Commit | Line | Data |
---|---|---|
9abe5450 | 1 | /* PPC GNU/Linux native support. |
2555fe1a | 2 | |
e2882c85 | 3 | Copyright (C) 1988-2018 Free Software Foundation, Inc. |
c877c8e6 KB |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c877c8e6 KB |
10 | (at your option) any later version. |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c877c8e6 KB |
19 | |
20 | #include "defs.h" | |
76727919 | 21 | #include "observable.h" |
c877c8e6 KB |
22 | #include "frame.h" |
23 | #include "inferior.h" | |
6ffbb7ab | 24 | #include "gdbthread.h" |
c877c8e6 | 25 | #include "gdbcore.h" |
4e052eda | 26 | #include "regcache.h" |
10d6c8cd DJ |
27 | #include "target.h" |
28 | #include "linux-nat.h" | |
c877c8e6 | 29 | #include <sys/types.h> |
c877c8e6 KB |
30 | #include <signal.h> |
31 | #include <sys/user.h> | |
32 | #include <sys/ioctl.h> | |
2555fe1a | 33 | #include "gdb_wait.h" |
c877c8e6 KB |
34 | #include <fcntl.h> |
35 | #include <sys/procfs.h> | |
5826e159 | 36 | #include "nat/gdb_ptrace.h" |
bcc0c096 | 37 | #include "inf-ptrace.h" |
c877c8e6 | 38 | |
0df8b418 | 39 | /* Prototypes for supply_gregset etc. */ |
c60c0f5f | 40 | #include "gregset.h" |
16333c4f | 41 | #include "ppc-tdep.h" |
7284e1be UW |
42 | #include "ppc-linux-tdep.h" |
43 | ||
b7622095 LM |
44 | /* Required when using the AUXV. */ |
45 | #include "elf/common.h" | |
46 | #include "auxv.h" | |
47 | ||
514c5338 | 48 | #include "nat/ppc-linux.h" |
01904826 | 49 | |
6ffbb7ab | 50 | /* Similarly for the hardware watchpoint support. These requests are used |
926bf92d | 51 | when the PowerPC HWDEBUG ptrace interface is not available. */ |
e0d24f8d WZ |
52 | #ifndef PTRACE_GET_DEBUGREG |
53 | #define PTRACE_GET_DEBUGREG 25 | |
54 | #endif | |
55 | #ifndef PTRACE_SET_DEBUGREG | |
56 | #define PTRACE_SET_DEBUGREG 26 | |
57 | #endif | |
58 | #ifndef PTRACE_GETSIGINFO | |
59 | #define PTRACE_GETSIGINFO 0x4202 | |
60 | #endif | |
01904826 | 61 | |
926bf92d UW |
62 | /* These requests are used when the PowerPC HWDEBUG ptrace interface is |
63 | available. It exposes the debug facilities of PowerPC processors, as well | |
64 | as additional features of BookE processors, such as ranged breakpoints and | |
65 | watchpoints and hardware-accelerated condition evaluation. */ | |
6ffbb7ab TJB |
66 | #ifndef PPC_PTRACE_GETHWDBGINFO |
67 | ||
926bf92d UW |
68 | /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG |
69 | ptrace interface is not present in ptrace.h, so we'll have to pretty much | |
70 | include it all here so that the code at least compiles on older systems. */ | |
6ffbb7ab TJB |
71 | #define PPC_PTRACE_GETHWDBGINFO 0x89 |
72 | #define PPC_PTRACE_SETHWDEBUG 0x88 | |
73 | #define PPC_PTRACE_DELHWDEBUG 0x87 | |
74 | ||
75 | struct ppc_debug_info | |
76 | { | |
0df8b418 | 77 | uint32_t version; /* Only version 1 exists to date. */ |
6ffbb7ab TJB |
78 | uint32_t num_instruction_bps; |
79 | uint32_t num_data_bps; | |
80 | uint32_t num_condition_regs; | |
81 | uint32_t data_bp_alignment; | |
0df8b418 | 82 | uint32_t sizeof_condition; /* size of the DVC register. */ |
6ffbb7ab TJB |
83 | uint64_t features; |
84 | }; | |
85 | ||
86 | /* Features will have bits indicating whether there is support for: */ | |
87 | #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 | |
88 | #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 | |
89 | #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 | |
90 | #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 | |
91 | ||
92 | struct ppc_hw_breakpoint | |
93 | { | |
94 | uint32_t version; /* currently, version must be 1 */ | |
95 | uint32_t trigger_type; /* only some combinations allowed */ | |
96 | uint32_t addr_mode; /* address match mode */ | |
97 | uint32_t condition_mode; /* break/watchpoint condition flags */ | |
98 | uint64_t addr; /* break/watchpoint address */ | |
99 | uint64_t addr2; /* range end or mask */ | |
100 | uint64_t condition_value; /* contents of the DVC register */ | |
101 | }; | |
102 | ||
103 | /* Trigger type. */ | |
104 | #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 | |
105 | #define PPC_BREAKPOINT_TRIGGER_READ 0x2 | |
106 | #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 | |
107 | #define PPC_BREAKPOINT_TRIGGER_RW 0x6 | |
108 | ||
109 | /* Address mode. */ | |
110 | #define PPC_BREAKPOINT_MODE_EXACT 0x0 | |
111 | #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 | |
112 | #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 | |
113 | #define PPC_BREAKPOINT_MODE_MASK 0x3 | |
114 | ||
115 | /* Condition mode. */ | |
116 | #define PPC_BREAKPOINT_CONDITION_NONE 0x0 | |
117 | #define PPC_BREAKPOINT_CONDITION_AND 0x1 | |
118 | #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 | |
119 | #define PPC_BREAKPOINT_CONDITION_OR 0x2 | |
120 | #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 | |
121 | #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 | |
122 | #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 | |
123 | #define PPC_BREAKPOINT_CONDITION_BE(n) \ | |
124 | (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) | |
125 | #endif /* PPC_PTRACE_GETHWDBGINFO */ | |
126 | ||
e23b9d6e UW |
127 | /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider |
128 | watchpoint (up to 512 bytes). */ | |
129 | #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR | |
130 | #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10 | |
131 | #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ | |
6ffbb7ab | 132 | |
1dfe79e8 SDJ |
133 | /* Similarly for the general-purpose (gp0 -- gp31) |
134 | and floating-point registers (fp0 -- fp31). */ | |
135 | #ifndef PTRACE_GETREGS | |
136 | #define PTRACE_GETREGS 12 | |
137 | #endif | |
138 | #ifndef PTRACE_SETREGS | |
139 | #define PTRACE_SETREGS 13 | |
140 | #endif | |
141 | #ifndef PTRACE_GETFPREGS | |
142 | #define PTRACE_GETFPREGS 14 | |
143 | #endif | |
144 | #ifndef PTRACE_SETFPREGS | |
145 | #define PTRACE_SETFPREGS 15 | |
146 | #endif | |
147 | ||
9abe5450 EZ |
148 | /* This oddity is because the Linux kernel defines elf_vrregset_t as |
149 | an array of 33 16 bytes long elements. I.e. it leaves out vrsave. | |
150 | However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return | |
151 | the vrsave as an extra 4 bytes at the end. I opted for creating a | |
152 | flat array of chars, so that it is easier to manipulate for gdb. | |
153 | ||
154 | There are 32 vector registers 16 bytes longs, plus a VSCR register | |
155 | which is only 4 bytes long, but is fetched as a 16 bytes | |
0df8b418 | 156 | quantity. Up to here we have the elf_vrregset_t structure. |
9abe5450 EZ |
157 | Appended to this there is space for the VRSAVE register: 4 bytes. |
158 | Even though this vrsave register is not included in the regset | |
159 | typedef, it is handled by the ptrace requests. | |
160 | ||
161 | Note that GNU/Linux doesn't support little endian PPC hardware, | |
162 | therefore the offset at which the real value of the VSCR register | |
163 | is located will be always 12 bytes. | |
164 | ||
165 | The layout is like this (where x is the actual value of the vscr reg): */ | |
166 | ||
167 | /* *INDENT-OFF* */ | |
168 | /* | |
169 | |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| | |
170 | <-------> <-------><-------><-> | |
171 | VR0 VR31 VSCR VRSAVE | |
172 | */ | |
173 | /* *INDENT-ON* */ | |
174 | ||
175 | #define SIZEOF_VRREGS 33*16+4 | |
176 | ||
177 | typedef char gdb_vrregset_t[SIZEOF_VRREGS]; | |
178 | ||
604c2f83 LM |
179 | /* This is the layout of the POWER7 VSX registers and the way they overlap |
180 | with the existing FPR and VMX registers. | |
181 | ||
182 | VSR doubleword 0 VSR doubleword 1 | |
183 | ---------------------------------------------------------------- | |
184 | VSR[0] | FPR[0] | | | |
185 | ---------------------------------------------------------------- | |
186 | VSR[1] | FPR[1] | | | |
187 | ---------------------------------------------------------------- | |
188 | | ... | | | |
189 | | ... | | | |
190 | ---------------------------------------------------------------- | |
191 | VSR[30] | FPR[30] | | | |
192 | ---------------------------------------------------------------- | |
193 | VSR[31] | FPR[31] | | | |
194 | ---------------------------------------------------------------- | |
195 | VSR[32] | VR[0] | | |
196 | ---------------------------------------------------------------- | |
197 | VSR[33] | VR[1] | | |
198 | ---------------------------------------------------------------- | |
199 | | ... | | |
200 | | ... | | |
201 | ---------------------------------------------------------------- | |
202 | VSR[62] | VR[30] | | |
203 | ---------------------------------------------------------------- | |
204 | VSR[63] | VR[31] | | |
205 | ---------------------------------------------------------------- | |
206 | ||
207 | VSX has 64 128bit registers. The first 32 registers overlap with | |
208 | the FP registers (doubleword 0) and hence extend them with additional | |
209 | 64 bits (doubleword 1). The other 32 regs overlap with the VMX | |
210 | registers. */ | |
211 | #define SIZEOF_VSXREGS 32*8 | |
212 | ||
213 | typedef char gdb_vsxregset_t[SIZEOF_VSXREGS]; | |
01904826 | 214 | |
b021a221 | 215 | /* On PPC processors that support the Signal Processing Extension |
01904826 | 216 | (SPE) APU, the general-purpose registers are 64 bits long. |
411cb3f9 PG |
217 | However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER |
218 | ptrace calls only access the lower half of each register, to allow | |
219 | them to behave the same way they do on non-SPE systems. There's a | |
220 | separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that | |
221 | read and write the top halves of all the general-purpose registers | |
222 | at once, along with some SPE-specific registers. | |
01904826 JB |
223 | |
224 | GDB itself continues to claim the general-purpose registers are 32 | |
6ced10dd | 225 | bits long. It has unnamed raw registers that hold the upper halves |
b021a221 | 226 | of the gprs, and the full 64-bit SIMD views of the registers, |
6ced10dd JB |
227 | 'ev0' -- 'ev31', are pseudo-registers that splice the top and |
228 | bottom halves together. | |
01904826 JB |
229 | |
230 | This is the structure filled in by PTRACE_GETEVRREGS and written to | |
231 | the inferior's registers by PTRACE_SETEVRREGS. */ | |
232 | struct gdb_evrregset_t | |
233 | { | |
234 | unsigned long evr[32]; | |
235 | unsigned long long acc; | |
236 | unsigned long spefscr; | |
237 | }; | |
238 | ||
604c2f83 LM |
239 | /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and |
240 | PTRACE_SETVSXREGS requests, for reading and writing the VSX | |
241 | POWER7 registers 0 through 31. Zero if we've tried one of them and | |
242 | gotten an error. Note that VSX registers 32 through 63 overlap | |
243 | with VR registers 0 through 31. */ | |
244 | int have_ptrace_getsetvsxregs = 1; | |
01904826 JB |
245 | |
246 | /* Non-zero if our kernel may support the PTRACE_GETVRREGS and | |
247 | PTRACE_SETVRREGS requests, for reading and writing the Altivec | |
248 | registers. Zero if we've tried one of them and gotten an | |
249 | error. */ | |
9abe5450 EZ |
250 | int have_ptrace_getvrregs = 1; |
251 | ||
01904826 JB |
252 | /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and |
253 | PTRACE_SETEVRREGS requests, for reading and writing the SPE | |
254 | registers. Zero if we've tried one of them and gotten an | |
255 | error. */ | |
256 | int have_ptrace_getsetevrregs = 1; | |
257 | ||
1dfe79e8 SDJ |
258 | /* Non-zero if our kernel may support the PTRACE_GETREGS and |
259 | PTRACE_SETREGS requests, for reading and writing the | |
260 | general-purpose registers. Zero if we've tried one of | |
261 | them and gotten an error. */ | |
262 | int have_ptrace_getsetregs = 1; | |
263 | ||
264 | /* Non-zero if our kernel may support the PTRACE_GETFPREGS and | |
265 | PTRACE_SETFPREGS requests, for reading and writing the | |
266 | floating-pointers registers. Zero if we've tried one of | |
267 | them and gotten an error. */ | |
268 | int have_ptrace_getsetfpregs = 1; | |
269 | ||
16333c4f EZ |
270 | /* *INDENT-OFF* */ |
271 | /* registers layout, as presented by the ptrace interface: | |
272 | PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, | |
273 | PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, | |
274 | PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, | |
275 | PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, | |
0df8b418 MS |
276 | PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, |
277 | PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, | |
278 | PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, | |
279 | PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, | |
280 | PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, | |
281 | PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, | |
282 | PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, | |
283 | PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, | |
16333c4f EZ |
284 | PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ |
285 | /* *INDENT_ON * */ | |
c877c8e6 | 286 | |
45229ea4 | 287 | static int |
