Avoid software breakpoint's instruction shadow inconsistency
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c877c8e6
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
19
20#include "defs.h"
6ffbb7ab 21#include "observer.h"
c877c8e6
KB
22#include "frame.h"
23#include "inferior.h"
6ffbb7ab 24#include "gdbthread.h"
c877c8e6 25#include "gdbcore.h"
4e052eda 26#include "regcache.h"
10d6c8cd
DJ
27#include "target.h"
28#include "linux-nat.h"
c877c8e6 29
411cb3f9 30#include <stdint.h>
c877c8e6 31#include <sys/types.h>
c877c8e6
KB
32#include <signal.h>
33#include <sys/user.h>
34#include <sys/ioctl.h>
2555fe1a 35#include "gdb_wait.h"
c877c8e6
KB
36#include <fcntl.h>
37#include <sys/procfs.h>
45229ea4 38#include <sys/ptrace.h>
c877c8e6 39
0df8b418 40/* Prototypes for supply_gregset etc. */
c60c0f5f 41#include "gregset.h"
16333c4f 42#include "ppc-tdep.h"
7284e1be
UW
43#include "ppc-linux-tdep.h"
44
b7622095
LM
45/* Required when using the AUXV. */
46#include "elf/common.h"
47#include "auxv.h"
48
7284e1be
UW
49/* This sometimes isn't defined. */
50#ifndef PT_ORIG_R3
51#define PT_ORIG_R3 34
52#endif
53#ifndef PT_TRAP
54#define PT_TRAP 40
55#endif
c60c0f5f 56
69abc51c
TJB
57/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
58 If they aren't, we can provide them ourselves (their values are fixed
59 because they are part of the kernel ABI). They are used in the AT_HWCAP
60 entry of the AUXV. */
f4d9bade
UW
61#ifndef PPC_FEATURE_CELL
62#define PPC_FEATURE_CELL 0x00010000
63#endif
b7622095
LM
64#ifndef PPC_FEATURE_BOOKE
65#define PPC_FEATURE_BOOKE 0x00008000
66#endif
f04c6d38
TJB
67#ifndef PPC_FEATURE_HAS_DFP
68#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69abc51c 69#endif
b7622095 70
9abe5450
EZ
71/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
72 configure time check. Some older glibc's (for instance 2.2.1)
73 don't have a specific powerpc version of ptrace.h, and fall back on
74 a generic one. In such cases, sys/ptrace.h defines
75 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
76 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
77 PTRACE_SETVRREGS to be. This also makes a configury check pretty
78 much useless. */
79
80/* These definitions should really come from the glibc header files,
81 but Glibc doesn't know about the vrregs yet. */
82#ifndef PTRACE_GETVRREGS
83#define PTRACE_GETVRREGS 18
84#define PTRACE_SETVRREGS 19
85#endif
86
604c2f83
LM
87/* PTRACE requests for POWER7 VSX registers. */
88#ifndef PTRACE_GETVSXREGS
89#define PTRACE_GETVSXREGS 27
90#define PTRACE_SETVSXREGS 28
91#endif
01904826
JB
92
93/* Similarly for the ptrace requests for getting / setting the SPE
94 registers (ev0 -- ev31, acc, and spefscr). See the description of
95 gdb_evrregset_t for details. */
96#ifndef PTRACE_GETEVRREGS
97#define PTRACE_GETEVRREGS 20
98#define PTRACE_SETEVRREGS 21
99#endif
100
6ffbb7ab 101/* Similarly for the hardware watchpoint support. These requests are used
926bf92d 102 when the PowerPC HWDEBUG ptrace interface is not available. */
e0d24f8d
WZ
103#ifndef PTRACE_GET_DEBUGREG
104#define PTRACE_GET_DEBUGREG 25
105#endif
106#ifndef PTRACE_SET_DEBUGREG
107#define PTRACE_SET_DEBUGREG 26
108#endif
109#ifndef PTRACE_GETSIGINFO
110#define PTRACE_GETSIGINFO 0x4202
111#endif
01904826 112
926bf92d
UW
113/* These requests are used when the PowerPC HWDEBUG ptrace interface is
114 available. It exposes the debug facilities of PowerPC processors, as well
115 as additional features of BookE processors, such as ranged breakpoints and
116 watchpoints and hardware-accelerated condition evaluation. */
6ffbb7ab
TJB
117#ifndef PPC_PTRACE_GETHWDBGINFO
118
926bf92d
UW
119/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
120 ptrace interface is not present in ptrace.h, so we'll have to pretty much
121 include it all here so that the code at least compiles on older systems. */
6ffbb7ab
TJB
122#define PPC_PTRACE_GETHWDBGINFO 0x89
123#define PPC_PTRACE_SETHWDEBUG 0x88
124#define PPC_PTRACE_DELHWDEBUG 0x87
125
126struct ppc_debug_info
127{
0df8b418 128 uint32_t version; /* Only version 1 exists to date. */
6ffbb7ab
TJB
129 uint32_t num_instruction_bps;
130 uint32_t num_data_bps;
131 uint32_t num_condition_regs;
132 uint32_t data_bp_alignment;
0df8b418 133 uint32_t sizeof_condition; /* size of the DVC register. */
6ffbb7ab
TJB
134 uint64_t features;
135};
136
137/* Features will have bits indicating whether there is support for: */
138#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
139#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
140#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
141#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
142
143struct ppc_hw_breakpoint
144{
145 uint32_t version; /* currently, version must be 1 */
146 uint32_t trigger_type; /* only some combinations allowed */
147 uint32_t addr_mode; /* address match mode */
148 uint32_t condition_mode; /* break/watchpoint condition flags */
149 uint64_t addr; /* break/watchpoint address */
150 uint64_t addr2; /* range end or mask */
151 uint64_t condition_value; /* contents of the DVC register */
152};
153
154/* Trigger type. */
155#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
156#define PPC_BREAKPOINT_TRIGGER_READ 0x2
157#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
158#define PPC_BREAKPOINT_TRIGGER_RW 0x6
159
160/* Address mode. */
161#define PPC_BREAKPOINT_MODE_EXACT 0x0
162#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
163#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
164#define PPC_BREAKPOINT_MODE_MASK 0x3
165
166/* Condition mode. */
167#define PPC_BREAKPOINT_CONDITION_NONE 0x0
168#define PPC_BREAKPOINT_CONDITION_AND 0x1
169#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
170#define PPC_BREAKPOINT_CONDITION_OR 0x2
171#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
172#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
173#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
174#define PPC_BREAKPOINT_CONDITION_BE(n) \
175 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
176#endif /* PPC_PTRACE_GETHWDBGINFO */
177
e23b9d6e
UW
178/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
179 watchpoint (up to 512 bytes). */
180#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
181#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
182#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
6ffbb7ab 183
1dfe79e8
SDJ
184/* Similarly for the general-purpose (gp0 -- gp31)
185 and floating-point registers (fp0 -- fp31). */
186#ifndef PTRACE_GETREGS
187#define PTRACE_GETREGS 12
188#endif
189#ifndef PTRACE_SETREGS
190#define PTRACE_SETREGS 13
191#endif
192#ifndef PTRACE_GETFPREGS
193#define PTRACE_GETFPREGS 14
194#endif
195#ifndef PTRACE_SETFPREGS
196#define PTRACE_SETFPREGS 15
197#endif
198
9abe5450
EZ
199/* This oddity is because the Linux kernel defines elf_vrregset_t as
200 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
201 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
202 the vrsave as an extra 4 bytes at the end. I opted for creating a
203 flat array of chars, so that it is easier to manipulate for gdb.
204
205 There are 32 vector registers 16 bytes longs, plus a VSCR register
206 which is only 4 bytes long, but is fetched as a 16 bytes
0df8b418 207 quantity. Up to here we have the elf_vrregset_t structure.
9abe5450
EZ
208 Appended to this there is space for the VRSAVE register: 4 bytes.
209 Even though this vrsave register is not included in the regset
210 typedef, it is handled by the ptrace requests.
211
212 Note that GNU/Linux doesn't support little endian PPC hardware,
213 therefore the offset at which the real value of the VSCR register
214 is located will be always 12 bytes.
215
216 The layout is like this (where x is the actual value of the vscr reg): */
217
218/* *INDENT-OFF* */
219/*
220 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
221 <-------> <-------><-------><->
222 VR0 VR31 VSCR VRSAVE
223*/
224/* *INDENT-ON* */
225
226#define SIZEOF_VRREGS 33*16+4
227
228typedef char gdb_vrregset_t[SIZEOF_VRREGS];
229
604c2f83
LM
230/* This is the layout of the POWER7 VSX registers and the way they overlap
231 with the existing FPR and VMX registers.
232
233 VSR doubleword 0 VSR doubleword 1
234 ----------------------------------------------------------------
235 VSR[0] | FPR[0] | |
236 ----------------------------------------------------------------
237 VSR[1] | FPR[1] | |
238 ----------------------------------------------------------------
239 | ... | |
240 | ... | |
241 ----------------------------------------------------------------
242 VSR[30] | FPR[30] | |
243 ----------------------------------------------------------------
244 VSR[31] | FPR[31] | |
245 ----------------------------------------------------------------
246 VSR[32] | VR[0] |
247 ----------------------------------------------------------------
248 VSR[33] | VR[1] |
249 ----------------------------------------------------------------
250 | ... |
251 | ... |
252 ----------------------------------------------------------------
253 VSR[62] | VR[30] |
254 ----------------------------------------------------------------
255 VSR[63] | VR[31] |
256 ----------------------------------------------------------------
257
258 VSX has 64 128bit registers. The first 32 registers overlap with
259 the FP registers (doubleword 0) and hence extend them with additional
260 64 bits (doubleword 1). The other 32 regs overlap with the VMX
261 registers. */
262#define SIZEOF_VSXREGS 32*8
263
264typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826 265
b021a221 266/* On PPC processors that support the Signal Processing Extension
01904826 267 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
268 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
269 ptrace calls only access the lower half of each register, to allow
270 them to behave the same way they do on non-SPE systems. There's a
271 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
272 read and write the top halves of all the general-purpose registers
273 at once, along with some SPE-specific registers.
01904826
JB
274
275 GDB itself continues to claim the general-purpose registers are 32
6ced10dd 276 bits long. It has unnamed raw registers that hold the upper halves
b021a221 277 of the gprs, and the full 64-bit SIMD views of the registers,
6ced10dd
JB
278 'ev0' -- 'ev31', are pseudo-registers that splice the top and
279 bottom halves together.
