AArch64: View the pseudo V registers as vectors
[deliverable/binutils-gdb.git] / gdb / or1k-tdep.c
CommitLineData
a994fec4 1/* Target-dependent code for the 32-bit OpenRISC 1000, for the GDB.
42a4f53d 2 Copyright (C) 2008-2019 Free Software Foundation, Inc.
a994fec4
FJ
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "defs.h"
20#include "frame.h"
21#include "inferior.h"
22#include "symtab.h"
23#include "value.h"
24#include "gdbcmd.h"
25#include "language.h"
26#include "gdbcore.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "target.h"
31#include "regcache.h"
32#include "safe-ctype.h"
33#include "block.h"
34#include "reggroups.h"
35#include "arch-utils.h"
a994fec4
FJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "dwarf2-frame.h"
39#include "trad-frame.h"
40#include "regset.h"
41#include "remote.h"
42#include "target-descriptions.h"
43#include <inttypes.h>
44#include "dis-asm.h"
45
46/* OpenRISC specific includes. */
47#include "or1k-tdep.h"
48#include "features/or1k.c"
49\f
50
51/* Global debug flag. */
52
53static int or1k_debug = 0;
54
55static void
56show_or1k_debug (struct ui_file *file, int from_tty,
38af1824 57 struct cmd_list_element *c, const char *value)
a994fec4
FJ
58{
59 fprintf_filtered (file, _("OpenRISC debugging is %s.\n"), value);
60}
61
62
63/* The target-dependent structure for gdbarch. */
64
65struct gdbarch_tdep
66{
67 int bytes_per_word;
68 int bytes_per_address;
69 CGEN_CPU_DESC gdb_cgen_cpu_desc;
70};
71
72/* Support functions for the architecture definition. */
73
74/* Get an instruction from memory. */
75
76static ULONGEST
77or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
78{
79 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
80 gdb_byte buf[OR1K_INSTLEN];
81
82 if (target_read_code (addr, buf, OR1K_INSTLEN)) {
83 memory_error (TARGET_XFER_E_IO, addr);
84 }
85
86 return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
87}
88
89/* Generic function to read bits from an instruction. */
90
91static bool
92or1k_analyse_inst (uint32_t inst, const char *format, ...)
93{
94 /* Break out each field in turn, validating as we go. */
95 va_list ap;
96 int i;
97 int iptr = 0; /* Instruction pointer */
98
99 va_start (ap, format);
100
101 for (i = 0; 0 != format[i];)
102 {
103 const char *start_ptr;
104 char *end_ptr;
105
106 uint32_t bits; /* Bit substring of interest */
107 uint32_t width; /* Substring width */
108 uint32_t *arg_ptr;
109
110 switch (format[i])
111 {
112 case ' ':
113 i++;
114 break; /* Formatting: ignored */
115
116 case '0':
117 case '1': /* Constant bit field */
118 bits = (inst >> (OR1K_INSTBITLEN - iptr - 1)) & 0x1;
119
120 if ((format[i] - '0') != bits)
121 return false;
122
123 iptr++;
124 i++;
125 break;
126
127 case '%': /* Bit field */
128 i++;
129 start_ptr = &(format[i]);
130 width = strtoul (start_ptr, &end_ptr, 10);
131
132 /* Check we got something, and if so skip on. */
133 if (start_ptr == end_ptr)
96647014 134 error (_("bitstring \"%s\" at offset %d has no length field."),
38af1824 135 format, i);
a994fec4
FJ
136
137 i += end_ptr - start_ptr;
138
139 /* Look for and skip the terminating 'b'. If it's not there, we
140 still give a fatal error, because these are fixed strings that
141 just should not be wrong. */
142 if ('b' != format[i++])
96647014 143 error (_("bitstring \"%s\" at offset %d has no terminating 'b'."),
38af1824 144 format, i);
a994fec4
FJ
145
146 /* Break out the field. There is a special case with a bit width
147 of 32. */
148 if (32 == width)
149 bits = inst;
150 else
151 bits =
152 (inst >> (OR1K_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
153
154 arg_ptr = va_arg (ap, uint32_t *);
155 *arg_ptr = bits;
156 iptr += width;
157 break;
158
159 default:
96647014 160 error (_("invalid character in bitstring \"%s\" at offset %d."),
38af1824 161 format, i);
a994fec4
FJ
162 break;
163 }
164 }
165
166 /* Is the length OK? */
167 gdb_assert (OR1K_INSTBITLEN == iptr);
168
169 return true; /* Success */
170}
171
172/* This is used to parse l.addi instructions during various prologue
173 analysis routines. The l.addi instruction has semantics:
174
175 assembly: l.addi rD,rA,I
176 implementation: rD = rA + sign_extend(Immediate)
177
178 The rd_ptr, ra_ptr and simm_ptr must be non NULL pointers and are used
179 to store the parse results. Upon successful parsing true is returned,
180 false on failure. */
181
182static bool
183or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
184 unsigned int *ra_ptr, int *simm_ptr)
185{
186 /* Instruction fields */
187 uint32_t rd, ra, i;
188
189 if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
190 {
191 /* Found it. Construct the result fields. */
192 *rd_ptr = (unsigned int) rd;
193 *ra_ptr = (unsigned int) ra;
194 *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
195
196 return true; /* Success */
197 }
198 else
199 return false; /* Failure */
200}
201
202/* This is used to to parse store instructions during various prologue
203 analysis routines. The l.sw instruction has semantics:
204
205 assembly: l.sw I(rA),rB
206 implementation: store rB contents to memory at effective address of
