2003-03-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
CommitLineData
c877c8e6 1/* Target-dependent code for GDB, the GNU debugger.
4e052eda 2
ca557f44 3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c877c8e6
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
4e052eda 32#include "regcache.h"
fd0407d6 33#include "value.h"
4be87837 34#include "osabi.h"
c877c8e6 35
6ded7999 36#include "solib-svr4.h"
9aa1e687
KB
37#include "ppc-tdep.h"
38
a2d356b0
DJ
39/* The following instructions are used in the signal trampoline code
40 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
41 0x7777 but now uses the sigreturn syscalls. We check for both. */
42#define INSTR_LI_R0_0x6666 0x38006666
43#define INSTR_LI_R0_0x7777 0x38007777
44#define INSTR_LI_R0_NR_sigreturn 0x38000077
45#define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
46
47#define INSTR_SC 0x44000002
c877c8e6
KB
48
49/* Since the *-tdep.c files are platform independent (i.e, they may be
50 used to build cross platform debuggers), we can't include system
51 headers. Therefore, details concerning the sigcontext structure
52 must be painstakingly rerecorded. What's worse, if these details
53 ever change in the header files, they'll have to be changed here
54 as well. */
55
56/* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
57#define PPC_LINUX_SIGNAL_FRAMESIZE 64
58
59/* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
60#define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
61
62/* From <asm/sigcontext.h>,
63 offsetof(struct sigcontext_struct, handler) == 0x14 */
64#define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
65
66/* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
67#define PPC_LINUX_PT_R0 0
68#define PPC_LINUX_PT_R1 1
69#define PPC_LINUX_PT_R2 2
70#define PPC_LINUX_PT_R3 3
71#define PPC_LINUX_PT_R4 4
72#define PPC_LINUX_PT_R5 5
73#define PPC_LINUX_PT_R6 6
74#define PPC_LINUX_PT_R7 7
75#define PPC_LINUX_PT_R8 8
76#define PPC_LINUX_PT_R9 9
77#define PPC_LINUX_PT_R10 10
78#define PPC_LINUX_PT_R11 11
79#define PPC_LINUX_PT_R12 12
80#define PPC_LINUX_PT_R13 13
81#define PPC_LINUX_PT_R14 14
82#define PPC_LINUX_PT_R15 15
83#define PPC_LINUX_PT_R16 16
84#define PPC_LINUX_PT_R17 17
85#define PPC_LINUX_PT_R18 18
86#define PPC_LINUX_PT_R19 19
87#define PPC_LINUX_PT_R20 20
88#define PPC_LINUX_PT_R21 21
89#define PPC_LINUX_PT_R22 22
90#define PPC_LINUX_PT_R23 23
91#define PPC_LINUX_PT_R24 24
92#define PPC_LINUX_PT_R25 25
93#define PPC_LINUX_PT_R26 26
94#define PPC_LINUX_PT_R27 27
95#define PPC_LINUX_PT_R28 28
96#define PPC_LINUX_PT_R29 29
97#define PPC_LINUX_PT_R30 30
98#define PPC_LINUX_PT_R31 31
99#define PPC_LINUX_PT_NIP 32
100#define PPC_LINUX_PT_MSR 33
101#define PPC_LINUX_PT_CTR 35
102#define PPC_LINUX_PT_LNK 36
103#define PPC_LINUX_PT_XER 37
104#define PPC_LINUX_PT_CCR 38
105#define PPC_LINUX_PT_MQ 39
106#define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
107#define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
108#define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
109
9aa1e687 110static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
50c9bd31 111
c877c8e6
KB
112/* Determine if pc is in a signal trampoline...
113
ca557f44 114 Ha! That's not what this does at all. wait_for_inferior in
d7bd68ca
AC
115 infrun.c calls PC_IN_SIGTRAMP in order to detect entry into a
116 signal trampoline just after delivery of a signal. But on
117 GNU/Linux, signal trampolines are used for the return path only.
118 The kernel sets things up so that the signal handler is called
119 directly.
c877c8e6
KB
120
121 If we use in_sigtramp2() in place of in_sigtramp() (see below)
122 we'll (often) end up with stop_pc in the trampoline and prev_pc in
123 the (now exited) handler. The code there will cause a temporary
124 breakpoint to be set on prev_pc which is not very likely to get hit
125 again.
126
127 If this is confusing, think of it this way... the code in
128 wait_for_inferior() needs to be able to detect entry into a signal
129 trampoline just after a signal is delivered, not after the handler
130 has been run.
