This patch adds a new convenience variable called "$_exitsignal", which
[deliverable/binutils-gdb.git] / gdb / ppc64-tdep.c
CommitLineData
45fe57e7
AT
1/* Common target-dependent code for ppc64 GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "frame.h"
22#include "gdbcore.h"
23#include "ppc-tdep.h"
24#include "ppc64-tdep.h"
24c274a1 25#include "elf-bfd.h"
45fe57e7
AT
26
27/* Macros for matching instructions. Note that, since all the
28 operands are masked off before they're or-ed into the instruction,
29 you can use -1 to make masks. */
30
31#define insn_d(opcd, rts, ra, d) \
32 ((((opcd) & 0x3f) << 26) \
33 | (((rts) & 0x1f) << 21) \
34 | (((ra) & 0x1f) << 16) \
35 | ((d) & 0xffff))
36
37#define insn_ds(opcd, rts, ra, d, xo) \
38 ((((opcd) & 0x3f) << 26) \
39 | (((rts) & 0x1f) << 21) \
40 | (((ra) & 0x1f) << 16) \
41 | ((d) & 0xfffc) \
42 | ((xo) & 0x3))
43
44#define insn_xfx(opcd, rts, spr, xo) \
45 ((((opcd) & 0x3f) << 26) \
46 | (((rts) & 0x1f) << 21) \
47 | (((spr) & 0x1f) << 16) \
48 | (((spr) & 0x3e0) << 6) \
49 | (((xo) & 0x3ff) << 1))
50
51/* If DESC is the address of a 64-bit PowerPC FreeBSD function
52 descriptor, return the descriptor's entry point. */
53
54static CORE_ADDR
55ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
56{
57 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
58 /* The first word of the descriptor is the entry point. */
59 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
60}
61
845d4708
AM
62/* Patterns for the standard linkage functions. These are built by
63 build_plt_stub in bfd/elf64-ppc.c. */
64
65/* Old PLT call stub. */
45fe57e7
AT
66
67static struct ppc_insn_pattern ppc64_standard_linkage1[] =
68 {
69 /* addis r12, r2, <any> */
70 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
71
72 /* std r2, 40(r1) */
73 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
74
75 /* ld r11, <any>(r12) */
76 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
77
78 /* addis r12, r12, 1 <optional> */
79 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
80
81 /* ld r2, <any>(r12) */
82 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
83
84 /* addis r12, r12, 1 <optional> */
85 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
86
87 /* mtctr r11 */
88 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
89
90 /* ld r11, <any>(r12) <optional> */
91 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
92
93 /* bctr */
94 { -1, 0x4e800420, 0 },
95
96 { 0, 0, 0 }
97 };
98
845d4708
AM
99/* Current PLT call stub to access PLT entries more than +/- 32k from r2.
100 Also supports older stub with different placement of std 2,40(1),
101 a stub that omits the std 2,40(1), and both versions of power7
102 thread safety read barriers. Note that there are actually two more
103 instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
104 but there isn't any need to match them. */
45fe57e7
AT
105
106static struct ppc_insn_pattern ppc64_standard_linkage2[] =
107 {
845d4708
AM
108 /* std r2, 40(r1) <optional> */
109 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
110
45fe57e7
AT
111 /* addis r12, r2, <any> */
112 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
113
845d4708
AM
114 /* std r2, 40(r1) <optional> */
115 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
45fe57e7
AT
116
117 /* ld r11, <any>(r12) */
118 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
119
120 /* addi r12, r12, <any> <optional> */
121 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
122
123 /* mtctr r11 */
124 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
125
845d4708
AM
126 /* xor r11, r11, r11 <optional> */
127 { -1, 0x7d6b5a78, 1 },
128
129 /* add r12, r12, r11 <optional> */
130 { -1, 0x7d8c5a14, 1 },
131
45fe57e7
AT
132 /* ld r2, <any>(r12) */
133 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
134
135 /* ld r11, <any>(r12) <optional> */
136 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
137
845d4708
AM
138 /* bctr <optional> */
139 { -1, 0x4e800420, 1 },
140
141 /* cmpldi r2, 0 <optional> */
142 { -1, 0x28220000, 1 },
45fe57e7
AT
143
144 { 0, 0, 0 }
145 };
146
845d4708 147/* Current PLT call stub to access PLT entries within +/- 32k of r2. */
45fe57e7
AT
148
149static struct ppc_insn_pattern ppc64_standard_linkage3[] =
150 {
845d4708
AM
151 /* std r2, 40(r1) <optional> */
152 { -1, insn_ds (62, 2, 1, 40, 0), 1 },
45fe57e7
AT
153
154 /* ld r11, <any>(r2) */
155 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
156
157 /* addi r2, r2, <any> <optional> */
158 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
159
160 /* mtctr r11 */
161 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
162
845d4708
AM
163 /* xor r11, r11, r11 <optional> */
164 { -1, 0x7d6b5a78, 1 },
165
166 /* add r2, r2, r11 <optional> */
167 { -1, 0x7c425a14, 1 },
