* gdbarch.sh (fetch_tls_load_module_address): New architecture method.
[deliverable/binutils-gdb.git] / gdb / ppc-linux-tdep.c
CommitLineData
c877c8e6 1/* Target-dependent code for GDB, the GNU debugger.
4e052eda 2
ca557f44 3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
9cbc6ef0 4 1997, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
c877c8e6
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
4e052eda 32#include "regcache.h"
fd0407d6 33#include "value.h"
4be87837 34#include "osabi.h"
f9be684a 35#include "regset.h"
6ded7999 36#include "solib-svr4.h"
9aa1e687 37#include "ppc-tdep.h"
61a65099
KB
38#include "trad-frame.h"
39#include "frame-unwind.h"
a8f60bfc 40#include "tramp-frame.h"
9aa1e687 41
a2d356b0
DJ
42/* The following instructions are used in the signal trampoline code
43 on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
44 0x7777 but now uses the sigreturn syscalls. We check for both. */
45#define INSTR_LI_R0_0x6666 0x38006666
46#define INSTR_LI_R0_0x7777 0x38007777
47#define INSTR_LI_R0_NR_sigreturn 0x38000077
48#define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC
49
50#define INSTR_SC 0x44000002
c877c8e6
KB
51
52/* Since the *-tdep.c files are platform independent (i.e, they may be
53 used to build cross platform debuggers), we can't include system
54 headers. Therefore, details concerning the sigcontext structure
55 must be painstakingly rerecorded. What's worse, if these details
56 ever change in the header files, they'll have to be changed here
57 as well. */
58
59/* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
60#define PPC_LINUX_SIGNAL_FRAMESIZE 64
61
62/* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
63#define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
64
65/* From <asm/sigcontext.h>,
66 offsetof(struct sigcontext_struct, handler) == 0x14 */
67#define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
68
69/* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
70#define PPC_LINUX_PT_R0 0
71#define PPC_LINUX_PT_R1 1
72#define PPC_LINUX_PT_R2 2
73#define PPC_LINUX_PT_R3 3
74#define PPC_LINUX_PT_R4 4
75#define PPC_LINUX_PT_R5 5
76#define PPC_LINUX_PT_R6 6
77#define PPC_LINUX_PT_R7 7
78#define PPC_LINUX_PT_R8 8
79#define PPC_LINUX_PT_R9 9
80#define PPC_LINUX_PT_R10 10
81#define PPC_LINUX_PT_R11 11
82#define PPC_LINUX_PT_R12 12
83#define PPC_LINUX_PT_R13 13
84#define PPC_LINUX_PT_R14 14
85#define PPC_LINUX_PT_R15 15
86#define PPC_LINUX_PT_R16 16
87#define PPC_LINUX_PT_R17 17
88#define PPC_LINUX_PT_R18 18
89#define PPC_LINUX_PT_R19 19
90#define PPC_LINUX_PT_R20 20
91#define PPC_LINUX_PT_R21 21
92#define PPC_LINUX_PT_R22 22
93#define PPC_LINUX_PT_R23 23
94#define PPC_LINUX_PT_R24 24
95#define PPC_LINUX_PT_R25 25
96#define PPC_LINUX_PT_R26 26
97#define PPC_LINUX_PT_R27 27
98#define PPC_LINUX_PT_R28 28
99#define PPC_LINUX_PT_R29 29
100#define PPC_LINUX_PT_R30 30
101#define PPC_LINUX_PT_R31 31
102#define PPC_LINUX_PT_NIP 32
103#define PPC_LINUX_PT_MSR 33
104#define PPC_LINUX_PT_CTR 35
105#define PPC_LINUX_PT_LNK 36
106#define PPC_LINUX_PT_XER 37
107#define PPC_LINUX_PT_CCR 38
108#define PPC_LINUX_PT_MQ 39
109#define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */
110#define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
111#define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
112
9aa1e687 113static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
50c9bd31 114
c877c8e6
KB
115/* Determine if pc is in a signal trampoline...
116
ca557f44 117 Ha! That's not what this does at all. wait_for_inferior in
fcf70625
AC
118 infrun.c calls get_frame_type() in order to detect entry into a
119 signal trampoline just after delivery of a signal. But on
d7bd68ca
AC
120 GNU/Linux, signal trampolines are used for the return path only.
121 The kernel sets things up so that the signal handler is called
122 directly.
c877c8e6
KB
123
124 If we use in_sigtramp2() in place of in_sigtramp() (see below)
125 we'll (often) end up with stop_pc in the trampoline and prev_pc in
126 the (now exited) handler. The code there will cause a temporary
127 breakpoint to be set on prev_pc which is not very likely to get hit
128 again.
129
130 If this is confusing, think of it this way... the code in
131 wait_for_inferior() needs to be able to detect entry into a signal
132 trampoline just after a signal is delivered, not after the handler
133 has been run.
