Update copyright year in most headers.
[deliverable/binutils-gdb.git] / gdb / ppc-linux-nat.c
CommitLineData
9abe5450 1/* PPC GNU/Linux native support.
2555fe1a 2
6aba47ca 3 Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
c877c8e6
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
20
21#include "defs.h"
e162d11b 22#include "gdb_string.h"
c877c8e6
KB
23#include "frame.h"
24#include "inferior.h"
25#include "gdbcore.h"
4e052eda 26#include "regcache.h"
383f0f5b 27#include "gdb_assert.h"
10d6c8cd
DJ
28#include "target.h"
29#include "linux-nat.h"
c877c8e6 30
411cb3f9 31#include <stdint.h>
c877c8e6
KB
32#include <sys/types.h>
33#include <sys/param.h>
34#include <signal.h>
35#include <sys/user.h>
36#include <sys/ioctl.h>
2555fe1a 37#include "gdb_wait.h"
c877c8e6
KB
38#include <fcntl.h>
39#include <sys/procfs.h>
45229ea4 40#include <sys/ptrace.h>
c877c8e6 41
c60c0f5f
MS
42/* Prototypes for supply_gregset etc. */
43#include "gregset.h"
16333c4f 44#include "ppc-tdep.h"
7284e1be
UW
45#include "ppc-linux-tdep.h"
46
b7622095
LM
47/* Required when using the AUXV. */
48#include "elf/common.h"
49#include "auxv.h"
50
7284e1be
UW
51/* This sometimes isn't defined. */
52#ifndef PT_ORIG_R3
53#define PT_ORIG_R3 34
54#endif
55#ifndef PT_TRAP
56#define PT_TRAP 40
57#endif
c60c0f5f 58
69abc51c
TJB
59/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
60 If they aren't, we can provide them ourselves (their values are fixed
61 because they are part of the kernel ABI). They are used in the AT_HWCAP
62 entry of the AUXV. */
f4d9bade
UW
63#ifndef PPC_FEATURE_CELL
64#define PPC_FEATURE_CELL 0x00010000
65#endif
b7622095
LM
66#ifndef PPC_FEATURE_BOOKE
67#define PPC_FEATURE_BOOKE 0x00008000
68#endif
f04c6d38
TJB
69#ifndef PPC_FEATURE_HAS_DFP
70#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
69abc51c 71#endif
b7622095 72
9abe5450
EZ
73/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
74 configure time check. Some older glibc's (for instance 2.2.1)
75 don't have a specific powerpc version of ptrace.h, and fall back on
76 a generic one. In such cases, sys/ptrace.h defines
77 PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
78 ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
79 PTRACE_SETVRREGS to be. This also makes a configury check pretty
80 much useless. */
81
82/* These definitions should really come from the glibc header files,
83 but Glibc doesn't know about the vrregs yet. */
84#ifndef PTRACE_GETVRREGS
85#define PTRACE_GETVRREGS 18
86#define PTRACE_SETVRREGS 19
87#endif
88
604c2f83
LM
89/* PTRACE requests for POWER7 VSX registers. */
90#ifndef PTRACE_GETVSXREGS
91#define PTRACE_GETVSXREGS 27
92#define PTRACE_SETVSXREGS 28
93#endif
01904826
JB
94
95/* Similarly for the ptrace requests for getting / setting the SPE
96 registers (ev0 -- ev31, acc, and spefscr). See the description of
97 gdb_evrregset_t for details. */
98#ifndef PTRACE_GETEVRREGS
99#define PTRACE_GETEVRREGS 20
100#define PTRACE_SETEVRREGS 21
101#endif
102
e0d24f8d
WZ
103/* Similarly for the hardware watchpoint support. */
104#ifndef PTRACE_GET_DEBUGREG
105#define PTRACE_GET_DEBUGREG 25
106#endif
107#ifndef PTRACE_SET_DEBUGREG
108#define PTRACE_SET_DEBUGREG 26
109#endif
110#ifndef PTRACE_GETSIGINFO
111#define PTRACE_GETSIGINFO 0x4202
112#endif
01904826 113
1dfe79e8
SDJ
114/* Similarly for the general-purpose (gp0 -- gp31)
115 and floating-point registers (fp0 -- fp31). */
116#ifndef PTRACE_GETREGS
117#define PTRACE_GETREGS 12
118#endif
119#ifndef PTRACE_SETREGS
120#define PTRACE_SETREGS 13
121#endif
122#ifndef PTRACE_GETFPREGS
123#define PTRACE_GETFPREGS 14
124#endif
125#ifndef PTRACE_SETFPREGS
126#define PTRACE_SETFPREGS 15
127#endif
128
9abe5450
EZ
129/* This oddity is because the Linux kernel defines elf_vrregset_t as
130 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
131 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
132 the vrsave as an extra 4 bytes at the end. I opted for creating a
133 flat array of chars, so that it is easier to manipulate for gdb.
134
135 There are 32 vector registers 16 bytes longs, plus a VSCR register
136 which is only 4 bytes long, but is fetched as a 16 bytes
137 quantity. Up to here we have the elf_vrregset_t structure.
138 Appended to this there is space for the VRSAVE register: 4 bytes.
139 Even though this vrsave register is not included in the regset
140 typedef, it is handled by the ptrace requests.
141
142 Note that GNU/Linux doesn't support little endian PPC hardware,
143 therefore the offset at which the real value of the VSCR register
144 is located will be always 12 bytes.
145
146 The layout is like this (where x is the actual value of the vscr reg): */
147
148/* *INDENT-OFF* */
149/*
150 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
151 <-------> <-------><-------><->
152 VR0 VR31 VSCR VRSAVE
153*/
154/* *INDENT-ON* */
155
156#define SIZEOF_VRREGS 33*16+4
157
158typedef char gdb_vrregset_t[SIZEOF_VRREGS];
159
604c2f83
LM
160/* This is the layout of the POWER7 VSX registers and the way they overlap
161 with the existing FPR and VMX registers.
162
163 VSR doubleword 0 VSR doubleword 1
164 ----------------------------------------------------------------
165 VSR[0] | FPR[0] | |
166 ----------------------------------------------------------------
167 VSR[1] | FPR[1] | |
168 ----------------------------------------------------------------
169 | ... | |
170 | ... | |
171 ----------------------------------------------------------------
172 VSR[30] | FPR[30] | |
173 ----------------------------------------------------------------
174 VSR[31] | FPR[31] | |
175 ----------------------------------------------------------------
176 VSR[32] | VR[0] |
177 ----------------------------------------------------------------
178 VSR[33] | VR[1] |
179 ----------------------------------------------------------------
180 | ... |
181 | ... |
182 ----------------------------------------------------------------
183 VSR[62] | VR[30] |
184 ----------------------------------------------------------------
185 VSR[63] | VR[31] |
186 ----------------------------------------------------------------
187
188 VSX has 64 128bit registers. The first 32 registers overlap with
189 the FP registers (doubleword 0) and hence extend them with additional
190 64 bits (doubleword 1). The other 32 regs overlap with the VMX
191 registers. */
192#define SIZEOF_VSXREGS 32*8
193
194typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
01904826
JB
195
196/* On PPC processors that support the the Signal Processing Extension
197 (SPE) APU, the general-purpose registers are 64 bits long.