131
132 So, we define in_sigtramp() below to return 1 if the following is
133 true:
134
135 1) The previous frame is a real signal trampoline.
136
137 - and -
138
139 2) pc is at the first or second instruction of the corresponding
140 handler.
141
142 Why the second instruction? It seems that wait_for_inferior()
143 never sees the first instruction when single stepping. When a
144 signal is delivered while stepping, the next instruction that
145 would've been stepped over isn't, instead a signal is delivered and
146 the first instruction of the handler is stepped over instead. That
147 puts us on the second instruction. (I added the test for the
148 first instruction long after the fact, just in case the observed
149 behavior is ever fixed.)
150
d7bd68ca 151 PC_IN_SIGTRAMP is called from blockframe.c as well in order to set
5a203e44
AC
152 the frame's type (if a SIGTRAMP_FRAME). Because of our strange
153 definition of in_sigtramp below, we can't rely on the frame's type
d7bd68ca 154 getting set correctly from within blockframe.c. This is why we
5a203e44
AC
155 take pains to set it in init_extra_frame_info().
156
157 NOTE: cagney/2002-11-10: I suspect the real problem here is that
158 the get_prev_frame() only initializes the frame's type after the
159 call to INIT_FRAME_INFO. get_prev_frame() should be fixed, this
160 code shouldn't be working its way around a bug :-(. */
c877c8e6
KB
161
162int
163ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
164{
165 CORE_ADDR lr;
166 CORE_ADDR sp;
167 CORE_ADDR tramp_sp;
168 char buf[4];
169 CORE_ADDR handler;
170
2188cbdd 171 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c877c8e6
KB
172 if (!ppc_linux_at_sigtramp_return_path (lr))
173 return 0;
174
175 sp = read_register (SP_REGNUM);
176
177 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
178 return 0;
179
180 tramp_sp = extract_unsigned_integer (buf, 4);
181
182 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
183 sizeof (buf)) != 0)
184 return 0;
185
186 handler = extract_unsigned_integer (buf, 4);
187
188 return (pc == handler || pc == handler + 4);
189}
190
a2d356b0
DJ
191static inline int
192insn_is_sigreturn (unsigned long pcinsn)
193{
194 switch(pcinsn)
195 {
196 case INSTR_LI_R0_0x6666:
197 case INSTR_LI_R0_0x7777:
198 case INSTR_LI_R0_NR_sigreturn:
199 case INSTR_LI_R0_NR_rt_sigreturn:
200 return 1;
201 default:
202 return 0;
203 }
204}
205
c877c8e6
KB
206/*
207 * The signal handler trampoline is on the stack and consists of exactly
208 * two instructions. The easiest and most accurate way of determining
209 * whether the pc is in one of these trampolines is by inspecting the
210 * instructions. It'd be faster though if we could find a way to do this
211 * via some simple address comparisons.
212 */
9aa1e687 213static int
c877c8e6
KB
214ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
215{
216 char buf[12];
217 unsigned long pcinsn;
218 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
219 return 0;
220
221 /* extract the instruction at the pc */
222 pcinsn = extract_unsigned_integer (buf + 4, 4);
223
224 return (
a2d356b0 225 (insn_is_sigreturn (pcinsn)
c877c8e6
KB
226 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
227 ||
228 (pcinsn == INSTR_SC
a2d356b0 229 && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
c877c8e6
KB
230}
231
232CORE_ADDR
233ppc_linux_skip_trampoline_code (CORE_ADDR pc)
234{
235 char buf[4];
236 struct obj_section *sect;
237 struct objfile *objfile;
238 unsigned long insn;
239 CORE_ADDR plt_start = 0;
240 CORE_ADDR symtab = 0;
241 CORE_ADDR strtab = 0;
242 int num_slots = -1;
243 int reloc_index = -1;
244 CORE_ADDR plt_table;
245 CORE_ADDR reloc;
246 CORE_ADDR sym;
247 long symidx;
248 char symname[1024];
249 struct minimal_symbol *msymbol;
250
251 /* Find the section pc is in; return if not in .plt */
252 sect = find_pc_section (pc);
253 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
254 return 0;
255
256 objfile = sect->objfile;
257
258 /* Pick up the instruction at pc. It had better be of the
259 form
260 li r11, IDX
261
262 where IDX is an index into the plt_table. */
263
264 if (target_read_memory (pc, buf, 4) != 0)
265 return 0;
266 insn = extract_unsigned_integer (buf, 4);
267
268 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