207 rA + sign_extend(Immediate)
208
209 The simm_ptr, ra_ptr and rb_ptr must be non NULL pointers and are used
210 to store the parse results. Upon successful parsing true is returned,
211 false on failure. */
212
213static bool
214or1k_analyse_l_sw (uint32_t inst, int *simm_ptr, unsigned int *ra_ptr,
215 unsigned int *rb_ptr)
216{
217 /* Instruction fields */
218 uint32_t ihi, ilo, ra, rb;
219
220 if (or1k_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
221 &ilo))
222
223 {
224 /* Found it. Construct the result fields. */
225 *simm_ptr = (int) ((ihi << 11) | ilo);
226 *simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
227
228 *ra_ptr = (unsigned int) ra;
229 *rb_ptr = (unsigned int) rb;
230
231 return true; /* Success */
232 }
233 else
234 return false; /* Failure */
235}
236\f
237
238/* Functions defining the architecture. */
239
240/* Implement the return_value gdbarch method. */
241
242static enum return_value_convention
243or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
244 struct type *valtype, struct regcache *regcache,
245 gdb_byte *readbuf, const gdb_byte *writebuf)
246{
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248 enum type_code rv_type = TYPE_CODE (valtype);
249 unsigned int rv_size = TYPE_LENGTH (valtype);
250 int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
251
252 /* Deal with struct/union as addresses. If an array won't fit in a
253 single register it is returned as address. Anything larger than 2
254 registers needs to also be passed as address (matches gcc
255 default_return_in_memory). */
256 if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
257 || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
258 || (rv_size > 2 * bpw))
259 {
260 if (readbuf != NULL)
261 {
262 ULONGEST tmp;
263
264 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
265 read_memory (tmp, readbuf, rv_size);
266 }
267 if (writebuf != NULL)
268 {
269 ULONGEST tmp;
270
271 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
272 write_memory (tmp, writebuf, rv_size);
273 }
274
275 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
276 }
277
278 if (rv_size <= bpw)
279 {
280 /* Up to one word scalars are returned in R11. */
281 if (readbuf != NULL)
282 {
283 ULONGEST tmp;
284
285 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
286 store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
287
288 }
289 if (writebuf != NULL)
290 {
291 gdb_byte *buf = XCNEWVEC(gdb_byte, bpw);
292
293 if (BFD_ENDIAN_BIG == byte_order)
294 memcpy (buf + (sizeof (gdb_byte) * bpw) - rv_size, writebuf,
295 rv_size);
296 else
297 memcpy (buf, writebuf, rv_size);
298
b66f5587 299 regcache->cooked_write (OR1K_RV_REGNUM, buf);
a994fec4
FJ
300
301 free (buf);
302 }
303 }
304 else
305 {
306 /* 2 word scalars are returned in r11/r12 (with the MS word in r11). */
307 if (readbuf != NULL)
308 {
309 ULONGEST tmp_lo;
310 ULONGEST tmp_hi;
311 ULONGEST tmp;
312
313 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM,
314 &tmp_hi);
315 regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM + 1,
316 &tmp_lo);
317 tmp = (tmp_hi << (bpw * 8)) | tmp_lo;
318
319 store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
320 }
321 if (writebuf != NULL)
322 {
323 gdb_byte *buf_lo = XCNEWVEC(gdb_byte, bpw);
324 gdb_byte *buf_hi = XCNEWVEC(gdb_byte, bpw);
325
326 /* This is cheating. We assume that we fit in 2 words exactly,
327 which wouldn't work if we had (say) a 6-byte scalar type on a
328 big endian architecture (with the OpenRISC 1000 usually is). */
329 memcpy (buf_hi, writebuf, rv_size - bpw);
330 memcpy (buf_lo, writebuf + bpw, bpw);
331
b66f5587
SM
332 regcache->cooked_write (OR1K_RV_REGNUM, buf_hi);
333 regcache->cooked_write (OR1K_RV_REGNUM + 1, buf_lo);
a994fec4
FJ
334
335 free (buf_lo);
336 free (buf_hi);
337 }
338 }
339
340 return RETURN_VALUE_REGISTER_CONVENTION;
341}
342
343/* OR1K always uses a l.trap instruction for breakpoints. */
344
345constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
346
347typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
348
349/* Implement the single_step_through_delay gdbarch method. */
350
351static int
352or1k_single_step_through_delay (struct gdbarch *gdbarch,
353 struct frame_info *this_frame)
354{
355 ULONGEST val;
356 CORE_ADDR ppc;
357 CORE_ADDR npc;
358 CGEN_FIELDS tmp_fields;
359 const CGEN_INSN *insn;
360 struct regcache *regcache = get_current_regcache ();
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
363 /* Get the previous and current instruction addresses. If they are not
364 adjacent, we cannot be in a delay slot. */
365 regcache_cooked_read_unsigned (regcache, OR1K_PPC_REGNUM, &val);
366 ppc = (CORE_ADDR) val;
367 regcache_cooked_read_unsigned (regcache, OR1K_NPC_REGNUM, &val);
368 npc = (CORE_ADDR) val;
369
370 if (0x4 != (npc - ppc))
371 return 0;
372
373 insn = cgen_lookup_insn (tdep->gdb_cgen_cpu_desc,
38af1824
SH
374 NULL,
375 or1k_fetch_instruction (gdbarch, ppc),
376 NULL, 32, &tmp_fields, 0);
a994fec4
FJ
377
378 /* NULL here would mean the last instruction was not understood by cgen.
