* config/tc-mn10300.c (md_assemble): Copy size to real_size before
[deliverable/binutils-gdb.git] / gdb / parse.c
CommitLineData
c906108c 1/* Parse expressions for GDB.
cce74817 2 Copyright (C) 1986, 89, 90, 91, 94, 98, 1999 Free Software Foundation, Inc.
c906108c
SS
3 Modified from expread.y by the Department of Computer Science at the
4 State University of New York at Buffalo, 1991.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
c5aa993b 31
cce74817
JM
32#include <ctype.h>
33
c906108c
SS
34#include "defs.h"
35#include "gdb_string.h"
c906108c
SS
36#include "symtab.h"
37#include "gdbtypes.h"
38#include "frame.h"
39#include "expression.h"
40#include "value.h"
41#include "command.h"
42#include "language.h"
43#include "parser-defs.h"
44#include "gdbcmd.h"
c5aa993b 45#include "symfile.h" /* for overlay functions */
2df3850c
JM
46\f
47/* Symbols which architectures can redefine. */
48
49/* Some systems have routines whose names start with `$'. Giving this
50 macro a non-zero value tells GDB's expression parser to check for
51 such routines when parsing tokens that begin with `$'.
52
53 On HP-UX, certain system routines (millicode) have names beginning
54 with `$' or `$$'. For example, `$$dyncall' is a millicode routine
55 that handles inter-space procedure calls on PA-RISC. */
56#ifndef SYMBOLS_CAN_START_WITH_DOLLAR
57#define SYMBOLS_CAN_START_WITH_DOLLAR (0)
58#endif
59
60
c906108c
SS
61\f
62/* Global variables declared in parser-defs.h (and commented there). */
63struct expression *expout;
64int expout_size;
65int expout_ptr;
66struct block *expression_context_block;
67struct block *innermost_block;
68int arglist_len;
69union type_stack_elt *type_stack;
70int type_stack_depth, type_stack_size;
71char *lexptr;
72char *namecopy;
73int paren_depth;
74int comma_terminates;
75\f
c906108c 76static int expressiondebug = 0;
c906108c
SS
77
78extern int hp_som_som_object_present;
79
74b7792f 80static void free_funcalls (void *ignore);
c906108c
SS
81
82static void
83prefixify_expression PARAMS ((struct expression *));
84
85static void
86prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
87
392a587b
JM
88void _initialize_parse PARAMS ((void));
89
c906108c
SS
90/* Data structure for saving values of arglist_len for function calls whose
91 arguments contain other function calls. */
92
93struct funcall
94 {
95 struct funcall *next;
96 int arglist_len;
97 };
98
99static struct funcall *funcall_chain;
100
101/* Assign machine-independent names to certain registers
102 (unless overridden by the REGISTER_NAMES table) */
103
c906108c 104unsigned num_std_regs = 0;
cce74817 105struct std_regs *std_regs;
c906108c
SS
106
107/* The generic method for targets to specify how their registers are
108 named. The mapping can be derived from three sources:
109 REGISTER_NAME; std_regs; or a target specific alias hook. */
110
111int
112target_map_name_to_register (str, len)
113 char *str;
114 int len;
115{
116 int i;
117
118 /* First try target specific aliases. We try these first because on some
119 systems standard names can be context dependent (eg. $pc on a
120 multiprocessor can be could be any of several PCs). */
121#ifdef REGISTER_NAME_ALIAS_HOOK
c5aa993b 122 i = REGISTER_NAME_ALIAS_HOOK (str, len);
c906108c
SS
123 if (i >= 0)
124 return i;
125#endif
126
127 /* Search architectural register name space. */
128 for (i = 0; i < NUM_REGS; i++)
129 if (REGISTER_NAME (i) && len == strlen (REGISTER_NAME (i))
130 && STREQN (str, REGISTER_NAME (i), len))
131 {
132 return i;
133 }
134
135 /* Try standard aliases */
136 for (i = 0; i < num_std_regs; i++)
137 if (std_regs[i].name && len == strlen (std_regs[i].name)
138 && STREQN (str, std_regs[i].name, len))
139 {
140 return std_regs[i].regnum;
141 }
142
143 return -1;
144}
145
146/* Begin counting arguments for a function call,
147 saving the data about any containing call. */
148
149void
150start_arglist ()
151{
152 register struct funcall *new;
153
154 new = (struct funcall *) xmalloc (sizeof (struct funcall));
155 new->next = funcall_chain;
156 new->arglist_len = arglist_len;
157 arglist_len = 0;
158 funcall_chain = new;
159}
160
161/* Return the number of arguments in a function call just terminated,
162 and restore the data for the containing function call. */
163
164int
165end_arglist ()
166{
167 register int val = arglist_len;
168 register struct funcall *call = funcall_chain;
169 funcall_chain = call->next;
170 arglist_len = call->arglist_len;
c5aa993b 171 free ((PTR) call);
c906108c
SS
172 return val;
173}
174
175/* Free everything in the funcall chain.
