argreg = NIOS2_FIRST_ARGREG; | |
1837 | ||
1838 | /* The struct_return pointer occupies the first parameter-passing | |
1839 | register. */ | |
1840 | if (struct_return) | |
1841 | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); | |
1842 | ||
1843 | /* Now load as many as possible of the first arguments into | |
1844 | registers, and push the rest onto the stack. Loop through args | |
1845 | from first to last. */ | |
1846 | for (argnum = 0; argnum < nargs; argnum++) | |
1847 | { | |
1848 | const gdb_byte *val; | |
a1217d97 SL |
1849 | struct value *arg = args[argnum]; |
1850 | struct type *arg_type = check_typedef (value_type (arg)); | |
1851 | int len = TYPE_LENGTH (arg_type); | |
a1217d97 SL |
1852 | |
1853 | val = value_contents (arg); | |
1854 | ||
1855 | /* Copy the argument to general registers or the stack in | |
1856 | register-sized pieces. Large arguments are split between | |
1857 | registers and stack. */ | |
1858 | while (len > 0) | |
1859 | { | |
1860 | int partial_len = (len < 4 ? len : 4); | |
1861 | ||
1862 | if (argreg <= NIOS2_LAST_ARGREG) | |
1863 | { | |
1864 | /* The argument is being passed in a register. */ | |
1865 | CORE_ADDR regval = extract_unsigned_integer (val, partial_len, | |
1866 | byte_order); | |
1867 | ||
1868 | regcache_cooked_write_unsigned (regcache, argreg, regval); | |
1869 | argreg++; | |
1870 | } | |
1871 | else | |
1872 | { | |
1873 | /* The argument is being passed on the stack. */ | |
1874 | CORE_ADDR addr = sp + stack_offset; | |
1875 | ||
1876 | write_memory (addr, val, partial_len); | |
1877 | stack_offset += align_up (partial_len, 4); | |
1878 | } | |
1879 | ||
1880 | len -= partial_len; | |
1881 | val += partial_len; | |
1882 | } | |
1883 | } | |
1884 | ||
1885 | regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp); | |
1886 | ||
1887 | /* Return adjusted stack pointer. */ | |
1888 | return sp; | |
1889 | } | |
1890 | ||
1891 | /* Implement the unwind_pc gdbarch method. */ | |
1892 | ||
1893 | static CORE_ADDR | |
1894 | nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1895 | { | |
1896 | gdb_byte buf[4]; | |
1897 | ||
1898 | frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf); | |
1899 | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | |
1900 | } | |
1901 | ||
1902 | /* Implement the unwind_sp gdbarch method. */ | |
1903 | ||
1904 | static CORE_ADDR | |
1905 | nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
1906 | { | |
1907 | return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM); | |
1908 | } | |
1909 | ||
1910 | /* Use prologue analysis to fill in the register cache | |
1911 | *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes | |
1912 | *THIS_PROLOGUE_CACHE first. */ | |
1913 | ||
1914 | static struct nios2_unwind_cache * | |
1915 | nios2_frame_unwind_cache (struct frame_info *this_frame, | |
1916 | void **this_prologue_cache) | |
1917 | { | |
1918 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1919 | CORE_ADDR current_pc; | |
1920 | struct nios2_unwind_cache *cache; | |
a1217d97 SL |
1921 | |
1922 | if (*this_prologue_cache) | |
19ba03f4 | 1923 | return (struct nios2_unwind_cache *) *this_prologue_cache; |
a1217d97 SL |
1924 | |
1925 | cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache); | |
1926 | *this_prologue_cache = cache; | |
1927 | ||
1928 | /* Zero all fields. */ | |
1929 | nios2_init_cache (cache, get_frame_func (this_frame)); | |
1930 | ||
1931 | /* Prologue analysis does the rest... */ | |
1932 | current_pc = get_frame_pc (this_frame); | |
1933 | if (cache->pc != 0) | |
1934 | nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); | |
1935 | ||
1936 | return cache; | |
1937 | } | |
1938 | ||
1939 | /* Implement the this_id function for the normal unwinder. */ | |
1940 | ||
1941 | static void | |
1942 | nios2_frame_this_id (struct frame_info *this_frame, void **this_cache, | |
1943 | struct frame_id *this_id) | |
1944 | { | |
1945 | struct nios2_unwind_cache *cache = | |