379 This should not usually happen, but if does its not a delay slot. */
380 if (insn == NULL)
381 return 0;
382
383 /* TODO: we should add a delay slot flag to the CGEN_INSN and remove
384 this hard coded test. */
385 return ((CGEN_INSN_NUM (insn) == OR1K_INSN_L_J)
386 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JAL)
387 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JR)
388 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JALR)
389 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BNF)
390 || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BF));
391}
392
393/* Name for or1k general registers. */
394
395static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
396 /* general purpose registers */
397 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
398 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
399 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
400 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
401
402 /* previous program counter, next program counter and status register */
403 "ppc", "npc", "sr"
404};
405
406static int
407or1k_is_arg_reg (unsigned int regnum)
408{
409 return (OR1K_FIRST_ARG_REGNUM <= regnum)
410 && (regnum <= OR1K_LAST_ARG_REGNUM);
411}
412
413static int
414or1k_is_callee_saved_reg (unsigned int regnum)
415{
416 return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
417}
418
419/* Implement the skip_prologue gdbarch method. */
420
421static CORE_ADDR
422or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
423{
424 CORE_ADDR start_pc;
425 CORE_ADDR addr;
426 uint32_t inst;
427
428 unsigned int ra, rb, rd; /* for instruction analysis */
429 int simm;
430
431 int frame_size = 0;
432
433 /* Try using SAL first if we have symbolic information available. This
434 only works for DWARF 2, not STABS. */
435
436 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
437 {
438 CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
439
440 if (0 != prologue_end)
441 {
442 struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
443 struct compunit_symtab *compunit
444 = SYMTAB_COMPUNIT (prologue_sal.symtab);
445 const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
446
447 if ((NULL != debug_format)
448 && (strlen ("dwarf") <= strlen (debug_format))
449 && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
450 return (prologue_end > pc) ? prologue_end : pc;
451 }
452 }
453
454 /* Look to see if we can find any of the standard prologue sequence. All
455 quite difficult, since any or all of it may be missing. So this is
456 just a best guess! */
457
458 addr = pc; /* Where we have got to */
459 inst = or1k_fetch_instruction (gdbarch, addr);
460
461 /* Look for the new stack pointer being set up. */
462 if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
463 && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
464 && (simm < 0) && (0 == (simm % 4)))
465 {
466 frame_size = -simm;
467 addr += OR1K_INSTLEN;
468 inst = or1k_fetch_instruction (gdbarch, addr);
469 }
470
471 /* Look for the frame pointer being manipulated. */
472 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
473 && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
474 && (simm >= 0) && (0 == (simm % 4)))
475 {
476 addr += OR1K_INSTLEN;
477 inst = or1k_fetch_instruction (gdbarch, addr);
478
479 gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
480 && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
481 && (simm == frame_size));
482
483 addr += OR1K_INSTLEN;
484 inst = or1k_fetch_instruction (gdbarch, addr);
485 }
486
487 /* Look for the link register being saved. */
488 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
489 && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
490 && (simm >= 0) && (0 == (simm % 4)))
491 {
492 addr += OR1K_INSTLEN;
493 inst = or1k_fetch_instruction (gdbarch, addr);
494 }
495
496 /* Look for arguments or callee-saved register being saved. The register
497 must be one of the arguments (r3-r8) or the 10 callee saved registers
498 (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
499 register must be the FP (for the args) or the SP (for the callee_saved
500 registers). */
501 while (1)
502 {
503 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
504 && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
505 || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
506 && (0 == (simm % 4)))
507 {
508 addr += OR1K_INSTLEN;
509 inst = or1k_fetch_instruction (gdbarch, addr);
510 }
511 else
512 {
513 /* Nothing else to look for. We have found the end of the
514 prologue. */
515 break;
516 }
517 }
518 return addr;
519}
520
521/* Implement the frame_align gdbarch method. */
522
523static CORE_ADDR
524or1k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
525{
526 return align_down (sp, OR1K_STACK_ALIGN);
527}
528
529/* Implement the unwind_pc gdbarch method. */
530
531static CORE_ADDR
532or1k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
533{
534 CORE_ADDR pc;
535
536 if (or1k_debug)
537 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, next_frame=%d\n",
538 frame_relative_level (next_frame));
539