176 Used when there is an error inside parsing. */
177
178static void
74b7792f 179free_funcalls (void *ignore)
c906108c
SS
180{
181 register struct funcall *call, *next;
182
183 for (call = funcall_chain; call; call = next)
184 {
185 next = call->next;
c5aa993b 186 free ((PTR) call);
c906108c
SS
187 }
188}
189\f
190/* This page contains the functions for adding data to the struct expression
191 being constructed. */
192
193/* Add one element to the end of the expression. */
194
195/* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
196 a register through here */
197
198void
199write_exp_elt (expelt)
200 union exp_element expelt;
201{
202 if (expout_ptr >= expout_size)
203 {
204 expout_size *= 2;
205 expout = (struct expression *)
206 xrealloc ((char *) expout, sizeof (struct expression)
207 + EXP_ELEM_TO_BYTES (expout_size));
208 }
209 expout->elts[expout_ptr++] = expelt;
210}
211
212void
213write_exp_elt_opcode (expelt)
214 enum exp_opcode expelt;
215{
216 union exp_element tmp;
217
218 tmp.opcode = expelt;
219
220 write_exp_elt (tmp);
221}
222
223void
224write_exp_elt_sym (expelt)
225 struct symbol *expelt;
226{
227 union exp_element tmp;
228
229 tmp.symbol = expelt;
230
231 write_exp_elt (tmp);
232}
233
234void
235write_exp_elt_block (b)
236 struct block *b;
237{
238 union exp_element tmp;
239 tmp.block = b;
240 write_exp_elt (tmp);
241}
242
243void
244write_exp_elt_longcst (expelt)
245 LONGEST expelt;
246{
247 union exp_element tmp;
248
249 tmp.longconst = expelt;
250
251 write_exp_elt (tmp);
252}
253
254void
255write_exp_elt_dblcst (expelt)
256 DOUBLEST expelt;
257{
258 union exp_element tmp;
259
260 tmp.doubleconst = expelt;
261
262 write_exp_elt (tmp);
263}
264
265void
266write_exp_elt_type (expelt)
267 struct type *expelt;
268{
269 union exp_element tmp;
270
271 tmp.type = expelt;
272
273 write_exp_elt (tmp);
274}
275
276void
277write_exp_elt_intern (expelt)
278 struct internalvar *expelt;
279{
280 union exp_element tmp;
281
282 tmp.internalvar = expelt;
283
284 write_exp_elt (tmp);
285}
286
287/* Add a string constant to the end of the expression.
288
289 String constants are stored by first writing an expression element
290 that contains the length of the string, then stuffing the string
291 constant itself into however many expression elements are needed
292 to hold it, and then writing another expression element that contains
293 the length of the string. I.E. an expression element at each end of
294 the string records the string length, so you can skip over the
295 expression elements containing the actual string bytes from either
296 end of the string. Note that this also allows gdb to handle
297 strings with embedded null bytes, as is required for some languages.
298
299 Don't be fooled by the fact that the string is null byte terminated,
300 this is strictly for the convenience of debugging gdb itself. Gdb
301 Gdb does not depend up the string being null terminated, since the
302 actual length is recorded in expression elements at each end of the
303 string. The null byte is taken into consideration when computing how
304 many expression elements are required to hold the string constant, of
305 course. */
306
307
308void
309write_exp_string (str)
310 struct stoken str;
311{
312 register int len = str.length;
313 register int lenelt;
314 register char *strdata;
315
316 /* Compute the number of expression elements required to hold the string
317 (including a null byte terminator), along with one expression element
318 at each end to record the actual string length (not including the
319 null byte terminator). */
320
321 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
322
323 /* Ensure that we have enough available expression elements to store
324 everything. */
325
326 if ((expout_ptr + lenelt) >= expout_size)
327 {
328 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
329 expout = (struct expression *)
330 xrealloc ((char *) expout, (sizeof (struct expression)
331 + EXP_ELEM_TO_BYTES (expout_size)));
332 }
333
334 /* Write the leading length expression element (which advances the current
335 expression element index), then write the string constant followed by a
336 terminating null byte, and then write the trailing length expression
337 element. */
338
339 write_exp_elt_longcst ((LONGEST) len);
340 strdata = (char *) &expout->elts[expout_ptr];
341 memcpy (strdata, str.ptr, len);
342 *(strdata + len) = '\0';
343 expout_ptr += lenelt - 2;
344 write_exp_elt_longcst ((LONGEST) len);
345}
346
347/* Add a bitstring constant to the end of the expression.
348
349 Bitstring constants are stored by first writing an expression element
350 that contains the length of the bitstring (in bits), then stuffing the
351 bitstring constant itself into however many expression elements are
352 needed to hold it, and then writing another expression element that
353 contains the length of the bitstring. I.E. an expression element at
354 each end of the bitstring records the bitstring length, so you can skip
355 over the expression elements containing the actual bitstring bytes from
356 either end of the bitstring. */
357
358void
359write_exp_bitstring (str)
360 struct stoken str;
361{
362 register int bits = str.length; /* length in bits */
363 register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
364 register int lenelt;
365 register char *strdata;
366
367 /* Compute the number of expression elements required to hold the bitstring,
368 along with one expression element at each end to record the actual
369 bitstring length in bits. */
370
371 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
372
373 /* Ensure that we have enough available expression elements to store
374 everything. */
375
376 if ((expout_ptr + lenelt) >= expout_size)
377 {
378 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
379 expout = (struct expression *)
380 xrealloc ((char *) expout, (sizeof (struct expression)
381 + EXP_ELEM_TO_BYTES (expout_size)));
382 }
383
384 /* Write the leading length expression element (which advances the current
385 expression element index), then write the bitstring constant, and then
