Enable support for the AArch64 dot-prod instruction in the Cortex A55 and A75 cpus.
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
0df8b418 26#include "symfile.h" /* For struct psymbol_allocation_list. */
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
3956d554 30
af5f3db6 31struct bcache;
2de7ced7 32struct htab;
4a4b3fed 33struct objfile_data;
08c0b5bc 34
c906108c
SS
35/* This structure maintains information on a per-objfile basis about the
36 "entry point" of the objfile, and the scope within which the entry point
37 exists. It is possible that gdb will see more than one objfile that is
38 executable, each with its own entry point.
39
40 For example, for dynamically linked executables in SVR4, the dynamic linker
41 code is contained within the shared C library, which is actually executable
42 and is run by the kernel first when an exec is done of a user executable
43 that is dynamically linked. The dynamic linker within the shared C library
44 then maps in the various program segments in the user executable and jumps
45 to the user executable's recorded entry point, as if the call had been made
46 directly by the kernel.
47
73c1e0a1
AC
48 The traditional gdb method of using this info was to use the
49 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
50 the debugging information, where these values are the starting
51 address (inclusive) and ending address (exclusive) of the
52 instruction space in the executable which correspond to the
0df8b418 53 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
54 be a startup file and frames with pc's inside it are treated as
55 nonexistent. Setting these variables is necessary so that
56 backtraces do not fly off the bottom of the stack.
57
58 NOTE: cagney/2003-09-09: It turns out that this "traditional"
59 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 60 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 61 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
62 testcase are broken for some targets. In this test the functions
63 are all implemented as part of one file and the testcase is not
64 necessarily linked with a start file (depending on the target).
65 What happens is, that the first frame is printed normaly and
66 following frames are treated as being inside the enttry file then.
67 This way, only the #0 frame is printed in the backtrace output.''
68 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
69
70 Gdb also supports an alternate method to avoid running off the bottom
71 of the stack.
72
73 There are two frames that are "special", the frame for the function
74 containing the process entry point, since it has no predecessor frame,
75 and the frame for the function containing the user code entry point
76 (the main() function), since all the predecessor frames are for the
77 process startup code. Since we have no guarantee that the linked
78 in startup modules have any debugging information that gdb can use,
79 we need to avoid following frame pointers back into frames that might
95cf5869 80 have been built in the startup code, as we might get hopelessly
c906108c
SS
81 confused. However, we almost always have debugging information
82 available for main().
83
618ce49f
AC
84 These variables are used to save the range of PC values which are
85 valid within the main() function and within the function containing
86 the process entry point. If we always consider the frame for
87 main() as the outermost frame when debugging user code, and the
88 frame for the process entry point function as the outermost frame
89 when debugging startup code, then all we have to do is have
90 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
91 current PC is within the range specified by these variables. In
92 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
93 not proceed when following the frame chain back up the stack.
94
95 A nice side effect is that we can still debug startup code without
96 running off the end of the frame chain, assuming that we have usable
97 debugging information in the startup modules, and if we choose to not
98 use the block at main, or can't find it for some reason, everything
99 still works as before. And if we have no startup code debugging
100 information but we do have usable information for main(), backtraces
6e4c6c91 101 from user code don't go wandering off into the startup code. */
c906108c
SS
102
103struct entry_info
95cf5869
DE
104{
105 /* The unrelocated value we should use for this objfile entry point. */
106 CORE_ADDR entry_point;