411cb3f9
PG
198 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
199 ptrace calls only access the lower half of each register, to allow
200 them to behave the same way they do on non-SPE systems. There's a
201 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
202 read and write the top halves of all the general-purpose registers
203 at once, along with some SPE-specific registers.
01904826
JB
204
205 GDB itself continues to claim the general-purpose registers are 32
6ced10dd
JB
206 bits long. It has unnamed raw registers that hold the upper halves
207 of the gprs, and the the full 64-bit SIMD views of the registers,
208 'ev0' -- 'ev31', are pseudo-registers that splice the top and
209 bottom halves together.
01904826
JB
210
211 This is the structure filled in by PTRACE_GETEVRREGS and written to
212 the inferior's registers by PTRACE_SETEVRREGS. */
213struct gdb_evrregset_t
214{
215 unsigned long evr[32];
216 unsigned long long acc;
217 unsigned long spefscr;
218};
219
604c2f83
LM
220/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
221 PTRACE_SETVSXREGS requests, for reading and writing the VSX
222 POWER7 registers 0 through 31. Zero if we've tried one of them and
223 gotten an error. Note that VSX registers 32 through 63 overlap
224 with VR registers 0 through 31. */
225int have_ptrace_getsetvsxregs = 1;
01904826
JB
226
227/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
228 PTRACE_SETVRREGS requests, for reading and writing the Altivec
229 registers. Zero if we've tried one of them and gotten an
230 error. */
9abe5450
EZ
231int have_ptrace_getvrregs = 1;
232
01904826
JB
233/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
234 PTRACE_SETEVRREGS requests, for reading and writing the SPE
235 registers. Zero if we've tried one of them and gotten an
236 error. */
237int have_ptrace_getsetevrregs = 1;
238
1dfe79e8
SDJ
239/* Non-zero if our kernel may support the PTRACE_GETREGS and
240 PTRACE_SETREGS requests, for reading and writing the
241 general-purpose registers. Zero if we've tried one of
242 them and gotten an error. */
243int have_ptrace_getsetregs = 1;
244
245/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
246 PTRACE_SETFPREGS requests, for reading and writing the
247 floating-pointers registers. Zero if we've tried one of
248 them and gotten an error. */
249int have_ptrace_getsetfpregs = 1;
250
16333c4f
EZ
251/* *INDENT-OFF* */
252/* registers layout, as presented by the ptrace interface:
253PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
254PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
255PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
256PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
257PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
258PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
259PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
260PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
261PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
262/* *INDENT_ON * */
c877c8e6 263
45229ea4 264static int
e101270f 265ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
c877c8e6 266{
16333c4f 267 int u_addr = -1;
e101270f 268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
56d0d96a
AC
269 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
270 interface, and not the wordsize of the program's ABI. */
411cb3f9 271 int wordsize = sizeof (long);
16333c4f
EZ
272
273 /* General purpose registers occupy 1 slot each in the buffer */
8bf659e8
JB
274 if (regno >= tdep->ppc_gp0_regnum
275 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
26e75e5c 276 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
16333c4f 277
49ff75ad
JB
278 /* Floating point regs: eight bytes each in both 32- and 64-bit
279 ptrace interfaces. Thus, two slots each in 32-bit interface, one
280 slot each in 64-bit interface. */
383f0f5b
JB
281 if (tdep->ppc_fp0_regnum >= 0
282 && regno >= tdep->ppc_fp0_regnum
366f009f
JB
283 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
284 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
16333c4f
EZ
285
286 /* UISA special purpose registers: 1 slot each */
e101270f 287 if (regno == gdbarch_pc_regnum (gdbarch))
49ff75ad 288 u_addr = PT_NIP * wordsize;
dc5cfeb6 289 if (regno == tdep->ppc_lr_regnum)
49ff75ad 290 u_addr = PT_LNK * wordsize;
dc5cfeb6 291 if (regno == tdep->ppc_cr_regnum)
49ff75ad 292 u_addr = PT_CCR * wordsize;
dc5cfeb6 293 if (regno == tdep->ppc_xer_regnum)
49ff75ad 294 u_addr = PT_XER * wordsize;
dc5cfeb6 295 if (regno == tdep->ppc_ctr_regnum)
49ff75ad 296 u_addr = PT_CTR * wordsize;
f8c59253 297#ifdef PT_MQ
dc5cfeb6 298 if (regno == tdep->ppc_mq_regnum)
49ff75ad 299 u_addr = PT_MQ * wordsize;
f8c59253 300#endif
dc5cfeb6 301 if (regno == tdep->ppc_ps_regnum)
49ff75ad 302 u_addr = PT_MSR * wordsize;
7284e1be
UW
303 if (regno == PPC_ORIG_R3_REGNUM)
304 u_addr = PT_ORIG_R3 * wordsize;
305 if (regno == PPC_TRAP_REGNUM)
306 u_addr = PT_TRAP * wordsize;
383f0f5b
JB
307 if (tdep->ppc_fpscr_regnum >= 0
308 && regno == tdep->ppc_fpscr_regnum)
8f135812
AC
309 {
310 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
311 kernel headers incorrectly contained the 32-bit definition of
312 PT_FPSCR. For the 32-bit definition, floating-point
313 registers occupy two 32-bit "slots", and the FPSCR lives in
69abc51c 314 the second half of such a slot-pair (hence +1). For 64-bit,
8f135812
AC
315 the FPSCR instead occupies the full 64-bit 2-word-slot and
316 hence no adjustment is necessary. Hack around this. */
317 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
318 u_addr = (48 + 32) * wordsize;
69abc51c
TJB
319 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
320 slot and not just its second word. The PT_FPSCR supplied when
321 GDB is compiled as a 32-bit app doesn't reflect this. */
322 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
323 && PT_FPSCR == (48 + 2*32 + 1))
324 u_addr = (48 + 2*32) * wordsize;
8f135812
AC
325 else
326 u_addr = PT_FPSCR * wordsize;
327 }
16333c4f 328 return u_addr;
c877c8e6
KB
329}
330
604c2f83
LM
331/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
332 registers set mechanism, as opposed to the interface for all the
333 other registers, that stores/fetches each register individually. */
334static void
335fetch_vsx_register (struct regcache *regcache, int tid, int regno)
336{
337 int ret;
338 gdb_vsxregset_t regs;
339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
342
343 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
344 if (ret < 0)
345 {
346 if (errno == EIO)
347 {
348 have_ptrace_getsetvsxregs = 0;
349 return;
350 }
351 perror_with_name (_("Unable to fetch VSX register"));
352 }
353
354 regcache_raw_supply (regcache, regno,
355 regs + (regno - tdep->ppc_vsr0_upper_regnum)
356 * vsxregsize);
357}
358
9abe5450
EZ
359/* The Linux kernel ptrace interface for AltiVec registers uses the
360 registers set mechanism, as opposed to the interface for all the
361 other registers, that stores/fetches each register individually. */
362static void
56be3814 363fetch_altivec_register (struct regcache *regcache, int tid, int regno)
9abe5450
EZ
364{
365 int ret;
366 int offset = 0;
367 gdb_vrregset_t regs;
40a6adc1
MD
368 struct gdbarch *gdbarch = get_regcache_arch (regcache);
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
371
372 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
373 if (ret < 0)
374 {
375 if (errno == EIO)
376 {
377 have_ptrace_getvrregs = 0;
378 return;
379 }
e2e0b3e5 380 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
381 }
382
383 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
384 long on the hardware. We deal only with the lower 4 bytes of the
385 vector. VRSAVE is at the end of the array in a 4 bytes slot, so
386 there is no need to define an offset for it. */
387 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 388 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 389
56be3814 390 regcache_raw_supply (regcache, regno,
23a6d369 391 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
392}
393
01904826
JB
394/* Fetch the top 32 bits of TID's general-purpose registers and the
395 SPE-specific registers, and place the results in EVRREGSET. If we
396 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
397 zeros.