386 write the trailing length expression element. */
387
388 write_exp_elt_longcst ((LONGEST) bits);
389 strdata = (char *) &expout->elts[expout_ptr];
390 memcpy (strdata, str.ptr, len);
391 expout_ptr += lenelt - 2;
392 write_exp_elt_longcst ((LONGEST) bits);
393}
394
395/* Add the appropriate elements for a minimal symbol to the end of
396 the expression. The rationale behind passing in text_symbol_type and
397 data_symbol_type was so that Modula-2 could pass in WORD for
398 data_symbol_type. Perhaps it still is useful to have those types vary
399 based on the language, but they no longer have names like "int", so
400 the initial rationale is gone. */
401
402static struct type *msym_text_symbol_type;
403static struct type *msym_data_symbol_type;
404static struct type *msym_unknown_symbol_type;
405
406void
407write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
408 struct minimal_symbol *msymbol;
409 struct type *text_symbol_type;
410 struct type *data_symbol_type;
411{
412 CORE_ADDR addr;
413
414 write_exp_elt_opcode (OP_LONG);
415 write_exp_elt_type (lookup_pointer_type (builtin_type_void));
416
417 addr = SYMBOL_VALUE_ADDRESS (msymbol);
418 if (overlay_debugging)
419 addr = symbol_overlayed_address (addr, SYMBOL_BFD_SECTION (msymbol));
420 write_exp_elt_longcst ((LONGEST) addr);
c5aa993b 421
c906108c
SS
422 write_exp_elt_opcode (OP_LONG);
423
424 write_exp_elt_opcode (UNOP_MEMVAL);
c5aa993b 425 switch (msymbol->type)
c906108c
SS
426 {
427 case mst_text:
428 case mst_file_text:
429 case mst_solib_trampoline:
430 write_exp_elt_type (msym_text_symbol_type);
431 break;
432
433 case mst_data:
434 case mst_file_data:
435 case mst_bss:
436 case mst_file_bss:
437 write_exp_elt_type (msym_data_symbol_type);
438 break;
439
440 default:
441 write_exp_elt_type (msym_unknown_symbol_type);
442 break;
443 }
444 write_exp_elt_opcode (UNOP_MEMVAL);
445}
446\f
447/* Recognize tokens that start with '$'. These include:
448
c5aa993b
JM
449 $regname A native register name or a "standard
450 register name".
c906108c 451
c5aa993b
JM
452 $variable A convenience variable with a name chosen
453 by the user.
c906108c 454
c5aa993b
JM
455 $digits Value history with index <digits>, starting
456 from the first value which has index 1.
c906108c 457
c5aa993b
JM
458 $$digits Value history with index <digits> relative
459 to the last value. I.E. $$0 is the last
460 value, $$1 is the one previous to that, $$2
461 is the one previous to $$1, etc.
c906108c 462
c5aa993b 463 $ | $0 | $$0 The last value in the value history.
c906108c 464
c5aa993b
JM
465 $$ An abbreviation for the second to the last
466 value in the value history, I.E. $$1
c906108c 467
c5aa993b 468 */
c906108c
SS
469
470void
471write_dollar_variable (str)
472 struct stoken str;
473{
474 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
475 and $$digits (equivalent to $<-digits> if you could type that). */
476
c906108c
SS
477 int negate = 0;
478 int i = 1;
479 /* Double dollar means negate the number and add -1 as well.
480 Thus $$ alone means -1. */
481 if (str.length >= 2 && str.ptr[1] == '$')
482 {
483 negate = 1;
484 i = 2;
485 }
486 if (i == str.length)
487 {
488 /* Just dollars (one or two) */
c5aa993b 489 i = -negate;
c906108c
SS
490 goto handle_last;
491 }
492 /* Is the rest of the token digits? */
493 for (; i < str.length; i++)
494 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
495 break;
496 if (i == str.length)
497 {
498 i = atoi (str.ptr + 1 + negate);
499 if (negate)
c5aa993b 500 i = -i;
c906108c
SS
501 goto handle_last;
502 }
c5aa993b 503
c906108c
SS
504 /* Handle tokens that refer to machine registers:
505 $ followed by a register name. */
c5aa993b
JM
506 i = target_map_name_to_register (str.ptr + 1, str.length - 1);
507 if (i >= 0)
c906108c
SS
508 goto handle_register;
509
2df3850c 510 if (SYMBOLS_CAN_START_WITH_DOLLAR)
c906108c 511 {
2df3850c
JM
512 struct symbol *sym = NULL;
513 struct minimal_symbol *msym = NULL;
514
515 /* On HP-UX, certain system routines (millicode) have names beginning
516 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
517 calls on PA-RISC. Check for those, first. */
518
519 /* This code is not enabled on non HP-UX systems, since worst case
520 symbol table lookup performance is awful, to put it mildly. */
521
522 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
523 VAR_NAMESPACE, (int *) NULL, (struct symtab **) NULL);
524 if (sym)
525 {
526 write_exp_elt_opcode (OP_VAR_VALUE);
527 write_exp_elt_block (block_found); /* set by lookup_symbol */
528 write_exp_elt_sym (sym);
529 write_exp_elt_opcode (OP_VAR_VALUE);
530 return;
531 }
532 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
533 if (msym)
534 {
535 write_exp_msymbol (msym,
536 lookup_function_type (builtin_type_int),
537 builtin_type_int);
538 return;
539 }
c906108c 540 }
c5aa993b 541
c906108c
SS
542 /* Any other names starting in $ are debugger internal variables. */
543
544 write_exp_elt_opcode (OP_INTERNALVAR);
545 write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
c5aa993b 546 write_exp_elt_opcode (OP_INTERNALVAR);
c906108c 547 return;
c5aa993b 548handle_last:
c906108c
SS
549 write_exp_elt_opcode (OP_LAST);
550 write_exp_elt_longcst ((LONGEST) i);
551 write_exp_elt_opcode (OP_LAST);
552 return;
c5aa993b 553handle_register:
c906108c
SS
554 write_exp_elt_opcode (OP_REGISTER);
555 write_exp_elt_longcst (i);
c5aa993b 556 write_exp_elt_opcode (OP_REGISTER);
c906108c
SS
557 return;
558}
559
560
561/* Parse a string that is possibly a namespace / nested class
562 specification, i.e., something of the form A::B::C::x. Input
563 (NAME) is the entire string; LEN is the current valid length; the
564 output is a string, TOKEN, which points to the largest recognized
565 prefix which is a series of namespaces or classes. CLASS_PREFIX is
566 another output, which records whether a nested class spec was
567 recognized (= 1) or a fully qualified variable name was found (=
568 0). ARGPTR is side-effected (if non-NULL) to point to beyond the
569 string recognized and consumed by this routine.
