* config/m88k/{tm-delta88.h,tm-delta88v4.h}, m88k-tdep.c:
[deliverable/binutils-gdb.git] / gdb / parse.c
CommitLineData
3d6b6a90 1/* Parse expressions for GDB.
d92f3f08 2 Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3d6b6a90
JG
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* Parse an expression from text in a string,
23 and return the result as a struct expression pointer.
24 That structure contains arithmetic operations in reverse polish,
25 with constants represented by operations that are followed by special data.
26 See expression.h for the details of the format.
27 What is important here is that it can be built up sequentially
28 during the process of parsing; the lower levels of the tree always
29 come first in the result. */
30
3d6b6a90 31#include "defs.h"
3d6b6a90 32#include "symtab.h"
1ab3bf1b 33#include "gdbtypes.h"
3d6b6a90
JG
34#include "frame.h"
35#include "expression.h"
36#include "value.h"
37#include "command.h"
38#include "language.h"
39#include "parser-defs.h"
40
9da75ad3
FF
41static void
42free_funcalls PARAMS ((void));
43
1ab3bf1b
JG
44static void
45prefixify_expression PARAMS ((struct expression *));
46
47static int
48length_of_subexp PARAMS ((struct expression *, int));
49
50static void
51prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
52
9da75ad3
FF
53/* Data structure for saving values of arglist_len for function calls whose
54 arguments contain other function calls. */
55
56struct funcall
57 {
58 struct funcall *next;
59 int arglist_len;
60 };
61
62static struct funcall *funcall_chain;
63
3d6b6a90
JG
64/* Assign machine-independent names to certain registers
65 (unless overridden by the REGISTER_NAMES table) */
66
a332e593
SC
67#ifdef NO_STD_REGS
68unsigned num_std_regs = 0;
69struct std_regs std_regs[1];
70#else
3d6b6a90 71struct std_regs std_regs[] = {
a332e593 72
3d6b6a90
JG
73#ifdef PC_REGNUM
74 { "pc", PC_REGNUM },
75#endif
76#ifdef FP_REGNUM
77 { "fp", FP_REGNUM },
78#endif
79#ifdef SP_REGNUM
80 { "sp", SP_REGNUM },
81#endif
82#ifdef PS_REGNUM
83 { "ps", PS_REGNUM },
84#endif
a332e593 85
3d6b6a90
JG
86};
87
88unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
89
a332e593
SC
90#endif
91
3d6b6a90
JG
92
93/* Begin counting arguments for a function call,
94 saving the data about any containing call. */
95
96void
97start_arglist ()
98{
9da75ad3 99 register struct funcall *new;
3d6b6a90 100
9da75ad3 101 new = (struct funcall *) xmalloc (sizeof (struct funcall));
3d6b6a90
JG
102 new->next = funcall_chain;
103 new->arglist_len = arglist_len;
104 arglist_len = 0;
105 funcall_chain = new;
106}
107
108/* Return the number of arguments in a function call just terminated,
109 and restore the data for the containing function call. */
110
111int
112end_arglist ()
113{
114 register int val = arglist_len;
115 register struct funcall *call = funcall_chain;
116 funcall_chain = call->next;
117 arglist_len = call->arglist_len;
be772100 118 free ((PTR)call);
3d6b6a90
JG
119 return val;
120}
121
122/* Free everything in the funcall chain.
