* osabi.c (gdb_osabi_name): Add entry for GDB_OSABI_INTERIX.
[deliverable/binutils-gdb.git] / gdb / parse.c
CommitLineData
c906108c 1/* Parse expressions for GDB.
b6ba6518
KB
2 Copyright 1986, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
4 Modified from expread.y by the Department of Computer Science at the
5 State University of New York at Buffalo, 1991.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24/* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
c5aa993b 32
cce74817
JM
33#include <ctype.h>
34
c906108c
SS
35#include "defs.h"
36#include "gdb_string.h"
c906108c
SS
37#include "symtab.h"
38#include "gdbtypes.h"
39#include "frame.h"
40#include "expression.h"
41#include "value.h"
42#include "command.h"
43#include "language.h"
44#include "parser-defs.h"
45#include "gdbcmd.h"
c5aa993b 46#include "symfile.h" /* for overlay functions */
e2305d34
MS
47#include "inferior.h" /* for NUM_PSEUDO_REGS. NOTE: replace
48 with "gdbarch.h" when appropriate. */
d16aafd8 49#include "doublest.h"
0406ec40
AC
50#include "builtin-regs.h"
51#include "gdb_assert.h"
e2305d34 52
2df3850c
JM
53\f
54/* Symbols which architectures can redefine. */
55
56/* Some systems have routines whose names start with `$'. Giving this
57 macro a non-zero value tells GDB's expression parser to check for
58 such routines when parsing tokens that begin with `$'.
59
60 On HP-UX, certain system routines (millicode) have names beginning
61 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
62 that handles inter-space procedure calls on PA-RISC. */
63#ifndef SYMBOLS_CAN_START_WITH_DOLLAR
64#define SYMBOLS_CAN_START_WITH_DOLLAR (0)
65#endif
66
67
c906108c
SS
68\f
69/* Global variables declared in parser-defs.h (and commented there). */
70struct expression *expout;
71int expout_size;
72int expout_ptr;
73struct block *expression_context_block;
84f0252a 74CORE_ADDR expression_context_pc;
c906108c
SS
75struct block *innermost_block;
76int arglist_len;
77union type_stack_elt *type_stack;
78int type_stack_depth, type_stack_size;
79char *lexptr;
665132f9 80char *prev_lexptr;
c906108c
SS
81char *namecopy;
82int paren_depth;
83int comma_terminates;
84\f
c906108c 85static int expressiondebug = 0;
c906108c
SS
86
87extern int hp_som_som_object_present;
88
74b7792f 89static void free_funcalls (void *ignore);
c906108c 90
a14ed312 91static void prefixify_expression (struct expression *);
c906108c
SS
92
93static void
a14ed312 94prefixify_subexp (struct expression *, struct expression *, int, int);
c906108c 95
a14ed312 96void _initialize_parse (void);
392a587b 97
c906108c
SS
98/* Data structure for saving values of arglist_len for function calls whose
99 arguments contain other function calls. */
100
101struct funcall
102 {
103 struct funcall *next;
104 int arglist_len;
105 };
106
107static struct funcall *funcall_chain;
108
c906108c 109/* The generic method for targets to specify how their registers are
96cb11df
AC
110 named. The mapping can be derived from two sources: REGISTER_NAME;
111 or builtin regs. */
c906108c
SS
112
113int
fba45db2 114target_map_name_to_register (char *str, int len)
c906108c
SS
115{
116 int i;
117
d1c7e53b
AC
118 /* Search register name space. */
119 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
1a1404f1
MS
120 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
121 && STREQN (str, REGISTER_NAME (i), len))
122 {
123 return i;
124 }
125
96cb11df
AC
126 /* Try builtin registers. */
127 i = builtin_reg_map_name_to_regnum (str, len);
128 if (i >= 0)
129 {
130 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
131 return i;
132 }
c906108c 133
0406ec40
AC
134 /* Try builtin registers. */
135 i = builtin_reg_map_name_to_regnum (str, len);
136 if (i >= 0)
137 {
138 gdb_assert (i >= NUM_REGS + NUM_PSEUDO_REGS);
139 return i;
140 }
141
c906108c
SS
142 return -1;
143}
144
145/* Begin counting arguments for a function call,
146 saving the data about any containing call. */
147
148void
fba45db2 149start_arglist (void)
c906108c
SS
150{
151 register struct funcall *new;
152
153 new = (struct funcall *) xmalloc (sizeof (struct funcall));
154 new->next = funcall_chain;
155 new->arglist_len = arglist_len;
156 arglist_len = 0;
157 funcall_chain = new;
158}
159
160/* Return the number of arguments in a function call just terminated,
161 and restore the data for the containing function call. */
162
163int
fba45db2 164end_arglist (void)
c906108c
SS
165{
166 register int val = arglist_len;
167 register struct funcall *call = funcall_chain;
168 funcall_chain = call->next;
169 arglist_len = call->arglist_len;
b8c9b27d 170 xfree (call);
c906108c
SS
171 return val;
172}
173
174/* Free everything in the funcall chain.