c906108c 107
95cf5869
DE
108 /* The index of the section in which the entry point appears. */
109 int the_bfd_section_index;
53eddfa6 110
95cf5869
DE
111 /* Set to 1 iff ENTRY_POINT contains a valid value. */
112 unsigned entry_point_p : 1;
6ef55de7 113
95cf5869
DE
114 /* Set to 1 iff this object was initialized. */
115 unsigned initialized : 1;
116};
c906108c 117
f1f6aadf
PA
118/* Sections in an objfile. The section offsets are stored in the
119 OBJFILE. */
c906108c 120
c5aa993b 121struct obj_section
95cf5869
DE
122{
123 /* BFD section pointer */
124 struct bfd_section *the_bfd_section;
c906108c 125
95cf5869
DE
126 /* Objfile this section is part of. */
127 struct objfile *objfile;
c906108c 128
95cf5869
DE
129 /* True if this "overlay section" is mapped into an "overlay region". */
130 int ovly_mapped;
131};
c906108c 132
f1f6aadf
PA
133/* Relocation offset applied to S. */
134#define obj_section_offset(s) \
65cf3563 135 (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
136
137/* The memory address of section S (vma + offset). */
138#define obj_section_addr(s) \
1706c199 139 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
140 + obj_section_offset (s))
141
142/* The one-passed-the-end memory address of section S
143 (vma + size + offset). */
144#define obj_section_endaddr(s) \
1706c199 145 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
146 + bfd_get_section_size ((s)->the_bfd_section) \
147 + obj_section_offset (s))
c906108c 148
c906108c
SS
149/* The "objstats" structure provides a place for gdb to record some
150 interesting information about its internal state at runtime, on a
151 per objfile basis, such as information about the number of symbols
0df8b418 152 read, size of string table (if any), etc. */
c906108c 153
c5aa993b 154struct objstats
95cf5869
DE
155{
156 /* Number of partial symbols read. */
157 int n_psyms;
158
159 /* Number of full symbols read. */
160 int n_syms;
161
162 /* Number of ".stabs" read (if applicable). */
163 int n_stabs;
164
165 /* Number of types. */
166 int n_types;
167
168 /* Size of stringtable, (if applicable). */
169 int sz_strtab;
170};
c906108c
SS
171
172#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
173#define OBJSTATS struct objstats stats
a14ed312
KB
174extern void print_objfile_statistics (void);
175extern void print_symbol_bcache_statistics (void);
c906108c 176
9227b5eb 177/* Number of entries in the minimal symbol hash table. */
375f3d86 178#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 179
706e3705
TT
180/* Some objfile data is hung off the BFD. This enables sharing of the
181 data across all objfiles using the BFD. The data is stored in an
182 instance of this structure, and associated with the BFD using the
183 registry system. */
184
185struct objfile_per_bfd_storage
186{
23732b1e
PA
187 objfile_per_bfd_storage ()
188 : minsyms_read (false)
189 {}
190
706e3705
TT
191 /* The storage has an obstack of its own. */
192
23732b1e 193 auto_obstack storage_obstack;
95cf5869 194
706e3705
TT
195 /* Byte cache for file names. */
196
23732b1e 197 bcache *filename_cache = NULL;
6532ff36
TT
198
199 /* Byte cache for macros. */
95cf5869 200
23732b1e 201 bcache *macro_cache = NULL;
df6d5441
TT
202
203 /* The gdbarch associated with the BFD. Note that this gdbarch is
204 determined solely from BFD information, without looking at target
205 information. The gdbarch determined from a running target may
206 differ from this e.g. with respect to register types and names. */
207
23732b1e 208 struct gdbarch *gdbarch = NULL;
84a1243b
TT
209
210 /* Hash table for mapping symbol names to demangled names. Each
211 entry in the hash table is actually two consecutive strings,
212 both null-terminated; the first one is a mangled or linkage
213 name, and the second is the demangled name or just a zero byte
214 if the name doesn't demangle. */
95cf5869 215
23732b1e 216 htab *demangled_names_hash = NULL;
6ef55de7
TT
217
218 /* The per-objfile information about the entry point, the scope (file/func)
219 containing the entry point, and the scope of the user's main() func. */
220
23732b1e 221 entry_info ei {};
3d548a53
TT
222
223 /* The name and language of any "main" found in this objfile. The
224 name can be NULL, which means that the information was not
225 recorded. */
226
23732b1e
PA
227 const char *name_of_main = NULL;
228 enum language language_of_main = language_unknown;
34643a32
TT
229
230 /* Each file contains a pointer to an array of minimal symbols for all
