Remove ALL_OBJFILES_SAFE
[deliverable/binutils-gdb.git] / gdb / objfiles.h
CommitLineData
c906108c 1/* Definitions for symbol file management in GDB.
af5f3db6 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#if !defined (OBJFILES_H)
21#define OBJFILES_H
22
63e43d3a 23#include "hashtab.h"
3956d554 24#include "gdb_obstack.h" /* For obstack internals. */
b15cc25c 25#include "objfile-flags.h"
af5bf4ad 26#include "symfile.h"
6c95b8df 27#include "progspace.h"
8e260fc0 28#include "registry.h"
65cf3563 29#include "gdb_bfd.h"
b5ec771e 30#include <vector>
21708325 31#include "common/next-iterator.h"
cac85af2 32#include "common/safe-iterator.h"
3956d554 33
af5f3db6 34struct bcache;
2de7ced7 35struct htab;
4a4b3fed 36struct objfile_data;
af5bf4ad 37struct partial_symbol;
08c0b5bc 38
c906108c
SS
39/* This structure maintains information on a per-objfile basis about the
40 "entry point" of the objfile, and the scope within which the entry point
41 exists. It is possible that gdb will see more than one objfile that is
42 executable, each with its own entry point.
43
44 For example, for dynamically linked executables in SVR4, the dynamic linker
45 code is contained within the shared C library, which is actually executable
46 and is run by the kernel first when an exec is done of a user executable
47 that is dynamically linked. The dynamic linker within the shared C library
48 then maps in the various program segments in the user executable and jumps
49 to the user executable's recorded entry point, as if the call had been made
50 directly by the kernel.
51
73c1e0a1
AC
52 The traditional gdb method of using this info was to use the
53 recorded entry point to set the entry-file's lowpc and highpc from
627b3ba2
AC
54 the debugging information, where these values are the starting
55 address (inclusive) and ending address (exclusive) of the
56 instruction space in the executable which correspond to the
0df8b418 57 "startup file", i.e. crt0.o in most cases. This file is assumed to
627b3ba2
AC
58 be a startup file and frames with pc's inside it are treated as
59 nonexistent. Setting these variables is necessary so that
60 backtraces do not fly off the bottom of the stack.
61
62 NOTE: cagney/2003-09-09: It turns out that this "traditional"
63 method doesn't work. Corinna writes: ``It turns out that the call
2f72f850 64 to test for "inside entry file" destroys a meaningful backtrace
0df8b418 65 under some conditions. E.g. the backtrace tests in the asm-source
627b3ba2
AC
66 testcase are broken for some targets. In this test the functions
67 are all implemented as part of one file and the testcase is not
68 necessarily linked with a start file (depending on the target).
69 What happens is, that the first frame is printed normaly and
70 following frames are treated as being inside the enttry file then.
71 This way, only the #0 frame is printed in the backtrace output.''
72 Ref "frame.c" "NOTE: vinschen/2003-04-01".
c906108c
SS
73
74 Gdb also supports an alternate method to avoid running off the bottom
75 of the stack.
76
77 There are two frames that are "special", the frame for the function
78 containing the process entry point, since it has no predecessor frame,
79 and the frame for the function containing the user code entry point
80 (the main() function), since all the predecessor frames are for the
81 process startup code. Since we have no guarantee that the linked
82 in startup modules have any debugging information that gdb can use,
83 we need to avoid following frame pointers back into frames that might
95cf5869 84 have been built in the startup code, as we might get hopelessly
c906108c
SS
85 confused. However, we almost always have debugging information
86 available for main().
87
618ce49f
AC
88 These variables are used to save the range of PC values which are
89 valid within the main() function and within the function containing
90 the process entry point. If we always consider the frame for
91 main() as the outermost frame when debugging user code, and the
92 frame for the process entry point function as the outermost frame
93 when debugging startup code, then all we have to do is have
94 DEPRECATED_FRAME_CHAIN_VALID return false whenever a frame's
95 current PC is within the range specified by these variables. In
96 essence, we set "ceilings" in the frame chain beyond which we will
c906108c
SS
97 not proceed when following the frame chain back up the stack.