134
135 So, we define in_sigtramp() below to return 1 if the following is
136 true:
137
138 1) The previous frame is a real signal trampoline.
139
140 - and -
141
142 2) pc is at the first or second instruction of the corresponding
143 handler.
144
145 Why the second instruction? It seems that wait_for_inferior()
146 never sees the first instruction when single stepping. When a
147 signal is delivered while stepping, the next instruction that
148 would've been stepped over isn't, instead a signal is delivered and
149 the first instruction of the handler is stepped over instead. That
fcf70625
AC
150 puts us on the second instruction. (I added the test for the first
151 instruction long after the fact, just in case the observed behavior
152 is ever fixed.) */
c877c8e6
KB
153
154int
155ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
156{
157 CORE_ADDR lr;
158 CORE_ADDR sp;
159 CORE_ADDR tramp_sp;
160 char buf[4];
161 CORE_ADDR handler;
162
2188cbdd 163 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c877c8e6
KB
164 if (!ppc_linux_at_sigtramp_return_path (lr))
165 return 0;
166
167 sp = read_register (SP_REGNUM);
168
169 if (target_read_memory (sp, buf, sizeof (buf)) != 0)
170 return 0;
171
172 tramp_sp = extract_unsigned_integer (buf, 4);
173
174 if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
175 sizeof (buf)) != 0)
176 return 0;
177
178 handler = extract_unsigned_integer (buf, 4);
179
180 return (pc == handler || pc == handler + 4);
181}
182
39efb398 183static int
a2d356b0
DJ
184insn_is_sigreturn (unsigned long pcinsn)
185{
186 switch(pcinsn)
187 {
188 case INSTR_LI_R0_0x6666:
189 case INSTR_LI_R0_0x7777:
190 case INSTR_LI_R0_NR_sigreturn:
191 case INSTR_LI_R0_NR_rt_sigreturn:
192 return 1;
193 default:
194 return 0;
195 }
196}
197
c877c8e6
KB
198/*
199 * The signal handler trampoline is on the stack and consists of exactly
200 * two instructions. The easiest and most accurate way of determining
201 * whether the pc is in one of these trampolines is by inspecting the
202 * instructions. It'd be faster though if we could find a way to do this
203 * via some simple address comparisons.
204 */
9aa1e687 205static int
c877c8e6
KB
206ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
207{
208 char buf[12];
209 unsigned long pcinsn;
210 if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
211 return 0;
212
213 /* extract the instruction at the pc */
214 pcinsn = extract_unsigned_integer (buf + 4, 4);
215
216 return (
a2d356b0 217 (insn_is_sigreturn (pcinsn)
c877c8e6
KB
218 && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
219 ||
220 (pcinsn == INSTR_SC
a2d356b0 221 && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
c877c8e6
KB
222}
223
6974274f 224static CORE_ADDR
c877c8e6
KB
225ppc_linux_skip_trampoline_code (CORE_ADDR pc)
226{
227 char buf[4];
228 struct obj_section *sect;
229 struct objfile *objfile;
230 unsigned long insn;
231 CORE_ADDR plt_start = 0;
232 CORE_ADDR symtab = 0;
233 CORE_ADDR strtab = 0;
234 int num_slots = -1;
235 int reloc_index = -1;
236 CORE_ADDR plt_table;
237 CORE_ADDR reloc;
238 CORE_ADDR sym;
239 long symidx;
240 char symname[1024];
241 struct minimal_symbol *msymbol;
242
243 /* Find the section pc is in; return if not in .plt */
244 sect = find_pc_section (pc);
245 if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
246 return 0;
247
248 objfile = sect->objfile;
249
250 /* Pick up the instruction at pc. It had better be of the
251 form
252 li r11, IDX
253
254 where IDX is an index into the plt_table. */
255
256 if (target_read_memory (pc, buf, 4) != 0)
257 return 0;
258 insn = extract_unsigned_integer (buf, 4);
259
260 if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
261 return 0;
262
263 reloc_index = (insn << 16) >> 16;
264
265 /* Find the objfile that pc is in and obtain the information
266 necessary for finding the symbol name. */
267 for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
268 {
269 const char *secname = sect->the_bfd_section->name;
270 if (strcmp (secname, ".plt") == 0)
271 plt_start = sect->addr;
272 else if (strcmp (secname, ".rela.plt") == 0)
273 num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
274 else if (strcmp (secname, ".dynsym") == 0)
275 symtab = sect->addr;
276 else if (strcmp (secname, ".dynstr") == 0)
277 strtab = sect->addr;
278 }
279
280 /* Make sure we have all the information we need. */
281 if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
282 return 0;
283
284 /* Compute the value of the plt table */
285 plt_table = plt_start + 72 + 8 * num_slots;
286
287 /* Get address of the relocation entry (Elf32_Rela) */
288 if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
289 return 0;
7c0b4a20 290 reloc = extract_unsigned_integer (buf, 4);
c877c8e6
KB
291
292 sect = find_pc_section (reloc);
293 if (!sect)
294 return 0;
295
296 if (strcmp (sect->the_bfd_section->name, ".text") == 0)
297 return reloc;
298
299 /* Now get the r_info field which is the relocation type and symbol
300 index. */