123 Used when there is an error inside parsing. */
124
9da75ad3 125static void
3d6b6a90
JG
126free_funcalls ()
127{
128 register struct funcall *call, *next;
129
130 for (call = funcall_chain; call; call = next)
131 {
132 next = call->next;
be772100 133 free ((PTR)call);
3d6b6a90
JG
134 }
135}
136\f
137/* This page contains the functions for adding data to the struct expression
138 being constructed. */
139
140/* Add one element to the end of the expression. */
141
142/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
143 a register through here */
144
145void
146write_exp_elt (expelt)
147 union exp_element expelt;
148{
149 if (expout_ptr >= expout_size)
150 {
151 expout_size *= 2;
81028ab0
FF
152 expout = (struct expression *)
153 xrealloc ((char *) expout, sizeof (struct expression)
154 + EXP_ELEM_TO_BYTES (expout_size));
3d6b6a90
JG
155 }
156 expout->elts[expout_ptr++] = expelt;
157}
158
159void
160write_exp_elt_opcode (expelt)
161 enum exp_opcode expelt;
162{
163 union exp_element tmp;
164
165 tmp.opcode = expelt;
166
167 write_exp_elt (tmp);
168}
169
170void
171write_exp_elt_sym (expelt)
172 struct symbol *expelt;
173{
174 union exp_element tmp;
175
176 tmp.symbol = expelt;
177
178 write_exp_elt (tmp);
179}
180
479fdd26
JK
181void
182write_exp_elt_block (b)
183 struct block *b;
184{
185 union exp_element tmp;
186 tmp.block = b;
187 write_exp_elt (tmp);
188}
189
3d6b6a90
JG
190void
191write_exp_elt_longcst (expelt)
192 LONGEST expelt;
193{
194 union exp_element tmp;
195
196 tmp.longconst = expelt;
197
198 write_exp_elt (tmp);
199}
200
201void
202write_exp_elt_dblcst (expelt)
203 double expelt;
204{
205 union exp_element tmp;
206
207 tmp.doubleconst = expelt;
208
209 write_exp_elt (tmp);
210}
211
212void
213write_exp_elt_type (expelt)
214 struct type *expelt;
215{
216 union exp_element tmp;
217
218 tmp.type = expelt;
219
220 write_exp_elt (tmp);
221}
222
223void
224write_exp_elt_intern (expelt)
225 struct internalvar *expelt;
226{
227 union exp_element tmp;
228
229 tmp.internalvar = expelt;
230
231 write_exp_elt (tmp);
232}
233
234/* Add a string constant to the end of the expression.
d1065385
FF
235
236 String constants are stored by first writing an expression element
237 that contains the length of the string, then stuffing the string
238 constant itself into however many expression elements are needed
239 to hold it, and then writing another expression element that contains
240 the length of the string. I.E. an expression element at each end of
241 the string records the string length, so you can skip over the
242 expression elements containing the actual string bytes from either
243 end of the string. Note that this also allows gdb to handle
244 strings with embedded null bytes, as is required for some languages.
245
246 Don't be fooled by the fact that the string is null byte terminated,
247 this is strictly for the convenience of debugging gdb itself. Gdb
248 Gdb does not depend up the string being null terminated, since the
249 actual length is recorded in expression elements at each end of the
250 string. The null byte is taken into consideration when computing how
251 many expression elements are required to hold the string constant, of
252 course. */
253
3d6b6a90
JG
254
255void
256write_exp_string (str)
257 struct stoken str;
258{
259 register int len = str.length;
d1065385
FF
260 register int lenelt;
261 register char *strdata;
3d6b6a90 262
d1065385
FF
263 /* Compute the number of expression elements required to hold the string
264 (including a null byte terminator), along with one expression element
265 at each end to record the actual string length (not including the
266 null byte terminator). */
3d6b6a90 267
81028ab0 268 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
d1065385
FF
269
270 /* Ensure that we have enough available expression elements to store
271 everything. */
272
273 if ((expout_ptr + lenelt) >= expout_size)
3d6b6a90 274 {
d1065385 275 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
3d6b6a90 276 expout = (struct expression *)
1ab3bf1b 277 xrealloc ((char *) expout, (sizeof (struct expression)
81028ab0 278 + EXP_ELEM_TO_BYTES (expout_size)));
3d6b6a90 279 }
d1065385
FF
280
281 /* Write the leading length expression element (which advances the current
282 expression element index), then write the string constant followed by a
283 terminating null byte, and then write the trailing length expression
284 element. */
285
286 write_exp_elt_longcst ((LONGEST) len);
287 strdata = (char *) &expout->elts[expout_ptr];
288 memcpy (strdata, str.ptr, len);
289 *(strdata + len) = '\0';
290 expout_ptr += lenelt - 2;
3d6b6a90
JG
291 write_exp_elt_longcst ((LONGEST) len);
292}
81028ab0
FF
293
294/* Add a bitstring constant to the end of the expression.