98
99 A nice side effect is that we can still debug startup code without
100 running off the end of the frame chain, assuming that we have usable
101 debugging information in the startup modules, and if we choose to not
102 use the block at main, or can't find it for some reason, everything
103 still works as before. And if we have no startup code debugging
104 information but we do have usable information for main(), backtraces
6e4c6c91 105 from user code don't go wandering off into the startup code. */
c906108c
SS
106
107struct entry_info
95cf5869
DE
108{
109 /* The unrelocated value we should use for this objfile entry point. */
110 CORE_ADDR entry_point;
c906108c 111
95cf5869
DE
112 /* The index of the section in which the entry point appears. */
113 int the_bfd_section_index;
53eddfa6 114
95cf5869
DE
115 /* Set to 1 iff ENTRY_POINT contains a valid value. */
116 unsigned entry_point_p : 1;
6ef55de7 117
95cf5869
DE
118 /* Set to 1 iff this object was initialized. */
119 unsigned initialized : 1;
120};
c906108c 121
f1f6aadf
PA
122/* Sections in an objfile. The section offsets are stored in the
123 OBJFILE. */
c906108c 124
c5aa993b 125struct obj_section
95cf5869
DE
126{
127 /* BFD section pointer */
128 struct bfd_section *the_bfd_section;
c906108c 129
95cf5869
DE
130 /* Objfile this section is part of. */
131 struct objfile *objfile;
c906108c 132
95cf5869
DE
133 /* True if this "overlay section" is mapped into an "overlay region". */
134 int ovly_mapped;
135};
c906108c 136
f1f6aadf
PA
137/* Relocation offset applied to S. */
138#define obj_section_offset(s) \
65cf3563 139 (((s)->objfile->section_offsets)->offsets[gdb_bfd_section_index ((s)->objfile->obfd, (s)->the_bfd_section)])
f1f6aadf
PA
140
141/* The memory address of section S (vma + offset). */
142#define obj_section_addr(s) \
1706c199 143 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
144 + obj_section_offset (s))
145
146/* The one-passed-the-end memory address of section S
147 (vma + size + offset). */
148#define obj_section_endaddr(s) \
1706c199 149 (bfd_get_section_vma ((s)->objfile->obfd, s->the_bfd_section) \
f1f6aadf
PA
150 + bfd_get_section_size ((s)->the_bfd_section) \
151 + obj_section_offset (s))
c906108c 152
c906108c
SS
153/* The "objstats" structure provides a place for gdb to record some
154 interesting information about its internal state at runtime, on a
155 per objfile basis, such as information about the number of symbols
0df8b418 156 read, size of string table (if any), etc. */
c906108c 157
c5aa993b 158struct objstats
95cf5869
DE
159{
160 /* Number of partial symbols read. */
9e86da07 161 int n_psyms = 0;
95cf5869
DE
162
163 /* Number of full symbols read. */
9e86da07 164 int n_syms = 0;
95cf5869
DE
165
166 /* Number of ".stabs" read (if applicable). */
9e86da07 167 int n_stabs = 0;
95cf5869
DE
168
169 /* Number of types. */
9e86da07 170 int n_types = 0;
95cf5869
DE
171
172 /* Size of stringtable, (if applicable). */
9e86da07 173 int sz_strtab = 0;
95cf5869 174};
c906108c
SS
175
176#define OBJSTAT(objfile, expr) (objfile -> stats.expr)
177#define OBJSTATS struct objstats stats
a14ed312
KB
178extern void print_objfile_statistics (void);
179extern void print_symbol_bcache_statistics (void);
c906108c 180
9227b5eb 181/* Number of entries in the minimal symbol hash table. */
375f3d86 182#define MINIMAL_SYMBOL_HASH_SIZE 2039
9227b5eb 183
706e3705
TT
184/* Some objfile data is hung off the BFD. This enables sharing of the
185 data across all objfiles using the BFD. The data is stored in an
186 instance of this structure, and associated with the BFD using the
187 registry system. */
188
189struct objfile_per_bfd_storage
190{
23732b1e
PA
191 objfile_per_bfd_storage ()
192 : minsyms_read (false)
193 {}
194
706e3705
TT
195 /* The storage has an obstack of its own. */
196
23732b1e 197 auto_obstack storage_obstack;
95cf5869 198
706e3705
TT
199 /* Byte cache for file names. */
200
23732b1e 201 bcache *filename_cache = NULL;
6532ff36
TT
202
203 /* Byte cache for macros. */
95cf5869 204
23732b1e 205 bcache *macro_cache = NULL;
df6d5441
TT
206
