2000-12-14 Kazu Hirata <kazu@hxi.com>
[deliverable/binutils-gdb.git] / gdb / objfiles.c
CommitLineData
c906108c
SS
1/* GDB routines for manipulating objfiles.
2 Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22/* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25#include "defs.h"
26#include "bfd.h" /* Binary File Description */
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdb-stabs.h"
31#include "target.h"
32
33#include <sys/types.h>
34#include "gdb_stat.h"
35#include <fcntl.h>
36#include "obstack.h"
37#include "gdb_string.h"
38
7a292a7a
SS
39#include "breakpoint.h"
40
c906108c
SS
41/* Prototypes for local functions */
42
43#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
44
a14ed312 45static int open_existing_mapped_file (char *, long, int);
c906108c 46
a14ed312 47static int open_mapped_file (char *filename, long mtime, int flags);
c906108c 48
a14ed312 49static PTR map_to_file (int);
c906108c 50
c5aa993b 51#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c 52
a14ed312 53static void add_to_objfile_sections (bfd *, sec_ptr, PTR);
c906108c
SS
54
55/* Externally visible variables that are owned by this module.
56 See declarations in objfile.h for more info. */
57
c5aa993b 58struct objfile *object_files; /* Linked list of all objfiles */
c906108c
SS
59struct objfile *current_objfile; /* For symbol file being read in */
60struct objfile *symfile_objfile; /* Main symbol table loaded from */
61struct objfile *rt_common_objfile; /* For runtime common symbols */
62
c5aa993b 63int mapped_symbol_files; /* Try to use mapped symbol files */
c906108c
SS
64
65/* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69#ifndef TARGET_KEEP_SECTION
70#define TARGET_KEEP_SECTION(ASECT) 0
71#endif
72
96baa820
JM
73/* Called via bfd_map_over_sections to build up the section table that
74 the objfile references. The objfile contains pointers to the start
75 of the table (objfile->sections) and to the first location after
76 the end of the table (objfile->sections_end). */
77
c906108c 78static void
fba45db2 79add_to_objfile_sections (bfd *abfd, sec_ptr asect, PTR objfile_p_char)
c906108c
SS
80{
81 struct objfile *objfile = (struct objfile *) objfile_p_char;
82 struct obj_section section;
83 flagword aflag;
84
85 aflag = bfd_get_section_flags (abfd, asect);
86
c5aa993b 87 if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect)))
c906108c
SS
88 return;
89
90 if (0 == bfd_section_size (abfd, asect))
91 return;
92 section.offset = 0;
93 section.objfile = objfile;
94 section.the_bfd_section = asect;
95 section.ovly_mapped = 0;
96 section.addr = bfd_section_vma (abfd, asect);
97 section.endaddr = section.addr + bfd_section_size (abfd, asect);
c5aa993b 98 obstack_grow (&objfile->psymbol_obstack, (char *) &section, sizeof (section));
c906108c
SS
99 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
100}
101
102/* Builds a section table for OBJFILE.
103 Returns 0 if OK, 1 on error (in which case bfd_error contains the
96baa820
JM
104 error).
105
106 Note that while we are building the table, which goes into the
107 psymbol obstack, we hijack the sections_end pointer to instead hold
108 a count of the number of sections. When bfd_map_over_sections
109 returns, this count is used to compute the pointer to the end of
110 the sections table, which then overwrites the count.
111
112 Also note that the OFFSET and OVLY_MAPPED in each table entry
113 are initialized to zero.
114
115 Also note that if anything else writes to the psymbol obstack while
116 we are building the table, we're pretty much hosed. */
c906108c
SS
117
118int
fba45db2 119build_objfile_section_table (struct objfile *objfile)
c906108c
SS
120{
121 /* objfile->sections can be already set when reading a mapped symbol
122 file. I believe that we do need to rebuild the section table in
123 this case (we rebuild other things derived from the bfd), but we
124 can't free the old one (it's in the psymbol_obstack). So we just
125 waste some memory. */
126
127 objfile->sections_end = 0;
c5aa993b 128 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile);
c906108c
SS
129 objfile->sections = (struct obj_section *)
130 obstack_finish (&objfile->psymbol_obstack);
131 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
c5aa993b 132 return (0);
c906108c
SS
133}
134
2df3850c
JM
135/* Given a pointer to an initialized bfd (ABFD) and some flag bits
136 allocate a new objfile struct, fill it in as best we can, link it
137 into the list of all known objfiles, and return a pointer to the
138 new objfile struct.