e101270f | 288 | ppc_register_u_addr (struct gdbarch *gdbarch, int regno) |
c877c8e6 | 289 | { |
16333c4f | 290 | int u_addr = -1; |
e101270f | 291 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
56d0d96a AC |
292 | /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace |
293 | interface, and not the wordsize of the program's ABI. */ | |
411cb3f9 | 294 | int wordsize = sizeof (long); |
16333c4f | 295 | |
0df8b418 | 296 | /* General purpose registers occupy 1 slot each in the buffer. */ |
8bf659e8 JB |
297 | if (regno >= tdep->ppc_gp0_regnum |
298 | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
26e75e5c | 299 | u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); |
16333c4f | 300 | |
49ff75ad JB |
301 | /* Floating point regs: eight bytes each in both 32- and 64-bit |
302 | ptrace interfaces. Thus, two slots each in 32-bit interface, one | |
303 | slot each in 64-bit interface. */ | |
383f0f5b JB |
304 | if (tdep->ppc_fp0_regnum >= 0 |
305 | && regno >= tdep->ppc_fp0_regnum | |
366f009f JB |
306 | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
307 | u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); | |
16333c4f | 308 | |
0df8b418 | 309 | /* UISA special purpose registers: 1 slot each. */ |
e101270f | 310 | if (regno == gdbarch_pc_regnum (gdbarch)) |
49ff75ad | 311 | u_addr = PT_NIP * wordsize; |
dc5cfeb6 | 312 | if (regno == tdep->ppc_lr_regnum) |
49ff75ad | 313 | u_addr = PT_LNK * wordsize; |
dc5cfeb6 | 314 | if (regno == tdep->ppc_cr_regnum) |
49ff75ad | 315 | u_addr = PT_CCR * wordsize; |
dc5cfeb6 | 316 | if (regno == tdep->ppc_xer_regnum) |
49ff75ad | 317 | u_addr = PT_XER * wordsize; |
dc5cfeb6 | 318 | if (regno == tdep->ppc_ctr_regnum) |
49ff75ad | 319 | u_addr = PT_CTR * wordsize; |
f8c59253 | 320 | #ifdef PT_MQ |
dc5cfeb6 | 321 | if (regno == tdep->ppc_mq_regnum) |
49ff75ad | 322 | u_addr = PT_MQ * wordsize; |
f8c59253 | 323 | #endif |
dc5cfeb6 | 324 | if (regno == tdep->ppc_ps_regnum) |
49ff75ad | 325 | u_addr = PT_MSR * wordsize; |
7284e1be UW |
326 | if (regno == PPC_ORIG_R3_REGNUM) |
327 | u_addr = PT_ORIG_R3 * wordsize; | |
328 | if (regno == PPC_TRAP_REGNUM) | |
329 | u_addr = PT_TRAP * wordsize; | |
383f0f5b JB |
330 | if (tdep->ppc_fpscr_regnum >= 0 |
331 | && regno == tdep->ppc_fpscr_regnum) | |
8f135812 AC |
332 | { |
333 | /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the | |
334 | kernel headers incorrectly contained the 32-bit definition of | |
335 | PT_FPSCR. For the 32-bit definition, floating-point | |
336 | registers occupy two 32-bit "slots", and the FPSCR lives in | |
69abc51c | 337 | the second half of such a slot-pair (hence +1). For 64-bit, |
8f135812 AC |
338 | the FPSCR instead occupies the full 64-bit 2-word-slot and |
339 | hence no adjustment is necessary. Hack around this. */ | |
340 | if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) | |
341 | u_addr = (48 + 32) * wordsize; | |
69abc51c TJB |
342 | /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit |
343 | slot and not just its second word. The PT_FPSCR supplied when | |
344 | GDB is compiled as a 32-bit app doesn't reflect this. */ | |
345 | else if (wordsize == 4 && register_size (gdbarch, regno) == 8 | |
346 | && PT_FPSCR == (48 + 2*32 + 1)) | |
347 | u_addr = (48 + 2*32) * wordsize; | |
8f135812 AC |
348 | else |
349 | u_addr = PT_FPSCR * wordsize; | |
350 | } | |
16333c4f | 351 | return u_addr; |
c877c8e6 KB |
352 | } |
353 | ||
604c2f83 LM |
354 | /* The Linux kernel ptrace interface for POWER7 VSX registers uses the |
355 | registers set mechanism, as opposed to the interface for all the | |
356 | other registers, that stores/fetches each register individually. */ | |
357 | static void | |
358 | fetch_vsx_register (struct regcache *regcache, int tid, int regno) | |
359 | { | |
360 | int ret; | |
361 | gdb_vsxregset_t regs; | |
ac7936df | 362 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
363 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
364 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
365 | ||
366 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
367 | if (ret < 0) | |
368 | { | |
369 | if (errno == EIO) | |
370 | { | |
371 | have_ptrace_getsetvsxregs = 0; | |
372 | return; | |
373 | } | |
374 | perror_with_name (_("Unable to fetch VSX register")); | |
375 | } | |
376 | ||
377 | regcache_raw_supply (regcache, regno, | |
378 | regs + (regno - tdep->ppc_vsr0_upper_regnum) | |
379 | * vsxregsize); | |
380 | } | |
381 | ||
9abe5450 EZ |
382 | /* The Linux kernel ptrace interface for AltiVec registers uses the |
383 | registers set mechanism, as opposed to the interface for all the | |
384 | other registers, that stores/fetches each register individually. */ | |
385 | static void | |
56be3814 | 386 | fetch_altivec_register (struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
387 | { |
388 | int ret; | |
389 | int offset = 0; | |
390 | gdb_vrregset_t regs; | |
ac7936df | 391 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 MD |
392 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
393 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
394 | |
395 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
396 | if (ret < 0) | |
397 | { | |
398 | if (errno == EIO) | |
399 | { | |
400 | have_ptrace_getvrregs = 0; | |
401 | return; | |
402 | } | |
e2e0b3e5 | 403 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
404 | } |
405 | ||
406 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
407 | long on the hardware. We deal only with the lower 4 bytes of the | |
408 | vector. VRSAVE is at the end of the array in a 4 bytes slot, so | |
409 | there is no need to define an offset for it. */ | |
410 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 411 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 412 | |
56be3814 | 413 | regcache_raw_supply (regcache, regno, |
0df8b418 MS |
414 | regs + (regno |
415 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
416 | } |
417 | ||
01904826 JB |
418 | /* Fetch the top 32 bits of TID's general-purpose registers and the |
419 | SPE-specific registers, and place the results in EVRREGSET. If we | |
420 | don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with | |
421 | zeros. | |
422 | ||
423 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
424 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
425 | set_spe_registers. */ | |
426 | static void | |
427 | get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
428 | { | |
429 | if (have_ptrace_getsetevrregs) | |
430 | { | |
431 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) | |
432 | return; | |
433 | else | |
434 | { | |
435 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported; | |
436 | we just return zeros. */ | |
437 | if (errno == EIO) | |
438 | have_ptrace_getsetevrregs = 0; | |
439 | else | |
440 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 441 | perror_with_name (_("Unable to fetch SPE registers")); |
01904826 JB |
442 | } |
443 | } | |
444 | ||
445 | memset (evrregset, 0, sizeof (*evrregset)); | |
446 | } | |
447 | ||
6ced10dd JB |
448 | /* Supply values from TID for SPE-specific raw registers: the upper |
449 | halves of the GPRs, the accumulator, and the spefscr. REGNO must | |
450 | be the number of an upper half register, acc, spefscr, or -1 to | |
451 | supply the values of all registers. */ | |
01904826 | 452 | static void |
56be3814 | 453 | fetch_spe_register (struct regcache *regcache, int tid, int regno) |
01904826 | 454 | { |
ac7936df | 455 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 456 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
01904826 JB |
457 | struct gdb_evrregset_t evrregs; |
458 | ||
6ced10dd | 459 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 460 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 461 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 462 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 463 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 464 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
6ced10dd | 465 | |
01904826 JB |
466 | get_spe_registers (tid, &evrregs); |
467 | ||
6ced10dd | 468 | if (regno == -1) |
01904826 | 469 | { |
6ced10dd JB |
470 | int i; |
471 | ||
472 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 473 | regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i, |
6ced10dd | 474 | &evrregs.evr[i]); |
01904826 | 475 | } |
6ced10dd JB |
476 | else if (tdep->ppc_ev0_upper_regnum <= regno |
477 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 478 | regcache_raw_supply (regcache, regno, |
6ced10dd JB |
479 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
480 | ||
481 | if (regno == -1 | |
482 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 483 | regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc); |
6ced10dd JB |
484 | |
485 | if (regno == -1 | |
486 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 487 | regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum, |
6ced10dd | 488 | &evrregs.spefscr); |
01904826 JB |
489 | } |
490 | ||
45229ea4 | 491 | static void |
56be3814 | 492 | fetch_register (struct regcache *regcache, int tid, int regno) |
45229ea4 | 493 | { |
ac7936df | 494 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 495 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
45229ea4 | 496 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 497 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
4a19ea35 | 498 | int bytes_transferred; |
0df8b418 | 499 | unsigned int offset; /* Offset of registers within the u area. */ |
0f068fb5 | 500 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
45229ea4 | 501 | |
be8626e0 | 502 | if (altivec_register_p (gdbarch, regno)) |
9abe5450 EZ |
503 | { |
504 | /* If this is the first time through, or if it is not the first | |
505 | time through, and we have comfirmed that there is kernel | |
506 | support for such a ptrace request, then go and fetch the | |
507 | register. */ | |
508 | if (have_ptrace_getvrregs) | |
509 | { | |
56be3814 | 510 | fetch_altivec_register (regcache, tid, regno); |
9abe5450 EZ |
511 | return; |
512 | } | |
513 | /* If we have discovered that there is no ptrace support for | |
514 | AltiVec registers, fall through and return zeroes, because | |
515 | regaddr will be -1 in this case. */ | |
516 | } | |
604c2f83 LM |
517 | if (vsx_register_p (gdbarch, regno)) |
518 | { | |
519 | if (have_ptrace_getsetvsxregs) | |
520 | { | |
521 | fetch_vsx_register (regcache, tid, regno); | |
522 | return; | |
523 | } | |
524 | } | |
be8626e0 | 525 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 526 | { |
56be3814 | 527 | fetch_spe_register (regcache, tid, regno); |
01904826 JB |
528 | return; |
529 | } | |
9abe5450 | 530 | |
45229ea4 EZ |
531 | if (regaddr == -1) |
532 | { | |
40a6adc1 | 533 | memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ |
56be3814 | 534 | regcache_raw_supply (regcache, regno, buf); |
45229ea4 EZ |
535 | return; |
536 | } | |
537 | ||
411cb3f9 | 538 | /* Read the raw register using sizeof(long) sized chunks. On a |
56d0d96a AC |
539 | 32-bit platform, 64-bit floating-point registers will require two |
540 | transfers. */ | |
4a19ea35 | 541 | for (bytes_transferred = 0; |
40a6adc1 | 542 | bytes_transferred < register_size (gdbarch, regno); |
411cb3f9 | 543 | bytes_transferred += sizeof (long)) |
45229ea4 | 544 | { |
11fde611 JK |
545 | long l; |
546 | ||
45229ea4 | 547 | errno = 0; |
11fde611 | 548 | l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); |
411cb3f9 | 549 | regaddr += sizeof (long); |
45229ea4 EZ |
550 | if (errno != 0) |
551 | { | |
bc97b3ba | 552 | char message[128]; |
8c042590 PM |
553 | xsnprintf (message, sizeof (message), "reading register %s (#%d)", |
554 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 555 | perror_with_name (message); |
45229ea4 | 556 | } |
11fde611 | 557 | memcpy (&buf[bytes_transferred], &l, sizeof (l)); |
45229ea4 | 558 | } |
56d0d96a | 559 | |
4a19ea35 JB |
560 | /* Now supply the register. Keep in mind that the regcache's idea |
561 | of the register's size may not be a multiple of sizeof | |
411cb3f9 | 562 | (long). */ |
40a6adc1 | 563 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
4a19ea35 JB |
564 | { |
565 | /* Little-endian values are always found at the left end of the | |
566 | bytes transferred. */ | |
56be3814 | 567 | regcache_raw_supply (regcache, regno, buf); |
4a19ea35 | 568 | } |
40a6adc1 | 569 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
570 | { |
571 | /* Big-endian values are found at the right end of the bytes | |
572 | transferred. */ | |
40a6adc1 | 573 | size_t padding = (bytes_transferred - register_size (gdbarch, regno)); |
56be3814 | 574 | regcache_raw_supply (regcache, regno, buf + padding); |
4a19ea35 JB |
575 | } |
576 | else | |
a44bddec | 577 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 578 | _("fetch_register: unexpected byte order: %d"), |
40a6adc1 | 579 | gdbarch_byte_order (gdbarch)); |
45229ea4 EZ |
580 | } |
581 | ||
604c2f83 LM |
582 | static void |
583 | supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
584 | { | |
585 | int i; | |