570
571 The return value is a pointer to the symbol for the base class or
572 variable if found, or NULL if not found. Callers must check this
573 first -- if NULL, the outputs may not be correct.
574
575 This function is used c-exp.y. This is used specifically to get
576 around HP aCC (and possibly other compilers), which insists on
577 generating names with embedded colons for namespace or nested class
578 members.
579
580 (Argument LEN is currently unused. 1997-08-27)
581
582 Callers must free memory allocated for the output string TOKEN. */
583
c5aa993b
JM
584static const char coloncolon[2] =
585{':', ':'};
c906108c
SS
586
587struct symbol *
588parse_nested_classes_for_hpacc (name, len, token, class_prefix, argptr)
c5aa993b
JM
589 char *name;
590 int len;
591 char **token;
592 int *class_prefix;
593 char **argptr;
c906108c 594{
c5aa993b
JM
595 /* Comment below comes from decode_line_1 which has very similar
596 code, which is called for "break" command parsing. */
597
598 /* We have what looks like a class or namespace
c906108c
SS
599 scope specification (A::B), possibly with many
600 levels of namespaces or classes (A::B::C::D).
601
602 Some versions of the HP ANSI C++ compiler (as also possibly
603 other compilers) generate class/function/member names with
604 embedded double-colons if they are inside namespaces. To
605 handle this, we loop a few times, considering larger and
606 larger prefixes of the string as though they were single
607 symbols. So, if the initially supplied string is
608 A::B::C::D::foo, we have to look up "A", then "A::B",
609 then "A::B::C", then "A::B::C::D", and finally
610 "A::B::C::D::foo" as single, monolithic symbols, because
611 A, B, C or D may be namespaces.
612
613 Note that namespaces can nest only inside other
614 namespaces, and not inside classes. So we need only
615 consider *prefixes* of the string; there is no need to look up
616 "B::C" separately as a symbol in the previous example. */
617
c5aa993b
JM
618 register char *p;
619 char *start, *end;
620 char *prefix = NULL;
621 char *tmp;
622 struct symbol *sym_class = NULL;
623 struct symbol *sym_var = NULL;
624 struct type *t;
c906108c
SS
625 int prefix_len = 0;
626 int done = 0;
c5aa993b 627 char *q;
c906108c
SS
628
629 /* Check for HP-compiled executable -- in other cases
630 return NULL, and caller must default to standard GDB
631 behaviour. */
632
633 if (!hp_som_som_object_present)
634 return (struct symbol *) NULL;
635
636 p = name;
637
c5aa993b
JM
638 /* Skip over whitespace and possible global "::" */
639 while (*p && (*p == ' ' || *p == '\t'))
640 p++;
c906108c
SS
641 if (p[0] == ':' && p[1] == ':')
642 p += 2;
c5aa993b
JM
643 while (*p && (*p == ' ' || *p == '\t'))
644 p++;
645
c906108c
SS
646 while (1)
647 {
648 /* Get to the end of the next namespace or class spec. */
649 /* If we're looking at some non-token, fail immediately */
650 start = p;
651 if (!(isalpha (*p) || *p == '$' || *p == '_'))
c5aa993b 652 return (struct symbol *) NULL;
c906108c 653 p++;
c5aa993b
JM
654 while (*p && (isalnum (*p) || *p == '$' || *p == '_'))
655 p++;
656
657 if (*p == '<')
658 {
659 /* If we have the start of a template specification,
660 scan right ahead to its end */
661 q = find_template_name_end (p);
662 if (q)
663 p = q;
664 }
665
c906108c
SS
666 end = p;
667
c5aa993b
JM
668 /* Skip over "::" and whitespace for next time around */
669 while (*p && (*p == ' ' || *p == '\t'))
670 p++;
c906108c 671 if (p[0] == ':' && p[1] == ':')
c5aa993b
JM
672 p += 2;
673 while (*p && (*p == ' ' || *p == '\t'))
674 p++;
c906108c 675
c5aa993b 676 /* Done with tokens? */
c906108c 677 if (!*p || !(isalpha (*p) || *p == '$' || *p == '_'))
c5aa993b 678 done = 1;
c906108c
SS
679
680 tmp = (char *) alloca (prefix_len + end - start + 3);
681 if (prefix)
c5aa993b
JM
682 {
683 memcpy (tmp, prefix, prefix_len);
684 memcpy (tmp + prefix_len, coloncolon, 2);
685 memcpy (tmp + prefix_len + 2, start, end - start);
686 tmp[prefix_len + 2 + end - start] = '\000';
687 }
c906108c 688 else
c5aa993b
JM
689 {
690 memcpy (tmp, start, end - start);
691 tmp[end - start] = '\000';
692 }
693
c906108c
SS
694 prefix = tmp;
695 prefix_len = strlen (prefix);
c5aa993b 696
c906108c
SS
697 /* See if the prefix we have now is something we know about */
698
c5aa993b
JM
699 if (!done)
700 {
701 /* More tokens to process, so this must be a class/namespace */
702 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
703 0, (struct symtab **) NULL);
704 }
c906108c 705 else
c5aa993b
JM
706 {
707 /* No more tokens, so try as a variable first */
708 sym_var = lookup_symbol (prefix, 0, VAR_NAMESPACE,
709 0, (struct symtab **) NULL);
710 /* If failed, try as class/namespace */
711 if (!sym_var)
712 sym_class = lookup_symbol (prefix, 0, STRUCT_NAMESPACE,
713 0, (struct symtab **) NULL);
714 }
c906108c
SS
715
716 if (sym_var ||
c5aa993b
JM
717 (sym_class &&