c906108c 139
2df3850c
JM
140 The FLAGS word contains various bits (OBJF_*) that can be taken as
141 requests for specific operations, like trying to open a mapped
142 version of the objfile (OBJF_MAPPED). Other bits like
143 OBJF_SHARED are simply copied through to the new objfile flags
144 member. */
c906108c
SS
145
146struct objfile *
fba45db2 147allocate_objfile (bfd *abfd, int flags)
c906108c
SS
148{
149 struct objfile *objfile = NULL;
150 struct objfile *last_one = NULL;
151
2df3850c
JM
152 if (mapped_symbol_files)
153 flags |= OBJF_MAPPED;
c906108c
SS
154
155#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
156 if (abfd != NULL)
c5aa993b 157 {
c906108c 158
c5aa993b
JM
159 /* If we can support mapped symbol files, try to open/reopen the
160 mapped file that corresponds to the file from which we wish to
161 read symbols. If the objfile is to be mapped, we must malloc
162 the structure itself using the mmap version, and arrange that
163 all memory allocation for the objfile uses the mmap routines.
164 If we are reusing an existing mapped file, from which we get
165 our objfile pointer, we have to make sure that we update the
166 pointers to the alloc/free functions in the obstack, in case
167 these functions have moved within the current gdb. */
168
169 int fd;
170
171 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
2df3850c 172 flags);
c5aa993b
JM
173 if (fd >= 0)
174 {
175 PTR md;
c906108c 176
c5aa993b
JM
177 if ((md = map_to_file (fd)) == NULL)
178 {
179 close (fd);
180 }
181 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
182 {
183 /* Update memory corruption handler function addresses. */
184 init_malloc (md);
185 objfile->md = md;
186 objfile->mmfd = fd;
187 /* Update pointers to functions to *our* copies */
188 obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc);
189 obstack_freefun (&objfile->psymbol_cache.cache, mfree);
190 obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc);
191 obstack_freefun (&objfile->psymbol_obstack, mfree);
192 obstack_chunkfun (&objfile->symbol_obstack, xmmalloc);
193 obstack_freefun (&objfile->symbol_obstack, mfree);
194 obstack_chunkfun (&objfile->type_obstack, xmmalloc);
195 obstack_freefun (&objfile->type_obstack, mfree);
196 /* If already in objfile list, unlink it. */
197 unlink_objfile (objfile);
198 /* Forget things specific to a particular gdb, may have changed. */
199 objfile->sf = NULL;
200 }
201 else
202 {
c906108c 203
c5aa993b
JM
204 /* Set up to detect internal memory corruption. MUST be
205 done before the first malloc. See comments in
206 init_malloc() and mmcheck(). */
207
208 init_malloc (md);
209
210 objfile = (struct objfile *)
211 xmmalloc (md, sizeof (struct objfile));
212 memset (objfile, 0, sizeof (struct objfile));
213 objfile->md = md;
214 objfile->mmfd = fd;
215 objfile->flags |= OBJF_MAPPED;
216 mmalloc_setkey (objfile->md, 0, objfile);
217 obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache,
218 0, 0, xmmalloc, mfree,
219 objfile->md);
220 obstack_specify_allocation_with_arg (&objfile->psymbol_obstack,
221 0, 0, xmmalloc, mfree,
222 objfile->md);
223 obstack_specify_allocation_with_arg (&objfile->symbol_obstack,
224 0, 0, xmmalloc, mfree,
225 objfile->md);
226 obstack_specify_allocation_with_arg (&objfile->type_obstack,
227 0, 0, xmmalloc, mfree,
228 objfile->md);
229 }
230 }
c906108c 231
2df3850c 232 if ((flags & OBJF_MAPPED) && (objfile == NULL))
c5aa993b
JM
233 {
234 warning ("symbol table for '%s' will not be mapped",
235 bfd_get_filename (abfd));
2df3850c 236 flags &= ~OBJF_MAPPED;
c5aa993b
JM
237 }
238 }
239#else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */
c906108c 240