540 pc = frame_unwind_register_unsigned (next_frame, OR1K_NPC_REGNUM);
541
542 if (or1k_debug)
96647014
SH
543 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, pc=%s\n",
544 paddress (gdbarch, pc));
a994fec4
FJ
545
546 return pc;
547}
548
549/* Implement the unwind_sp gdbarch method. */
550
551static CORE_ADDR
552or1k_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
553{
554 CORE_ADDR sp;
555
556 if (or1k_debug)
557 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, next_frame=%d\n",
558 frame_relative_level (next_frame));
559
560 sp = frame_unwind_register_unsigned (next_frame, OR1K_SP_REGNUM);
561
562 if (or1k_debug)
96647014
SH
563 fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, sp=%s\n",
564 paddress (gdbarch, sp));
a994fec4
FJ
565
566 return sp;
567}
568
569/* Implement the push_dummy_code gdbarch method. */
570
571static CORE_ADDR
572or1k_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
573 CORE_ADDR function, struct value **args, int nargs,
574 struct type *value_type, CORE_ADDR * real_pc,
575 CORE_ADDR * bp_addr, struct regcache *regcache)
576{
577 CORE_ADDR bp_slot;
578
579 /* Reserve enough room on the stack for our breakpoint instruction. */
580 bp_slot = sp - 4;
581 /* Store the address of that breakpoint. */
582 *bp_addr = bp_slot;
583 /* keeping the stack aligned. */
584 sp = or1k_frame_align (gdbarch, bp_slot);
585 /* The call starts at the callee's entry point. */
586 *real_pc = function;
587
588 return sp;
589}
590
591/* Implement the push_dummy_call gdbarch method. */
592
593static CORE_ADDR
594or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
595 struct regcache *regcache, CORE_ADDR bp_addr,
596 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
597 function_call_return_method return_method,
598 CORE_ADDR struct_addr)
a994fec4
FJ
599{
600
601 int argreg;
602 int argnum;
603 int first_stack_arg;
604 int stack_offset = 0;
605 int heap_offset = 0;
606 CORE_ADDR heap_sp = sp - 128;
607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
608 int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
609 int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
610 struct type *func_type = value_type (function);
611
612 /* Return address */
613 regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
614
615 /* Register for the next argument. */
616 argreg = OR1K_FIRST_ARG_REGNUM;
617
618 /* Location for a returned structure. This is passed as a silent first
619 argument. */
cf84fa6b 620 if (return_method == return_method_struct)
a994fec4
FJ
621 {
622 regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
623 struct_addr);
624 argreg++;
625 }
626
627 /* Put as many args as possible in registers. */
628 for (argnum = 0; argnum < nargs; argnum++)
629 {
630 const gdb_byte *val;
631 gdb_byte valbuf[sizeof (ULONGEST)];
632
633 struct value *arg = args[argnum];
634 struct type *arg_type = check_typedef (value_type (arg));
635 int len = TYPE_LENGTH (arg_type);
636 enum type_code typecode = TYPE_CODE (arg_type);
637
638 if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
639 break; /* end or regular args, varargs go to stack. */
640
641 /* Extract the value, either a reference or the data. */
642 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
643 || (len > bpw * 2))
644 {
645 CORE_ADDR valaddr = value_address (arg);
646
647 /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
648 undefined. */
649 if (valaddr == 0)
650 {
651 /* The argument needs to be copied into the target space.
652 Since the bottom of the stack is reserved for function
653 arguments we store this at the these at the top growing
654 down. */
655 heap_offset += align_up (len, bpw);
656 valaddr = heap_sp + heap_offset;
657
658 write_memory (valaddr, value_contents (arg), len);
659 }
660
661 /* The ABI passes all structures by reference, so get its
662 address. */
663 store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
664 len = bpa;
665 val = valbuf;
666 }
667 else
668 {
669 /* Everything else, we just get the value. */
670 val = value_contents (arg);
671 }
672
673 /* Stick the value in a register. */
674 if (len > bpw)
675 {
676 /* Big scalars use two registers, but need NOT be pair aligned. */
677
678 if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
679 {
680 ULONGEST regval = extract_unsigned_integer (val, len,
681 byte_order);
682
683 unsigned int bits_per_word = bpw * 8;
684 ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
685 ULONGEST lo = regval & mask;
686 ULONGEST hi = regval >> bits_per_word;
687
688 regcache_cooked_write_unsigned (regcache, argreg, hi);
689 regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
690 argreg += 2;
691 }
692 else
693 {
694 /* Run out of regs */
695 break;
696 }
697 }
698 else if (argreg <= OR1K_LAST_ARG_REGNUM)
699 {
700 /* Smaller scalars fit in a single register. */
701 regcache_cooked_write_unsigned
702 (regcache, argreg, extract_unsigned_integer (val, len,
703 byte_order));
704 argreg++;
705 }
706 else
707 {
708 /* Ran out of regs. */
709 break;
710 }
711 }
712
713 first_stack_arg = argnum;
714
715 /* If we get here with argnum < nargs, then arguments remain to be
