Commit | Line | Data |
---|---|---|
7b112f9c JT |
1 | /* Target-dependent code for PowerPC systems using the SVR4 ABI |
2 | for GDB, the GNU debugger. | |
3 | ||
6066c3de | 4 | Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc. |
7b112f9c JT |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
24 | #include "gdbcore.h" | |
25 | #include "inferior.h" | |
26 | #include "regcache.h" | |
27 | #include "value.h" | |
bdf64bac | 28 | #include "gdb_string.h" |
8be9034a | 29 | #include "gdb_assert.h" |
7b112f9c | 30 | #include "ppc-tdep.h" |
6066c3de | 31 | #include "target.h" |
0a90bcdd | 32 | #include "objfiles.h" |
7d9b040b | 33 | #include "infcall.h" |
7b112f9c | 34 | |
7b112f9c JT |
35 | /* Pass the arguments in either registers, or in the stack. Using the |
36 | ppc sysv ABI, the first eight words of the argument list (that might | |
37 | be less than eight parameters if some parameters occupy more than one | |
38 | word) are passed in r3..r10 registers. float and double parameters are | |
39 | passed in fpr's, in addition to that. Rest of the parameters if any | |
40 | are passed in user stack. | |
41 | ||
42 | If the function is returning a structure, then the return address is passed | |
43 | in r3, then the first 7 words of the parametes can be passed in registers, | |
44 | starting from r4. */ | |
45 | ||
46 | CORE_ADDR | |
7d9b040b | 47 | ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
77b2b6d4 AC |
48 | struct regcache *regcache, CORE_ADDR bp_addr, |
49 | int nargs, struct value **args, CORE_ADDR sp, | |
50 | int struct_return, CORE_ADDR struct_addr) | |
7b112f9c | 51 | { |
0a613259 | 52 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
68856ea3 AC |
53 | const CORE_ADDR saved_sp = read_sp (); |
54 | int argspace = 0; /* 0 is an initial wrong guess. */ | |
55 | int write_pass; | |
7b112f9c | 56 | |
68856ea3 | 57 | /* Go through the argument list twice. |
7b112f9c | 58 | |
68856ea3 AC |
59 | Pass 1: Figure out how much new stack space is required for |
60 | arguments and pushed values. Unlike the PowerOpen ABI, the SysV | |
61 | ABI doesn't reserve any extra space for parameters which are put | |
62 | in registers, but does always push structures and then pass their | |
63 | address. | |
7a41266b | 64 | |
68856ea3 AC |
65 | Pass 2: Replay the same computation but this time also write the |
66 | values out to the target. */ | |
7b112f9c | 67 | |
68856ea3 AC |
68 | for (write_pass = 0; write_pass < 2; write_pass++) |
69 | { | |
70 | int argno; | |
71 | /* Next available floating point register for float and double | |
72 | arguments. */ | |
73 | int freg = 1; | |
74 | /* Next available general register for non-float, non-vector | |
75 | arguments. */ | |
76 | int greg = 3; | |
77 | /* Next available vector register for vector arguments. */ | |
78 | int vreg = 2; | |
79 | /* Arguments start above the "LR save word" and "Back chain". */ | |
80 | int argoffset = 2 * tdep->wordsize; | |
81 | /* Structures start after the arguments. */ | |
82 | int structoffset = argoffset + argspace; | |
83 | ||
84 | /* If the function is returning a `struct', then the first word | |
944fcfab AC |
85 | (which will be passed in r3) is used for struct return |
86 | address. In that case we should advance one word and start | |
87 | from r4 register to copy parameters. */ | |
68856ea3 | 88 | if (struct_return) |
7b112f9c | 89 | { |
68856ea3 AC |
90 | if (write_pass) |
91 | regcache_cooked_write_signed (regcache, | |
92 | tdep->ppc_gp0_regnum + greg, | |
93 | struct_addr); | |
94 | greg++; | |
7b112f9c | 95 | } |
68856ea3 AC |
96 | |
97 | for (argno = 0; argno < nargs; argno++) | |
7b112f9c | 98 | { |
68856ea3 | 99 | struct value *arg = args[argno]; |
df407dfe | 100 | struct type *type = check_typedef (value_type (arg)); |
68856ea3 AC |
101 | int len = TYPE_LENGTH (type); |
102 | char *val = VALUE_CONTENTS (arg); | |
103 | ||
104 | if (TYPE_CODE (type) == TYPE_CODE_FLT | |
944fcfab | 105 | && ppc_floating_point_unit_p (current_gdbarch) && len <= 8) |
7b112f9c | 106 | { |
68856ea3 | 107 | /* Floating point value converted to "double" then |
944fcfab AC |
108 | passed in an FP register, when the registers run out, |
109 | 8 byte aligned stack is used. */ | |
68856ea3 AC |
110 | if (freg <= 8) |
111 | { | |
112 | if (write_pass) | |
113 | { | |
114 | /* Always store the floating point value using | |
944fcfab | 115 | the register's floating-point format. */ |
68856ea3 AC |
116 | char regval[MAX_REGISTER_SIZE]; |
117 | struct type *regtype | |
366f009f | 118 | = register_type (gdbarch, tdep->ppc_fp0_regnum + freg); |
68856ea3 | 119 | convert_typed_floating (val, type, regval, regtype); |
366f009f JB |
120 | regcache_cooked_write (regcache, |
121 | tdep->ppc_fp0_regnum + freg, | |
68856ea3 AC |
122 | regval); |
123 | } | |
124 | freg++; | |
125 | } | |
7b112f9c JT |
126 | else |
127 | { | |
68856ea3 | 128 | /* SysV ABI converts floats to doubles before |
944fcfab | 129 | writing them to an 8 byte aligned stack location. */ |
68856ea3 AC |
130 | argoffset = align_up (argoffset, 8); |
131 | if (write_pass) | |
132 | { | |
133 | char memval[8]; | |
134 | struct type *memtype; | |
135 | switch (TARGET_BYTE_ORDER) | |
136 | { | |
137 | case BFD_ENDIAN_BIG: | |
