ChangeLog:
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
CommitLineData
c877c8e6 1/* Target-dependent code for GDB, the GNU debugger.
4e052eda 2
6aba47ca 3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
76a9d10f 5 Free Software Foundation, Inc.
c877c8e6
KB
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c877c8e6
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c877c8e6
KB
21
22#include "defs.h"
23#include "frame.h"
24#include "inferior.h"
25#include "symtab.h"
26#include "target.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "symfile.h"
30#include "objfiles.h"
4e052eda 31#include "regcache.h"
fd0407d6 32#include "value.h"
4be87837 33#include "osabi.h"
f9be684a 34#include "regset.h"
6ded7999 35#include "solib-svr4.h"
9aa1e687 36#include "ppc-tdep.h"
61a65099
KB
37#include "trad-frame.h"
38#include "frame-unwind.h"
a8f60bfc 39#include "tramp-frame.h"
9aa1e687 40
6974274f 41static CORE_ADDR
52f729a7 42ppc_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c877c8e6 43{
50fd1280 44 gdb_byte buf[4];
c877c8e6
KB
45 struct obj_section *sect;
46 struct objfile *objfile;
47 unsigned long insn;
48 CORE_ADDR plt_start = 0;
49 CORE_ADDR symtab = 0;
50 CORE_ADDR strtab = 0;
51 int num_slots = -1;
52 int reloc_index = -1;
53 CORE_ADDR plt_table;
54 CORE_ADDR reloc;
55 CORE_ADDR sym;
56 long symidx;
57 char symname[1024];
58 struct minimal_symbol *msymbol;
59
82233d87 60 /* Find the section pc is in; if not in .plt, try the default method. */
c877c8e6
KB
61 sect = find_pc_section (pc);
62 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
82233d87 63 return find_solib_trampoline_target (frame, pc);
c877c8e6
KB
64
65 objfile = sect->objfile;
66
67 /* Pick up the instruction at pc. It had better be of the
68 form
69 li r11, IDX
70
71 where IDX is an index into the plt_table. */
72
73 if (target_read_memory (pc, buf, 4) != 0)
74 return 0;
75 insn = extract_unsigned_integer (buf, 4);
76
77 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
78 return 0;
79
80 reloc_index = (insn << 16) >> 16;
81
82 /* Find the objfile that pc is in and obtain the information
83 necessary for finding the symbol name. */
84 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
85 {
86 const char *secname = sect->the_bfd_section->name;
87 if (strcmp (secname, ".plt") == 0)
88 plt_start = sect->addr;
89 else if (strcmp (secname, ".rela.plt") == 0)
90 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
91 else if (strcmp (secname, ".dynsym") == 0)
92 symtab = sect->addr;
93 else if (strcmp (secname, ".dynstr") == 0)
94 strtab = sect->addr;
95 }
96
97 /* Make sure we have all the information we need. */
98 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
99 return 0;
100
101 /* Compute the value of the plt table */
102 plt_table = plt_start + 72 + 8 * num_slots;
103
104 /* Get address of the relocation entry (Elf32_Rela) */
105 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
106 return 0;
7c0b4a20 107 reloc = extract_unsigned_integer (buf, 4);
c877c8e6
KB
108
109 sect = find_pc_section (reloc);
110 if (!sect)
111 return 0;
112
113 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
114 return reloc;
115
116 /* Now get the r_info field which is the relocation type and symbol
117 index. */
118 if (target_read_memory (reloc + 4, buf, 4) != 0)
119 return 0;
120 symidx = extract_unsigned_integer (buf, 4);
121
122 /* Shift out the relocation type leaving just the symbol index */
123 /* symidx = ELF32_R_SYM(symidx); */
124 symidx = symidx >> 8;
125
126 /* compute the address of the symbol */
127 sym = symtab + symidx * 4;
128
129 /* Fetch the string table index */
130 if (target_read_memory (sym, buf, 4) != 0)
131 return 0;
132 symidx = extract_unsigned_integer (buf, 4);
133
134 /* Fetch the string; we don't know how long it is. Is it possible
135 that the following will fail because we're trying to fetch too
136 much? */
50fd1280
AC
137 if (target_read_memory (strtab + symidx, (gdb_byte *) symname,
138 sizeof (symname)) != 0)
c877c8e6
KB
139 return 0;
140
141 /* This might not work right if we have multiple symbols with the
142 same name; the only way to really get it right is to perform
143 the same sort of lookup as the dynamic linker. */
5520a790 144 msymbol = lookup_minimal_symbol_text (symname, NULL);
c877c8e6
KB
145 if (!msymbol)
146 return 0;
147
148 return SYMBOL_VALUE_ADDRESS (msymbol);
149}
150
122a33de
KB
151/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
152 in much the same fashion as memory_remove_breakpoint in mem-break.c,
153 but is careful not to write back the previous contents if the code
154 in question has changed in between inserting the breakpoint and
155 removing it.