01904826
JB
280
281 This is the structure filled in by PTRACE_GETEVRREGS and written to
282 the inferior's registers by PTRACE_SETEVRREGS. */
283struct gdb_evrregset_t
284{
285 unsigned long evr[32];
286 unsigned long long acc;
287 unsigned long spefscr;
288};
289
604c2f83
LM
290/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
291 PTRACE_SETVSXREGS requests, for reading and writing the VSX
292 POWER7 registers 0 through 31. Zero if we've tried one of them and
293 gotten an error. Note that VSX registers 32 through 63 overlap
294 with VR registers 0 through 31. */
295int have_ptrace_getsetvsxregs = 1;
01904826
JB
296
297/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
298 PTRACE_SETVRREGS requests, for reading and writing the Altivec
299 registers. Zero if we've tried one of them and gotten an
300 error. */
9abe5450
EZ
301int have_ptrace_getvrregs = 1;
302
01904826
JB
303/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
304 PTRACE_SETEVRREGS requests, for reading and writing the SPE
305 registers. Zero if we've tried one of them and gotten an
306 error. */
307int have_ptrace_getsetevrregs = 1;
308
1dfe79e8
SDJ
309/* Non-zero if our kernel may support the PTRACE_GETREGS and
310 PTRACE_SETREGS requests, for reading and writing the
311 general-purpose registers. Zero if we've tried one of
312 them and gotten an error. */
313int have_ptrace_getsetregs = 1;
314
315/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
316 PTRACE_SETFPREGS requests, for reading and writing the
317 floating-pointers registers. Zero if we've tried one of
318 them and gotten an error. */
319int have_ptrace_getsetfpregs = 1;
320
16333c4f
EZ
321/* *INDENT-OFF* */
322/* registers layout, as presented by the ptrace interface:
323PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
324PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
325PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
326PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
0df8b418
MS
327PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
328PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
329PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
330PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
331PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
332PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
333PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
334PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
16333c4f
EZ
335PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
336/* *INDENT_ON * */
c877c8e6 337
45229ea4 338static int
e101270f 339ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 340{
16333c4f 341 int u_addr = -1;
e101270f 342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
343 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
344 interface, and not the wordsize of the program's ABI. */
411cb3f9 345 int wordsize = sizeof (long);
16333c4f 346
0df8b418 347 /* General purpose registers occupy 1 slot each in the buffer. */
8bf659e8
JB
348 if (regno >= tdep->ppc_gp0_regnum
349 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 350 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 351
49ff75ad
JB
352 /* Floating point regs: eight bytes each in both 32- and 64-bit
353 ptrace interfaces. Thus, two slots each in 32-bit interface, one
354 slot each in 64-bit interface. */
383f0f5b
JB
355 if (tdep->ppc_fp0_regnum >= 0
356 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
357 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
358 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f 359
0df8b418 360 /* UISA special purpose registers: 1 slot each. */
e101270f 361 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 362 u_addr = PT_NIP * wordsize;
dc5cfeb6 363 if (regno == tdep->ppc_lr_regnum)
49ff75ad 364 u_addr = PT_LNK * wordsize;
dc5cfeb6 365 if (regno == tdep->ppc_cr_regnum)
49ff75ad 366 u_addr = PT_CCR * wordsize;
dc5cfeb6 367 if (regno == tdep->ppc_xer_regnum)
49ff75ad 368 u_addr = PT_XER * wordsize;
dc5cfeb6 369 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 370 u_addr = PT_CTR * wordsize;
f8c59253 371#ifdef PT_MQ
dc5cfeb6 372 if (regno == tdep->ppc_mq_regnum)
49ff75ad 373 u_addr = PT_MQ * wordsize;
f8c59253 374#endif
dc5cfeb6 375 if (regno == tdep->ppc_ps_regnum)
49ff75ad 376 u_addr = PT_MSR * wordsize;
7284e1be
UW
377 if (regno == PPC_ORIG_R3_REGNUM)
378 u_addr = PT_ORIG_R3 * wordsize;
379 if (regno == PPC_TRAP_REGNUM)
380 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
381 if (tdep->ppc_fpscr_regnum >= 0
382 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
383 {
384 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
385 kernel headers incorrectly contained the 32-bit definition of
386 PT_FPSCR. For the 32-bit definition, floating-point
387 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 388 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
389 the FPSCR instead occupies the full 64-bit 2-word-slot and
390 hence no adjustment is necessary. Hack around this. */
391 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
392 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
393 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
394 slot and not just its second word. The PT_FPSCR supplied when
395 GDB is compiled as a 32-bit app doesn't reflect this. */
396 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
397 && PT_FPSCR == (48 + 2*32 + 1))
398 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
399 else
400 u_addr = PT_FPSCR * wordsize;
401 }
16333c4f 402 return u_addr;
c877c8e6
KB
403}
404
604c2f83
LM
405/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
406 registers set mechanism, as opposed to the interface for all the
407 other registers, that stores/fetches each register individually. */
408static void
409fetch_vsx_register (struct regcache *regcache, int tid, int regno)
410{
411 int ret;
412 gdb_vsxregset_t regs;
413 struct gdbarch *gdbarch = get_regcache_arch (regcache);
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
416
417 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
418 if (ret < 0)
419 {
420 if (errno == EIO)
421 {
422 have_ptrace_getsetvsxregs = 0;
423 return;
424 }
425 perror_with_name (_("Unable to fetch VSX register"));
426 }
427
428 regcache_raw_supply (regcache, regno,
429 regs + (regno - tdep->ppc_vsr0_upper_regnum)
430 * vsxregsize);
431}
432
9abe5450
EZ
433/* The Linux kernel ptrace interface for AltiVec registers uses the
434 registers set mechanism, as opposed to the interface for all the
435 other registers, that stores/fetches each register individually. */
436static void
56be3814 437fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
438{
439 int ret;
440 int offset = 0;
441 gdb_vrregset_t regs;
40a6adc1
MD
442 struct gdbarch *gdbarch = get_regcache_arch (regcache);
443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
444 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
445
446 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
447 if (ret < 0)
448 {
449 if (errno == EIO)
450 {
451 have_ptrace_getvrregs = 0;
452 return;
453 }
e2e0b3e5 454 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
455 }
456
457 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
458 long on the hardware. We deal only with the lower 4 bytes of the
459 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
460 there is no need to define an offset for it. */
461 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 462 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 463
56be3814 464 regcache_raw_supply (regcache, regno,
0df8b418
MS
465 regs + (regno
466 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
467}
468
01904826
JB
469/* Fetch the top 32 bits of TID's general-purpose registers and the
470 SPE-specific registers, and place the results in EVRREGSET. If we
471 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
472 zeros.
473
474 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
475 PTRACE_SETEVRREGS requests are supported is isolated here, and in
476 set_spe_registers. */
477static void
478get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
479{
480 if (have_ptrace_getsetevrregs)
481 {
482 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
483 return;
484 else
485 {
486 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
487 we just return zeros. */
488 if (errno == EIO)
489 have_ptrace_getsetevrregs = 0;
490 else
491 /* Anything else needs to be reported. */
e2e0b3e5 492 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
493 }
494 }
495
496 memset (evrregset, 0, sizeof (*evrregset));
497}
498
6ced10dd
JB
499/* Supply values from TID for SPE-specific raw registers: the upper
500 halves of the GPRs, the accumulator, and the spefscr. REGNO must
501 be the number of an upper half register, acc, spefscr, or -1 to
502 supply the values of all registers. */
01904826 503static void
56be3814 504fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 505{
40a6adc1
MD
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
508 struct gdb_evrregset_t evrregs;
509
6ced10dd 510 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 511 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 512 gdb_assert (sizeof (evrregs.acc)
40a6adc1 513 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 514 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 515 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 516
01904826
JB
517 get_spe_registers (tid, &evrregs);
518
6ced10dd 519 if (regno == -1)
01904826 520 {
6ced10dd
JB
521 int i;
522
523 for (i = 0; i < ppc_num_gprs; i++)
56be3814 524 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 525 &evrregs.evr[i]);
01904826 526 }
6ced10dd
JB
527 else if (tdep->ppc_ev0_upper_regnum <= regno
528 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 529 regcache_raw_supply (regcache, regno,
6ced10dd
JB
530 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
531
532 if (regno == -1
533 || regno == tdep->ppc_acc_regnum)
56be3814 534 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
535
536 if (regno == -1
537 || regno == tdep->ppc_spefscr_regnum)
56be3814 538 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 539 &evrregs.spefscr);
01904826
JB
540}
541
45229ea4 542static void
56be3814 543fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 544{
40a6adc1
MD
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 547 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 548 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 549 int bytes_transferred;
0df8b418 550 unsigned int offset; /* Offset of registers within the u area. */
e362b510 551 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 552
be8626e0 553 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
554 {
555 /* If this is the first time through, or if it is not the first
556 time through, and we have comfirmed that there is kernel
557 support for such a ptrace request, then go and fetch the
558 register. */
559 if (have_ptrace_getvrregs)
560 {
56be3814 561 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
562 return;
563 }
564 /* If we have discovered that there is no ptrace support for
565 AltiVec registers, fall through and return zeroes, because
566 regaddr will be -1 in this case. */
567 }
604c2f83
LM
568 if (vsx_register_p (gdbarch, regno))
569 {
570 if (have_ptrace_getsetvsxregs)
571 {
572 fetch_vsx_register (regcache, tid, regno);
573 return;
574 }
575 }
be8626e0 576 else if (spe_register_p (gdbarch, regno))
01904826 577 {
56be3814 578 fetch_spe_register (regcache, tid, regno);
01904826
JB
579 return;
580 }
9abe5450 581
45229ea4
EZ
582 if (regaddr == -1)
583 {
40a6adc1 584 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 585 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
586 return;
587 }
588
411cb3f9 589 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
590 32-bit platform, 64-bit floating-point registers will require two
591 transfers. */
4a19ea35 592 for (bytes_transferred = 0;
40a6adc1 593 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 594 bytes_transferred += sizeof (long))
45229ea4 595 {
11fde611
JK
596 long l;
597
45229ea4 598 errno = 0;
11fde611 599 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
411cb3f9 600 regaddr += sizeof (long);
45229ea4
EZ
601 if (errno != 0)
602 {
bc97b3ba 603 char message[128];
8c042590
PM
604 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
605 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 606 perror_with_name (message);
45229ea4 607 }
11fde611 608 memcpy (&buf[bytes_transferred], &l, sizeof (l));
45229ea4 609 }
56d0d96a 610
4a19ea35
JB
611 /* Now supply the register. Keep in mind that the regcache's idea
612 of the register's size may not be a multiple of sizeof
411cb3f9 613 (long). */
40a6adc1 614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
615 {
616 /* Little-endian values are always found at the left end of the
617 bytes transferred. */
56be3814 618 regcache_raw_supply (regcache, regno, buf);
4a19ea35 619 }
40a6adc1 620 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
621 {
622 /* Big-endian values are found at the right end of the bytes
623 transferred. */
40a6adc1 624 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 625 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
626 }
627 else
a44bddec 628 internal_error (__FILE__, __LINE__,
e2e0b3e5 629 _("fetch_register: unexpected byte order: %d"),
40a6adc1 630 gdbarch_byte_order (gdbarch));
45229ea4
EZ
631}
632
604c2f83
LM
633static void
634supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
635{
636 int i;
637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
639 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
640
641 for (i = 0; i < ppc_num_vshrs; i++)
642 {
643 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
644 *vsxregsetp + i * vsxregsize);
645 }
646}
647
9abe5450 648static void
56be3814 649supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
650{
651 int i;
40a6adc1
MD
652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
653 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 654 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
655 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
656 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
657
658 for (i = 0; i < num_of_vrregs; i++)
659 {
660 /* The last 2 registers of this set are only 32 bit long, not
661 128. However an offset is necessary only for VSCR because it
662 occupies a whole vector, while VRSAVE occupies a full 4 bytes
663 slot. */
664 if (i == (num_of_vrregs - 2))
56be3814 665 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 666 *vrregsetp + i * vrregsize + offset);
9abe5450 667 else
56be3814 668 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 669 *vrregsetp + i * vrregsize);
9abe5450
EZ
670 }
671}
672
604c2f83
LM
673static void
674fetch_vsx_registers (struct regcache *regcache, int tid)
675{
676 int ret;
677 gdb_vsxregset_t regs;
678
679 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
680 if (ret < 0)
681 {
682 if (errno == EIO)
683 {
684 have_ptrace_getsetvsxregs = 0;
685 return;
686 }
687 perror_with_name (_("Unable to fetch VSX registers"));
688 }
689 supply_vsxregset (regcache, &regs);
690}
691
9abe5450 692static void
56be3814 693fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
694{
695 int ret;
696 gdb_vrregset_t regs;
697
698 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
699 if (ret < 0)
700 {
701 if (errno == EIO)
702 {
703 have_ptrace_getvrregs = 0;
704 return;
705 }
e2e0b3e5 706 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 707 }
56be3814 708 supply_vrregset (regcache, &regs);
9abe5450
EZ
709}
710
1dfe79e8
SDJ
711/* This function actually issues the request to ptrace, telling
712 it to get all general-purpose registers and put them into the
713 specified regset.