ac7936df | 586 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
587 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
588 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
589 | ||
590 | for (i = 0; i < ppc_num_vshrs; i++) | |
591 | { | |
592 | regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
593 | *vsxregsetp + i * vsxregsize); | |
594 | } | |
595 | } | |
596 | ||
9abe5450 | 597 | static void |
56be3814 | 598 | supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
599 | { |
600 | int i; | |
ac7936df | 601 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 602 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 603 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
604 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
605 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
606 | |
607 | for (i = 0; i < num_of_vrregs; i++) | |
608 | { | |
609 | /* The last 2 registers of this set are only 32 bit long, not | |
610 | 128. However an offset is necessary only for VSCR because it | |
611 | occupies a whole vector, while VRSAVE occupies a full 4 bytes | |
612 | slot. */ | |
613 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 614 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 615 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 616 | else |
56be3814 | 617 | regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i, |
23a6d369 | 618 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
619 | } |
620 | } | |
621 | ||
604c2f83 LM |
622 | static void |
623 | fetch_vsx_registers (struct regcache *regcache, int tid) | |
624 | { | |
625 | int ret; | |
626 | gdb_vsxregset_t regs; | |
627 | ||
628 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
629 | if (ret < 0) | |
630 | { | |
631 | if (errno == EIO) | |
632 | { | |
633 | have_ptrace_getsetvsxregs = 0; | |
634 | return; | |
635 | } | |
636 | perror_with_name (_("Unable to fetch VSX registers")); | |
637 | } | |
638 | supply_vsxregset (regcache, ®s); | |
639 | } | |
640 | ||
9abe5450 | 641 | static void |
56be3814 | 642 | fetch_altivec_registers (struct regcache *regcache, int tid) |
9abe5450 EZ |
643 | { |
644 | int ret; | |
645 | gdb_vrregset_t regs; | |
646 | ||
647 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
648 | if (ret < 0) | |
649 | { | |
650 | if (errno == EIO) | |
651 | { | |
652 | have_ptrace_getvrregs = 0; | |
653 | return; | |
654 | } | |
e2e0b3e5 | 655 | perror_with_name (_("Unable to fetch AltiVec registers")); |
9abe5450 | 656 | } |
56be3814 | 657 | supply_vrregset (regcache, ®s); |
9abe5450 EZ |
658 | } |
659 | ||
1dfe79e8 SDJ |
660 | /* This function actually issues the request to ptrace, telling |
661 | it to get all general-purpose registers and put them into the | |
662 | specified regset. | |
663 | ||
664 | If the ptrace request does not exist, this function returns 0 | |
665 | and properly sets the have_ptrace_* flag. If the request fails, | |
666 | this function calls perror_with_name. Otherwise, if the request | |
667 | succeeds, then the regcache gets filled and 1 is returned. */ | |
668 | static int | |
669 | fetch_all_gp_regs (struct regcache *regcache, int tid) | |
670 | { | |
ac7936df | 671 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
672 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
673 | gdb_gregset_t gregset; | |
674 | ||
675 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
676 | { | |
677 | if (errno == EIO) | |
678 | { | |
679 | have_ptrace_getsetregs = 0; | |
680 | return 0; | |
681 | } | |
682 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
683 | } | |
684 | ||
685 | supply_gregset (regcache, (const gdb_gregset_t *) &gregset); | |
686 | ||
687 | return 1; | |
688 | } | |
689 | ||
690 | /* This is a wrapper for the fetch_all_gp_regs function. It is | |
691 | responsible for verifying if this target has the ptrace request | |
692 | that can be used to fetch all general-purpose registers at one | |
693 | shot. If it doesn't, then we should fetch them using the | |
694 | old-fashioned way, which is to iterate over the registers and | |
695 | request them one by one. */ | |
696 | static void | |
697 | fetch_gp_regs (struct regcache *regcache, int tid) | |
698 | { | |
ac7936df | 699 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
700 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
701 | int i; | |
702 | ||
703 | if (have_ptrace_getsetregs) | |
704 | if (fetch_all_gp_regs (regcache, tid)) | |
705 | return; | |
706 | ||
707 | /* If we've hit this point, it doesn't really matter which | |
708 | architecture we are using. We just need to read the | |
709 | registers in the "old-fashioned way". */ | |
710 | for (i = 0; i < ppc_num_gprs; i++) | |
711 | fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); | |
712 | } | |
713 | ||
714 | /* This function actually issues the request to ptrace, telling | |
715 | it to get all floating-point registers and put them into the | |
716 | specified regset. | |
717 | ||
718 | If the ptrace request does not exist, this function returns 0 | |
719 | and properly sets the have_ptrace_* flag. If the request fails, | |
720 | this function calls perror_with_name. Otherwise, if the request | |
721 | succeeds, then the regcache gets filled and 1 is returned. */ | |
722 | static int | |
723 | fetch_all_fp_regs (struct regcache *regcache, int tid) | |
724 | { | |
725 | gdb_fpregset_t fpregs; | |
726 | ||
727 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
728 | { | |
729 | if (errno == EIO) | |
730 | { | |
731 | have_ptrace_getsetfpregs = 0; | |
732 | return 0; | |
733 | } | |
734 | perror_with_name (_("Couldn't get floating-point registers.")); | |
735 | } | |
736 | ||
737 | supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); | |
738 | ||
739 | return 1; | |
740 | } | |
741 | ||
742 | /* This is a wrapper for the fetch_all_fp_regs function. It is | |
743 | responsible for verifying if this target has the ptrace request | |
744 | that can be used to fetch all floating-point registers at one | |
745 | shot. If it doesn't, then we should fetch them using the | |
746 | old-fashioned way, which is to iterate over the registers and | |
747 | request them one by one. */ | |
748 | static void | |
749 | fetch_fp_regs (struct regcache *regcache, int tid) | |
750 | { | |
ac7936df | 751 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
752 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
753 | int i; | |
754 | ||
755 | if (have_ptrace_getsetfpregs) | |
756 | if (fetch_all_fp_regs (regcache, tid)) | |
757 | return; | |
758 | ||
759 | /* If we've hit this point, it doesn't really matter which | |
760 | architecture we are using. We just need to read the | |
761 | registers in the "old-fashioned way". */ | |
762 | for (i = 0; i < ppc_num_fprs; i++) | |
763 | fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
764 | } | |
765 | ||
45229ea4 | 766 | static void |
56be3814 | 767 | fetch_ppc_registers (struct regcache *regcache, int tid) |
45229ea4 EZ |
768 | { |
769 | int i; | |
ac7936df | 770 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 771 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 772 | |
1dfe79e8 | 773 | fetch_gp_regs (regcache, tid); |
32b99774 | 774 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 775 | fetch_fp_regs (regcache, tid); |
40a6adc1 | 776 | fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 777 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 778 | fetch_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 779 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 780 | fetch_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 781 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 782 | fetch_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 783 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 784 | fetch_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 785 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 786 | fetch_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 787 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 788 | fetch_register (regcache, tid, tdep->ppc_mq_regnum); |
7284e1be UW |
789 | if (ppc_linux_trap_reg_p (gdbarch)) |
790 | { | |
791 | fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
792 | fetch_register (regcache, tid, PPC_TRAP_REGNUM); | |
793 | } | |
32b99774 | 794 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 795 | fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); |
9abe5450 EZ |
796 | if (have_ptrace_getvrregs) |
797 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 798 | fetch_altivec_registers (regcache, tid); |
604c2f83 LM |
799 | if (have_ptrace_getsetvsxregs) |
800 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
801 | fetch_vsx_registers (regcache, tid); | |
6ced10dd | 802 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 803 | fetch_spe_register (regcache, tid, -1); |
45229ea4 EZ |
804 | } |
805 | ||
806 | /* Fetch registers from the child process. Fetch all registers if | |
807 | regno == -1, otherwise fetch all general registers or all floating | |
808 | point registers depending upon the value of regno. */ | |
10d6c8cd | 809 | static void |
28439f5e PA |
810 | ppc_linux_fetch_inferior_registers (struct target_ops *ops, |
811 | struct regcache *regcache, int regno) | |
45229ea4 | 812 | { |
bcc0c096 | 813 | pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache)); |
05f13b9c | 814 | |
9abe5450 | 815 | if (regno == -1) |
56be3814 | 816 | fetch_ppc_registers (regcache, tid); |
45229ea4 | 817 | else |
56be3814 | 818 | fetch_register (regcache, tid, regno); |
45229ea4 EZ |
819 | } |
820 | ||
0df8b418 | 821 | /* Store one VSX register. */ |
604c2f83 LM |
822 | static void |
823 | store_vsx_register (const struct regcache *regcache, int tid, int regno) | |
824 | { | |
825 | int ret; | |
826 | gdb_vsxregset_t regs; | |
ac7936df | 827 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
828 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
829 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
830 | ||
9fe70b4f | 831 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
604c2f83 LM |
832 | if (ret < 0) |
833 | { | |
834 | if (errno == EIO) | |
835 | { | |
836 | have_ptrace_getsetvsxregs = 0; | |
837 | return; | |
838 | } | |
839 | perror_with_name (_("Unable to fetch VSX register")); | |
840 | } | |
841 | ||
842 | regcache_raw_collect (regcache, regno, regs + | |
843 | (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize); | |
844 | ||
845 | ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); | |
846 | if (ret < 0) | |
847 | perror_with_name (_("Unable to store VSX register")); | |
848 | } | |
849 | ||
0df8b418 | 850 | /* Store one register. */ |
9abe5450 | 851 | static void |
56be3814 | 852 | store_altivec_register (const struct regcache *regcache, int tid, int regno) |
9abe5450 EZ |
853 | { |
854 | int ret; | |
855 | int offset = 0; | |
856 | gdb_vrregset_t regs; | |
ac7936df | 857 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 MD |
858 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
859 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); | |
9abe5450 EZ |
860 | |
861 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); | |
862 | if (ret < 0) | |
863 | { | |
864 | if (errno == EIO) | |
865 | { | |
866 | have_ptrace_getvrregs = 0; | |
867 | return; | |
868 | } | |
e2e0b3e5 | 869 | perror_with_name (_("Unable to fetch AltiVec register")); |
9abe5450 EZ |
870 | } |
871 | ||
872 | /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes | |
873 | long on the hardware. */ | |
874 | if (regno == (tdep->ppc_vrsave_regnum - 1)) | |
40a6adc1 | 875 | offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); |
9abe5450 | 876 | |
56be3814 | 877 | regcache_raw_collect (regcache, regno, |
0df8b418 MS |
878 | regs + (regno |
879 | - tdep->ppc_vr0_regnum) * vrregsize + offset); | |
9abe5450 EZ |
880 | |
881 | ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); | |
882 | if (ret < 0) | |
e2e0b3e5 | 883 | perror_with_name (_("Unable to store AltiVec register")); |
9abe5450 EZ |
884 | } |
885 | ||
01904826 JB |
886 | /* Assuming TID referrs to an SPE process, set the top halves of TID's |
887 | general-purpose registers and its SPE-specific registers to the | |
888 | values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do | |
889 | nothing. | |
890 | ||
891 | All the logic to deal with whether or not the PTRACE_GETEVRREGS and | |
892 | PTRACE_SETEVRREGS requests are supported is isolated here, and in | |
893 | get_spe_registers. */ | |
894 | static void | |
895 | set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) | |
896 | { | |
897 | if (have_ptrace_getsetevrregs) | |
898 | { | |
899 | if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) | |
900 | return; | |
901 | else | |
902 | { | |
903 | /* EIO means that the PTRACE_SETEVRREGS request isn't | |
904 | supported; we fail silently, and don't try the call | |
905 | again. */ | |
906 | if (errno == EIO) | |
907 | have_ptrace_getsetevrregs = 0; | |
908 | else | |
909 | /* Anything else needs to be reported. */ | |
e2e0b3e5 | 910 | perror_with_name (_("Unable to set SPE registers")); |