156
157 Here is the problem that we're trying to solve...
158
159 Once upon a time, before introducing this function to remove
160 breakpoints from the inferior, setting a breakpoint on a shared
161 library function prior to running the program would not work
162 properly. In order to understand the problem, it is first
163 necessary to understand a little bit about dynamic linking on
164 this platform.
165
166 A call to a shared library function is accomplished via a bl
167 (branch-and-link) instruction whose branch target is an entry
168 in the procedure linkage table (PLT). The PLT in the object
169 file is uninitialized. To gdb, prior to running the program, the
170 entries in the PLT are all zeros.
171
172 Once the program starts running, the shared libraries are loaded
173 and the procedure linkage table is initialized, but the entries in
174 the table are not (necessarily) resolved. Once a function is
175 actually called, the code in the PLT is hit and the function is
176 resolved. In order to better illustrate this, an example is in
177 order; the following example is from the gdb testsuite.
178
179 We start the program shmain.
180
181 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
182 [...]
183
184 We place two breakpoints, one on shr1 and the other on main.
185
186 (gdb) b shr1
187 Breakpoint 1 at 0x100409d4
188 (gdb) b main
189 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
190
191 Examine the instruction (and the immediatly following instruction)
192 upon which the breakpoint was placed. Note that the PLT entry
193 for shr1 contains zeros.
194
195 (gdb) x/2i 0x100409d4
196 0x100409d4 <shr1>: .long 0x0
197 0x100409d8 <shr1+4>: .long 0x0
198
199 Now run 'til main.
200
201 (gdb) r
202 Starting program: gdb.base/shmain
203 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
204
205 Breakpoint 2, main ()
206 at gdb.base/shmain.c:44
207 44 g = 1;
208
209 Examine the PLT again. Note that the loading of the shared
210 library has initialized the PLT to code which loads a constant
211 (which I think is an index into the GOT) into r11 and then
212 branchs a short distance to the code which actually does the
213 resolving.
214
215 (gdb) x/2i 0x100409d4
216 0x100409d4 <shr1>: li r11,4
217 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
218 (gdb) c
219 Continuing.
220
221 Breakpoint 1, shr1 (x=1)
222 at gdb.base/shr1.c:19
223 19 l = 1;
224
225 Now we've hit the breakpoint at shr1. (The breakpoint was
226 reset from the PLT entry to the actual shr1 function after the
227 shared library was loaded.) Note that the PLT entry has been
228 resolved to contain a branch that takes us directly to shr1.
229 (The real one, not the PLT entry.)
230
231 (gdb) x/2i 0x100409d4
232 0x100409d4 <shr1>: b 0xffaf76c <shr1>
233 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
234
235 The thing to note here is that the PLT entry for shr1 has been
236 changed twice.
237
238 Now the problem should be obvious. GDB places a breakpoint (a
239 trap instruction) on the zero value of the PLT entry for shr1.
240 Later on, after the shared library had been loaded and the PLT
241 initialized, GDB gets a signal indicating this fact and attempts
242 (as it always does when it stops) to remove all the breakpoints.
243
244 The breakpoint removal was causing the former contents (a zero
245 word) to be written back to the now initialized PLT entry thus
246 destroying a portion of the initialization that had occurred only a
247 short time ago. When execution continued, the zero word would be
248 executed as an instruction an an illegal instruction trap was
249 generated instead. (0 is not a legal instruction.)
250
251 The fix for this problem was fairly straightforward. The function
252 memory_remove_breakpoint from mem-break.c was copied to this file,
253 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
254 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
255 function.