714
715 If the ptrace request does not exist, this function returns 0
716 and properly sets the have_ptrace_* flag. If the request fails,
717 this function calls perror_with_name. Otherwise, if the request
718 succeeds, then the regcache gets filled and 1 is returned. */
719static int
720fetch_all_gp_regs (struct regcache *regcache, int tid)
721{
722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
724 gdb_gregset_t gregset;
725
726 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
727 {
728 if (errno == EIO)
729 {
730 have_ptrace_getsetregs = 0;
731 return 0;
732 }
733 perror_with_name (_("Couldn't get general-purpose registers."));
734 }
735
736 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
737
738 return 1;
739}
740
741/* This is a wrapper for the fetch_all_gp_regs function. It is
742 responsible for verifying if this target has the ptrace request
743 that can be used to fetch all general-purpose registers at one
744 shot. If it doesn't, then we should fetch them using the
745 old-fashioned way, which is to iterate over the registers and
746 request them one by one. */
747static void
748fetch_gp_regs (struct regcache *regcache, int tid)
749{
750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
752 int i;
753
754 if (have_ptrace_getsetregs)
755 if (fetch_all_gp_regs (regcache, tid))
756 return;
757
758 /* If we've hit this point, it doesn't really matter which
759 architecture we are using. We just need to read the
760 registers in the "old-fashioned way". */
761 for (i = 0; i < ppc_num_gprs; i++)
762 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
763}
764
765/* This function actually issues the request to ptrace, telling
766 it to get all floating-point registers and put them into the
767 specified regset.
768
769 If the ptrace request does not exist, this function returns 0
770 and properly sets the have_ptrace_* flag. If the request fails,
771 this function calls perror_with_name. Otherwise, if the request
772 succeeds, then the regcache gets filled and 1 is returned. */
773static int
774fetch_all_fp_regs (struct regcache *regcache, int tid)
775{
776 gdb_fpregset_t fpregs;
777
778 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
779 {
780 if (errno == EIO)
781 {
782 have_ptrace_getsetfpregs = 0;
783 return 0;
784 }
785 perror_with_name (_("Couldn't get floating-point registers."));
786 }
787
788 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
789
790 return 1;
791}
792
793/* This is a wrapper for the fetch_all_fp_regs function. It is
794 responsible for verifying if this target has the ptrace request
795 that can be used to fetch all floating-point registers at one
796 shot. If it doesn't, then we should fetch them using the
797 old-fashioned way, which is to iterate over the registers and
798 request them one by one. */
799static void
800fetch_fp_regs (struct regcache *regcache, int tid)
801{
802 struct gdbarch *gdbarch = get_regcache_arch (regcache);
803 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
804 int i;
805
806 if (have_ptrace_getsetfpregs)
807 if (fetch_all_fp_regs (regcache, tid))
808 return;
809
810 /* If we've hit this point, it doesn't really matter which
811 architecture we are using. We just need to read the
812 registers in the "old-fashioned way". */
813 for (i = 0; i < ppc_num_fprs; i++)
814 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
815}
816
45229ea4 817static void
56be3814 818fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
819{
820 int i;
40a6adc1
MD
821 struct gdbarch *gdbarch = get_regcache_arch (regcache);
822 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 823
1dfe79e8 824 fetch_gp_regs (regcache, tid);
32b99774 825 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 826 fetch_fp_regs (regcache, tid);
40a6adc1 827 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 828 if (tdep->ppc_ps_regnum != -1)
56be3814 829 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 830 if (tdep->ppc_cr_regnum != -1)
56be3814 831 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 832 if (tdep->ppc_lr_regnum != -1)
56be3814 833 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 834 if (tdep->ppc_ctr_regnum != -1)
56be3814 835 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 836 if (tdep->ppc_xer_regnum != -1)
56be3814 837 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 838 if (tdep->ppc_mq_regnum != -1)
56be3814 839 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
840 if (ppc_linux_trap_reg_p (gdbarch))
841 {
842 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
843 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
844 }
32b99774 845 if (tdep->ppc_fpscr_regnum != -1)
56be3814 846 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
847 if (have_ptrace_getvrregs)
848 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 849 fetch_altivec_registers (regcache, tid);
604c2f83
LM
850 if (have_ptrace_getsetvsxregs)
851 if (tdep->ppc_vsr0_upper_regnum != -1)
852 fetch_vsx_registers (regcache, tid);
6ced10dd 853 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 854 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
855}
856
857/* Fetch registers from the child process. Fetch all registers if
858 regno == -1, otherwise fetch all general registers or all floating
859 point registers depending upon the value of regno. */
10d6c8cd 860static void
28439f5e
PA
861ppc_linux_fetch_inferior_registers (struct target_ops *ops,
862 struct regcache *regcache, int regno)
45229ea4 863{
0df8b418 864 /* Overload thread id onto process id. */
dfd4cc63 865 int tid = ptid_get_lwp (inferior_ptid);
05f13b9c 866
0df8b418 867 /* No thread id, just use process id. */
05f13b9c 868 if (tid == 0)
dfd4cc63 869 tid = ptid_get_pid (inferior_ptid);
05f13b9c 870
9abe5450 871 if (regno == -1)
56be3814 872 fetch_ppc_registers (regcache, tid);
45229ea4 873 else
56be3814 874 fetch_register (regcache, tid, regno);
45229ea4
EZ
875}
876
0df8b418 877/* Store one VSX register. */
604c2f83
LM
878static void
879store_vsx_register (const struct regcache *regcache, int tid, int regno)
880{
881 int ret;
882 gdb_vsxregset_t regs;
883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
886
9fe70b4f 887 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
604c2f83
LM
888 if (ret < 0)
889 {
890 if (errno == EIO)
891 {
892 have_ptrace_getsetvsxregs = 0;
893 return;
894 }
895 perror_with_name (_("Unable to fetch VSX register"));
896 }
897
898 regcache_raw_collect (regcache, regno, regs +
899 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
900
901 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
902 if (ret < 0)
903 perror_with_name (_("Unable to store VSX register"));
904}
905
0df8b418 906/* Store one register. */
9abe5450 907static void
56be3814 908store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
909{
910 int ret;
911 int offset = 0;
912 gdb_vrregset_t regs;
40a6adc1
MD
913 struct gdbarch *gdbarch = get_regcache_arch (regcache);
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
916
917 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
918 if (ret < 0)
919 {
920 if (errno == EIO)
921 {
922 have_ptrace_getvrregs = 0;
923 return;
924 }
e2e0b3e5 925 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
926 }
927
928 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
929 long on the hardware. */
930 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 931 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 932
56be3814 933 regcache_raw_collect (regcache, regno,
0df8b418
MS
934 regs + (regno
935 - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
936
937 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
938 if (ret < 0)
e2e0b3e5 939 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
940}
941
01904826
JB
942/* Assuming TID referrs to an SPE process, set the top halves of TID's
943 general-purpose registers and its SPE-specific registers to the
944 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
945 nothing.
946
947 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
948 PTRACE_SETEVRREGS requests are supported is isolated here, and in
949 get_spe_registers. */
950static void
951set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
952{
953 if (have_ptrace_getsetevrregs)
954 {
955 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
956 return;
957 else
958 {
959 /* EIO means that the PTRACE_SETEVRREGS request isn't
960 supported; we fail silently, and don't try the call
961 again. */
962 if (errno == EIO)
963 have_ptrace_getsetevrregs = 0;
964 else
965 /* Anything else needs to be reported. */
e2e0b3e5 966 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
967 }
968 }
969}
970
6ced10dd
JB
971/* Write GDB's value for the SPE-specific raw register REGNO to TID.