138 | memtype = builtin_type_ieee_double_big; | |
139 | break; | |
140 | case BFD_ENDIAN_LITTLE: | |
141 | memtype = builtin_type_ieee_double_little; | |
142 | break; | |
143 | default: | |
144 | internal_error (__FILE__, __LINE__, "bad switch"); | |
145 | } | |
146 | convert_typed_floating (val, type, memval, memtype); | |
147 | write_memory (sp + argoffset, val, len); | |
148 | } | |
149 | argoffset += 8; | |
7b112f9c JT |
150 | } |
151 | } | |
944fcfab AC |
152 | else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */ |
153 | || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */ | |
7b112f9c | 154 | { |
68856ea3 | 155 | /* "long long" or "double" passed in an odd/even |
944fcfab AC |
156 | register pair with the low addressed word in the odd |
157 | register and the high addressed word in the even | |
158 | register, or when the registers run out an 8 byte | |
159 | aligned stack location. */ | |
68856ea3 AC |
160 | if (greg > 9) |
161 | { | |
162 | /* Just in case GREG was 10. */ | |
163 | greg = 11; | |
164 | argoffset = align_up (argoffset, 8); | |
165 | if (write_pass) | |
166 | write_memory (sp + argoffset, val, len); | |
167 | argoffset += 8; | |
168 | } | |
169 | else if (tdep->wordsize == 8) | |
170 | { | |
171 | if (write_pass) | |
172 | regcache_cooked_write (regcache, | |
944fcfab | 173 | tdep->ppc_gp0_regnum + greg, val); |
68856ea3 AC |
174 | greg += 1; |
175 | } | |
176 | else | |
177 | { | |
178 | /* Must start on an odd register - r3/r4 etc. */ | |
179 | if ((greg & 1) == 0) | |
180 | greg++; | |
181 | if (write_pass) | |
182 | { | |
183 | regcache_cooked_write (regcache, | |
184 | tdep->ppc_gp0_regnum + greg + 0, | |
185 | val + 0); | |
186 | regcache_cooked_write (regcache, | |
187 | tdep->ppc_gp0_regnum + greg + 1, | |
188 | val + 4); | |
189 | } | |
190 | greg += 2; | |
191 | } | |
7b112f9c | 192 | } |
68856ea3 AC |
193 | else if (len == 16 |
194 | && TYPE_CODE (type) == TYPE_CODE_ARRAY | |
944fcfab | 195 | && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0) |
7b112f9c | 196 | { |
68856ea3 | 197 | /* Vector parameter passed in an Altivec register, or |
944fcfab | 198 | when that runs out, 16 byte aligned stack location. */ |
7b112f9c JT |
199 | if (vreg <= 13) |
200 | { | |
68856ea3 AC |
201 | if (write_pass) |
202 | regcache_cooked_write (current_regcache, | |
944fcfab | 203 | tdep->ppc_vr0_regnum + vreg, val); |
7b112f9c JT |
204 | vreg++; |
205 | } | |
206 | else | |
207 | { | |
68856ea3 AC |
208 | argoffset = align_up (argoffset, 16); |
209 | if (write_pass) | |
210 | write_memory (sp + argoffset, val, 16); | |
7b112f9c JT |
211 | argoffset += 16; |
212 | } | |
213 | } | |
944fcfab | 214 | else if (len == 8 |
0a613259 | 215 | && TYPE_CODE (type) == TYPE_CODE_ARRAY |
944fcfab AC |
216 | && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0) |
217 | { | |
68856ea3 | 218 | /* Vector parameter passed in an e500 register, or when |
944fcfab AC |
219 | that runs out, 8 byte aligned stack location. Note |
220 | that since e500 vector and general purpose registers | |
221 | both map onto the same underlying register set, a | |
222 | "greg" and not a "vreg" is consumed here. A cooked | |
223 | write stores the value in the correct locations | |
224 | within the raw register cache. */ | |
225 | if (greg <= 10) | |
226 | { | |
68856ea3 AC |
227 | if (write_pass) |
228 | regcache_cooked_write (current_regcache, | |
944fcfab AC |
229 | tdep->ppc_ev0_regnum + greg, val); |
230 | greg++; | |
231 | } | |
232 | else | |
233 | { | |
68856ea3 AC |
234 | argoffset = align_up (argoffset, 8); |
235 | if (write_pass) | |
236 | write_memory (sp + argoffset, val, 8); | |
944fcfab AC |
237 | argoffset += 8; |
238 | } | |
239 | } | |
68856ea3 AC |
240 | else |
241 | { | |
242 | /* Reduce the parameter down to something that fits in a | |
944fcfab | 243 | "word". */ |
68856ea3 AC |
244 | char word[MAX_REGISTER_SIZE]; |
245 | memset (word, 0, MAX_REGISTER_SIZE); | |
246 | if (len > tdep->wordsize | |
247 | || TYPE_CODE (type) == TYPE_CODE_STRUCT | |
248 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
249 | { | |
250 | /* Structs and large values are put on an 8 byte | |
944fcfab | 251 | aligned stack ... */ |
68856ea3 AC |
252 | structoffset = align_up (structoffset, 8); |
253 | if (write_pass) | |
254 | write_memory (sp + structoffset, val, len); | |
255 | /* ... and then a "word" pointing to that address is | |
944fcfab | 256 | passed as the parameter. */ |
68856ea3 AC |
257 | store_unsigned_integer (word, tdep->wordsize, |
258 | sp + structoffset); | |
259 | structoffset += len; | |
260 | } | |
261 | else if (TYPE_CODE (type) == TYPE_CODE_INT) | |
262 | /* Sign or zero extend the "int" into a "word". */ | |
263 | store_unsigned_integer (word, tdep->wordsize, | |
264 | unpack_long (type, val)); | |
265 | else | |
266 | /* Always goes in the low address. */ | |
267 | memcpy (word, val, len); | |
268 | /* Store that "word" in a register, or on the stack. | |
944fcfab | 269 | The words have "4" byte alignment. */ |
68856ea3 AC |
270 | if (greg <= 10) |
271 | { | |
272 | if (write_pass) | |
273 | regcache_cooked_write (regcache, | |
944fcfab | 274 | tdep->ppc_gp0_regnum + greg, word); |
68856ea3 AC |
275 | greg++; |
276 | } | |