716 placed on the stack. This is tricky, since they must be pushed in
717 reverse order and the stack in the end must be aligned. The only
718 solution is to do it in two stages, the first to compute the stack
719 size, the second to save the args. */
720
721 for (argnum = first_stack_arg; argnum < nargs; argnum++)
722 {
723 struct value *arg = args[argnum];
724 struct type *arg_type = check_typedef (value_type (arg));
725 int len = TYPE_LENGTH (arg_type);
726 enum type_code typecode = TYPE_CODE (arg_type);
727
728 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
729 || (len > bpw * 2))
730 {
731 /* Structures are passed as addresses. */
732 sp -= bpa;
733 }
734 else
735 {
736 /* Big scalars use more than one word. Code here allows for
737 future quad-word entities (e.g. long double.) */
738 sp -= align_up (len, bpw);
739 }
740
741 /* Ensure our dummy heap doesn't touch the stack, this could only
742 happen if we have many arguments including fabricated arguments. */
743 gdb_assert (heap_offset == 0 || ((heap_sp + heap_offset) < sp));
744 }
745
746 sp = gdbarch_frame_align (gdbarch, sp);
747 stack_offset = 0;
748
749 /* Push the remaining args on the stack. */
750 for (argnum = first_stack_arg; argnum < nargs; argnum++)
751 {
752 const gdb_byte *val;
753 gdb_byte valbuf[sizeof (ULONGEST)];
754
755 struct value *arg = args[argnum];
756 struct type *arg_type = check_typedef (value_type (arg));
757 int len = TYPE_LENGTH (arg_type);
758 enum type_code typecode = TYPE_CODE (arg_type);
759 /* The EABI passes structures that do not fit in a register by
760 reference. In all other cases, pass the structure by value. */
761 if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
762 || (len > bpw * 2))
763 {
764 store_unsigned_integer (valbuf, bpa, byte_order,
765 value_address (arg));
766 len = bpa;
767 val = valbuf;
768 }
769 else
770 val = value_contents (arg);
771
772 while (len > 0)
773 {
774 int partial_len = (len < bpw ? len : bpw);
775
776 write_memory (sp + stack_offset, val, partial_len);
777 stack_offset += align_up (partial_len, bpw);
778 len -= partial_len;
779 val += partial_len;
780 }
781 }
782
783 /* Save the updated stack pointer. */
784 regcache_cooked_write_unsigned (regcache, OR1K_SP_REGNUM, sp);
785
786 if (heap_offset > 0)
787 sp = heap_sp;
788
789 return sp;
790}
791
792/* Implement the dummy_id gdbarch method. */
793
794static struct frame_id
795or1k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
796{
797 return frame_id_build (get_frame_sp (this_frame),
798 get_frame_pc (this_frame));
799}
800\f
801
802/* Support functions for frame handling. */
803
804/* Initialize a prologue cache
805
806 We build a cache, saying where registers of the prev frame can be found
807 from the data so far set up in this this.
808
809 We also compute a unique ID for this frame, based on the function start
810 address and the stack pointer (as it will be, even if it has yet to be
811 computed.
812
813 STACK FORMAT
814 ============
815
816 The OR1K has a falling stack frame and a simple prolog. The Stack
817 pointer is R1 and the frame pointer R2. The frame base is therefore the
818 address held in R2 and the stack pointer (R1) is the frame base of the
819 next frame.
820
821 l.addi r1,r1,-frame_size # SP now points to end of new stack frame
822
823 The stack pointer may not be set up in a frameless function (e.g. a
824 simple leaf function).
825
826 l.sw fp_loc(r1),r2 # old FP saved in new stack frame
827 l.addi r2,r1,frame_size # FP now points to base of new stack frame
828
829 The frame pointer is not necessarily saved right at the end of the stack
830 frame - OR1K saves enough space for any args to called functions right
831 at the end (this is a difference from the Architecture Manual).
832
833 l.sw lr_loc(r1),r9 # Link (return) address
834
835 The link register is usally saved at fp_loc - 4. It may not be saved at
836 all in a leaf function.
837
838 l.sw reg_loc(r1),ry # Save any callee saved regs
839
840 The offsets x for the callee saved registers generally (always?) rise in
841 increments of 4, starting at fp_loc + 4. If the frame pointer is
842 omitted (an option to GCC), then it may not be saved at all. There may
843 be no callee saved registers.
844
845 So in summary none of this may be present. However what is present
846 seems always to follow this fixed order, and occur before any
847 substantive code (it is possible for GCC to have more flexible
848 scheduling of the prologue, but this does not seem to occur for OR1K).
849
850 ANALYSIS
851 ========
852
853 This prolog is used, even for -O3 with GCC.
854
855 All this analysis must allow for the possibility that the PC is in the
856 middle of the prologue. Data in the cache should only be set up insofar
857 as it has been computed.
858
859 HOWEVER. The frame_id must be created with the SP *as it will be* at
860 the end of the Prologue. Otherwise a recursive call, checking the frame
861 with the PC at the start address will end up with the same frame_id as
862 the caller.
863
864 A suite of "helper" routines are used, allowing reuse for
865 or1k_skip_prologue().