2df3850c 241 if (flags & OBJF_MAPPED)
c906108c
SS
242 {
243 warning ("mapped symbol tables are not supported on this machine; missing or broken mmap().");
244
245 /* Turn off the global flag so we don't try to do mapped symbol tables
c5aa993b
JM
246 any more, which shuts up gdb unless the user specifically gives the
247 "mapped" keyword again. */
c906108c
SS
248
249 mapped_symbol_files = 0;
2df3850c 250 flags &= ~OBJF_MAPPED;
c906108c
SS
251 }
252
c5aa993b 253#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
254
255 /* If we don't support mapped symbol files, didn't ask for the file to be
256 mapped, or failed to open the mapped file for some reason, then revert
257 back to an unmapped objfile. */
258
259 if (objfile == NULL)
260 {
261 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
262 memset (objfile, 0, sizeof (struct objfile));
c5aa993b
JM
263 objfile->md = NULL;
264 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
c906108c 265 xmalloc, free);
c5aa993b 266 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc,
c906108c 267 free);
c5aa993b 268 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc,
c906108c 269 free);
c5aa993b 270 obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc,
c906108c 271 free);
2df3850c 272 flags &= ~OBJF_MAPPED;
c906108c
SS
273 }
274
275 /* Update the per-objfile information that comes from the bfd, ensuring
276 that any data that is reference is saved in the per-objfile data
277 region. */
278
c5aa993b
JM
279 objfile->obfd = abfd;
280 if (objfile->name != NULL)
c906108c 281 {
c5aa993b 282 mfree (objfile->md, objfile->name);
c906108c
SS
283 }
284 if (abfd != NULL)
285 {
c5aa993b
JM
286 objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd));
287 objfile->mtime = bfd_get_mtime (abfd);
c906108c
SS
288
289 /* Build section table. */
290
291 if (build_objfile_section_table (objfile))
292 {
c5aa993b
JM
293 error ("Can't find the file sections in `%s': %s",
294 objfile->name, bfd_errmsg (bfd_get_error ()));
c906108c
SS
295 }
296 }
297
b8fbeb18
EZ
298 /* Initialize the section indexes for this objfile, so that we can
299 later detect if they are used w/o being properly assigned to. */
300
301 objfile->sect_index_text = -1;
302 objfile->sect_index_data = -1;
303 objfile->sect_index_bss = -1;
304 objfile->sect_index_rodata = -1;
305
c906108c
SS
306 /* Add this file onto the tail of the linked list of other such files. */
307
c5aa993b 308 objfile->next = NULL;
c906108c
SS
309 if (object_files == NULL)
310 object_files = objfile;
311 else
312 {
313 for (last_one = object_files;
c5aa993b
JM
314 last_one->next;
315 last_one = last_one->next);
316 last_one->next = objfile;
c906108c
SS
317 }
318
2df3850c
JM
319 /* Save passed in flag bits. */
320 objfile->flags |= flags;
c906108c
SS
321
322 return (objfile);
323}
324
325/* Put OBJFILE at the front of the list. */
326
327void
fba45db2 328objfile_to_front (struct objfile *objfile)
c906108c
SS
329{
330 struct objfile **objp;
331 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
332 {
333 if (*objp == objfile)
334 {
335 /* Unhook it from where it is. */
336 *objp = objfile->next;
337 /* Put it in the front. */
338 objfile->next = object_files;
339 object_files = objfile;
340 break;
341 }
342 }
343}
344
345/* Unlink OBJFILE from the list of known objfiles, if it is found in the
346 list.
347
348 It is not a bug, or error, to call this function if OBJFILE is not known
349 to be in the current list. This is done in the case of mapped objfiles,
350 for example, just to ensure that the mapped objfile doesn't appear twice
351 in the list. Since the list is threaded, linking in a mapped objfile
352 twice would create a circular list.