256
257 The differences between ppc_linux_memory_remove_breakpoint () and
258 memory_remove_breakpoint () are minor. All that the former does
259 that the latter does not is check to make sure that the breakpoint
260 location actually contains a breakpoint (trap instruction) prior
261 to attempting to write back the old contents. If it does contain
262 a trap instruction, we allow the old contents to be written back.
263 Otherwise, we silently do nothing.
264
265 The big question is whether memory_remove_breakpoint () should be
266 changed to have the same functionality. The downside is that more
267 traffic is generated for remote targets since we'll have an extra
268 fetch of a memory word each time a breakpoint is removed.
269
270 For the time being, we'll leave this self-modifying-code-friendly
271 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
272 else in the event that some other platform has similar needs with
273 regard to removing breakpoints in some potentially self modifying
274 code. */
482ca3f5 275int
ae4b2284
MD
276ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
277 struct bp_target_info *bp_tgt)
482ca3f5 278{
8181d85f 279 CORE_ADDR addr = bp_tgt->placed_address;
f4f9705a 280 const unsigned char *bp;
482ca3f5
KB
281 int val;
282 int bplen;
50fd1280 283 gdb_byte old_contents[BREAKPOINT_MAX];
482ca3f5
KB
284
285 /* Determine appropriate breakpoint contents and size for this address. */
ae4b2284 286 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
482ca3f5 287 if (bp == NULL)
8a3fe4f8 288 error (_("Software breakpoints not implemented for this target."));
482ca3f5
KB
289
290 val = target_read_memory (addr, old_contents, bplen);
291
292 /* If our breakpoint is no longer at the address, this means that the
293 program modified the code on us, so it is wrong to put back the
294 old value */
295 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
8181d85f 296 val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
482ca3f5
KB
297
298 return val;
299}
6ded7999 300
b9ff3018
AC
301/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
302 than the 32 bit SYSV R4 ABI structure return convention - all
303 structures, no matter their size, are put in memory. Vectors,
304 which were added later, do get returned in a register though. */
305
05580c65
AC
306static enum return_value_convention
307ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
50fd1280
AC
308 struct regcache *regcache, gdb_byte *readbuf,
309 const gdb_byte *writebuf)
b9ff3018 310{
05580c65
AC
311 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
312 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
313 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
314 && TYPE_VECTOR (valtype)))
315 return RETURN_VALUE_STRUCT_CONVENTION;
316 else
475b6ddd
AC
317 return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
318 writebuf);
b9ff3018
AC
319}
320
f470a70a
JB
321/* Macros for matching instructions. Note that, since all the
322 operands are masked off before they're or-ed into the instruction,
323 you can use -1 to make masks. */
324
325#define insn_d(opcd, rts, ra, d) \
326 ((((opcd) & 0x3f) << 26) \
327 | (((rts) & 0x1f) << 21) \
328 | (((ra) & 0x1f) << 16) \
329 | ((d) & 0xffff))
330
331#define insn_ds(opcd, rts, ra, d, xo) \
332 ((((opcd) & 0x3f) << 26) \
333 | (((rts) & 0x1f) << 21) \
334 | (((ra) & 0x1f) << 16) \
335 | ((d) & 0xfffc) \
336 | ((xo) & 0x3))
337
338#define insn_xfx(opcd, rts, spr, xo) \
339 ((((opcd) & 0x3f) << 26) \
340 | (((rts) & 0x1f) << 21) \
341 | (((spr) & 0x1f) << 16) \
342 | (((spr) & 0x3e0) << 6) \
343 | (((xo) & 0x3ff) << 1))
344
345/* Read a PPC instruction from memory. PPC instructions are always
346 big-endian, no matter what endianness the program is running in, so
347 we can't use read_memory_integer or one of its friends here. */
348static unsigned int
349read_insn (CORE_ADDR pc)
350{
351 unsigned char buf[4];
352
353 read_memory (pc, buf, 4);
354 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
355}
356
357
358/* An instruction to match. */
359struct insn_pattern
360{
361 unsigned int mask; /* mask the insn with this... */
362 unsigned int data; /* ...and see if it matches this. */
363 int optional; /* If non-zero, this insn may be absent. */
364};
365
366/* Return non-zero if the instructions at PC match the series
367 described in PATTERN, or zero otherwise. PATTERN is an array of
368 'struct insn_pattern' objects, terminated by an entry whose mask is
369 zero.