301 if (target_read_memory (reloc + 4, buf, 4) != 0)
302 return 0;
303 symidx = extract_unsigned_integer (buf, 4);
304
305 /* Shift out the relocation type leaving just the symbol index */
306 /* symidx = ELF32_R_SYM(symidx); */
307 symidx = symidx >> 8;
308
309 /* compute the address of the symbol */
310 sym = symtab + symidx * 4;
311
312 /* Fetch the string table index */
313 if (target_read_memory (sym, buf, 4) != 0)
314 return 0;
315 symidx = extract_unsigned_integer (buf, 4);
316
317 /* Fetch the string; we don't know how long it is. Is it possible
318 that the following will fail because we're trying to fetch too
319 much? */
320 if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
321 return 0;
322
323 /* This might not work right if we have multiple symbols with the
324 same name; the only way to really get it right is to perform
325 the same sort of lookup as the dynamic linker. */
5520a790 326 msymbol = lookup_minimal_symbol_text (symname, NULL);
c877c8e6
KB
327 if (!msymbol)
328 return 0;
329
330 return SYMBOL_VALUE_ADDRESS (msymbol);
331}
332
122a33de
KB
333/* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
334 in much the same fashion as memory_remove_breakpoint in mem-break.c,
335 but is careful not to write back the previous contents if the code
336 in question has changed in between inserting the breakpoint and
337 removing it.
338
339 Here is the problem that we're trying to solve...
340
341 Once upon a time, before introducing this function to remove
342 breakpoints from the inferior, setting a breakpoint on a shared
343 library function prior to running the program would not work
344 properly. In order to understand the problem, it is first
345 necessary to understand a little bit about dynamic linking on
346 this platform.
347
348 A call to a shared library function is accomplished via a bl
349 (branch-and-link) instruction whose branch target is an entry
350 in the procedure linkage table (PLT). The PLT in the object
351 file is uninitialized. To gdb, prior to running the program, the
352 entries in the PLT are all zeros.
353
354 Once the program starts running, the shared libraries are loaded
355 and the procedure linkage table is initialized, but the entries in
356 the table are not (necessarily) resolved. Once a function is
357 actually called, the code in the PLT is hit and the function is
358 resolved. In order to better illustrate this, an example is in
359 order; the following example is from the gdb testsuite.
360
361 We start the program shmain.
362
363 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
364 [...]
365
366 We place two breakpoints, one on shr1 and the other on main.
367
368 (gdb) b shr1
369 Breakpoint 1 at 0x100409d4
370 (gdb) b main
371 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
372
373 Examine the instruction (and the immediatly following instruction)
374 upon which the breakpoint was placed. Note that the PLT entry
375 for shr1 contains zeros.
376
377 (gdb) x/2i 0x100409d4
378 0x100409d4 <shr1>: .long 0x0
379 0x100409d8 <shr1+4>: .long 0x0
380
381 Now run 'til main.
382
383 (gdb) r
384 Starting program: gdb.base/shmain
385 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
386
387 Breakpoint 2, main ()
388 at gdb.base/shmain.c:44
389 44 g = 1;
390
391 Examine the PLT again. Note that the loading of the shared
392 library has initialized the PLT to code which loads a constant
393 (which I think is an index into the GOT) into r11 and then
394 branchs a short distance to the code which actually does the
395 resolving.
396
397 (gdb) x/2i 0x100409d4
398 0x100409d4 <shr1>: li r11,4
399 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
400 (gdb) c
401 Continuing.
402
403 Breakpoint 1, shr1 (x=1)
404 at gdb.base/shr1.c:19
405 19 l = 1;
406
407 Now we've hit the breakpoint at shr1. (The breakpoint was
408 reset from the PLT entry to the actual shr1 function after the
409 shared library was loaded.) Note that the PLT entry has been
410 resolved to contain a branch that takes us directly to shr1.
411 (The real one, not the PLT entry.)
412
413 (gdb) x/2i 0x100409d4
414 0x100409d4 <shr1>: b 0xffaf76c <shr1>
415 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
416
417 The thing to note here is that the PLT entry for shr1 has been
418 changed twice.
419
420 Now the problem should be obvious. GDB places a breakpoint (a
421 trap instruction) on the zero value of the PLT entry for shr1.
422 Later on, after the shared library had been loaded and the PLT
423 initialized, GDB gets a signal indicating this fact and attempts
424 (as it always does when it stops) to remove all the breakpoints.
425
426 The breakpoint removal was causing the former contents (a zero
427 word) to be written back to the now initialized PLT entry thus
428 destroying a portion of the initialization that had occurred only a
429 short time ago. When execution continued, the zero word would be
430 executed as an instruction an an illegal instruction trap was
431 generated instead. (0 is not a legal instruction.)
