Back out change to signals.exp (test_handle_all_print): Add setup_xfail for "alpha...
[deliverable/binutils-gdb.git] / gdb / parse.c
CommitLineData
3d6b6a90 1/* Parse expressions for GDB.
d92f3f08 2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3d6b6a90
JG
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
6c9638b4 20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
3d6b6a90
JG
21
22/* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
3d6b6a90 31#include "defs.h"
2b576293 32#include "gdb_string.h"
3d6b6a90 33#include "symtab.h"
1ab3bf1b 34#include "gdbtypes.h"
3d6b6a90
JG
35#include "frame.h"
36#include "expression.h"
37#include "value.h"
38#include "command.h"
39#include "language.h"
40#include "parser-defs.h"
79448221
JK
41\f
42/* Global variables declared in parser-defs.h (and commented there). */
43struct expression *expout;
44int expout_size;
45int expout_ptr;
46struct block *expression_context_block;
47struct block *innermost_block;
79448221
JK
48int arglist_len;
49union type_stack_elt *type_stack;
50int type_stack_depth, type_stack_size;
51char *lexptr;
52char *namecopy;
53int paren_depth;
54int comma_terminates;
55\f
9da75ad3
FF
56static void
57free_funcalls PARAMS ((void));
58
1ab3bf1b
JG
59static void
60prefixify_expression PARAMS ((struct expression *));
61
62static int
63length_of_subexp PARAMS ((struct expression *, int));
64
65static void
66prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
67
9da75ad3
FF
68/* Data structure for saving values of arglist_len for function calls whose
69 arguments contain other function calls. */
70
71struct funcall
72 {
73 struct funcall *next;
74 int arglist_len;
75 };
76
77static struct funcall *funcall_chain;
78
3d6b6a90
JG
79/* Assign machine-independent names to certain registers
80 (unless overridden by the REGISTER_NAMES table) */
81
a332e593
SC
82#ifdef NO_STD_REGS
83unsigned num_std_regs = 0;
84struct std_regs std_regs[1];
85#else
3d6b6a90 86struct std_regs std_regs[] = {
a332e593 87
3d6b6a90
JG
88#ifdef PC_REGNUM
89 { "pc", PC_REGNUM },
90#endif
91#ifdef FP_REGNUM
92 { "fp", FP_REGNUM },
93#endif
94#ifdef SP_REGNUM
95 { "sp", SP_REGNUM },
96#endif
97#ifdef PS_REGNUM
98 { "ps", PS_REGNUM },
99#endif
a332e593 100
3d6b6a90
JG
101};
102
103unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
104
a332e593
SC
105#endif
106
3d6b6a90
JG
107
108/* Begin counting arguments for a function call,
109 saving the data about any containing call. */
110
111void
112start_arglist ()
113{
9da75ad3 114 register struct funcall *new;
3d6b6a90 115
9da75ad3 116 new = (struct funcall *) xmalloc (sizeof (struct funcall));
3d6b6a90
JG
117 new->next = funcall_chain;
118 new->arglist_len = arglist_len;
119 arglist_len = 0;
120 funcall_chain = new;
121}
122
123/* Return the number of arguments in a function call just terminated,
124 and restore the data for the containing function call. */
125
126int
127end_arglist ()
128{
129 register int val = arglist_len;
130 register struct funcall *call = funcall_chain;
131 funcall_chain = call->next;
132 arglist_len = call->arglist_len;
be772100 133 free ((PTR)call);
3d6b6a90
JG
134 return val;
135}
136
137/* Free everything in the funcall chain.