370
371 When the match is successful, fill INSN[i] with what PATTERN[i]
372 matched. If PATTERN[i] is optional, and the instruction wasn't
373 present, set INSN[i] to 0 (which is not a valid PPC instruction).
374 INSN should have as many elements as PATTERN. Note that, if
375 PATTERN contains optional instructions which aren't present in
376 memory, then INSN will have holes, so INSN[i] isn't necessarily the
377 i'th instruction in memory. */
378static int
379insns_match_pattern (CORE_ADDR pc,
380 struct insn_pattern *pattern,
381 unsigned int *insn)
382{
383 int i;
384
385 for (i = 0; pattern[i].mask; i++)
386 {
387 insn[i] = read_insn (pc);
388 if ((insn[i] & pattern[i].mask) == pattern[i].data)
389 pc += 4;
390 else if (pattern[i].optional)
391 insn[i] = 0;
392 else
393 return 0;
394 }
395
396 return 1;
397}
398
399
400/* Return the 'd' field of the d-form instruction INSN, properly
401 sign-extended. */
402static CORE_ADDR
403insn_d_field (unsigned int insn)
404{
405 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
406}
407
408
409/* Return the 'ds' field of the ds-form instruction INSN, with the two
410 zero bits concatenated at the right, and properly
411 sign-extended. */
412static CORE_ADDR
413insn_ds_field (unsigned int insn)
414{
415 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
416}
417
418
e538d2d7 419/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
d64558a5
JB
420 descriptor, return the descriptor's entry point. */
421static CORE_ADDR
422ppc64_desc_entry_point (CORE_ADDR desc)
423{
424 /* The first word of the descriptor is the entry point. */
425 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
426}
427
428
f470a70a
JB
429/* Pattern for the standard linkage function. These are built by
430 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
431 zero. */
432static struct insn_pattern ppc64_standard_linkage[] =
433 {
434 /* addis r12, r2, <any> */
435 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
436
437 /* std r2, 40(r1) */
438 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
439
440 /* ld r11, <any>(r12) */
441 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
442
443 /* addis r12, r12, 1 <optional> */
444 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
445
446 /* ld r2, <any>(r12) */
447 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
448
449 /* addis r12, r12, 1 <optional> */
450 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
451
452 /* mtctr r11 */
453 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
454 0 },
455
456 /* ld r11, <any>(r12) */
457 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
458
459 /* bctr */
460 { -1, 0x4e800420, 0 },
461
462 { 0, 0, 0 }
463 };
464#define PPC64_STANDARD_LINKAGE_LEN \
465 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
466
f470a70a
JB
467/* When the dynamic linker is doing lazy symbol resolution, the first
468 call to a function in another object will go like this:
469
470 - The user's function calls the linkage function:
471
472 100007c4: 4b ff fc d5 bl 10000498
473 100007c8: e8 41 00 28 ld r2,40(r1)
474
475 - The linkage function loads the entry point (and other stuff) from
476 the function descriptor in the PLT, and jumps to it:
477
478 10000498: 3d 82 00 00 addis r12,r2,0
479 1000049c: f8 41 00 28 std r2,40(r1)
480 100004a0: e9 6c 80 98 ld r11,-32616(r12)
481 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
482 100004a8: 7d 69 03 a6 mtctr r11
483 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
484 100004b0: 4e 80 04 20 bctr
485
486 - But since this is the first time that PLT entry has been used, it
487 sends control to its glink entry. That loads the number of the
488 PLT entry and jumps to the common glink0 code:
489
490 10000c98: 38 00 00 00 li r0,0
491 10000c9c: 4b ff ff dc b 10000c78
492
493 - The common glink0 code then transfers control to the dynamic
494 linker's fixup code:
495
496 10000c78: e8 41 00 28 ld r2,40(r1)
497 10000c7c: 3d 82 00 00 addis r12,r2,0