398
399 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
400 PTRACE_SETEVRREGS requests are supported is isolated here, and in
401 set_spe_registers. */
402static void
403get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
404{
405 if (have_ptrace_getsetevrregs)
406 {
407 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
408 return;
409 else
410 {
411 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
412 we just return zeros. */
413 if (errno == EIO)
414 have_ptrace_getsetevrregs = 0;
415 else
416 /* Anything else needs to be reported. */
e2e0b3e5 417 perror_with_name (_("Unable to fetch SPE registers"));
01904826
JB
418 }
419 }
420
421 memset (evrregset, 0, sizeof (*evrregset));
422}
423
6ced10dd
JB
424/* Supply values from TID for SPE-specific raw registers: the upper
425 halves of the GPRs, the accumulator, and the spefscr. REGNO must
426 be the number of an upper half register, acc, spefscr, or -1 to
427 supply the values of all registers. */
01904826 428static void
56be3814 429fetch_spe_register (struct regcache *regcache, int tid, int regno)
01904826 430{
40a6adc1
MD
431 struct gdbarch *gdbarch = get_regcache_arch (regcache);
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
433 struct gdb_evrregset_t evrregs;
434
6ced10dd 435 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 436 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 437 gdb_assert (sizeof (evrregs.acc)
40a6adc1 438 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 439 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 440 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
6ced10dd 441
01904826
JB
442 get_spe_registers (tid, &evrregs);
443
6ced10dd 444 if (regno == -1)
01904826 445 {
6ced10dd
JB
446 int i;
447
448 for (i = 0; i < ppc_num_gprs; i++)
56be3814 449 regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
6ced10dd 450 &evrregs.evr[i]);
01904826 451 }
6ced10dd
JB
452 else if (tdep->ppc_ev0_upper_regnum <= regno
453 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 454 regcache_raw_supply (regcache, regno,
6ced10dd
JB
455 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
456
457 if (regno == -1
458 || regno == tdep->ppc_acc_regnum)
56be3814 459 regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
6ced10dd
JB
460
461 if (regno == -1
462 || regno == tdep->ppc_spefscr_regnum)
56be3814 463 regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
6ced10dd 464 &evrregs.spefscr);
01904826
JB
465}
466
45229ea4 467static void
56be3814 468fetch_register (struct regcache *regcache, int tid, int regno)
45229ea4 469{
40a6adc1
MD
470 struct gdbarch *gdbarch = get_regcache_arch (regcache);
471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 472 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 473 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
4a19ea35 474 int bytes_transferred;
45229ea4 475 unsigned int offset; /* Offset of registers within the u area. */
d9d9c31f 476 char buf[MAX_REGISTER_SIZE];
45229ea4 477
be8626e0 478 if (altivec_register_p (gdbarch, regno))
9abe5450
EZ
479 {
480 /* If this is the first time through, or if it is not the first
481 time through, and we have comfirmed that there is kernel
482 support for such a ptrace request, then go and fetch the
483 register. */
484 if (have_ptrace_getvrregs)
485 {
56be3814 486 fetch_altivec_register (regcache, tid, regno);
9abe5450
EZ
487 return;
488 }
489 /* If we have discovered that there is no ptrace support for
490 AltiVec registers, fall through and return zeroes, because
491 regaddr will be -1 in this case. */
492 }
604c2f83
LM
493 if (vsx_register_p (gdbarch, regno))
494 {
495 if (have_ptrace_getsetvsxregs)
496 {
497 fetch_vsx_register (regcache, tid, regno);
498 return;
499 }
500 }
be8626e0 501 else if (spe_register_p (gdbarch, regno))
01904826 502 {
56be3814 503 fetch_spe_register (regcache, tid, regno);
01904826
JB
504 return;
505 }
9abe5450 506
45229ea4
EZ
507 if (regaddr == -1)
508 {
40a6adc1 509 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
56be3814 510 regcache_raw_supply (regcache, regno, buf);
45229ea4
EZ
511 return;
512 }
513
411cb3f9 514 /* Read the raw register using sizeof(long) sized chunks. On a
56d0d96a
AC
515 32-bit platform, 64-bit floating-point registers will require two
516 transfers. */
4a19ea35 517 for (bytes_transferred = 0;
40a6adc1 518 bytes_transferred < register_size (gdbarch, regno);
411cb3f9 519 bytes_transferred += sizeof (long))
45229ea4
EZ
520 {
521 errno = 0;
411cb3f9
PG
522 *(long *) &buf[bytes_transferred]
523 = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
524 regaddr += sizeof (long);
45229ea4
EZ
525 if (errno != 0)
526 {
bc97b3ba
JB
527 char message[128];
528 sprintf (message, "reading register %s (#%d)",
40a6adc1 529 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 530 perror_with_name (message);
45229ea4
EZ
531 }
532 }
56d0d96a 533
4a19ea35
JB
534 /* Now supply the register. Keep in mind that the regcache's idea
535 of the register's size may not be a multiple of sizeof
411cb3f9 536 (long). */
40a6adc1 537 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
538 {
539 /* Little-endian values are always found at the left end of the
540 bytes transferred. */
56be3814 541 regcache_raw_supply (regcache, regno, buf);
4a19ea35 542 }
40a6adc1 543 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
544 {
545 /* Big-endian values are found at the right end of the bytes
546 transferred. */
40a6adc1 547 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
56be3814 548 regcache_raw_supply (regcache, regno, buf + padding);
4a19ea35
JB
549 }
550 else
a44bddec 551 internal_error (__FILE__, __LINE__,
e2e0b3e5 552 _("fetch_register: unexpected byte order: %d"),
40a6adc1 553 gdbarch_byte_order (gdbarch));
45229ea4
EZ
554}
555
604c2f83
LM
556static void
557supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
558{
559 int i;
560 struct gdbarch *gdbarch = get_regcache_arch (regcache);
561 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
562 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
563
564 for (i = 0; i < ppc_num_vshrs; i++)
565 {
566 regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
567 *vsxregsetp + i * vsxregsize);
568 }
569}
570
9abe5450 571static void
56be3814 572supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
573{
574 int i;
40a6adc1
MD
575 struct gdbarch *gdbarch = get_regcache_arch (regcache);
576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 577 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
578 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
579 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
580
581 for (i = 0; i < num_of_vrregs; i++)
582 {
583 /* The last 2 registers of this set are only 32 bit long, not
584 128. However an offset is necessary only for VSCR because it
585 occupies a whole vector, while VRSAVE occupies a full 4 bytes
586 slot. */
587 if (i == (num_of_vrregs - 2))
56be3814 588 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 589 *vrregsetp + i * vrregsize + offset);
9abe5450 590 else
56be3814 591 regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
23a6d369 592 *vrregsetp + i * vrregsize);
9abe5450
EZ
593 }
594}
595
604c2f83
LM
596static void
597fetch_vsx_registers (struct regcache *regcache, int tid)
598{
599 int ret;
600 gdb_vsxregset_t regs;
601
602 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
603 if (ret < 0)
604 {
605 if (errno == EIO)
606 {
607 have_ptrace_getsetvsxregs = 0;
608 return;
609 }
610 perror_with_name (_("Unable to fetch VSX registers"));
611 }
612 supply_vsxregset (regcache, &regs);
613}
614
9abe5450 615static void
56be3814 616fetch_altivec_registers (struct regcache *regcache, int tid)
9abe5450
EZ
617{
618 int ret;
619 gdb_vrregset_t regs;
620
621 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
622 if (ret < 0)
623 {
624 if (errno == EIO)
625 {
626 have_ptrace_getvrregs = 0;
627 return;
628 }
e2e0b3e5 629 perror_with_name (_("Unable to fetch AltiVec registers"));
9abe5450 630 }
56be3814 631 supply_vrregset (regcache, &regs);
9abe5450
EZ
632}
633
1dfe79e8
SDJ
634/* This function actually issues the request to ptrace, telling
635 it to get all general-purpose registers and put them into the
636 specified regset.