866
867 Reportedly, this is only valid for frames less than 0x7fff in size. */
868
869static struct trad_frame_cache *
870or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
871{
872 struct gdbarch *gdbarch;
873 struct trad_frame_cache *info;
874
875 CORE_ADDR this_pc;
876 CORE_ADDR this_sp;
877 CORE_ADDR this_sp_for_id;
878 int frame_size = 0;
879
880 CORE_ADDR start_addr;
881 CORE_ADDR end_addr;
882
883 if (or1k_debug)
884 fprintf_unfiltered (gdb_stdlog,
96647014
SH
885 "or1k_frame_cache, prologue_cache = %s\n",
886 host_address_to_string (*prologue_cache));
a994fec4
FJ
887
888 /* Nothing to do if we already have this info. */
889 if (NULL != *prologue_cache)
890 return (struct trad_frame_cache *) *prologue_cache;
891
892 /* Get a new prologue cache and populate it with default values. */
893 info = trad_frame_cache_zalloc (this_frame);
894 *prologue_cache = info;
895
896 /* Find the start address of this function (which is a normal frame, even
897 if the next frame is the sentinel frame) and the end of its prologue. */
898 this_pc = get_frame_pc (this_frame);
899 find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
900
901 /* Get the stack pointer if we have one (if there's no process executing
902 yet we won't have a frame. */
903 this_sp = (NULL == this_frame) ? 0 :
904 get_frame_register_unsigned (this_frame, OR1K_SP_REGNUM);
905
906 /* Return early if GDB couldn't find the function. */
907 if (start_addr == 0)
908 {
909 if (or1k_debug)
910 fprintf_unfiltered (gdb_stdlog, " couldn't find function\n");
911
912 /* JPB: 28-Apr-11. This is a temporary patch, to get round GDB
913 crashing right at the beginning. Build the frame ID as best we
914 can. */
915 trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
916
917 return info;
918 }
919
920 /* The default frame base of this frame (for ID purposes only - frame
921 base is an overloaded term) is its stack pointer. For now we use the
922 value of the SP register in this frame. However if the PC is in the
923 prologue of this frame, before the SP has been set up, then the value
924 will actually be that of the prev frame, and we'll need to adjust it
925 later. */
926 trad_frame_set_this_base (info, this_sp);
927 this_sp_for_id = this_sp;
928
929 /* The default is to find the PC of the previous frame in the link
930 register of this frame. This may be changed if we find the link
931 register was saved on the stack. */
932 trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
933
934 /* We should only examine code that is in the prologue. This is all code
935 up to (but not including) end_addr. We should only populate the cache
936 while the address is up to (but not including) the PC or end_addr,
937 whichever is first. */
938 gdbarch = get_frame_arch (this_frame);
939 end_addr = or1k_skip_prologue (gdbarch, start_addr);
940
941 /* All the following analysis only occurs if we are in the prologue and
942 have executed the code. Check we have a sane prologue size, and if
943 zero we are frameless and can give up here. */
944 if (end_addr < start_addr)
38af1824
SH
945 error (_("end addr %s is less than start addr %s"),
946 paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));
a994fec4
FJ
947
948 if (end_addr == start_addr)
949 frame_size = 0;
950 else
951 {
952 /* We have a frame. Look for the various components. */
953 CORE_ADDR addr = start_addr; /* Where we have got to */
954 uint32_t inst = or1k_fetch_instruction (gdbarch, addr);
955
956 unsigned int ra, rb, rd; /* for instruction analysis */
957 int simm;
958
959 /* Look for the new stack pointer being set up. */
960 if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
961 && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
962 && (simm < 0) && (0 == (simm % 4)))
963 {
964 frame_size = -simm;
965 addr += OR1K_INSTLEN;
966 inst = or1k_fetch_instruction (gdbarch, addr);
967
968 /* If the PC has not actually got to this point, then the frame
969 base will be wrong, and we adjust it.