1946 | nios2_frame_unwind_cache (this_frame, this_cache); | |
1947 | ||
1948 | /* This marks the outermost frame. */ | |
1949 | if (cache->base == 0) | |
1950 | return; | |
1951 | ||
1952 | *this_id = frame_id_build (cache->cfa, cache->pc); | |
1953 | } | |
1954 | ||
1955 | /* Implement the prev_register function for the normal unwinder. */ | |
1956 | ||
1957 | static struct value * | |
1958 | nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1959 | int regnum) | |
1960 | { | |
1961 | struct nios2_unwind_cache *cache = | |
1962 | nios2_frame_unwind_cache (this_frame, this_cache); | |
1963 | ||
1964 | gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS); | |
1965 | ||
1966 | /* The PC of the previous frame is stored in the RA register of | |
1967 | the current frame. Frob regnum so that we pull the value from | |
1968 | the correct place. */ | |
1969 | if (regnum == NIOS2_PC_REGNUM) | |
1970 | regnum = cache->return_regnum; | |
1971 | ||
1972 | if (regnum == NIOS2_SP_REGNUM && cache->cfa) | |
1973 | return frame_unwind_got_constant (this_frame, regnum, cache->cfa); | |
1974 | ||
1975 | /* If we've worked out where a register is stored then load it from | |
1976 | there. */ | |
1977 | if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM) | |
1978 | return frame_unwind_got_memory (this_frame, regnum, | |
1979 | cache->reg_saved[regnum].addr); | |
1980 | ||
1981 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
1982 | } | |
1983 | ||
1984 | /* Implement the this_base, this_locals, and this_args hooks | |
1985 | for the normal unwinder. */ | |
1986 | ||
1987 | static CORE_ADDR | |
1988 | nios2_frame_base_address (struct frame_info *this_frame, void **this_cache) | |
1989 | { | |
1990 | struct nios2_unwind_cache *info | |
1991 | = nios2_frame_unwind_cache (this_frame, this_cache); | |
1992 | ||
1993 | return info->base; | |
1994 | } | |
1995 | ||
1996 | /* Data structures for the normal prologue-analysis-based | |
1997 | unwinder. */ | |
1998 | ||
1999 | static const struct frame_unwind nios2_frame_unwind = | |
2000 | { | |
2001 | NORMAL_FRAME, | |
2002 | default_frame_unwind_stop_reason, | |
2003 | nios2_frame_this_id, | |
2004 | nios2_frame_prev_register, | |
2005 | NULL, | |
2006 | default_frame_sniffer | |
2007 | }; | |
2008 | ||
2009 | static const struct frame_base nios2_frame_base = | |
2010 | { | |
2011 | &nios2_frame_unwind, | |
2012 | nios2_frame_base_address, | |
2013 | nios2_frame_base_address, | |
2014 | nios2_frame_base_address | |
2015 | }; | |
2016 | ||
2017 | /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use | |
2018 | in the stub unwinder. */ | |
2019 | ||
2020 | static struct trad_frame_cache * | |
2021 | nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache) | |
2022 | { | |
2023 | CORE_ADDR pc; | |
2024 | CORE_ADDR start_addr; | |
2025 | CORE_ADDR stack_addr; | |
2026 | struct trad_frame_cache *this_trad_cache; | |
2027 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
a1217d97 SL |
2028 | |
2029 | if (*this_cache != NULL) | |
19ba03f4 | 2030 | return (struct trad_frame_cache *) *this_cache; |
a1217d97 SL |
2031 | this_trad_cache = trad_frame_cache_zalloc (this_frame); |
2032 | *this_cache = this_trad_cache; | |
2033 | ||
2034 | /* The return address is in the link register. */ | |
2035 | trad_frame_set_reg_realreg (this_trad_cache, | |
2036 | gdbarch_pc_regnum (gdbarch), | |
2037 | NIOS2_RA_REGNUM); | |
2038 | ||
2039 | /* Frame ID, since it's a frameless / stackless function, no stack | |
2040 | space is allocated and SP on entry is the current SP. */ | |
2041 | pc = get_frame_pc (this_frame); | |
2042 | find_pc_partial_function (pc, NULL, &start_addr, NULL); | |
2043 | stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM); | |
2044 | trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr)); | |
2045 | /* Assume that the frame's base is the same as the stack pointer. */ | |
2046 | trad_frame_set_this_base (this_trad_cache, stack_addr); | |
2047 | ||
2048 | return this_trad_cache; | |
2049 | } | |
2050 | ||