269 return 0;
270
271 reloc_index = (insn << 16) >> 16;
272
273 /* Find the objfile that pc is in and obtain the information
274 necessary for finding the symbol name. */
275 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
276 {
277 const char *secname = sect->the_bfd_section->name;
278 if (strcmp (secname, ".plt") == 0)
279 plt_start = sect->addr;
280 else if (strcmp (secname, ".rela.plt") == 0)
281 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
282 else if (strcmp (secname, ".dynsym") == 0)
283 symtab = sect->addr;
284 else if (strcmp (secname, ".dynstr") == 0)
285 strtab = sect->addr;
286 }
287
288 /* Make sure we have all the information we need. */
289 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
290 return 0;
291
292 /* Compute the value of the plt table */
293 plt_table = plt_start + 72 + 8 * num_slots;
294
295 /* Get address of the relocation entry (Elf32_Rela) */
296 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
297 return 0;
298 reloc = extract_address (buf, 4);
299
300 sect = find_pc_section (reloc);
301 if (!sect)
302 return 0;
303
304 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
305 return reloc;
306
307 /* Now get the r_info field which is the relocation type and symbol
308 index. */
309 if (target_read_memory (reloc + 4, buf, 4) != 0)
310 return 0;
311 symidx = extract_unsigned_integer (buf, 4);
312
313 /* Shift out the relocation type leaving just the symbol index */
314 /* symidx = ELF32_R_SYM(symidx); */
315 symidx = symidx >> 8;
316
317 /* compute the address of the symbol */
318 sym = symtab + symidx * 4;
319
320 /* Fetch the string table index */
321 if (target_read_memory (sym, buf, 4) != 0)
322 return 0;
323 symidx = extract_unsigned_integer (buf, 4);
324
325 /* Fetch the string; we don't know how long it is. Is it possible
326 that the following will fail because we're trying to fetch too
327 much? */
328 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
329 return 0;
330
331 /* This might not work right if we have multiple symbols with the
332 same name; the only way to really get it right is to perform
333 the same sort of lookup as the dynamic linker. */
334 msymbol = lookup_minimal_symbol_text (symname, NULL, NULL);
335 if (!msymbol)
336 return 0;
337
338 return SYMBOL_VALUE_ADDRESS (msymbol);
339}
340
341/* The rs6000 version of FRAME_SAVED_PC will almost work for us. The
342 signal handler details are different, so we'll handle those here
343 and call the rs6000 version to do the rest. */
9aa1e687 344CORE_ADDR
c877c8e6
KB
345ppc_linux_frame_saved_pc (struct frame_info *fi)
346{
5a203e44 347 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
c877c8e6
KB
348 {
349 CORE_ADDR regs_addr =
50c9bd31 350 read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
c877c8e6
KB
351 /* return the NIP in the regs array */
352 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_NIP, 4);
353 }
5a203e44 354 else if (fi->next && (get_frame_type (fi->next) == SIGTRAMP_FRAME))
50c9bd31
KB
355 {
356 CORE_ADDR regs_addr =
357 read_memory_integer (fi->next->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
358 /* return LNK in the regs array */
359 return read_memory_integer (regs_addr + 4 * PPC_LINUX_PT_LNK, 4);
360 }
361 else
362 return rs6000_frame_saved_pc (fi);
c877c8e6
KB
363}
364
365void
366ppc_linux_init_extra_frame_info (int fromleaf, struct frame_info *fi)
367{
368 rs6000_init_extra_frame_info (fromleaf, fi);
369
370 if (fi->next != 0)
371 {
372 /* We're called from get_prev_frame_info; check to see if
373 this is a signal frame by looking to see if the pc points
374 at trampoline code */
375 if (ppc_linux_at_sigtramp_return_path (fi->pc))
5a203e44 376 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c877c8e6 377 else
5a203e44
AC
378 /* FIXME: cagney/2002-11-10: Is this double bogus? What
379 happens if the frame has previously been marked as a dummy? */
380 deprecated_set_frame_type (fi, NORMAL_FRAME);
c877c8e6
KB
381 }
382}
383
384int
385ppc_linux_frameless_function_invocation (struct frame_info *fi)
386{
387 /* We'll find the wrong thing if we let
388 rs6000_frameless_function_invocation () search for a signal trampoline */
389 if (ppc_linux_at_sigtramp_return_path (fi->pc))
390 return 0;
391 else