432
433 The fix for this problem was fairly straightforward. The function
434 memory_remove_breakpoint from mem-break.c was copied to this file,
435 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
436 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
437 function.
438
439 The differences between ppc_linux_memory_remove_breakpoint () and
440 memory_remove_breakpoint () are minor. All that the former does
441 that the latter does not is check to make sure that the breakpoint
442 location actually contains a breakpoint (trap instruction) prior
443 to attempting to write back the old contents. If it does contain
444 a trap instruction, we allow the old contents to be written back.
445 Otherwise, we silently do nothing.
446
447 The big question is whether memory_remove_breakpoint () should be
448 changed to have the same functionality. The downside is that more
449 traffic is generated for remote targets since we'll have an extra
450 fetch of a memory word each time a breakpoint is removed.
451
452 For the time being, we'll leave this self-modifying-code-friendly
453 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
454 else in the event that some other platform has similar needs with
455 regard to removing breakpoints in some potentially self modifying
456 code. */
482ca3f5
KB
457int
458ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
459{
f4f9705a 460 const unsigned char *bp;
482ca3f5
KB
461 int val;
462 int bplen;
463 char old_contents[BREAKPOINT_MAX];
464
465 /* Determine appropriate breakpoint contents and size for this address. */
466 bp = BREAKPOINT_FROM_PC (&addr, &bplen);
467 if (bp == NULL)
8a3fe4f8 468 error (_("Software breakpoints not implemented for this target."));
482ca3f5
KB
469
470 val = target_read_memory (addr, old_contents, bplen);
471
472 /* If our breakpoint is no longer at the address, this means that the
473 program modified the code on us, so it is wrong to put back the
474 old value */
475 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
476 val = target_write_memory (addr, contents_cache, bplen);
477
478 return val;
479}
6ded7999 480
b9ff3018
AC
481/* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
482 than the 32 bit SYSV R4 ABI structure return convention - all
483 structures, no matter their size, are put in memory. Vectors,
484 which were added later, do get returned in a register though. */
485
05580c65
AC
486static enum return_value_convention
487ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
475b6ddd
AC
488 struct regcache *regcache, void *readbuf,
489 const void *writebuf)
b9ff3018 490{
05580c65
AC
491 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
492 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
493 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
494 && TYPE_VECTOR (valtype)))
495 return RETURN_VALUE_STRUCT_CONVENTION;
496 else
475b6ddd
AC
497 return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
498 writebuf);
b9ff3018
AC
499}
500
6ded7999 501/* Fetch (and possibly build) an appropriate link_map_offsets
ca557f44 502 structure for GNU/Linux PPC targets using the struct offsets
6ded7999
KB
503 defined in link.h (but without actual reference to that file).
504
ca557f44
AC
505 This makes it possible to access GNU/Linux PPC shared libraries
506 from a GDB that was not built on an GNU/Linux PPC host (for cross
507 debugging). */
6ded7999
KB
508
509struct link_map_offsets *
510ppc_linux_svr4_fetch_link_map_offsets (void)
511{
512 static struct link_map_offsets lmo;
513 static struct link_map_offsets *lmp = NULL;
514
515 if (lmp == NULL)
516 {
517 lmp = &lmo;
518
519 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
520 this is all we need. */
521 lmo.r_map_offset = 4;
522 lmo.r_map_size = 4;
523
524 lmo.link_map_size = 20; /* The actual size is 560 bytes, but
525 this is all we need. */
526 lmo.l_addr_offset = 0;
527 lmo.l_addr_size = 4;
528
529 lmo.l_name_offset = 4;
530 lmo.l_name_size = 4;
531
532 lmo.l_next_offset = 12;
533 lmo.l_next_size = 4;
534
535 lmo.l_prev_offset = 16;
536 lmo.l_prev_size = 4;
537 }
538
539 return lmp;
540}
7b112f9c 541
f470a70a
JB
542
543/* Macros for matching instructions. Note that, since all the
544 operands are masked off before they're or-ed into the instruction,
545 you can use -1 to make masks. */
546
547#define insn_d(opcd, rts, ra, d) \
548 ((((opcd) & 0x3f) << 26) \
549 | (((rts) & 0x1f) << 21) \
550 | (((ra) & 0x1f) << 16) \
551 | ((d) & 0xffff))
552
553#define insn_ds(opcd, rts, ra, d, xo) \
554 ((((opcd) & 0x3f) << 26) \
555 | (((rts) & 0x1f) << 21) \
556 | (((ra) & 0x1f) << 16) \
557 | ((d) & 0xfffc) \
558 | ((xo) & 0x3))
559
560#define insn_xfx(opcd, rts, spr, xo) \
561 ((((opcd) & 0x3f) << 26) \
562 | (((rts) & 0x1f) << 21) \
563 | (((spr) & 0x1f) << 16) \
564 | (((spr) & 0x3e0) << 6) \
565 | (((xo) & 0x3ff) << 1))
566
567/* Read a PPC instruction from memory. PPC instructions are always
568 big-endian, no matter what endianness the program is running in, so
569 we can't use read_memory_integer or one of its friends here. */
570static unsigned int
571read_insn (CORE_ADDR pc)
572{
573 unsigned char buf[4];
574
575 read_memory (pc, buf, 4);
576 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
577}
578
579
580/* An instruction to match. */
581struct insn_pattern
582{
583 unsigned int mask; /* mask the insn with this... */
584 unsigned int data; /* ...and see if it matches this. */
585 int optional; /* If non-zero, this insn may be absent. */
586};
587
588/* Return non-zero if the instructions at PC match the series
589 described in PATTERN, or zero otherwise. PATTERN is an array of
590 'struct insn_pattern' objects, terminated by an entry whose mask is
591 zero.