353
354 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
355 unlinking it, just to ensure that we have completely severed any linkages
356 between the OBJFILE and the list. */
357
358void
fba45db2 359unlink_objfile (struct objfile *objfile)
c906108c 360{
c5aa993b 361 struct objfile **objpp;
c906108c 362
c5aa993b 363 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
c906108c 364 {
c5aa993b 365 if (*objpp == objfile)
c906108c 366 {
c5aa993b
JM
367 *objpp = (*objpp)->next;
368 objfile->next = NULL;
07cd4b97 369 return;
c906108c
SS
370 }
371 }
07cd4b97
JB
372
373 internal_error ("objfiles.c (unlink_objfile): objfile already unlinked");
c906108c
SS
374}
375
376
377/* Destroy an objfile and all the symtabs and psymtabs under it. Note
378 that as much as possible is allocated on the symbol_obstack and
379 psymbol_obstack, so that the memory can be efficiently freed.
380
381 Things which we do NOT free because they are not in malloc'd memory
382 or not in memory specific to the objfile include:
383
c5aa993b 384 objfile -> sf
c906108c
SS
385
386 FIXME: If the objfile is using reusable symbol information (via mmalloc),
387 then we need to take into account the fact that more than one process
388 may be using the symbol information at the same time (when mmalloc is
389 extended to support cooperative locking). When more than one process
390 is using the mapped symbol info, we need to be more careful about when
391 we free objects in the reusable area. */
392
393void
fba45db2 394free_objfile (struct objfile *objfile)
c906108c
SS
395{
396 /* First do any symbol file specific actions required when we are
397 finished with a particular symbol file. Note that if the objfile
398 is using reusable symbol information (via mmalloc) then each of
399 these routines is responsible for doing the correct thing, either
400 freeing things which are valid only during this particular gdb
401 execution, or leaving them to be reused during the next one. */
402
c5aa993b 403 if (objfile->sf != NULL)
c906108c 404 {
c5aa993b 405 (*objfile->sf->sym_finish) (objfile);
c906108c
SS
406 }
407
408 /* We always close the bfd. */
409
c5aa993b 410 if (objfile->obfd != NULL)
c906108c
SS
411 {
412 char *name = bfd_get_filename (objfile->obfd);
c5aa993b 413 if (!bfd_close (objfile->obfd))
c906108c
SS
414 warning ("cannot close \"%s\": %s",
415 name, bfd_errmsg (bfd_get_error ()));
416 free (name);
417 }
418
419 /* Remove it from the chain of all objfiles. */
420
421 unlink_objfile (objfile);
422
423 /* If we are going to free the runtime common objfile, mark it
424 as unallocated. */
425
426 if (objfile == rt_common_objfile)
427 rt_common_objfile = NULL;
428
429 /* Before the symbol table code was redone to make it easier to
430 selectively load and remove information particular to a specific
431 linkage unit, gdb used to do these things whenever the monolithic
432 symbol table was blown away. How much still needs to be done
433 is unknown, but we play it safe for now and keep each action until
434 it is shown to be no longer needed. */
c5aa993b 435
c906108c
SS
436 /* I *think* all our callers call clear_symtab_users. If so, no need
437 to call this here. */
438 clear_pc_function_cache ();
439
440 /* The last thing we do is free the objfile struct itself for the
441 non-reusable case, or detach from the mapped file for the reusable
442 case. Note that the mmalloc_detach or the mfree is the last thing
443 we can do with this objfile. */
444
445#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
446
c5aa993b 447 if (objfile->flags & OBJF_MAPPED)
c906108c
SS
448 {
449 /* Remember the fd so we can close it. We can't close it before
c5aa993b 450 doing the detach, and after the detach the objfile is gone. */
c906108c
SS
451 int mmfd;
452
c5aa993b
JM
453 mmfd = objfile->mmfd;
454 mmalloc_detach (objfile->md);
c906108c
SS
455 objfile = NULL;
456 close (mmfd);
457 }
458
c5aa993b 459#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
460
461 /* If we still have an objfile, then either we don't support reusable