01904826 JB |
911 | } |
912 | } | |
913 | } | |
914 | ||
6ced10dd JB |
915 | /* Write GDB's value for the SPE-specific raw register REGNO to TID. |
916 | If REGNO is -1, write the values of all the SPE-specific | |
917 | registers. */ | |
01904826 | 918 | static void |
56be3814 | 919 | store_spe_register (const struct regcache *regcache, int tid, int regno) |
01904826 | 920 | { |
ac7936df | 921 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 922 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
01904826 JB |
923 | struct gdb_evrregset_t evrregs; |
924 | ||
6ced10dd | 925 | gdb_assert (sizeof (evrregs.evr[0]) |
40a6adc1 | 926 | == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
6ced10dd | 927 | gdb_assert (sizeof (evrregs.acc) |
40a6adc1 | 928 | == register_size (gdbarch, tdep->ppc_acc_regnum)); |
6ced10dd | 929 | gdb_assert (sizeof (evrregs.spefscr) |
40a6adc1 | 930 | == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
01904826 | 931 | |
6ced10dd JB |
932 | if (regno == -1) |
933 | /* Since we're going to write out every register, the code below | |
934 | should store to every field of evrregs; if that doesn't happen, | |
935 | make it obvious by initializing it with suspicious values. */ | |
936 | memset (&evrregs, 42, sizeof (evrregs)); | |
937 | else | |
938 | /* We can only read and write the entire EVR register set at a | |
939 | time, so to write just a single register, we do a | |
940 | read-modify-write maneuver. */ | |
941 | get_spe_registers (tid, &evrregs); | |
942 | ||
943 | if (regno == -1) | |
01904826 | 944 | { |
6ced10dd JB |
945 | int i; |
946 | ||
947 | for (i = 0; i < ppc_num_gprs; i++) | |
56be3814 | 948 | regcache_raw_collect (regcache, |
6ced10dd JB |
949 | tdep->ppc_ev0_upper_regnum + i, |
950 | &evrregs.evr[i]); | |
01904826 | 951 | } |
6ced10dd JB |
952 | else if (tdep->ppc_ev0_upper_regnum <= regno |
953 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
56be3814 | 954 | regcache_raw_collect (regcache, regno, |
6ced10dd JB |
955 | &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
956 | ||
957 | if (regno == -1 | |
958 | || regno == tdep->ppc_acc_regnum) | |
56be3814 | 959 | regcache_raw_collect (regcache, |
6ced10dd JB |
960 | tdep->ppc_acc_regnum, |
961 | &evrregs.acc); | |
962 | ||
963 | if (regno == -1 | |
964 | || regno == tdep->ppc_spefscr_regnum) | |
56be3814 | 965 | regcache_raw_collect (regcache, |
6ced10dd JB |
966 | tdep->ppc_spefscr_regnum, |
967 | &evrregs.spefscr); | |
01904826 JB |
968 | |
969 | /* Write back the modified register set. */ | |
970 | set_spe_registers (tid, &evrregs); | |
971 | } | |
972 | ||
45229ea4 | 973 | static void |
56be3814 | 974 | store_register (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 975 | { |
ac7936df | 976 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 977 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
45229ea4 | 978 | /* This isn't really an address. But ptrace thinks of it as one. */ |
e101270f | 979 | CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
52f0bd74 | 980 | int i; |
4a19ea35 | 981 | size_t bytes_to_transfer; |
0f068fb5 | 982 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
45229ea4 | 983 | |
be8626e0 | 984 | if (altivec_register_p (gdbarch, regno)) |
45229ea4 | 985 | { |
56be3814 | 986 | store_altivec_register (regcache, tid, regno); |
45229ea4 EZ |
987 | return; |
988 | } | |
604c2f83 LM |
989 | if (vsx_register_p (gdbarch, regno)) |
990 | { | |
991 | store_vsx_register (regcache, tid, regno); | |
992 | return; | |
993 | } | |
be8626e0 | 994 | else if (spe_register_p (gdbarch, regno)) |
01904826 | 995 | { |
56be3814 | 996 | store_spe_register (regcache, tid, regno); |
01904826 JB |
997 | return; |
998 | } | |
45229ea4 | 999 | |
9abe5450 EZ |
1000 | if (regaddr == -1) |
1001 | return; | |
1002 | ||
4a19ea35 JB |
1003 | /* First collect the register. Keep in mind that the regcache's |
1004 | idea of the register's size may not be a multiple of sizeof | |
411cb3f9 | 1005 | (long). */ |
56d0d96a | 1006 | memset (buf, 0, sizeof buf); |
40a6adc1 MD |
1007 | bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); |
1008 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) | |
4a19ea35 JB |
1009 | { |
1010 | /* Little-endian values always sit at the left end of the buffer. */ | |
56be3814 | 1011 | regcache_raw_collect (regcache, regno, buf); |
4a19ea35 | 1012 | } |
40a6adc1 | 1013 | else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
4a19ea35 JB |
1014 | { |
1015 | /* Big-endian values sit at the right end of the buffer. */ | |
40a6adc1 | 1016 | size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); |
56be3814 | 1017 | regcache_raw_collect (regcache, regno, buf + padding); |
4a19ea35 JB |
1018 | } |
1019 | ||
411cb3f9 | 1020 | for (i = 0; i < bytes_to_transfer; i += sizeof (long)) |
45229ea4 | 1021 | { |
11fde611 JK |
1022 | long l; |
1023 | ||
1024 | memcpy (&l, &buf[i], sizeof (l)); | |
45229ea4 | 1025 | errno = 0; |
11fde611 | 1026 | ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); |
411cb3f9 | 1027 | regaddr += sizeof (long); |
e3f36dbd KB |
1028 | |
1029 | if (errno == EIO | |
7284e1be UW |
1030 | && (regno == tdep->ppc_fpscr_regnum |
1031 | || regno == PPC_ORIG_R3_REGNUM | |
1032 | || regno == PPC_TRAP_REGNUM)) | |
e3f36dbd | 1033 | { |
7284e1be UW |
1034 | /* Some older kernel versions don't allow fpscr, orig_r3 |
1035 | or trap to be written. */ | |
e3f36dbd KB |
1036 | continue; |
1037 | } | |
1038 | ||
45229ea4 EZ |
1039 | if (errno != 0) |
1040 | { | |
bc97b3ba | 1041 | char message[128]; |
8c042590 PM |
1042 | xsnprintf (message, sizeof (message), "writing register %s (#%d)", |
1043 | gdbarch_register_name (gdbarch, regno), regno); | |
bc97b3ba | 1044 | perror_with_name (message); |
45229ea4 EZ |
1045 | } |
1046 | } | |
1047 | } | |
1048 | ||
604c2f83 LM |
1049 | static void |
1050 | fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp) | |
1051 | { | |
1052 | int i; | |
ac7936df | 1053 | struct gdbarch *gdbarch = regcache->arch (); |
604c2f83 LM |
1054 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1055 | int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum); | |
1056 | ||
1057 | for (i = 0; i < ppc_num_vshrs; i++) | |
1058 | regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i, | |
1059 | *vsxregsetp + i * vsxregsize); | |
1060 | } | |
1061 | ||
9abe5450 | 1062 | static void |
56be3814 | 1063 | fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp) |
9abe5450 EZ |
1064 | { |
1065 | int i; | |
ac7936df | 1066 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1067 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9abe5450 | 1068 | int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
40a6adc1 MD |
1069 | int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum); |
1070 | int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum); | |
9abe5450 EZ |
1071 | |
1072 | for (i = 0; i < num_of_vrregs; i++) | |
1073 | { | |
1074 | /* The last 2 registers of this set are only 32 bit long, not | |
1075 | 128, but only VSCR is fetched as a 16 bytes quantity. */ | |
1076 | if (i == (num_of_vrregs - 2)) | |
56be3814 | 1077 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1078 | *vrregsetp + i * vrregsize + offset); |
9abe5450 | 1079 | else |
56be3814 | 1080 | regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i, |
822c9732 | 1081 | *vrregsetp + i * vrregsize); |
9abe5450 EZ |
1082 | } |
1083 | } | |
1084 | ||
604c2f83 LM |
1085 | static void |
1086 | store_vsx_registers (const struct regcache *regcache, int tid) | |
1087 | { | |
1088 | int ret; | |
1089 | gdb_vsxregset_t regs; | |
1090 | ||
1091 | ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); | |
1092 | if (ret < 0) | |
1093 | { | |
1094 | if (errno == EIO) | |
1095 | { | |
1096 | have_ptrace_getsetvsxregs = 0; | |
1097 | return; | |
1098 | } | |
1099 | perror_with_name (_("Couldn't get VSX registers")); | |
1100 | } | |
1101 | ||
1102 | fill_vsxregset (regcache, ®s); | |
1103 | ||
1104 | if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0) | |
1105 | perror_with_name (_("Couldn't write VSX registers")); | |
1106 | } | |
1107 | ||
9abe5450 | 1108 | static void |
56be3814 | 1109 | store_altivec_registers (const struct regcache *regcache, int tid) |
9abe5450 EZ |
1110 | { |
1111 | int ret; | |
1112 | gdb_vrregset_t regs; | |
1113 | ||
0897f59b | 1114 | ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); |
9abe5450 EZ |
1115 | if (ret < 0) |
1116 | { | |
1117 | if (errno == EIO) | |
1118 | { | |
1119 | have_ptrace_getvrregs = 0; | |
1120 | return; | |
1121 | } | |
e2e0b3e5 | 1122 | perror_with_name (_("Couldn't get AltiVec registers")); |
9abe5450 EZ |
1123 | } |
1124 | ||
56be3814 | 1125 | fill_vrregset (regcache, ®s); |
9abe5450 | 1126 | |
0897f59b | 1127 | if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0) |
e2e0b3e5 | 1128 | perror_with_name (_("Couldn't write AltiVec registers")); |
9abe5450 EZ |
1129 | } |
1130 | ||
1dfe79e8 SDJ |
1131 | /* This function actually issues the request to ptrace, telling |
1132 | it to store all general-purpose registers present in the specified | |
1133 | regset. | |
1134 | ||
1135 | If the ptrace request does not exist, this function returns 0 | |
1136 | and properly sets the have_ptrace_* flag. If the request fails, | |
1137 | this function calls perror_with_name. Otherwise, if the request | |
1138 | succeeds, then the regcache is stored and 1 is returned. */ | |
1139 | static int | |
1140 | store_all_gp_regs (const struct regcache *regcache, int tid, int regno) | |
1141 | { | |
ac7936df | 1142 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1143 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1144 | gdb_gregset_t gregset; | |
1145 | ||
1146 | if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) | |
1147 | { | |
1148 | if (errno == EIO) | |
1149 | { | |
1150 | have_ptrace_getsetregs = 0; | |
1151 | return 0; | |
1152 | } | |
1153 | perror_with_name (_("Couldn't get general-purpose registers.")); | |
1154 | } | |
1155 | ||
1156 | fill_gregset (regcache, &gregset, regno); | |
1157 | ||
1158 | if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) | |
1159 | { | |
1160 | if (errno == EIO) | |
1161 | { | |
1162 | have_ptrace_getsetregs = 0; | |
1163 | return 0; | |
1164 | } | |
1165 | perror_with_name (_("Couldn't set general-purpose registers.")); | |
1166 | } | |
1167 | ||
1168 | return 1; | |
1169 | } | |
1170 | ||
1171 | /* This is a wrapper for the store_all_gp_regs function. It is | |
1172 | responsible for verifying if this target has the ptrace request | |
1173 | that can be used to store all general-purpose registers at one | |
1174 | shot. If it doesn't, then we should store them using the | |
1175 | old-fashioned way, which is to iterate over the registers and | |
1176 | store them one by one. */ | |
45229ea4 | 1177 | static void |
1dfe79e8 | 1178 | store_gp_regs (const struct regcache *regcache, int tid, int regno) |
45229ea4 | 1179 | { |
ac7936df | 1180 | struct gdbarch *gdbarch = regcache->arch (); |
40a6adc1 | 1181 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1dfe79e8 SDJ |
1182 | int i; |
1183 | ||
1184 | if (have_ptrace_getsetregs) | |
1185 | if (store_all_gp_regs (regcache, tid, regno)) | |
1186 | return; | |
1187 | ||
1188 | /* If we hit this point, it doesn't really matter which | |
1189 | architecture we are using. We just need to store the | |
1190 | registers in the "old-fashioned way". */ | |
6ced10dd | 1191 | for (i = 0; i < ppc_num_gprs; i++) |
56be3814 | 1192 | store_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
1dfe79e8 SDJ |
1193 | } |
1194 | ||
1195 | /* This function actually issues the request to ptrace, telling | |
1196 | it to store all floating-point registers present in the specified | |
1197 | regset. | |
1198 | ||
1199 | If the ptrace request does not exist, this function returns 0 | |
1200 | and properly sets the have_ptrace_* flag. If the request fails, | |
1201 | this function calls perror_with_name. Otherwise, if the request | |
1202 | succeeds, then the regcache is stored and 1 is returned. */ | |
1203 | static int | |
1204 | store_all_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1205 | { | |
1206 | gdb_fpregset_t fpregs; | |
1207 | ||
1208 | if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1209 | { | |
1210 | if (errno == EIO) | |
1211 | { | |
1212 | have_ptrace_getsetfpregs = 0; | |
1213 | return 0; | |
1214 | } | |
1215 | perror_with_name (_("Couldn't get floating-point registers.")); | |
1216 | } | |
1217 | ||
1218 | fill_fpregset (regcache, &fpregs, regno); | |
1219 | ||
1220 | if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) | |
1221 | { | |
1222 | if (errno == EIO) | |
1223 | { | |
1224 | have_ptrace_getsetfpregs = 0; | |
1225 | return 0; | |
1226 | } | |
1227 | perror_with_name (_("Couldn't set floating-point registers.")); | |
1228 | } | |
1229 | ||
1230 | return 1; | |
1231 | } | |
1232 | ||
1233 | /* This is a wrapper for the store_all_fp_regs function. It is | |
1234 | responsible for verifying if this target has the ptrace request | |