207 /* The gdbarch associated with the BFD. Note that this gdbarch is
208 determined solely from BFD information, without looking at target
209 information. The gdbarch determined from a running target may
210 differ from this e.g. with respect to register types and names. */
211
23732b1e 212 struct gdbarch *gdbarch = NULL;
84a1243b
TT
213
214 /* Hash table for mapping symbol names to demangled names. Each
215 entry in the hash table is actually two consecutive strings,
216 both null-terminated; the first one is a mangled or linkage
217 name, and the second is the demangled name or just a zero byte
218 if the name doesn't demangle. */
95cf5869 219
23732b1e 220 htab *demangled_names_hash = NULL;
6ef55de7
TT
221
222 /* The per-objfile information about the entry point, the scope (file/func)
223 containing the entry point, and the scope of the user's main() func. */
224
23732b1e 225 entry_info ei {};
3d548a53
TT
226
227 /* The name and language of any "main" found in this objfile. The
228 name can be NULL, which means that the information was not
229 recorded. */
230
23732b1e
PA
231 const char *name_of_main = NULL;
232 enum language language_of_main = language_unknown;
34643a32
TT
233
234 /* Each file contains a pointer to an array of minimal symbols for all
235 global symbols that are defined within the file. The array is
236 terminated by a "null symbol", one that has a NULL pointer for the
237 name and a zero value for the address. This makes it easy to walk
238 through the array when passed a pointer to somewhere in the middle
239 of it. There is also a count of the number of symbols, which does
240 not include the terminating null symbol. The array itself, as well
241 as all the data that it points to, should be allocated on the
242 objfile_obstack for this file. */
243
23732b1e
PA
244 minimal_symbol *msymbols = NULL;
245 int minimal_symbol_count = 0;
34643a32 246
5f6cac40
TT
247 /* The number of minimal symbols read, before any minimal symbol
248 de-duplication is applied. Note in particular that this has only
249 a passing relationship with the actual size of the table above;
250 use minimal_symbol_count if you need the true size. */
95cf5869 251
23732b1e 252 int n_minsyms = 0;
5f6cac40 253
34643a32
TT
254 /* This is true if minimal symbols have already been read. Symbol
255 readers can use this to bypass minimal symbol reading. Also, the
256 minimal symbol table management code in minsyms.c uses this to
257 suppress new minimal symbols. You might think that MSYMBOLS or
258 MINIMAL_SYMBOL_COUNT could be used for this, but it is possible
259 for multiple readers to install minimal symbols into a given
260 per-BFD. */
261
23732b1e 262 bool minsyms_read : 1;
34643a32
TT
263
264 /* This is a hash table used to index the minimal symbols by name. */
265
23732b1e 266 minimal_symbol *msymbol_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
34643a32
TT
267
268 /* This hash table is used to index the minimal symbols by their
269 demangled names. */
270
23732b1e 271 minimal_symbol *msymbol_demangled_hash[MINIMAL_SYMBOL_HASH_SIZE] {};
b5ec771e
PA
272
273 /* All the different languages of symbols found in the demangled
274 hash table. A flat/vector-based map is more efficient than a map
275 or hash table here, since this will only usually contain zero or
276 one entries. */
277 std::vector<enum language> demangled_hash_languages;
706e3705
TT
278};
279
c906108c
SS
280/* Master structure for keeping track of each file from which
281 gdb reads symbols. There are several ways these get allocated: 1.
282 The main symbol file, symfile_objfile, set by the symbol-file command,
283 2. Additional symbol files added by the add-symbol-file command,
284 3. Shared library objfiles, added by ADD_SOLIB, 4. symbol files
285 for modules that were loaded when GDB attached to a remote system
286 (see remote-vx.c). */
287
288struct objfile
95cf5869 289{
9e86da07
TT
290 objfile (bfd *, const char *, objfile_flags);
291 ~objfile ();
292
293 DISABLE_COPY_AND_ASSIGN (objfile);
294
95cf5869
DE
295 /* All struct objfile's are chained together by their next pointers.