295
296 Bitstring constants are stored by first writing an expression element
297 that contains the length of the bitstring (in bits), then stuffing the
298 bitstring constant itself into however many expression elements are
299 needed to hold it, and then writing another expression element that
300 contains the length of the bitstring. I.E. an expression element at
301 each end of the bitstring records the bitstring length, so you can skip
302 over the expression elements containing the actual bitstring bytes from
303 either end of the bitstring. */
304
305void
306write_exp_bitstring (str)
307 struct stoken str;
308{
309 register int bits = str.length; /* length in bits */
310 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
311 register int lenelt;
312 register char *strdata;
313
314 /* Compute the number of expression elements required to hold the bitstring,
315 along with one expression element at each end to record the actual
316 bitstring length in bits. */
317
318 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
319
320 /* Ensure that we have enough available expression elements to store
321 everything. */
322
323 if ((expout_ptr + lenelt) >= expout_size)
324 {
325 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
326 expout = (struct expression *)
327 xrealloc ((char *) expout, (sizeof (struct expression)
328 + EXP_ELEM_TO_BYTES (expout_size)));
329 }
330
331 /* Write the leading length expression element (which advances the current
332 expression element index), then write the bitstring constant, and then
333 write the trailing length expression element. */
334
335 write_exp_elt_longcst ((LONGEST) bits);
336 strdata = (char *) &expout->elts[expout_ptr];
337 memcpy (strdata, str.ptr, len);
338 expout_ptr += lenelt - 2;
339 write_exp_elt_longcst ((LONGEST) bits);
340}
abe28b92 341
d92f3f08
JK
342/* Type that corresponds to the address given in a minimal symbol. */
343
344static struct type *msymbol_addr_type;
345
abe28b92
JK
346/* Add the appropriate elements for a minimal symbol to the end of
347 the expression. */
348
349void
350write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
351 struct minimal_symbol *msymbol;
352 struct type *text_symbol_type;
353 struct type *data_symbol_type;
354{
355 write_exp_elt_opcode (OP_LONG);
d92f3f08 356 write_exp_elt_type (msymbol_addr_type);
abe28b92
JK
357 write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
358 write_exp_elt_opcode (OP_LONG);
359
360 write_exp_elt_opcode (UNOP_MEMVAL);
361 switch (msymbol -> type)
362 {
363 case mst_text:
364 case mst_file_text:
365 write_exp_elt_type (text_symbol_type);
366 break;
367
368 case mst_data:
369 case mst_file_data:
370 case mst_bss:
371 case mst_file_bss:
372 write_exp_elt_type (data_symbol_type);
373 break;
374
375 default:
376 write_exp_elt_type (builtin_type_char);
377 break;
378 }
379 write_exp_elt_opcode (UNOP_MEMVAL);
380}
3d6b6a90
JG
381\f
382/* Return a null-terminated temporary copy of the name
383 of a string token. */
384
385char *
386copy_name (token)
387 struct stoken token;
388{
4ed3a9ea 389 memcpy (namecopy, token.ptr, token.length);
3d6b6a90
JG
390 namecopy[token.length] = 0;
391 return namecopy;
392}
393\f
394/* Reverse an expression from suffix form (in which it is constructed)
395 to prefix form (in which we can conveniently print or execute it). */
396
1ab3bf1b 397static void
3d6b6a90
JG
398prefixify_expression (expr)
399 register struct expression *expr;
400{
81028ab0
FF
401 register int len =
402 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
3d6b6a90
JG
403 register struct expression *temp;
404 register int inpos = expr->nelts, outpos = 0;