1235 | that can be used to store all floating-point registers at one | |
1236 | shot. If it doesn't, then we should store them using the | |
1237 | old-fashioned way, which is to iterate over the registers and | |
1238 | store them one by one. */ | |
1239 | static void | |
1240 | store_fp_regs (const struct regcache *regcache, int tid, int regno) | |
1241 | { | |
ac7936df | 1242 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1243 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1244 | int i; | |
1245 | ||
1246 | if (have_ptrace_getsetfpregs) | |
1247 | if (store_all_fp_regs (regcache, tid, regno)) | |
1248 | return; | |
1249 | ||
1250 | /* If we hit this point, it doesn't really matter which | |
1251 | architecture we are using. We just need to store the | |
1252 | registers in the "old-fashioned way". */ | |
1253 | for (i = 0; i < ppc_num_fprs; i++) | |
1254 | store_register (regcache, tid, tdep->ppc_fp0_regnum + i); | |
1255 | } | |
1256 | ||
1257 | static void | |
1258 | store_ppc_registers (const struct regcache *regcache, int tid) | |
1259 | { | |
1260 | int i; | |
ac7936df | 1261 | struct gdbarch *gdbarch = regcache->arch (); |
1dfe79e8 SDJ |
1262 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
1263 | ||
1264 | store_gp_regs (regcache, tid, -1); | |
32b99774 | 1265 | if (tdep->ppc_fp0_regnum >= 0) |
1dfe79e8 | 1266 | store_fp_regs (regcache, tid, -1); |
40a6adc1 | 1267 | store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
32b99774 | 1268 | if (tdep->ppc_ps_regnum != -1) |
56be3814 | 1269 | store_register (regcache, tid, tdep->ppc_ps_regnum); |
32b99774 | 1270 | if (tdep->ppc_cr_regnum != -1) |
56be3814 | 1271 | store_register (regcache, tid, tdep->ppc_cr_regnum); |
32b99774 | 1272 | if (tdep->ppc_lr_regnum != -1) |
56be3814 | 1273 | store_register (regcache, tid, tdep->ppc_lr_regnum); |
32b99774 | 1274 | if (tdep->ppc_ctr_regnum != -1) |
56be3814 | 1275 | store_register (regcache, tid, tdep->ppc_ctr_regnum); |
32b99774 | 1276 | if (tdep->ppc_xer_regnum != -1) |
56be3814 | 1277 | store_register (regcache, tid, tdep->ppc_xer_regnum); |
e3f36dbd | 1278 | if (tdep->ppc_mq_regnum != -1) |
56be3814 | 1279 | store_register (regcache, tid, tdep->ppc_mq_regnum); |
32b99774 | 1280 | if (tdep->ppc_fpscr_regnum != -1) |
56be3814 | 1281 | store_register (regcache, tid, tdep->ppc_fpscr_regnum); |
7284e1be UW |
1282 | if (ppc_linux_trap_reg_p (gdbarch)) |
1283 | { | |
1284 | store_register (regcache, tid, PPC_ORIG_R3_REGNUM); | |
1285 | store_register (regcache, tid, PPC_TRAP_REGNUM); | |
1286 | } | |
9abe5450 EZ |
1287 | if (have_ptrace_getvrregs) |
1288 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
56be3814 | 1289 | store_altivec_registers (regcache, tid); |
604c2f83 LM |
1290 | if (have_ptrace_getsetvsxregs) |
1291 | if (tdep->ppc_vsr0_upper_regnum != -1) | |
1292 | store_vsx_registers (regcache, tid); | |
6ced10dd | 1293 | if (tdep->ppc_ev0_upper_regnum >= 0) |
56be3814 | 1294 | store_spe_register (regcache, tid, -1); |
45229ea4 EZ |
1295 | } |
1296 | ||
6ffbb7ab | 1297 | /* Fetch the AT_HWCAP entry from the aux vector. */ |
b261e0c5 UW |
1298 | static unsigned long |
1299 | ppc_linux_get_hwcap (void) | |
6ffbb7ab TJB |
1300 | { |
1301 | CORE_ADDR field; | |
1302 | ||
1303 | if (target_auxv_search (¤t_target, AT_HWCAP, &field)) | |
1304 | return (unsigned long) field; | |
1305 | ||
1306 | return 0; | |
1307 | } | |
1308 | ||
1309 | /* The cached DABR value, to install in new threads. | |
926bf92d UW |
1310 | This variable is used when the PowerPC HWDEBUG ptrace |
1311 | interface is not available. */ | |
6ffbb7ab TJB |
1312 | static long saved_dabr_value; |
1313 | ||
1314 | /* Global structure that will store information about the available | |
926bf92d UW |
1315 | features provided by the PowerPC HWDEBUG ptrace interface. */ |
1316 | static struct ppc_debug_info hwdebug_info; | |
6ffbb7ab TJB |
1317 | |
1318 | /* Global variable that holds the maximum number of slots that the | |
926bf92d UW |
1319 | kernel will use. This is only used when PowerPC HWDEBUG ptrace interface |
1320 | is available. */ | |
6ffbb7ab TJB |
1321 | static size_t max_slots_number = 0; |
1322 | ||
1323 | struct hw_break_tuple | |
1324 | { | |
1325 | long slot; | |
1326 | struct ppc_hw_breakpoint *hw_break; | |
1327 | }; | |
1328 | ||
1329 | /* This is an internal VEC created to store information about *points inserted | |
926bf92d UW |
1330 | for each thread. This is used when PowerPC HWDEBUG ptrace interface is |
1331 | available. */ | |
6ffbb7ab TJB |
1332 | typedef struct thread_points |
1333 | { | |
1334 | /* The TID to which this *point relates. */ | |
1335 | int tid; | |
1336 | /* Information about the *point, such as its address, type, etc. | |
1337 | ||
1338 | Each element inside this vector corresponds to a hardware | |
1339 | breakpoint or watchpoint in the thread represented by TID. The maximum | |
1340 | size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of | |
1341 | the tuple is NULL, then the position in the vector is free. */ | |
1342 | struct hw_break_tuple *hw_breaks; | |
1343 | } *thread_points_p; | |
1344 | DEF_VEC_P (thread_points_p); | |
1345 | ||
1346 | VEC(thread_points_p) *ppc_threads = NULL; | |
1347 | ||
926bf92d UW |
1348 | /* The version of the PowerPC HWDEBUG kernel interface that we will use, if |
1349 | available. */ | |
6ffbb7ab TJB |
1350 | #define PPC_DEBUG_CURRENT_VERSION 1 |
1351 | ||
926bf92d | 1352 | /* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */ |
e0d24f8d | 1353 | static int |
926bf92d | 1354 | have_ptrace_hwdebug_interface (void) |
e0d24f8d | 1355 | { |
926bf92d | 1356 | static int have_ptrace_hwdebug_interface = -1; |
e0d24f8d | 1357 | |
926bf92d | 1358 | if (have_ptrace_hwdebug_interface == -1) |
6ffbb7ab TJB |
1359 | { |
1360 | int tid; | |
e0d24f8d | 1361 | |
dfd4cc63 | 1362 | tid = ptid_get_lwp (inferior_ptid); |
6ffbb7ab | 1363 | if (tid == 0) |
dfd4cc63 | 1364 | tid = ptid_get_pid (inferior_ptid); |
e0d24f8d | 1365 | |
926bf92d UW |
1366 | /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */ |
1367 | if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0) | |
6ffbb7ab | 1368 | { |
926bf92d | 1369 | /* Check whether PowerPC HWDEBUG ptrace interface is functional and |
0c56f59b | 1370 | provides any supported feature. */ |
926bf92d | 1371 | if (hwdebug_info.features != 0) |
0c56f59b | 1372 | { |
926bf92d UW |
1373 | have_ptrace_hwdebug_interface = 1; |
1374 | max_slots_number = hwdebug_info.num_instruction_bps | |
1375 | + hwdebug_info.num_data_bps | |
1376 | + hwdebug_info.num_condition_regs; | |
1377 | return have_ptrace_hwdebug_interface; | |
0c56f59b | 1378 | } |
6ffbb7ab | 1379 | } |
926bf92d UW |
1380 | /* Old school interface and no PowerPC HWDEBUG ptrace support. */ |
1381 | have_ptrace_hwdebug_interface = 0; | |
1382 | memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info)); | |
6ffbb7ab TJB |
1383 | } |
1384 | ||
926bf92d | 1385 | return have_ptrace_hwdebug_interface; |
e0d24f8d WZ |
1386 | } |
1387 | ||
6ffbb7ab | 1388 | static int |
5461485a | 1389 | ppc_linux_can_use_hw_breakpoint (struct target_ops *self, |
f486487f | 1390 | enum bptype type, int cnt, int ot) |
b7622095 | 1391 | { |
6ffbb7ab | 1392 | int total_hw_wp, total_hw_bp; |
b7622095 | 1393 | |
926bf92d | 1394 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab | 1395 | { |
926bf92d UW |
1396 | /* When PowerPC HWDEBUG ptrace interface is available, the number of |
1397 | available hardware watchpoints and breakpoints is stored at the | |
1398 | hwdebug_info struct. */ | |
1399 | total_hw_bp = hwdebug_info.num_instruction_bps; | |
1400 | total_hw_wp = hwdebug_info.num_data_bps; | |
6ffbb7ab TJB |
1401 | } |
1402 | else | |
1403 | { | |
926bf92d UW |
1404 | /* When we do not have PowerPC HWDEBUG ptrace interface, we should |
1405 | consider having 1 hardware watchpoint and no hardware breakpoints. */ | |
6ffbb7ab TJB |
1406 | total_hw_bp = 0; |
1407 | total_hw_wp = 1; | |
1408 | } | |
b7622095 | 1409 | |
6ffbb7ab TJB |
1410 | if (type == bp_hardware_watchpoint || type == bp_read_watchpoint |
1411 | || type == bp_access_watchpoint || type == bp_watchpoint) | |
1412 | { | |
bb08bdbd | 1413 | if (cnt + ot > total_hw_wp) |
6ffbb7ab TJB |
1414 | return -1; |
1415 | } | |
1416 | else if (type == bp_hardware_breakpoint) | |
1417 | { | |
572f6555 EBM |
1418 | if (total_hw_bp == 0) |
1419 | { | |
1420 | /* No hardware breakpoint support. */ | |
1421 | return 0; | |
1422 | } | |
6ffbb7ab TJB |
1423 | if (cnt > total_hw_bp) |
1424 | return -1; | |
1425 | } | |
1426 | ||
926bf92d | 1427 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1428 | { |
1429 | int tid; | |
1430 | ptid_t ptid = inferior_ptid; | |
1431 | ||
0df8b418 MS |
1432 | /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG |
1433 | and whether the target has DABR. If either answer is no, the | |
1434 | ptrace call will return -1. Fail in that case. */ | |
dfd4cc63 | 1435 | tid = ptid_get_lwp (ptid); |
6ffbb7ab | 1436 | if (tid == 0) |
dfd4cc63 | 1437 | tid = ptid_get_pid (ptid); |
6ffbb7ab TJB |
1438 | |
1439 | if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1) | |
1440 | return 0; | |
1441 | } | |
1442 | ||
1443 | return 1; | |
b7622095 LM |
1444 | } |
1445 | ||
e0d24f8d | 1446 | static int |
31568a15 TT |
1447 | ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self, |
1448 | CORE_ADDR addr, int len) | |
e0d24f8d WZ |
1449 | { |
1450 | /* Handle sub-8-byte quantities. */ | |
1451 | if (len <= 0) | |
1452 | return 0; | |
1453 | ||
926bf92d UW |
1454 | /* The PowerPC HWDEBUG ptrace interface tells if there are alignment |
1455 | restrictions for watchpoints in the processors. In that case, we use that | |
1456 | information to determine the hardcoded watchable region for | |
1457 | watchpoints. */ | |
1458 | if (have_ptrace_hwdebug_interface ()) | |
6ffbb7ab | 1459 | { |
e23b9d6e | 1460 | int region_size; |
4feebbdd EBM |
1461 | /* Embedded DAC-based processors, like the PowerPC 440 have ranged |
1462 | watchpoints and can watch any access within an arbitrary memory | |
1463 | region. This is useful to watch arrays and structs, for instance. It | |
1464 | takes two hardware watchpoints though. */ | |
e09342b5 | 1465 | if (len > 1 |
926bf92d | 1466 | && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE |
4feebbdd | 1467 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
e09342b5 | 1468 | return 2; |
e23b9d6e UW |
1469 | /* Check if the processor provides DAWR interface. */ |
1470 | if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) | |
1471 | /* DAWR interface allows to watch up to 512 byte wide ranges which | |
1472 | can't cross a 512 byte boundary. */ | |
1473 | region_size = 512; | |
1474 | else | |
1475 | region_size = hwdebug_info.data_bp_alignment; | |
4feebbdd EBM |
1476 | /* Server processors provide one hardware watchpoint and addr+len should |
1477 | fall in the watchable region provided by the ptrace interface. */ | |
e23b9d6e UW |
1478 | if (region_size |
1479 | && (addr + len > (addr & ~(region_size - 1)) + region_size)) | |
0cf6dd15 | 1480 | return 0; |
6ffbb7ab | 1481 | } |
b7622095 | 1482 | /* addr+len must fall in the 8 byte watchable region for DABR-based |
926bf92d UW |
1483 | processors (i.e., server processors). Without the new PowerPC HWDEBUG |
1484 | ptrace interface, DAC-based processors (i.e., embedded processors) will | |
1485 | use addresses aligned to 4-bytes due to the way the read/write flags are | |
6ffbb7ab TJB |
1486 | passed in the old ptrace interface. */ |
1487 | else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
1488 | && (addr + len) > (addr & ~3) + 4) | |
1489 | || (addr + len) > (addr & ~7) + 8) | |
e0d24f8d WZ |
1490 | return 0; |
1491 | ||
1492 | return 1; | |
1493 | } | |
1494 | ||
6ffbb7ab | 1495 | /* This function compares two ppc_hw_breakpoint structs field-by-field. */ |
e4166a49 | 1496 | static int |
926bf92d | 1497 | hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b) |
6ffbb7ab | 1498 | { |
ad422571 TJB |
1499 | return (a->trigger_type == b->trigger_type |
1500 | && a->addr_mode == b->addr_mode | |
1501 | && a->condition_mode == b->condition_mode | |
1502 | && a->addr == b->addr | |
1503 | && a->addr2 == b->addr2 | |
6ffbb7ab TJB |
1504 | && a->condition_value == b->condition_value); |
1505 | } | |
1506 | ||
1507 | /* This function can be used to retrieve a thread_points by the TID of the | |
1508 | related process/thread. If nothing has been found, and ALLOC_NEW is 0, | |
1509 | it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the | |
1510 | provided TID will be created and returned. */ | |
1511 | static struct thread_points * | |
926bf92d | 1512 | hwdebug_find_thread_points_by_tid (int tid, int alloc_new) |
6ffbb7ab TJB |
1513 | { |
1514 | int i; | |
1515 | struct thread_points *t; | |
1516 | ||
1517 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++) | |
1518 | if (t->tid == tid) | |
1519 | return t; | |
1520 | ||
1521 | t = NULL; | |
1522 | ||
1523 | /* Do we need to allocate a new point_item | |
1524 | if the wanted one does not exist? */ | |
1525 | if (alloc_new) | |
1526 | { | |
8d749320 SM |
1527 | t = XNEW (struct thread_points); |