175 Used when there is an error inside parsing. */
176
177static void
74b7792f 178free_funcalls (void *ignore)
c906108c
SS
179{
180 register struct funcall *call, *next;
181
182 for (call = funcall_chain; call; call = next)
183 {
184 next = call->next;
b8c9b27d 185 xfree (call);
c906108c
SS
186 }
187}
188\f
189/* This page contains the functions for adding data to the struct expression
190 being constructed. */
191
192/* Add one element to the end of the expression. */
193
194/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
195 a register through here */
196
197void
fba45db2 198write_exp_elt (union exp_element expelt)
c906108c
SS
199{
200 if (expout_ptr >= expout_size)
201 {
202 expout_size *= 2;
203 expout = (struct expression *)
204 xrealloc ((char *) expout, sizeof (struct expression)
205 + EXP_ELEM_TO_BYTES (expout_size));
206 }
207 expout->elts[expout_ptr++] = expelt;
208}
209
210void
fba45db2 211write_exp_elt_opcode (enum exp_opcode expelt)
c906108c
SS
212{
213 union exp_element tmp;
214
215 tmp.opcode = expelt;
216
217 write_exp_elt (tmp);
218}
219
220void
fba45db2 221write_exp_elt_sym (struct symbol *expelt)
c906108c
SS
222{
223 union exp_element tmp;
224
225 tmp.symbol = expelt;
226
227 write_exp_elt (tmp);
228}
229
230void
fba45db2 231write_exp_elt_block (struct block *b)
c906108c
SS
232{
233 union exp_element tmp;
234 tmp.block = b;
235 write_exp_elt (tmp);
236}
237
238void
fba45db2 239write_exp_elt_longcst (LONGEST expelt)
c906108c
SS
240{
241 union exp_element tmp;
242
243 tmp.longconst = expelt;
244
245 write_exp_elt (tmp);
246}
247
248void
fba45db2 249write_exp_elt_dblcst (DOUBLEST expelt)
c906108c
SS
250{
251 union exp_element tmp;
252
253 tmp.doubleconst = expelt;
254
255 write_exp_elt (tmp);
256}
257
258void
fba45db2 259write_exp_elt_type (struct type *expelt)
c906108c
SS
260{
261 union exp_element tmp;
262
263 tmp.type = expelt;
264
265 write_exp_elt (tmp);
266}
267
268void
fba45db2 269write_exp_elt_intern (struct internalvar *expelt)
c906108c
SS
270{
271 union exp_element tmp;
272
273 tmp.internalvar = expelt;
274
275 write_exp_elt (tmp);
276}
277
278/* Add a string constant to the end of the expression.
279
280 String constants are stored by first writing an expression element
281 that contains the length of the string, then stuffing the string
282 constant itself into however many expression elements are needed
283 to hold it, and then writing another expression element that contains
284 the length of the string. I.E. an expression element at each end of
285 the string records the string length, so you can skip over the
286 expression elements containing the actual string bytes from either
287 end of the string. Note that this also allows gdb to handle
288 strings with embedded null bytes, as is required for some languages.
289
290 Don't be fooled by the fact that the string is null byte terminated,
291 this is strictly for the convenience of debugging gdb itself. Gdb
292 Gdb does not depend up the string being null terminated, since the
293 actual length is recorded in expression elements at each end of the
294 string. The null byte is taken into consideration when computing how
295 many expression elements are required to hold the string constant, of
296 course. */
297
298
299void
fba45db2 300write_exp_string (struct stoken str)
c906108c
SS
301{
302 register int len = str.length;
303 register int lenelt;
304 register char *strdata;
305
306 /* Compute the number of expression elements required to hold the string
307 (including a null byte terminator), along with one expression element
308 at each end to record the actual string length (not including the
309 null byte terminator). */
310
311 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
312
313 /* Ensure that we have enough available expression elements to store
314 everything. */
315
316 if ((expout_ptr + lenelt) >= expout_size)
317 {
318 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
319 expout = (struct expression *)
320 xrealloc ((char *) expout, (sizeof (struct expression)
321 + EXP_ELEM_TO_BYTES (expout_size)));
322 }
323
324 /* Write the leading length expression element (which advances the current
325 expression element index), then write the string constant followed by a
326 terminating null byte, and then write the trailing length expression
327 element. */
328
329 write_exp_elt_longcst ((LONGEST) len);
330 strdata = (char *) &expout->elts[expout_ptr];
331 memcpy (strdata, str.ptr, len);
332 *(strdata + len) = '\0';
333 expout_ptr += lenelt - 2;
334 write_exp_elt_longcst ((LONGEST) len);
335}
336
337/* Add a bitstring constant to the end of the expression.