392 return rs6000_frameless_function_invocation (fi);
393}
394
395void
396ppc_linux_frame_init_saved_regs (struct frame_info *fi)
397{
5a203e44 398 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
c877c8e6
KB
399 {
400 CORE_ADDR regs_addr;
401 int i;
402 if (fi->saved_regs)
403 return;
404
405 frame_saved_regs_zalloc (fi);
406
407 regs_addr =
408 read_memory_integer (fi->frame + PPC_LINUX_REGS_PTR_OFFSET, 4);
409 fi->saved_regs[PC_REGNUM] = regs_addr + 4 * PPC_LINUX_PT_NIP;
2188cbdd
EZ
410 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_ps_regnum] =
411 regs_addr + 4 * PPC_LINUX_PT_MSR;
412 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
413 regs_addr + 4 * PPC_LINUX_PT_CCR;
414 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
415 regs_addr + 4 * PPC_LINUX_PT_LNK;
416 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum] =
417 regs_addr + 4 * PPC_LINUX_PT_CTR;
418 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_xer_regnum] =
419 regs_addr + 4 * PPC_LINUX_PT_XER;
420 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_mq_regnum] =
421 regs_addr + 4 * PPC_LINUX_PT_MQ;
c877c8e6 422 for (i = 0; i < 32; i++)
2188cbdd
EZ
423 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + i] =
424 regs_addr + 4 * PPC_LINUX_PT_R0 + 4 * i;
c877c8e6
KB
425 for (i = 0; i < 32; i++)
426 fi->saved_regs[FP0_REGNUM + i] = regs_addr + 4 * PPC_LINUX_PT_FPR0 + 8 * i;
427 }
428 else
429 rs6000_frame_init_saved_regs (fi);
430}
431
432CORE_ADDR
433ppc_linux_frame_chain (struct frame_info *thisframe)
434{
435 /* Kernel properly constructs the frame chain for the handler */
5a203e44 436 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
c877c8e6
KB
437 return read_memory_integer ((thisframe)->frame, 4);
438 else
439 return rs6000_frame_chain (thisframe);
440}
441
122a33de
KB
442/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
443 in much the same fashion as memory_remove_breakpoint in mem-break.c,
444 but is careful not to write back the previous contents if the code
445 in question has changed in between inserting the breakpoint and
446 removing it.
447
448 Here is the problem that we're trying to solve...
449
450 Once upon a time, before introducing this function to remove
451 breakpoints from the inferior, setting a breakpoint on a shared
452 library function prior to running the program would not work
453 properly. In order to understand the problem, it is first
454 necessary to understand a little bit about dynamic linking on
455 this platform.
456
457 A call to a shared library function is accomplished via a bl
458 (branch-and-link) instruction whose branch target is an entry
459 in the procedure linkage table (PLT). The PLT in the object
460 file is uninitialized. To gdb, prior to running the program, the
461 entries in the PLT are all zeros.
462
463 Once the program starts running, the shared libraries are loaded
464 and the procedure linkage table is initialized, but the entries in
465 the table are not (necessarily) resolved. Once a function is
466 actually called, the code in the PLT is hit and the function is
467 resolved. In order to better illustrate this, an example is in
468 order; the following example is from the gdb testsuite.
469
470 We start the program shmain.
471
472 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
473 [...]
474
475 We place two breakpoints, one on shr1 and the other on main.
476
477 (gdb) b shr1
478 Breakpoint 1 at 0x100409d4
479 (gdb) b main
480 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
481
482 Examine the instruction (and the immediatly following instruction)
483 upon which the breakpoint was placed. Note that the PLT entry
484 for shr1 contains zeros.
485
486 (gdb) x/2i 0x100409d4
487 0x100409d4 <shr1>: .long 0x0
488 0x100409d8 <shr1+4>: .long 0x0
489
490 Now run 'til main.
491
492 (gdb) r
493 Starting program: gdb.base/shmain
494 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
495
496 Breakpoint 2, main ()
497 at gdb.base/shmain.c:44
498 44 g = 1;
499
500 Examine the PLT again. Note that the loading of the shared
501 library has initialized the PLT to code which loads a constant
502 (which I think is an index into the GOT) into r11 and then
503 branchs a short distance to the code which actually does the
504 resolving.