972 If REGNO is -1, write the values of all the SPE-specific
973 registers. */
01904826 974static void
56be3814 975store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 976{
40a6adc1
MD
977 struct gdbarch *gdbarch = get_regcache_arch (regcache);
978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
979 struct gdb_evrregset_t evrregs;
980
6ced10dd 981 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 982 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 983 gdb_assert (sizeof (evrregs.acc)
40a6adc1 984 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 985 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 986 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 987
6ced10dd
JB
988 if (regno == -1)
989 /* Since we're going to write out every register, the code below
990 should store to every field of evrregs; if that doesn't happen,
991 make it obvious by initializing it with suspicious values. */
992 memset (&evrregs, 42, sizeof (evrregs));
993 else
994 /* We can only read and write the entire EVR register set at a
995 time, so to write just a single register, we do a
996 read-modify-write maneuver. */
997 get_spe_registers (tid, &evrregs);
998
999 if (regno == -1)
01904826 1000 {
6ced10dd
JB
1001 int i;
1002
1003 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1004 regcache_raw_collect (regcache,
6ced10dd
JB
1005 tdep->ppc_ev0_upper_regnum + i,
1006 &evrregs.evr[i]);
01904826 1007 }
6ced10dd
JB
1008 else if (tdep->ppc_ev0_upper_regnum <= regno
1009 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 1010 regcache_raw_collect (regcache, regno,
6ced10dd
JB
1011 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1012
1013 if (regno == -1
1014 || regno == tdep->ppc_acc_regnum)
56be3814 1015 regcache_raw_collect (regcache,
6ced10dd
JB
1016 tdep->ppc_acc_regnum,
1017 &evrregs.acc);
1018
1019 if (regno == -1
1020 || regno == tdep->ppc_spefscr_regnum)
56be3814 1021 regcache_raw_collect (regcache,
6ced10dd
JB
1022 tdep->ppc_spefscr_regnum,
1023 &evrregs.spefscr);
01904826
JB
1024
1025 /* Write back the modified register set. */
1026 set_spe_registers (tid, &evrregs);
1027}
1028
45229ea4 1029static void
56be3814 1030store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 1031{
40a6adc1
MD
1032 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 1034 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 1035 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 1036 int i;
4a19ea35 1037 size_t bytes_to_transfer;
e362b510 1038 gdb_byte buf[MAX_REGISTER_SIZE];
45229ea4 1039
be8626e0 1040 if (altivec_register_p (gdbarch, regno))
45229ea4 1041 {
56be3814 1042 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
1043 return;
1044 }
604c2f83
LM
1045 if (vsx_register_p (gdbarch, regno))
1046 {
1047 store_vsx_register (regcache, tid, regno);
1048 return;
1049 }
be8626e0 1050 else if (spe_register_p (gdbarch, regno))
01904826 1051 {
56be3814 1052 store_spe_register (regcache, tid, regno);
01904826
JB
1053 return;
1054 }
45229ea4 1055
9abe5450
EZ
1056 if (regaddr == -1)
1057 return;
1058
4a19ea35
JB
1059 /* First collect the register. Keep in mind that the regcache's
1060 idea of the register's size may not be a multiple of sizeof
411cb3f9 1061 (long). */
56d0d96a 1062 memset (buf, 0, sizeof buf);
40a6adc1
MD
1063 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1064 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
1065 {
1066 /* Little-endian values always sit at the left end of the buffer. */
56be3814 1067 regcache_raw_collect (regcache, regno, buf);
4a19ea35 1068 }
40a6adc1 1069 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
1070 {
1071 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 1072 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 1073 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
1074 }
1075
411cb3f9 1076 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4 1077 {
11fde611
JK
1078 long l;
1079
1080 memcpy (&l, &buf[i], sizeof (l));
45229ea4 1081 errno = 0;
11fde611 1082 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
411cb3f9 1083 regaddr += sizeof (long);
e3f36dbd
KB
1084
1085 if (errno == EIO
7284e1be
UW
1086 && (regno == tdep->ppc_fpscr_regnum
1087 || regno == PPC_ORIG_R3_REGNUM
1088 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1089 {
7284e1be
UW
1090 /* Some older kernel versions don't allow fpscr, orig_r3
1091 or trap to be written. */
e3f36dbd
KB
1092 continue;
1093 }
1094
45229ea4
EZ
1095 if (errno != 0)
1096 {
bc97b3ba 1097 char message[128];
8c042590
PM
1098 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1099 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1100 perror_with_name (message);
45229ea4
EZ
1101 }
1102 }
1103}
1104
604c2f83
LM
1105static void
1106fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1107{
1108 int i;
1109 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1111 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1112
1113 for (i = 0; i < ppc_num_vshrs; i++)
1114 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1115 *vsxregsetp + i * vsxregsize);
1116}
1117
9abe5450 1118static void
56be3814 1119fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1120{
1121 int i;
40a6adc1
MD
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1124 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1125 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1126 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1127
1128 for (i = 0; i < num_of_vrregs; i++)
1129 {
1130 /* The last 2 registers of this set are only 32 bit long, not
1131 128, but only VSCR is fetched as a 16 bytes quantity. */
1132 if (i == (num_of_vrregs - 2))
56be3814 1133 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1134 *vrregsetp + i * vrregsize + offset);
9abe5450 1135 else
56be3814 1136 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1137 *vrregsetp + i * vrregsize);
9abe5450
EZ
1138 }
1139}
1140
604c2f83
LM
1141static void
1142store_vsx_registers (const struct regcache *regcache, int tid)
1143{
1144 int ret;
1145 gdb_vsxregset_t regs;
1146
1147 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1148 if (ret < 0)
1149 {
1150 if (errno == EIO)
1151 {
1152 have_ptrace_getsetvsxregs = 0;
1153 return;
1154 }
1155 perror_with_name (_("Couldn't get VSX registers"));
1156 }
1157
1158 fill_vsxregset (regcache, &regs);
1159
1160 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1161 perror_with_name (_("Couldn't write VSX registers"));
1162}
1163
9abe5450 1164static void
56be3814 1165store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1166{
1167 int ret;
1168 gdb_vrregset_t regs;
1169
0897f59b 1170 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1171 if (ret < 0)
1172 {
1173 if (errno == EIO)
1174 {
1175 have_ptrace_getvrregs = 0;
1176 return;
1177 }
e2e0b3e5 1178 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1179 }
1180
56be3814 1181 fill_vrregset (regcache, &regs);
9abe5450 1182
0897f59b 1183 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1184 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1185}
1186
1dfe79e8
SDJ
1187/* This function actually issues the request to ptrace, telling
1188 it to store all general-purpose registers present in the specified
1189 regset.
1190
1191 If the ptrace request does not exist, this function returns 0
1192 and properly sets the have_ptrace_* flag. If the request fails,
1193 this function calls perror_with_name. Otherwise, if the request
1194 succeeds, then the regcache is stored and 1 is returned. */
1195static int
1196store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1197{
1198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1200 gdb_gregset_t gregset;
1201
1202 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1203 {
1204 if (errno == EIO)
1205 {
1206 have_ptrace_getsetregs = 0;
1207 return 0;
1208 }
1209 perror_with_name (_("Couldn't get general-purpose registers."));
1210 }
1211
1212 fill_gregset (regcache, &gregset, regno);
1213
1214 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1215 {
1216 if (errno == EIO)
1217 {
1218 have_ptrace_getsetregs = 0;
1219 return 0;
1220 }
1221 perror_with_name (_("Couldn't set general-purpose registers."));
1222 }
1223
1224 return 1;
1225}
1226
1227/* This is a wrapper for the store_all_gp_regs function. It is
1228 responsible for verifying if this target has the ptrace request
1229 that can be used to store all general-purpose registers at one
1230 shot. If it doesn't, then we should store them using the
1231 old-fashioned way, which is to iterate over the registers and
1232 store them one by one. */
45229ea4 1233static void
1dfe79e8 1234store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1235{
40a6adc1
MD
1236 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1238 int i;
1239
1240 if (have_ptrace_getsetregs)
1241 if (store_all_gp_regs (regcache, tid, regno))
1242 return;
1243
1244 /* If we hit this point, it doesn't really matter which
1245 architecture we are using. We just need to store the
1246 registers in the "old-fashioned way". */
6ced10dd 1247 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1248 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1249}
1250
1251/* This function actually issues the request to ptrace, telling
1252 it to store all floating-point registers present in the specified
1253 regset.
1254
1255 If the ptrace request does not exist, this function returns 0
1256 and properly sets the have_ptrace_* flag. If the request fails,
1257 this function calls perror_with_name. Otherwise, if the request
1258 succeeds, then the regcache is stored and 1 is returned. */
1259static int
1260store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1261{
1262 gdb_fpregset_t fpregs;
1263
1264 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1265 {
1266 if (errno == EIO)
1267 {
1268 have_ptrace_getsetfpregs = 0;
1269 return 0;
1270 }
1271 perror_with_name (_("Couldn't get floating-point registers."));
1272 }
1273
1274 fill_fpregset (regcache, &fpregs, regno);
1275
1276 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1277 {
1278 if (errno == EIO)
1279 {
1280 have_ptrace_getsetfpregs = 0;
1281 return 0;
1282 }
1283 perror_with_name (_("Couldn't set floating-point registers."));
1284 }
1285
1286 return 1;
1287}
1288
1289/* This is a wrapper for the store_all_fp_regs function. It is
1290 responsible for verifying if this target has the ptrace request
1291 that can be used to store all floating-point registers at one
1292 shot. If it doesn't, then we should store them using the
1293 old-fashioned way, which is to iterate over the registers and
1294 store them one by one. */
1295static void
1296store_fp_regs (const struct regcache *regcache, int tid, int regno)
1297{
1298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1300 int i;
1301
1302 if (have_ptrace_getsetfpregs)
1303 if (store_all_fp_regs (regcache, tid, regno))
1304 return;
1305
1306 /* If we hit this point, it doesn't really matter which
1307 architecture we are using. We just need to store the
1308 registers in the "old-fashioned way". */
1309 for (i = 0; i < ppc_num_fprs; i++)
1310 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1311}
1312
1313static void
1314store_ppc_registers (const struct regcache *regcache, int tid)
1315{
1316 int i;
1317 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319
1320 store_gp_regs (regcache, tid, -1);
32b99774 1321 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1322 store_fp_regs (regcache, tid, -1);
40a6adc1 1323 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1324 if (tdep->ppc_ps_regnum != -1)
56be3814 1325 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1326 if (tdep->ppc_cr_regnum != -1)
56be3814 1327 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1328 if (tdep->ppc_lr_regnum != -1)
56be3814 1329 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1330 if (tdep->ppc_ctr_regnum != -1)
56be3814 1331 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1332 if (tdep->ppc_xer_regnum != -1)
56be3814 1333 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1334 if (tdep->ppc_mq_regnum != -1)
56be3814 1335 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1336 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1337 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1338 if (ppc_linux_trap_reg_p (gdbarch))
1339 {
1340 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1341 store_register (regcache, tid, PPC_TRAP_REGNUM);
1342 }
9abe5450
EZ
1343 if (have_ptrace_getvrregs)
1344 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1345 store_altivec_registers (regcache, tid);
604c2f83
LM
1346 if (have_ptrace_getsetvsxregs)
1347 if (tdep->ppc_vsr0_upper_regnum != -1)
1348 store_vsx_registers (regcache, tid);
6ced10dd 1349 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1350 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1351}
1352
6ffbb7ab 1353/* Fetch the AT_HWCAP entry from the aux vector. */
b261e0c5
UW
1354static unsigned long
1355ppc_linux_get_hwcap (void)
6ffbb7ab
TJB
1356{
1357 CORE_ADDR field;
1358
1359 if (target_auxv_search (&current_target, AT_HWCAP, &field))
1360 return (unsigned long) field;
1361
1362 return 0;
1363}
1364
1365/* The cached DABR value, to install in new threads.
926bf92d
UW
1366 This variable is used when the PowerPC HWDEBUG ptrace
1367 interface is not available. */
6ffbb7ab
TJB
1368static long saved_dabr_value;
1369
1370/* Global structure that will store information about the available
926bf92d
UW
1371 features provided by the PowerPC HWDEBUG ptrace interface. */
1372static struct ppc_debug_info hwdebug_info;
6ffbb7ab
TJB
1373
1374/* Global variable that holds the maximum number of slots that the
926bf92d
UW
1375 kernel will use. This is only used when PowerPC HWDEBUG ptrace interface
1376 is available. */
6ffbb7ab
TJB
1377static size_t max_slots_number = 0;
1378
1379struct hw_break_tuple
1380{
1381 long slot;
1382 struct ppc_hw_breakpoint *hw_break;
1383};
1384
1385/* This is an internal VEC created to store information about *points inserted
926bf92d
UW
1386 for each thread. This is used when PowerPC HWDEBUG ptrace interface is
1387 available. */
6ffbb7ab
TJB
1388typedef struct thread_points
1389 {
1390 /* The TID to which this *point relates. */
1391 int tid;
1392 /* Information about the *point, such as its address, type, etc.