296 The program space field "objfiles" (frequently referenced via
297 the macro "object_files") points to the first link in this chain. */
c906108c 298
9e86da07 299 struct objfile *next = nullptr;
c906108c 300
95cf5869
DE
301 /* The object file's original name as specified by the user,
302 made absolute, and tilde-expanded. However, it is not canonicalized
303 (i.e., it has not been passed through gdb_realpath).
304 This pointer is never NULL. This does not have to be freed; it is
305 guaranteed to have a lifetime at least as long as the objfile. */
c906108c 306
9e86da07 307 char *original_name = nullptr;
c906108c 308
9e86da07 309 CORE_ADDR addr_low = 0;
c906108c 310
b15cc25c 311 /* Some flag bits for this objfile. */
e4f6d2ec 312
b15cc25c 313 objfile_flags flags;
c906108c 314
95cf5869 315 /* The program space associated with this objfile. */
c906108c 316
95cf5869 317 struct program_space *pspace;
6c95b8df 318
95cf5869
DE
319 /* List of compunits.
320 These are used to do symbol lookups and file/line-number lookups. */
6c95b8df 321
9e86da07 322 struct compunit_symtab *compunit_symtabs = nullptr;
c906108c 323
95cf5869
DE
324 /* Each objfile points to a linked list of partial symtabs derived from
325 this file, one partial symtab structure for each compilation unit
326 (source file). */
c906108c 327
9e86da07 328 struct partial_symtab *psymtabs = nullptr;
c906108c 329
95cf5869
DE
330 /* Map addresses to the entries of PSYMTABS. It would be more efficient to
331 have a map per the whole process but ADDRMAP cannot selectively remove
332 its items during FREE_OBJFILE. This mapping is already present even for
333 PARTIAL_SYMTABs which still have no corresponding full SYMTABs read. */
c906108c 334
9e86da07 335 struct addrmap *psymtabs_addrmap = nullptr;
ff013f42 336
95cf5869 337 /* List of freed partial symtabs, available for re-use. */
ff013f42 338
9e86da07 339 struct partial_symtab *free_psymtabs = nullptr;
c906108c 340
95cf5869
DE
341 /* The object file's BFD. Can be null if the objfile contains only
342 minimal symbols, e.g. the run time common symbols for SunOS4. */
c906108c 343
95cf5869 344 bfd *obfd;
c906108c 345
95cf5869
DE
346 /* The per-BFD data. Note that this is treated specially if OBFD
347 is NULL. */
c906108c 348
9e86da07 349 struct objfile_per_bfd_storage *per_bfd = nullptr;
706e3705 350
95cf5869
DE
351 /* The modification timestamp of the object file, as of the last time
352 we read its symbols. */
706e3705 353
9e86da07 354 long mtime = 0;
c906108c 355
95cf5869
DE
356 /* Obstack to hold objects that should be freed when we load a new symbol
357 table from this object file. */
c906108c 358
9e86da07 359 struct obstack objfile_obstack {};
b99607ea 360
95cf5869
DE
361 /* A byte cache where we can stash arbitrary "chunks" of bytes that
362 will not change. */
b99607ea 363
9e86da07 364 struct psymbol_bcache *psymbol_cache;
c906108c 365
71a3c369
TT
366 /* Map symbol addresses to the partial symtab that defines the
367 object at that address. */
368
369 std::vector<std::pair<CORE_ADDR, partial_symtab *>> psymbol_map;
370
95cf5869
DE
371 /* Vectors of all partial symbols read in from file. The actual data
372 is stored in the objfile_obstack. */
c906108c 373
af5bf4ad
SM
374 std::vector<partial_symbol *> global_psymbols;
375 std::vector<partial_symbol *> static_psymbols;
c906108c 376
95cf5869
DE
377 /* Structure which keeps track of functions that manipulate objfile's
378 of the same type as this objfile. I.e. the function to read partial
379 symbols for example. Note that this structure is in statically
380 allocated memory, and is shared by all objfiles that use the
381 object module reader of this type. */
c906108c 382
9e86da07 383 const struct sym_fns *sf = nullptr;
c906108c 384
95cf5869 385 /* Per objfile data-pointers required by other GDB modules. */
c906108c 386
9e86da07 387 REGISTRY_FIELDS {};
0d0e1a63 388
95cf5869
DE
389 /* Set of relocation offsets to apply to each section.