2051 | /* Implement the this_id function for the stub unwinder. */ | |
2052 | ||
2053 | static void | |
2054 | nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache, | |
2055 | struct frame_id *this_id) | |
2056 | { | |
2057 | struct trad_frame_cache *this_trad_cache | |
2058 | = nios2_stub_frame_cache (this_frame, this_cache); | |
2059 | ||
2060 | trad_frame_get_id (this_trad_cache, this_id); | |
2061 | } | |
2062 | ||
2063 | /* Implement the prev_register function for the stub unwinder. */ | |
2064 | ||
2065 | static struct value * | |
2066 | nios2_stub_frame_prev_register (struct frame_info *this_frame, | |
2067 | void **this_cache, int regnum) | |
2068 | { | |
2069 | struct trad_frame_cache *this_trad_cache | |
2070 | = nios2_stub_frame_cache (this_frame, this_cache); | |
2071 | ||
2072 | return trad_frame_get_register (this_trad_cache, this_frame, regnum); | |
2073 | } | |
2074 | ||
2075 | /* Implement the sniffer function for the stub unwinder. | |
2076 | This unwinder is used for cases where the normal | |
2077 | prologue-analysis-based unwinder can't work, | |
2078 | such as PLT stubs. */ | |
2079 | ||
2080 | static int | |
2081 | nios2_stub_frame_sniffer (const struct frame_unwind *self, | |
2082 | struct frame_info *this_frame, void **cache) | |
2083 | { | |
2084 | gdb_byte dummy[4]; | |
a1217d97 SL |
2085 | CORE_ADDR pc = get_frame_address_in_block (this_frame); |
2086 | ||
2087 | /* Use the stub unwinder for unreadable code. */ | |
2088 | if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) | |
2089 | return 1; | |
2090 | ||
3e5d3a5a | 2091 | if (in_plt_section (pc)) |
a1217d97 SL |
2092 | return 1; |
2093 | ||
2094 | return 0; | |
2095 | } | |
2096 | ||
a1217d97 SL |
2097 | /* Define the data structures for the stub unwinder. */ |
2098 | ||
2099 | static const struct frame_unwind nios2_stub_frame_unwind = | |
2100 | { | |
2101 | NORMAL_FRAME, | |
2102 | default_frame_unwind_stop_reason, | |
2103 | nios2_stub_frame_this_id, | |
2104 | nios2_stub_frame_prev_register, | |
2105 | NULL, | |
2106 | nios2_stub_frame_sniffer | |
2107 | }; | |
2108 | ||
a1217d97 | 2109 | |
a1217d97 SL |
2110 | |
2111 | /* Determine where to set a single step breakpoint while considering | |
2112 | branch prediction. */ | |
2113 | ||
2114 | static CORE_ADDR | |
3889f490 | 2115 | nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc) |
a1217d97 | 2116 | { |
ac7936df | 2117 | struct gdbarch *gdbarch = regcache->arch (); |
a1217d97 | 2118 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
d53c26c7 SL |
2119 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; |
2120 | unsigned int insn; | |
2121 | const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn); | |
a1217d97 SL |
2122 | int ra; |
2123 | int rb; | |
d53c26c7 SL |
2124 | int imm; |
2125 | unsigned int uimm; | |
af60a1ef | 2126 | int wb, id, ret; |
d53c26c7 SL |
2127 | enum branch_condition cond; |
2128 | ||
2129 | /* Do something stupid if we can't disassemble the insn at pc. */ | |
2130 | if (op == NULL) | |
2131 | return pc + NIOS2_OPCODE_SIZE; | |
2132 | ||
2133 | if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)) | |
a1217d97 | 2134 | { |
3889f490 YQ |
2135 | int ras = regcache_raw_get_signed (regcache, ra); |
2136 | int rbs = regcache_raw_get_signed (regcache, rb); | |
2137 | unsigned int rau = regcache_raw_get_unsigned (regcache, ra); | |
2138 | unsigned int rbu = regcache_raw_get_unsigned (regcache, rb); | |
a1217d97 | 2139 | |
d53c26c7 SL |
2140 | pc += op->size; |
2141 | switch (cond) | |
a1217d97 | 2142 | { |
d53c26c7 SL |
2143 | case branch_none: |
2144 | pc += imm; | |
2145 | break; | |
2146 | case branch_eq: | |
2147 | if (ras == rbs) | |
2148 | pc += imm; | |
2149 | break; | |
2150 | case branch_ne: | |
2151 | if (ras != rbs) | |
2152 | pc += imm; | |
2153 | break; | |
2154 | case branch_ge: | |
2155 | if (ras >= rbs) | |
2156 | pc += imm; | |
2157 | break; | |
2158 | case branch_geu: | |
2159 | if (rau >= rbu) | |
2160 | pc += imm; | |
2161 | break; | |