637
638 If the ptrace request does not exist, this function returns 0
639 and properly sets the have_ptrace_* flag. If the request fails,
640 this function calls perror_with_name. Otherwise, if the request
641 succeeds, then the regcache gets filled and 1 is returned. */
642static int
643fetch_all_gp_regs (struct regcache *regcache, int tid)
644{
645 struct gdbarch *gdbarch = get_regcache_arch (regcache);
646 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
647 gdb_gregset_t gregset;
648
649 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
650 {
651 if (errno == EIO)
652 {
653 have_ptrace_getsetregs = 0;
654 return 0;
655 }
656 perror_with_name (_("Couldn't get general-purpose registers."));
657 }
658
659 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
660
661 return 1;
662}
663
664/* This is a wrapper for the fetch_all_gp_regs function. It is
665 responsible for verifying if this target has the ptrace request
666 that can be used to fetch all general-purpose registers at one
667 shot. If it doesn't, then we should fetch them using the
668 old-fashioned way, which is to iterate over the registers and
669 request them one by one. */
670static void
671fetch_gp_regs (struct regcache *regcache, int tid)
672{
673 struct gdbarch *gdbarch = get_regcache_arch (regcache);
674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
675 int i;
676
677 if (have_ptrace_getsetregs)
678 if (fetch_all_gp_regs (regcache, tid))
679 return;
680
681 /* If we've hit this point, it doesn't really matter which
682 architecture we are using. We just need to read the
683 registers in the "old-fashioned way". */
684 for (i = 0; i < ppc_num_gprs; i++)
685 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
686}
687
688/* This function actually issues the request to ptrace, telling
689 it to get all floating-point registers and put them into the
690 specified regset.
691
692 If the ptrace request does not exist, this function returns 0
693 and properly sets the have_ptrace_* flag. If the request fails,
694 this function calls perror_with_name. Otherwise, if the request
695 succeeds, then the regcache gets filled and 1 is returned. */
696static int
697fetch_all_fp_regs (struct regcache *regcache, int tid)
698{
699 gdb_fpregset_t fpregs;
700
701 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
702 {
703 if (errno == EIO)
704 {
705 have_ptrace_getsetfpregs = 0;
706 return 0;
707 }
708 perror_with_name (_("Couldn't get floating-point registers."));
709 }
710
711 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
712
713 return 1;
714}
715
716/* This is a wrapper for the fetch_all_fp_regs function. It is
717 responsible for verifying if this target has the ptrace request
718 that can be used to fetch all floating-point registers at one
719 shot. If it doesn't, then we should fetch them using the
720 old-fashioned way, which is to iterate over the registers and
721 request them one by one. */
722static void
723fetch_fp_regs (struct regcache *regcache, int tid)
724{
725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
727 int i;
728
729 if (have_ptrace_getsetfpregs)
730 if (fetch_all_fp_regs (regcache, tid))
731 return;
732
733 /* If we've hit this point, it doesn't really matter which
734 architecture we are using. We just need to read the
735 registers in the "old-fashioned way". */
736 for (i = 0; i < ppc_num_fprs; i++)
737 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
738}
739
45229ea4 740static void
56be3814 741fetch_ppc_registers (struct regcache *regcache, int tid)
45229ea4
EZ
742{
743 int i;
40a6adc1
MD
744 struct gdbarch *gdbarch = get_regcache_arch (regcache);
745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 746
1dfe79e8 747 fetch_gp_regs (regcache, tid);
32b99774 748 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 749 fetch_fp_regs (regcache, tid);
40a6adc1 750 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 751 if (tdep->ppc_ps_regnum != -1)
56be3814 752 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 753 if (tdep->ppc_cr_regnum != -1)
56be3814 754 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 755 if (tdep->ppc_lr_regnum != -1)
56be3814 756 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 757 if (tdep->ppc_ctr_regnum != -1)
56be3814 758 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 759 if (tdep->ppc_xer_regnum != -1)
56be3814 760 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 761 if (tdep->ppc_mq_regnum != -1)
56be3814 762 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
7284e1be
UW
763 if (ppc_linux_trap_reg_p (gdbarch))
764 {
765 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
766 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
767 }
32b99774 768 if (tdep->ppc_fpscr_regnum != -1)
56be3814 769 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
9abe5450
EZ
770 if (have_ptrace_getvrregs)
771 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 772 fetch_altivec_registers (regcache, tid);
604c2f83
LM
773 if (have_ptrace_getsetvsxregs)
774 if (tdep->ppc_vsr0_upper_regnum != -1)
775 fetch_vsx_registers (regcache, tid);
6ced10dd 776 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 777 fetch_spe_register (regcache, tid, -1);
45229ea4
EZ
778}
779
780/* Fetch registers from the child process. Fetch all registers if
781 regno == -1, otherwise fetch all general registers or all floating
782 point registers depending upon the value of regno. */
10d6c8cd 783static void
28439f5e
PA
784ppc_linux_fetch_inferior_registers (struct target_ops *ops,
785 struct regcache *regcache, int regno)
45229ea4 786{
9abe5450 787 /* Overload thread id onto process id */
05f13b9c
EZ
788 int tid = TIDGET (inferior_ptid);
789
790 /* No thread id, just use process id */
791 if (tid == 0)
792 tid = PIDGET (inferior_ptid);
793
9abe5450 794 if (regno == -1)
56be3814 795 fetch_ppc_registers (regcache, tid);
45229ea4 796 else
56be3814 797 fetch_register (regcache, tid, regno);
45229ea4
EZ
798}
799
604c2f83
LM
800/* Store one VSX register. */
801static void
802store_vsx_register (const struct regcache *regcache, int tid, int regno)
803{
804 int ret;
805 gdb_vsxregset_t regs;
806 struct gdbarch *gdbarch = get_regcache_arch (regcache);
807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
808 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
809
810 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
811 if (ret < 0)
812 {
813 if (errno == EIO)
814 {
815 have_ptrace_getsetvsxregs = 0;
816 return;
817 }
818 perror_with_name (_("Unable to fetch VSX register"));
819 }
820
821 regcache_raw_collect (regcache, regno, regs +
822 (regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
823
824 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
825 if (ret < 0)
826 perror_with_name (_("Unable to store VSX register"));
827}
828
45229ea4 829/* Store one register. */
9abe5450 830static void
56be3814 831store_altivec_register (const struct regcache *regcache, int tid, int regno)
9abe5450
EZ
832{
833 int ret;
834 int offset = 0;
835 gdb_vrregset_t regs;
40a6adc1
MD
836 struct gdbarch *gdbarch = get_regcache_arch (regcache);
837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
838 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
9abe5450
EZ
839
840 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
841 if (ret < 0)
842 {
843 if (errno == EIO)
844 {
845 have_ptrace_getvrregs = 0;
846 return;
847 }
e2e0b3e5 848 perror_with_name (_("Unable to fetch AltiVec register"));
9abe5450
EZ
849 }
850
851 /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
852 long on the hardware. */
853 if (regno == (tdep->ppc_vrsave_regnum - 1))
40a6adc1 854 offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450 855
56be3814 856 regcache_raw_collect (regcache, regno,
822c9732 857 regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
9abe5450
EZ
858
859 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
860 if (ret < 0)
e2e0b3e5 861 perror_with_name (_("Unable to store AltiVec register"));
9abe5450
EZ
862}
863
01904826
JB
864/* Assuming TID referrs to an SPE process, set the top halves of TID's
865 general-purpose registers and its SPE-specific registers to the
866 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
867 nothing.