231 global symbols that are defined within the file. The array is
232 terminated by a "null symbol", one that has a NULL pointer for the
233 name and a zero value for the address. This makes it easy to walk
234 through the array when passed a pointer to somewhere in the middle
235 of it. There is also a count of the number of symbols, which does
236 not include the terminating null symbol. The array itself, as well
237 as all the data that it points to, should be allocated on the
238 objfile_obstack for this file. */
239
23732b1e
PA
240 minimal_symbol *msymbols = NULL;
241 int minimal_symbol_count = 0;
34643a32 242
5f6cac40
TT
243 /* The number of minimal symbols read, before any minimal symbol
244 de-duplication is applied. Note in particular that this has only
245 a passing relationship with the actual size of the table above;
246 use minimal_symbol_count if you need the true size. */
95cf5869 247
23732b1e 248 int n_minsyms = 0;
5f6cac40 249
34643a32
TT
250 /* This is true if minimal symbols have already been read. Symbol
251 readers can use this to bypass minimal symbol reading. Also, the
252 minimal symbol table management code in minsyms.c uses this to
253 suppress new minimal symbols. You might think that MSYMBOLS or
254 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
255 for multiple readers to install minimal symbols into a given
256 per-BFD. */
257
23732b1e 258 bool minsyms_read : 1;
34643a32
TT
259
260 /* This is a hash table used to index the minimal symbols by name. */
261
23732b1e 262 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
263
264 /* This hash table is used to index the minimal symbols by their
265 demangled names. */
266
23732b1e 267 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
706e3705
TT
268};
269
c906108c
SS
270/* Master structure for keeping track of each file from which
271 gdb reads symbols. There are several ways these get allocated: 1.
272 The main symbol file, symfile_objfile, set by the symbol-file command,
273 2. Additional symbol files added by the add-symbol-file command,
274 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
275 for modules that were loaded when GDB attached to a remote system
276 (see remote-vx.c). */
277
278struct objfile
95cf5869
DE
279{
280 /* All struct objfile's are chained together by their next pointers.
281 The program space field "objfiles" (frequently referenced via
282 the macro "object_files") points to the first link in this chain. */
c906108c 283
95cf5869 284 struct objfile *next;
c906108c 285
95cf5869
DE
286 /* The object file's original name as specified by the user,
287 made absolute, and tilde-expanded. However, it is not canonicalized
288 (i.e., it has not been passed through gdb_realpath).
289 This pointer is never NULL. This does not have to be freed; it is
290 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 291
95cf5869 292 char *original_name;
c906108c 293
95cf5869 294 CORE_ADDR addr_low;
c906108c 295
b15cc25c 296 /* Some flag bits for this objfile. */
e4f6d2ec 297
b15cc25c 298 objfile_flags flags;
c906108c 299
95cf5869 300 /* The program space associated with this objfile. */
c906108c 301
95cf5869 302 struct program_space *pspace;
6c95b8df 303
95cf5869
DE
304 /* List of compunits.
305 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 306
95cf5869 307 struct compunit_symtab *compunit_symtabs;
c906108c 308
95cf5869
DE
309 /* Each objfile points to a linked list of partial symtabs derived from
310 this file, one partial symtab structure for each compilation unit
311 (source file). */
c906108c 312
95cf5869 313 struct partial_symtab *psymtabs;
c906108c 314
95cf5869
DE
315 /* Map addresses to the entries of PSYMTABS. It would be more efficient to
316 have a map per the whole process but ADDRMAP cannot selectively remove
317 its items during FREE_OBJFILE. This mapping is already present even for
318 PARTIAL_SYMTABs which still have no corresponding full SYMTABs read. */
c906108c 319
95cf5869 320 struct addrmap *psymtabs_addrmap;
ff013f42 321
95cf5869 322 /* List of freed partial symtabs, available for re-use. */
ff013f42 323
95cf5869 324 struct partial_symtab *free_psymtabs;
c906108c 325
95cf5869
DE
326 /* The object file's BFD. Can be null if the objfile contains only
327 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 328
95cf5869 329 bfd *obfd;
c906108c 330
95cf5869
DE
331 /* The per-BFD data. Note that this is treated specially if OBFD
332 is NULL. */
c906108c 333
95cf5869 334 struct objfile_per_bfd_storage *per_bfd;
706e3705 335
95cf5869