498 10000c80: e9 6c 80 80 ld r11,-32640(r12)
499 10000c84: e8 4c 80 88 ld r2,-32632(r12)
500 10000c88: 7d 69 03 a6 mtctr r11
501 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
502 10000c90: 4e 80 04 20 bctr
503
504 Eventually, this code will figure out how to skip all of this,
505 including the dynamic linker. At the moment, we just get through
506 the linkage function. */
507
508/* If the current thread is about to execute a series of instructions
509 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
510 from that pattern match, return the code address to which the
511 standard linkage function will send them. (This doesn't deal with
512 dynamic linker lazy symbol resolution stubs.) */
513static CORE_ADDR
52f729a7
UW
514ppc64_standard_linkage_target (struct frame_info *frame,
515 CORE_ADDR pc, unsigned int *insn)
f470a70a 516{
52f729a7 517 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
f470a70a
JB
518
519 /* The address of the function descriptor this linkage function
520 references. */
521 CORE_ADDR desc
52f729a7
UW
522 = ((CORE_ADDR) get_frame_register_unsigned (frame,
523 tdep->ppc_gp0_regnum + 2)
f470a70a
JB
524 + (insn_d_field (insn[0]) << 16)
525 + insn_ds_field (insn[2]));
526
527 /* The first word of the descriptor is the entry point. Return that. */
d64558a5 528 return ppc64_desc_entry_point (desc);
f470a70a
JB
529}
530
531
532/* Given that we've begun executing a call trampoline at PC, return
533 the entry point of the function the trampoline will go to. */
534static CORE_ADDR
52f729a7 535ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
f470a70a
JB
536{
537 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
538
539 if (insns_match_pattern (pc, ppc64_standard_linkage,
540 ppc64_standard_linkage_insn))
52f729a7
UW
541 return ppc64_standard_linkage_target (frame, pc,
542 ppc64_standard_linkage_insn);
f470a70a
JB
543 else
544 return 0;
545}
546
547
2bbe3cc1 548/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC
e2d0e7eb 549 GNU/Linux.
02631ec0
JB
550
551 Usually a function pointer's representation is simply the address
2bbe3cc1
DJ
552 of the function. On GNU/Linux on the PowerPC however, a function
553 pointer may be a pointer to a function descriptor.
554
555 For PPC64, a function descriptor is a TOC entry, in a data section,
556 which contains three words: the first word is the address of the
557 function, the second word is the TOC pointer (r2), and the third word
558 is the static chain value.
559
560 For PPC32, there are two kinds of function pointers: non-secure and
561 secure. Non-secure function pointers point directly to the
562 function in a code section and thus need no translation. Secure
563 ones (from GCC's -msecure-plt option) are in a data section and
564 contain one word: the address of the function.
565
566 Throughout GDB it is currently assumed that a function pointer contains
567 the address of the function, which is not easy to fix. In addition, the
e538d2d7
JB
568 conversion of a function address to a function pointer would
569 require allocation of a TOC entry in the inferior's memory space,
570 with all its drawbacks. To be able to call C++ virtual methods in
571 the inferior (which are called via function pointers),
572 find_function_addr uses this function to get the function address
2bbe3cc1 573 from a function pointer.
02631ec0 574
2bbe3cc1
DJ
575 If ADDR points at what is clearly a function descriptor, transform
576 it into the address of the corresponding function, if needed. Be
577 conservative, otherwise GDB will do the transformation on any
578 random addresses such as occur when there is no symbol table. */
02631ec0
JB
579
580static CORE_ADDR
2bbe3cc1
DJ
581ppc_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
582 CORE_ADDR addr,
583 struct target_ops *targ)
02631ec0 584{
2bbe3cc1 585 struct gdbarch_tdep *tdep;
b6591e8b 586 struct section_table *s = target_section_by_addr (targ, addr);
2bbe3cc1
DJ
587 char *sect_name = NULL;
588
589 if (!s)
590 return addr;
591