1393
1394 Each element inside this vector corresponds to a hardware
1395 breakpoint or watchpoint in the thread represented by TID. The maximum
1396 size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
1397 the tuple is NULL, then the position in the vector is free. */
1398 struct hw_break_tuple *hw_breaks;
1399 } *thread_points_p;
1400DEF_VEC_P (thread_points_p);
1401
1402VEC(thread_points_p) *ppc_threads = NULL;
1403
926bf92d
UW
1404/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
1405 available. */
6ffbb7ab
TJB
1406#define PPC_DEBUG_CURRENT_VERSION 1
1407
926bf92d 1408/* Returns non-zero if we support the PowerPC HWDEBUG ptrace interface. */
e0d24f8d 1409static int
926bf92d 1410have_ptrace_hwdebug_interface (void)
e0d24f8d 1411{
926bf92d 1412 static int have_ptrace_hwdebug_interface = -1;
e0d24f8d 1413
926bf92d 1414 if (have_ptrace_hwdebug_interface == -1)
6ffbb7ab
TJB
1415 {
1416 int tid;
e0d24f8d 1417
dfd4cc63 1418 tid = ptid_get_lwp (inferior_ptid);
6ffbb7ab 1419 if (tid == 0)
dfd4cc63 1420 tid = ptid_get_pid (inferior_ptid);
e0d24f8d 1421
926bf92d
UW
1422 /* Check for kernel support for PowerPC HWDEBUG ptrace interface. */
1423 if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info) >= 0)
6ffbb7ab 1424 {
926bf92d 1425 /* Check whether PowerPC HWDEBUG ptrace interface is functional and
0c56f59b 1426 provides any supported feature. */
926bf92d 1427 if (hwdebug_info.features != 0)
0c56f59b 1428 {
926bf92d
UW
1429 have_ptrace_hwdebug_interface = 1;
1430 max_slots_number = hwdebug_info.num_instruction_bps
1431 + hwdebug_info.num_data_bps
1432 + hwdebug_info.num_condition_regs;
1433 return have_ptrace_hwdebug_interface;
0c56f59b 1434 }
6ffbb7ab 1435 }
926bf92d
UW
1436 /* Old school interface and no PowerPC HWDEBUG ptrace support. */
1437 have_ptrace_hwdebug_interface = 0;
1438 memset (&hwdebug_info, 0, sizeof (struct ppc_debug_info));
6ffbb7ab
TJB
1439 }
1440
926bf92d 1441 return have_ptrace_hwdebug_interface;
e0d24f8d
WZ
1442}
1443
6ffbb7ab 1444static int
5461485a
TT
1445ppc_linux_can_use_hw_breakpoint (struct target_ops *self,
1446 int type, int cnt, int ot)
b7622095 1447{
6ffbb7ab 1448 int total_hw_wp, total_hw_bp;
b7622095 1449
926bf92d 1450 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1451 {
926bf92d
UW
1452 /* When PowerPC HWDEBUG ptrace interface is available, the number of
1453 available hardware watchpoints and breakpoints is stored at the
1454 hwdebug_info struct. */
1455 total_hw_bp = hwdebug_info.num_instruction_bps;
1456 total_hw_wp = hwdebug_info.num_data_bps;
6ffbb7ab
TJB
1457 }
1458 else
1459 {
926bf92d
UW
1460 /* When we do not have PowerPC HWDEBUG ptrace interface, we should
1461 consider having 1 hardware watchpoint and no hardware breakpoints. */
6ffbb7ab
TJB
1462 total_hw_bp = 0;
1463 total_hw_wp = 1;
1464 }
b7622095 1465
6ffbb7ab
TJB
1466 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
1467 || type == bp_access_watchpoint || type == bp_watchpoint)
1468 {
bb08bdbd 1469 if (cnt + ot > total_hw_wp)
6ffbb7ab
TJB
1470 return -1;
1471 }
1472 else if (type == bp_hardware_breakpoint)
1473 {
572f6555
EBM
1474 if (total_hw_bp == 0)
1475 {
1476 /* No hardware breakpoint support. */
1477 return 0;
1478 }
6ffbb7ab
TJB
1479 if (cnt > total_hw_bp)
1480 return -1;
1481 }
1482
926bf92d 1483 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1484 {
1485 int tid;
1486 ptid_t ptid = inferior_ptid;
1487
0df8b418
MS
1488 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG
1489 and whether the target has DABR. If either answer is no, the
1490 ptrace call will return -1. Fail in that case. */
dfd4cc63 1491 tid = ptid_get_lwp (ptid);
6ffbb7ab 1492 if (tid == 0)
dfd4cc63 1493 tid = ptid_get_pid (ptid);
6ffbb7ab
TJB
1494
1495 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1496 return 0;
1497 }
1498
1499 return 1;
b7622095
LM
1500}
1501
e0d24f8d 1502static int
31568a15
TT
1503ppc_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1504 CORE_ADDR addr, int len)
e0d24f8d
WZ
1505{
1506 /* Handle sub-8-byte quantities. */
1507 if (len <= 0)
1508 return 0;
1509
926bf92d
UW
1510 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
1511 restrictions for watchpoints in the processors. In that case, we use that
1512 information to determine the hardcoded watchable region for
1513 watchpoints. */
1514 if (have_ptrace_hwdebug_interface ())
6ffbb7ab 1515 {
e23b9d6e 1516 int region_size;
4feebbdd
EBM
1517 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
1518 watchpoints and can watch any access within an arbitrary memory
1519 region. This is useful to watch arrays and structs, for instance. It
1520 takes two hardware watchpoints though. */
e09342b5 1521 if (len > 1
926bf92d 1522 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
4feebbdd 1523 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
e09342b5 1524 return 2;
e23b9d6e
UW
1525 /* Check if the processor provides DAWR interface. */
1526 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
1527 /* DAWR interface allows to watch up to 512 byte wide ranges which
1528 can't cross a 512 byte boundary. */
1529 region_size = 512;
1530 else
1531 region_size = hwdebug_info.data_bp_alignment;
4feebbdd
EBM
1532 /* Server processors provide one hardware watchpoint and addr+len should
1533 fall in the watchable region provided by the ptrace interface. */
e23b9d6e
UW
1534 if (region_size
1535 && (addr + len > (addr & ~(region_size - 1)) + region_size))
0cf6dd15 1536 return 0;
6ffbb7ab 1537 }
b7622095 1538 /* addr+len must fall in the 8 byte watchable region for DABR-based
926bf92d
UW
1539 processors (i.e., server processors). Without the new PowerPC HWDEBUG
1540 ptrace interface, DAC-based processors (i.e., embedded processors) will
1541 use addresses aligned to 4-bytes due to the way the read/write flags are
6ffbb7ab
TJB
1542 passed in the old ptrace interface. */
1543 else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1544 && (addr + len) > (addr & ~3) + 4)
1545 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1546 return 0;
1547
1548 return 1;
1549}
1550
6ffbb7ab 1551/* This function compares two ppc_hw_breakpoint structs field-by-field. */
e4166a49 1552static int
926bf92d 1553hwdebug_point_cmp (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
6ffbb7ab 1554{
ad422571
TJB
1555 return (a->trigger_type == b->trigger_type
1556 && a->addr_mode == b->addr_mode
1557 && a->condition_mode == b->condition_mode
1558 && a->addr == b->addr
1559 && a->addr2 == b->addr2
6ffbb7ab
TJB
1560 && a->condition_value == b->condition_value);
1561}
1562
1563/* This function can be used to retrieve a thread_points by the TID of the
1564 related process/thread. If nothing has been found, and ALLOC_NEW is 0,
1565 it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
1566 provided TID will be created and returned. */
1567static struct thread_points *
926bf92d 1568hwdebug_find_thread_points_by_tid (int tid, int alloc_new)
6ffbb7ab
TJB
1569{
1570 int i;
1571 struct thread_points *t;
1572
1573 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
1574 if (t->tid == tid)
1575 return t;
1576
1577 t = NULL;
1578
1579 /* Do we need to allocate a new point_item
1580 if the wanted one does not exist? */
1581 if (alloc_new)
1582 {
1583 t = xmalloc (sizeof (struct thread_points));
0df8b418
MS
1584 t->hw_breaks
1585 = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
6ffbb7ab
TJB
1586 t->tid = tid;
1587 VEC_safe_push (thread_points_p, ppc_threads, t);
1588 }
1589
1590 return t;
1591}
1592
1593/* This function is a generic wrapper that is responsible for inserting a
1594 *point (i.e., calling `ptrace' in order to issue the request to the
1595 kernel) and registering it internally in GDB. */
1596static void
926bf92d 1597hwdebug_insert_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1598{
1599 int i;
1600 long slot;
1601 struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
1602 struct hw_break_tuple *hw_breaks;
1603 struct cleanup *c = make_cleanup (xfree, p);
1604 struct thread_points *t;
1605 struct hw_break_tuple *tuple;
1606
1607 memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
1608
1609 errno = 0;
1610 slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
1611 if (slot < 0)
1612 perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
1613
1614 /* Everything went fine, so we have to register this *point. */
926bf92d 1615 t = hwdebug_find_thread_points_by_tid (tid, 1);
6ffbb7ab
TJB
1616 gdb_assert (t != NULL);
1617 hw_breaks = t->hw_breaks;
1618
1619 /* Find a free element in the hw_breaks vector. */
1620 for (i = 0; i < max_slots_number; i++)
1621 if (hw_breaks[i].hw_break == NULL)
1622 {
1623 hw_breaks[i].slot = slot;
1624 hw_breaks[i].hw_break = p;
1625 break;
1626 }
1627
1628 gdb_assert (i != max_slots_number);
1629
1630 discard_cleanups (c);
1631}
1632
1633/* This function is a generic wrapper that is responsible for removing a
1634 *point (i.e., calling `ptrace' in order to issue the request to the
1635 kernel), and unregistering it internally at GDB. */
1636static void
926bf92d 1637hwdebug_remove_point (struct ppc_hw_breakpoint *b, int tid)
6ffbb7ab
TJB
1638{
1639 int i;
1640 struct hw_break_tuple *hw_breaks;
1641 struct thread_points *t;
1642
926bf92d 1643 t = hwdebug_find_thread_points_by_tid (tid, 0);
6ffbb7ab
TJB
1644 gdb_assert (t != NULL);
1645 hw_breaks = t->hw_breaks;
1646
1647 for (i = 0; i < max_slots_number; i++)
926bf92d 1648 if (hw_breaks[i].hw_break && hwdebug_point_cmp (hw_breaks[i].hw_break, b))
6ffbb7ab
TJB
1649 break;
1650
1651 gdb_assert (i != max_slots_number);
1652
1653 /* We have to ignore ENOENT errors because the kernel implements hardware
1654 breakpoints/watchpoints as "one-shot", that is, they are automatically
1655 deleted when hit. */
1656 errno = 0;
1657 if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
1658 if (errno != ENOENT)
0df8b418
MS
1659 perror_with_name (_("Unexpected error deleting "
1660 "breakpoint or watchpoint"));
6ffbb7ab
TJB
1661
1662 xfree (hw_breaks[i].hw_break);
1663 hw_breaks[i].hw_break = NULL;
1664}
9f0bdab8 1665
f1310107
TJB
1666/* Return the number of registers needed for a ranged breakpoint. */
1667
1668static int
1669ppc_linux_ranged_break_num_registers (struct target_ops *target)
1670{
926bf92d
UW
1671 return ((have_ptrace_hwdebug_interface ()
1672 && hwdebug_info.features & PPC_DEBUG_FEATURE_INSN_BP_RANGE)?