168
45fe57e7
AT
169 /* ld r11, <any>(r2) <optional> */
170 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
171
172 /* ld r2, <any>(r2) */
173 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
174
845d4708
AM
175 /* bctr <optional> */
176 { -1, 0x4e800420, 1 },
177
178 /* cmpldi r2, 0 <optional> */
179 { -1, 0x28220000, 1 },
45fe57e7
AT
180
181 { 0, 0, 0 }
182 };
183
45fe57e7
AT
184/* When the dynamic linker is doing lazy symbol resolution, the first
185 call to a function in another object will go like this:
186
187 - The user's function calls the linkage function:
188
845d4708
AM
189 100003d4: 4b ff ff ad bl 10000380 <nnnn.plt_call.printf>
190 100003d8: e8 41 00 28 ld r2,40(r1)
45fe57e7 191
845d4708
AM
192 - The linkage function loads the entry point and toc pointer from
193 the function descriptor in the PLT, and jumps to it:
45fe57e7 194
845d4708
AM
195 <nnnn.plt_call.printf>:
196 10000380: f8 41 00 28 std r2,40(r1)
197 10000384: e9 62 80 78 ld r11,-32648(r2)
198 10000388: 7d 69 03 a6 mtctr r11
199 1000038c: e8 42 80 80 ld r2,-32640(r2)
200 10000390: 28 22 00 00 cmpldi r2,0
201 10000394: 4c e2 04 20 bnectr+
202 10000398: 48 00 03 a0 b 10000738 <printf@plt>
45fe57e7
AT
203
204 - But since this is the first time that PLT entry has been used, it
845d4708
AM
205 sends control to its glink entry. That loads the number of the
206 PLT entry and jumps to the common glink0 code:
45fe57e7 207
845d4708
AM
208 <printf@plt>:
209 10000738: 38 00 00 01 li r0,1
210 1000073c: 4b ff ff bc b 100006f8 <__glink_PLTresolve>
45fe57e7
AT
211
212 - The common glink0 code then transfers control to the dynamic
845d4708
AM
213 linker's fixup code:
214
215 100006f0: 0000000000010440 .quad plt0 - (. + 16)
216 <__glink_PLTresolve>:
217 100006f8: 7d 88 02 a6 mflr r12
218 100006fc: 42 9f 00 05 bcl 20,4*cr7+so,10000700
219 10000700: 7d 68 02 a6 mflr r11
220 10000704: e8 4b ff f0 ld r2,-16(r11)
221 10000708: 7d 88 03 a6 mtlr r12
222 1000070c: 7d 82 5a 14 add r12,r2,r11
223 10000710: e9 6c 00 00 ld r11,0(r12)
224 10000714: e8 4c 00 08 ld r2,8(r12)
225 10000718: 7d 69 03 a6 mtctr r11
226 1000071c: e9 6c 00 10 ld r11,16(r12)
227 10000720: 4e 80 04 20 bctr
45fe57e7
AT
228
229 Eventually, this code will figure out how to skip all of this,
230 including the dynamic linker. At the moment, we just get through
231 the linkage function. */
232
233/* If the current thread is about to execute a series of instructions
234 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
235 from that pattern match, return the code address to which the
236 standard linkage function will send them. (This doesn't deal with
237 dynamic linker lazy symbol resolution stubs.) */
238
239static CORE_ADDR
240ppc64_standard_linkage1_target (struct frame_info *frame,
241 CORE_ADDR pc, unsigned int *insn)
242{
243 struct gdbarch *gdbarch = get_frame_arch (frame);
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245
246 /* The address of the function descriptor this linkage function
247 references. */
248 CORE_ADDR desc
249 = ((CORE_ADDR) get_frame_register_unsigned (frame,
250 tdep->ppc_gp0_regnum + 2)
251 + (ppc_insn_d_field (insn[0]) << 16)
252 + ppc_insn_ds_field (insn[2]));
253
254 /* The first word of the descriptor is the entry point. Return that. */
255 return ppc64_desc_entry_point (gdbarch, desc);
256}
257
258static CORE_ADDR
259ppc64_standard_linkage2_target (struct frame_info *frame,
260 CORE_ADDR pc, unsigned int *insn)
261{
262 struct gdbarch *gdbarch = get_frame_arch (frame);
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* The address of the function descriptor this linkage function
266 references. */
267 CORE_ADDR desc
268 = ((CORE_ADDR) get_frame_register_unsigned (frame,
269 tdep->ppc_gp0_regnum + 2)
845d4708
AM
270 + (ppc_insn_d_field (insn[1]) << 16)
271 + ppc_insn_ds_field (insn[3]));
45fe57e7
AT
272
273 /* The first word of the descriptor is the entry point. Return that. */
274 return ppc64_desc_entry_point (gdbarch, desc);
275}
276
277static CORE_ADDR
278ppc64_standard_linkage3_target (struct frame_info *frame,
279 CORE_ADDR pc, unsigned int *insn)
280{
281 struct gdbarch *gdbarch = get_frame_arch (frame);
282 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
283
284 /* The address of the function descriptor this linkage function
285 references. */
286 CORE_ADDR desc
287 = ((CORE_ADDR) get_frame_register_unsigned (frame,
288 tdep->ppc_gp0_regnum + 2)
289 + ppc_insn_ds_field (insn[1]));
290
291 /* The first word of the descriptor is the entry point. Return that. */
292 return ppc64_desc_entry_point (gdbarch, desc);
293}
294
295
296/* Given that we've begun executing a call trampoline at PC, return
297 the entry point of the function the trampoline will go to. */
298
299CORE_ADDR
300ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