718 (t = check_typedef (SYMBOL_TYPE (sym_class)),
719 (TYPE_CODE (t) == TYPE_CODE_STRUCT
720 || TYPE_CODE (t) == TYPE_CODE_UNION))))
721 {
722 /* We found a valid token */
723 *token = (char *) xmalloc (prefix_len + 1);
724 memcpy (*token, prefix, prefix_len);
725 (*token)[prefix_len] = '\000';
726 break;
727 }
728
729 /* No variable or class/namespace found, no more tokens */
c906108c 730 if (done)
c5aa993b 731 return (struct symbol *) NULL;
c906108c
SS
732 }
733
734 /* Out of loop, so we must have found a valid token */
735 if (sym_var)
736 *class_prefix = 0;
737 else
738 *class_prefix = 1;
739
740 if (argptr)
741 *argptr = done ? p : end;
742
c5aa993b 743 return sym_var ? sym_var : sym_class; /* found */
c906108c
SS
744}
745
746char *
747find_template_name_end (p)
c5aa993b 748 char *p;
c906108c
SS
749{
750 int depth = 1;
751 int just_seen_right = 0;
752 int just_seen_colon = 0;
753 int just_seen_space = 0;
c5aa993b 754
c906108c
SS
755 if (!p || (*p != '<'))
756 return 0;
757
758 while (*++p)
759 {
760 switch (*p)
c5aa993b
JM
761 {
762 case '\'':
763 case '\"':
764 case '{':
765 case '}':
766 /* In future, may want to allow these?? */
767 return 0;
768 case '<':
769 depth++; /* start nested template */
770 if (just_seen_colon || just_seen_right || just_seen_space)
771 return 0; /* but not after : or :: or > or space */
772 break;
773 case '>':
774 if (just_seen_colon || just_seen_right)
775 return 0; /* end a (nested?) template */
776 just_seen_right = 1; /* but not after : or :: */
777 if (--depth == 0) /* also disallow >>, insist on > > */
778 return ++p; /* if outermost ended, return */
779 break;
780 case ':':
781 if (just_seen_space || (just_seen_colon > 1))
782 return 0; /* nested class spec coming up */
783 just_seen_colon++; /* we allow :: but not :::: */
784 break;
785 case ' ':
786 break;
787 default:
788 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
789 (*p >= 'A' && *p <= 'Z') ||
790 (*p >= '0' && *p <= '9') ||
791 (*p == '_') || (*p == ',') || /* commas for template args */
792 (*p == '&') || (*p == '*') || /* pointer and ref types */
793 (*p == '(') || (*p == ')') || /* function types */
794 (*p == '[') || (*p == ']'))) /* array types */
795 return 0;
796 }
c906108c 797 if (*p != ' ')
c5aa993b 798 just_seen_space = 0;
c906108c 799 if (*p != ':')
c5aa993b 800 just_seen_colon = 0;
c906108c 801 if (*p != '>')
c5aa993b 802 just_seen_right = 0;
c906108c
SS
803 }
804 return 0;
805}
c5aa993b 806\f
c906108c
SS
807
808
c906108c
SS
809/* Return a null-terminated temporary copy of the name
810 of a string token. */
811
812char *
813copy_name (token)
814 struct stoken token;
815{
816 memcpy (namecopy, token.ptr, token.length);
817 namecopy[token.length] = 0;
818 return namecopy;
819}
820\f
821/* Reverse an expression from suffix form (in which it is constructed)
822 to prefix form (in which we can conveniently print or execute it). */
823
824static void
825prefixify_expression (expr)
826 register struct expression *expr;
827{
828 register int len =
c5aa993b 829 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
c906108c
SS
830 register struct expression *temp;
831 register int inpos = expr->nelts, outpos = 0;
832
833 temp = (struct expression *) alloca (len);
834
835 /* Copy the original expression into temp. */
836 memcpy (temp, expr, len);
837
838 prefixify_subexp (temp, expr, inpos, outpos);
839}
840
841/* Return the number of exp_elements in the subexpression of EXPR
842 whose last exp_element is at index ENDPOS - 1 in EXPR. */
843
844int
845length_of_subexp (expr, endpos)
846 register struct expression *expr;
847 register int endpos;
848{
849 register int oplen = 1;
850 register int args = 0;
851 register int i;
852
853 if (endpos < 1)
854 error ("?error in length_of_subexp");
855
856 i = (int) expr->elts[endpos - 1].opcode;
857
858 switch (i)
859 {
860 /* C++ */
861 case OP_SCOPE:
862 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
863 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
864 break;
865
866 case OP_LONG:
867 case OP_DOUBLE:
868 case OP_VAR_VALUE:
869 oplen = 4;
870 break;
871
872 case OP_TYPE:
873 case OP_BOOL:
874 case OP_LAST:
875 case OP_REGISTER:
876 case OP_INTERNALVAR:
877 oplen = 3;
878 break;
879
880 case OP_COMPLEX:
c5aa993b 881 oplen = 1;
c906108c 882 args = 2;
c5aa993b 883 break;
c906108c
SS
884
885 case OP_FUNCALL:
886 case OP_F77_UNDETERMINED_ARGLIST:
887 oplen = 3;
888 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
889 break;
890
891 case UNOP_MAX:
892 case UNOP_MIN:
893 oplen = 3;
894 break;
895
c5aa993b
JM
896 case BINOP_VAL:
897 case UNOP_CAST:
898 case UNOP_MEMVAL:
c906108c
SS
899 oplen = 3;
900 args = 1;
901 break;
902
903 case UNOP_ABS:
904 case UNOP_CAP:
905 case UNOP_CHR:
906 case UNOP_FLOAT:
907 case UNOP_HIGH:
908 case UNOP_ODD:
909 case UNOP_ORD:
910 case UNOP_TRUNC:
911 oplen = 1;
912 args = 1;
913 break;
914
915 case OP_LABELED:
916 case STRUCTOP_STRUCT:
917 case STRUCTOP_PTR:
918 args = 1;
919 /* fall through */
920 case OP_M2_STRING:
921 case OP_STRING:
922 case OP_NAME:
923 case OP_EXPRSTRING:
924 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
925 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
926 break;
927
928 case OP_BITSTRING:
929 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
930 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
931 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
932 break;
933
934 case OP_ARRAY:
935 oplen = 4;
936 args = longest_to_int (expr->elts[endpos - 2].longconst);
937 args -= longest_to_int (expr->elts[endpos - 3].longconst);
938 args += 1;
939 break;
940
941 case TERNOP_COND:
942 case TERNOP_SLICE:
943 case TERNOP_SLICE_COUNT:
944 args = 3;
945 break;
946
947 /* Modula-2 */
c5aa993b 948 case MULTI_SUBSCRIPT:
c906108c 949 oplen = 3;
c5aa993b 950 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
c906108c
SS
951 break;
952
953 case BINOP_ASSIGN_MODIFY:
954 oplen = 3;
955 args = 2;
956 break;
957
958 /* C++ */
959 case OP_THIS:
960 oplen = 2;
961 break;
962
963 default:
964 args = 1 + (i < (int) BINOP_END);
965 }
966
967 while (args > 0)
968 {
969 oplen += length_of_subexp (expr, endpos - oplen);
970 args--;
971 }
972
973 return oplen;
974}
975
976/* Copy the subexpression ending just before index INEND in INEXPR
977 into OUTEXPR, starting at index OUTBEG.
978 In the process, convert it from suffix to prefix form. */
979
980static void
981prefixify_subexp (inexpr, outexpr, inend, outbeg)
982 register struct expression *inexpr;
983 struct expression *outexpr;
984 register int inend;
985 int outbeg;
986{
987 register int oplen = 1;
988 register int args = 0;
989 register int i;
990 int *arglens;
991 enum exp_opcode opcode;
992
993 /* Compute how long the last operation is (in OPLEN),
994 and also how many preceding subexpressions serve as
995 arguments for it (in ARGS). */
996
997 opcode = inexpr->elts[inend - 1].opcode;
998 switch (opcode)
999 {
1000 /* C++ */
1001 case OP_SCOPE:
1002 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1003 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
1004 break;
1005
1006 case OP_LONG:
1007 case OP_DOUBLE:
1008 case OP_VAR_VALUE:
1009 oplen = 4;
1010 break;
1011
1012 case OP_TYPE:
1013 case OP_BOOL:
1014 case OP_LAST:
1015 case OP_REGISTER:
1016 case OP_INTERNALVAR:
1017 oplen = 3;
1018 break;
1019
1020 case OP_COMPLEX:
c5aa993b
JM
1021 oplen = 1;
1022 args = 2;
1023 break;
c906108c
SS
1024
1025 case OP_FUNCALL:
1026 case OP_F77_UNDETERMINED_ARGLIST:
1027 oplen = 3;
1028 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1029 break;
1030
1031 case UNOP_MIN:
1032 case UNOP_MAX:
1033 oplen = 3;
1034 break;
1035
1036 case UNOP_CAST:
1037 case UNOP_MEMVAL:
1038 oplen = 3;
1039 args = 1;
1040 break;
1041
1042 case UNOP_ABS:
1043 case UNOP_CAP:
1044 case UNOP_CHR:
1045 case UNOP_FLOAT:
1046 case UNOP_HIGH:
1047 case UNOP_ODD:
1048 case UNOP_ORD:
1049 case UNOP_TRUNC:
c5aa993b
JM
1050 oplen = 1;
1051 args = 1;
c906108c
SS
1052 break;
1053
1054 case STRUCTOP_STRUCT:
1055 case STRUCTOP_PTR:
1056 case OP_LABELED:
1057 args = 1;
1058 /* fall through */
1059 case OP_M2_STRING:
1060 case OP_STRING:
1061 case OP_NAME:
1062 case OP_EXPRSTRING:
1063 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1064 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
1065 break;
1066
1067 case OP_BITSTRING:
1068 oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
1069 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1070 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
1071 break;
1072
1073 case OP_ARRAY:
1074 oplen = 4;
1075 args = longest_to_int (inexpr->elts[inend - 2].longconst);
1076 args -= longest_to_int (inexpr->elts[inend - 3].longconst);
1077 args += 1;
1078 break;
1079
1080 case TERNOP_COND:
1081 case TERNOP_SLICE:
1082 case TERNOP_SLICE_COUNT:
1083 args = 3;
1084 break;
1085
1086 case BINOP_ASSIGN_MODIFY:
1087 oplen = 3;
1088 args = 2;
1089 break;
1090
1091 /* Modula-2 */
c5aa993b 1092 case MULTI_SUBSCRIPT:
c906108c
SS
1093 oplen = 3;
1094 args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
1095 break;
1096
1097 /* C++ */
1098 case OP_THIS:
1099 oplen = 2;
1100 break;
1101
1102 default:
1103 args = 1 + ((int) opcode < (int) BINOP_END);
1104 }
1105
1106 /* Copy the final operator itself, from the end of the input
1107 to the beginning of the output. */
1108 inend -= oplen;
1109 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1110 EXP_ELEM_TO_BYTES (oplen));
1111 outbeg += oplen;
1112
1113 /* Find the lengths of the arg subexpressions. */
1114 arglens = (int *) alloca (args * sizeof (int));
1115 for (i = args - 1; i >= 0; i--)
1116 {
1117 oplen = length_of_subexp (inexpr, inend);
1118 arglens[i] = oplen;
1119 inend -= oplen;
1120 }
1121
1122 /* Now copy each subexpression, preserving the order of
1123 the subexpressions, but prefixifying each one.