f1310107
TJB
1673 2 : -1);
1674}
1675
1676/* Insert the hardware breakpoint described by BP_TGT. Returns 0 for
1677 success, 1 if hardware breakpoints are not supported or -1 for failure. */
1678
2c387241 1679static int
23a26771
TT
1680ppc_linux_insert_hw_breakpoint (struct target_ops *self,
1681 struct gdbarch *gdbarch,
6ffbb7ab 1682 struct bp_target_info *bp_tgt)
e0d24f8d 1683{
9f0bdab8 1684 struct lwp_info *lp;
6ffbb7ab
TJB
1685 struct ppc_hw_breakpoint p;
1686
926bf92d 1687 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1688 return -1;
1689
ad422571
TJB
1690 p.version = PPC_DEBUG_CURRENT_VERSION;
1691 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571 1692 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
0d5ed153 1693 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
6ffbb7ab
TJB
1694 p.condition_value = 0;
1695
f1310107
TJB
1696 if (bp_tgt->length)
1697 {
1698 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1699
1700 /* The breakpoint will trigger if the address of the instruction is
1701 within the defined range, as follows: p.addr <= address < p.addr2. */
1702 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1703 }
1704 else
1705 {
1706 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1707 p.addr2 = 0;
1708 }
1709
4c38200f 1710 ALL_LWPS (lp)
dfd4cc63 1711 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1712
1713 return 0;
1714}
1715
1716static int
a64dc96c
TT
1717ppc_linux_remove_hw_breakpoint (struct target_ops *self,
1718 struct gdbarch *gdbarch,
6ffbb7ab
TJB
1719 struct bp_target_info *bp_tgt)
1720{
6ffbb7ab
TJB
1721 struct lwp_info *lp;
1722 struct ppc_hw_breakpoint p;
b7622095 1723
926bf92d 1724 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
1725 return -1;
1726
ad422571
TJB
1727 p.version = PPC_DEBUG_CURRENT_VERSION;
1728 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
ad422571
TJB
1729 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1730 p.addr = (uint64_t) bp_tgt->placed_address;
6ffbb7ab
TJB
1731 p.condition_value = 0;
1732
f1310107
TJB
1733 if (bp_tgt->length)
1734 {
1735 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
1736
1737 /* The breakpoint will trigger if the address of the instruction is within
1738 the defined range, as follows: p.addr <= address < p.addr2. */
1739 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
1740 }
1741 else
1742 {
1743 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
1744 p.addr2 = 0;
1745 }
1746
4c38200f 1747 ALL_LWPS (lp)
dfd4cc63 1748 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
1749
1750 return 0;
1751}
1752
1753static int
1754get_trigger_type (int rw)
1755{
1756 int t;
1757
1758 if (rw == hw_read)
1759 t = PPC_BREAKPOINT_TRIGGER_READ;
1760 else if (rw == hw_write)
1761 t = PPC_BREAKPOINT_TRIGGER_WRITE;
b7622095 1762 else
6ffbb7ab
TJB
1763 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
1764
1765 return t;
1766}
1767
9c06b0b4
TJB
1768/* Insert a new masked watchpoint at ADDR using the mask MASK.
1769 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1770 or hw_access for an access watchpoint. Returns 0 on success and throws
1771 an error on failure. */
1772
1773static int
1774ppc_linux_insert_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1775 CORE_ADDR mask, int rw)
1776{
9c06b0b4
TJB
1777 struct lwp_info *lp;
1778 struct ppc_hw_breakpoint p;
1779
926bf92d 1780 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1781
1782 p.version = PPC_DEBUG_CURRENT_VERSION;
1783 p.trigger_type = get_trigger_type (rw);
1784 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1785 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1786 p.addr = addr;
1787 p.addr2 = mask;
1788 p.condition_value = 0;
1789
4c38200f 1790 ALL_LWPS (lp)
dfd4cc63 1791 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1792
1793 return 0;
1794}
1795
1796/* Remove a masked watchpoint at ADDR with the mask MASK.
1797 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1798 or hw_access for an access watchpoint. Returns 0 on success and throws
1799 an error on failure. */
1800
1801static int
1802ppc_linux_remove_mask_watchpoint (struct target_ops *ops, CORE_ADDR addr,
1803 CORE_ADDR mask, int rw)
1804{
9c06b0b4
TJB
1805 struct lwp_info *lp;
1806 struct ppc_hw_breakpoint p;
1807
926bf92d 1808 gdb_assert (have_ptrace_hwdebug_interface ());
9c06b0b4
TJB
1809
1810 p.version = PPC_DEBUG_CURRENT_VERSION;
1811 p.trigger_type = get_trigger_type (rw);
1812 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
1813 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
1814 p.addr = addr;
1815 p.addr2 = mask;
1816 p.condition_value = 0;
1817
4c38200f 1818 ALL_LWPS (lp)
dfd4cc63 1819 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
9c06b0b4
TJB
1820
1821 return 0;
1822}
1823
0cf6dd15
TJB
1824/* Check whether we have at least one free DVC register. */
1825static int
1826can_use_watchpoint_cond_accel (void)
1827{
1828 struct thread_points *p;
dfd4cc63 1829 int tid = ptid_get_lwp (inferior_ptid);
926bf92d 1830 int cnt = hwdebug_info.num_condition_regs, i;
0cf6dd15
TJB
1831 CORE_ADDR tmp_value;
1832
926bf92d 1833 if (!have_ptrace_hwdebug_interface () || cnt == 0)
0cf6dd15
TJB
1834 return 0;
1835
926bf92d 1836 p = hwdebug_find_thread_points_by_tid (tid, 0);
0cf6dd15
TJB
1837
1838 if (p)
1839 {
1840 for (i = 0; i < max_slots_number; i++)
1841 if (p->hw_breaks[i].hw_break != NULL
1842 && (p->hw_breaks[i].hw_break->condition_mode
1843 != PPC_BREAKPOINT_CONDITION_NONE))
1844 cnt--;
1845
1846 /* There are no available slots now. */
1847 if (cnt <= 0)
1848 return 0;
1849 }
1850
1851 return 1;
1852}
1853
1854/* Calculate the enable bits and the contents of the Data Value Compare
1855 debug register present in BookE processors.
1856
1857 ADDR is the address to be watched, LEN is the length of watched data
1858 and DATA_VALUE is the value which will trigger the watchpoint.
1859 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
1860 CONDITION_VALUE will hold the value which should be put in the
1861 DVC register. */
1862static void
1863calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
1864 uint32_t *condition_mode, uint64_t *condition_value)
1865{
1866 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
1867 rightmost_enabled_byte;
1868 CORE_ADDR addr_end_data, addr_end_dvc;
1869
1870 /* The DVC register compares bytes within fixed-length windows which
1871 are word-aligned, with length equal to that of the DVC register.
1872 We need to calculate where our watch region is relative to that
1873 window and enable comparison of the bytes which fall within it. */
1874
926bf92d 1875 align_offset = addr % hwdebug_info.sizeof_condition;
0cf6dd15
TJB
1876 addr_end_data = addr + len;
1877 addr_end_dvc = (addr - align_offset
926bf92d 1878 + hwdebug_info.sizeof_condition);
0cf6dd15
TJB
1879 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
1880 addr_end_data - addr_end_dvc : 0;
1881 num_byte_enable = len - num_bytes_off_dvc;
1882 /* Here, bytes are numbered from right to left. */
1883 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
1884 addr_end_dvc - addr_end_data : 0;
1885
1886 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
1887 for (i = 0; i < num_byte_enable; i++)
0df8b418
MS
1888 *condition_mode
1889 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
0cf6dd15
TJB
1890
1891 /* Now we need to match the position within the DVC of the comparison
1892 value with where the watch region is relative to the window
1893 (i.e., the ALIGN_OFFSET). */
1894
1895 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
1896 << rightmost_enabled_byte * 8);
1897}
1898
1899/* Return the number of memory locations that need to be accessed to
1900 evaluate the expression which generated the given value chain.
1901 Returns -1 if there's any register access involved, or if there are
1902 other kinds of values which are not acceptable in a condition
1903 expression (e.g., lval_computed or lval_internalvar). */
1904static int
1905num_memory_accesses (struct value *v)
1906{
1907 int found_memory_cnt = 0;
1908 struct value *head = v;
1909
1910 /* The idea here is that evaluating an expression generates a series
1911 of values, one holding the value of every subexpression. (The
1912 expression a*b+c has five subexpressions: a, b, a*b, c, and
1913 a*b+c.) GDB's values hold almost enough information to establish
1914 the criteria given above --- they identify memory lvalues,
1915 register lvalues, computed values, etcetera. So we can evaluate
1916 the expression, and then scan the chain of values that leaves
1917 behind to determine the memory locations involved in the evaluation
1918 of an expression.
1919
1920 However, I don't think that the values returned by inferior
1921 function calls are special in any way. So this function may not
1922 notice that an expression contains an inferior function call.
1923 FIXME. */
1924
1925 for (; v; v = value_next (v))
1926 {
1927 /* Constants and values from the history are fine. */
1928 if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
1929 continue;
1930 else if (VALUE_LVAL (v) == lval_memory)
1931 {
1932 /* A lazy memory lvalue is one that GDB never needed to fetch;
1933 we either just used its address (e.g., `a' in `a.b') or
1934 we never needed it at all (e.g., `a' in `a,b'). */
1935 if (!value_lazy (v))
1936 found_memory_cnt++;
1937 }
0df8b418 1938 /* Other kinds of values are not fine. */
0cf6dd15
TJB
1939 else
1940 return -1;
1941 }
1942
1943 return found_memory_cnt;
1944}
1945
1946/* Verifies whether the expression COND can be implemented using the
1947 DVC (Data Value Compare) register in BookE processors. The expression
1948 must test the watch value for equality with a constant expression.