462 objfiles or this one was not reusable. So free it normally. */
463
464 if (objfile != NULL)
465 {
c5aa993b 466 if (objfile->name != NULL)
c906108c 467 {
c5aa993b 468 mfree (objfile->md, objfile->name);
c906108c
SS
469 }
470 if (objfile->global_psymbols.list)
471 mfree (objfile->md, objfile->global_psymbols.list);
472 if (objfile->static_psymbols.list)
473 mfree (objfile->md, objfile->static_psymbols.list);
474 /* Free the obstacks for non-reusable objfiles */
c2d11a7d 475 free_bcache (&objfile->psymbol_cache);
c5aa993b
JM
476 obstack_free (&objfile->psymbol_obstack, 0);
477 obstack_free (&objfile->symbol_obstack, 0);
478 obstack_free (&objfile->type_obstack, 0);
479 mfree (objfile->md, objfile);
c906108c
SS
480 objfile = NULL;
481 }
482}
483
74b7792f
AC
484static void
485do_free_objfile_cleanup (void *obj)
486{
487 free_objfile (obj);
488}
489
490struct cleanup *
491make_cleanup_free_objfile (struct objfile *obj)
492{
493 return make_cleanup (do_free_objfile_cleanup, obj);
494}
c906108c
SS
495
496/* Free all the object files at once and clean up their users. */
497
498void
fba45db2 499free_all_objfiles (void)
c906108c
SS
500{
501 struct objfile *objfile, *temp;
502
503 ALL_OBJFILES_SAFE (objfile, temp)
c5aa993b
JM
504 {
505 free_objfile (objfile);
506 }
c906108c
SS
507 clear_symtab_users ();
508}
509\f
510/* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
511 entries in new_offsets. */
512void
fba45db2 513objfile_relocate (struct objfile *objfile, struct section_offsets *new_offsets)
c906108c 514{
d4f3574e
SS
515 struct section_offsets *delta =
516 (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
c906108c
SS
517
518 {
519 int i;
520 int something_changed = 0;
521 for (i = 0; i < objfile->num_sections; ++i)
522 {
a4c8257b 523 delta->offsets[i] =
c906108c
SS
524 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
525 if (ANOFFSET (delta, i) != 0)
526 something_changed = 1;
527 }
528 if (!something_changed)
529 return;
530 }
531
532 /* OK, get all the symtabs. */
533 {
534 struct symtab *s;
535
536 ALL_OBJFILE_SYMTABS (objfile, s)
c5aa993b
JM
537 {
538 struct linetable *l;
539 struct blockvector *bv;
540 int i;
541
542 /* First the line table. */
543 l = LINETABLE (s);
544 if (l)
545 {
546 for (i = 0; i < l->nitems; ++i)
547 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
548 }
c906108c 549
c5aa993b
JM
550 /* Don't relocate a shared blockvector more than once. */
551 if (!s->primary)
552 continue;
c906108c 553
c5aa993b
JM
554 bv = BLOCKVECTOR (s);
555 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
556 {
557 struct block *b;
558 int j;
559
560 b = BLOCKVECTOR_BLOCK (bv, i);
561 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
562 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
563
564 for (j = 0; j < BLOCK_NSYMS (b); ++j)
565 {
566 struct symbol *sym = BLOCK_SYM (b, j);
7a78d0ee
KB
567
568 fixup_symbol_section (sym, objfile);
569
c5aa993b
JM
570 /* The RS6000 code from which this was taken skipped
571 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
572 But I'm leaving out that test, on the theory that
573 they can't possibly pass the tests below. */
574 if ((SYMBOL_CLASS (sym) == LOC_LABEL
575 || SYMBOL_CLASS (sym) == LOC_STATIC
576 || SYMBOL_CLASS (sym) == LOC_INDIRECT)
577 && SYMBOL_SECTION (sym) >= 0)
578 {
579 SYMBOL_VALUE_ADDRESS (sym) +=
580 ANOFFSET (delta, SYMBOL_SECTION (sym));
581 }
c906108c 582#ifdef MIPS_EFI_SYMBOL_NAME
c5aa993b 583 /* Relocate Extra Function Info for ecoff. */
c906108c 584
c5aa993b
JM
585 else if (SYMBOL_CLASS (sym) == LOC_CONST
586 && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE
587 && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0)
588 ecoff_relocate_efi (sym, ANOFFSET (delta,
c906108c
SS
589 s->block_line_section));
590#endif
c5aa993b
JM
591 }
592 }
593 }
c906108c
SS
594 }
595
596 {
597 struct partial_symtab *p;
598
599 ALL_OBJFILE_PSYMTABS (objfile, p)
c5aa993b 600 {
b8fbeb18
EZ
601 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
602 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c5aa993b 603 }