1124 In this loop, inend starts at the beginning of
1125 the expression this level is working on
1126 and marches forward over the arguments.
1127 outbeg does similarly in the output. */
1128 for (i = 0; i < args; i++)
1129 {
1130 oplen = arglens[i];
1131 inend += oplen;
1132 prefixify_subexp (inexpr, outexpr, inend, outbeg);
1133 outbeg += oplen;
1134 }
1135}
1136\f
1137/* This page contains the two entry points to this file. */
1138
1139/* Read an expression from the string *STRINGPTR points to,
1140 parse it, and return a pointer to a struct expression that we malloc.
1141 Use block BLOCK as the lexical context for variable names;
1142 if BLOCK is zero, use the block of the selected stack frame.
1143 Meanwhile, advance *STRINGPTR to point after the expression,
1144 at the first nonwhite character that is not part of the expression
1145 (possibly a null character).
1146
1147 If COMMA is nonzero, stop if a comma is reached. */
1148
1149struct expression *
1150parse_exp_1 (stringptr, block, comma)
1151 char **stringptr;
1152 struct block *block;
1153 int comma;
1154{
1155 struct cleanup *old_chain;
1156
1157 lexptr = *stringptr;
1158
1159 paren_depth = 0;
1160 type_stack_depth = 0;
1161
1162 comma_terminates = comma;
1163
1164 if (lexptr == 0 || *lexptr == 0)
1165 error_no_arg ("expression to compute");
1166
74b7792f 1167 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
c906108c
SS
1168 funcall_chain = 0;
1169
1170 expression_context_block = block ? block : get_selected_block ();
1171
1172 namecopy = (char *) alloca (strlen (lexptr) + 1);
1173 expout_size = 10;
1174 expout_ptr = 0;
1175 expout = (struct expression *)
1176 xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
1177 expout->language_defn = current_language;
c13c43fd 1178 make_cleanup (free_current_contents, &expout);
c906108c
SS
1179
1180 if (current_language->la_parser ())
1181 current_language->la_error (NULL);
1182
1183 discard_cleanups (old_chain);
1184
1185 /* Record the actual number of expression elements, and then
1186 reallocate the expression memory so that we free up any
1187 excess elements. */
1188
1189 expout->nelts = expout_ptr;
1190 expout = (struct expression *)
1191 xrealloc ((char *) expout,
1192 sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
1193
1194 /* Convert expression from postfix form as generated by yacc
1195 parser, to a prefix form. */
1196
c906108c 1197 if (expressiondebug)
9846de1b 1198 dump_prefix_expression (expout, gdb_stdlog,
c906108c 1199 "before conversion to prefix form");
c906108c
SS
1200
1201 prefixify_expression (expout);
1202
c906108c 1203 if (expressiondebug)
9846de1b 1204 dump_postfix_expression (expout, gdb_stdlog,
c906108c 1205 "after conversion to prefix form");
c906108c
SS
1206
1207 *stringptr = lexptr;
1208 return expout;
1209}
1210
1211/* Parse STRING as an expression, and complain if this fails
1212 to use up all of the contents of STRING. */
1213
1214struct expression *
1215parse_expression (string)
1216 char *string;
1217{
1218 register struct expression *exp;
1219 exp = parse_exp_1 (&string, 0, 0);
1220 if (*string)
1221 error ("Junk after end of expression.");
1222 return exp;
1223}
1224\f
1225/* Stuff for maintaining a stack of types. Currently just used by C, but
1226 probably useful for any language which declares its types "backwards". */
1227
c5aa993b 1228void
c906108c
SS
1229push_type (tp)
1230 enum type_pieces tp;
1231{
1232 if (type_stack_depth == type_stack_size)
1233 {
1234 type_stack_size *= 2;
1235 type_stack = (union type_stack_elt *)
1236 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1237 }
1238 type_stack[type_stack_depth++].piece = tp;
1239}
1240
1241void
1242push_type_int (n)
1243 int n;
1244{
1245 if (type_stack_depth == type_stack_size)
1246 {
1247 type_stack_size *= 2;
1248 type_stack = (union type_stack_elt *)
1249 xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
1250 }
1251 type_stack[type_stack_depth++].int_val = n;
1252}
1253
c5aa993b 1254enum type_pieces
c906108c
SS
1255pop_type ()
1256{
1257 if (type_stack_depth)
1258 return type_stack[--type_stack_depth].piece;
1259 return tp_end;
1260}
1261
1262int
1263pop_type_int ()
1264{
1265 if (type_stack_depth)
1266 return type_stack[--type_stack_depth].int_val;