138 Used when there is an error inside parsing. */
139
9da75ad3 140static void
3d6b6a90
JG
141free_funcalls ()
142{
143 register struct funcall *call, *next;
144
145 for (call = funcall_chain; call; call = next)
146 {
147 next = call->next;
be772100 148 free ((PTR)call);
3d6b6a90
JG
149 }
150}
151\f
152/* This page contains the functions for adding data to the struct expression
153 being constructed. */
154
155/* Add one element to the end of the expression. */
156
157/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
158 a register through here */
159
160void
161write_exp_elt (expelt)
162 union exp_element expelt;
163{
164 if (expout_ptr >= expout_size)
165 {
166 expout_size *= 2;
81028ab0
FF
167 expout = (struct expression *)
168 xrealloc ((char *) expout, sizeof (struct expression)
169 + EXP_ELEM_TO_BYTES (expout_size));
3d6b6a90
JG
170 }
171 expout->elts[expout_ptr++] = expelt;
172}
173
174void
175write_exp_elt_opcode (expelt)
176 enum exp_opcode expelt;
177{
178 union exp_element tmp;
179
180 tmp.opcode = expelt;
181
182 write_exp_elt (tmp);
183}
184
185void
186write_exp_elt_sym (expelt)
187 struct symbol *expelt;
188{
189 union exp_element tmp;
190
191 tmp.symbol = expelt;
192
193 write_exp_elt (tmp);
194}
195
479fdd26
JK
196void
197write_exp_elt_block (b)
198 struct block *b;
199{
200 union exp_element tmp;
201 tmp.block = b;
202 write_exp_elt (tmp);
203}
204
3d6b6a90
JG
205void
206write_exp_elt_longcst (expelt)
207 LONGEST expelt;
208{
209 union exp_element tmp;
210
211 tmp.longconst = expelt;
212
213 write_exp_elt (tmp);
214}
215
216void
217write_exp_elt_dblcst (expelt)
aa220473 218 DOUBLEST expelt;
3d6b6a90
JG
219{
220 union exp_element tmp;
221
222 tmp.doubleconst = expelt;
223
224 write_exp_elt (tmp);
225}
226
227void
228write_exp_elt_type (expelt)
229 struct type *expelt;
230{
231 union exp_element tmp;
232
233 tmp.type = expelt;
234
235 write_exp_elt (tmp);
236}
237
238void
239write_exp_elt_intern (expelt)
240 struct internalvar *expelt;
241{
242 union exp_element tmp;
243
244 tmp.internalvar = expelt;
245
246 write_exp_elt (tmp);
247}
248
249/* Add a string constant to the end of the expression.
d1065385
FF
250
251 String constants are stored by first writing an expression element
252 that contains the length of the string, then stuffing the string
253 constant itself into however many expression elements are needed
254 to hold it, and then writing another expression element that contains
255 the length of the string. I.E. an expression element at each end of
256 the string records the string length, so you can skip over the
257 expression elements containing the actual string bytes from either
258 end of the string. Note that this also allows gdb to handle
259 strings with embedded null bytes, as is required for some languages.
260
261 Don't be fooled by the fact that the string is null byte terminated,
262 this is strictly for the convenience of debugging gdb itself. Gdb
263 Gdb does not depend up the string being null terminated, since the
264 actual length is recorded in expression elements at each end of the
265 string. The null byte is taken into consideration when computing how
266 many expression elements are required to hold the string constant, of
267 course. */
268
3d6b6a90
JG
269
270void
271write_exp_string (str)
272 struct stoken str;
273{
274 register int len = str.length;
d1065385
FF
275 register int lenelt;
276 register char *strdata;
3d6b6a90 277
d1065385
FF
278 /* Compute the number of expression elements required to hold the string
279 (including a null byte terminator), along with one expression element
280 at each end to record the actual string length (not including the
281 null byte terminator). */
3d6b6a90 282
81028ab0 283 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
d1065385
FF
284
285 /* Ensure that we have enough available expression elements to store
286 everything. */
287
288 if ((expout_ptr + lenelt) >= expout_size)
3d6b6a90 289 {
d1065385 290 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
3d6b6a90 291 expout = (struct expression *)
1ab3bf1b 292 xrealloc ((char *) expout, (sizeof (struct expression)
81028ab0 293 + EXP_ELEM_TO_BYTES (expout_size)));
3d6b6a90 294 }
d1065385
FF
295
296 /* Write the leading length expression element (which advances the current
297 expression element index), then write the string constant followed by a
298 terminating null byte, and then write the trailing length expression
299 element. */
300
301 write_exp_elt_longcst ((LONGEST) len);
302 strdata = (char *) &expout->elts[expout_ptr];
303 memcpy (strdata, str.ptr, len);
304 *(strdata + len) = '\0';
305 expout_ptr += lenelt - 2;
3d6b6a90
JG
306 write_exp_elt_longcst ((LONGEST) len);
307}
81028ab0
FF
308
309/* Add a bitstring constant to the end of the expression.