592
593 When the match is successful, fill INSN[i] with what PATTERN[i]
594 matched. If PATTERN[i] is optional, and the instruction wasn't
595 present, set INSN[i] to 0 (which is not a valid PPC instruction).
596 INSN should have as many elements as PATTERN. Note that, if
597 PATTERN contains optional instructions which aren't present in
598 memory, then INSN will have holes, so INSN[i] isn't necessarily the
599 i'th instruction in memory. */
600static int
601insns_match_pattern (CORE_ADDR pc,
602 struct insn_pattern *pattern,
603 unsigned int *insn)
604{
605 int i;
606
607 for (i = 0; pattern[i].mask; i++)
608 {
609 insn[i] = read_insn (pc);
610 if ((insn[i] & pattern[i].mask) == pattern[i].data)
611 pc += 4;
612 else if (pattern[i].optional)
613 insn[i] = 0;
614 else
615 return 0;
616 }
617
618 return 1;
619}
620
621
622/* Return the 'd' field of the d-form instruction INSN, properly
623 sign-extended. */
624static CORE_ADDR
625insn_d_field (unsigned int insn)
626{
627 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
628}
629
630
631/* Return the 'ds' field of the ds-form instruction INSN, with the two
632 zero bits concatenated at the right, and properly
633 sign-extended. */
634static CORE_ADDR
635insn_ds_field (unsigned int insn)
636{
637 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
638}
639
640
e538d2d7 641/* If DESC is the address of a 64-bit PowerPC GNU/Linux function
d64558a5
JB
642 descriptor, return the descriptor's entry point. */
643static CORE_ADDR
644ppc64_desc_entry_point (CORE_ADDR desc)
645{
646 /* The first word of the descriptor is the entry point. */
647 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
648}
649
650
f470a70a
JB
651/* Pattern for the standard linkage function. These are built by
652 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
653 zero. */
654static struct insn_pattern ppc64_standard_linkage[] =
655 {
656 /* addis r12, r2, <any> */
657 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
658
659 /* std r2, 40(r1) */
660 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
661
662 /* ld r11, <any>(r12) */
663 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
664
665 /* addis r12, r12, 1 <optional> */
666 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
667
668 /* ld r2, <any>(r12) */
669 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
670
671 /* addis r12, r12, 1 <optional> */
672 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
673
674 /* mtctr r11 */
675 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
676 0 },
677
678 /* ld r11, <any>(r12) */
679 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
680
681 /* bctr */
682 { -1, 0x4e800420, 0 },
683
684 { 0, 0, 0 }
685 };
686#define PPC64_STANDARD_LINKAGE_LEN \
687 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
688
f470a70a
JB
689/* When the dynamic linker is doing lazy symbol resolution, the first
690 call to a function in another object will go like this:
691
692 - The user's function calls the linkage function:
693
694 100007c4: 4b ff fc d5 bl 10000498
695 100007c8: e8 41 00 28 ld r2,40(r1)
696
697 - The linkage function loads the entry point (and other stuff) from
698 the function descriptor in the PLT, and jumps to it:
699
700 10000498: 3d 82 00 00 addis r12,r2,0
701 1000049c: f8 41 00 28 std r2,40(r1)
702 100004a0: e9 6c 80 98 ld r11,-32616(r12)
703 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
704 100004a8: 7d 69 03 a6 mtctr r11
705 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
706 100004b0: 4e 80 04 20 bctr
707
708 - But since this is the first time that PLT entry has been used, it
709 sends control to its glink entry. That loads the number of the
710 PLT entry and jumps to the common glink0 code:
711
712 10000c98: 38 00 00 00 li r0,0
713 10000c9c: 4b ff ff dc b 10000c78
714
715 - The common glink0 code then transfers control to the dynamic
716 linker's fixup code:
717
718 10000c78: e8 41 00 28 ld r2,40(r1)
719 10000c7c: 3d 82 00 00 addis r12,r2,0
720 10000c80: e9 6c 80 80 ld r11,-32640(r12)
721 10000c84: e8 4c 80 88 ld r2,-32632(r12)
722 10000c88: 7d 69 03 a6 mtctr r11
723 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
724 10000c90: 4e 80 04 20 bctr
725
726 Eventually, this code will figure out how to skip all of this,
727 including the dynamic linker. At the moment, we just get through
728 the linkage function. */
729
730/* If the current thread is about to execute a series of instructions
731 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
732 from that pattern match, return the code address to which the
733 standard linkage function will send them. (This doesn't deal with
734 dynamic linker lazy symbol resolution stubs.) */
735static CORE_ADDR
736ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
737{
738 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
739
740 /* The address of the function descriptor this linkage function
741 references. */
742 CORE_ADDR desc
743 = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
744 + (insn_d_field (insn[0]) << 16)
745 + insn_ds_field (insn[2]));
746
747 /* The first word of the descriptor is the entry point. Return that. */
d64558a5 748 return ppc64_desc_entry_point (desc);
f470a70a
JB
749}
750
751
752/* Given that we've begun executing a call trampoline at PC, return
753 the entry point of the function the trampoline will go to. */
754static CORE_ADDR
755ppc64_skip_trampoline_code (CORE_ADDR pc)
756{
757 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
758
759 if (insns_match_pattern (pc, ppc64_standard_linkage,
760 ppc64_standard_linkage_insn))
761 return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
762 else
763 return 0;