505
506 (gdb) x/2i 0x100409d4
507 0x100409d4 <shr1>: li r11,4
508 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
509 (gdb) c
510 Continuing.
511
512 Breakpoint 1, shr1 (x=1)
513 at gdb.base/shr1.c:19
514 19 l = 1;
515
516 Now we've hit the breakpoint at shr1. (The breakpoint was
517 reset from the PLT entry to the actual shr1 function after the
518 shared library was loaded.) Note that the PLT entry has been
519 resolved to contain a branch that takes us directly to shr1.
520 (The real one, not the PLT entry.)
521
522 (gdb) x/2i 0x100409d4
523 0x100409d4 <shr1>: b 0xffaf76c <shr1>
524 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
525
526 The thing to note here is that the PLT entry for shr1 has been
527 changed twice.
528
529 Now the problem should be obvious. GDB places a breakpoint (a
530 trap instruction) on the zero value of the PLT entry for shr1.
531 Later on, after the shared library had been loaded and the PLT
532 initialized, GDB gets a signal indicating this fact and attempts
533 (as it always does when it stops) to remove all the breakpoints.
534
535 The breakpoint removal was causing the former contents (a zero
536 word) to be written back to the now initialized PLT entry thus
537 destroying a portion of the initialization that had occurred only a
538 short time ago. When execution continued, the zero word would be
539 executed as an instruction an an illegal instruction trap was
540 generated instead. (0 is not a legal instruction.)
541
542 The fix for this problem was fairly straightforward. The function
543 memory_remove_breakpoint from mem-break.c was copied to this file,
544 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
545 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
546 function.
547
548 The differences between ppc_linux_memory_remove_breakpoint () and
549 memory_remove_breakpoint () are minor. All that the former does
550 that the latter does not is check to make sure that the breakpoint
551 location actually contains a breakpoint (trap instruction) prior
552 to attempting to write back the old contents. If it does contain
553 a trap instruction, we allow the old contents to be written back.
554 Otherwise, we silently do nothing.
555
556 The big question is whether memory_remove_breakpoint () should be
557 changed to have the same functionality. The downside is that more
558 traffic is generated for remote targets since we'll have an extra
559 fetch of a memory word each time a breakpoint is removed.
560
561 For the time being, we'll leave this self-modifying-code-friendly
562 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
563 else in the event that some other platform has similar needs with
564 regard to removing breakpoints in some potentially self modifying
565 code. */
482ca3f5
KB
566int
567ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
568{
f4f9705a 569 const unsigned char *bp;
482ca3f5
KB
570 int val;
571 int bplen;
572 char old_contents[BREAKPOINT_MAX];
573
574 /* Determine appropriate breakpoint contents and size for this address. */
575 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
576 if (bp == NULL)
577 error ("Software breakpoints not implemented for this target.");
578
579 val = target_read_memory (addr, old_contents, bplen);
580
581 /* If our breakpoint is no longer at the address, this means that the
582 program modified the code on us, so it is wrong to put back the
583 old value */
584 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
585 val = target_write_memory (addr, contents_cache, bplen);
586
587 return val;
588}
6ded7999
KB
589
590/* Fetch (and possibly build) an appropriate link_map_offsets
ca557f44 591 structure for GNU/Linux PPC targets using the struct offsets
6ded7999
KB
592 defined in link.h (but without actual reference to that file).