310
311 Bitstring constants are stored by first writing an expression element
312 that contains the length of the bitstring (in bits), then stuffing the
313 bitstring constant itself into however many expression elements are
314 needed to hold it, and then writing another expression element that
315 contains the length of the bitstring. I.E. an expression element at
316 each end of the bitstring records the bitstring length, so you can skip
317 over the expression elements containing the actual bitstring bytes from
318 either end of the bitstring. */
319
320void
321write_exp_bitstring (str)
322 struct stoken str;
323{
324 register int bits = str.length; /* length in bits */
325 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
326 register int lenelt;
327 register char *strdata;
328
329 /* Compute the number of expression elements required to hold the bitstring,
330 along with one expression element at each end to record the actual
331 bitstring length in bits. */
332
333 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
334
335 /* Ensure that we have enough available expression elements to store
336 everything. */
337
338 if ((expout_ptr + lenelt) >= expout_size)
339 {
340 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
341 expout = (struct expression *)
342 xrealloc ((char *) expout, (sizeof (struct expression)
343 + EXP_ELEM_TO_BYTES (expout_size)));
344 }
345
346 /* Write the leading length expression element (which advances the current
347 expression element index), then write the bitstring constant, and then
348 write the trailing length expression element. */
349
350 write_exp_elt_longcst ((LONGEST) bits);
351 strdata = (char *) &expout->elts[expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 expout_ptr += lenelt - 2;
354 write_exp_elt_longcst ((LONGEST) bits);
355}
abe28b92
JK
356
357/* Add the appropriate elements for a minimal symbol to the end of
3fb93d86
JK
358 the expression. The rationale behind passing in text_symbol_type and
359 data_symbol_type was so that Modula-2 could pass in WORD for
360 data_symbol_type. Perhaps it still is useful to have those types vary
361 based on the language, but they no longer have names like "int", so
362 the initial rationale is gone. */
363
364static struct type *msym_text_symbol_type;
365static struct type *msym_data_symbol_type;
366static struct type *msym_unknown_symbol_type;
abe28b92
JK
367
368void
369write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
370 struct minimal_symbol *msymbol;
371 struct type *text_symbol_type;
372 struct type *data_symbol_type;
373{
374 write_exp_elt_opcode (OP_LONG);
4461196e 375 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
abe28b92
JK
376 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
377 write_exp_elt_opcode (OP_LONG);
378
379 write_exp_elt_opcode (UNOP_MEMVAL);
380 switch (msymbol -> type)
381 {
382 case mst_text:
383 case mst_file_text:
ae6d035d 384 case mst_solib_trampoline:
3fb93d86 385 write_exp_elt_type (msym_text_symbol_type);
abe28b92
JK
386 break;
387
388 case mst_data:
389 case mst_file_data:
390 case mst_bss:
391 case mst_file_bss:
3fb93d86 392 write_exp_elt_type (msym_data_symbol_type);
abe28b92
JK
393 break;
394
395 default:
3fb93d86 396 write_exp_elt_type (msym_unknown_symbol_type);
abe28b92
JK
397 break;
398 }
399 write_exp_elt_opcode (UNOP_MEMVAL);
400}
3d6b6a90 401\f
c700638c
PB
402/* Recognize tokens that start with '$'. These include:
403
404 $regname A native register name or a "standard
405 register name".
406
407 $variable A convenience variable with a name chosen
408 by the user.
409
410 $digits Value history with index <digits>, starting
411 from the first value which has index 1.
412
413 $$digits Value history with index <digits> relative
414 to the last value. I.E. $$0 is the last
415 value, $$1 is the one previous to that, $$2
416 is the one previous to $$1, etc.
417
418 $ | $0 | $$0 The last value in the value history.
419
420 $$ An abbreviation for the second to the last
421 value in the value history, I.E. $$1
422
423 */
424
425void
426write_dollar_variable (str)
427 struct stoken str;
428{
429 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
430 and $$digits (equivalent to $<-digits> if you could type that). */
431
432 int negate = 0;
433 int i = 1;
434 /* Double dollar means negate the number and add -1 as well.