764}
765
766
e2d0e7eb
AC
767/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
768 GNU/Linux.
02631ec0
JB
769
770 Usually a function pointer's representation is simply the address
e538d2d7
JB
771 of the function. On GNU/Linux on the 64-bit PowerPC however, a
772 function pointer is represented by a pointer to a TOC entry. This
773 TOC entry contains three words, the first word is the address of
774 the function, the second word is the TOC pointer (r2), and the
775 third word is the static chain value. Throughout GDB it is
776 currently assumed that a function pointer contains the address of
777 the function, which is not easy to fix. In addition, the
778 conversion of a function address to a function pointer would
779 require allocation of a TOC entry in the inferior's memory space,
780 with all its drawbacks. To be able to call C++ virtual methods in
781 the inferior (which are called via function pointers),
782 find_function_addr uses this function to get the function address
783 from a function pointer. */
02631ec0 784
9b540880
AC
785/* If ADDR points at what is clearly a function descriptor, transform
786 it into the address of the corresponding function. Be
787 conservative, otherwize GDB will do the transformation on any
788 random addresses such as occures when there is no symbol table. */
02631ec0
JB
789
790static CORE_ADDR
e2d0e7eb
AC
791ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
792 CORE_ADDR addr,
793 struct target_ops *targ)
02631ec0 794{
b6591e8b 795 struct section_table *s = target_section_by_addr (targ, addr);
02631ec0 796
9b540880
AC
797 /* Check if ADDR points to a function descriptor. */
798 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
b6591e8b 799 return get_target_memory_unsigned (targ, addr, 8);
9b540880
AC
800
801 return addr;
02631ec0
JB
802}
803
f9be684a
AC
804static void
805right_supply_register (struct regcache *regcache, int wordsize, int regnum,
806 const bfd_byte *buf)
807{
808 regcache_raw_supply (regcache, regnum,
23a6d369 809 (buf + wordsize - register_size (current_gdbarch, regnum)));
f9be684a
AC
810}
811
812/* Extract the register values found in the WORDSIZED ABI GREGSET,
813 storing their values in REGCACHE. Note that some are left-aligned,
814 while others are right aligned. */
815
2fda4977 816void
f9be684a
AC
817ppc_linux_supply_gregset (struct regcache *regcache,
818 int regnum, const void *gregs, size_t size,
819 int wordsize)
2fda4977
DJ
820{
821 int regi;
f9be684a
AC
822 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
823 struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
824 const bfd_byte *buf = gregs;
2fda4977 825
063715bf 826 for (regi = 0; regi < ppc_num_gprs; regi++)
cdf2c5f5
JB
827 right_supply_register (regcache, wordsize,
828 regcache_tdep->ppc_gp0_regnum + regi,
829 buf + wordsize * regi);
f9be684a
AC
830
831 right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch),
832 buf + wordsize * PPC_LINUX_PT_NIP);
833 right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum,
834 buf + wordsize * PPC_LINUX_PT_LNK);
835 regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum,
836 buf + wordsize * PPC_LINUX_PT_CCR);
837 regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum,
838 buf + wordsize * PPC_LINUX_PT_XER);
839 regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum,
840 buf + wordsize * PPC_LINUX_PT_CTR);
841 if (regcache_tdep->ppc_mq_regnum != -1)
842 right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum,
843 buf + wordsize * PPC_LINUX_PT_MQ);
844 right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum,
845 buf + wordsize * PPC_LINUX_PT_MSR);
846}
847
848static void
849ppc32_linux_supply_gregset (const struct regset *regset,
850 struct regcache *regcache,
851 int regnum, const void *gregs, size_t size)
852{
853 ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4);
2fda4977
DJ
854}
855
f9be684a
AC
856static struct regset ppc32_linux_gregset = {
857 NULL, ppc32_linux_supply_gregset
858};
859
860static void
861ppc64_linux_supply_gregset (const struct regset *regset,
862 struct regcache * regcache,
863 int regnum, const void *gregs, size_t size)
864{
865 ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8);
866}
867
868static struct regset ppc64_linux_gregset = {
869 NULL, ppc64_linux_supply_gregset
870};
871
2fda4977 872void
f9be684a
AC
873ppc_linux_supply_fpregset (const struct regset *regset,
874 struct regcache * regcache,