338
339 Bitstring constants are stored by first writing an expression element
340 that contains the length of the bitstring (in bits), then stuffing the
341 bitstring constant itself into however many expression elements are
342 needed to hold it, and then writing another expression element that
343 contains the length of the bitstring. I.E. an expression element at
344 each end of the bitstring records the bitstring length, so you can skip
345 over the expression elements containing the actual bitstring bytes from
346 either end of the bitstring. */
347
348void
fba45db2 349write_exp_bitstring (struct stoken str)
c906108c
SS
350{
351 register int bits = str.length; /* length in bits */
352 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
353 register int lenelt;
354 register char *strdata;
355
356 /* Compute the number of expression elements required to hold the bitstring,
357 along with one expression element at each end to record the actual
358 bitstring length in bits. */
359
360 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
361
362 /* Ensure that we have enough available expression elements to store
363 everything. */
364
365 if ((expout_ptr + lenelt) >= expout_size)
366 {
367 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
368 expout = (struct expression *)
369 xrealloc ((char *) expout, (sizeof (struct expression)
370 + EXP_ELEM_TO_BYTES (expout_size)));
371 }
372
373 /* Write the leading length expression element (which advances the current
374 expression element index), then write the bitstring constant, and then
375 write the trailing length expression element. */
376
377 write_exp_elt_longcst ((LONGEST) bits);
378 strdata = (char *) &expout->elts[expout_ptr];
379 memcpy (strdata, str.ptr, len);
380 expout_ptr += lenelt - 2;
381 write_exp_elt_longcst ((LONGEST) bits);
382}
383
384/* Add the appropriate elements for a minimal symbol to the end of
385 the expression. The rationale behind passing in text_symbol_type and
386 data_symbol_type was so that Modula-2 could pass in WORD for
387 data_symbol_type. Perhaps it still is useful to have those types vary
388 based on the language, but they no longer have names like "int", so
389 the initial rationale is gone. */
390
391static struct type *msym_text_symbol_type;
392static struct type *msym_data_symbol_type;
393static struct type *msym_unknown_symbol_type;
394
395void
a858089e
MS
396write_exp_msymbol (struct minimal_symbol *msymbol,
397 struct type *text_symbol_type,
398 struct type *data_symbol_type)
c906108c
SS
399{
400 CORE_ADDR addr;
401
402 write_exp_elt_opcode (OP_LONG);
a858089e
MS
403 /* Let's make the type big enough to hold a 64-bit address. */
404 write_exp_elt_type (builtin_type_CORE_ADDR);
c906108c
SS
405
406 addr = SYMBOL_VALUE_ADDRESS (msymbol);
407 if (overlay_debugging)
408 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
409 write_exp_elt_longcst ((LONGEST) addr);
c5aa993b 410
c906108c
SS
411 write_exp_elt_opcode (OP_LONG);
412
413 write_exp_elt_opcode (UNOP_MEMVAL);
c5aa993b 414 switch (msymbol->type)
c906108c
SS
415 {
416 case mst_text:
417 case mst_file_text:
418 case mst_solib_trampoline:
419 write_exp_elt_type (msym_text_symbol_type);
420 break;
421
422 case mst_data:
423 case mst_file_data:
424 case mst_bss:
425 case mst_file_bss:
426 write_exp_elt_type (msym_data_symbol_type);
427 break;
428
429 default:
430 write_exp_elt_type (msym_unknown_symbol_type);
431 break;
432 }
433 write_exp_elt_opcode (UNOP_MEMVAL);
434}
435\f
436/* Recognize tokens that start with '$'. These include:
437
c5aa993b
JM
438 $regname A native register name or a "standard
439 register name".
c906108c 440
c5aa993b
JM
441 $variable A convenience variable with a name chosen
442 by the user.
c906108c 443
c5aa993b
JM
444 $digits Value history with index <digits>, starting
445 from the first value which has index 1.
c906108c 446
c5aa993b
JM
447 $$digits Value history with index <digits> relative
448 to the last value. I.E. $$0 is the last
449 value, $$1 is the one previous to that, $$2
450 is the one previous to $$1, etc.
c906108c 451
c5aa993b 452 $ | $0 | $$0 The last value in the value history.
c906108c 453
c5aa993b
JM
454 $$ An abbreviation for the second to the last
455 value in the value history, I.E. $$1
c906108c 456
c5aa993b 457 */
c906108c
SS
458
459void
fba45db2 460write_dollar_variable (struct stoken str)
c906108c
SS
461{
462 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
463 and $$digits (equivalent to $<-digits> if you could type that). */
464
c906108c
SS
465 int negate = 0;
466 int i = 1;
467 /* Double dollar means negate the number and add -1 as well.
468 Thus $$ alone means -1. */
469 if (str.length >= 2 && str.ptr[1] == '$')
470 {
471 negate = 1;
472 i = 2;
473 }
474 if (i == str.length)
475 {
476 /* Just dollars (one or two) */
c5aa993b 477 i = -negate;
c906108c
SS
478 goto handle_last;
479 }
480 /* Is the rest of the token digits? */
481 for (; i < str.length; i++)
482 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
483 break;
484 if (i == str.length)
485 {
486 i = atoi (str.ptr + 1 + negate);
487 if (negate)
c5aa993b 488 i = -i;
c906108c
SS
489 goto handle_last;
490 }
c5aa993b 491
c906108c
SS
492 /* Handle tokens that refer to machine registers:
493 $ followed by a register name. */
c5aa993b
JM
494 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
495 if (i >= 0)
c906108c
SS
496 goto handle_register;
497
2df3850c 498 if (SYMBOLS_CAN_START_WITH_DOLLAR)
c906108c 499 {
2df3850c
JM
500 struct symbol *sym = NULL;
501 struct minimal_symbol *msym = NULL;
502
503 /* On HP-UX, certain system routines (millicode) have names beginning
504 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
505 calls on PA-RISC. Check for those, first. */
506
507 /* This code is not enabled on non HP-UX systems, since worst case
508 symbol table lookup performance is awful, to put it mildly. */
509
510 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
511 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
512 if (sym)
513 {
514 write_exp_elt_opcode (OP_VAR_VALUE);
515 write_exp_elt_block (block_found); /* set by lookup_symbol */
516 write_exp_elt_sym (sym);
517 write_exp_elt_opcode (OP_VAR_VALUE);
518 return;
519 }
520 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
521 if (msym)
522 {
523 write_exp_msymbol (msym,
524 lookup_function_type (builtin_type_int),
525 builtin_type_int);
526 return;
527 }
c906108c 528 }
c5aa993b 529
c906108c
SS
530 /* Any other names starting in $ are debugger internal variables. */
531
532 write_exp_elt_opcode (OP_INTERNALVAR);
533 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
c5aa993b 534 write_exp_elt_opcode (OP_INTERNALVAR);
c906108c 535 return;
c5aa993b 536handle_last:
c906108c
SS
537 write_exp_elt_opcode (OP_LAST);
538 write_exp_elt_longcst ((LONGEST) i);
539 write_exp_elt_opcode (OP_LAST);
540 return;
c5aa993b 541handle_register:
c906108c
SS
542 write_exp_elt_opcode (OP_REGISTER);
543 write_exp_elt_longcst (i);
c5aa993b 544 write_exp_elt_opcode (OP_REGISTER);
c906108c
SS
545 return;
546}
547
548
549/* Parse a string that is possibly a namespace / nested class
550 specification, i.e., something of the form A::B::C::x. Input
551 (NAME) is the entire string; LEN is the current valid length; the
552 output is a string, TOKEN, which points to the largest recognized
553 prefix which is a series of namespaces or classes. CLASS_PREFIX is
554 another output, which records whether a nested class spec was
555 recognized (= 1) or a fully qualified variable name was found (=
556 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
557 string recognized and consumed by this routine.