868
869 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
870 PTRACE_SETEVRREGS requests are supported is isolated here, and in
871 get_spe_registers. */
872static void
873set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
874{
875 if (have_ptrace_getsetevrregs)
876 {
877 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
878 return;
879 else
880 {
881 /* EIO means that the PTRACE_SETEVRREGS request isn't
882 supported; we fail silently, and don't try the call
883 again. */
884 if (errno == EIO)
885 have_ptrace_getsetevrregs = 0;
886 else
887 /* Anything else needs to be reported. */
e2e0b3e5 888 perror_with_name (_("Unable to set SPE registers"));
01904826
JB
889 }
890 }
891}
892
6ced10dd
JB
893/* Write GDB's value for the SPE-specific raw register REGNO to TID.
894 If REGNO is -1, write the values of all the SPE-specific
895 registers. */
01904826 896static void
56be3814 897store_spe_register (const struct regcache *regcache, int tid, int regno)
01904826 898{
40a6adc1
MD
899 struct gdbarch *gdbarch = get_regcache_arch (regcache);
900 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01904826
JB
901 struct gdb_evrregset_t evrregs;
902
6ced10dd 903 gdb_assert (sizeof (evrregs.evr[0])
40a6adc1 904 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
6ced10dd 905 gdb_assert (sizeof (evrregs.acc)
40a6adc1 906 == register_size (gdbarch, tdep->ppc_acc_regnum));
6ced10dd 907 gdb_assert (sizeof (evrregs.spefscr)
40a6adc1 908 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
01904826 909
6ced10dd
JB
910 if (regno == -1)
911 /* Since we're going to write out every register, the code below
912 should store to every field of evrregs; if that doesn't happen,
913 make it obvious by initializing it with suspicious values. */
914 memset (&evrregs, 42, sizeof (evrregs));
915 else
916 /* We can only read and write the entire EVR register set at a
917 time, so to write just a single register, we do a
918 read-modify-write maneuver. */
919 get_spe_registers (tid, &evrregs);
920
921 if (regno == -1)
01904826 922 {
6ced10dd
JB
923 int i;
924
925 for (i = 0; i < ppc_num_gprs; i++)
56be3814 926 regcache_raw_collect (regcache,
6ced10dd
JB
927 tdep->ppc_ev0_upper_regnum + i,
928 &evrregs.evr[i]);
01904826 929 }
6ced10dd
JB
930 else if (tdep->ppc_ev0_upper_regnum <= regno
931 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
56be3814 932 regcache_raw_collect (regcache, regno,
6ced10dd
JB
933 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
934
935 if (regno == -1
936 || regno == tdep->ppc_acc_regnum)
56be3814 937 regcache_raw_collect (regcache,
6ced10dd
JB
938 tdep->ppc_acc_regnum,
939 &evrregs.acc);
940
941 if (regno == -1
942 || regno == tdep->ppc_spefscr_regnum)
56be3814 943 regcache_raw_collect (regcache,
6ced10dd
JB
944 tdep->ppc_spefscr_regnum,
945 &evrregs.spefscr);
01904826
JB
946
947 /* Write back the modified register set. */
948 set_spe_registers (tid, &evrregs);
949}
950
45229ea4 951static void
56be3814 952store_register (const struct regcache *regcache, int tid, int regno)
45229ea4 953{
40a6adc1
MD
954 struct gdbarch *gdbarch = get_regcache_arch (regcache);
955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
45229ea4 956 /* This isn't really an address. But ptrace thinks of it as one. */
e101270f 957 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
52f0bd74 958 int i;
4a19ea35 959 size_t bytes_to_transfer;
d9d9c31f 960 char buf[MAX_REGISTER_SIZE];
45229ea4 961
be8626e0 962 if (altivec_register_p (gdbarch, regno))
45229ea4 963 {
56be3814 964 store_altivec_register (regcache, tid, regno);
45229ea4
EZ
965 return;
966 }
604c2f83
LM
967 if (vsx_register_p (gdbarch, regno))
968 {
969 store_vsx_register (regcache, tid, regno);
970 return;
971 }
be8626e0 972 else if (spe_register_p (gdbarch, regno))
01904826 973 {
56be3814 974 store_spe_register (regcache, tid, regno);
01904826
JB
975 return;
976 }
45229ea4 977
9abe5450
EZ
978 if (regaddr == -1)
979 return;
980
4a19ea35
JB
981 /* First collect the register. Keep in mind that the regcache's
982 idea of the register's size may not be a multiple of sizeof
411cb3f9 983 (long). */
56d0d96a 984 memset (buf, 0, sizeof buf);
40a6adc1
MD
985 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
986 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
4a19ea35
JB
987 {
988 /* Little-endian values always sit at the left end of the buffer. */
56be3814 989 regcache_raw_collect (regcache, regno, buf);
4a19ea35 990 }
40a6adc1 991 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4a19ea35
JB
992 {
993 /* Big-endian values sit at the right end of the buffer. */
40a6adc1 994 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
56be3814 995 regcache_raw_collect (regcache, regno, buf + padding);
4a19ea35
JB
996 }
997
411cb3f9 998 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
45229ea4
EZ
999 {
1000 errno = 0;
411cb3f9
PG
1001 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
1002 *(long *) &buf[i]);
1003 regaddr += sizeof (long);
e3f36dbd
KB
1004
1005 if (errno == EIO
7284e1be
UW
1006 && (regno == tdep->ppc_fpscr_regnum
1007 || regno == PPC_ORIG_R3_REGNUM
1008 || regno == PPC_TRAP_REGNUM))
e3f36dbd 1009 {
7284e1be
UW
1010 /* Some older kernel versions don't allow fpscr, orig_r3
1011 or trap to be written. */
e3f36dbd
KB
1012 continue;
1013 }
1014
45229ea4
EZ
1015 if (errno != 0)
1016 {
bc97b3ba
JB
1017 char message[128];
1018 sprintf (message, "writing register %s (#%d)",
40a6adc1 1019 gdbarch_register_name (gdbarch, regno), regno);
bc97b3ba 1020 perror_with_name (message);
45229ea4
EZ
1021 }
1022 }
1023}
1024
604c2f83
LM
1025static void
1026fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
1027{
1028 int i;
1029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1031 int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
1032
1033 for (i = 0; i < ppc_num_vshrs; i++)
1034 regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
1035 *vsxregsetp + i * vsxregsize);
1036}
1037
9abe5450 1038static void
56be3814 1039fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
9abe5450
EZ
1040{
1041 int i;
40a6adc1
MD
1042 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1043 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9abe5450 1044 int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
40a6adc1
MD
1045 int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
1046 int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
9abe5450
EZ
1047
1048 for (i = 0; i < num_of_vrregs; i++)
1049 {
1050 /* The last 2 registers of this set are only 32 bit long, not
1051 128, but only VSCR is fetched as a 16 bytes quantity. */
1052 if (i == (num_of_vrregs - 2))
56be3814 1053 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1054 *vrregsetp + i * vrregsize + offset);
9abe5450 1055 else
56be3814 1056 regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
822c9732 1057 *vrregsetp + i * vrregsize);
9abe5450
EZ
1058 }
1059}
1060
604c2f83
LM
1061static void
1062store_vsx_registers (const struct regcache *regcache, int tid)
1063{
1064 int ret;
1065 gdb_vsxregset_t regs;
1066
1067 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1068 if (ret < 0)
1069 {
1070 if (errno == EIO)