592 tdep = gdbarch_tdep (gdbarch);
593
594 switch (tdep->wordsize)
595 {
596 case 4:
597 sect_name = ".plt";
598 break;
599 case 8:
600 sect_name = ".opd";
601 break;
602 default:
603 internal_error (__FILE__, __LINE__,
604 _("failed internal consistency check"));
605 }
02631ec0 606
9b540880 607 /* Check if ADDR points to a function descriptor. */
2bbe3cc1
DJ
608
609 /* NOTE: this depends on the coincidence that the address of a functions
610 entry point is contained in the first word of its function descriptor
611 for both PPC-64 and for PPC-32 with secure PLTs. */
612 if ((strcmp (s->the_bfd_section->name, sect_name) == 0)
613 && s->the_bfd_section->flags & SEC_DATA)
614 return get_target_memory_unsigned (targ, addr, tdep->wordsize);
9b540880
AC
615
616 return addr;
02631ec0
JB
617}
618
f2db237a
AM
619/* This wrapper clears areas in the linux gregset not written by
620 ppc_collect_gregset. */
621
f9be684a 622static void
f2db237a
AM
623ppc_linux_collect_gregset (const struct regset *regset,
624 const struct regcache *regcache,
625 int regnum, void *gregs, size_t len)
f9be684a 626{
f2db237a
AM
627 if (regnum == -1)
628 memset (gregs, 0, len);
629 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
f9be684a
AC
630}
631
f2db237a
AM
632/* Regset descriptions. */
633static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
634 {
635 /* General-purpose registers. */
636 /* .r0_offset = */ 0,
637 /* .gpr_size = */ 4,
638 /* .xr_size = */ 4,
639 /* .pc_offset = */ 128,
640 /* .ps_offset = */ 132,
641 /* .cr_offset = */ 152,
642 /* .lr_offset = */ 144,
643 /* .ctr_offset = */ 140,
644 /* .xer_offset = */ 148,
645 /* .mq_offset = */ 156,
646
647 /* Floating-point registers. */
648 /* .f0_offset = */ 0,
649 /* .fpscr_offset = */ 256,
650 /* .fpscr_size = */ 8,
651
652 /* AltiVec registers. */
653 /* .vr0_offset = */ 0,
06caf7d2
CES
654 /* .vscr_offset = */ 512 + 12,
655 /* .vrsave_offset = */ 528
f2db237a 656 };
f9be684a 657
f2db237a
AM
658static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
659 {
660 /* General-purpose registers. */
661 /* .r0_offset = */ 0,
662 /* .gpr_size = */ 8,
663 /* .xr_size = */ 8,
664 /* .pc_offset = */ 256,
665 /* .ps_offset = */ 264,
666 /* .cr_offset = */ 304,
667 /* .lr_offset = */ 288,
668 /* .ctr_offset = */ 280,
669 /* .xer_offset = */ 296,
670 /* .mq_offset = */ 312,
671
672 /* Floating-point registers. */
673 /* .f0_offset = */ 0,
674 /* .fpscr_offset = */ 256,
675 /* .fpscr_size = */ 8,
676
677 /* AltiVec registers. */
678 /* .vr0_offset = */ 0,
06caf7d2
CES
679 /* .vscr_offset = */ 512 + 12,
680 /* .vrsave_offset = */ 528
f2db237a 681 };
2fda4977 682
f2db237a
AM
683static const struct regset ppc32_linux_gregset = {
684 &ppc32_linux_reg_offsets,
685 ppc_supply_gregset,
686 ppc_linux_collect_gregset,
687 NULL
f9be684a
AC
688};
689
f2db237a
AM
690static const struct regset ppc64_linux_gregset = {
691 &ppc64_linux_reg_offsets,
692 ppc_supply_gregset,
693 ppc_linux_collect_gregset,
694 NULL
695};
f9be684a 696
f2db237a
AM
697static const struct regset ppc32_linux_fpregset = {
698 &ppc32_linux_reg_offsets,
699 ppc_supply_fpregset,
700 ppc_collect_fpregset,
701 NULL
f9be684a
AC
702};
703
06caf7d2
CES
704static const struct regset ppc32_linux_vrregset = {
705 &ppc32_linux_reg_offsets,
706 ppc_supply_vrregset,
707 ppc_collect_vrregset,
708 NULL
709};
710
f2db237a
AM
711const struct regset *
712ppc_linux_gregset (int wordsize)
2fda4977 713{
f2db237a 714 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
2fda4977
DJ
715}
716
f2db237a
AM
717const struct regset *
718ppc_linux_fpregset (void)
719{
720 return &ppc32_linux_fpregset;
721}
2fda4977 722
f9be684a
AC
723static const struct regset *
724ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
725 const char *sect_name, size_t sect_size)
2fda4977 726{
f9be684a
AC
727 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
728 if (strcmp (sect_name, ".reg") == 0)
2fda4977 729 {
f9be684a
AC
730 if (tdep->wordsize == 4)
731 return &ppc32_linux_gregset;