301{
845d4708
AM
302#define MAX(a,b) ((a) > (b) ? (a) : (b))
303 unsigned int insns[MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
304 ARRAY_SIZE (ppc64_standard_linkage2)),
305 ARRAY_SIZE (ppc64_standard_linkage3)) - 1];
45fe57e7
AT
306 CORE_ADDR target;
307
845d4708
AM
308 if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3, insns)
309 && (insns[8] != 0 || insns[9] != 0))
310 pc = ppc64_standard_linkage3_target (frame, pc, insns);
311 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2, insns)
312 && (insns[10] != 0 || insns[11] != 0))
313 pc = ppc64_standard_linkage2_target (frame, pc, insns);
314 else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1, insns))
315 pc = ppc64_standard_linkage1_target (frame, pc, insns);
45fe57e7
AT
316 else
317 return 0;
318
319 /* The PLT descriptor will either point to the already resolved target
320 address, or else to a glink stub. As the latter carry synthetic @plt
321 symbols, find_solib_trampoline_target should be able to resolve them. */
322 target = find_solib_trampoline_target (frame, pc);
323 return target ? target : pc;
324}
325
326/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
327 GNU/Linux.
328
329 Usually a function pointer's representation is simply the address
330 of the function. On GNU/Linux on the PowerPC however, a function
331 pointer may be a pointer to a function descriptor.
332
333 For PPC64, a function descriptor is a TOC entry, in a data section,
334 which contains three words: the first word is the address of the
335 function, the second word is the TOC pointer (r2), and the third word
336 is the static chain value.
337
338 Throughout GDB it is currently assumed that a function pointer contains
339 the address of the function, which is not easy to fix. In addition, the
340 conversion of a function address to a function pointer would
341 require allocation of a TOC entry in the inferior's memory space,
342 with all its drawbacks. To be able to call C++ virtual methods in
343 the inferior (which are called via function pointers),
344 find_function_addr uses this function to get the function address
345 from a function pointer.
346
347 If ADDR points at what is clearly a function descriptor, transform
348 it into the address of the corresponding function, if needed. Be
349 conservative, otherwise GDB will do the transformation on any
350 random addresses such as occur when there is no symbol table. */
351
352CORE_ADDR
353ppc64_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
354 CORE_ADDR addr,
355 struct target_ops *targ)
356{
357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
358 struct target_section *s = target_section_by_addr (targ, addr);
359
360 /* Check if ADDR points to a function descriptor. */
361 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
362 {
363 /* There may be relocations that need to be applied to the .opd
364 section. Unfortunately, this function may be called at a time
365 where these relocations have not yet been performed -- this can
366 happen for example shortly after a library has been loaded with
367 dlopen, but ld.so has not yet applied the relocations.
368
369 To cope with both the case where the relocation has been applied,
370 and the case where it has not yet been applied, we do *not* read
371 the (maybe) relocated value from target memory, but we instead
372 read the non-relocated value from the BFD, and apply the relocation
373 offset manually.
374
375 This makes the assumption that all .opd entries are always relocated
376 by the same offset the section itself was relocated. This should
377 always be the case for GNU/Linux executables and shared libraries.
378 Note that other kind of object files (e.g. those added via
379 add-symbol-files) will currently never end up here anyway, as this
380 function accesses *target* sections only; only the main exec and
381 shared libraries are ever added to the target. */
382
383 gdb_byte buf[8];
384 int res;
385
57e6060e
DE
386 res = bfd_get_section_contents (s->the_bfd_section->owner,
387 s->the_bfd_section,
45fe57e7
AT
388 &buf, addr - s->addr, 8);
389 if (res != 0)
390 return extract_unsigned_integer (buf, 8, byte_order)
391 - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
392 }
393
394 return addr;
395}
24c274a1
AM
396
397/* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
398 back to the original ELF symbol it was derived from. Get the size
399 from that symbol. */
400
401void
402ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
403{
404 if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
405 {
406 elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
407 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
408 }
409}
This page took 0.116 seconds and 4 git commands to generate.