1071 {
1072 have_ptrace_getsetvsxregs = 0;
1073 return;
1074 }
1075 perror_with_name (_("Couldn't get VSX registers"));
1076 }
1077
1078 fill_vsxregset (regcache, &regs);
1079
1080 if (ptrace (PTRACE_SETVSXREGS, tid, 0, &regs) < 0)
1081 perror_with_name (_("Couldn't write VSX registers"));
1082}
1083
9abe5450 1084static void
56be3814 1085store_altivec_registers (const struct regcache *regcache, int tid)
9abe5450
EZ
1086{
1087 int ret;
1088 gdb_vrregset_t regs;
1089
0897f59b 1090 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
9abe5450
EZ
1091 if (ret < 0)
1092 {
1093 if (errno == EIO)
1094 {
1095 have_ptrace_getvrregs = 0;
1096 return;
1097 }
e2e0b3e5 1098 perror_with_name (_("Couldn't get AltiVec registers"));
9abe5450
EZ
1099 }
1100
56be3814 1101 fill_vrregset (regcache, &regs);
9abe5450 1102
0897f59b 1103 if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
e2e0b3e5 1104 perror_with_name (_("Couldn't write AltiVec registers"));
9abe5450
EZ
1105}
1106
1dfe79e8
SDJ
1107/* This function actually issues the request to ptrace, telling
1108 it to store all general-purpose registers present in the specified
1109 regset.
1110
1111 If the ptrace request does not exist, this function returns 0
1112 and properly sets the have_ptrace_* flag. If the request fails,
1113 this function calls perror_with_name. Otherwise, if the request
1114 succeeds, then the regcache is stored and 1 is returned. */
1115static int
1116store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1117{
1118 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1120 gdb_gregset_t gregset;
1121
1122 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1123 {
1124 if (errno == EIO)
1125 {
1126 have_ptrace_getsetregs = 0;
1127 return 0;
1128 }
1129 perror_with_name (_("Couldn't get general-purpose registers."));
1130 }
1131
1132 fill_gregset (regcache, &gregset, regno);
1133
1134 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1135 {
1136 if (errno == EIO)
1137 {
1138 have_ptrace_getsetregs = 0;
1139 return 0;
1140 }
1141 perror_with_name (_("Couldn't set general-purpose registers."));
1142 }
1143
1144 return 1;
1145}
1146
1147/* This is a wrapper for the store_all_gp_regs function. It is
1148 responsible for verifying if this target has the ptrace request
1149 that can be used to store all general-purpose registers at one
1150 shot. If it doesn't, then we should store them using the
1151 old-fashioned way, which is to iterate over the registers and
1152 store them one by one. */
45229ea4 1153static void
1dfe79e8 1154store_gp_regs (const struct regcache *regcache, int tid, int regno)
45229ea4 1155{
40a6adc1
MD
1156 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1157 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dfe79e8
SDJ
1158 int i;
1159
1160 if (have_ptrace_getsetregs)
1161 if (store_all_gp_regs (regcache, tid, regno))
1162 return;
1163
1164 /* If we hit this point, it doesn't really matter which
1165 architecture we are using. We just need to store the
1166 registers in the "old-fashioned way". */
6ced10dd 1167 for (i = 0; i < ppc_num_gprs; i++)
56be3814 1168 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1dfe79e8
SDJ
1169}
1170
1171/* This function actually issues the request to ptrace, telling
1172 it to store all floating-point registers present in the specified
1173 regset.
1174
1175 If the ptrace request does not exist, this function returns 0
1176 and properly sets the have_ptrace_* flag. If the request fails,
1177 this function calls perror_with_name. Otherwise, if the request
1178 succeeds, then the regcache is stored and 1 is returned. */
1179static int
1180store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1181{
1182 gdb_fpregset_t fpregs;
1183
1184 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1185 {
1186 if (errno == EIO)
1187 {
1188 have_ptrace_getsetfpregs = 0;
1189 return 0;
1190 }
1191 perror_with_name (_("Couldn't get floating-point registers."));
1192 }
1193
1194 fill_fpregset (regcache, &fpregs, regno);
1195
1196 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1197 {
1198 if (errno == EIO)
1199 {
1200 have_ptrace_getsetfpregs = 0;
1201 return 0;
1202 }
1203 perror_with_name (_("Couldn't set floating-point registers."));
1204 }
1205
1206 return 1;
1207}
1208
1209/* This is a wrapper for the store_all_fp_regs function. It is
1210 responsible for verifying if this target has the ptrace request
1211 that can be used to store all floating-point registers at one
1212 shot. If it doesn't, then we should store them using the
1213 old-fashioned way, which is to iterate over the registers and
1214 store them one by one. */
1215static void
1216store_fp_regs (const struct regcache *regcache, int tid, int regno)
1217{
1218 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1220 int i;
1221
1222 if (have_ptrace_getsetfpregs)
1223 if (store_all_fp_regs (regcache, tid, regno))
1224 return;
1225
1226 /* If we hit this point, it doesn't really matter which
1227 architecture we are using. We just need to store the
1228 registers in the "old-fashioned way". */
1229 for (i = 0; i < ppc_num_fprs; i++)
1230 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1231}
1232
1233static void
1234store_ppc_registers (const struct regcache *regcache, int tid)
1235{
1236 int i;
1237 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1239
1240 store_gp_regs (regcache, tid, -1);
32b99774 1241 if (tdep->ppc_fp0_regnum >= 0)
1dfe79e8 1242 store_fp_regs (regcache, tid, -1);
40a6adc1 1243 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
32b99774 1244 if (tdep->ppc_ps_regnum != -1)
56be3814 1245 store_register (regcache, tid, tdep->ppc_ps_regnum);
32b99774 1246 if (tdep->ppc_cr_regnum != -1)
56be3814 1247 store_register (regcache, tid, tdep->ppc_cr_regnum);
32b99774 1248 if (tdep->ppc_lr_regnum != -1)
56be3814 1249 store_register (regcache, tid, tdep->ppc_lr_regnum);
32b99774 1250 if (tdep->ppc_ctr_regnum != -1)
56be3814 1251 store_register (regcache, tid, tdep->ppc_ctr_regnum);
32b99774 1252 if (tdep->ppc_xer_regnum != -1)
56be3814 1253 store_register (regcache, tid, tdep->ppc_xer_regnum);
e3f36dbd 1254 if (tdep->ppc_mq_regnum != -1)
56be3814 1255 store_register (regcache, tid, tdep->ppc_mq_regnum);
32b99774 1256 if (tdep->ppc_fpscr_regnum != -1)
56be3814 1257 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
7284e1be
UW
1258 if (ppc_linux_trap_reg_p (gdbarch))
1259 {
1260 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1261 store_register (regcache, tid, PPC_TRAP_REGNUM);
1262 }
9abe5450
EZ
1263 if (have_ptrace_getvrregs)
1264 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
56be3814 1265 store_altivec_registers (regcache, tid);
604c2f83
LM
1266 if (have_ptrace_getsetvsxregs)
1267 if (tdep->ppc_vsr0_upper_regnum != -1)
1268 store_vsx_registers (regcache, tid);
6ced10dd 1269 if (tdep->ppc_ev0_upper_regnum >= 0)
56be3814 1270 store_spe_register (regcache, tid, -1);
45229ea4
EZ
1271}
1272
e0d24f8d
WZ
1273static int
1274ppc_linux_check_watch_resources (int type, int cnt, int ot)
1275{
1276 int tid;
1277 ptid_t ptid = inferior_ptid;
1278
1279 /* DABR (data address breakpoint register) is optional for PPC variants.