558
559 The return value is a pointer to the symbol for the base class or
560 variable if found, or NULL if not found. Callers must check this
561 first -- if NULL, the outputs may not be correct.
562
563 This function is used c-exp.y. This is used specifically to get
564 around HP aCC (and possibly other compilers), which insists on
565 generating names with embedded colons for namespace or nested class
566 members.
567
568 (Argument LEN is currently unused. 1997-08-27)
569
570 Callers must free memory allocated for the output string TOKEN. */
571
c5aa993b
JM
572static const char coloncolon[2] =
573{':', ':'};
c906108c
SS
574
575struct symbol *
fba45db2
KB
576parse_nested_classes_for_hpacc (char *name, int len, char **token,
577 int *class_prefix, char **argptr)
c906108c 578{
c5aa993b
JM
579 /* Comment below comes from decode_line_1 which has very similar
580 code, which is called for "break" command parsing. */
581
582 /* We have what looks like a class or namespace
c906108c
SS
583 scope specification (A::B), possibly with many
584 levels of namespaces or classes (A::B::C::D).
585
586 Some versions of the HP ANSI C++ compiler (as also possibly
587 other compilers) generate class/function/member names with
588 embedded double-colons if they are inside namespaces. To
589 handle this, we loop a few times, considering larger and
590 larger prefixes of the string as though they were single
591 symbols. So, if the initially supplied string is
592 A::B::C::D::foo, we have to look up "A", then "A::B",
593 then "A::B::C", then "A::B::C::D", and finally
594 "A::B::C::D::foo" as single, monolithic symbols, because
595 A, B, C or D may be namespaces.
596
597 Note that namespaces can nest only inside other
598 namespaces, and not inside classes. So we need only
599 consider *prefixes* of the string; there is no need to look up
600 "B::C" separately as a symbol in the previous example. */
601
c5aa993b
JM
602 register char *p;
603 char *start, *end;
604 char *prefix = NULL;
605 char *tmp;
606 struct symbol *sym_class = NULL;
607 struct symbol *sym_var = NULL;
608 struct type *t;
c906108c
SS
609 int prefix_len = 0;
610 int done = 0;
c5aa993b 611 char *q;
c906108c
SS
612
613 /* Check for HP-compiled executable -- in other cases
614 return NULL, and caller must default to standard GDB
615 behaviour. */
616
617 if (!hp_som_som_object_present)
618 return (struct symbol *) NULL;
619
620 p = name;
621
c5aa993b
JM
622 /* Skip over whitespace and possible global "::" */
623 while (*p && (*p == ' ' || *p == '\t'))
624 p++;
c906108c
SS
625 if (p[0] == ':' && p[1] == ':')
626 p += 2;
c5aa993b
JM
627 while (*p && (*p == ' ' || *p == '\t'))
628 p++;
629
c906108c
SS
630 while (1)
631 {
632 /* Get to the end of the next namespace or class spec. */
633 /* If we're looking at some non-token, fail immediately */
634 start = p;
635 if (!(isalpha (*p) || *p == '$' || *p == '_'))
c5aa993b 636 return (struct symbol *) NULL;
c906108c 637 p++;
c5aa993b
JM
638 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
639 p++;
640
641 if (*p == '<')
642 {
643 /* If we have the start of a template specification,
644 scan right ahead to its end */
645 q = find_template_name_end (p);
646 if (q)
647 p = q;
648 }
649
c906108c
SS
650 end = p;
651
c5aa993b
JM
652 /* Skip over "::" and whitespace for next time around */
653 while (*p && (*p == ' ' || *p == '\t'))
654 p++;
c906108c 655 if (p[0] == ':' && p[1] == ':')
c5aa993b
JM
656 p += 2;
657 while (*p && (*p == ' ' || *p == '\t'))
658 p++;
c906108c 659
c5aa993b 660 /* Done with tokens? */
c906108c 661 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
c5aa993b 662 done = 1;
c906108c
SS
663
664 tmp = (char *) alloca (prefix_len + end - start + 3);
665 if (prefix)
c5aa993b
JM
666 {
667 memcpy (tmp, prefix, prefix_len);
668 memcpy (tmp + prefix_len, coloncolon, 2);
669 memcpy (tmp + prefix_len + 2, start, end - start);
670 tmp[prefix_len + 2 + end - start] = '\000';
671 }
c906108c 672 else
c5aa993b
JM
673 {
674 memcpy (tmp, start, end - start);
675 tmp[end - start] = '\000';
676 }
677
c906108c
SS
678 prefix = tmp;
679 prefix_len = strlen (prefix);
c5aa993b 680
c906108c
SS
681 /* See if the prefix we have now is something we know about */
682
c5aa993b
JM
683 if (!done)
684 {
685 /* More tokens to process, so this must be a class/namespace */
686 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
687 0, (struct symtab **) NULL);
688 }
c906108c 689 else
c5aa993b
JM
690 {
691 /* No more tokens, so try as a variable first */
692 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
693 0, (struct symtab **) NULL);
694 /* If failed, try as class/namespace */
695 if (!sym_var)
696 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
697 0, (struct symtab **) NULL);
698 }
c906108c
SS
699
700 if (sym_var ||
c5aa993b
JM
701 (sym_class &&
702 (t = check_typedef (SYMBOL_TYPE (sym_class)),