435 Thus $$ alone means -1. */
436 if (str.length >= 2 && str.ptr[1] == '$')
437 {
438 negate = 1;
439 i = 2;
440 }
441 if (i == str.length)
442 {
443 /* Just dollars (one or two) */
444 i = - negate;
445 goto handle_last;
446 }
447 /* Is the rest of the token digits? */
448 for (; i < str.length; i++)
449 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
450 break;
451 if (i == str.length)
452 {
453 i = atoi (str.ptr + 1 + negate);
454 if (negate)
455 i = - i;
456 goto handle_last;
457 }
458
459 /* Handle tokens that refer to machine registers:
460 $ followed by a register name. */
461 for (i = 0; i < NUM_REGS; i++)
462 if (str.length - 1 == strlen (reg_names[i])
463 && STREQN (str.ptr + 1, reg_names[i], str.length - 1))
464 {
465 goto handle_register;
466 }
467 for (i = 0; i < num_std_regs; i++)
468 if (str.length - 1 == strlen (std_regs[i].name)
469 && STREQN (str.ptr + 1, std_regs[i].name, str.length - 1))
470 {
471 i = std_regs[i].regnum;
472 goto handle_register;
473 }
474
475 /* Any other names starting in $ are debugger internal variables. */
476
477 write_exp_elt_opcode (OP_INTERNALVAR);
478 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
479 write_exp_elt_opcode (OP_INTERNALVAR);
480 return;
481 handle_last:
482 write_exp_elt_opcode (OP_LAST);
483 write_exp_elt_longcst ((LONGEST) i);
484 write_exp_elt_opcode (OP_LAST);
485 return;
486 handle_register:
487 write_exp_elt_opcode (OP_REGISTER);
488 write_exp_elt_longcst (i);
489 write_exp_elt_opcode (OP_REGISTER);
490 return;
491}
492\f
3d6b6a90
JG
493/* Return a null-terminated temporary copy of the name
494 of a string token. */
495
496char *
497copy_name (token)
498 struct stoken token;
499{
4ed3a9ea 500 memcpy (namecopy, token.ptr, token.length);
3d6b6a90
JG
501 namecopy[token.length] = 0;
502 return namecopy;
503}
504\f
505/* Reverse an expression from suffix form (in which it is constructed)
506 to prefix form (in which we can conveniently print or execute it). */
507
1ab3bf1b 508static void
3d6b6a90
JG
509prefixify_expression (expr)
510 register struct expression *expr;
511{
81028ab0
FF
512 register int len =
513 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
3d6b6a90
JG
514 register struct expression *temp;
515 register int inpos = expr->nelts, outpos = 0;
516
517 temp = (struct expression *) alloca (len);
518
519 /* Copy the original expression into temp. */
4ed3a9ea 520 memcpy (temp, expr, len);
3d6b6a90
JG
521
522 prefixify_subexp (temp, expr, inpos, outpos);
523}
524
525/* Return the number of exp_elements in the subexpression of EXPR
526 whose last exp_element is at index ENDPOS - 1 in EXPR. */
527
1ab3bf1b 528static int
3d6b6a90
JG
529length_of_subexp (expr, endpos)
530 register struct expression *expr;
531 register int endpos;
532{
533 register int oplen = 1;
534 register int args = 0;
535 register int i;
536
d1065385 537 if (endpos < 1)
3d6b6a90
JG
538 error ("?error in length_of_subexp");
539
540 i = (int) expr->elts[endpos - 1].opcode;
541
542 switch (i)
543 {
544 /* C++ */
545 case OP_SCOPE:
81028ab0
FF
546 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
547 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
3d6b6a90
JG
548 break;
549
550 case OP_LONG:
551 case OP_DOUBLE:
479fdd26 552 case OP_VAR_VALUE:
3d6b6a90
JG
553 oplen = 4;
554 break;
555
556 case OP_TYPE:
557 case OP_BOOL:
3d6b6a90
JG
558 case OP_LAST:
559 case OP_REGISTER:
560 case OP_INTERNALVAR:
561 oplen = 3;
562 break;
563
ead95f8a 564 case OP_COMPLEX:
a91a6192
SS
565 oplen = 1;
566 args = 2;
567 break;
568
3d6b6a90 569 case OP_FUNCALL:
a91a6192 570 case OP_F77_UNDETERMINED_ARGLIST:
3d6b6a90 571 oplen = 3;
d1065385 572 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
3d6b6a90
JG
573 break;
574
575 case UNOP_MAX:
576 case UNOP_MIN:
577 oplen = 3;
3d6b6a90
JG
578 break;
579
580 case BINOP_VAL:
581 case UNOP_CAST:
582 case UNOP_MEMVAL:
583 oplen = 3;
584 args = 1;
585 break;
586
587 case UNOP_ABS:
588 case UNOP_CAP:
589 case UNOP_CHR:
590 case UNOP_FLOAT:
591 case UNOP_HIGH:
592 case UNOP_ODD:
593 case UNOP_ORD:
594 case UNOP_TRUNC:
595 oplen = 1;
596 args = 1;
597 break;
598
dcda44a0 599 case OP_LABELED:
2640f7e1
JG
600 case STRUCTOP_STRUCT:
601 case STRUCTOP_PTR:
cd10c7e3 602/* start-sanitize-gm */
188c635f 603#ifdef GENERAL_MAGIC
cd10c7e3 604 case STRUCTOP_FIELD:
188c635f 605#endif /* GENERAL_MAGIC */
cd10c7e3 606/* end-sanitize-gm */
2640f7e1 607 args = 1;
d1065385 608 /* fall through */
3d6b6a90
JG
609 case OP_M2_STRING:
610 case OP_STRING:
3c02944a 611 case OP_NAME:
0e4ca328 612 case OP_EXPRSTRING:
81028ab0
FF
613 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
614 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
615 break;
616
617 case OP_BITSTRING:
618 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
619 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
620 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
3d6b6a90
JG
621 break;
622
c4413e2c
FF
623 case OP_ARRAY:
624 oplen = 4;
625 args = longest_to_int (expr->elts[endpos - 2].longconst);
626 args -= longest_to_int (expr->elts[endpos - 3].longconst);
627 args += 1;
628 break;
629
3d6b6a90 630 case TERNOP_COND:
f91a9e05
PB
631 case TERNOP_SLICE:
632 case TERNOP_SLICE_COUNT:
3d6b6a90
JG
633 args = 3;
634 break;
635
636 /* Modula-2 */
54bbbfb4 637 case MULTI_SUBSCRIPT:
a91a6192 638 oplen = 3;
d1065385 639 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
3d6b6a90
JG
640 break;
641
642 case BINOP_ASSIGN_MODIFY:
643 oplen = 3;
644 args = 2;
645 break;
646
647 /* C++ */
648 case OP_THIS:
649 oplen = 2;
650 break;
651
652 default:
653 args = 1 + (i < (int) BINOP_END);
654 }
655
656 while (args > 0)
657 {
658 oplen += length_of_subexp (expr, endpos - oplen);
659 args--;
660 }
661
662 return oplen;
663}
664
665/* Copy the subexpression ending just before index INEND in INEXPR
666 into OUTEXPR, starting at index OUTBEG.
667 In the process, convert it from suffix to prefix form. */
668
669static void
670prefixify_subexp (inexpr, outexpr, inend, outbeg)
671 register struct expression *inexpr;
672 struct expression *outexpr;
673 register int inend;
674 int outbeg;
675{
676 register int oplen = 1;
677 register int args = 0;
678 register int i;
679 int *arglens;
680 enum exp_opcode opcode;
681
682 /* Compute how long the last operation is (in OPLEN),
683 and also how many preceding subexpressions serve as
684 arguments for it (in ARGS). */
685
686 opcode = inexpr->elts[inend - 1].opcode;
687 switch (opcode)
688 {
689 /* C++ */
690 case OP_SCOPE:
81028ab0
FF
691 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
692 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
3d6b6a90
JG
693 break;
694
695 case OP_LONG:
696 case OP_DOUBLE:
479fdd26 697 case OP_VAR_VALUE:
3d6b6a90
JG
698 oplen = 4;
699 break;
700
701 case OP_TYPE:
702 case OP_BOOL:
3d6b6a90
JG
703 case OP_LAST:
704 case OP_REGISTER:
705 case OP_INTERNALVAR:
706 oplen = 3;
707 break;
708