593
ca557f44
AC
594 This makes it possible to access GNU/Linux PPC shared libraries
595 from a GDB that was not built on an GNU/Linux PPC host (for cross
596 debugging). */
6ded7999
KB
597
598struct link_map_offsets *
599ppc_linux_svr4_fetch_link_map_offsets (void)
600{
601 static struct link_map_offsets lmo;
602 static struct link_map_offsets *lmp = NULL;
603
604 if (lmp == NULL)
605 {
606 lmp = &lmo;
607
608 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
609 this is all we need. */
610 lmo.r_map_offset = 4;
611 lmo.r_map_size = 4;
612
613 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
614 this is all we need. */
615 lmo.l_addr_offset = 0;
616 lmo.l_addr_size = 4;
617
618 lmo.l_name_offset = 4;
619 lmo.l_name_size = 4;
620
621 lmo.l_next_offset = 12;
622 lmo.l_next_size = 4;
623
624 lmo.l_prev_offset = 16;
625 lmo.l_prev_size = 4;
626 }
627
628 return lmp;
629}
7b112f9c 630
2fda4977
DJ
631enum {
632 ELF_NGREG = 48,
633 ELF_NFPREG = 33,
634 ELF_NVRREG = 33
635};
636
637enum {
638 ELF_GREGSET_SIZE = (ELF_NGREG * 4),
639 ELF_FPREGSET_SIZE = (ELF_NFPREG * 8)
640};
641
642void
643ppc_linux_supply_gregset (char *buf)
644{
645 int regi;
646 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
647
648 for (regi = 0; regi < 32; regi++)
649 supply_register (regi, buf + 4 * regi);
650
651 supply_register (PC_REGNUM, buf + 4 * PPC_LINUX_PT_NIP);
652 supply_register (tdep->ppc_lr_regnum, buf + 4 * PPC_LINUX_PT_LNK);
653 supply_register (tdep->ppc_cr_regnum, buf + 4 * PPC_LINUX_PT_CCR);
654 supply_register (tdep->ppc_xer_regnum, buf + 4 * PPC_LINUX_PT_XER);
655 supply_register (tdep->ppc_ctr_regnum, buf + 4 * PPC_LINUX_PT_CTR);
656 if (tdep->ppc_mq_regnum != -1)
657 supply_register (tdep->ppc_mq_regnum, buf + 4 * PPC_LINUX_PT_MQ);
658 supply_register (tdep->ppc_ps_regnum, buf + 4 * PPC_LINUX_PT_MSR);
659}
660
661void
662ppc_linux_supply_fpregset (char *buf)
663{
664 int regi;
665 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
666
667 for (regi = 0; regi < 32; regi++)
668 supply_register (FP0_REGNUM + regi, buf + 8 * regi);
669
670 /* The FPSCR is stored in the low order word of the last doubleword in the
671 fpregset. */
672 supply_register (tdep->ppc_fpscr_regnum, buf + 8 * 32 + 4);
673}
674
675/*
676 Use a local version of this function to get the correct types for regsets.
677*/
678
679static void
680fetch_core_registers (char *core_reg_sect,
681 unsigned core_reg_size,
682 int which,
683 CORE_ADDR reg_addr)
684{
685 if (which == 0)
686 {
687 if (core_reg_size == ELF_GREGSET_SIZE)
688 ppc_linux_supply_gregset (core_reg_sect);
689 else
690 warning ("wrong size gregset struct in core file");
691 }
692 else if (which == 2)
693 {
694 if (core_reg_size == ELF_FPREGSET_SIZE)
695 ppc_linux_supply_fpregset (core_reg_sect);
696 else
697 warning ("wrong size fpregset struct in core file");
698 }
699}
700
701/* Register that we are able to handle ELF file formats using standard
702 procfs "regset" structures. */
703
704static struct core_fns ppc_linux_regset_core_fns =
705{
706 bfd_target_elf_flavour, /* core_flavour */
707 default_check_format, /* check_format */
708 default_core_sniffer, /* core_sniffer */
709 fetch_core_registers, /* core_read_registers */
710 NULL /* next */
711};
712
7b112f9c
JT
713static void
714ppc_linux_init_abi (struct gdbarch_info info,
715 struct gdbarch *gdbarch)
716{
717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
718
719 /* Until November 2001, gcc was not complying to the SYSV ABI for
720 returning structures less than or equal to 8 bytes in size. It was
721 returning everything in memory. When this was corrected, it wasn't
722 fixed for native platforms. */
723 set_gdbarch_use_struct_convention (gdbarch,
724 ppc_sysv_abi_broken_use_struct_convention);
725
726 if (tdep->wordsize == 4)
727 {
728 /* Note: kevinb/2002-04-12: See note in rs6000_gdbarch_init regarding
729 *_push_arguments(). The same remarks hold for the methods below. */
730 set_gdbarch_frameless_function_invocation (gdbarch,
731 ppc_linux_frameless_function_invocation);
732 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
733 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
734
f30ee0bc 735 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
7b112f9c 736 ppc_linux_frame_init_saved_regs);
e9582e71 737 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
7b112f9c
JT
738 ppc_linux_init_extra_frame_info);
739
740 set_gdbarch_memory_remove_breakpoint (gdbarch,
741 ppc_linux_memory_remove_breakpoint);
742 set_solib_svr4_fetch_link_map_offsets
743 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
744 }
745}
746
747void
748_initialize_ppc_linux_tdep (void)
749{
05816f70 750 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_LINUX,
7b112f9c 751 ppc_linux_init_abi);
2fda4977 752 add_core_fns (&ppc_linux_regset_core_fns);
7b112f9c 753}
This page took 0.3517 seconds and 4 git commands to generate.