875 int regnum, const void *fpset, size_t size)
2fda4977
DJ
876{
877 int regi;
f9be684a
AC
878 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
879 struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
880 const bfd_byte *buf = fpset;
2fda4977 881
383f0f5b
JB
882 if (! ppc_floating_point_unit_p (regcache_arch))
883 return;
884
885 for (regi = 0; regi < ppc_num_fprs; regi++)
366f009f
JB
886 regcache_raw_supply (regcache,
887 regcache_tdep->ppc_fp0_regnum + regi,
888 buf + 8 * regi);
2fda4977 889
383f0f5b
JB
890 /* The FPSCR is stored in the low order word of the last
891 doubleword in the fpregset. */
f9be684a 892 regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum,
383f0f5b 893 buf + 8 * 32 + 4);
2fda4977
DJ
894}
895
f9be684a 896static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset };
2fda4977 897
f9be684a
AC
898static const struct regset *
899ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
900 const char *sect_name, size_t sect_size)
2fda4977 901{
f9be684a
AC
902 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
903 if (strcmp (sect_name, ".reg") == 0)
2fda4977 904 {
f9be684a
AC
905 if (tdep->wordsize == 4)
906 return &ppc32_linux_gregset;
2fda4977 907 else
f9be684a 908 return &ppc64_linux_gregset;
2fda4977 909 }
f9be684a
AC
910 if (strcmp (sect_name, ".reg2") == 0)
911 return &ppc_linux_fpregset;
912 return NULL;
2fda4977
DJ
913}
914
a8f60bfc
AC
915static void
916ppc_linux_sigtramp_cache (struct frame_info *next_frame,
917 struct trad_frame_cache *this_cache,
918 CORE_ADDR func, LONGEST offset,
919 int bias)
920{
921 CORE_ADDR base;
922 CORE_ADDR regs;
923 CORE_ADDR gpregs;
924 CORE_ADDR fpregs;
925 int i;
926 struct gdbarch *gdbarch = get_frame_arch (next_frame);
927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
928
929 base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
930 if (bias > 0 && frame_pc_unwind (next_frame) != func)
931 /* See below, some signal trampolines increment the stack as their
932 first instruction, need to compensate for that. */
933 base -= bias;
934
935 /* Find the address of the register buffer pointer. */
936 regs = base + offset;
937 /* Use that to find the address of the corresponding register
938 buffers. */
939 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
940 fpregs = gpregs + 48 * tdep->wordsize;
941
942 /* General purpose. */
943 for (i = 0; i < 32; i++)
944 {
945 int regnum = i + tdep->ppc_gp0_regnum;
946 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
947 }
948 trad_frame_set_reg_addr (this_cache, PC_REGNUM, gpregs + 32 * tdep->wordsize);
949 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
950 gpregs + 35 * tdep->wordsize);
951 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
952 gpregs + 36 * tdep->wordsize);
953 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
954 gpregs + 37 * tdep->wordsize);
955 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
956 gpregs + 38 * tdep->wordsize);
957
958 /* Floating point registers. */
959 for (i = 0; i < 32; i++)
960 {
961 int regnum = i + FP0_REGNUM;
962 trad_frame_set_reg_addr (this_cache, regnum, fpregs + i * tdep->wordsize);
963 }
964 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
965 fpregs + 32 * tdep->wordsize);
966 trad_frame_set_id (this_cache, frame_id_build (base, func));
967}
968
969static void
970ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
971 struct frame_info *next_frame,
972 struct trad_frame_cache *this_cache,
973 CORE_ADDR func)
974{
975 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
976 0xd0 /* Offset to ucontext_t. */
977 + 0x30 /* Offset to .reg. */,
978 0);
979}
980
981static void
982ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
983 struct frame_info *next_frame,
984 struct trad_frame_cache *this_cache,
985 CORE_ADDR func)
986{
987 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
988 0x80 /* Offset to ucontext_t. */
989 + 0xe0 /* Offset to .reg. */,
990 128);
991}
992
993static void
994ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
995 struct frame_info *next_frame,
996 struct trad_frame_cache *this_cache,
997 CORE_ADDR func)
998{
999 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
1000 0x40 /* Offset to ucontext_t. */
1001 + 0x1c /* Offset to .reg. */,
1002 0);
1003}
1004
1005static void
1006ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
1007 struct frame_info *next_frame,
1008 struct trad_frame_cache *this_cache,
1009 CORE_ADDR func)