277 | else | |
278 | { | |
279 | argoffset = align_up (argoffset, tdep->wordsize); | |
280 | if (write_pass) | |
281 | write_memory (sp + argoffset, word, tdep->wordsize); | |
282 | argoffset += tdep->wordsize; | |
283 | } | |
284 | } | |
285 | } | |
286 | ||
287 | /* Compute the actual stack space requirements. */ | |
288 | if (!write_pass) | |
289 | { | |
290 | /* Remember the amount of space needed by the arguments. */ | |
291 | argspace = argoffset; | |
292 | /* Allocate space for both the arguments and the structures. */ | |
293 | sp -= (argoffset + structoffset); | |
294 | /* Ensure that the stack is still 16 byte aligned. */ | |
295 | sp = align_down (sp, 16); | |
296 | } | |
7b112f9c JT |
297 | } |
298 | ||
68856ea3 AC |
299 | /* Update %sp. */ |
300 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); | |
301 | ||
302 | /* Write the backchain (it occupies WORDSIZED bytes). */ | |
303 | write_memory_signed_integer (sp, tdep->wordsize, saved_sp); | |
304 | ||
e56a0ecc AC |
305 | /* Point the inferior function call's return address at the dummy's |
306 | breakpoint. */ | |
68856ea3 | 307 | regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); |
e56a0ecc | 308 | |
7b112f9c JT |
309 | return sp; |
310 | } | |
311 | ||
e754ae69 AC |
312 | /* Handle the return-value conventions specified by the SysV 32-bit |
313 | PowerPC ABI (including all the supplements): | |
314 | ||
315 | no floating-point: floating-point values returned using 32-bit | |
316 | general-purpose registers. | |
317 | ||
318 | Altivec: 128-bit vectors returned using vector registers. | |
319 | ||
320 | e500: 64-bit vectors returned using the full full 64 bit EV | |
321 | register, floating-point values returned using 32-bit | |
322 | general-purpose registers. | |
323 | ||
324 | GCC (broken): Small struct values right (instead of left) aligned | |
325 | when returned in general-purpose registers. */ | |
326 | ||
327 | static enum return_value_convention | |
05580c65 | 328 | do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type, |
963e2bb7 AC |
329 | struct regcache *regcache, void *readbuf, |
330 | const void *writebuf, int broken_gcc) | |
e754ae69 | 331 | { |
05580c65 | 332 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e754ae69 AC |
333 | gdb_assert (tdep->wordsize == 4); |
334 | if (TYPE_CODE (type) == TYPE_CODE_FLT | |
335 | && TYPE_LENGTH (type) <= 8 | |
05580c65 | 336 | && ppc_floating_point_unit_p (gdbarch)) |
e754ae69 | 337 | { |
963e2bb7 | 338 | if (readbuf) |
e754ae69 AC |
339 | { |
340 | /* Floats and doubles stored in "f1". Convert the value to | |
341 | the required type. */ | |
342 | char regval[MAX_REGISTER_SIZE]; | |
366f009f JB |
343 | struct type *regtype = register_type (gdbarch, |
344 | tdep->ppc_fp0_regnum + 1); | |
345 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); | |
963e2bb7 | 346 | convert_typed_floating (regval, regtype, readbuf, type); |
e754ae69 | 347 | } |
963e2bb7 | 348 | if (writebuf) |
e754ae69 AC |
349 | { |
350 | /* Floats and doubles stored in "f1". Convert the value to | |
351 | the register's "double" type. */ | |
352 | char regval[MAX_REGISTER_SIZE]; | |
366f009f | 353 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); |
963e2bb7 | 354 | convert_typed_floating (writebuf, type, regval, regtype); |
366f009f | 355 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); |
e754ae69 AC |
356 | } |
357 | return RETURN_VALUE_REGISTER_CONVENTION; | |
358 | } | |
359 | if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8) | |
360 | || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)) | |
361 | { | |
963e2bb7 | 362 | if (readbuf) |
e754ae69 AC |
363 | { |
364 | /* A long long, or a double stored in the 32 bit r3/r4. */ | |
365 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, | |
963e2bb7 | 366 | (bfd_byte *) readbuf + 0); |
e754ae69 | 367 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, |
963e2bb7 | 368 | (bfd_byte *) readbuf + 4); |
e754ae69 | 369 | } |
963e2bb7 | 370 | if (writebuf) |
e754ae69 AC |
371 | { |
372 | /* A long long, or a double stored in the 32 bit r3/r4. */ | |
373 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, | |
963e2bb7 | 374 | (const bfd_byte *) writebuf + 0); |
e754ae69 | 375 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, |
963e2bb7 | 376 | (const bfd_byte *) writebuf + 4); |
e754ae69 AC |
377 | } |
378 | return RETURN_VALUE_REGISTER_CONVENTION; | |
379 | } | |
380 | if (TYPE_CODE (type) == TYPE_CODE_INT | |
381 | && TYPE_LENGTH (type) <= tdep->wordsize) | |
382 | { | |
963e2bb7 | 383 | if (readbuf) |
e754ae69 AC |
384 | { |
385 | /* Some sort of integer stored in r3. Since TYPE isn't | |
386 | bigger than the register, sign extension isn't a problem | |
387 | - just do everything unsigned. */ | |
388 | ULONGEST regval; | |
389 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
390 | ®val); | |
963e2bb7 | 391 | store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval); |
e754ae69 | 392 | } |
963e2bb7 | 393 | if (writebuf) |
e754ae69 AC |
394 | { |
395 | /* Some sort of integer stored in r3. Use unpack_long since | |
396 | that should handle any required sign extension. */ | |
397 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