970
971 If we are past this point, then we need to populate the stack
972 accordingly. */
973 if (this_pc <= addr)
974 {
975 /* Only do if executing. */
976 if (0 != this_sp)
977 {
978 this_sp_for_id = this_sp + frame_size;
979 trad_frame_set_this_base (info, this_sp_for_id);
980 }
981 }
982 else
983 {
984 /* We are past this point, so the stack pointer of the prev
985 frame is frame_size greater than the stack pointer of this
986 frame. */
987 trad_frame_set_reg_value (info, OR1K_SP_REGNUM,
988 this_sp + frame_size);
989 }
990 }
991
992 /* From now on we are only populating the cache, so we stop once we
993 get to either the end OR the current PC. */
994 end_addr = (this_pc < end_addr) ? this_pc : end_addr;
995
996 /* Look for the frame pointer being manipulated. */
997 if ((addr < end_addr)
998 && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
999 && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
1000 && (simm >= 0) && (0 == (simm % 4)))
1001 {
1002 addr += OR1K_INSTLEN;
1003 inst = or1k_fetch_instruction (gdbarch, addr);
1004
1005 /* At this stage, we can find the frame pointer of the previous
1006 frame on the stack of the current frame. */
1007 trad_frame_set_reg_addr (info, OR1K_FP_REGNUM, this_sp + simm);
1008
1009 /* Look for the new frame pointer being set up. */
1010 if ((addr < end_addr)
1011 && or1k_analyse_l_addi (inst, &rd, &ra, &simm)
1012 && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
1013 && (simm == frame_size))
1014 {
1015 addr += OR1K_INSTLEN;
1016 inst = or1k_fetch_instruction (gdbarch, addr);
1017
1018 /* If we have got this far, the stack pointer of the previous
1019 frame is the frame pointer of this frame. */
1020 trad_frame_set_reg_realreg (info, OR1K_SP_REGNUM,
1021 OR1K_FP_REGNUM);
1022 }
1023 }
1024
1025 /* Look for the link register being saved. */
1026 if ((addr < end_addr)
1027 && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1028 && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
1029 && (simm >= 0) && (0 == (simm % 4)))
1030 {
1031 addr += OR1K_INSTLEN;
1032 inst = or1k_fetch_instruction (gdbarch, addr);
1033
1034 /* If the link register is saved in the this frame, it holds the
1035 value of the PC in the previous frame. This overwrites the
1036 previous information about finding the PC in the link
1037 register. */
1038 trad_frame_set_reg_addr (info, OR1K_NPC_REGNUM, this_sp + simm);
1039 }
1040
1041 /* Look for arguments or callee-saved register being saved. The
1042 register must be one of the arguments (r3-r8) or the 10 callee
1043 saved registers (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28,
1044 r30). The base register must be the FP (for the args) or the SP
1045 (for the callee_saved registers). */
1046 while (addr < end_addr)
1047 {
1048 if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
1049 && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
1050 || ((OR1K_SP_REGNUM == ra)
1051 && or1k_is_callee_saved_reg (rb)))
1052 && (0 == (simm % 4)))
1053 {
1054 addr += OR1K_INSTLEN;
1055 inst = or1k_fetch_instruction (gdbarch, addr);
1056
1057 /* The register in the previous frame can be found at this
1058 location in this frame. */
1059 trad_frame_set_reg_addr (info, rb, this_sp + simm);
1060 }
1061 else
1062 break; /* Not a register save instruction. */
1063 }
1064 }
1065
1066 /* Build the frame ID */
1067 trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
1068
1069 if (or1k_debug)
1070 {
96647014
SH
1071 fprintf_unfiltered (gdb_stdlog, " this_sp_for_id = %s\n",
1072 paddress (gdbarch, this_sp_for_id));
1073 fprintf_unfiltered (gdb_stdlog, " start_addr = %s\n",
1074 paddress (gdbarch, start_addr));
a994fec4
FJ
1075 }
1076
1077 return info;
1078}
1079
1080/* Implement the this_id function for the stub unwinder. */
1081
1082static void
1083or1k_frame_this_id (struct frame_info *this_frame,
1084 void **prologue_cache, struct frame_id *this_id)
1085{
1086 struct trad_frame_cache *info = or1k_frame_cache (this_frame,
1087 prologue_cache);
1088
1089 trad_frame_get_id (info, this_id);
1090}
1091
1092/* Implement the prev_register function for the stub unwinder. */
1093
1094static struct value *
1095or1k_frame_prev_register (struct frame_info *this_frame,
1096 void **prologue_cache, int regnum)
1097{
1098 struct trad_frame_cache *info = or1k_frame_cache (this_frame,
1099 prologue_cache);
1100
1101 return trad_frame_get_register (info, this_frame, regnum);
1102}
1103
1104/* Data structures for the normal prologue-analysis-based unwinder. */
1105
1106static const struct frame_unwind or1k_frame_unwind = {
1107 NORMAL_FRAME,
1108 default_frame_unwind_stop_reason,
1109 or1k_frame_this_id,
1110 or1k_frame_prev_register,
1111 NULL,
1112 default_frame_sniffer,
1113 NULL,
1114};
1115
1116/* Architecture initialization for OpenRISC 1000. */
1117
1118static struct gdbarch *
1119or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1120{
1121 struct gdbarch *gdbarch;
1122 struct gdbarch_tdep *tdep;
1123 const struct bfd_arch_info *binfo;
1124 struct tdesc_arch_data *tdesc_data = NULL;
1125 const struct target_desc *tdesc = info.target_desc;
1126
1127 /* Find a candidate among the list of pre-declared architectures. */
1128 arches = gdbarch_list_lookup_by_info (arches, &info);
1129 if (NULL != arches)
1130 return arches->gdbarch;
1131
1132 /* None found, create a new architecture from the information
1133 provided. Can't initialize all the target dependencies until we
1134 actually know which target we are talking to, but put in some defaults
1135 for now. */
1136 binfo = info.bfd_arch_info;
1137 tdep = XCNEW (struct gdbarch_tdep);
1138 tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