ead95f8a 709 case OP_COMPLEX:
a91a6192
SS
710 oplen = 1;
711 args = 2;
712 break;
713
3d6b6a90 714 case OP_FUNCALL:
a91a6192 715 case OP_F77_UNDETERMINED_ARGLIST:
3d6b6a90 716 oplen = 3;
d1065385 717 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
3d6b6a90
JG
718 break;
719
720 case UNOP_MIN:
721 case UNOP_MAX:
722 oplen = 3;
3d6b6a90
JG
723 break;
724
725 case UNOP_CAST:
726 case UNOP_MEMVAL:
727 oplen = 3;
728 args = 1;
729 break;
730
731 case UNOP_ABS:
732 case UNOP_CAP:
733 case UNOP_CHR:
734 case UNOP_FLOAT:
735 case UNOP_HIGH:
736 case UNOP_ODD:
737 case UNOP_ORD:
738 case UNOP_TRUNC:
739 oplen=1;
740 args=1;
741 break;
742
61c1724b 743 case STRUCTOP_STRUCT:
2640f7e1 744 case STRUCTOP_PTR:
dcda44a0 745 case OP_LABELED:
2640f7e1 746 args = 1;
d1065385 747 /* fall through */
3d6b6a90
JG
748 case OP_M2_STRING:
749 case OP_STRING:
3c02944a 750 case OP_NAME:
0e4ca328 751 case OP_EXPRSTRING:
81028ab0
FF
752 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
753 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
754 break;
755
756 case OP_BITSTRING:
757 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
758 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
759 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
3d6b6a90
JG
760 break;
761
c4413e2c
FF
762 case OP_ARRAY:
763 oplen = 4;
764 args = longest_to_int (inexpr->elts[inend - 2].longconst);
765 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
766 args += 1;
767 break;
768
3d6b6a90 769 case TERNOP_COND:
f91a9e05
PB
770 case TERNOP_SLICE:
771 case TERNOP_SLICE_COUNT:
3d6b6a90
JG
772 args = 3;
773 break;
774
775 case BINOP_ASSIGN_MODIFY:
776 oplen = 3;
777 args = 2;
778 break;
779
780 /* Modula-2 */
54bbbfb4 781 case MULTI_SUBSCRIPT:
a91a6192 782 oplen = 3;
d1065385 783 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
3d6b6a90
JG
784 break;
785
786 /* C++ */
787 case OP_THIS:
788 oplen = 2;
789 break;
790
791 default:
792 args = 1 + ((int) opcode < (int) BINOP_END);
793 }
794
795 /* Copy the final operator itself, from the end of the input
796 to the beginning of the output. */
797 inend -= oplen;
4ed3a9ea 798 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
81028ab0 799 EXP_ELEM_TO_BYTES (oplen));
3d6b6a90
JG
800 outbeg += oplen;
801
802 /* Find the lengths of the arg subexpressions. */
803 arglens = (int *) alloca (args * sizeof (int));
804 for (i = args - 1; i >= 0; i--)
805 {
806 oplen = length_of_subexp (inexpr, inend);
807 arglens[i] = oplen;
808 inend -= oplen;
809 }
810
811 /* Now copy each subexpression, preserving the order of
812 the subexpressions, but prefixifying each one.
813 In this loop, inend starts at the beginning of
814 the expression this level is working on
815 and marches forward over the arguments.
816 outbeg does similarly in the output. */
817 for (i = 0; i < args; i++)
818 {
819 oplen = arglens[i];
820 inend += oplen;
821 prefixify_subexp (inexpr, outexpr, inend, outbeg);
822 outbeg += oplen;
823 }
824}
825\f
826/* This page contains the two entry points to this file. */
827
828/* Read an expression from the string *STRINGPTR points to,
829 parse it, and return a pointer to a struct expression that we malloc.
830 Use block BLOCK as the lexical context for variable names;
831 if BLOCK is zero, use the block of the selected stack frame.
832 Meanwhile, advance *STRINGPTR to point after the expression,
833 at the first nonwhite character that is not part of the expression
834 (possibly a null character).