390 The table is indexed by the_bfd_section->index, thus it is generally
391 as large as the number of sections in the binary.
392 The table is stored on the objfile_obstack.
0d0e1a63 393
95cf5869
DE
394 These offsets indicate that all symbols (including partial and
395 minimal symbols) which have been read have been relocated by this
396 much. Symbols which are yet to be read need to be relocated by it. */
c906108c 397
9e86da07
TT
398 struct section_offsets *section_offsets = nullptr;
399 int num_sections = 0;
c906108c 400
95cf5869
DE
401 /* Indexes in the section_offsets array. These are initialized by the
402 *_symfile_offsets() family of functions (som_symfile_offsets,
403 xcoff_symfile_offsets, default_symfile_offsets). In theory they
404 should correspond to the section indexes used by bfd for the
405 current objfile. The exception to this for the time being is the
9e86da07
TT
406 SOM version.
407
408 These are initialized to -1 so that we can later detect if they
409 are used w/o being properly assigned to. */
c906108c 410
9e86da07
TT
411 int sect_index_text = -1;
412 int sect_index_data = -1;
413 int sect_index_bss = -1;
414 int sect_index_rodata = -1;
b8fbeb18 415
95cf5869
DE
416 /* These pointers are used to locate the section table, which
417 among other things, is used to map pc addresses into sections.
418 SECTIONS points to the first entry in the table, and
419 SECTIONS_END points to the first location past the last entry
420 in the table. The table is stored on the objfile_obstack. The
421 sections are indexed by the BFD section index; but the
422 structure data is only valid for certain sections
423 (e.g. non-empty, SEC_ALLOC). */
b8fbeb18 424
9e86da07
TT
425 struct obj_section *sections = nullptr;
426 struct obj_section *sections_end = nullptr;
c906108c 427
95cf5869
DE
428 /* GDB allows to have debug symbols in separate object files. This is
429 used by .gnu_debuglink, ELF build id note and Mach-O OSO.
430 Although this is a tree structure, GDB only support one level
431 (ie a separate debug for a separate debug is not supported). Note that
432 separate debug object are in the main chain and therefore will be
433 visited by ALL_OBJFILES & co iterators. Separate debug objfile always
434 has a non-nul separate_debug_objfile_backlink. */
c906108c 435
95cf5869 436 /* Link to the first separate debug object, if any. */
15d123c9 437
9e86da07 438 struct objfile *separate_debug_objfile = nullptr;
5b5d99cf 439
95cf5869
DE
440 /* If this is a separate debug object, this is used as a link to the
441 actual executable objfile. */
15d123c9 442
9e86da07 443 struct objfile *separate_debug_objfile_backlink = nullptr;
15d123c9 444
95cf5869
DE
445 /* If this is a separate debug object, this is a link to the next one
446 for the same executable objfile. */
5c4e30ca 447
9e86da07 448 struct objfile *separate_debug_objfile_link = nullptr;
95cf5869
DE
449
450 /* Place to stash various statistics about this objfile. */
451
452 OBJSTATS;
453
454 /* A linked list of symbols created when reading template types or
455 function templates. These symbols are not stored in any symbol
456 table, so we have to keep them here to relocate them
457 properly. */
458
9e86da07 459 struct symbol *template_symbols = nullptr;
63e43d3a
PMR
460
461 /* Associate a static link (struct dynamic_prop *) to all blocks (struct
462 block *) that have one.
463
464 In the context of nested functions (available in Pascal, Ada and GNU C,
465 for instance), a static link (as in DWARF's DW_AT_static_link attribute)
466 for a function is a way to get the frame corresponding to the enclosing
467 function.