1267 /* "Can't happen". */
1268 return 0;
1269}
1270
1271/* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1272 as modified by all the stuff on the stack. */
1273struct type *
1274follow_types (follow_type)
1275 struct type *follow_type;
1276{
1277 int done = 0;
1278 int array_size;
1279 struct type *range_type;
1280
1281 while (!done)
1282 switch (pop_type ())
1283 {
1284 case tp_end:
1285 done = 1;
1286 break;
1287 case tp_pointer:
1288 follow_type = lookup_pointer_type (follow_type);
1289 break;
1290 case tp_reference:
1291 follow_type = lookup_reference_type (follow_type);
1292 break;
1293 case tp_array:
1294 array_size = pop_type_int ();
1295 /* FIXME-type-allocation: need a way to free this type when we are
1296 done with it. */
1297 range_type =
1298 create_range_type ((struct type *) NULL,
1299 builtin_type_int, 0,
1300 array_size >= 0 ? array_size - 1 : 0);
1301 follow_type =
1302 create_array_type ((struct type *) NULL,
1303 follow_type, range_type);
1304 if (array_size < 0)
c5aa993b 1305 TYPE_ARRAY_UPPER_BOUND_TYPE (follow_type)
c906108c
SS
1306 = BOUND_CANNOT_BE_DETERMINED;
1307 break;
1308 case tp_function:
1309 /* FIXME-type-allocation: need a way to free this type when we are
1310 done with it. */
1311 follow_type = lookup_function_type (follow_type);
1312 break;
1313 }
1314 return follow_type;
1315}
1316\f
ac9a91a7
JM
1317static void build_parse PARAMS ((void));
1318static void
1319build_parse ()
c906108c 1320{
cce74817
JM
1321 int i;
1322
c906108c
SS
1323 msym_text_symbol_type =
1324 init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1325 TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1326 msym_data_symbol_type =
1327 init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1328 "<data variable, no debug info>", NULL);
1329 msym_unknown_symbol_type =
1330 init_type (TYPE_CODE_INT, 1, 0,
1331 "<variable (not text or data), no debug info>",
1332 NULL);
cce74817
JM
1333
1334 /* create the std_regs table */
1335
1336 num_std_regs = 0;
1337#ifdef PC_REGNUM
1338 if (PC_REGNUM >= 0)
1339 num_std_regs++;
1340#endif
1341#ifdef FP_REGNUM
1342 if (FP_REGNUM >= 0)
1343 num_std_regs++;
1344#endif
adf40b2e 1345#ifdef SP_REGNUM
cce74817
JM
1346 if (SP_REGNUM >= 0)
1347 num_std_regs++;
1348#endif
1349#ifdef PS_REGNUM
1350 if (PS_REGNUM >= 0)
1351 num_std_regs++;
1352#endif
1353 /* create an empty table */
1354 std_regs = xmalloc ((num_std_regs + 1) * sizeof *std_regs);
1355 i = 0;
1356 /* fill it in */
1357#ifdef PC_REGNUM
1358 std_regs[i].name = "pc";
1359 std_regs[i].regnum = PC_REGNUM;
1360 i++;
1361#endif
1362#ifdef FP_REGNUM
1363 std_regs[i].name = "fp";
1364 std_regs[i].regnum = FP_REGNUM;
1365 i++;
1366#endif
1367#ifdef SP_REGNUM
1368 std_regs[i].name = "sp";
1369 std_regs[i].regnum = SP_REGNUM;
1370 i++;
1371#endif
1372#ifdef PS_REGNUM
1373 std_regs[i].name = "ps";
1374 std_regs[i].regnum = PS_REGNUM;
1375 i++;
1376#endif
1377 memset (&std_regs[i], 0, sizeof (std_regs[i]));
ac9a91a7
JM
1378}
1379
1380void
1381_initialize_parse ()
1382{
1383 type_stack_size = 80;
1384 type_stack_depth = 0;
1385 type_stack = (union type_stack_elt *)
1386 xmalloc (type_stack_size * sizeof (*type_stack));
1387
1388 build_parse ();
c906108c 1389
0f71a2f6
JM
1390 /* FIXME - For the moment, handle types by swapping them in and out.
1391 Should be using the per-architecture data-pointer and a large
1392 struct. */
1393 register_gdbarch_swap (&msym_text_symbol_type, sizeof (msym_text_symbol_type), NULL);
1394 register_gdbarch_swap (&msym_data_symbol_type, sizeof (msym_data_symbol_type), NULL);
1395 register_gdbarch_swap (&msym_unknown_symbol_type, sizeof (msym_unknown_symbol_type), NULL);
1396
1397 register_gdbarch_swap (&num_std_regs, sizeof (std_regs), NULL);
1398 register_gdbarch_swap (&std_regs, sizeof (std_regs), NULL);
1399 register_gdbarch_swap (NULL, 0, build_parse);
1400
c906108c 1401 add_show_from_set (
5d161b24 1402 add_set_cmd ("expression", class_maintenance, var_zinteger,
c5aa993b
JM
1403 (char *) &expressiondebug,
1404 "Set expression debugging.\n\
c906108c 1405When non-zero, the internal representation of expressions will be printed.",
5d161b24
DB
1406 &setdebuglist),
1407 &showdebuglist);
c906108c 1408}
This page took 0.113843 seconds and 4 git commands to generate.