405
406 temp = (struct expression *) alloca (len);
407
408 /* Copy the original expression into temp. */
4ed3a9ea 409 memcpy (temp, expr, len);
3d6b6a90
JG
410
411 prefixify_subexp (temp, expr, inpos, outpos);
412}
413
414/* Return the number of exp_elements in the subexpression of EXPR
415 whose last exp_element is at index ENDPOS - 1 in EXPR. */
416
1ab3bf1b 417static int
3d6b6a90
JG
418length_of_subexp (expr, endpos)
419 register struct expression *expr;
420 register int endpos;
421{
422 register int oplen = 1;
423 register int args = 0;
424 register int i;
425
d1065385 426 if (endpos < 1)
3d6b6a90
JG
427 error ("?error in length_of_subexp");
428
429 i = (int) expr->elts[endpos - 1].opcode;
430
431 switch (i)
432 {
433 /* C++ */
434 case OP_SCOPE:
81028ab0
FF
435 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
436 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
3d6b6a90
JG
437 break;
438
439 case OP_LONG:
440 case OP_DOUBLE:
479fdd26 441 case OP_VAR_VALUE:
3d6b6a90
JG
442 oplen = 4;
443 break;
444
445 case OP_TYPE:
446 case OP_BOOL:
3d6b6a90
JG
447 case OP_LAST:
448 case OP_REGISTER:
449 case OP_INTERNALVAR:
450 oplen = 3;
451 break;
452
453 case OP_FUNCALL:
454 oplen = 3;
d1065385 455 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
3d6b6a90
JG
456 break;
457
458 case UNOP_MAX:
459 case UNOP_MIN:
460 oplen = 3;
3d6b6a90
JG
461 break;
462
463 case BINOP_VAL:
464 case UNOP_CAST:
465 case UNOP_MEMVAL:
466 oplen = 3;
467 args = 1;
468 break;
469
470 case UNOP_ABS:
471 case UNOP_CAP:
472 case UNOP_CHR:
473 case UNOP_FLOAT:
474 case UNOP_HIGH:
475 case UNOP_ODD:
476 case UNOP_ORD:
477 case UNOP_TRUNC:
478 oplen = 1;
479 args = 1;
480 break;
481
2640f7e1
JG
482 case STRUCTOP_STRUCT:
483 case STRUCTOP_PTR:
484 args = 1;
d1065385 485 /* fall through */
3d6b6a90
JG
486 case OP_M2_STRING:
487 case OP_STRING:
81028ab0
FF
488 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
489 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
490 break;
491
492 case OP_BITSTRING:
493 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
494 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
495 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
3d6b6a90
JG
496 break;
497
c4413e2c
FF
498 case OP_ARRAY:
499 oplen = 4;
500 args = longest_to_int (expr->elts[endpos - 2].longconst);
501 args -= longest_to_int (expr->elts[endpos - 3].longconst);
502 args += 1;
503 break;
504
3d6b6a90
JG
505 case TERNOP_COND:
506 args = 3;
507 break;
508
509 /* Modula-2 */
54bbbfb4 510 case MULTI_SUBSCRIPT:
3d6b6a90 511 oplen=3;
d1065385 512 args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
3d6b6a90
JG
513 break;
514
515 case BINOP_ASSIGN_MODIFY:
516 oplen = 3;
517 args = 2;
518 break;
519
520 /* C++ */
521 case OP_THIS:
522 oplen = 2;
523 break;
524
525 default:
526 args = 1 + (i < (int) BINOP_END);
527 }
528
529 while (args > 0)
530 {
531 oplen += length_of_subexp (expr, endpos - oplen);
532 args--;
533 }
534
535 return oplen;
536}
537
538/* Copy the subexpression ending just before index INEND in INEXPR
539 into OUTEXPR, starting at index OUTBEG.
540 In the process, convert it from suffix to prefix form. */
541
542static void
543prefixify_subexp (inexpr, outexpr, inend, outbeg)
544 register struct expression *inexpr;
545 struct expression *outexpr;
546 register int inend;
547 int outbeg;
548{
549 register int oplen = 1;
550 register int args = 0;
551 register int i;
552 int *arglens;
553 enum exp_opcode opcode;
554
555 /* Compute how long the last operation is (in OPLEN),
556 and also how many preceding subexpressions serve as
557 arguments for it (in ARGS). */
558