DE
336 /* The modification timestamp of the object file, as of the last time
337 we read its symbols. */
706e3705 338
95cf5869 339 long mtime;
c906108c 340
95cf5869
DE
341 /* Obstack to hold objects that should be freed when we load a new symbol
342 table from this object file. */
c906108c 343
95cf5869 344 struct obstack objfile_obstack;
b99607ea 345
95cf5869
DE
346 /* A byte cache where we can stash arbitrary "chunks" of bytes that
347 will not change. */
b99607ea 348
95cf5869 349 struct psymbol_bcache *psymbol_cache; /* Byte cache for partial syms. */
c906108c 350
95cf5869
DE
351 /* Vectors of all partial symbols read in from file. The actual data
352 is stored in the objfile_obstack. */
c906108c 353
95cf5869
DE
354 struct psymbol_allocation_list global_psymbols;
355 struct psymbol_allocation_list static_psymbols;
c906108c 356
95cf5869
DE
357 /* Structure which keeps track of functions that manipulate objfile's
358 of the same type as this objfile. I.e. the function to read partial
359 symbols for example. Note that this structure is in statically
360 allocated memory, and is shared by all objfiles that use the
361 object module reader of this type. */
c906108c 362
95cf5869 363 const struct sym_fns *sf;
c906108c 364
95cf5869 365 /* Per objfile data-pointers required by other GDB modules. */
c906108c 366
95cf5869 367 REGISTRY_FIELDS;
0d0e1a63 368
95cf5869
DE
369 /* Set of relocation offsets to apply to each section.
370 The table is indexed by the_bfd_section->index, thus it is generally
371 as large as the number of sections in the binary.
372 The table is stored on the objfile_obstack.
0d0e1a63 373
95cf5869
DE
374 These offsets indicate that all symbols (including partial and
375 minimal symbols) which have been read have been relocated by this
376 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 377
95cf5869
DE
378 struct section_offsets *section_offsets;
379 int num_sections;
c906108c 380
95cf5869
DE
381 /* Indexes in the section_offsets array. These are initialized by the
382 *_symfile_offsets() family of functions (som_symfile_offsets,
383 xcoff_symfile_offsets, default_symfile_offsets). In theory they
384 should correspond to the section indexes used by bfd for the
385 current objfile. The exception to this for the time being is the
386 SOM version. */
c906108c 387
95cf5869
DE
388 int sect_index_text;
389 int sect_index_data;
390 int sect_index_bss;
391 int sect_index_rodata;
b8fbeb18 392
95cf5869
DE
393 /* These pointers are used to locate the section table, which
394 among other things, is used to map pc addresses into sections.
395 SECTIONS points to the first entry in the table, and
396 SECTIONS_END points to the first location past the last entry
397 in the table. The table is stored on the objfile_obstack. The
398 sections are indexed by the BFD section index; but the
399 structure data is only valid for certain sections
400 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 401
95cf5869 402 struct obj_section *sections, *sections_end;
c906108c 403
95cf5869
DE
404 /* GDB allows to have debug symbols in separate object files. This is
405 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
406 Although this is a tree structure, GDB only support one level
407 (ie a separate debug for a separate debug is not supported). Note that
408 separate debug object are in the main chain and therefore will be
409 visited by ALL_OBJFILES & co iterators. Separate debug objfile always
410 has a non-nul separate_debug_objfile_backlink. */
c906108c 411
95cf5869 412 /* Link to the first separate debug object, if any. */
15d123c9 413
95cf5869 414 struct objfile *separate_debug_objfile;
5b5d99cf 415
95cf5869
DE
416 /* If this is a separate debug object, this is used as a link to the
417 actual executable objfile. */
15d123c9 418
95cf5869 419 struct objfile *separate_debug_objfile_backlink;
15d123c9 420
95cf5869
DE
421 /* If this is a separate debug object, this is a link to the next one
422 for the same executable objfile. */
5c4e30ca 423
95cf5869
DE
424 struct objfile *separate_debug_objfile_link;
425
426 /* Place to stash various statistics about this objfile. */
427
428 OBJSTATS;
429
430 /* A linked list of symbols created when reading template types or
431 function templates. These symbols are not stored in any symbol
432 table, so we have to keep them here to relocate them
433 properly. */
434
435 struct symbol *template_symbols;
63e43d3a
PMR
436
437 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
438 block *) that have one.