468
469 Very few blocks have a static link, so it's more memory efficient to
470 store these here rather than in struct block. Static links must be
471 allocated on the objfile's obstack. */
9e86da07 472 htab_t static_links {};
95cf5869 473};
c906108c 474
c906108c
SS
475/* Declarations for functions defined in objfiles.c */
476
9c1877ea 477extern struct gdbarch *get_objfile_arch (const struct objfile *);
5e2b427d 478
abd0a5fa
JK
479extern int entry_point_address_query (CORE_ADDR *entry_p);
480
9ab9195f
EZ
481extern CORE_ADDR entry_point_address (void);
482
d82ea6a8 483extern void build_objfile_section_table (struct objfile *);
c906108c 484
15d123c9
TG
485extern struct objfile *objfile_separate_debug_iterate (const struct objfile *,
486 const struct objfile *);
487
5b5d99cf
JB
488extern void put_objfile_before (struct objfile *, struct objfile *);
489
15d123c9
TG
490extern void add_separate_debug_objfile (struct objfile *, struct objfile *);
491
a14ed312 492extern void unlink_objfile (struct objfile *);
c906108c 493
15d123c9
TG
494extern void free_objfile_separate_debug (struct objfile *);
495
a14ed312 496extern void free_all_objfiles (void);
c906108c 497
3189cb12 498extern void objfile_relocate (struct objfile *, const struct section_offsets *);
4141a416 499extern void objfile_rebase (struct objfile *, CORE_ADDR);
c906108c 500
55333a84
DE
501extern int objfile_has_partial_symbols (struct objfile *objfile);
502
503extern int objfile_has_full_symbols (struct objfile *objfile);
504
e361b228
TG
505extern int objfile_has_symbols (struct objfile *objfile);
506
a14ed312 507extern int have_partial_symbols (void);
c906108c 508
a14ed312 509extern int have_full_symbols (void);
c906108c 510
8fb8eb5c
DE
511extern void objfile_set_sym_fns (struct objfile *objfile,
512 const struct sym_fns *sf);
513
bb272892 514extern void objfiles_changed (void);
63644780
NB
515
516extern int is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile);
bb272892 517
d03de421
PA
518/* Return true if ADDRESS maps into one of the sections of a
519 OBJF_SHARED objfile of PSPACE and false otherwise. */
08351840 520
d03de421
PA
521extern int shared_objfile_contains_address_p (struct program_space *pspace,
522 CORE_ADDR address);
08351840 523
c906108c
SS
524/* This operation deletes all objfile entries that represent solibs that
525 weren't explicitly loaded by the user, via e.g., the add-symbol-file
0df8b418
MS
526 command. */
527
a14ed312 528extern void objfile_purge_solibs (void);
c906108c
SS
529
530/* Functions for dealing with the minimal symbol table, really a misc
531 address<->symbol mapping for things we don't have debug symbols for. */
532
a14ed312 533extern int have_minimal_symbols (void);
c906108c 534
a14ed312 535extern struct obj_section *find_pc_section (CORE_ADDR pc);
c906108c 536
3e5d3a5a 537/* Return non-zero if PC is in a section called NAME. */
a121b7c1 538extern int pc_in_section (CORE_ADDR, const char *);
3e5d3a5a
MR
539
540/* Return non-zero if PC is in a SVR4-style procedure linkage table
541 section. */
542
543static inline int
544in_plt_section (CORE_ADDR pc)
545{
546 return pc_in_section (pc, ".plt");
547}
c906108c 548
0d0e1a63
MK
549/* Keep a registry of per-objfile data-pointers required by other GDB
550 modules. */
8e260fc0 551DECLARE_REGISTRY(objfile);
e3c69974 552
607ece04
GB
553/* In normal use, the section map will be rebuilt by find_pc_section
554 if objfiles have been added, removed or relocated since it was last
555 called. Calling inhibit_section_map_updates will inhibit this
06424eac
TT
556 behavior until the returned scoped_restore object is destroyed. If
557 you call inhibit_section_map_updates you must ensure that every
558 call to find_pc_section in the inhibited region relates to a
559 section that is already in the section map and has not since been
560 removed or relocated. */
561extern scoped_restore_tmpl<int> inhibit_section_map_updates