2fda4977 732 else
f9be684a 733 return &ppc64_linux_gregset;
2fda4977 734 }
f9be684a 735 if (strcmp (sect_name, ".reg2") == 0)
f2db237a 736 return &ppc32_linux_fpregset;
06caf7d2
CES
737 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
738 return &ppc32_linux_vrregset;
f9be684a 739 return NULL;
2fda4977
DJ
740}
741
a8f60bfc
AC
742static void
743ppc_linux_sigtramp_cache (struct frame_info *next_frame,
744 struct trad_frame_cache *this_cache,
745 CORE_ADDR func, LONGEST offset,
746 int bias)
747{
748 CORE_ADDR base;
749 CORE_ADDR regs;
750 CORE_ADDR gpregs;
751 CORE_ADDR fpregs;
752 int i;
753 struct gdbarch *gdbarch = get_frame_arch (next_frame);
754 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
755
3e8c568d 756 base = frame_unwind_register_unsigned (next_frame,
40a6adc1 757 gdbarch_sp_regnum (gdbarch));
a8f60bfc
AC
758 if (bias > 0 && frame_pc_unwind (next_frame) != func)
759 /* See below, some signal trampolines increment the stack as their
760 first instruction, need to compensate for that. */
761 base -= bias;
762
763 /* Find the address of the register buffer pointer. */
764 regs = base + offset;
765 /* Use that to find the address of the corresponding register
766 buffers. */
767 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
768 fpregs = gpregs + 48 * tdep->wordsize;
769
770 /* General purpose. */
771 for (i = 0; i < 32; i++)
772 {
773 int regnum = i + tdep->ppc_gp0_regnum;
774 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
775 }
3e8c568d 776 trad_frame_set_reg_addr (this_cache,
40a6adc1 777 gdbarch_pc_regnum (gdbarch),
3e8c568d 778 gpregs + 32 * tdep->wordsize);
a8f60bfc
AC
779 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
780 gpregs + 35 * tdep->wordsize);
781 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
782 gpregs + 36 * tdep->wordsize);
783 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
784 gpregs + 37 * tdep->wordsize);
785 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
786 gpregs + 38 * tdep->wordsize);
787
60f140f9
PG
788 if (ppc_floating_point_unit_p (gdbarch))
789 {
790 /* Floating point registers. */
791 for (i = 0; i < 32; i++)
792 {
40a6adc1 793 int regnum = i + gdbarch_fp0_regnum (gdbarch);
60f140f9
PG
794 trad_frame_set_reg_addr (this_cache, regnum,
795 fpregs + i * tdep->wordsize);
796 }
797 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
4019046a 798 fpregs + 32 * tdep->wordsize);
60f140f9 799 }
a8f60bfc
AC
800 trad_frame_set_id (this_cache, frame_id_build (base, func));
801}
802
803static void
804ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
805 struct frame_info *next_frame,
806 struct trad_frame_cache *this_cache,
807 CORE_ADDR func)
808{
809 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
810 0xd0 /* Offset to ucontext_t. */
811 + 0x30 /* Offset to .reg. */,
812 0);
813}
814
815static void
816ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
817 struct frame_info *next_frame,
818 struct trad_frame_cache *this_cache,
819 CORE_ADDR func)
820{
821 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
822 0x80 /* Offset to ucontext_t. */
823 + 0xe0 /* Offset to .reg. */,
824 128);
825}
826
827static void
828ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
829 struct frame_info *next_frame,
830 struct trad_frame_cache *this_cache,
831 CORE_ADDR func)
832{
833 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
834 0x40 /* Offset to ucontext_t. */
835 + 0x1c /* Offset to .reg. */,
836 0);
837}
838
839static void
840ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
841 struct frame_info *next_frame,
842 struct trad_frame_cache *this_cache,
843 CORE_ADDR func)
844{
845 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
846 0x80 /* Offset to struct sigcontext. */
847 + 0x38 /* Offset to .reg. */,
848 128);
849}
850
851static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
852 SIGTRAMP_FRAME,
853 4,
854 {
855 { 0x380000ac, -1 }, /* li r0, 172 */
856 { 0x44000002, -1 }, /* sc */
857 { TRAMP_SENTINEL_INSN },