963e2bb7 | 398 | unpack_long (type, writebuf)); |
e754ae69 AC |
399 | } |
400 | return RETURN_VALUE_REGISTER_CONVENTION; | |
401 | } | |
402 | if (TYPE_LENGTH (type) == 16 | |
403 | && TYPE_CODE (type) == TYPE_CODE_ARRAY | |
404 | && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0) | |
405 | { | |
963e2bb7 | 406 | if (readbuf) |
e754ae69 AC |
407 | { |
408 | /* Altivec places the return value in "v2". */ | |
963e2bb7 | 409 | regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); |
e754ae69 | 410 | } |
963e2bb7 | 411 | if (writebuf) |
e754ae69 AC |
412 | { |
413 | /* Altivec places the return value in "v2". */ | |
963e2bb7 | 414 | regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); |
e754ae69 AC |
415 | } |
416 | return RETURN_VALUE_REGISTER_CONVENTION; | |
417 | } | |
418 | if (TYPE_LENGTH (type) == 8 | |
419 | && TYPE_CODE (type) == TYPE_CODE_ARRAY | |
420 | && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0) | |
421 | { | |
422 | /* The e500 ABI places return values for the 64-bit DSP types | |
423 | (__ev64_opaque__) in r3. However, in GDB-speak, ev3 | |
424 | corresponds to the entire r3 value for e500, whereas GDB's r3 | |
425 | only corresponds to the least significant 32-bits. So place | |
426 | the 64-bit DSP type's value in ev3. */ | |
963e2bb7 AC |
427 | if (readbuf) |
428 | regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf); | |
429 | if (writebuf) | |
430 | regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf); | |
e754ae69 AC |
431 | return RETURN_VALUE_REGISTER_CONVENTION; |
432 | } | |
433 | if (broken_gcc && TYPE_LENGTH (type) <= 8) | |
434 | { | |
963e2bb7 | 435 | if (readbuf) |
e754ae69 AC |
436 | { |
437 | /* GCC screwed up. The last register isn't "left" aligned. | |
438 | Need to extract the least significant part of each | |
439 | register and then store that. */ | |
440 | /* Transfer any full words. */ | |
441 | int word = 0; | |
442 | while (1) | |
443 | { | |
444 | ULONGEST reg; | |
445 | int len = TYPE_LENGTH (type) - word * tdep->wordsize; | |
446 | if (len <= 0) | |
447 | break; | |
448 | if (len > tdep->wordsize) | |
449 | len = tdep->wordsize; | |
450 | regcache_cooked_read_unsigned (regcache, | |
451 | tdep->ppc_gp0_regnum + 3 + word, | |
452 | ®); | |
963e2bb7 | 453 | store_unsigned_integer (((bfd_byte *) readbuf |
e754ae69 AC |
454 | + word * tdep->wordsize), len, reg); |
455 | word++; | |
456 | } | |
457 | } | |
963e2bb7 | 458 | if (writebuf) |
e754ae69 AC |
459 | { |
460 | /* GCC screwed up. The last register isn't "left" aligned. | |
461 | Need to extract the least significant part of each | |
462 | register and then store that. */ | |
463 | /* Transfer any full words. */ | |
464 | int word = 0; | |
465 | while (1) | |
466 | { | |
467 | ULONGEST reg; | |
468 | int len = TYPE_LENGTH (type) - word * tdep->wordsize; | |
469 | if (len <= 0) | |
470 | break; | |
471 | if (len > tdep->wordsize) | |
472 | len = tdep->wordsize; | |
963e2bb7 | 473 | reg = extract_unsigned_integer (((const bfd_byte *) writebuf |
e754ae69 AC |
474 | + word * tdep->wordsize), len); |
475 | regcache_cooked_write_unsigned (regcache, | |
476 | tdep->ppc_gp0_regnum + 3 + word, | |
477 | reg); | |
478 | word++; | |
479 | } | |
480 | } | |
481 | return RETURN_VALUE_REGISTER_CONVENTION; | |
482 | } | |
483 | if (TYPE_LENGTH (type) <= 8) | |
484 | { | |
963e2bb7 | 485 | if (readbuf) |
e754ae69 AC |
486 | { |
487 | /* This matches SVr4 PPC, it does not match GCC. */ | |
488 | /* The value is right-padded to 8 bytes and then loaded, as | |
489 | two "words", into r3/r4. */ | |
490 | char regvals[MAX_REGISTER_SIZE * 2]; | |
491 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, | |
492 | regvals + 0 * tdep->wordsize); | |
493 | if (TYPE_LENGTH (type) > tdep->wordsize) | |
494 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, | |
495 | regvals + 1 * tdep->wordsize); | |
963e2bb7 | 496 | memcpy (readbuf, regvals, TYPE_LENGTH (type)); |
e754ae69 | 497 | } |
963e2bb7 | 498 | if (writebuf) |
e754ae69 AC |
499 | { |
500 | /* This matches SVr4 PPC, it does not match GCC. */ | |
501 | /* The value is padded out to 8 bytes and then loaded, as | |
502 | two "words" into r3/r4. */ | |
503 | char regvals[MAX_REGISTER_SIZE * 2]; | |
504 | memset (regvals, 0, sizeof regvals); | |
963e2bb7 | 505 | memcpy (regvals, writebuf, TYPE_LENGTH (type)); |
e754ae69 AC |
506 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, |
507 | regvals + 0 * tdep->wordsize); | |
508 | if (TYPE_LENGTH (type) > tdep->wordsize) | |
509 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, | |
510 | regvals + 1 * tdep->wordsize); | |
511 | } | |
512 | return RETURN_VALUE_REGISTER_CONVENTION; | |
513 | } | |
514 | return RETURN_VALUE_STRUCT_CONVENTION; | |
515 | } | |
516 | ||
05580c65 AC |
517 | enum return_value_convention |
518 | ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
963e2bb7 AC |
519 | struct regcache *regcache, void *readbuf, |
520 | const void *writebuf) | |
e754ae69 | 521 | { |
963e2bb7 AC |
522 | return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf, |
523 | writebuf, 0); | |
e754ae69 AC |
524 | } |
525 | ||
05580c65 | 526 | enum return_value_convention |
963e2bb7 AC |
527 | ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch, |