562 (struct program_space *pspace);
607ece04 563
19630284
JB
564extern void default_iterate_over_objfiles_in_search_order
565 (struct gdbarch *gdbarch,
566 iterate_over_objfiles_in_search_order_cb_ftype *cb,
567 void *cb_data, struct objfile *current_objfile);
0d0e1a63
MK
568\f
569
21708325
TT
570/* An iterarable object that can be used to iterate over all
571 objfiles. The basic use is in a foreach, like:
572
573 for (objfile *objf : all_objfiles (pspace)) { ... } */
574
575class all_objfiles : public next_adapter<struct objfile>
576{
577public:
578
579 explicit all_objfiles (struct program_space *pspace)
580 : next_adapter<struct objfile> (pspace->objfiles)
581 {
582 }
583};
584
cac85af2
TT
585/* An iterarable object that can be used to iterate over all
586 objfiles. The basic use is in a foreach, like:
21708325 587
cac85af2
TT
588 for (objfile *objf : all_objfiles_safe (pspace)) { ... }
589
590 This variant uses a basic_safe_iterator so that objfiles can be
591 deleted during iteration. */
592
593class all_objfiles_safe
594 : public next_adapter<struct objfile,
595 basic_safe_iterator<next_iterator<objfile>>>
596{
597public:
598
599 explicit all_objfiles_safe (struct program_space *pspace)
600 : next_adapter<struct objfile,
601 basic_safe_iterator<next_iterator<objfile>>>
602 (pspace->objfiles)
603 {
604 }
605};
606
607
608/* Traverse all object files in the current program space. */
6c95b8df 609
6c95b8df
PA
610#define ALL_OBJFILES(obj) \
611 for ((obj) = current_program_space->objfiles; \
612 (obj) != NULL; \
613 (obj) = (obj)->next)
614
c906108c
SS
615/* Traverse all symtabs in one objfile. */
616
43f3e411
DE
617#define ALL_OBJFILE_FILETABS(objfile, cu, s) \
618 ALL_OBJFILE_COMPUNITS (objfile, cu) \
619 ALL_COMPUNIT_FILETABS (cu, s)
c906108c 620
43f3e411 621/* Traverse all compunits in one objfile. */
d790cf0a 622
43f3e411
DE
623#define ALL_OBJFILE_COMPUNITS(objfile, cu) \
624 for ((cu) = (objfile) -> compunit_symtabs; (cu) != NULL; (cu) = (cu) -> next)
d790cf0a 625
c906108c
SS
626/* Traverse all minimal symbols in one objfile. */
627
34643a32
TT
628#define ALL_OBJFILE_MSYMBOLS(objfile, m) \
629 for ((m) = (objfile)->per_bfd->msymbols; \
630 MSYMBOL_LINKAGE_NAME (m) != NULL; \
631 (m)++)
c906108c 632
6c95b8df
PA
633/* Traverse all symtabs in all objfiles in the current symbol
634 space. */
c906108c 635
43f3e411
DE
636#define ALL_FILETABS(objfile, ps, s) \
637 ALL_OBJFILES (objfile) \
638 ALL_OBJFILE_FILETABS (objfile, ps, s)
c906108c 639
43f3e411 640/* Traverse all compunits in all objfiles in the current program space. */
11309657 641
43f3e411 642#define ALL_COMPUNITS(objfile, cu) \
11309657 643 ALL_OBJFILES (objfile) \
43f3e411 644 ALL_OBJFILE_COMPUNITS (objfile, cu)
11309657 645
6c95b8df
PA
646/* Traverse all minimal symbols in all objfiles in the current symbol
647 space. */
c906108c
SS
648
649#define ALL_MSYMBOLS(objfile, m) \
650 ALL_OBJFILES (objfile) \
15831452 651 ALL_OBJFILE_MSYMBOLS (objfile, m)
c906108c
SS
652
653#define ALL_OBJFILE_OSECTIONS(objfile, osect) \
65cf3563
TT
654 for (osect = objfile->sections; osect < objfile->sections_end; osect++) \
655 if (osect->the_bfd_section == NULL) \
656 { \
657 /* Nothing. */ \
658 } \
659 else
c906108c 660
96a8853a
PA
661/* Traverse all obj_sections in all objfiles in the current program
662 space.
663
664 Note that this detects a "break" in the inner loop, and exits
665 immediately from the outer loop as well, thus, client code doesn't
666 need to know that this is implemented with a double for. The extra
667 hair is to make sure that a "break;" stops the outer loop iterating
668 as well, and both OBJFILE and OSECT are left unmodified:
669
670 - The outer loop learns about the inner loop's end condition, and
671 stops iterating if it detects the inner loop didn't reach its
672 end. In other words, the outer loop keeps going only if the
673 inner loop reached its end cleanly [(osect) ==
674 (objfile)->sections_end].