439
440 In the context of nested functions (available in Pascal, Ada and GNU C,
441 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
442 for a function is a way to get the frame corresponding to the enclosing
443 function.
444
445 Very few blocks have a static link, so it's more memory efficient to
446 store these here rather than in struct block. Static links must be
447 allocated on the objfile's obstack. */
448 htab_t static_links;
95cf5869 449};
c906108c 450
c906108c
SS
451/* Declarations for functions defined in objfiles.c */
452
b15cc25c
PA
453extern struct objfile *allocate_objfile (bfd *, const char *name,
454 objfile_flags);
c906108c 455
9c1877ea 456extern struct gdbarch *get_objfile_arch (const struct objfile *);
5e2b427d 457
abd0a5fa
JK
458extern int entry_point_address_query (CORE_ADDR *entry_p);
459
9ab9195f
EZ
460extern CORE_ADDR entry_point_address (void);
461
d82ea6a8 462extern void build_objfile_section_table (struct objfile *);
c906108c 463
15d123c9
TG
464extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
465 const struct objfile *);
466
5b5d99cf
JB
467extern void put_objfile_before (struct objfile *, struct objfile *);
468
15d123c9
TG
469extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
470
a14ed312 471extern void unlink_objfile (struct objfile *);
c906108c 472
a14ed312 473extern void free_objfile (struct objfile *);
c906108c 474
15d123c9
TG
475extern void free_objfile_separate_debug (struct objfile *);
476
74b7792f
AC
477extern struct cleanup *make_cleanup_free_objfile (struct objfile *);
478
a14ed312 479extern void free_all_objfiles (void);
c906108c 480
3189cb12 481extern void objfile_relocate (struct objfile *, const struct section_offsets *);
4141a416 482extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 483
55333a84
DE
484extern int objfile_has_partial_symbols (struct objfile *objfile);
485
486extern int objfile_has_full_symbols (struct objfile *objfile);
487
e361b228
TG
488extern int objfile_has_symbols (struct objfile *objfile);
489
a14ed312 490extern int have_partial_symbols (void);
c906108c 491
a14ed312 492extern int have_full_symbols (void);
c906108c 493
8fb8eb5c
DE
494extern void objfile_set_sym_fns (struct objfile *objfile,
495 const struct sym_fns *sf);
496
bb272892 497extern void objfiles_changed (void);
63644780
NB
498
499extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 500
d03de421
PA
501/* Return true if ADDRESS maps into one of the sections of a
502 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 503
d03de421
PA
504extern int shared_objfile_contains_address_p (struct program_space *pspace,
505 CORE_ADDR address);
08351840 506
c906108c
SS
507/* This operation deletes all objfile entries that represent solibs that
508 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
509 command. */
510
a14ed312 511extern void objfile_purge_solibs (void);
c906108c
SS
512
513/* Functions for dealing with the minimal symbol table, really a misc
514 address<->symbol mapping for things we don't have debug symbols for. */
515
a14ed312 516extern int have_minimal_symbols (void);
c906108c 517
a14ed312 518extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 519
3e5d3a5a 520/* Return non-zero if PC is in a section called NAME. */
a121b7c1 521extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
522
523/* Return non-zero if PC is in a SVR4-style procedure linkage table
524 section. */
525
526static inline int
527in_plt_section (CORE_ADDR pc)
528{
529 return pc_in_section (pc, ".plt");
530}
c906108c 531
0d0e1a63
MK
532/* Keep a registry of per-objfile data-pointers required by other GDB
533 modules. */
8e260fc0 534DECLARE_REGISTRY(objfile);
e3c69974 535
607ece04
GB
536/* In normal use, the section map will be rebuilt by find_pc_section
537 if objfiles have been added, removed or relocated since it was last
538 called. Calling inhibit_section_map_updates will inhibit this
539 behavior until resume_section_map_updates is called. If you call
540 inhibit_section_map_updates you must ensure that every call to
541 find_pc_section in the inhibited region relates to a section that
542 is already in the section map and has not since been removed or
543 relocated. */
544extern void inhibit_section_map_updates (struct program_space *pspace);
545
546/* Resume automatically rebuilding the section map as required. */
547extern void resume_section_map_updates (struct program_space *pspace);
548
549/* Version of the above suitable for use as a cleanup. */
550extern void resume_section_map_updates_cleanup (void *arg);
551
19630284
JB
552extern void default_iterate_over_objfiles_in_search_order
553 (struct gdbarch *gdbarch,
554 iterate_over_objfiles_in_search_order_cb_ftype *cb,
555 void *cb_data, struct objfile *current_objfile);
0d0e1a63
MK
556\f
557
6c95b8df
PA
558/* Traverse all object files in the current program space.