2162 | case branch_lt: | |
2163 | if (ras < rbs) | |
2164 | pc += imm; | |
2165 | break; | |
2166 | case branch_ltu: | |
2167 | if (rau < rbu) | |
2168 | pc += imm; | |
a1217d97 | 2169 | break; |
a1217d97 SL |
2170 | default: |
2171 | break; | |
2172 | } | |
a1217d97 | 2173 | } |
d53c26c7 SL |
2174 | |
2175 | else if (nios2_match_jmpi (insn, op, mach, &uimm) | |
2176 | || nios2_match_calli (insn, op, mach, &uimm)) | |
2177 | pc = (pc & 0xf0000000) | uimm; | |
2178 | ||
2179 | else if (nios2_match_jmpr (insn, op, mach, &ra) | |
2180 | || nios2_match_callr (insn, op, mach, &ra)) | |
3889f490 | 2181 | pc = regcache_raw_get_unsigned (regcache, ra); |
d53c26c7 | 2182 | |
af60a1ef SL |
2183 | else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret) |
2184 | && ret) | |
2185 | { | |
2186 | /* If ra is in the reglist, we have to use the value saved in the | |
2187 | stack frame rather than the current value. */ | |
2188 | if (uimm & (1 << NIOS2_RA_REGNUM)) | |
3889f490 | 2189 | pc = nios2_unwind_pc (gdbarch, get_current_frame ()); |
af60a1ef | 2190 | else |
3889f490 | 2191 | pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM); |
af60a1ef SL |
2192 | } |
2193 | ||
2194 | else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0) | |
d53c26c7 SL |
2195 | { |
2196 | if (tdep->syscall_next_pc != NULL) | |
3889f490 | 2197 | return tdep->syscall_next_pc (get_current_frame (), op); |
d53c26c7 SL |
2198 | } |
2199 | ||
2200 | else | |
2201 | pc += op->size; | |
2202 | ||
a1217d97 SL |
2203 | return pc; |
2204 | } | |
2205 | ||
2206 | /* Implement the software_single_step gdbarch method. */ | |
2207 | ||
a0ff9e1a | 2208 | static std::vector<CORE_ADDR> |
f5ea389a | 2209 | nios2_software_single_step (struct regcache *regcache) |
a1217d97 | 2210 | { |
3889f490 | 2211 | CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache)); |
a1217d97 | 2212 | |
a0ff9e1a | 2213 | return {next_pc}; |
a1217d97 SL |
2214 | } |
2215 | ||
2216 | /* Implement the get_longjump_target gdbarch method. */ | |
2217 | ||
2218 | static int | |
2219 | nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | |
2220 | { | |
2221 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2222 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2223 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2224 | CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM); | |
2225 | gdb_byte buf[4]; | |
2226 | ||
2227 | if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4)) | |
2228 | return 0; | |
2229 | ||
2230 | *pc = extract_unsigned_integer (buf, 4, byte_order); | |
2231 | return 1; | |
2232 | } | |
2233 | ||
2234 | /* Initialize the Nios II gdbarch. */ | |
2235 | ||
2236 | static struct gdbarch * | |
2237 | nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2238 | { | |
2239 | struct gdbarch *gdbarch; | |
2240 | struct gdbarch_tdep *tdep; | |
870f88f7 | 2241 | int i; |
a1217d97 SL |
2242 | struct tdesc_arch_data *tdesc_data = NULL; |
2243 | const struct target_desc *tdesc = info.target_desc; | |
2244 | ||
2245 | if (!tdesc_has_registers (tdesc)) | |
2246 | /* Pick a default target description. */ | |
2247 | tdesc = tdesc_nios2; | |
2248 | ||
2249 | /* Check any target description for validity. */ | |
2250 | if (tdesc_has_registers (tdesc)) | |
2251 | { | |
2252 | const struct tdesc_feature *feature; | |
2253 | int valid_p; | |
2254 | ||
2255 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu"); | |
2256 | if (feature == NULL) | |
2257 | return NULL; | |
2258 | ||
2259 | tdesc_data = tdesc_data_alloc (); | |
2260 | ||
2261 | valid_p = 1; | |
2262 | ||
2263 | for (i = 0; i < NIOS2_NUM_REGS; i++) | |
2264 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | |
2265 | nios2_reg_names[i]); | |
2266 | ||
2267 | if (!valid_p) | |
2268 | { | |
2269 | tdesc_data_cleanup (tdesc_data); | |
2270 | return NULL; | |
2271 | } | |
2272 | } | |
2273 | ||
2274 | /* Find a candidate among the list of pre-declared architectures. */ | |