675
676 - OSECT is initialized in the outer loop initialization
677 expressions, such as if the inner loop has reached its end, so
678 the check mentioned above succeeds the first time.
679
680 - The trick to not clearing OBJFILE on a "break;" is, in the outer
681 loop's loop expression, advance OBJFILE, but iff the inner loop
682 reached its end. If not, there was a "break;", so leave OBJFILE
683 as is; the outer loop's conditional will break immediately as
0df8b418 684 well (as OSECT will be different from OBJFILE->sections_end). */
96a8853a
PA
685
686#define ALL_OBJSECTIONS(objfile, osect) \
687 for ((objfile) = current_program_space->objfiles, \
688 (objfile) != NULL ? ((osect) = (objfile)->sections_end) : 0; \
689 (objfile) != NULL \
690 && (osect) == (objfile)->sections_end; \
691 ((osect) == (objfile)->sections_end \
692 ? ((objfile) = (objfile)->next, \
693 (objfile) != NULL ? (osect) = (objfile)->sections_end : 0) \
694 : 0)) \
65cf3563 695 ALL_OBJFILE_OSECTIONS (objfile, osect)
c906108c 696
b8fbeb18 697#define SECT_OFF_DATA(objfile) \
8e65ff28 698 ((objfile->sect_index_data == -1) \
3e43a32a
MS
699 ? (internal_error (__FILE__, __LINE__, \
700 _("sect_index_data not initialized")), -1) \
8e65ff28 701 : objfile->sect_index_data)
b8fbeb18
EZ
702
703#define SECT_OFF_RODATA(objfile) \
8e65ff28 704 ((objfile->sect_index_rodata == -1) \
3e43a32a
MS
705 ? (internal_error (__FILE__, __LINE__, \
706 _("sect_index_rodata not initialized")), -1) \
8e65ff28 707 : objfile->sect_index_rodata)
b8fbeb18
EZ
708
709#define SECT_OFF_TEXT(objfile) \
8e65ff28 710 ((objfile->sect_index_text == -1) \
3e43a32a
MS
711 ? (internal_error (__FILE__, __LINE__, \
712 _("sect_index_text not initialized")), -1) \
8e65ff28 713 : objfile->sect_index_text)
b8fbeb18 714
a4c8257b 715/* Sometimes the .bss section is missing from the objfile, so we don't
0df8b418
MS
716 want to die here. Let the users of SECT_OFF_BSS deal with an
717 uninitialized section index. */
a4c8257b 718#define SECT_OFF_BSS(objfile) (objfile)->sect_index_bss
b8fbeb18 719
c14c28ba
PP
720/* Answer whether there is more than one object file loaded. */
721
722#define MULTI_OBJFILE_P() (object_files && object_files->next)
723
706e3705
TT
724/* Reset the per-BFD storage area on OBJ. */
725
726void set_objfile_per_bfd (struct objfile *obj);
727
e02c96a7
DE
728/* Return canonical name for OBJFILE.
729 This is the real file name if the file has been opened.
730 Otherwise it is the original name supplied by the user. */
731
4262abfb
JK
732const char *objfile_name (const struct objfile *objfile);
733
e02c96a7
DE
734/* Return the (real) file name of OBJFILE if the file has been opened,
735 otherwise return NULL. */
736
737const char *objfile_filename (const struct objfile *objfile);
738
cc485e62
DE
739/* Return the name to print for OBJFILE in debugging messages. */
740
741extern const char *objfile_debug_name (const struct objfile *objfile);
742
015d2e7e
DE
743/* Return the name of the file format of OBJFILE if the file has been opened,
744 otherwise return NULL. */
745
746const char *objfile_flavour_name (struct objfile *objfile);
747
3d548a53
TT
748/* Set the objfile's notion of the "main" name and language. */
749
750extern void set_objfile_main_name (struct objfile *objfile,
751 const char *name, enum language lang);
752
63e43d3a
PMR
753extern void objfile_register_static_link
754 (struct objfile *objfile,
755 const struct block *block,
756 const struct dynamic_prop *static_link);
757
758extern const struct dynamic_prop *objfile_lookup_static_link
759 (struct objfile *objfile, const struct block *block);
760
c5aa993b 761#endif /* !defined (OBJFILES_H) */
This page took 1.757374 seconds and 4 git commands to generate.