858 },
859 ppc32_linux_sigaction_cache_init
860};
861static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
862 SIGTRAMP_FRAME,
863 4,
864 {
865 { 0x38210080, -1 }, /* addi r1,r1,128 */
866 { 0x380000ac, -1 }, /* li r0, 172 */
867 { 0x44000002, -1 }, /* sc */
868 { TRAMP_SENTINEL_INSN },
869 },
870 ppc64_linux_sigaction_cache_init
871};
872static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
873 SIGTRAMP_FRAME,
874 4,
875 {
876 { 0x38000077, -1 }, /* li r0,119 */
877 { 0x44000002, -1 }, /* sc */
878 { TRAMP_SENTINEL_INSN },
879 },
880 ppc32_linux_sighandler_cache_init
881};
882static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
883 SIGTRAMP_FRAME,
884 4,
885 {
886 { 0x38210080, -1 }, /* addi r1,r1,128 */
887 { 0x38000077, -1 }, /* li r0,119 */
888 { 0x44000002, -1 }, /* sc */
889 { TRAMP_SENTINEL_INSN },
890 },
891 ppc64_linux_sighandler_cache_init
892};
893
7b112f9c
JT
894static void
895ppc_linux_init_abi (struct gdbarch_info info,
896 struct gdbarch *gdbarch)
897{
898 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
899
b14d30e1
JM
900 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
901 128-bit, they are IBM long double, not IEEE quad long double as
902 in the System V ABI PowerPC Processor Supplement. We can safely
903 let them default to 128-bit, since the debug info will give the
904 size of type actually used in each case. */
905 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
906 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
0598a43c 907
2bbe3cc1
DJ
908 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
909 function descriptors) and 32-bit secure PLT entries. */
910 set_gdbarch_convert_from_func_ptr_addr
911 (gdbarch, ppc_linux_convert_from_func_ptr_addr);
912
7b112f9c
JT
913 if (tdep->wordsize == 4)
914 {
b9ff3018
AC
915 /* Until November 2001, gcc did not comply with the 32 bit SysV
916 R4 ABI requirement that structures less than or equal to 8
917 bytes should be returned in registers. Instead GCC was using
918 the the AIX/PowerOpen ABI - everything returned in memory
919 (well ignoring vectors that is). When this was corrected, it
920 wasn't fixed for GNU/Linux native platform. Use the
921 PowerOpen struct convention. */
05580c65 922 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
b9ff3018 923
7b112f9c
JT
924 set_gdbarch_memory_remove_breakpoint (gdbarch,
925 ppc_linux_memory_remove_breakpoint);
61a65099 926
f470a70a 927 /* Shared library handling. */
f470a70a
JB
928 set_gdbarch_skip_trampoline_code (gdbarch,
929 ppc_linux_skip_trampoline_code);
7b112f9c 930 set_solib_svr4_fetch_link_map_offsets
76a9d10f 931 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
a8f60bfc
AC
932
933 /* Trampolines. */
934 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
935 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
7b112f9c 936 }
f470a70a
JB
937
938 if (tdep->wordsize == 8)
939 {
fb318ff7 940 /* Shared library handling. */
2bbe3cc1 941 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
fb318ff7
DJ
942 set_solib_svr4_fetch_link_map_offsets
943 (gdbarch, svr4_lp64_fetch_link_map_offsets);
944
a8f60bfc
AC
945 /* Trampolines. */
946 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
947 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
f470a70a 948 }
f9be684a 949 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
b2756930
KB
950
951 /* Enable TLS support. */
952 set_gdbarch_fetch_tls_load_module_address (gdbarch,
953 svr4_fetch_objfile_link_map);
7b112f9c
JT
954}
955
956void
957_initialize_ppc_linux_tdep (void)
958{
0a0a4ac3
AC
959 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
960 64-bit PowerPC, and the older rs6k. */
961 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
962 ppc_linux_init_abi);
963 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
964 ppc_linux_init_abi);
965 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
966 ppc_linux_init_abi);
7b112f9c 967}
This page took 0.717736 seconds and 4 git commands to generate.