c906108c
SS
604 }
605
606 {
607 struct partial_symbol **psym;
608
609 for (psym = objfile->global_psymbols.list;
610 psym < objfile->global_psymbols.next;
611 psym++)
7a78d0ee
KB
612 {
613 fixup_psymbol_section (*psym, objfile);
614 if (SYMBOL_SECTION (*psym) >= 0)
615 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
616 SYMBOL_SECTION (*psym));
617 }
c906108c
SS
618 for (psym = objfile->static_psymbols.list;
619 psym < objfile->static_psymbols.next;
620 psym++)
7a78d0ee
KB
621 {
622 fixup_psymbol_section (*psym, objfile);
623 if (SYMBOL_SECTION (*psym) >= 0)
624 SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta,
625 SYMBOL_SECTION (*psym));
626 }
c906108c
SS
627 }
628
629 {
630 struct minimal_symbol *msym;
631 ALL_OBJFILE_MSYMBOLS (objfile, msym)
632 if (SYMBOL_SECTION (msym) >= 0)
c5aa993b 633 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
c906108c
SS
634 }
635 /* Relocating different sections by different amounts may cause the symbols
636 to be out of order. */
637 msymbols_sort (objfile);
638
639 {
640 int i;
641 for (i = 0; i < objfile->num_sections; ++i)
a4c8257b 642 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
c906108c
SS
643 }
644
36b0c0e0
PS
645 if (objfile->ei.entry_point != ~(CORE_ADDR) 0)
646 {
647 /* Relocate ei.entry_point with its section offset, use SECT_OFF_TEXT
648 only as a fallback. */
649 struct obj_section *s;
650 s = find_pc_section (objfile->ei.entry_point);
651 if (s)
652 objfile->ei.entry_point += ANOFFSET (delta, s->the_bfd_section->index);
653 else
654 objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
655 }
656
c906108c
SS
657 {
658 struct obj_section *s;
659 bfd *abfd;
660
661 abfd = objfile->obfd;
662
96baa820 663 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 664 {
78f0949b
KB
665 int idx = s->the_bfd_section->index;
666
667 s->addr += ANOFFSET (delta, idx);
668 s->endaddr += ANOFFSET (delta, idx);
c906108c
SS
669 }
670 }
671
c906108c
SS
672 if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC)
673 {
b8fbeb18
EZ
674 objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
675 objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c906108c
SS
676 }
677
678 if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC)
679 {
b8fbeb18
EZ
680 objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
681 objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c906108c
SS
682 }
683
684 if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC)
685 {
b8fbeb18
EZ
686 objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
687 objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile));
c906108c
SS
688 }
689
690 /* Relocate breakpoints as necessary, after things are relocated. */
691 breakpoint_re_set ();
692}
693\f
694/* Many places in gdb want to test just to see if we have any partial
695 symbols available. This function returns zero if none are currently
696 available, nonzero otherwise. */
697
698int
fba45db2 699have_partial_symbols (void)
c906108c
SS
700{
701 struct objfile *ofp;
702
703 ALL_OBJFILES (ofp)
c5aa993b
JM
704 {
705 if (ofp->psymtabs != NULL)
706 {
707 return 1;
708 }
709 }
c906108c
SS
710 return 0;
711}
712
713/* Many places in gdb want to test just to see if we have any full
714 symbols available. This function returns zero if none are currently
715 available, nonzero otherwise. */
716
717int
fba45db2 718have_full_symbols (void)
c906108c
SS
719{
720 struct objfile *ofp;
721
722 ALL_OBJFILES (ofp)
c5aa993b
JM
723 {
724 if (ofp->symtabs != NULL)
725 {
726 return 1;
727 }
728 }
c906108c
SS
729 return 0;
730}
731
732
733/* This operations deletes all objfile entries that represent solibs that
734 weren't explicitly loaded by the user, via e.g., the add-symbol-file
735 command.
c5aa993b 736 */
c906108c 737void
fba45db2 738objfile_purge_solibs (void)
c906108c 739{
c5aa993b
JM
740 struct objfile *objf;
741 struct objfile *temp;
c906108c
SS
742
743 ALL_OBJFILES_SAFE (objf, temp)
744 {
745 /* We assume that the solib package has been purged already, or will
746 be soon.