2275 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2276 | if (arches != NULL) | |
2277 | return arches->gdbarch; | |
2278 | ||
2279 | /* None found, create a new architecture from the information | |
2280 | provided. */ | |
8d749320 | 2281 | tdep = XCNEW (struct gdbarch_tdep); |
a1217d97 SL |
2282 | gdbarch = gdbarch_alloc (&info, tdep); |
2283 | ||
2284 | /* longjmp support not enabled by default. */ | |
2285 | tdep->jb_pc = -1; | |
2286 | ||
2287 | /* Data type sizes. */ | |
2288 | set_gdbarch_ptr_bit (gdbarch, 32); | |
2289 | set_gdbarch_addr_bit (gdbarch, 32); | |
2290 | set_gdbarch_short_bit (gdbarch, 16); | |
2291 | set_gdbarch_int_bit (gdbarch, 32); | |
2292 | set_gdbarch_long_bit (gdbarch, 32); | |
2293 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2294 | set_gdbarch_float_bit (gdbarch, 32); | |
2295 | set_gdbarch_double_bit (gdbarch, 64); | |
2296 | ||
2297 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
2298 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
2299 | ||
2300 | /* The register set. */ | |
2301 | set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS); | |
2302 | set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM); | |
2303 | set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */ | |
2304 | ||
2305 | set_gdbarch_register_name (gdbarch, nios2_register_name); | |
2306 | set_gdbarch_register_type (gdbarch, nios2_register_type); | |
2307 | ||
2308 | /* Provide register mappings for stabs and dwarf2. */ | |
2309 | set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | |
2310 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | |
2311 | ||
2312 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2313 | ||
2314 | /* Call dummy code. */ | |
2315 | set_gdbarch_frame_align (gdbarch, nios2_frame_align); | |
2316 | ||
2317 | set_gdbarch_return_value (gdbarch, nios2_return_value); | |
2318 | ||
2319 | set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue); | |
c9cf6e20 | 2320 | set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p); |
04180708 YQ |
2321 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc); |
2322 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind); | |
a1217d97 SL |
2323 | |
2324 | set_gdbarch_dummy_id (gdbarch, nios2_dummy_id); | |
2325 | set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc); | |
2326 | set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp); | |
2327 | ||
2328 | /* The dwarf2 unwinder will normally produce the best results if | |
2329 | the debug information is available, so register it first. */ | |
2330 | dwarf2_append_unwinders (gdbarch); | |
2331 | frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind); | |
2332 | frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind); | |
2333 | ||
2334 | /* Single stepping. */ | |
2335 | set_gdbarch_software_single_step (gdbarch, nios2_software_single_step); | |
2336 | ||
2337 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
2338 | gdbarch_init_osabi (info, gdbarch); | |
2339 | ||
2340 | if (tdep->jb_pc >= 0) | |
2341 | set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target); | |
2342 | ||
2343 | frame_base_set_default (gdbarch, &nios2_frame_base); | |
2344 | ||
a1217d97 SL |
2345 | /* Enable inferior call support. */ |
2346 | set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call); | |
2347 | ||
2348 | if (tdesc_data) | |
2349 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); | |
2350 | ||
2351 | return gdbarch; | |
2352 | } | |
2353 | ||
a1217d97 SL |
2354 | void |
2355 | _initialize_nios2_tdep (void) | |
2356 | { | |
2357 | gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL); | |
2358 | initialize_tdesc_nios2 (); | |
2359 | ||
2360 | /* Allow debugging this file's internals. */ | |
2361 | add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug, | |
2362 | _("Set Nios II debugging."), | |
2363 | _("Show Nios II debugging."), | |
2364 | _("When on, Nios II specific debugging is enabled."), | |
2365 | NULL, | |
2366 | NULL, | |
2367 | &setdebuglist, &showdebuglist); | |
2368 | } |