703 (TYPE_CODE (t) == TYPE_CODE_STRUCT
704 || TYPE_CODE (t) == TYPE_CODE_UNION))))
705 {
706 /* We found a valid token */
707 *token = (char *) xmalloc (prefix_len + 1);
708 memcpy (*token, prefix, prefix_len);
709 (*token)[prefix_len] = '\000';
710 break;
711 }
712
713 /* No variable or class/namespace found, no more tokens */
c906108c 714 if (done)
c5aa993b 715 return (struct symbol *) NULL;
c906108c
SS
716 }
717
718 /* Out of loop, so we must have found a valid token */
719 if (sym_var)
720 *class_prefix = 0;
721 else
722 *class_prefix = 1;
723
724 if (argptr)
725 *argptr = done ? p : end;
726
c5aa993b 727 return sym_var ? sym_var : sym_class; /* found */
c906108c
SS
728}
729
730char *
fba45db2 731find_template_name_end (char *p)
c906108c
SS
732{
733 int depth = 1;
734 int just_seen_right = 0;
735 int just_seen_colon = 0;
736 int just_seen_space = 0;
c5aa993b 737
c906108c
SS
738 if (!p || (*p != '<'))
739 return 0;
740
741 while (*++p)
742 {
743 switch (*p)
c5aa993b
JM
744 {
745 case '\'':
746 case '\"':
747 case '{':
748 case '}':
749 /* In future, may want to allow these?? */
750 return 0;
751 case '<':
752 depth++; /* start nested template */
753 if (just_seen_colon || just_seen_right || just_seen_space)
754 return 0; /* but not after : or :: or > or space */
755 break;
756 case '>':
757 if (just_seen_colon || just_seen_right)
758 return 0; /* end a (nested?) template */
759 just_seen_right = 1; /* but not after : or :: */
760 if (--depth == 0) /* also disallow >>, insist on > > */
761 return ++p; /* if outermost ended, return */
762 break;
763 case ':':
764 if (just_seen_space || (just_seen_colon > 1))
765 return 0; /* nested class spec coming up */
766 just_seen_colon++; /* we allow :: but not :::: */
767 break;
768 case ' ':
769 break;
770 default:
771 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
772 (*p >= 'A' && *p <= 'Z') ||
773 (*p >= '0' && *p <= '9') ||
774 (*p == '_') || (*p == ',') || /* commas for template args */
775 (*p == '&') || (*p == '*') || /* pointer and ref types */
776 (*p == '(') || (*p == ')') || /* function types */
777 (*p == '[') || (*p == ']'))) /* array types */
778 return 0;
779 }
c906108c 780 if (*p != ' ')
c5aa993b 781 just_seen_space = 0;
c906108c 782 if (*p != ':')
c5aa993b 783 just_seen_colon = 0;
c906108c 784 if (*p != '>')
c5aa993b 785 just_seen_right = 0;
c906108c
SS
786 }
787 return 0;
788}
c5aa993b 789\f
c906108c
SS
790
791
c906108c
SS
792/* Return a null-terminated temporary copy of the name
793 of a string token. */
794
795char *
fba45db2 796copy_name (struct stoken token)
c906108c
SS
797{
798 memcpy (namecopy, token.ptr, token.length);
799 namecopy[token.length] = 0;
800 return namecopy;
801}
802\f
803/* Reverse an expression from suffix form (in which it is constructed)
804 to prefix form (in which we can conveniently print or execute it). */
805
806static void
fba45db2 807prefixify_expression (register struct expression *expr)
c906108c
SS
808{
809 register int len =
c5aa993b 810 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
c906108c
SS
811 register struct expression *temp;
812 register int inpos = expr->nelts, outpos = 0;
813
814 temp = (struct expression *) alloca (len);
815
816 /* Copy the original expression into temp. */
817 memcpy (temp, expr, len);
818
819 prefixify_subexp (temp, expr, inpos, outpos);
820}
821
822/* Return the number of exp_elements in the subexpression of EXPR
823 whose last exp_element is at index ENDPOS - 1 in EXPR. */
824
825int
fba45db2 826length_of_subexp (register struct expression *expr, register int endpos)
c906108c
SS
827{
828 register int oplen = 1;
829 register int args = 0;
830 register int i;
831
832 if (endpos < 1)
833 error ("?error in length_of_subexp");
834
835 i = (int) expr->elts[endpos - 1].opcode;
836
837 switch (i)
838 {
839 /* C++ */
840 case OP_SCOPE:
841 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
842 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
843 break;
844
845 case OP_LONG:
846 case OP_DOUBLE:
847 case OP_VAR_VALUE:
848 oplen = 4;
849 break;
850
851 case OP_TYPE:
852 case OP_BOOL:
853 case OP_LAST:
854 case OP_REGISTER:
855 case OP_INTERNALVAR:
856 oplen = 3;
857 break;
858
859 case OP_COMPLEX:
c5aa993b 860 oplen = 1;
c906108c 861 args = 2;
c5aa993b 862 break;
c906108c
SS
863
864 case OP_FUNCALL:
865 case OP_F77_UNDETERMINED_ARGLIST:
866 oplen = 3;
867 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
868 break;
869
870 case UNOP_MAX:
871 case UNOP_MIN:
872 oplen = 3;
873 break;
874
c5aa993b
JM
875 case BINOP_VAL:
876 case UNOP_CAST:
877 case UNOP_MEMVAL:
c906108c
SS
878 oplen = 3;
879 args = 1;
880 break;
881
882 case UNOP_ABS:
883 case UNOP_CAP:
884 case UNOP_CHR:
885 case UNOP_FLOAT:
886 case UNOP_HIGH:
887 case UNOP_ODD:
888 case UNOP_ORD:
889 case UNOP_TRUNC:
890 oplen = 1;
891 args = 1;
892 break;
893
894 case OP_LABELED:
895 case STRUCTOP_STRUCT:
896 case STRUCTOP_PTR:
897 args = 1;
898 /* fall through */
899 case OP_M2_STRING:
900 case OP_STRING:
901 case OP_NAME:
902 case OP_EXPRSTRING:
903 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
904 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
905 break;
906
907 case OP_BITSTRING:
908 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
909 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
910 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
911 break;
912
913 case OP_ARRAY:
914 oplen = 4;
915 args = longest_to_int (expr->elts[endpos - 2].longconst);
916 args -= longest_to_int (expr->elts[endpos - 3].longconst);
917 args += 1;
918 break;
919
920 case TERNOP_COND:
921 case TERNOP_SLICE:
922 case TERNOP_SLICE_COUNT:
923 args = 3;
924 break;
925
926 /* Modula-2 */
c5aa993b 927 case MULTI_SUBSCRIPT:
c906108c 928 oplen = 3;
c5aa993b 929 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
c906108c
SS
930 break;
931
932 case BINOP_ASSIGN_MODIFY:
933 oplen = 3;
934 args = 2;
935 break;
936
937 /* C++ */
938 case OP_THIS:
939 oplen = 2;
940 break;
941
942 default:
943 args = 1 + (i < (int) BINOP_END);
944 }
945
946 while (args > 0)
947 {
948 oplen += length_of_subexp (expr, endpos - oplen);
949 args--;
950 }
951
952 return oplen;
953}
954
955/* Copy the subexpression ending just before index INEND in INEXPR
956 into OUTEXPR, starting at index OUTBEG.
957 In the process, convert it from suffix to prefix form. */
958
959static void
fba45db2
KB
960prefixify_subexp (register struct expression *inexpr,
961 struct expression *outexpr, register int inend, int outbeg)
c906108c
SS
962{
963 register int oplen = 1;
964 register int args = 0;
965 register int i;
966 int *arglens;
967 enum exp_opcode opcode;
968
969 /* Compute how long the last operation is (in OPLEN),
970 and also how many preceding subexpressions serve as
971 arguments for it (in ARGS). */
972
973 opcode = inexpr->elts[inend - 1].opcode;
974 switch (opcode)
975 {
976 /* C++ */
977 case OP_SCOPE:
978 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
979 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
980 break;
981
982 case OP_LONG:
983 case OP_DOUBLE:
984 case OP_VAR_VALUE:
985 oplen = 4;
986 break;
987
988 case OP_TYPE:
989 case OP_BOOL:
990 case OP_LAST:
991 case OP_REGISTER:
992 case OP_INTERNALVAR:
993 oplen = 3;
994 break;
995
996 case OP_COMPLEX:
c5aa993b
JM
997 oplen = 1;
998 args = 2;
999 break;
c906108c
SS
1000
1001 case OP_FUNCALL:
1002 case OP_F77_UNDETERMINED_ARGLIST:
1003 oplen = 3;
1004 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1005 break;
1006
1007 case UNOP_MIN:
1008 case UNOP_MAX:
1009 oplen = 3;
1010 break;
1011
1012 case UNOP_CAST:
1013 case UNOP_MEMVAL:
1014 oplen = 3;
1015 args = 1;
1016 break;
1017
1018 case UNOP_ABS:
1019 case UNOP_CAP:
1020 case UNOP_CHR:
1021 case UNOP_FLOAT:
1022 case UNOP_HIGH:
1023 case UNOP_ODD:
1024 case UNOP_ORD:
1025 case UNOP_TRUNC:
c5aa993b
JM
1026 oplen = 1;
1027 args = 1;
c906108c
SS
1028 break;
1029
1030 case STRUCTOP_STRUCT:
1031 case STRUCTOP_PTR:
1032 case OP_LABELED:
1033 args = 1;
1034 /* fall through */
1035 case OP_M2_STRING:
1036 case OP_STRING:
1037 case OP_NAME:
1038 case OP_EXPRSTRING:
1039 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1040 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1041 break;
1042
1043 case OP_BITSTRING:
1044 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1045 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1046 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1047 break;
1048
1049 case OP_ARRAY:
1050 oplen = 4;
1051 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1052 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1053 args += 1;
1054 break;
1055
1056 case TERNOP_COND:
1057 case TERNOP_SLICE:
1058 case TERNOP_SLICE_COUNT:
1059 args = 3;
1060 break;
1061
1062 case BINOP_ASSIGN_MODIFY:
1063 oplen = 3;
1064 args = 2;
1065 break;
1066
1067 /* Modula-2 */
c5aa993b 1068 case MULTI_SUBSCRIPT:
c906108c
SS
1069 oplen = 3;
1070 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1071 break;
1072
1073 /* C++ */
1074 case OP_THIS:
1075 oplen = 2;
1076 break;
1077
1078 default:
1079 args = 1 + ((int) opcode < (int) BINOP_END);
1080 }
1081
1082 /* Copy the final operator itself, from the end of the input
1083 to the beginning of the output. */
1084 inend -= oplen;
1085 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1086 EXP_ELEM_TO_BYTES (oplen));
1087 outbeg += oplen;
1088
1089 /* Find the lengths of the arg subexpressions. */
1090 arglens = (int *) alloca (args * sizeof (int));
1091 for (i = args - 1; i >= 0; i--)
1092 {
1093 oplen = length_of_subexp (inexpr, inend);
1094 arglens[i] = oplen;
1095 inend -= oplen;
1096 }
1097
1098 /* Now copy each subexpression, preserving the order of
1099 the subexpressions, but prefixifying each one.