559 ALL_OBJFILES_SAFE works even if you delete the objfile during the
560 traversal. */
561
562/* Traverse all object files in program space SS. */
c906108c 563
6c95b8df 564#define ALL_PSPACE_OBJFILES(ss, obj) \
81b52a3a 565 for ((obj) = ss->objfiles; (obj) != NULL; (obj) = (obj)->next)
c906108c 566
6c95b8df
PA
567#define ALL_OBJFILES(obj) \
568 for ((obj) = current_program_space->objfiles; \
569 (obj) != NULL; \
570 (obj) = (obj)->next)
571
572#define ALL_OBJFILES_SAFE(obj,nxt) \
573 for ((obj) = current_program_space->objfiles; \
c906108c
SS
574 (obj) != NULL? ((nxt)=(obj)->next,1) :0; \
575 (obj) = (nxt))
576
577/* Traverse all symtabs in one objfile. */
578
43f3e411
DE
579#define ALL_OBJFILE_FILETABS(objfile, cu, s) \
580 ALL_OBJFILE_COMPUNITS (objfile, cu) \
581 ALL_COMPUNIT_FILETABS (cu, s)
c906108c 582
43f3e411 583/* Traverse all compunits in one objfile. */
d790cf0a 584
43f3e411
DE
585#define ALL_OBJFILE_COMPUNITS(objfile, cu) \
586 for ((cu) = (objfile) -> compunit_symtabs; (cu) != NULL; (cu) = (cu) -> next)
d790cf0a 587
c906108c
SS
588/* Traverse all minimal symbols in one objfile. */
589
34643a32
TT
590#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
591 for ((m) = (objfile)->per_bfd->msymbols; \
592 MSYMBOL_LINKAGE_NAME (m) != NULL; \
593 (m)++)
c906108c 594
6c95b8df
PA
595/* Traverse all symtabs in all objfiles in the current symbol
596 space. */
c906108c 597
43f3e411
DE
598#define ALL_FILETABS(objfile, ps, s) \
599 ALL_OBJFILES (objfile) \
600 ALL_OBJFILE_FILETABS (objfile, ps, s)
c906108c 601
43f3e411 602/* Traverse all compunits in all objfiles in the current program space. */
11309657 603
43f3e411 604#define ALL_COMPUNITS(objfile, cu) \
11309657 605 ALL_OBJFILES (objfile) \
43f3e411 606 ALL_OBJFILE_COMPUNITS (objfile, cu)
11309657 607
6c95b8df
PA
608/* Traverse all minimal symbols in all objfiles in the current symbol
609 space. */
c906108c
SS
610
611#define ALL_MSYMBOLS(objfile, m) \
612 ALL_OBJFILES (objfile) \
15831452 613 ALL_OBJFILE_MSYMBOLS (objfile, m)
c906108c
SS
614
615#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
65cf3563
TT
616 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
617 if (osect->the_bfd_section == NULL) \
618 { \
619 /* Nothing. */ \
620 } \
621 else
c906108c 622
96a8853a
PA
623/* Traverse all obj_sections in all objfiles in the current program
624 space.
625
626 Note that this detects a "break" in the inner loop, and exits
627 immediately from the outer loop as well, thus, client code doesn't
628 need to know that this is implemented with a double for. The extra
629 hair is to make sure that a "break;" stops the outer loop iterating
630 as well, and both OBJFILE and OSECT are left unmodified:
631
632 - The outer loop learns about the inner loop's end condition, and
633 stops iterating if it detects the inner loop didn't reach its
634 end. In other words, the outer loop keeps going only if the
635 inner loop reached its end cleanly [(osect) ==
636 (objfile)->sections_end].