1528 | t->hw_breaks = XCNEWVEC (struct hw_break_tuple, max_slots_number); | |
6ffbb7ab TJB |
1529 | t->tid = tid; |
1530 | VEC_safe_push (thread_points_p, ppc_threads, t); | |
1531 | } | |
1532 | ||
1533 | return t; | |
1534 | } | |
1535 | ||
1536 | /* This function is a generic wrapper that is responsible for inserting a | |
1537 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1538 | kernel) and registering it internally in GDB. */ | |
1539 | static void | |
926bf92d | 1540 | hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1541 | { |
1542 | int i; | |
1543 | long slot; | |
a90ecff8 | 1544 | gdb::unique_xmalloc_ptr<ppc_hw_breakpoint> p (XDUP (ppc_hw_breakpoint, b)); |
6ffbb7ab | 1545 | struct hw_break_tuple *hw_breaks; |
6ffbb7ab TJB |
1546 | struct thread_points *t; |
1547 | struct hw_break_tuple *tuple; | |
1548 | ||
6ffbb7ab | 1549 | errno = 0; |
a90ecff8 | 1550 | slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p.get ()); |
6ffbb7ab TJB |
1551 | if (slot < 0) |
1552 | perror_with_name (_("Unexpected error setting breakpoint or watchpoint")); | |
1553 | ||
1554 | /* Everything went fine, so we have to register this *point. */ | |
926bf92d | 1555 | t = hwdebug_find_thread_points_by_tid (tid, 1); |
6ffbb7ab TJB |
1556 | gdb_assert (t != NULL); |
1557 | hw_breaks = t->hw_breaks; | |
1558 | ||
1559 | /* Find a free element in the hw_breaks vector. */ | |
1560 | for (i = 0; i < max_slots_number; i++) | |
1561 | if (hw_breaks[i].hw_break == NULL) | |
1562 | { | |
1563 | hw_breaks[i].slot = slot; | |
a90ecff8 | 1564 | hw_breaks[i].hw_break = p.release (); |
6ffbb7ab TJB |
1565 | break; |
1566 | } | |
1567 | ||
1568 | gdb_assert (i != max_slots_number); | |
6ffbb7ab TJB |
1569 | } |
1570 | ||
1571 | /* This function is a generic wrapper that is responsible for removing a | |
1572 | *point (i.e., calling `ptrace' in order to issue the request to the | |
1573 | kernel), and unregistering it internally at GDB. */ | |
1574 | static void | |
926bf92d | 1575 | hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid) |
6ffbb7ab TJB |
1576 | { |
1577 | int i; | |
1578 | struct hw_break_tuple *hw_breaks; | |
1579 | struct thread_points *t; | |
1580 | ||
926bf92d | 1581 | t = hwdebug_find_thread_points_by_tid (tid, 0); |
6ffbb7ab TJB |
1582 | gdb_assert (t != NULL); |
1583 | hw_breaks = t->hw_breaks; | |
1584 | ||
1585 | for (i = 0; i < max_slots_number; i++) | |
926bf92d | 1586 | if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b)) |
6ffbb7ab TJB |
1587 | break; |
1588 | ||
1589 | gdb_assert (i != max_slots_number); | |
1590 | ||
1591 | /* We have to ignore ENOENT errors because the kernel implements hardware | |
1592 | breakpoints/watchpoints as "one-shot", that is, they are automatically | |
1593 | deleted when hit. */ | |
1594 | errno = 0; | |
1595 | if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0) | |
1596 | if (errno != ENOENT) | |
0df8b418 MS |
1597 | perror_with_name (_("Unexpected error deleting " |
1598 | "breakpoint or watchpoint")); | |
6ffbb7ab TJB |
1599 | |
1600 | xfree (hw_breaks[i].hw_break); | |
1601 | hw_breaks[i].hw_break = NULL; | |
1602 | } | |
9f0bdab8 | 1603 | |
f1310107 TJB |
1604 | /* Return the number of registers needed for a ranged breakpoint. */ |
1605 | ||
1606 | static int | |
1607 | ppc_linux_ranged_break_num_registers (struct target_ops *target) | |
1608 | { | |
926bf92d UW |
1609 | return ((have_ptrace_hwdebug_interface () |
1610 | && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)? | |
f1310107 TJB |
1611 | 2 : -1); |
1612 | } | |
1613 | ||
1614 | /* Insert the hardware breakpoint described by BP_TGT. Returns 0 for | |
1615 | success, 1 if hardware breakpoints are not supported or -1 for failure. */ | |
1616 | ||
2c387241 | 1617 | static int |
23a26771 TT |
1618 | ppc_linux_insert_hw_breakpoint (struct target_ops *self, |
1619 | struct gdbarch *gdbarch, | |
6ffbb7ab | 1620 | struct bp_target_info *bp_tgt) |
e0d24f8d | 1621 | { |
9f0bdab8 | 1622 | struct lwp_info *lp; |
6ffbb7ab TJB |
1623 | struct ppc_hw_breakpoint p; |
1624 | ||
926bf92d | 1625 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1626 | return -1; |
1627 | ||
ad422571 TJB |
1628 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1629 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 | 1630 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
0d5ed153 | 1631 | p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); |
6ffbb7ab TJB |
1632 | p.condition_value = 0; |
1633 | ||
f1310107 TJB |
1634 | if (bp_tgt->length) |
1635 | { | |
1636 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1637 | ||
1638 | /* The breakpoint will trigger if the address of the instruction is | |
1639 | within the defined range, as follows: p.addr <= address < p.addr2. */ | |
1640 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1641 | } | |
1642 | else | |
1643 | { | |
1644 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1645 | p.addr2 = 0; | |
1646 | } | |
1647 | ||
4c38200f | 1648 | ALL_LWPS (lp) |
dfd4cc63 | 1649 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
1650 | |
1651 | return 0; | |
1652 | } | |
1653 | ||
1654 | static int | |
a64dc96c TT |
1655 | ppc_linux_remove_hw_breakpoint (struct target_ops *self, |
1656 | struct gdbarch *gdbarch, | |
6ffbb7ab TJB |
1657 | struct bp_target_info *bp_tgt) |
1658 | { | |
6ffbb7ab TJB |
1659 | struct lwp_info *lp; |
1660 | struct ppc_hw_breakpoint p; | |
b7622095 | 1661 | |
926bf92d | 1662 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
1663 | return -1; |
1664 | ||
ad422571 TJB |
1665 | p.version = PPC_DEBUG_CURRENT_VERSION; |
1666 | p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; | |
ad422571 TJB |
1667 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
1668 | p.addr = (uint64_t) bp_tgt->placed_address; | |
6ffbb7ab TJB |
1669 | p.condition_value = 0; |
1670 | ||
f1310107 TJB |
1671 | if (bp_tgt->length) |
1672 | { | |
1673 | p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1674 | ||
1675 | /* The breakpoint will trigger if the address of the instruction is within | |
1676 | the defined range, as follows: p.addr <= address < p.addr2. */ | |
1677 | p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; | |
1678 | } | |
1679 | else | |
1680 | { | |
1681 | p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1682 | p.addr2 = 0; | |
1683 | } | |
1684 | ||
4c38200f | 1685 | ALL_LWPS (lp) |
dfd4cc63 | 1686 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
1687 | |
1688 | return 0; | |
1689 | } | |
1690 | ||
1691 | static int | |
e76460db | 1692 | get_trigger_type (enum target_hw_bp_type type) |
6ffbb7ab TJB |
1693 | { |
1694 | int t; | |
1695 | ||
e76460db | 1696 | if (type == hw_read) |
6ffbb7ab | 1697 | t = PPC_BREAKPOINT_TRIGGER_READ; |
e76460db | 1698 | else if (type == hw_write) |
6ffbb7ab | 1699 | t = PPC_BREAKPOINT_TRIGGER_WRITE; |
b7622095 | 1700 | else |
6ffbb7ab TJB |
1701 | t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; |
1702 | ||
1703 | return t; | |
1704 | } | |
1705 | ||
9c06b0b4 TJB |
1706 | /* Insert a new masked watchpoint at ADDR using the mask MASK. |
1707 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1708 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1709 | an error on failure. */ | |
1710 | ||
1711 | static int | |
1712 | ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr, | |
f4b0a671 | 1713 | CORE_ADDR mask, enum target_hw_bp_type rw) |
9c06b0b4 | 1714 | { |
9c06b0b4 TJB |
1715 | struct lwp_info *lp; |
1716 | struct ppc_hw_breakpoint p; | |
1717 | ||
926bf92d | 1718 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1719 | |
1720 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1721 | p.trigger_type = get_trigger_type (rw); | |
1722 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1723 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1724 | p.addr = addr; | |
1725 | p.addr2 = mask; | |
1726 | p.condition_value = 0; | |
1727 | ||
4c38200f | 1728 | ALL_LWPS (lp) |
dfd4cc63 | 1729 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
9c06b0b4 TJB |
1730 | |
1731 | return 0; | |
1732 | } | |
1733 | ||
1734 | /* Remove a masked watchpoint at ADDR with the mask MASK. | |
1735 | RW may be hw_read for a read watchpoint, hw_write for a write watchpoint | |
1736 | or hw_access for an access watchpoint. Returns 0 on success and throws | |
1737 | an error on failure. */ | |
1738 | ||
1739 | static int | |
1740 | ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr, | |
f4b0a671 | 1741 | CORE_ADDR mask, enum target_hw_bp_type rw) |
9c06b0b4 | 1742 | { |
9c06b0b4 TJB |
1743 | struct lwp_info *lp; |
1744 | struct ppc_hw_breakpoint p; | |
1745 | ||
926bf92d | 1746 | gdb_assert (have_ptrace_hwdebug_interface ()); |
9c06b0b4 TJB |
1747 | |
1748 | p.version = PPC_DEBUG_CURRENT_VERSION; | |
1749 | p.trigger_type = get_trigger_type (rw); | |
1750 | p.addr_mode = PPC_BREAKPOINT_MODE_MASK; | |
1751 | p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1752 | p.addr = addr; | |
1753 | p.addr2 = mask; | |
1754 | p.condition_value = 0; | |
1755 | ||
4c38200f | 1756 | ALL_LWPS (lp) |
dfd4cc63 | 1757 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
9c06b0b4 TJB |
1758 | |
1759 | return 0; | |
1760 | } | |
1761 | ||
0cf6dd15 TJB |
1762 | /* Check whether we have at least one free DVC register. */ |
1763 | static int | |
1764 | can_use_watchpoint_cond_accel (void) | |
1765 | { | |
1766 | struct thread_points *p; | |
dfd4cc63 | 1767 | int tid = ptid_get_lwp (inferior_ptid); |
926bf92d | 1768 | int cnt = hwdebug_info.num_condition_regs, i; |
0cf6dd15 TJB |
1769 | CORE_ADDR tmp_value; |
1770 | ||
926bf92d | 1771 | if (!have_ptrace_hwdebug_interface () || cnt == 0) |
0cf6dd15 TJB |
1772 | return 0; |
1773 | ||
926bf92d | 1774 | p = hwdebug_find_thread_points_by_tid (tid, 0); |
0cf6dd15 TJB |
1775 | |
1776 | if (p) | |
1777 | { | |
1778 | for (i = 0; i < max_slots_number; i++) | |
1779 | if (p->hw_breaks[i].hw_break != NULL | |
1780 | && (p->hw_breaks[i].hw_break->condition_mode | |
1781 | != PPC_BREAKPOINT_CONDITION_NONE)) | |
1782 | cnt--; | |
1783 | ||
1784 | /* There are no available slots now. */ | |
1785 | if (cnt <= 0) | |
1786 | return 0; | |
1787 | } | |
1788 | ||
1789 | return 1; | |
1790 | } | |
1791 | ||
1792 | /* Calculate the enable bits and the contents of the Data Value Compare | |
1793 | debug register present in BookE processors. | |
1794 | ||
1795 | ADDR is the address to be watched, LEN is the length of watched data | |
1796 | and DATA_VALUE is the value which will trigger the watchpoint. | |
1797 | On exit, CONDITION_MODE will hold the enable bits for the DVC, and | |
1798 | CONDITION_VALUE will hold the value which should be put in the | |
1799 | DVC register. */ | |
1800 | static void | |
1801 | calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value, | |
1802 | uint32_t *condition_mode, uint64_t *condition_value) | |
1803 | { | |
1804 | int i, num_byte_enable, align_offset, num_bytes_off_dvc, | |
1805 | rightmost_enabled_byte; | |
1806 | CORE_ADDR addr_end_data, addr_end_dvc; | |
1807 | ||
1808 | /* The DVC register compares bytes within fixed-length windows which | |
1809 | are word-aligned, with length equal to that of the DVC register. | |
1810 | We need to calculate where our watch region is relative to that | |
1811 | window and enable comparison of the bytes which fall within it. */ | |
1812 | ||
926bf92d | 1813 | align_offset = addr % hwdebug_info.sizeof_condition; |
0cf6dd15 TJB |
1814 | addr_end_data = addr + len; |
1815 | addr_end_dvc = (addr - align_offset | |
926bf92d | 1816 | + hwdebug_info.sizeof_condition); |
0cf6dd15 TJB |
1817 | num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? |
1818 | addr_end_data - addr_end_dvc : 0; | |
1819 | num_byte_enable = len - num_bytes_off_dvc; | |
1820 | /* Here, bytes are numbered from right to left. */ | |
1821 | rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? | |
1822 | addr_end_dvc - addr_end_data : 0; | |
1823 | ||
1824 | *condition_mode = PPC_BREAKPOINT_CONDITION_AND; | |
1825 | for (i = 0; i < num_byte_enable; i++) | |
0df8b418 MS |
1826 | *condition_mode |
1827 | |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); | |
0cf6dd15 TJB |
1828 | |
1829 | /* Now we need to match the position within the DVC of the comparison | |
1830 | value with where the watch region is relative to the window | |
1831 | (i.e., the ALIGN_OFFSET). */ | |
1832 | ||
1833 | *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 | |
1834 | << rightmost_enabled_byte * 8); | |
1835 | } | |
1836 | ||
1837 | /* Return the number of memory locations that need to be accessed to | |
1838 | evaluate the expression which generated the given value chain. | |
1839 | Returns -1 if there's any register access involved, or if there are | |
1840 | other kinds of values which are not acceptable in a condition | |
1841 | expression (e.g., lval_computed or lval_internalvar). */ | |
1842 | static int | |
a6535de1 | 1843 | num_memory_accesses (const std::vector<value_ref_ptr> &chain) |
0cf6dd15 TJB |
1844 | { |
1845 | int found_memory_cnt = 0; | |
0cf6dd15 TJB |
1846 | |
1847 | /* The idea here is that evaluating an expression generates a series | |