1139 tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
1140 gdbarch = gdbarch_alloc (&info, tdep);
1141
1142 /* Target data types */
1143 set_gdbarch_short_bit (gdbarch, 16);
1144 set_gdbarch_int_bit (gdbarch, 32);
1145 set_gdbarch_long_bit (gdbarch, 32);
1146 set_gdbarch_long_long_bit (gdbarch, 64);
1147 set_gdbarch_float_bit (gdbarch, 32);
1148 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1149 set_gdbarch_double_bit (gdbarch, 64);
1150 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1151 set_gdbarch_long_double_bit (gdbarch, 64);
1152 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1153 set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
1154 set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
1155 set_gdbarch_char_signed (gdbarch, 1);
1156
1157 /* Information about the target architecture */
1158 set_gdbarch_return_value (gdbarch, or1k_return_value);
1159 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1160 or1k_breakpoint::kind_from_pc);
1161 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1162 or1k_breakpoint::bp_from_kind);
1163 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
1164
1165 /* Register architecture */
1166 set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
1167 set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
1168 set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM);
1169 set_gdbarch_pc_regnum (gdbarch, OR1K_NPC_REGNUM);
1170 set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM);
1171 set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);
1172
1173 /* Functions to analyse frames */
1174 set_gdbarch_skip_prologue (gdbarch, or1k_skip_prologue);
1175 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1176 set_gdbarch_frame_align (gdbarch, or1k_frame_align);
1177 set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);
1178
1179 /* Functions to access frame data */
1180 set_gdbarch_unwind_pc (gdbarch, or1k_unwind_pc);
1181 set_gdbarch_unwind_sp (gdbarch, or1k_unwind_sp);
1182
1183 /* Functions handling dummy frames */
1184 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1185 set_gdbarch_push_dummy_code (gdbarch, or1k_push_dummy_code);
1186 set_gdbarch_push_dummy_call (gdbarch, or1k_push_dummy_call);
1187 set_gdbarch_dummy_id (gdbarch, or1k_dummy_id);
1188
1189 /* Frame unwinders. Use DWARF debug info if available, otherwise use our
1190 own unwinder. */
1191 dwarf2_append_unwinders (gdbarch);
1192 frame_unwind_append_unwinder (gdbarch, &or1k_frame_unwind);
1193
1194 /* Get a CGEN CPU descriptor for this architecture. */
1195 {
1196
1197 const char *mach_name = binfo->printable_name;
1198 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
1199 ? CGEN_ENDIAN_BIG : CGEN_ENDIAN_LITTLE);
1200
1201 tdep->gdb_cgen_cpu_desc =
1202 or1k_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
1203 CGEN_CPU_OPEN_ENDIAN, endian, CGEN_CPU_OPEN_END);
1204
1205 or1k_cgen_init_asm (tdep->gdb_cgen_cpu_desc);
1206 }
1207
1208 /* If this mach has a delay slot. */
1209 if (binfo->mach == bfd_mach_or1k)
1210 set_gdbarch_single_step_through_delay (gdbarch,
1211 or1k_single_step_through_delay);
1212
1213 if (!tdesc_has_registers (info.target_desc))
1214 /* Pick a default target description. */
1215 tdesc = tdesc_or1k;
1216
1217 /* Check any target description for validity. */
1218 if (tdesc_has_registers (tdesc))
1219 {
1220 const struct tdesc_feature *feature;
1221 int valid_p;
1222 int i;
1223
1224 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.or1k.group0");
1225 if (feature == NULL)
1226 return NULL;
1227
1228 tdesc_data = tdesc_data_alloc ();
1229
1230 valid_p = 1;
1231
1232 for (i = 0; i < OR1K_NUM_REGS; i++)
1233 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1234 or1k_reg_names[i]);
1235
1236 if (!valid_p)
1237 {
1238 tdesc_data_cleanup (tdesc_data);
1239 return NULL;
1240 }
1241 }
1242
1243 if (tdesc_data != NULL)
1244 {
1245 /* If we are using tdesc, register our own reggroups, otherwise we
1246 will used the defaults. */
1247 reggroup_add (gdbarch, general_reggroup);
1248 reggroup_add (gdbarch, system_reggroup);
1249 reggroup_add (gdbarch, float_reggroup);
1250 reggroup_add (gdbarch, vector_reggroup);
1251 reggroup_add (gdbarch, all_reggroup);
1252 reggroup_add (gdbarch, save_reggroup);
1253 reggroup_add (gdbarch, restore_reggroup);
1254
1255 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1256 }
1257
42e151bf
SH
1258 /* Hook in ABI-specific overrides, if they have been registered. */
1259 gdbarch_init_osabi (info, gdbarch);
1260
a994fec4
FJ
1261 return gdbarch;
1262}
1263
1264/* Dump the target specific data for this architecture. */
1265
1266static void
1267or1k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1268{
1269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1270
1271 if (NULL == tdep)
1272 return; /* Nothing to report */
1273
1274 fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per word\n",
1275 tdep->bytes_per_word);
1276 fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per address\n",
1277 tdep->bytes_per_address);
1278}
1279\f
1280
1281void
1282_initialize_or1k_tdep (void)
1283{
1284 /* Register this architecture. */
1285 gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
1286
1287 initialize_tdesc_or1k ();
1288
1289 /* Debugging flag. */
1290 add_setshow_boolean_cmd ("or1k", class_maintenance, &or1k_debug,
1291 _("Set OpenRISC debugging."),
1292 _("Show OpenRISC debugging."),
1293 _("When on, OpenRISC specific debugging is enabled."),
1294 NULL,
1295 show_or1k_debug,
1296 &setdebuglist, &showdebuglist);
1297}
This page took 0.190416 seconds and 4 git commands to generate.