1280 Some variants have one DABR, others have none. So CNT can't be larger
1281 than 1. */
1282 if (cnt > 1)
1283 return 0;
1284
1285 /* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
1286 the target has DABR. If either answer is no, the ptrace call will
1287 return -1. Fail in that case. */
1288 tid = TIDGET (ptid);
1289 if (tid == 0)
1290 tid = PIDGET (ptid);
1291
1292 if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
1293 return 0;
1294 return 1;
1295}
1296
b7622095
LM
1297/* Fetch the AT_HWCAP entry from the aux vector. */
1298unsigned long ppc_linux_get_hwcap (void)
1299{
1300 CORE_ADDR field;
1301
fcb09a75 1302 if (target_auxv_search (&current_target, AT_HWCAP, &field))
b7622095
LM
1303 return (unsigned long) field;
1304
1305 return 0;
1306}
1307
e0d24f8d
WZ
1308static int
1309ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1310{
1311 /* Handle sub-8-byte quantities. */
1312 if (len <= 0)
1313 return 0;
1314
b7622095
LM
1315 /* addr+len must fall in the 8 byte watchable region for DABR-based
1316 processors. DAC-based processors, like the PowerPC 440, will use
1317 addresses aligned to 4-bytes due to the way the read/write flags are
1318 passed at the moment. */
1319 if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1320 && (addr + len) > (addr & ~3) + 4)
1321 || (addr + len) > (addr & ~7) + 8)
e0d24f8d
WZ
1322 return 0;
1323
1324 return 1;
1325}
1326
9f0bdab8
DJ
1327/* The cached DABR value, to install in new threads. */
1328static long saved_dabr_value;
1329
e0d24f8d 1330/* Set a watchpoint of type TYPE at address ADDR. */
2c387241 1331static int
e0d24f8d
WZ
1332ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
1333{
9f0bdab8
DJ
1334 struct lwp_info *lp;
1335 ptid_t ptid;
e0d24f8d 1336 long dabr_value;
b7622095
LM
1337 long read_mode, write_mode;
1338
1339 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1340 {
1341 /* PowerPC 440 requires only the read/write flags to be passed
1342 to the kernel. */
1343 read_mode = 1;
1344 write_mode = 2;
1345 }
1346 else
1347 {
1348 /* PowerPC 970 and other DABR-based processors are required to pass
1349 the Breakpoint Translation bit together with the flags. */
1350 read_mode = 5;
1351 write_mode = 6;
1352 }
1353
1354 dabr_value = addr & ~(read_mode | write_mode);
e0d24f8d
WZ
1355 switch (rw)
1356 {
1357 case hw_read:
1358 /* Set read and translate bits. */
b7622095 1359 dabr_value |= read_mode;
e0d24f8d
WZ
1360 break;
1361 case hw_write:
1362 /* Set write and translate bits. */
b7622095 1363 dabr_value |= write_mode;
e0d24f8d
WZ
1364 break;
1365 case hw_access:
1366 /* Set read, write and translate bits. */
b7622095 1367 dabr_value |= read_mode | write_mode;
e0d24f8d
WZ
1368 break;
1369 }
1370
1c86e440
LM
1371 saved_dabr_value = dabr_value;
1372
9f0bdab8
DJ
1373 ALL_LWPS (lp, ptid)
1374 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
1375 return -1;
1c86e440 1376
9f0bdab8 1377 return 0;
e0d24f8d
WZ
1378}
1379
2c387241
AM
1380static int
1381ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
e0d24f8d 1382{
9f0bdab8
DJ
1383 struct lwp_info *lp;
1384 ptid_t ptid;
1385 long dabr_value = 0;
1386
1387 saved_dabr_value = 0;
1388 ALL_LWPS (lp, ptid)
1389 if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value) < 0)
1390 return -1;
1391 return 0;
e0d24f8d
WZ
1392}
1393
9f0bdab8
DJ
1394static void
1395ppc_linux_new_thread (ptid_t ptid)
e0d24f8d 1396{
9f0bdab8 1397 ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0, saved_dabr_value);
e0d24f8d
WZ
1398}
1399
1400static int
9f0bdab8 1401ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
e0d24f8d 1402{
9f0bdab8 1403 struct siginfo *siginfo_p;
e0d24f8d 1404
9f0bdab8 1405 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
e0d24f8d 1406
9f0bdab8
DJ
1407 if (siginfo_p->si_signo != SIGTRAP
1408 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
e0d24f8d
WZ
1409 return 0;
1410
407f1a2e 1411 *addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
e0d24f8d
WZ
1412 return 1;
1413}
1414
9f0bdab8
DJ
1415static int
1416ppc_linux_stopped_by_watchpoint (void)
1417{
1418 CORE_ADDR addr;
1419 return ppc_linux_stopped_data_address (&current_target, &addr);
1420}
1421
5009afc5
AS
1422static int
1423ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
1424 CORE_ADDR addr,
1425 CORE_ADDR start, int length)
1426{
b7622095
LM
1427 int mask;
1428
1429 if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
1430 mask = 3;
1431 else
1432 mask = 7;
1433
1434 addr &= ~mask;
1435
1436 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
1437 return start <= addr + mask && start + length - 1 >= addr;
5009afc5
AS
1438}
1439
10d6c8cd 1440static void
28439f5e
PA
1441ppc_linux_store_inferior_registers (struct target_ops *ops,
1442 struct regcache *regcache, int regno)
45229ea4 1443{
05f13b9c
EZ
1444 /* Overload thread id onto process id */
1445 int tid = TIDGET (inferior_ptid);
1446
1447 /* No thread id, just use process id */
1448 if (tid == 0)
1449 tid = PIDGET (inferior_ptid);
1450
45229ea4 1451 if (regno >= 0)
56be3814 1452 store_register (regcache, tid, regno);
45229ea4 1453 else
56be3814 1454 store_ppc_registers (regcache, tid);
45229ea4
EZ
1455}
1456
f2db237a
AM
1457/* Functions for transferring registers between a gregset_t or fpregset_t
1458 (see sys/ucontext.h) and gdb's regcache. The word size is that used
1459 by the ptrace interface, not the current program's ABI. eg. If a
1460 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
1461 read or write 64-bit gregsets. This is to suit the host libthread_db. */
1462
50c9bd31 1463void
7f7fe91e 1464supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
c877c8e6 1465{
f2db237a 1466 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 1467
f2db237a 1468 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
c877c8e6
KB
1469}
1470
fdb28ac4 1471void
7f7fe91e
UW
1472fill_gregset (const struct regcache *regcache,
1473 gdb_gregset_t *gregsetp, int regno)
fdb28ac4 1474{
f2db237a 1475 const struct regset *regset = ppc_linux_gregset (sizeof (long));
f9be684a 1476
f2db237a
AM
1477 if (regno == -1)
1478 memset (gregsetp, 0, sizeof (*gregsetp));