1848 | of values, one holding the value of every subexpression. (The | |
1849 | expression a*b+c has five subexpressions: a, b, a*b, c, and | |
1850 | a*b+c.) GDB's values hold almost enough information to establish | |
1851 | the criteria given above --- they identify memory lvalues, | |
1852 | register lvalues, computed values, etcetera. So we can evaluate | |
1853 | the expression, and then scan the chain of values that leaves | |
1854 | behind to determine the memory locations involved in the evaluation | |
1855 | of an expression. | |
1856 | ||
1857 | However, I don't think that the values returned by inferior | |
1858 | function calls are special in any way. So this function may not | |
1859 | notice that an expression contains an inferior function call. | |
1860 | FIXME. */ | |
1861 | ||
a6535de1 | 1862 | for (const value_ref_ptr &iter : chain) |
0cf6dd15 | 1863 | { |
a6535de1 TT |
1864 | struct value *v = iter.get (); |
1865 | ||
0cf6dd15 TJB |
1866 | /* Constants and values from the history are fine. */ |
1867 | if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) | |
1868 | continue; | |
1869 | else if (VALUE_LVAL (v) == lval_memory) | |
1870 | { | |
1871 | /* A lazy memory lvalue is one that GDB never needed to fetch; | |
1872 | we either just used its address (e.g., `a' in `a.b') or | |
1873 | we never needed it at all (e.g., `a' in `a,b'). */ | |
1874 | if (!value_lazy (v)) | |
1875 | found_memory_cnt++; | |
1876 | } | |
0df8b418 | 1877 | /* Other kinds of values are not fine. */ |
0cf6dd15 TJB |
1878 | else |
1879 | return -1; | |
1880 | } | |
1881 | ||
1882 | return found_memory_cnt; | |
1883 | } | |
1884 | ||
1885 | /* Verifies whether the expression COND can be implemented using the | |
1886 | DVC (Data Value Compare) register in BookE processors. The expression | |
1887 | must test the watch value for equality with a constant expression. | |
1888 | If the function returns 1, DATA_VALUE will contain the constant against | |
e7db58ea TJB |
1889 | which the watch value should be compared and LEN will contain the size |
1890 | of the constant. */ | |
0cf6dd15 TJB |
1891 | static int |
1892 | check_condition (CORE_ADDR watch_addr, struct expression *cond, | |
e7db58ea | 1893 | CORE_ADDR *data_value, int *len) |
0cf6dd15 TJB |
1894 | { |
1895 | int pc = 1, num_accesses_left, num_accesses_right; | |
a6535de1 TT |
1896 | struct value *left_val, *right_val; |
1897 | std::vector<value_ref_ptr> left_chain, right_chain; | |
0cf6dd15 TJB |
1898 | |
1899 | if (cond->elts[0].opcode != BINOP_EQUAL) | |
1900 | return 0; | |
1901 | ||
3a1115a0 | 1902 | fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0); |
0cf6dd15 TJB |
1903 | num_accesses_left = num_memory_accesses (left_chain); |
1904 | ||
1905 | if (left_val == NULL || num_accesses_left < 0) | |
a6535de1 | 1906 | return 0; |
0cf6dd15 | 1907 | |
3a1115a0 | 1908 | fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0); |
0cf6dd15 TJB |
1909 | num_accesses_right = num_memory_accesses (right_chain); |
1910 | ||
1911 | if (right_val == NULL || num_accesses_right < 0) | |
a6535de1 | 1912 | return 0; |
0cf6dd15 TJB |
1913 | |
1914 | if (num_accesses_left == 1 && num_accesses_right == 0 | |
1915 | && VALUE_LVAL (left_val) == lval_memory | |
1916 | && value_address (left_val) == watch_addr) | |
e7db58ea TJB |
1917 | { |
1918 | *data_value = value_as_long (right_val); | |
1919 | ||
1920 | /* DATA_VALUE is the constant in RIGHT_VAL, but actually has | |
1921 | the same type as the memory region referenced by LEFT_VAL. */ | |
1922 | *len = TYPE_LENGTH (check_typedef (value_type (left_val))); | |
1923 | } | |
0cf6dd15 TJB |
1924 | else if (num_accesses_left == 0 && num_accesses_right == 1 |
1925 | && VALUE_LVAL (right_val) == lval_memory | |
1926 | && value_address (right_val) == watch_addr) | |
e7db58ea TJB |
1927 | { |
1928 | *data_value = value_as_long (left_val); | |
1929 | ||
1930 | /* DATA_VALUE is the constant in LEFT_VAL, but actually has | |
1931 | the same type as the memory region referenced by RIGHT_VAL. */ | |
1932 | *len = TYPE_LENGTH (check_typedef (value_type (right_val))); | |
1933 | } | |
0cf6dd15 | 1934 | else |
a6535de1 | 1935 | return 0; |
0cf6dd15 TJB |
1936 | |
1937 | return 1; | |
1938 | } | |
1939 | ||
1940 | /* Return non-zero if the target is capable of using hardware to evaluate | |
1941 | the condition expression, thus only triggering the watchpoint when it is | |
1942 | true. */ | |
1943 | static int | |
c3a5ff89 TT |
1944 | ppc_linux_can_accel_watchpoint_condition (struct target_ops *self, |
1945 | CORE_ADDR addr, int len, int rw, | |
0cf6dd15 TJB |
1946 | struct expression *cond) |
1947 | { | |
1948 | CORE_ADDR data_value; | |
1949 | ||
926bf92d UW |
1950 | return (have_ptrace_hwdebug_interface () |
1951 | && hwdebug_info.num_condition_regs > 0 | |
e7db58ea | 1952 | && check_condition (addr, cond, &data_value, &len)); |
0cf6dd15 TJB |
1953 | } |
1954 | ||
e09342b5 TJB |
1955 | /* Set up P with the parameters necessary to request a watchpoint covering |
1956 | LEN bytes starting at ADDR and if possible with condition expression COND | |
1957 | evaluated by hardware. INSERT tells if we are creating a request for | |
1958 | inserting or removing the watchpoint. */ | |
1959 | ||
1960 | static void | |
1961 | create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr, | |
e76460db PA |
1962 | int len, enum target_hw_bp_type type, |
1963 | struct expression *cond, int insert) | |
e09342b5 | 1964 | { |
f16c4e8b | 1965 | if (len == 1 |
926bf92d | 1966 | || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) |
e09342b5 TJB |
1967 | { |
1968 | int use_condition; | |
1969 | CORE_ADDR data_value; | |
1970 | ||
1971 | use_condition = (insert? can_use_watchpoint_cond_accel () | |
926bf92d | 1972 | : hwdebug_info.num_condition_regs > 0); |
e7db58ea TJB |
1973 | if (cond && use_condition && check_condition (addr, cond, |
1974 | &data_value, &len)) | |
e09342b5 TJB |
1975 | calculate_dvc (addr, len, data_value, &p->condition_mode, |
1976 | &p->condition_value); | |
1977 | else | |
1978 | { | |
1979 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1980 | p->condition_value = 0; | |
1981 | } | |
1982 | ||
1983 | p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; | |
1984 | p->addr2 = 0; | |
1985 | } | |
1986 | else | |
1987 | { | |
1988 | p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; | |
1989 | p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; | |
1990 | p->condition_value = 0; | |
1991 | ||
1992 | /* The watchpoint will trigger if the address of the memory access is | |
1993 | within the defined range, as follows: p->addr <= address < p->addr2. | |
1994 | ||
1995 | Note that the above sentence just documents how ptrace interprets | |
1996 | its arguments; the watchpoint is set to watch the range defined by | |
1997 | the user _inclusively_, as specified by the user interface. */ | |
1998 | p->addr2 = (uint64_t) addr + len; | |
1999 | } | |
2000 | ||
2001 | p->version = PPC_DEBUG_CURRENT_VERSION; | |
e76460db | 2002 | p->trigger_type = get_trigger_type (type); |
e09342b5 TJB |
2003 | p->addr = (uint64_t) addr; |
2004 | } | |
2005 | ||
6ffbb7ab | 2006 | static int |
e76460db PA |
2007 | ppc_linux_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, |
2008 | enum target_hw_bp_type type, | |
0cf6dd15 | 2009 | struct expression *cond) |
6ffbb7ab TJB |
2010 | { |
2011 | struct lwp_info *lp; | |
6ffbb7ab TJB |
2012 | int ret = -1; |
2013 | ||
926bf92d | 2014 | if (have_ptrace_hwdebug_interface ()) |
e0d24f8d | 2015 | { |
6ffbb7ab TJB |
2016 | struct ppc_hw_breakpoint p; |
2017 | ||
e76460db | 2018 | create_watchpoint_request (&p, addr, len, type, cond, 1); |
6ffbb7ab | 2019 | |
4c38200f | 2020 | ALL_LWPS (lp) |
dfd4cc63 | 2021 | hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
2022 | |
2023 | ret = 0; | |
e0d24f8d | 2024 | } |
6ffbb7ab TJB |
2025 | else |
2026 | { | |
2027 | long dabr_value; | |
2028 | long read_mode, write_mode; | |
e0d24f8d | 2029 | |
6ffbb7ab TJB |
2030 | if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2031 | { | |
2032 | /* PowerPC 440 requires only the read/write flags to be passed | |
2033 | to the kernel. */ | |
ad422571 | 2034 | read_mode = 1; |
6ffbb7ab TJB |
2035 | write_mode = 2; |
2036 | } | |
2037 | else | |
2038 | { | |
2039 | /* PowerPC 970 and other DABR-based processors are required to pass | |
2040 | the Breakpoint Translation bit together with the flags. */ | |
ad422571 | 2041 | read_mode = 5; |
6ffbb7ab TJB |
2042 | write_mode = 6; |
2043 | } | |
1c86e440 | 2044 | |
6ffbb7ab | 2045 | dabr_value = addr & ~(read_mode | write_mode); |
e76460db | 2046 | switch (type) |
6ffbb7ab TJB |
2047 | { |
2048 | case hw_read: | |
2049 | /* Set read and translate bits. */ | |
2050 | dabr_value |= read_mode; | |
2051 | break; | |
2052 | case hw_write: | |
2053 | /* Set write and translate bits. */ | |
2054 | dabr_value |= write_mode; | |
2055 | break; | |
2056 | case hw_access: | |
2057 | /* Set read, write and translate bits. */ | |
2058 | dabr_value |= read_mode | write_mode; | |
2059 | break; | |
2060 | } | |
1c86e440 | 2061 | |
6ffbb7ab TJB |
2062 | saved_dabr_value = dabr_value; |
2063 | ||
4c38200f | 2064 | ALL_LWPS (lp) |
dfd4cc63 | 2065 | if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0, |
0cf6dd15 | 2066 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2067 | return -1; |
2068 | ||
2069 | ret = 0; | |
2070 | } | |
2071 | ||
2072 | return ret; | |
e0d24f8d WZ |
2073 | } |
2074 | ||
2c387241 | 2075 | static int |
e76460db PA |
2076 | ppc_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, |
2077 | enum target_hw_bp_type type, | |
0cf6dd15 | 2078 | struct expression *cond) |
e0d24f8d | 2079 | { |
9f0bdab8 | 2080 | struct lwp_info *lp; |
6ffbb7ab | 2081 | int ret = -1; |
9f0bdab8 | 2082 | |
926bf92d | 2083 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2084 | { |
2085 | struct ppc_hw_breakpoint p; | |
2086 | ||
e76460db | 2087 | create_watchpoint_request (&p, addr, len, type, cond, 0); |
6ffbb7ab | 2088 | |
4c38200f | 2089 | ALL_LWPS (lp) |
dfd4cc63 | 2090 | hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid)); |
6ffbb7ab TJB |
2091 | |
2092 | ret = 0; | |
2093 | } | |
2094 | else | |
2095 | { | |
2096 | saved_dabr_value = 0; | |
4c38200f | 2097 | ALL_LWPS (lp) |
dfd4cc63 | 2098 | if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0, |
0cf6dd15 | 2099 | saved_dabr_value) < 0) |
6ffbb7ab TJB |
2100 | return -1; |
2101 | ||
2102 | ret = 0; | |
2103 | } | |
2104 | ||
2105 | return ret; | |
e0d24f8d WZ |
2106 | } |
2107 | ||
9f0bdab8 | 2108 | static void |
7b50312a | 2109 | ppc_linux_new_thread (struct lwp_info *lp) |
e0d24f8d | 2110 | { |
dfd4cc63 | 2111 | int tid = ptid_get_lwp (lp->ptid); |
6ffbb7ab | 2112 | |
926bf92d | 2113 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2114 | { |
2115 | int i; | |
2116 | struct thread_points *p; | |
2117 | struct hw_break_tuple *hw_breaks; | |
2118 | ||
2119 | if (VEC_empty (thread_points_p, ppc_threads)) | |
2120 | return; | |
2121 | ||
0df8b418 | 2122 | /* Get a list of breakpoints from any thread. */ |
6ffbb7ab TJB |
2123 | p = VEC_last (thread_points_p, ppc_threads); |
2124 | hw_breaks = p->hw_breaks; | |
2125 | ||
0df8b418 | 2126 | /* Copy that thread's breakpoints and watchpoints to the new thread. */ |
6ffbb7ab TJB |
2127 | for (i = 0; i < max_slots_number; i++) |
2128 | if (hw_breaks[i].hw_break) | |
aacbb8a5 LM |
2129 | { |
2130 | /* Older kernels did not make new threads inherit their parent | |
2131 | thread's debug state, so we always clear the slot and replicate | |
2132 | the debug state ourselves, ensuring compatibility with all | |
2133 | kernels. */ | |
2134 | ||
2135 | /* The ppc debug resource accounting is done through "slots". | |
2136 | Ask the kernel the deallocate this specific *point's slot. */ | |
2137 | ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot); | |
2138 | ||
926bf92d | 2139 | hwdebug_insert_point (hw_breaks[i].hw_break, tid); |
aacbb8a5 | 2140 | } |
6ffbb7ab TJB |
2141 | } |
2142 | else | |
2143 | ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value); | |
2144 | } | |
2145 | ||
2146 | static void | |
2147 | ppc_linux_thread_exit (struct thread_info *tp, int silent) | |
2148 | { | |
2149 | int i; | |
dfd4cc63 | 2150 | int tid = ptid_get_lwp (tp->ptid); |
6ffbb7ab TJB |
2151 | struct hw_break_tuple *hw_breaks; |
2152 | struct thread_points *t = NULL, *p; | |
2153 | ||
926bf92d | 2154 | if (!have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2155 | return; |
2156 | ||
2157 | for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++) | |
2158 | if (p->tid == tid) | |
2159 | { | |
2160 | t = p; | |
2161 | break; | |
2162 | } | |
2163 | ||
2164 | if (t == NULL) | |
2165 | return; | |
2166 | ||
2167 | VEC_unordered_remove (thread_points_p, ppc_threads, i); | |
2168 | ||
2169 | hw_breaks = t->hw_breaks; | |
2170 | ||
2171 | for (i = 0; i < max_slots_number; i++) | |
2172 | if (hw_breaks[i].hw_break) | |
2173 | xfree (hw_breaks[i].hw_break); | |
2174 | ||
2175 | xfree (t->hw_breaks); | |
2176 | xfree (t); | |
e0d24f8d WZ |