1010{
1011 ppc_linux_sigtramp_cache (next_frame, this_cache, func,
1012 0x80 /* Offset to struct sigcontext. */
1013 + 0x38 /* Offset to .reg. */,
1014 128);
1015}
1016
1017static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
1018 SIGTRAMP_FRAME,
1019 4,
1020 {
1021 { 0x380000ac, -1 }, /* li r0, 172 */
1022 { 0x44000002, -1 }, /* sc */
1023 { TRAMP_SENTINEL_INSN },
1024 },
1025 ppc32_linux_sigaction_cache_init
1026};
1027static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
1028 SIGTRAMP_FRAME,
1029 4,
1030 {
1031 { 0x38210080, -1 }, /* addi r1,r1,128 */
1032 { 0x380000ac, -1 }, /* li r0, 172 */
1033 { 0x44000002, -1 }, /* sc */
1034 { TRAMP_SENTINEL_INSN },
1035 },
1036 ppc64_linux_sigaction_cache_init
1037};
1038static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
1039 SIGTRAMP_FRAME,
1040 4,
1041 {
1042 { 0x38000077, -1 }, /* li r0,119 */
1043 { 0x44000002, -1 }, /* sc */
1044 { TRAMP_SENTINEL_INSN },
1045 },
1046 ppc32_linux_sighandler_cache_init
1047};
1048static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
1049 SIGTRAMP_FRAME,
1050 4,
1051 {
1052 { 0x38210080, -1 }, /* addi r1,r1,128 */
1053 { 0x38000077, -1 }, /* li r0,119 */
1054 { 0x44000002, -1 }, /* sc */
1055 { TRAMP_SENTINEL_INSN },
1056 },
1057 ppc64_linux_sighandler_cache_init
1058};
1059
7b112f9c
JT
1060static void
1061ppc_linux_init_abi (struct gdbarch_info info,
1062 struct gdbarch *gdbarch)
1063{
1064 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1065
0598a43c
AC
1066 /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
1067 Supplement says that long doubles are sixteen bytes long.
1068 However, as one of the known warts of its ABI, PPC GNU/Linux uses
1069 eight-byte long doubles. GCC only recently got 128-bit long
1070 double support on PPC, so it may be changing soon. The
1071 Linux[sic] Standards Base says that programs that use 'long
1072 double' on PPC GNU/Linux are non-conformant. */
1073 /* NOTE: cagney/2005-01-25: True for both 32- and 64-bit. */
1074 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1075
7b112f9c
JT
1076 if (tdep->wordsize == 4)
1077 {
b9ff3018
AC
1078 /* Until November 2001, gcc did not comply with the 32 bit SysV
1079 R4 ABI requirement that structures less than or equal to 8
1080 bytes should be returned in registers. Instead GCC was using
1081 the the AIX/PowerOpen ABI - everything returned in memory
1082 (well ignoring vectors that is). When this was corrected, it
1083 wasn't fixed for GNU/Linux native platform. Use the
1084 PowerOpen struct convention. */
05580c65 1085 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
b9ff3018 1086
7b112f9c
JT
1087 set_gdbarch_memory_remove_breakpoint (gdbarch,
1088 ppc_linux_memory_remove_breakpoint);
61a65099 1089
f470a70a 1090 /* Shared library handling. */
f470a70a
JB
1091 set_gdbarch_skip_trampoline_code (gdbarch,
1092 ppc_linux_skip_trampoline_code);
7b112f9c
JT
1093 set_solib_svr4_fetch_link_map_offsets
1094 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
a8f60bfc
AC
1095
1096 /* Trampolines. */
1097 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
1098 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
7b112f9c 1099 }
f470a70a
JB
1100
1101 if (tdep->wordsize == 8)
1102 {
e538d2d7 1103 /* Handle PPC64 GNU/Linux function pointers (which are really
02631ec0
JB
1104 function descriptors). */
1105 set_gdbarch_convert_from_func_ptr_addr
1106 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
f470a70a 1107 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
9ea97f2a 1108
a8f60bfc
AC
1109 /* Trampolines. */
1110 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
1111 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
f470a70a 1112 }
f9be684a 1113 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
b2756930
KB
1114
1115 /* Enable TLS support. */
1116 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1117 svr4_fetch_objfile_link_map);
7b112f9c
JT
1118}
1119
1120void
1121_initialize_ppc_linux_tdep (void)
1122{
0a0a4ac3
AC
1123 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1124 64-bit PowerPC, and the older rs6k. */
1125 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1126 ppc_linux_init_abi);
1127 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1128 ppc_linux_init_abi);
1129 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1130 ppc_linux_init_abi);
7b112f9c 1131}
This page took 0.662736 seconds and 4 git commands to generate.