1100 In this loop, inend starts at the beginning of
1101 the expression this level is working on
1102 and marches forward over the arguments.
1103 outbeg does similarly in the output. */
1104 for (i = 0; i < args; i++)
1105 {
1106 oplen = arglens[i];
1107 inend += oplen;
1108 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1109 outbeg += oplen;
1110 }
1111}
1112\f
1113/* This page contains the two entry points to this file. */
1114
1115/* Read an expression from the string *STRINGPTR points to,
1116 parse it, and return a pointer to a struct expression that we malloc.
1117 Use block BLOCK as the lexical context for variable names;
1118 if BLOCK is zero, use the block of the selected stack frame.
1119 Meanwhile, advance *STRINGPTR to point after the expression,
1120 at the first nonwhite character that is not part of the expression
1121 (possibly a null character).
1122
1123 If COMMA is nonzero, stop if a comma is reached. */
1124
1125struct expression *
fba45db2 1126parse_exp_1 (char **stringptr, struct block *block, int comma)
c906108c
SS
1127{
1128 struct cleanup *old_chain;
1129
1130 lexptr = *stringptr;
665132f9 1131 prev_lexptr = NULL;
c906108c
SS
1132
1133 paren_depth = 0;
1134 type_stack_depth = 0;
1135
1136 comma_terminates = comma;
1137
1138 if (lexptr == 0 || *lexptr == 0)
1139 error_no_arg ("expression to compute");
1140
74b7792f 1141 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
c906108c
SS
1142 funcall_chain = 0;
1143
84f0252a
JB
1144 if (block)
1145 {
1146 expression_context_block = block;
1147 expression_context_pc = block->startaddr;
1148 }
1149 else
1150 expression_context_block = get_selected_block (&expression_context_pc);
c906108c
SS
1151
1152 namecopy = (char *) alloca (strlen (lexptr) + 1);
1153 expout_size = 10;
1154 expout_ptr = 0;
1155 expout = (struct expression *)
1156 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1157 expout->language_defn = current_language;
c13c43fd 1158 make_cleanup (free_current_contents, &expout);
c906108c
SS
1159
1160 if (current_language->la_parser ())
1161 current_language->la_error (NULL);
1162
1163 discard_cleanups (old_chain);
1164
1165 /* Record the actual number of expression elements, and then
1166 reallocate the expression memory so that we free up any
1167 excess elements. */
1168
1169 expout->nelts = expout_ptr;
1170 expout = (struct expression *)
1171 xrealloc ((char *) expout,
1172 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1173
1174 /* Convert expression from postfix form as generated by yacc
1175 parser, to a prefix form. */
1176
c906108c 1177 if (expressiondebug)
9846de1b 1178 dump_prefix_expression (expout, gdb_stdlog,
c906108c 1179 "before conversion to prefix form");
c906108c
SS
1180
1181 prefixify_expression (expout);
1182
c906108c 1183 if (expressiondebug)
9846de1b 1184 dump_postfix_expression (expout, gdb_stdlog,
c906108c 1185 "after conversion to prefix form");
c906108c
SS
1186
1187 *stringptr = lexptr;
1188 return expout;
1189}
1190
1191/* Parse STRING as an expression, and complain if this fails
1192 to use up all of the contents of STRING. */
1193
1194struct expression *
fba45db2 1195parse_expression (char *string)
c906108c
SS
1196{
1197 register struct expression *exp;
1198 exp = parse_exp_1 (&string, 0, 0);
1199 if (*string)
1200 error ("Junk after end of expression.");
1201 return exp;
1202}
1203\f
1204/* Stuff for maintaining a stack of types. Currently just used by C, but
1205 probably useful for any language which declares its types "backwards". */
1206
47663de5
MS
1207static void
1208check_type_stack_depth (void)
c906108c
SS
1209{
1210 if (type_stack_depth == type_stack_size)
1211 {
1212 type_stack_size *= 2;
1213 type_stack = (union type_stack_elt *)
1214 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1215 }
47663de5
MS
1216}
1217
1218void
1219push_type (enum type_pieces tp)
1220{
1221 check_type_stack_depth ();
c906108c
SS
1222 type_stack[type_stack_depth++].piece = tp;
1223}
1224
1225void
fba45db2 1226push_type_int (int n)
c906108c 1227{
47663de5 1228 check_type_stack_depth ();
c906108c
SS
1229 type_stack[type_stack_depth++].int_val = n;
1230}
1231
47663de5
MS
1232void
1233push_type_address_space (char *string)
1234{
1235 push_type_int (address_space_name_to_int (string));
1236}
1237
c5aa993b 1238enum type_pieces
fba45db2 1239pop_type (void)
c906108c
SS
1240{
1241 if (type_stack_depth)
1242 return type_stack[--type_stack_depth].piece;
1243 return tp_end;
1244}
1245
1246int
fba45db2 1247pop_type_int (void)
c906108c
SS
1248{
1249 if (type_stack_depth)
1250 return type_stack[--type_stack_depth].int_val;
1251 /* "Can't happen". */
1252 return 0;
1253}
1254
1255/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1256 as modified by all the stuff on the stack. */
1257struct type *
fba45db2 1258follow_types (struct type *follow_type)
c906108c
SS
1259{
1260 int done = 0;
2e2394a0
MS
1261 int make_const = 0;
1262 int make_volatile = 0;