1479 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
fdb28ac4
KB
1480}
1481
50c9bd31 1482void
7f7fe91e 1483supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
c877c8e6 1484{
f2db237a
AM
1485 const struct regset *regset = ppc_linux_fpregset ();
1486
1487 ppc_supply_fpregset (regset, regcache, -1,
1488 fpregsetp, sizeof (*fpregsetp));
c877c8e6 1489}
fdb28ac4 1490
fdb28ac4 1491void
7f7fe91e
UW
1492fill_fpregset (const struct regcache *regcache,
1493 gdb_fpregset_t *fpregsetp, int regno)
fdb28ac4 1494{
f2db237a
AM
1495 const struct regset *regset = ppc_linux_fpregset ();
1496
1497 ppc_collect_fpregset (regset, regcache, regno,
1498 fpregsetp, sizeof (*fpregsetp));
fdb28ac4 1499}
10d6c8cd 1500
409c383c
UW
1501static int
1502ppc_linux_target_wordsize (void)
1503{
1504 int wordsize = 4;
1505
1506 /* Check for 64-bit inferior process. This is the case when the host is
1507 64-bit, and in addition the top bit of the MSR register is set. */
1508#ifdef __powerpc64__
1509 long msr;
1510
1511 int tid = TIDGET (inferior_ptid);
1512 if (tid == 0)
1513 tid = PIDGET (inferior_ptid);
1514
1515 errno = 0;
1516 msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
1517 if (errno == 0 && msr < 0)
1518 wordsize = 8;
1519#endif
1520
1521 return wordsize;
1522}
1523
1524static int
1525ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
1526 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
1527{
1528 int sizeof_auxv_field = ppc_linux_target_wordsize ();
e17a4113 1529 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
409c383c
UW
1530 gdb_byte *ptr = *readptr;
1531
1532 if (endptr == ptr)
1533 return 0;
1534
1535 if (endptr - ptr < sizeof_auxv_field * 2)
1536 return -1;
1537
e17a4113 1538 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c 1539 ptr += sizeof_auxv_field;
e17a4113 1540 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
409c383c
UW
1541 ptr += sizeof_auxv_field;
1542
1543 *readptr = ptr;
1544 return 1;
1545}
1546
310a98e1
DJ
1547static const struct target_desc *
1548ppc_linux_read_description (struct target_ops *ops)
1549{
7284e1be 1550 int altivec = 0;
604c2f83 1551 int vsx = 0;
69abc51c 1552 int isa205 = 0;
f4d9bade 1553 int cell = 0;
7284e1be
UW
1554
1555 int tid = TIDGET (inferior_ptid);
1556 if (tid == 0)
1557 tid = PIDGET (inferior_ptid);
1558
310a98e1
DJ
1559 if (have_ptrace_getsetevrregs)
1560 {
1561 struct gdb_evrregset_t evrregset;
310a98e1
DJ
1562
1563 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
7284e1be
UW
1564 return tdesc_powerpc_e500l;
1565
1566 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
1567 Anything else needs to be reported. */
1568 else if (errno != EIO)
1569 perror_with_name (_("Unable to fetch SPE registers"));
1570 }
1571
604c2f83
LM
1572 if (have_ptrace_getsetvsxregs)
1573 {
1574 gdb_vsxregset_t vsxregset;
1575
1576 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
1577 vsx = 1;
1578
1579 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
1580 Anything else needs to be reported. */
1581 else if (errno != EIO)
1582 perror_with_name (_("Unable to fetch VSX registers"));
1583 }
1584
7284e1be
UW
1585 if (have_ptrace_getvrregs)
1586 {
1587 gdb_vrregset_t vrregset;
1588
1589 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
1590 altivec = 1;
1591
1592 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
1593 Anything else needs to be reported. */
1594 else if (errno != EIO)
1595 perror_with_name (_("Unable to fetch AltiVec registers"));
310a98e1
DJ
1596 }
1597
f04c6d38
TJB
1598 /* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
1599 the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
1600 ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
1601 PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
1602 half of the register are for Decimal Floating Point, we check if that
1603 feature is available to decide the size of the FPSCR. */
1604 if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
69abc51c
TJB
1605 isa205 = 1;
1606
f4d9bade
UW
1607 if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
1608 cell = 1;
1609
409c383c
UW
1610 if (ppc_linux_target_wordsize () == 8)
1611 {
f4d9bade
UW
1612 if (cell)
1613 return tdesc_powerpc_cell64l;
1614 else if (vsx)
409c383c
UW
1615 return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
1616 else if (altivec)
1617 return isa205? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
1618
1619 return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
1620 }
7284e1be 1621
f4d9bade
UW
1622 if (cell)
1623 return tdesc_powerpc_cell32l;
1624 else if (vsx)
69abc51c 1625 return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
604c2f83 1626 else if (altivec)
69abc51c 1627 return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
604c2f83 1628
69abc51c 1629 return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
310a98e1
DJ
1630}
1631
10d6c8cd
DJ
1632void _initialize_ppc_linux_nat (void);
1633
1634void
1635_initialize_ppc_linux_nat (void)
1636{
1637 struct target_ops *t;
1638
1639 /* Fill in the generic GNU/Linux methods. */
1640 t = linux_target ();
1641
1642 /* Add our register access methods. */
1643 t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
1644 t->to_store_registers = ppc_linux_store_inferior_registers;
1645
e0d24f8d
WZ
1646 /* Add our watchpoint methods. */
1647 t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
1648 t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
1649 t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
1650 t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
1651 t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
1652 t->to_stopped_data_address = ppc_linux_stopped_data_address;
5009afc5 1653 t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
e0d24f8d 1654
310a98e1 1655 t->to_read_description = ppc_linux_read_description;
409c383c 1656 t->to_auxv_parse = ppc_linux_auxv_parse;
310a98e1 1657
10d6c8cd 1658 /* Register the target. */
f973ed9c 1659 linux_nat_add_target (t);
9f0bdab8 1660 linux_nat_set_new_thread (t, ppc_linux_new_thread);
10d6c8cd 1661}
This page took 0.913359 seconds and 4 git commands to generate.