528 | struct type *valtype, | |
529 | struct regcache *regcache, | |
530 | void *readbuf, const void *writebuf) | |
e754ae69 | 531 | { |
963e2bb7 AC |
532 | return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf, |
533 | writebuf, 1); | |
944fcfab | 534 | } |
afd48b75 | 535 | |
8be9034a AC |
536 | /* Pass the arguments in either registers, or in the stack. Using the |
537 | ppc 64 bit SysV ABI. | |
538 | ||
539 | This implements a dumbed down version of the ABI. It always writes | |
540 | values to memory, GPR and FPR, even when not necessary. Doing this | |
541 | greatly simplifies the logic. */ | |
542 | ||
543 | CORE_ADDR | |
7d9b040b | 544 | ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8be9034a AC |
545 | struct regcache *regcache, CORE_ADDR bp_addr, |
546 | int nargs, struct value **args, CORE_ADDR sp, | |
547 | int struct_return, CORE_ADDR struct_addr) | |
548 | { | |
7d9b040b | 549 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
8be9034a AC |
550 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
551 | /* By this stage in the proceedings, SP has been decremented by "red | |
552 | zone size" + "struct return size". Fetch the stack-pointer from | |
553 | before this and use that as the BACK_CHAIN. */ | |
554 | const CORE_ADDR back_chain = read_sp (); | |
555 | /* See for-loop comment below. */ | |
556 | int write_pass; | |
557 | /* Size of the Altivec's vector parameter region, the final value is | |
558 | computed in the for-loop below. */ | |
559 | LONGEST vparam_size = 0; | |
560 | /* Size of the general parameter region, the final value is computed | |
561 | in the for-loop below. */ | |
562 | LONGEST gparam_size = 0; | |
563 | /* Kevin writes ... I don't mind seeing tdep->wordsize used in the | |
564 | calls to align_up(), align_down(), etc. because this makes it | |
565 | easier to reuse this code (in a copy/paste sense) in the future, | |
566 | but it is a 64-bit ABI and asserting that the wordsize is 8 bytes | |
567 | at some point makes it easier to verify that this function is | |
568 | correct without having to do a non-local analysis to figure out | |
569 | the possible values of tdep->wordsize. */ | |
570 | gdb_assert (tdep->wordsize == 8); | |
571 | ||
572 | /* Go through the argument list twice. | |
573 | ||
574 | Pass 1: Compute the function call's stack space and register | |
575 | requirements. | |
576 | ||
577 | Pass 2: Replay the same computation but this time also write the | |
578 | values out to the target. */ | |
579 | ||
580 | for (write_pass = 0; write_pass < 2; write_pass++) | |
581 | { | |
582 | int argno; | |
583 | /* Next available floating point register for float and double | |
584 | arguments. */ | |
585 | int freg = 1; | |
586 | /* Next available general register for non-vector (but possibly | |
587 | float) arguments. */ | |
588 | int greg = 3; | |
589 | /* Next available vector register for vector arguments. */ | |
590 | int vreg = 2; | |
591 | /* The address, at which the next general purpose parameter | |
592 | (integer, struct, float, ...) should be saved. */ | |
593 | CORE_ADDR gparam; | |
594 | /* Address, at which the next Altivec vector parameter should be | |
595 | saved. */ | |
596 | CORE_ADDR vparam; | |
597 | ||
598 | if (!write_pass) | |
599 | { | |
600 | /* During the first pass, GPARAM and VPARAM are more like | |
601 | offsets (start address zero) than addresses. That way | |
602 | the accumulate the total stack space each region | |
603 | requires. */ | |
604 | gparam = 0; | |
605 | vparam = 0; | |
606 | } | |
607 | else | |
608 | { | |
609 | /* Decrement the stack pointer making space for the Altivec | |
610 | and general on-stack parameters. Set vparam and gparam | |
611 | to their corresponding regions. */ | |
612 | vparam = align_down (sp - vparam_size, 16); | |
613 | gparam = align_down (vparam - gparam_size, 16); | |
614 | /* Add in space for the TOC, link editor double word, | |
615 | compiler double word, LR save area, CR save area. */ | |
616 | sp = align_down (gparam - 48, 16); | |
617 | } | |
618 | ||
619 | /* If the function is returning a `struct', then there is an | |
620 | extra hidden parameter (which will be passed in r3) | |
621 | containing the address of that struct.. In that case we | |
622 | should advance one word and start from r4 register to copy | |
623 | parameters. This also consumes one on-stack parameter slot. */ | |
624 | if (struct_return) | |
625 | { | |
626 | if (write_pass) | |
627 | regcache_cooked_write_signed (regcache, | |
628 | tdep->ppc_gp0_regnum + greg, | |
629 | struct_addr); | |
630 | greg++; | |
631 | gparam = align_up (gparam + tdep->wordsize, tdep->wordsize); | |
632 | } | |
633 | ||
634 | for (argno = 0; argno < nargs; argno++) | |
635 | { | |
636 | struct value *arg = args[argno]; | |
df407dfe | 637 | struct type *type = check_typedef (value_type (arg)); |
8be9034a AC |
638 | char *val = VALUE_CONTENTS (arg); |
639 | if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8) | |
640 | { | |
641 | /* Floats and Doubles go in f1 .. f13. They also | |
642 | consume a left aligned GREG,, and can end up in | |
643 | memory. */ | |
644 | if (write_pass) | |
645 | { | |
646 | if (ppc_floating_point_unit_p (current_gdbarch) | |