2177 | } |
2178 | ||
2179 | static int | |
9f0bdab8 | 2180 | ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) |
e0d24f8d | 2181 | { |
f865ee35 | 2182 | siginfo_t siginfo; |
e0d24f8d | 2183 | |
f865ee35 JK |
2184 | if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) |
2185 | return 0; | |
e0d24f8d | 2186 | |
f865ee35 JK |
2187 | if (siginfo.si_signo != SIGTRAP |
2188 | || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) | |
e0d24f8d WZ |
2189 | return 0; |
2190 | ||
926bf92d | 2191 | if (have_ptrace_hwdebug_interface ()) |
6ffbb7ab TJB |
2192 | { |
2193 | int i; | |
2194 | struct thread_points *t; | |
2195 | struct hw_break_tuple *hw_breaks; | |
2196 | /* The index (or slot) of the *point is passed in the si_errno field. */ | |
f865ee35 | 2197 | int slot = siginfo.si_errno; |
6ffbb7ab | 2198 | |
dfd4cc63 | 2199 | t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0); |
6ffbb7ab TJB |
2200 | |
2201 | /* Find out if this *point is a hardware breakpoint. | |
2202 | If so, we should return 0. */ | |
2203 | if (t) | |
2204 | { | |
2205 | hw_breaks = t->hw_breaks; | |
2206 | for (i = 0; i < max_slots_number; i++) | |
2207 | if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot | |
2208 | && hw_breaks[i].hw_break->trigger_type | |
2209 | == PPC_BREAKPOINT_TRIGGER_EXECUTE) | |
2210 | return 0; | |
2211 | } | |
2212 | } | |
2213 | ||
f865ee35 | 2214 | *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; |
e0d24f8d WZ |
2215 | return 1; |
2216 | } | |
2217 | ||
9f0bdab8 | 2218 | static int |
6a109b6b | 2219 | ppc_linux_stopped_by_watchpoint (struct target_ops *ops) |
9f0bdab8 DJ |
2220 | { |
2221 | CORE_ADDR addr; | |
6a109b6b | 2222 | return ppc_linux_stopped_data_address (ops, &addr); |
9f0bdab8 DJ |
2223 | } |
2224 | ||
5009afc5 AS |
2225 | static int |
2226 | ppc_linux_watchpoint_addr_within_range (struct target_ops *target, | |
2227 | CORE_ADDR addr, | |
2228 | CORE_ADDR start, int length) | |
2229 | { | |
b7622095 LM |
2230 | int mask; |
2231 | ||
926bf92d | 2232 | if (have_ptrace_hwdebug_interface () |
6ffbb7ab TJB |
2233 | && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) |
2234 | return start <= addr && start + length >= addr; | |
2235 | else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE) | |
b7622095 LM |
2236 | mask = 3; |
2237 | else | |
2238 | mask = 7; | |
2239 | ||
2240 | addr &= ~mask; | |
2241 | ||
0df8b418 | 2242 | /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ |
b7622095 | 2243 | return start <= addr + mask && start + length - 1 >= addr; |
5009afc5 AS |
2244 | } |
2245 | ||
9c06b0b4 TJB |
2246 | /* Return the number of registers needed for a masked hardware watchpoint. */ |
2247 | ||
2248 | static int | |
2249 | ppc_linux_masked_watch_num_registers (struct target_ops *target, | |
2250 | CORE_ADDR addr, CORE_ADDR mask) | |
2251 | { | |
926bf92d UW |
2252 | if (!have_ptrace_hwdebug_interface () |
2253 | || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) | |
9c06b0b4 TJB |
2254 | return -1; |
2255 | else if ((mask & 0xC0000000) != 0xC0000000) | |
2256 | { | |
2257 | warning (_("The given mask covers kernel address space " | |
2258 | "and cannot be used.\n")); | |
2259 | ||
2260 | return -2; | |
2261 | } | |
2262 | else | |
2263 | return 2; | |
2264 | } | |
2265 | ||
10d6c8cd | 2266 | static void |
28439f5e PA |
2267 | ppc_linux_store_inferior_registers (struct target_ops *ops, |
2268 | struct regcache *regcache, int regno) | |
45229ea4 | 2269 | { |
bcc0c096 | 2270 | pid_t tid = get_ptrace_pid (regcache_get_ptid (regcache)); |
05f13b9c | 2271 | |
45229ea4 | 2272 | if (regno >= 0) |
56be3814 | 2273 | store_register (regcache, tid, regno); |
45229ea4 | 2274 | else |
56be3814 | 2275 | store_ppc_registers (regcache, tid); |
45229ea4 EZ |
2276 | } |
2277 | ||
f2db237a AM |
2278 | /* Functions for transferring registers between a gregset_t or fpregset_t |
2279 | (see sys/ucontext.h) and gdb's regcache. The word size is that used | |
0df8b418 | 2280 | by the ptrace interface, not the current program's ABI. Eg. if a |
f2db237a AM |
2281 | powerpc64-linux gdb is being used to debug a powerpc32-linux app, we |
2282 | read or write 64-bit gregsets. This is to suit the host libthread_db. */ | |
2283 | ||
50c9bd31 | 2284 | void |
7f7fe91e | 2285 | supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) |
c877c8e6 | 2286 | { |
f2db237a | 2287 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2288 | |
f2db237a | 2289 | ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); |
c877c8e6 KB |
2290 | } |
2291 | ||
fdb28ac4 | 2292 | void |
7f7fe91e UW |
2293 | fill_gregset (const struct regcache *regcache, |
2294 | gdb_gregset_t *gregsetp, int regno) | |
fdb28ac4 | 2295 | { |
f2db237a | 2296 | const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
f9be684a | 2297 | |
f2db237a AM |
2298 | if (regno == -1) |
2299 | memset (gregsetp, 0, sizeof (*gregsetp)); | |
2300 | ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); | |
fdb28ac4 KB |
2301 | } |
2302 | ||
50c9bd31 | 2303 | void |
7f7fe91e | 2304 | supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) |
c877c8e6 | 2305 | { |
f2db237a AM |
2306 | const struct regset *regset = ppc_linux_fpregset (); |
2307 | ||
2308 | ppc_supply_fpregset (regset, regcache, -1, | |
2309 | fpregsetp, sizeof (*fpregsetp)); | |
c877c8e6 | 2310 | } |
fdb28ac4 | 2311 | |
fdb28ac4 | 2312 | void |
7f7fe91e UW |
2313 | fill_fpregset (const struct regcache *regcache, |
2314 | gdb_fpregset_t *fpregsetp, int regno) | |
fdb28ac4 | 2315 | { |
f2db237a AM |
2316 | const struct regset *regset = ppc_linux_fpregset (); |
2317 | ||
2318 | ppc_collect_fpregset (regset, regcache, regno, | |
2319 | fpregsetp, sizeof (*fpregsetp)); | |
fdb28ac4 | 2320 | } |
10d6c8cd | 2321 | |
409c383c UW |
2322 | static int |
2323 | ppc_linux_target_wordsize (void) | |
2324 | { | |
2325 | int wordsize = 4; | |
2326 | ||
2327 | /* Check for 64-bit inferior process. This is the case when the host is | |
2328 | 64-bit, and in addition the top bit of the MSR register is set. */ | |
2329 | #ifdef __powerpc64__ | |
2330 | long msr; | |
2331 | ||
dfd4cc63 | 2332 | int tid = ptid_get_lwp (inferior_ptid); |
409c383c | 2333 | if (tid == 0) |
dfd4cc63 | 2334 | tid = ptid_get_pid (inferior_ptid); |
409c383c UW |
2335 | |
2336 | errno = 0; | |
2337 | msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0); | |
cdf43629 | 2338 | if (errno == 0 && ppc64_64bit_inferior_p (msr)) |
409c383c UW |
2339 | wordsize = 8; |
2340 | #endif | |
2341 | ||
2342 | return wordsize; | |
2343 | } | |
2344 | ||
2345 | static int | |
2346 | ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr, | |
2347 | gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) | |
2348 | { | |
2349 | int sizeof_auxv_field = ppc_linux_target_wordsize (); | |
f5656ead | 2350 | enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
409c383c UW |
2351 | gdb_byte *ptr = *readptr; |
2352 | ||
2353 | if (endptr == ptr) | |
2354 | return 0; | |
2355 | ||
2356 | if (endptr - ptr < sizeof_auxv_field * 2) | |
2357 | return -1; | |
2358 | ||
e17a4113 | 2359 | *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c | 2360 | ptr += sizeof_auxv_field; |
e17a4113 | 2361 | *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
409c383c UW |
2362 | ptr += sizeof_auxv_field; |
2363 | ||
2364 | *readptr = ptr; | |
2365 | return 1; | |
2366 | } | |
2367 | ||
310a98e1 DJ |
2368 | static const struct target_desc * |
2369 | ppc_linux_read_description (struct target_ops *ops) | |
2370 | { | |
7284e1be | 2371 | int altivec = 0; |
604c2f83 | 2372 | int vsx = 0; |
69abc51c | 2373 | int isa205 = 0; |
f4d9bade | 2374 | int cell = 0; |
7284e1be | 2375 | |
dfd4cc63 | 2376 | int tid = ptid_get_lwp (inferior_ptid); |
7284e1be | 2377 | if (tid == 0) |
dfd4cc63 | 2378 | tid = ptid_get_pid (inferior_ptid); |
7284e1be | 2379 | |
310a98e1 DJ |
2380 | if (have_ptrace_getsetevrregs) |
2381 | { | |
2382 | struct gdb_evrregset_t evrregset; | |
310a98e1 DJ |
2383 | |
2384 | if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) | |
7284e1be UW |
2385 | return tdesc_powerpc_e500l; |
2386 | ||
2387 | /* EIO means that the PTRACE_GETEVRREGS request isn't supported. | |
2388 | Anything else needs to be reported. */ | |
2389 | else if (errno != EIO) | |
2390 | perror_with_name (_("Unable to fetch SPE registers")); | |
2391 | } | |
2392 | ||
0154d990 EBM |
2393 | if (have_ptrace_getsetvsxregs |
2394 | && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_VSX)) | |
604c2f83 LM |
2395 | { |
2396 | gdb_vsxregset_t vsxregset; | |
2397 | ||
2398 | if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) | |
2399 | vsx = 1; | |
2400 | ||
2401 | /* EIO means that the PTRACE_GETVSXREGS request isn't supported. | |
2402 | Anything else needs to be reported. */ | |
2403 | else if (errno != EIO) | |
2404 | perror_with_name (_("Unable to fetch VSX registers")); | |
2405 | } | |
2406 | ||
0154d990 EBM |
2407 | if (have_ptrace_getvrregs |
2408 | && (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_ALTIVEC)) | |
7284e1be UW |
2409 | { |
2410 | gdb_vrregset_t vrregset; | |
2411 | ||
2412 | if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) | |
2413 | altivec = 1; | |
2414 | ||
2415 | /* EIO means that the PTRACE_GETVRREGS request isn't supported. | |
2416 | Anything else needs to be reported. */ | |
2417 | else if (errno != EIO) | |
2418 | perror_with_name (_("Unable to fetch AltiVec registers")); | |
310a98e1 DJ |
2419 | } |
2420 | ||
f04c6d38 | 2421 | /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases |
0df8b418 | 2422 | the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this |
f04c6d38 TJB |
2423 | ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only |
2424 | PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher | |
2425 | half of the register are for Decimal Floating Point, we check if that | |
2426 | feature is available to decide the size of the FPSCR. */ | |
2427 | if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP) | |
69abc51c TJB |
2428 | isa205 = 1; |
2429 | ||
f4d9bade UW |
2430 | if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL) |
2431 | cell = 1; | |
2432 | ||
409c383c UW |
2433 | if (ppc_linux_target_wordsize () == 8) |
2434 | { | |
f4d9bade UW |
2435 | if (cell) |
2436 | return tdesc_powerpc_cell64l; | |
2437 | else if (vsx) | |
409c383c UW |
2438 | return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l; |
2439 | else if (altivec) | |
0df8b418 MS |
2440 | return isa205 |
2441 | ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l; | |
409c383c UW |
2442 | |
2443 | return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l; | |
2444 | } | |
7284e1be | 2445 | |
f4d9bade UW |
2446 | if (cell) |
2447 | return tdesc_powerpc_cell32l; | |
2448 | else if (vsx) | |
69abc51c | 2449 | return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l; |
604c2f83 | 2450 | else if (altivec) |
69abc51c | 2451 | return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l; |
604c2f83 | 2452 | |
69abc51c | 2453 | return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l; |
310a98e1 DJ |
2454 | } |
2455 | ||
10d6c8cd DJ |
2456 | void |
2457 | _initialize_ppc_linux_nat (void) | |
2458 | { | |
2459 | struct target_ops *t; | |
2460 | ||
2461 | /* Fill in the generic GNU/Linux methods. */ | |
2462 | t = linux_target (); | |
2463 | ||
2464 | /* Add our register access methods. */ | |
2465 | t->to_fetch_registers = ppc_linux_fetch_inferior_registers; | |
2466 | t->to_store_registers = ppc_linux_store_inferior_registers; | |
2467 | ||
6ffbb7ab TJB |
2468 | /* Add our breakpoint/watchpoint methods. */ |
2469 | t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint; | |
2470 | t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint; | |
2471 | t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint; | |
e0d24f8d WZ |
2472 | t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint; |
2473 | t->to_insert_watchpoint = ppc_linux_insert_watchpoint; | |
2474 | t->to_remove_watchpoint = ppc_linux_remove_watchpoint; | |
9c06b0b4 TJB |
2475 | t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint; |
2476 | t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint; | |
e0d24f8d WZ |
2477 | t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint; |
2478 | t->to_stopped_data_address = ppc_linux_stopped_data_address; | |
5009afc5 | 2479 | t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range; |
0df8b418 MS |
2480 | t->to_can_accel_watchpoint_condition |
2481 | = ppc_linux_can_accel_watchpoint_condition; | |
9c06b0b4 | 2482 | t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers; |
f1310107 | 2483 | t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers; |
e0d24f8d | 2484 | |
310a98e1 | 2485 | t->to_read_description = ppc_linux_read_description; |
409c383c | 2486 | t->to_auxv_parse = ppc_linux_auxv_parse; |
310a98e1 | 2487 | |
76727919 | 2488 | gdb::observers::thread_exit.attach (ppc_linux_thread_exit); |
6ffbb7ab | 2489 | |
10d6c8cd | 2490 | /* Register the target. */ |
f973ed9c | 2491 | linux_nat_add_target (t); |
9f0bdab8 | 2492 | linux_nat_set_new_thread (t, ppc_linux_new_thread); |
10d6c8cd | 2493 | } |