1949 If the function returns 1, DATA_VALUE will contain the constant against
e7db58ea
TJB
1950 which the watch value should be compared and LEN will contain the size
1951 of the constant. */
0cf6dd15
TJB
1952static int
1953check_condition (CORE_ADDR watch_addr, struct expression *cond,
e7db58ea 1954 CORE_ADDR *data_value, int *len)
0cf6dd15
TJB
1955{
1956 int pc = 1, num_accesses_left, num_accesses_right;
1957 struct value *left_val, *right_val, *left_chain, *right_chain;
1958
1959 if (cond->elts[0].opcode != BINOP_EQUAL)
1960 return 0;
1961
3a1115a0 1962 fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain, 0);
0cf6dd15
TJB
1963 num_accesses_left = num_memory_accesses (left_chain);
1964
1965 if (left_val == NULL || num_accesses_left < 0)
1966 {
1967 free_value_chain (left_chain);
1968
1969 return 0;
1970 }
1971
3a1115a0 1972 fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain, 0);
0cf6dd15
TJB
1973 num_accesses_right = num_memory_accesses (right_chain);
1974
1975 if (right_val == NULL || num_accesses_right < 0)
1976 {
1977 free_value_chain (left_chain);
1978 free_value_chain (right_chain);
1979
1980 return 0;
1981 }
1982
1983 if (num_accesses_left == 1 && num_accesses_right == 0
1984 && VALUE_LVAL (left_val) == lval_memory
1985 && value_address (left_val) == watch_addr)
e7db58ea
TJB
1986 {
1987 *data_value = value_as_long (right_val);
1988
1989 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
1990 the same type as the memory region referenced by LEFT_VAL. */
1991 *len = TYPE_LENGTH (check_typedef (value_type (left_val)));
1992 }
0cf6dd15
TJB
1993 else if (num_accesses_left == 0 && num_accesses_right == 1
1994 && VALUE_LVAL (right_val) == lval_memory
1995 && value_address (right_val) == watch_addr)
e7db58ea
TJB
1996 {
1997 *data_value = value_as_long (left_val);
1998
1999 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2000 the same type as the memory region referenced by RIGHT_VAL. */
2001 *len = TYPE_LENGTH (check_typedef (value_type (right_val)));
2002 }
0cf6dd15
TJB
2003 else
2004 {
2005 free_value_chain (left_chain);
2006 free_value_chain (right_chain);
2007
2008 return 0;
2009 }
2010
2011 free_value_chain (left_chain);
2012 free_value_chain (right_chain);
2013
2014 return 1;
2015}
2016
2017/* Return non-zero if the target is capable of using hardware to evaluate
2018 the condition expression, thus only triggering the watchpoint when it is
2019 true. */
2020static int
c3a5ff89
TT
2021ppc_linux_can_accel_watchpoint_condition (struct target_ops *self,
2022 CORE_ADDR addr, int len, int rw,
0cf6dd15
TJB
2023 struct expression *cond)
2024{
2025 CORE_ADDR data_value;
2026
926bf92d
UW
2027 return (have_ptrace_hwdebug_interface ()
2028 && hwdebug_info.num_condition_regs > 0
e7db58ea 2029 && check_condition (addr, cond, &data_value, &len));
0cf6dd15
TJB
2030}
2031
e09342b5
TJB
2032/* Set up P with the parameters necessary to request a watchpoint covering
2033 LEN bytes starting at ADDR and if possible with condition expression COND
2034 evaluated by hardware. INSERT tells if we are creating a request for
2035 inserting or removing the watchpoint. */
2036
2037static void
2038create_watchpoint_request (struct ppc_hw_breakpoint *p, CORE_ADDR addr,
2039 int len, int rw, struct expression *cond,
2040 int insert)
2041{
f16c4e8b 2042 if (len == 1
926bf92d 2043 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
e09342b5
TJB
2044 {
2045 int use_condition;
2046 CORE_ADDR data_value;
2047
2048 use_condition = (insert? can_use_watchpoint_cond_accel ()
926bf92d 2049 : hwdebug_info.num_condition_regs > 0);
e7db58ea
TJB
2050 if (cond && use_condition && check_condition (addr, cond,
2051 &data_value, &len))
e09342b5
TJB
2052 calculate_dvc (addr, len, data_value, &p->condition_mode,
2053 &p->condition_value);
2054 else
2055 {
2056 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2057 p->condition_value = 0;
2058 }
2059
2060 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2061 p->addr2 = 0;
2062 }
2063 else
2064 {
2065 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2066 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2067 p->condition_value = 0;
2068
2069 /* The watchpoint will trigger if the address of the memory access is
2070 within the defined range, as follows: p->addr <= address < p->addr2.
2071
2072 Note that the above sentence just documents how ptrace interprets
2073 its arguments; the watchpoint is set to watch the range defined by
2074 the user _inclusively_, as specified by the user interface. */
2075 p->addr2 = (uint64_t) addr + len;
2076 }
2077
2078 p->version = PPC_DEBUG_CURRENT_VERSION;
2079 p->trigger_type = get_trigger_type (rw);
2080 p->addr = (uint64_t) addr;
2081}
2082
6ffbb7ab 2083static int
7bb99c53
TT
2084ppc_linux_insert_watchpoint (struct target_ops *self,
2085 CORE_ADDR addr, int len, int rw,
0cf6dd15 2086 struct expression *cond)
6ffbb7ab
TJB
2087{
2088 struct lwp_info *lp;
6ffbb7ab
TJB
2089 int ret = -1;
2090
926bf92d 2091 if (have_ptrace_hwdebug_interface ())
e0d24f8d 2092 {
6ffbb7ab
TJB
2093 struct ppc_hw_breakpoint p;
2094
e09342b5 2095 create_watchpoint_request (&p, addr, len, rw, cond, 1);
6ffbb7ab 2096
4c38200f 2097 ALL_LWPS (lp)
dfd4cc63 2098 hwdebug_insert_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
2099
2100 ret = 0;
e0d24f8d 2101 }
6ffbb7ab
TJB
2102 else
2103 {
2104 long dabr_value;
2105 long read_mode, write_mode;
e0d24f8d 2106
6ffbb7ab
TJB
2107 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2108 {
2109 /* PowerPC 440 requires only the read/write flags to be passed
2110 to the kernel. */
ad422571 2111 read_mode = 1;
6ffbb7ab
TJB
2112 write_mode = 2;
2113 }
2114 else
2115 {
2116 /* PowerPC 970 and other DABR-based processors are required to pass
2117 the Breakpoint Translation bit together with the flags. */
ad422571 2118 read_mode = 5;
6ffbb7ab
TJB
2119 write_mode = 6;
2120 }
1c86e440 2121
6ffbb7ab
TJB
2122 dabr_value = addr & ~(read_mode | write_mode);
2123 switch (rw)
2124 {
2125 case hw_read:
2126 /* Set read and translate bits. */
2127 dabr_value |= read_mode;
2128 break;
2129 case hw_write:
2130 /* Set write and translate bits. */
2131 dabr_value |= write_mode;
2132 break;
2133 case hw_access:
2134 /* Set read, write and translate bits. */
2135 dabr_value |= read_mode | write_mode;
2136 break;
2137 }
1c86e440 2138
6ffbb7ab
TJB
2139 saved_dabr_value = dabr_value;
2140
4c38200f 2141 ALL_LWPS (lp)
dfd4cc63 2142 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 2143 saved_dabr_value) < 0)
6ffbb7ab
TJB
2144 return -1;
2145
2146 ret = 0;
2147 }
2148
2149 return ret;
e0d24f8d
WZ
2150}
2151
2c387241 2152static int
11b5219a
TT
2153ppc_linux_remove_watchpoint (struct target_ops *self,
2154 CORE_ADDR addr, int len, int rw,
0cf6dd15 2155 struct expression *cond)
e0d24f8d 2156{
9f0bdab8 2157 struct lwp_info *lp;
6ffbb7ab 2158 int ret = -1;
9f0bdab8 2159
926bf92d 2160 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2161 {
2162 struct ppc_hw_breakpoint p;
2163
e09342b5 2164 create_watchpoint_request (&p, addr, len, rw, cond, 0);
6ffbb7ab 2165
4c38200f 2166 ALL_LWPS (lp)
dfd4cc63 2167 hwdebug_remove_point (&p, ptid_get_lwp (lp->ptid));
6ffbb7ab
TJB
2168
2169 ret = 0;
2170 }
2171 else
2172 {
2173 saved_dabr_value = 0;
4c38200f 2174 ALL_LWPS (lp)
dfd4cc63 2175 if (ptrace (PTRACE_SET_DEBUGREG, ptid_get_lwp (lp->ptid), 0,
0cf6dd15 2176 saved_dabr_value) < 0)
6ffbb7ab
TJB
2177 return -1;
2178
2179 ret = 0;
2180 }
2181
2182 return ret;
e0d24f8d
WZ
2183}
2184
9f0bdab8 2185static void
7b50312a 2186ppc_linux_new_thread (struct lwp_info *lp)
e0d24f8d 2187{
dfd4cc63 2188 int tid = ptid_get_lwp (lp->ptid);
6ffbb7ab 2189
926bf92d 2190 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2191 {
2192 int i;
2193 struct thread_points *p;
2194 struct hw_break_tuple *hw_breaks;
2195
2196 if (VEC_empty (thread_points_p, ppc_threads))
2197 return;
2198
0df8b418 2199 /* Get a list of breakpoints from any thread. */
6ffbb7ab
TJB
2200 p = VEC_last (thread_points_p, ppc_threads);
2201 hw_breaks = p->hw_breaks;
2202
0df8b418 2203 /* Copy that thread's breakpoints and watchpoints to the new thread. */
6ffbb7ab
TJB
2204 for (i = 0; i < max_slots_number; i++)
2205 if (hw_breaks[i].hw_break)
aacbb8a5
LM
2206 {
2207 /* Older kernels did not make new threads inherit their parent
2208 thread's debug state, so we always clear the slot and replicate
2209 the debug state ourselves, ensuring compatibility with all
2210 kernels. */
2211
2212 /* The ppc debug resource accounting is done through "slots".
2213 Ask the kernel the deallocate this specific *point's slot. */
2214 ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot);
2215
926bf92d 2216 hwdebug_insert_point (hw_breaks[i].hw_break, tid);
aacbb8a5 2217 }
6ffbb7ab
TJB
2218 }
2219 else
2220 ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
2221}
2222
2223static void
2224ppc_linux_thread_exit (struct thread_info *tp, int silent)
2225{
2226 int i;
dfd4cc63 2227 int tid = ptid_get_lwp (tp->ptid);
6ffbb7ab
TJB
2228 struct hw_break_tuple *hw_breaks;
2229 struct thread_points *t = NULL, *p;
2230
926bf92d 2231 if (!have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2232 return;
2233
2234 for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
2235 if (p->tid == tid)
2236 {
2237 t = p;
2238 break;
2239 }
2240
2241 if (t == NULL)
2242 return;
2243
2244 VEC_unordered_remove (thread_points_p, ppc_threads, i);
2245
2246 hw_breaks = t->hw_breaks;
2247
2248 for (i = 0; i < max_slots_number; i++)
2249 if (hw_breaks[i].hw_break)
2250 xfree (hw_breaks[i].hw_break);
2251
2252 xfree (t->hw_breaks);
2253 xfree (t);
e0d24f8d
WZ
2254}
2255
2256static int
9f0bdab8 2257ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 2258{
f865ee35 2259 siginfo_t siginfo;
e0d24f8d 2260
f865ee35
JK
2261 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2262 return 0;
e0d24f8d 2263
f865ee35
JK
2264 if (siginfo.si_signo != SIGTRAP
2265 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
2266 return 0;
2267
926bf92d 2268 if (have_ptrace_hwdebug_interface ())
6ffbb7ab
TJB
2269 {
2270 int i;
2271 struct thread_points *t;
2272 struct hw_break_tuple *hw_breaks;
2273 /* The index (or slot) of the *point is passed in the si_errno field. */
f865ee35 2274 int slot = siginfo.si_errno;
6ffbb7ab 2275
dfd4cc63 2276 t = hwdebug_find_thread_points_by_tid (ptid_get_lwp (inferior_ptid), 0);
6ffbb7ab
TJB
2277
2278 /* Find out if this *point is a hardware breakpoint.