647 | && freg <= 13) | |
648 | { | |
649 | char regval[MAX_REGISTER_SIZE]; | |
366f009f JB |
650 | struct type *regtype |
651 | = register_type (gdbarch, tdep->ppc_fp0_regnum); | |
8be9034a | 652 | convert_typed_floating (val, type, regval, regtype); |
366f009f JB |
653 | regcache_cooked_write (regcache, |
654 | tdep->ppc_fp0_regnum + freg, | |
8be9034a AC |
655 | regval); |
656 | } | |
657 | if (greg <= 10) | |
658 | { | |
659 | /* The ABI states "Single precision floating | |
660 | point values are mapped to the first word in | |
661 | a single doubleword" and "... floating point | |
662 | values mapped to the first eight doublewords | |
663 | of the parameter save area are also passed in | |
664 | general registers"). | |
665 | ||
666 | This code interprets that to mean: store it, | |
667 | left aligned, in the general register. */ | |
668 | char regval[MAX_REGISTER_SIZE]; | |
669 | memset (regval, 0, sizeof regval); | |
670 | memcpy (regval, val, TYPE_LENGTH (type)); | |
671 | regcache_cooked_write (regcache, | |
672 | tdep->ppc_gp0_regnum + greg, | |
673 | regval); | |
674 | } | |
675 | write_memory (gparam, val, TYPE_LENGTH (type)); | |
676 | } | |
677 | /* Always consume parameter stack space. */ | |
678 | freg++; | |
679 | greg++; | |
680 | gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize); | |
681 | } | |
682 | else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type) | |
683 | && TYPE_CODE (type) == TYPE_CODE_ARRAY | |
684 | && tdep->ppc_vr0_regnum >= 0) | |
685 | { | |
686 | /* In the Altivec ABI, vectors go in the vector | |
687 | registers v2 .. v13, or when that runs out, a vector | |
688 | annex which goes above all the normal parameters. | |
689 | NOTE: cagney/2003-09-21: This is a guess based on the | |
690 | PowerOpen Altivec ABI. */ | |
691 | if (vreg <= 13) | |
692 | { | |
693 | if (write_pass) | |
694 | regcache_cooked_write (regcache, | |
695 | tdep->ppc_vr0_regnum + vreg, val); | |
696 | vreg++; | |
697 | } | |
698 | else | |
699 | { | |
700 | if (write_pass) | |
701 | write_memory (vparam, val, TYPE_LENGTH (type)); | |
702 | vparam = align_up (vparam + TYPE_LENGTH (type), 16); | |
703 | } | |
704 | } | |
705 | else if ((TYPE_CODE (type) == TYPE_CODE_INT | |
706 | || TYPE_CODE (type) == TYPE_CODE_ENUM) | |
707 | && TYPE_LENGTH (type) <= 8) | |
708 | { | |
709 | /* Scalars get sign[un]extended and go in gpr3 .. gpr10. | |
710 | They can also end up in memory. */ | |
711 | if (write_pass) | |
712 | { | |
713 | /* Sign extend the value, then store it unsigned. */ | |
714 | ULONGEST word = unpack_long (type, val); | |
715 | if (greg <= 10) | |
716 | regcache_cooked_write_unsigned (regcache, | |
717 | tdep->ppc_gp0_regnum + | |
718 | greg, word); | |
719 | write_memory_unsigned_integer (gparam, tdep->wordsize, | |
720 | word); | |
721 | } | |
722 | greg++; | |
723 | gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize); | |
724 | } | |
725 | else | |
726 | { | |
727 | int byte; | |
728 | for (byte = 0; byte < TYPE_LENGTH (type); | |
729 | byte += tdep->wordsize) | |
730 | { | |
731 | if (write_pass && greg <= 10) | |
732 | { | |
733 | char regval[MAX_REGISTER_SIZE]; | |
734 | int len = TYPE_LENGTH (type) - byte; | |
735 | if (len > tdep->wordsize) | |
736 | len = tdep->wordsize; | |
737 | memset (regval, 0, sizeof regval); | |
738 | /* WARNING: cagney/2003-09-21: As best I can | |
739 | tell, the ABI specifies that the value should | |
740 | be left aligned. Unfortunately, GCC doesn't | |
741 | do this - it instead right aligns even sized | |
742 | values and puts odd sized values on the | |
743 | stack. Work around that by putting both a | |
744 | left and right aligned value into the | |
745 | register (hopefully no one notices :-^). | |
746 | Arrrgh! */ | |
747 | /* Left aligned (8 byte values such as pointers | |
748 | fill the buffer). */ | |
749 | memcpy (regval, val + byte, len); | |
750 | /* Right aligned (but only if even). */ | |
751 | if (len == 1 || len == 2 || len == 4) | |
752 | memcpy (regval + tdep->wordsize - len, | |
753 | val + byte, len); | |
754 | regcache_cooked_write (regcache, greg, regval); | |
755 | } | |
756 | greg++; | |
757 | } | |
758 | if (write_pass) | |
759 | /* WARNING: cagney/2003-09-21: Strictly speaking, this | |
760 | isn't necessary, unfortunately, GCC appears to get | |
761 | "struct convention" parameter passing wrong putting | |
762 | odd sized structures in memory instead of in a | |
763 | register. Work around this by always writing the | |
764 | value to memory. Fortunately, doing this | |
765 | simplifies the code. */ | |
766 | write_memory (gparam, val, TYPE_LENGTH (type)); | |
767 | /* Always consume parameter stack space. */ | |
768 | gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize); | |
769 | } | |
770 | } | |
771 | ||
772 | if (!write_pass) | |
773 | { | |
774 | /* Save the true region sizes ready for the second pass. */ | |
775 | vparam_size = vparam; | |
776 | /* Make certain that the general parameter save area is at | |
777 | least the minimum 8 registers (or doublewords) in size. */ | |
778 | if (greg < 8) | |
779 | gparam_size = 8 * tdep->wordsize; | |
780 | else | |
781 | gparam_size = gparam; | |
782 | } | |
783 | } | |
784 | ||