c5aa993b 747 */
2df3850c 748 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
c906108c
SS
749 free_objfile (objf);
750 }
751}
752
753
754/* Many places in gdb want to test just to see if we have any minimal
755 symbols available. This function returns zero if none are currently
756 available, nonzero otherwise. */
757
758int
fba45db2 759have_minimal_symbols (void)
c906108c
SS
760{
761 struct objfile *ofp;
762
763 ALL_OBJFILES (ofp)
c5aa993b
JM
764 {
765 if (ofp->msymbols != NULL)
766 {
767 return 1;
768 }
769 }
c906108c
SS
770 return 0;
771}
772
773#if defined(USE_MMALLOC) && defined(HAVE_MMAP)
774
775/* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
776 of the corresponding symbol file in MTIME, try to open an existing file
777 with the name SYMSFILENAME and verify it is more recent than the base
778 file by checking it's timestamp against MTIME.
779
780 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
781
782 If SYMSFILENAME does exist, but is out of date, we check to see if the
783 user has specified creation of a mapped file. If so, we don't issue
784 any warning message because we will be creating a new mapped file anyway,
785 overwriting the old one. If not, then we issue a warning message so that
786 the user will know why we aren't using this existing mapped symbol file.
787 In either case, we return -1.
788
789 If SYMSFILENAME does exist and is not out of date, but can't be opened for
790 some reason, then prints an appropriate system error message and returns -1.
791
792 Otherwise, returns the open file descriptor. */
793
794static int
fba45db2 795open_existing_mapped_file (char *symsfilename, long mtime, int flags)
c906108c
SS
796{
797 int fd = -1;
798 struct stat sbuf;
799
800 if (stat (symsfilename, &sbuf) == 0)
801 {
802 if (sbuf.st_mtime < mtime)
803 {
2df3850c 804 if (!(flags & OBJF_MAPPED))
c906108c
SS
805 {
806 warning ("mapped symbol file `%s' is out of date, ignored it",
807 symsfilename);
808 }
809 }
810 else if ((fd = open (symsfilename, O_RDWR)) < 0)
811 {
812 if (error_pre_print)
813 {
814 printf_unfiltered (error_pre_print);
815 }
816 print_sys_errmsg (symsfilename, errno);
817 }
818 }
819 return (fd);
820}
821
822/* Look for a mapped symbol file that corresponds to FILENAME and is more
823 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
824 use a mapped symbol file for this file, so create a new one if one does
825 not currently exist.
826
827 If found, then return an open file descriptor for the file, otherwise
828 return -1.
829
830 This routine is responsible for implementing the policy that generates
831 the name of the mapped symbol file from the name of a file containing
832 symbols that gdb would like to read. Currently this policy is to append
833 ".syms" to the name of the file.
834
835 This routine is also responsible for implementing the policy that
836 determines where the mapped symbol file is found (the search path).
837 This policy is that when reading an existing mapped file, a file of
838 the correct name in the current directory takes precedence over a
839 file of the correct name in the same directory as the symbol file.
840 When creating a new mapped file, it is always created in the current
841 directory. This helps to minimize the chances of a user unknowingly
842 creating big mapped files in places like /bin and /usr/local/bin, and
843 allows a local copy to override a manually installed global copy (in
844 /bin for example). */
845
846static int
fba45db2 847open_mapped_file (char *filename, long mtime, int flags)
c906108c
SS
848{
849 int fd;
850 char *symsfilename;
851
852 /* First try to open an existing file in the current directory, and
853 then try the directory where the symbol file is located. */
854
855 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
2df3850c 856 if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0)
c906108c
SS
857 {
858 free (symsfilename);
859 symsfilename = concat (filename, ".syms", (char *) NULL);
2fc18c15 860 fd = open_existing_mapped_file (symsfilename, mtime, flags);
c906108c
SS
861 }
862
863 /* If we don't have an open file by now, then either the file does not
864 already exist, or the base file has changed since it was created. In
865 either case, if the user has specified use of a mapped file, then
866 create a new mapped file, truncating any existing one. If we can't
867 create one, print a system error message saying why we can't.