835
836 If COMMA is nonzero, stop if a comma is reached. */
837
838struct expression *
839parse_exp_1 (stringptr, block, comma)
840 char **stringptr;
841 struct block *block;
842 int comma;
843{
844 struct cleanup *old_chain;
845
846 lexptr = *stringptr;
847
848 paren_depth = 0;
849 type_stack_depth = 0;
850
851 comma_terminates = comma;
852
853 if (lexptr == 0 || *lexptr == 0)
854 error_no_arg ("expression to compute");
855
856 old_chain = make_cleanup (free_funcalls, 0);
857 funcall_chain = 0;
858
859 expression_context_block = block ? block : get_selected_block ();
860
861 namecopy = (char *) alloca (strlen (lexptr) + 1);
862 expout_size = 10;
863 expout_ptr = 0;
864 expout = (struct expression *)
81028ab0 865 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
3d6b6a90
JG
866 expout->language_defn = current_language;
867 make_cleanup (free_current_contents, &expout);
868
869 if (current_language->la_parser ())
870 current_language->la_error (NULL);
871
872 discard_cleanups (old_chain);
54bbbfb4
FF
873
874 /* Record the actual number of expression elements, and then
875 reallocate the expression memory so that we free up any
876 excess elements. */
877
3d6b6a90
JG
878 expout->nelts = expout_ptr;
879 expout = (struct expression *)
1ab3bf1b 880 xrealloc ((char *) expout,
81028ab0 881 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
54bbbfb4
FF
882
883 /* Convert expression from postfix form as generated by yacc
884 parser, to a prefix form. */
885
199b2450 886 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
3d6b6a90 887 prefixify_expression (expout);
199b2450 888 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
54bbbfb4 889
3d6b6a90
JG
890 *stringptr = lexptr;
891 return expout;
892}
893
894/* Parse STRING as an expression, and complain if this fails
895 to use up all of the contents of STRING. */
896
897struct expression *
898parse_expression (string)
899 char *string;
900{
901 register struct expression *exp;
902 exp = parse_exp_1 (&string, 0, 0);
903 if (*string)
904 error ("Junk after end of expression.");
905 return exp;
906}
f843c95f
JK
907\f
908/* Stuff for maintaining a stack of types. Currently just used by C, but
909 probably useful for any language which declares its types "backwards". */
3d6b6a90
JG
910
911void
912push_type (tp)
913 enum type_pieces tp;
914{
915 if (type_stack_depth == type_stack_size)
916 {
917 type_stack_size *= 2;
918 type_stack = (union type_stack_elt *)
1ab3bf1b 919 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
3d6b6a90
JG
920 }
921 type_stack[type_stack_depth++].piece = tp;
922}
923
924void
925push_type_int (n)
926 int n;
927{
928 if (type_stack_depth == type_stack_size)
929 {
930 type_stack_size *= 2;
931 type_stack = (union type_stack_elt *)
1ab3bf1b 932 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
3d6b6a90
JG
933 }
934 type_stack[type_stack_depth++].int_val = n;
935}
936
937enum type_pieces
938pop_type ()
939{
940 if (type_stack_depth)
941 return type_stack[--type_stack_depth].piece;
942 return tp_end;
943}
944
945int
946pop_type_int ()
947{
948 if (type_stack_depth)
949 return type_stack[--type_stack_depth].int_val;
950 /* "Can't happen". */
951 return 0;
952}
953
f843c95f
JK
954/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
955 as modified by all the stuff on the stack. */
956struct type *
957follow_types (follow_type)
958 struct type *follow_type;
959{
960 int done = 0;
961 int array_size;
962 struct type *range_type;
963
964 while (!done)
965 switch (pop_type ())
966 {
967 case tp_end:
968 done = 1;
969 break;
970 case tp_pointer:
971 follow_type = lookup_pointer_type (follow_type);
972 break;
973 case tp_reference:
974 follow_type = lookup_reference_type (follow_type);
975 break;
976 case tp_array:
977 array_size = pop_type_int ();
36633dcc
JK
978 /* FIXME-type-allocation: need a way to free this type when we are
979 done with it. */
fda36387
PB
980 range_type =
981 create_range_type ((struct type *) NULL,
982 builtin_type_int, 0,
983 array_size >= 0 ? array_size - 1 : 0);
984 follow_type =
985 create_array_type ((struct type *) NULL,
986 follow_type, range_type);
987 if (array_size < 0)
988 TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type)
989 = BOUND_CANNOT_BE_DETERMINED;
f843c95f
JK
990 break;
991 case tp_function:
36633dcc
JK
992 /* FIXME-type-allocation: need a way to free this type when we are
993 done with it. */
f843c95f
JK
994 follow_type = lookup_function_type (follow_type);
995 break;
996 }
997 return follow_type;
998}
999\f
3d6b6a90
JG
1000void
1001_initialize_parse ()
1002{
1003 type_stack_size = 80;
1004 type_stack_depth = 0;
1005 type_stack = (union type_stack_elt *)
1006 xmalloc (type_stack_size * sizeof (*type_stack));
3fb93d86
JK
1007
1008 msym_text_symbol_type =
eedb3363 1009 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
3fb93d86
JK
1010 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1011 msym_data_symbol_type =
1012 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
eedb3363 1013 "<data variable, no debug info>", NULL);
3fb93d86 1014 msym_unknown_symbol_type =
eedb3363
JK
1015 init_type (TYPE_CODE_INT, 1, 0,
1016 "<variable (not text or data), no debug info>",
3fb93d86 1017 NULL);
3d6b6a90 1018}
This page took 0.277017 seconds and 4 git commands to generate.