785 | /* Update %sp. */ | |
786 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); | |
787 | ||
788 | /* Write the backchain (it occupies WORDSIZED bytes). */ | |
789 | write_memory_signed_integer (sp, tdep->wordsize, back_chain); | |
790 | ||
791 | /* Point the inferior function call's return address at the dummy's | |
792 | breakpoint. */ | |
793 | regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
794 | ||
795 | /* Find a value for the TOC register. Every symbol should have both | |
796 | ".FN" and "FN" in the minimal symbol table. "FN" points at the | |
797 | FN's descriptor, while ".FN" points at the entry point (which | |
798 | matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the | |
0a90bcdd AC |
799 | FN's descriptor address (while at the same time being careful to |
800 | find "FN" in the same object file as ".FN"). */ | |
8be9034a AC |
801 | { |
802 | /* Find the minimal symbol that corresponds to FUNC_ADDR (should | |
803 | have the name ".FN"). */ | |
804 | struct minimal_symbol *dot_fn = lookup_minimal_symbol_by_pc (func_addr); | |
805 | if (dot_fn != NULL && SYMBOL_LINKAGE_NAME (dot_fn)[0] == '.') | |
806 | { | |
0a90bcdd AC |
807 | /* Get the section that contains FUNC_ADR. Need this for the |
808 | "objfile" that it contains. */ | |
809 | struct obj_section *dot_fn_section = find_pc_section (func_addr); | |
810 | if (dot_fn_section != NULL && dot_fn_section->objfile != NULL) | |
8be9034a | 811 | { |
0a90bcdd AC |
812 | /* Now find the corresponding "FN" (dropping ".") minimal |
813 | symbol's address. Only look for the minimal symbol in | |
814 | ".FN"'s object file - avoids problems when two object | |
815 | files (i.e., shared libraries) contain a minimal symbol | |
816 | with the same name. */ | |
817 | struct minimal_symbol *fn = | |
818 | lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL, | |
819 | dot_fn_section->objfile); | |
820 | if (fn != NULL) | |
821 | { | |
822 | /* Got the address of that descriptor. The TOC is the | |
823 | second double word. */ | |
824 | CORE_ADDR toc = | |
825 | read_memory_unsigned_integer (SYMBOL_VALUE_ADDRESS (fn) | |
826 | + tdep->wordsize, | |
827 | tdep->wordsize); | |
828 | regcache_cooked_write_unsigned (regcache, | |
829 | tdep->ppc_gp0_regnum + 2, toc); | |
830 | } | |
8be9034a AC |
831 | } |
832 | } | |
833 | } | |
834 | ||
835 | return sp; | |
836 | } | |
837 | ||
afd48b75 AC |
838 | |
839 | /* The 64 bit ABI retun value convention. | |
840 | ||
841 | Return non-zero if the return-value is stored in a register, return | |
842 | 0 if the return-value is instead stored on the stack (a.k.a., | |
843 | struct return convention). | |
844 | ||
963e2bb7 | 845 | For a return-value stored in a register: when WRITEBUF is non-NULL, |
afd48b75 | 846 | copy the buffer to the corresponding register return-value location |
963e2bb7 | 847 | location; when READBUF is non-NULL, fill the buffer from the |
afd48b75 | 848 | corresponding register return-value location. */ |
05580c65 AC |
849 | enum return_value_convention |
850 | ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
963e2bb7 AC |
851 | struct regcache *regcache, void *readbuf, |
852 | const void *writebuf) | |
afd48b75 | 853 | { |
05580c65 | 854 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
16796152 JB |
855 | |
856 | /* This function exists to support a calling convention that | |
857 | requires floating-point registers. It shouldn't be used on | |
858 | processors that lack them. */ | |
859 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
860 | ||
afd48b75 | 861 | /* Floats and doubles in F1. */ |
944fcfab | 862 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8) |
afd48b75 AC |
863 | { |
864 | char regval[MAX_REGISTER_SIZE]; | |
366f009f | 865 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); |
963e2bb7 | 866 | if (writebuf != NULL) |
afd48b75 | 867 | { |
963e2bb7 | 868 | convert_typed_floating (writebuf, valtype, regval, regtype); |
366f009f | 869 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); |
afd48b75 | 870 | } |
963e2bb7 | 871 | if (readbuf != NULL) |
afd48b75 | 872 | { |
366f009f | 873 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); |
963e2bb7 | 874 | convert_typed_floating (regval, regtype, readbuf, valtype); |
afd48b75 AC |
875 | } |
876 | return RETURN_VALUE_REGISTER_CONVENTION; | |
877 | } | |
944fcfab | 878 | if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 8) |
afd48b75 AC |
879 | { |
880 | /* Integers in r3. */ | |
963e2bb7 | 881 | if (writebuf != NULL) |
afd48b75 AC |
882 | { |
883 | /* Be careful to sign extend the value. */ | |
884 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
963e2bb7 | 885 | unpack_long (valtype, writebuf)); |
afd48b75 | 886 | } |
963e2bb7 | 887 | if (readbuf != NULL) |
afd48b75 AC |
888 | { |
889 | /* Extract the integer from r3. Since this is truncating the | |
890 | value, there isn't a sign extension problem. */ | |
891 | ULONGEST regval; | |
892 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
893 | ®val); | |
963e2bb7 | 894 | store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); |
afd48b75 AC |
895 | } |
896 | return RETURN_VALUE_REGISTER_CONVENTION; | |
897 | } | |
898 | /* All pointers live in r3. */ | |