868
869 By default the file is rw for everyone, with the user's umask taking
870 care of turning off the permissions the user wants off. */
871
2fc18c15 872 if ((fd < 0) && (flags & OBJF_MAPPED))
c906108c
SS
873 {
874 free (symsfilename);
875 symsfilename = concat ("./", basename (filename), ".syms",
876 (char *) NULL);
877 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
878 {
879 if (error_pre_print)
880 {
881 printf_unfiltered (error_pre_print);
882 }
883 print_sys_errmsg (symsfilename, errno);
884 }
885 }
886
887 free (symsfilename);
888 return (fd);
889}
890
891static PTR
fba45db2 892map_to_file (int fd)
c906108c
SS
893{
894 PTR md;
895 CORE_ADDR mapto;
896
897 md = mmalloc_attach (fd, (PTR) 0);
898 if (md != NULL)
899 {
900 mapto = (CORE_ADDR) mmalloc_getkey (md, 1);
901 md = mmalloc_detach (md);
902 if (md != NULL)
903 {
904 /* FIXME: should figure out why detach failed */
905 md = NULL;
906 }
907 else if (mapto != (CORE_ADDR) NULL)
908 {
909 /* This mapping file needs to be remapped at "mapto" */
910 md = mmalloc_attach (fd, (PTR) mapto);
911 }
912 else
913 {
914 /* This is a freshly created mapping file. */
915 mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024);
916 if (mapto != 0)
917 {
918 /* To avoid reusing the freshly created mapping file, at the
c5aa993b
JM
919 address selected by mmap, we must truncate it before trying
920 to do an attach at the address we want. */
c906108c
SS
921 ftruncate (fd, 0);
922 md = mmalloc_attach (fd, (PTR) mapto);
923 if (md != NULL)
924 {
925 mmalloc_setkey (md, 1, (PTR) mapto);
926 }
927 }
928 }
929 }
930 return (md);
931}
932
c5aa993b 933#endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */
c906108c
SS
934
935/* Returns a section whose range includes PC and SECTION,
936 or NULL if none found. Note the distinction between the return type,
937 struct obj_section (which is defined in gdb), and the input type
938 struct sec (which is a bfd-defined data type). The obj_section
939 contains a pointer to the bfd struct sec section. */
940
941struct obj_section *
fba45db2 942find_pc_sect_section (CORE_ADDR pc, struct sec *section)
c906108c
SS
943{
944 struct obj_section *s;
945 struct objfile *objfile;
c5aa993b 946
96baa820 947 ALL_OBJSECTIONS (objfile, s)
c5aa993b
JM
948 if ((section == 0 || section == s->the_bfd_section) &&
949 s->addr <= pc && pc < s->endaddr)
c5aa993b 950 return (s);
c906108c 951
c5aa993b 952 return (NULL);
c906108c
SS
953}
954
955/* Returns a section whose range includes PC or NULL if none found.
956 Backward compatibility, no section. */
957
958struct obj_section *
fba45db2 959find_pc_section (CORE_ADDR pc)
c906108c
SS
960{
961 return find_pc_sect_section (pc, find_pc_mapped_section (pc));
962}
c5aa993b 963
c906108c
SS
964
965/* In SVR4, we recognize a trampoline by it's section name.
966 That is, if the pc is in a section named ".plt" then we are in
967 a trampoline. */
968
969int
fba45db2 970in_plt_section (CORE_ADDR pc, char *name)
c906108c
SS
971{
972 struct obj_section *s;
973 int retval = 0;
c5aa993b
JM
974
975 s = find_pc_section (pc);
976
c906108c
SS
977 retval = (s != NULL
978 && s->the_bfd_section->name != NULL
979 && STREQ (s->the_bfd_section->name, ".plt"));
c5aa993b 980 return (retval);
c906108c 981}
7be570e7
JM
982
983/* Return nonzero if NAME is in the import list of OBJFILE. Else
984 return zero. */
985
986int
fba45db2 987is_in_import_list (char *name, struct objfile *objfile)
7be570e7
JM
988{
989 register int i;
990
991 if (!objfile || !name || !*name)
992 return 0;
993
994 for (i = 0; i < objfile->import_list_size; i++)
995 if (objfile->import_list[i] && STREQ (name, objfile->import_list[i]))
996 return 1;
997 return 0;
998}
999
This page took 0.127258 seconds and 4 git commands to generate.