637
638 - OSECT is initialized in the outer loop initialization
639 expressions, such as if the inner loop has reached its end, so
640 the check mentioned above succeeds the first time.
641
642 - The trick to not clearing OBJFILE on a "break;" is, in the outer
643 loop's loop expression, advance OBJFILE, but iff the inner loop
644 reached its end. If not, there was a "break;", so leave OBJFILE
645 as is; the outer loop's conditional will break immediately as
0df8b418 646 well (as OSECT will be different from OBJFILE->sections_end). */
96a8853a
PA
647
648#define ALL_OBJSECTIONS(objfile, osect) \
649 for ((objfile) = current_program_space->objfiles, \
650 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0; \
651 (objfile) != NULL \
652 && (osect) == (objfile)->sections_end; \
653 ((osect) == (objfile)->sections_end \
654 ? ((objfile) = (objfile)->next, \
655 (objfile) != NULL ? (osect) = (objfile)->sections_end : 0) \
656 : 0)) \
65cf3563 657 ALL_OBJFILE_OSECTIONS (objfile, osect)
c906108c 658
b8fbeb18 659#define SECT_OFF_DATA(objfile) \
8e65ff28 660 ((objfile->sect_index_data == -1) \
3e43a32a
MS
661 ? (internal_error (__FILE__, __LINE__, \
662 _("sect_index_data not initialized")), -1) \
8e65ff28 663 : objfile->sect_index_data)
b8fbeb18
EZ
664
665#define SECT_OFF_RODATA(objfile) \
8e65ff28 666 ((objfile->sect_index_rodata == -1) \
3e43a32a
MS
667 ? (internal_error (__FILE__, __LINE__, \
668 _("sect_index_rodata not initialized")), -1) \
8e65ff28 669 : objfile->sect_index_rodata)
b8fbeb18
EZ
670
671#define SECT_OFF_TEXT(objfile) \
8e65ff28 672 ((objfile->sect_index_text == -1) \
3e43a32a
MS
673 ? (internal_error (__FILE__, __LINE__, \
674 _("sect_index_text not initialized")), -1) \
8e65ff28 675 : objfile->sect_index_text)
b8fbeb18 676
a4c8257b 677/* Sometimes the .bss section is missing from the objfile, so we don't
0df8b418
MS
678 want to die here. Let the users of SECT_OFF_BSS deal with an
679 uninitialized section index. */
a4c8257b 680#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
b8fbeb18 681
c14c28ba
PP
682/* Answer whether there is more than one object file loaded. */
683
684#define MULTI_OBJFILE_P() (object_files && object_files->next)
685
706e3705
TT
686/* Reset the per-BFD storage area on OBJ. */
687
688void set_objfile_per_bfd (struct objfile *obj);
689
e02c96a7
DE
690/* Return canonical name for OBJFILE.
691 This is the real file name if the file has been opened.
692 Otherwise it is the original name supplied by the user. */
693
4262abfb
JK
694const char *objfile_name (const struct objfile *objfile);
695
e02c96a7
DE
696/* Return the (real) file name of OBJFILE if the file has been opened,
697 otherwise return NULL. */
698
699const char *objfile_filename (const struct objfile *objfile);
700
cc485e62
DE
701/* Return the name to print for OBJFILE in debugging messages. */
702
703extern const char *objfile_debug_name (const struct objfile *objfile);
704
015d2e7e
DE
705/* Return the name of the file format of OBJFILE if the file has been opened,
706 otherwise return NULL. */
707
708const char *objfile_flavour_name (struct objfile *objfile);
709
3d548a53
TT
710/* Set the objfile's notion of the "main" name and language. */
711
712extern void set_objfile_main_name (struct objfile *objfile,
713 const char *name, enum language lang);
714
63e43d3a
PMR
715extern void objfile_register_static_link
716 (struct objfile *objfile,
717 const struct block *block,
718 const struct dynamic_prop *static_link);
719
720extern const struct dynamic_prop *objfile_lookup_static_link
721 (struct objfile *objfile, const struct block *block);
722
c5aa993b 723#endif /* !defined (OBJFILES_H) */
This page took 1.646896 seconds and 4 git commands to generate.