899 | if (TYPE_CODE (valtype) == TYPE_CODE_PTR) | |
900 | { | |
901 | /* All pointers live in r3. */ | |
963e2bb7 AC |
902 | if (writebuf != NULL) |
903 | regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); | |
904 | if (readbuf != NULL) | |
905 | regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf); | |
afd48b75 AC |
906 | return RETURN_VALUE_REGISTER_CONVENTION; |
907 | } | |
908 | if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY | |
909 | && TYPE_LENGTH (valtype) <= 8 | |
910 | && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT | |
911 | && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1) | |
912 | { | |
913 | /* Small character arrays are returned, right justified, in r3. */ | |
05580c65 | 914 | int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3) |
afd48b75 | 915 | - TYPE_LENGTH (valtype)); |
963e2bb7 | 916 | if (writebuf != NULL) |
afd48b75 | 917 | regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3, |
963e2bb7 AC |
918 | offset, TYPE_LENGTH (valtype), writebuf); |
919 | if (readbuf != NULL) | |
afd48b75 | 920 | regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3, |
963e2bb7 | 921 | offset, TYPE_LENGTH (valtype), readbuf); |
afd48b75 AC |
922 | return RETURN_VALUE_REGISTER_CONVENTION; |
923 | } | |
924 | /* Big floating point values get stored in adjacent floating | |
925 | point registers. */ | |
926 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
944fcfab | 927 | && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32)) |
afd48b75 | 928 | { |
963e2bb7 | 929 | if (writebuf || readbuf != NULL) |
afd48b75 AC |
930 | { |
931 | int i; | |
932 | for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++) | |
933 | { | |
963e2bb7 | 934 | if (writebuf != NULL) |
366f009f | 935 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i, |
963e2bb7 AC |
936 | (const bfd_byte *) writebuf + i * 8); |
937 | if (readbuf != NULL) | |
366f009f | 938 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i, |
963e2bb7 | 939 | (bfd_byte *) readbuf + i * 8); |
afd48b75 AC |
940 | } |
941 | } | |
942 | return RETURN_VALUE_REGISTER_CONVENTION; | |
943 | } | |
944 | /* Complex values get returned in f1:f2, need to convert. */ | |
945 | if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX | |
946 | && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16)) | |
947 | { | |
948 | if (regcache != NULL) | |
949 | { | |
950 | int i; | |
951 | for (i = 0; i < 2; i++) | |
952 | { | |
953 | char regval[MAX_REGISTER_SIZE]; | |
944fcfab | 954 | struct type *regtype = |
366f009f | 955 | register_type (current_gdbarch, tdep->ppc_fp0_regnum); |
963e2bb7 | 956 | if (writebuf != NULL) |
afd48b75 | 957 | { |
963e2bb7 | 958 | convert_typed_floating ((const bfd_byte *) writebuf + |
944fcfab | 959 | i * (TYPE_LENGTH (valtype) / 2), |
afd48b75 | 960 | valtype, regval, regtype); |
366f009f JB |
961 | regcache_cooked_write (regcache, |
962 | tdep->ppc_fp0_regnum + 1 + i, | |
944fcfab | 963 | regval); |
afd48b75 | 964 | } |
963e2bb7 | 965 | if (readbuf != NULL) |
afd48b75 | 966 | { |
366f009f JB |
967 | regcache_cooked_read (regcache, |
968 | tdep->ppc_fp0_regnum + 1 + i, | |
969 | regval); | |
afd48b75 | 970 | convert_typed_floating (regval, regtype, |
963e2bb7 | 971 | (bfd_byte *) readbuf + |
944fcfab | 972 | i * (TYPE_LENGTH (valtype) / 2), |
afd48b75 AC |
973 | valtype); |
974 | } | |
975 | } | |
976 | } | |
977 | return RETURN_VALUE_REGISTER_CONVENTION; | |
978 | } | |
979 | /* Big complex values get stored in f1:f4. */ | |
944fcfab | 980 | if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32) |
afd48b75 AC |
981 | { |
982 | if (regcache != NULL) | |
983 | { | |
984 | int i; | |
985 | for (i = 0; i < 4; i++) | |
986 | { | |
963e2bb7 | 987 | if (writebuf != NULL) |
366f009f | 988 | regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i, |
963e2bb7 AC |
989 | (const bfd_byte *) writebuf + i * 8); |
990 | if (readbuf != NULL) | |
366f009f | 991 | regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i, |
963e2bb7 | 992 | (bfd_byte *) readbuf + i * 8); |
afd48b75 AC |
993 | } |
994 | } | |
995 | return RETURN_VALUE_REGISTER_CONVENTION; | |
996 | } | |
997 | return RETURN_VALUE_STRUCT_CONVENTION; | |
998 | } | |
999 | ||
6066c3de AC |
1000 | CORE_ADDR |
1001 | ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch, | |
1002 | CORE_ADDR bpaddr) | |
1003 | { | |
1004 | /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at | |
1005 | a function-descriptor while the corresponding minimal-symbol | |
1006 | ".FN" should point at the entry point. Consequently, a command | |
1007 | like "break FN" applied to an object file with only minimal | |
1008 | symbols, will insert the breakpoint into the descriptor at "FN" | |
1009 | and not the function at ".FN". Avoid this confusion by adjusting | |
1010 | any attempt to set a descriptor breakpoint into a corresponding | |
1011 | function breakpoint. Note that GDB warns the user when this | |
1012 | adjustment is applied - that's ok as otherwise the user will have | |
1013 | no way of knowing why their breakpoint at "FN" resulted in the | |
1014 | program stopping at ".FN". */ | |
1015 | return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, ¤t_target); | |
1016 | } |