559 opcode = inexpr->elts[inend - 1].opcode;
560 switch (opcode)
561 {
562 /* C++ */
563 case OP_SCOPE:
81028ab0
FF
564 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
565 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
3d6b6a90
JG
566 break;
567
568 case OP_LONG:
569 case OP_DOUBLE:
479fdd26 570 case OP_VAR_VALUE:
3d6b6a90
JG
571 oplen = 4;
572 break;
573
574 case OP_TYPE:
575 case OP_BOOL:
3d6b6a90
JG
576 case OP_LAST:
577 case OP_REGISTER:
578 case OP_INTERNALVAR:
579 oplen = 3;
580 break;
581
582 case OP_FUNCALL:
583 oplen = 3;
d1065385 584 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
3d6b6a90
JG
585 break;
586
587 case UNOP_MIN:
588 case UNOP_MAX:
589 oplen = 3;
3d6b6a90
JG
590 break;
591
592 case UNOP_CAST:
593 case UNOP_MEMVAL:
594 oplen = 3;
595 args = 1;
596 break;
597
598 case UNOP_ABS:
599 case UNOP_CAP:
600 case UNOP_CHR:
601 case UNOP_FLOAT:
602 case UNOP_HIGH:
603 case UNOP_ODD:
604 case UNOP_ORD:
605 case UNOP_TRUNC:
606 oplen=1;
607 args=1;
608 break;
609
61c1724b 610 case STRUCTOP_STRUCT:
2640f7e1
JG
611 case STRUCTOP_PTR:
612 args = 1;
d1065385 613 /* fall through */
3d6b6a90
JG
614 case OP_M2_STRING:
615 case OP_STRING:
81028ab0
FF
616 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
617 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
618 break;
619
620 case OP_BITSTRING:
621 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
622 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
623 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
3d6b6a90
JG
624 break;
625
c4413e2c
FF
626 case OP_ARRAY:
627 oplen = 4;
628 args = longest_to_int (inexpr->elts[inend - 2].longconst);
629 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
630 args += 1;
631 break;
632
3d6b6a90
JG
633 case TERNOP_COND:
634 args = 3;
635 break;
636
637 case BINOP_ASSIGN_MODIFY:
638 oplen = 3;
639 args = 2;
640 break;
641
642 /* Modula-2 */
54bbbfb4 643 case MULTI_SUBSCRIPT:
3d6b6a90 644 oplen=3;
d1065385 645 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
3d6b6a90
JG
646 break;
647
648 /* C++ */
649 case OP_THIS:
650 oplen = 2;
651 break;
652
653 default:
654 args = 1 + ((int) opcode < (int) BINOP_END);
655 }
656
657 /* Copy the final operator itself, from the end of the input
658 to the beginning of the output. */
659 inend -= oplen;
4ed3a9ea 660 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
81028ab0 661 EXP_ELEM_TO_BYTES (oplen));
3d6b6a90
JG
662 outbeg += oplen;
663
664 /* Find the lengths of the arg subexpressions. */
665 arglens = (int *) alloca (args * sizeof (int));
666 for (i = args - 1; i >= 0; i--)
667 {
668 oplen = length_of_subexp (inexpr, inend);
669 arglens[i] = oplen;
670 inend -= oplen;
671 }
672
673 /* Now copy each subexpression, preserving the order of
674 the subexpressions, but prefixifying each one.
675 In this loop, inend starts at the beginning of
676 the expression this level is working on
677 and marches forward over the arguments.
678 outbeg does similarly in the output. */
679 for (i = 0; i < args; i++)
680 {
681 oplen = arglens[i];
682 inend += oplen;
683 prefixify_subexp (inexpr, outexpr, inend, outbeg);
684 outbeg += oplen;
685 }
686}
687\f
688/* This page contains the two entry points to this file. */
689
690/* Read an expression from the string *STRINGPTR points to,
691 parse it, and return a pointer to a struct expression that we malloc.
692 Use block BLOCK as the lexical context for variable names;
693 if BLOCK is zero, use the block of the selected stack frame.
694 Meanwhile, advance *STRINGPTR to point after the expression,
695 at the first nonwhite character that is not part of the expression
696 (possibly a null character).