47663de5 1263 int make_addr_space = 0;
c906108c
SS
1264 int array_size;
1265 struct type *range_type;
1266
1267 while (!done)
1268 switch (pop_type ())
1269 {
1270 case tp_end:
1271 done = 1;
2e2394a0
MS
1272 if (make_const)
1273 follow_type = make_cv_type (make_const,
1274 TYPE_VOLATILE (follow_type),
1275 follow_type, 0);
1276 if (make_volatile)
1277 follow_type = make_cv_type (TYPE_CONST (follow_type),
1278 make_volatile,
1279 follow_type, 0);
47663de5
MS
1280 if (make_addr_space)
1281 follow_type = make_type_with_address_space (follow_type,
1282 make_addr_space);
1283 make_const = make_volatile = 0;
1284 make_addr_space = 0;
2e2394a0
MS
1285 break;
1286 case tp_const:
1287 make_const = 1;
1288 break;
1289 case tp_volatile:
1290 make_volatile = 1;
c906108c 1291 break;
47663de5
MS
1292 case tp_space_identifier:
1293 make_addr_space = pop_type_int ();
1294 break;
c906108c
SS
1295 case tp_pointer:
1296 follow_type = lookup_pointer_type (follow_type);
2e2394a0
MS
1297 if (make_const)
1298 follow_type = make_cv_type (make_const,
1299 TYPE_VOLATILE (follow_type),
1300 follow_type, 0);
1301 if (make_volatile)
1302 follow_type = make_cv_type (TYPE_CONST (follow_type),
1303 make_volatile,
1304 follow_type, 0);
47663de5
MS
1305 if (make_addr_space)
1306 follow_type = make_type_with_address_space (follow_type,
1307 make_addr_space);
2e2394a0 1308 make_const = make_volatile = 0;
47663de5 1309 make_addr_space = 0;
c906108c
SS
1310 break;
1311 case tp_reference:
1312 follow_type = lookup_reference_type (follow_type);
2e2394a0 1313 if (make_const)
47663de5
MS
1314 follow_type = make_cv_type (make_const,
1315 TYPE_VOLATILE (follow_type),
1316 follow_type, 0);
2e2394a0 1317 if (make_volatile)
47663de5
MS
1318 follow_type = make_cv_type (TYPE_CONST (follow_type),
1319 make_volatile,
1320 follow_type, 0);
1321 if (make_addr_space)
1322 follow_type = make_type_with_address_space (follow_type,
1323 make_addr_space);
2e2394a0 1324 make_const = make_volatile = 0;
47663de5 1325 make_addr_space = 0;
c906108c
SS
1326 break;
1327 case tp_array:
1328 array_size = pop_type_int ();
1329 /* FIXME-type-allocation: need a way to free this type when we are
1330 done with it. */
1331 range_type =
1332 create_range_type ((struct type *) NULL,
1333 builtin_type_int, 0,
1334 array_size >= 0 ? array_size - 1 : 0);
1335 follow_type =
1336 create_array_type ((struct type *) NULL,
1337 follow_type, range_type);
1338 if (array_size < 0)
c5aa993b 1339 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
c906108c
SS
1340 = BOUND_CANNOT_BE_DETERMINED;
1341 break;
1342 case tp_function:
1343 /* FIXME-type-allocation: need a way to free this type when we are
1344 done with it. */
1345 follow_type = lookup_function_type (follow_type);
1346 break;
1347 }
1348 return follow_type;
1349}
1350\f
a14ed312 1351static void build_parse (void);
ac9a91a7 1352static void
fba45db2 1353build_parse (void)
c906108c 1354{
cce74817
JM
1355 int i;
1356
c906108c
SS
1357 msym_text_symbol_type =
1358 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1359 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1360 msym_data_symbol_type =
1361 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1362 "<data variable, no debug info>", NULL);
1363 msym_unknown_symbol_type =
1364 init_type (TYPE_CODE_INT, 1, 0,
1365 "<variable (not text or data), no debug info>",
1366 NULL);
ac9a91a7
JM
1367}
1368
f461f5cf
PM
1369/* This function avoids direct calls to fprintf
1370 in the parser generated debug code. */
1371void
1372parser_fprintf (FILE *x, const char *y, ...)
1373{
1374 va_list args;
1375 va_start (args, y);
1376 if (x == stderr)
1377 vfprintf_unfiltered (gdb_stderr, y, args);
1378 else
1379 {
1380 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1381 vfprintf_unfiltered (gdb_stderr, y, args);
1382 }
1383 va_end (args);
1384}
1385
ac9a91a7 1386void
fba45db2 1387_initialize_parse (void)
ac9a91a7
JM
1388{
1389 type_stack_size = 80;
1390 type_stack_depth = 0;
1391 type_stack = (union type_stack_elt *)
1392 xmalloc (type_stack_size * sizeof (*type_stack));
1393
1394 build_parse ();
c906108c 1395
0f71a2f6
JM
1396 /* FIXME - For the moment, handle types by swapping them in and out.
1397 Should be using the per-architecture data-pointer and a large
1398 struct. */
1399 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1400 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1401 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1402
0f71a2f6
JM
1403 register_gdbarch_swap (NULL, 0, build_parse);
1404
c906108c 1405 add_show_from_set (
5d161b24 1406 add_set_cmd ("expression", class_maintenance, var_zinteger,
c5aa993b
JM
1407 (char *) &expressiondebug,
1408 "Set expression debugging.\n\
c906108c 1409When non-zero, the internal representation of expressions will be printed.",
5d161b24
DB
1410 &setdebuglist),
1411 &showdebuglist);
c906108c 1412}
This page took 0.317042 seconds and 4 git commands to generate.