2279 If so, we should return 0. */
2280 if (t)
2281 {
2282 hw_breaks = t->hw_breaks;
2283 for (i = 0; i < max_slots_number; i++)
2284 if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
2285 && hw_breaks[i].hw_break->trigger_type
2286 == PPC_BREAKPOINT_TRIGGER_EXECUTE)
2287 return 0;
2288 }
2289 }
2290
f865ee35 2291 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
e0d24f8d
WZ
2292 return 1;
2293}
2294
9f0bdab8 2295static int
6a109b6b 2296ppc_linux_stopped_by_watchpoint (struct target_ops *ops)
9f0bdab8
DJ
2297{
2298 CORE_ADDR addr;
6a109b6b 2299 return ppc_linux_stopped_data_address (ops, &addr);
9f0bdab8
DJ
2300}
2301
5009afc5
AS
2302static int
2303ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
2304 CORE_ADDR addr,
2305 CORE_ADDR start, int length)
2306{
b7622095
LM
2307 int mask;
2308
926bf92d 2309 if (have_ptrace_hwdebug_interface ()
6ffbb7ab
TJB
2310 && ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
2311 return start <= addr && start + length >= addr;
2312 else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
b7622095
LM
2313 mask = 3;
2314 else
2315 mask = 7;
2316
2317 addr &= ~mask;
2318
0df8b418 2319 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
b7622095 2320 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
2321}
2322
9c06b0b4
TJB
2323/* Return the number of registers needed for a masked hardware watchpoint. */
2324
2325static int
2326ppc_linux_masked_watch_num_registers (struct target_ops *target,
2327 CORE_ADDR addr, CORE_ADDR mask)
2328{
926bf92d
UW
2329 if (!have_ptrace_hwdebug_interface ()
2330 || (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
9c06b0b4
TJB
2331 return -1;
2332 else if ((mask & 0xC0000000) != 0xC0000000)
2333 {
2334 warning (_("The given mask covers kernel address space "
2335 "and cannot be used.\n"));
2336
2337 return -2;
2338 }
2339 else
2340 return 2;
2341}
2342
10d6c8cd 2343static void
28439f5e
PA
2344ppc_linux_store_inferior_registers (struct target_ops *ops,
2345 struct regcache *regcache, int regno)
45229ea4 2346{
0df8b418 2347 /* Overload thread id onto process id. */
dfd4cc63 2348 int tid = ptid_get_lwp (inferior_ptid);
05f13b9c 2349
0df8b418 2350 /* No thread id, just use process id. */
05f13b9c 2351 if (tid == 0)
dfd4cc63 2352 tid = ptid_get_pid (inferior_ptid);
05f13b9c 2353
45229ea4 2354 if (regno >= 0)
56be3814 2355 store_register (regcache, tid, regno);
45229ea4 2356 else
56be3814 2357 store_ppc_registers (regcache, tid);
45229ea4
EZ
2358}
2359
f2db237a
AM
2360/* Functions for transferring registers between a gregset_t or fpregset_t
2361 (see sys/ucontext.h) and gdb's regcache. The word size is that used
0df8b418 2362 by the ptrace interface, not the current program's ABI. Eg. if a
f2db237a
AM
2363 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
2364 read or write 64-bit gregsets. This is to suit the host libthread_db. */
2365
50c9bd31 2366void
7f7fe91e 2367supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 2368{
f2db237a 2369 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2370
f2db237a 2371 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
2372}
2373
fdb28ac4 2374void
7f7fe91e
UW
2375fill_gregset (const struct regcache *regcache,
2376 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 2377{
f2db237a 2378 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 2379
f2db237a
AM
2380 if (regno == -1)
2381 memset (gregsetp, 0, sizeof (*gregsetp));
2382 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
2383}
2384
50c9bd31 2385void
7f7fe91e 2386supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 2387{
f2db237a
AM
2388 const struct regset *regset = ppc_linux_fpregset ();
2389
2390 ppc_supply_fpregset (regset, regcache, -1,
2391 fpregsetp, sizeof (*fpregsetp));
c877c8e6 2392}
fdb28ac4 2393
fdb28ac4 2394void
7f7fe91e
UW
2395fill_fpregset (const struct regcache *regcache,
2396 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 2397{
f2db237a
AM
2398 const struct regset *regset = ppc_linux_fpregset ();
2399
2400 ppc_collect_fpregset (regset, regcache, regno,
2401 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 2402}
10d6c8cd 2403
409c383c
UW
2404static int
2405ppc_linux_target_wordsize (void)
2406{
2407 int wordsize = 4;
2408
2409 /* Check for 64-bit inferior process. This is the case when the host is
2410 64-bit, and in addition the top bit of the MSR register is set. */
2411#ifdef __powerpc64__
2412 long msr;
2413
dfd4cc63 2414 int tid = ptid_get_lwp (inferior_ptid);
409c383c 2415 if (tid == 0)
dfd4cc63 2416 tid = ptid_get_pid (inferior_ptid);
409c383c
UW
2417
2418 errno = 0;
2419 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
2420 if (errno == 0 && msr < 0)
2421 wordsize = 8;
2422#endif
2423
2424 return wordsize;
2425}
2426
2427static int
2428ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
2429 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
2430{
2431 int sizeof_auxv_field = ppc_linux_target_wordsize ();
f5656ead 2432 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
409c383c
UW
2433 gdb_byte *ptr = *readptr;
2434
2435 if (endptr == ptr)
2436 return 0;
2437
2438 if (endptr - ptr < sizeof_auxv_field * 2)
2439 return -1;
2440
e17a4113 2441 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 2442 ptr += sizeof_auxv_field;
e17a4113 2443 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
2444 ptr += sizeof_auxv_field;
2445
2446 *readptr = ptr;
2447 return 1;
2448}
2449
310a98e1
DJ
2450static const struct target_desc *
2451ppc_linux_read_description (struct target_ops *ops)
2452{
7284e1be 2453 int altivec = 0;
604c2f83 2454 int vsx = 0;
69abc51c 2455 int isa205 = 0;
f4d9bade 2456 int cell = 0;
7284e1be 2457
dfd4cc63 2458 int tid = ptid_get_lwp (inferior_ptid);
7284e1be 2459 if (tid == 0)
dfd4cc63 2460 tid = ptid_get_pid (inferior_ptid);
7284e1be 2461
310a98e1
DJ
2462 if (have_ptrace_getsetevrregs)
2463 {
2464 struct gdb_evrregset_t evrregset;
310a98e1
DJ
2465
2466 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
2467 return tdesc_powerpc_e500l;
2468
2469 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
2470 Anything else needs to be reported. */
2471 else if (errno != EIO)
2472 perror_with_name (_("Unable to fetch SPE registers"));
2473 }
2474
604c2f83
LM
2475 if (have_ptrace_getsetvsxregs)
2476 {
2477 gdb_vsxregset_t vsxregset;
2478
2479 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
2480 vsx = 1;
2481
2482 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
2483 Anything else needs to be reported. */
2484 else if (errno != EIO)
2485 perror_with_name (_("Unable to fetch VSX registers"));
2486 }
2487
7284e1be
UW
2488 if (have_ptrace_getvrregs)
2489 {
2490 gdb_vrregset_t vrregset;
2491
2492 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
2493 altivec = 1;
2494
2495 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
2496 Anything else needs to be reported. */
2497 else if (errno != EIO)
2498 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
2499 }
2500
f04c6d38 2501 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
0df8b418 2502 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
f04c6d38
TJB
2503 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
2504 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
2505 half of the register are for Decimal Floating Point, we check if that
2506 feature is available to decide the size of the FPSCR. */
2507 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
2508 isa205 = 1;
2509
f4d9bade
UW
2510 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
2511 cell = 1;
2512
409c383c
UW
2513 if (ppc_linux_target_wordsize () == 8)
2514 {
f4d9bade
UW
2515 if (cell)
2516 return tdesc_powerpc_cell64l;
2517 else if (vsx)
409c383c
UW
2518 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
2519 else if (altivec)
0df8b418
MS
2520 return isa205
2521 ? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
409c383c
UW
2522
2523 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
2524 }
7284e1be 2525
f4d9bade
UW
2526 if (cell)
2527 return tdesc_powerpc_cell32l;
2528 else if (vsx)
69abc51c 2529 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 2530 else if (altivec)
69abc51c 2531 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 2532
69abc51c 2533 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
2534}
2535
10d6c8cd
DJ
2536void _initialize_ppc_linux_nat (void);
2537
2538void
2539_initialize_ppc_linux_nat (void)
2540{
2541 struct target_ops *t;
2542
2543 /* Fill in the generic GNU/Linux methods. */
2544 t = linux_target ();
2545
2546 /* Add our register access methods. */
2547 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
2548 t->to_store_registers = ppc_linux_store_inferior_registers;
2549
6ffbb7ab
TJB
2550 /* Add our breakpoint/watchpoint methods. */
2551 t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
2552 t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
2553 t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
e0d24f8d
WZ
2554 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
2555 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
2556 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
9c06b0b4
TJB
2557 t->to_insert_mask_watchpoint = ppc_linux_insert_mask_watchpoint;
2558 t->to_remove_mask_watchpoint = ppc_linux_remove_mask_watchpoint;
e0d24f8d
WZ
2559 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
2560 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 2561 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
0df8b418
MS
2562 t->to_can_accel_watchpoint_condition
2563 = ppc_linux_can_accel_watchpoint_condition;
9c06b0b4 2564 t->to_masked_watch_num_registers = ppc_linux_masked_watch_num_registers;
f1310107 2565 t->to_ranged_break_num_registers = ppc_linux_ranged_break_num_registers;
e0d24f8d 2566
310a98e1 2567 t->to_read_description = ppc_linux_read_description;
409c383c 2568 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 2569
6ffbb7ab
TJB
2570 observer_attach_thread_exit (ppc_linux_thread_exit);
2571
10d6c8cd 2572 /* Register the target. */
f973ed9c 2573 linux_nat_add_target (t);
9f0bdab8 2574 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 2575}
This page took 1.743204 seconds and 4 git commands to generate.