697
698 If COMMA is nonzero, stop if a comma is reached. */
699
700struct expression *
701parse_exp_1 (stringptr, block, comma)
702 char **stringptr;
703 struct block *block;
704 int comma;
705{
706 struct cleanup *old_chain;
707
708 lexptr = *stringptr;
709
710 paren_depth = 0;
711 type_stack_depth = 0;
712
713 comma_terminates = comma;
714
715 if (lexptr == 0 || *lexptr == 0)
716 error_no_arg ("expression to compute");
717
718 old_chain = make_cleanup (free_funcalls, 0);
719 funcall_chain = 0;
720
721 expression_context_block = block ? block : get_selected_block ();
722
723 namecopy = (char *) alloca (strlen (lexptr) + 1);
724 expout_size = 10;
725 expout_ptr = 0;
726 expout = (struct expression *)
81028ab0 727 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
3d6b6a90
JG
728 expout->language_defn = current_language;
729 make_cleanup (free_current_contents, &expout);
730
731 if (current_language->la_parser ())
732 current_language->la_error (NULL);
733
734 discard_cleanups (old_chain);
54bbbfb4
FF
735
736 /* Record the actual number of expression elements, and then
737 reallocate the expression memory so that we free up any
738 excess elements. */
739
3d6b6a90
JG
740 expout->nelts = expout_ptr;
741 expout = (struct expression *)
1ab3bf1b 742 xrealloc ((char *) expout,
81028ab0 743 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
54bbbfb4
FF
744
745 /* Convert expression from postfix form as generated by yacc
746 parser, to a prefix form. */
747
199b2450 748 DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
3d6b6a90 749 prefixify_expression (expout);
199b2450 750 DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
54bbbfb4 751
3d6b6a90
JG
752 *stringptr = lexptr;
753 return expout;
754}
755
756/* Parse STRING as an expression, and complain if this fails
757 to use up all of the contents of STRING. */
758
759struct expression *
760parse_expression (string)
761 char *string;
762{
763 register struct expression *exp;
764 exp = parse_exp_1 (&string, 0, 0);
765 if (*string)
766 error ("Junk after end of expression.");
767 return exp;
768}
f843c95f
JK
769\f
770/* Stuff for maintaining a stack of types. Currently just used by C, but
771 probably useful for any language which declares its types "backwards". */
3d6b6a90
JG
772
773void
774push_type (tp)
775 enum type_pieces tp;
776{
777 if (type_stack_depth == type_stack_size)
778 {
779 type_stack_size *= 2;
780 type_stack = (union type_stack_elt *)
1ab3bf1b 781 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
3d6b6a90
JG
782 }
783 type_stack[type_stack_depth++].piece = tp;
784}
785
786void
787push_type_int (n)
788 int n;
789{
790 if (type_stack_depth == type_stack_size)
791 {
792 type_stack_size *= 2;
793 type_stack = (union type_stack_elt *)
1ab3bf1b 794 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
3d6b6a90
JG
795 }
796 type_stack[type_stack_depth++].int_val = n;
797}
798
799enum type_pieces
800pop_type ()
801{
802 if (type_stack_depth)
803 return type_stack[--type_stack_depth].piece;
804 return tp_end;
805}
806
807int
808pop_type_int ()
809{
810 if (type_stack_depth)
811 return type_stack[--type_stack_depth].int_val;
812 /* "Can't happen". */
813 return 0;
814}
815
f843c95f
JK
816/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
817 as modified by all the stuff on the stack. */
818struct type *
819follow_types (follow_type)
820 struct type *follow_type;
821{
822 int done = 0;
823 int array_size;
824 struct type *range_type;
825
826 while (!done)
827 switch (pop_type ())
828 {
829 case tp_end:
830 done = 1;
831 break;
832 case tp_pointer:
833 follow_type = lookup_pointer_type (follow_type);
834 break;
835 case tp_reference:
836 follow_type = lookup_reference_type (follow_type);
837 break;
838 case tp_array:
839 array_size = pop_type_int ();
840 if (array_size != -1)
841 {
842 range_type =
843 create_range_type ((struct type *) NULL,
844 builtin_type_int, 0,
845 array_size - 1);
846 follow_type =
847 create_array_type ((struct type *) NULL,
848 follow_type, range_type);
849 }
850 else
851 follow_type = lookup_pointer_type (follow_type);
852 break;
853 case tp_function:
854 follow_type = lookup_function_type (follow_type);
855 break;
856 }
857 return follow_type;
858}
859\f
3d6b6a90
JG
860void
861_initialize_parse ()
862{
863 type_stack_size = 80;
864 type_stack_depth = 0;
865 type_stack = (union type_stack_elt *)
866 xmalloc (type_stack_size * sizeof (*type_stack));
d92f3f08
JK
867
868 /* We don't worry too much about what the name of this type is
869 because the name should rarely appear in output to the user. */
870
871 msymbol_addr_type =
872 init_type (TYPE_CODE_PTR, TARGET_PTR_BIT / HOST_CHAR_BIT, 0,
873 "void *", NULL);
3d6b6a90 874}
This page took 0.169493 seconds and 4 git commands to generate.