merge from gcc
[deliverable/binutils-gdb.git] / gdb / regcache.c
CommitLineData
32178cab 1/* Cache and manage the values of registers for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001
32178cab
MS
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
32178cab
MS
23#include "inferior.h"
24#include "target.h"
25#include "gdbarch.h"
705152c5 26#include "gdbcmd.h"
4e052eda 27#include "regcache.h"
61a0eb5b 28#include "gdb_assert.h"
32178cab
MS
29
30/*
31 * DATA STRUCTURE
32 *
33 * Here is the actual register cache.
34 */
35
5ebd2499 36/* NOTE: this is a write-through cache. There is no "dirty" bit for
32178cab
MS
37 recording if the register values have been changed (eg. by the
38 user). Therefore all registers must be written back to the
39 target when appropriate. */
40
41/* REGISTERS contains the cached register values (in target byte order). */
42
43char *registers;
44
45/* REGISTER_VALID is 0 if the register needs to be fetched,
46 1 if it has been fetched, and
47 -1 if the register value was not available.
48 "Not available" means don't try to fetch it again. */
49
50signed char *register_valid;
51
39f77062 52/* The thread/process associated with the current set of registers. */
32178cab 53
39f77062 54static ptid_t registers_ptid;
32178cab
MS
55
56/*
57 * FUNCTIONS:
58 */
59
60/* REGISTER_CACHED()
61
62 Returns 0 if the value is not in the cache (needs fetch).
63 >0 if the value is in the cache.
64 <0 if the value is permanently unavailable (don't ask again). */
65
66int
67register_cached (int regnum)
68{
69 return register_valid[regnum];
70}
71
7302a204
ND
72/* Record that REGNUM's value is cached if STATE is >0, uncached but
73 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
74
75void
76set_register_cached (int regnum, int state)
77{
78 register_valid[regnum] = state;
79}
80
2dc4e391
DT
81/* REGISTER_CHANGED
82
83 invalidate a single register REGNUM in the cache */
84void
85register_changed (int regnum)
86{
7302a204
ND
87 set_register_cached (regnum, 0);
88}
89
90/* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
91 else return a pointer to the start of the cache buffer. */
92
93char *
94register_buffer (int regnum)
95{
96 if (regnum < 0)
97 return registers;
98 else
99 return &registers[REGISTER_BYTE (regnum)];
100}
101
102/* Return whether register REGNUM is a real register. */
103
104static int
105real_register (int regnum)
106{
107 return regnum >= 0 && regnum < NUM_REGS;
108}
109
110/* Return whether register REGNUM is a pseudo register. */
111
112static int
113pseudo_register (int regnum)
114{
115 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
116}
117
118/* Fetch register REGNUM into the cache. */
119
120static void
121fetch_register (int regnum)
122{
123 if (real_register (regnum))
124 target_fetch_registers (regnum);
125 else if (pseudo_register (regnum))
126 FETCH_PSEUDO_REGISTER (regnum);
127}
128
129/* Write register REGNUM cached value to the target. */
130
131static void
132store_register (int regnum)
133{
134 if (real_register (regnum))
135 target_store_registers (regnum);
136 else if (pseudo_register (regnum))
137 STORE_PSEUDO_REGISTER (regnum);
2dc4e391
DT
138}
139
32178cab
MS
140/* Low level examining and depositing of registers.
141
142 The caller is responsible for making sure that the inferior is
143 stopped before calling the fetching routines, or it will get
144 garbage. (a change from GDB version 3, in which the caller got the
145 value from the last stop). */
146
147/* REGISTERS_CHANGED ()
148
149 Indicate that registers may have changed, so invalidate the cache. */
150
151void
152registers_changed (void)
153{
154 int i;
32178cab 155
39f77062 156 registers_ptid = pid_to_ptid (-1);
32178cab
MS
157
158 /* Force cleanup of any alloca areas if using C alloca instead of
159 a builtin alloca. This particular call is used to clean up
160 areas allocated by low level target code which may build up
161 during lengthy interactions between gdb and the target before
162 gdb gives control to the user (ie watchpoints). */
163 alloca (0);
164
a728f042 165 for (i = 0; i < NUM_REGS; i++)
7302a204 166 set_register_cached (i, 0);
fcdc5976
MS
167
168 /* Assume that if all the hardware regs have changed,
169 then so have the pseudo-registers. */
170 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
7302a204 171 set_register_cached (i, 0);
32178cab
MS
172
173 if (registers_changed_hook)
174 registers_changed_hook ();
175}
176
177/* REGISTERS_FETCHED ()
178
179 Indicate that all registers have been fetched, so mark them all valid. */
180
181
182void
183registers_fetched (void)
184{
185 int i;
32178cab 186
a728f042 187 for (i = 0; i < NUM_REGS; i++)
7302a204 188 set_register_cached (i, 1);
fcdc5976
MS
189 /* Do not assume that the pseudo-regs have also been fetched.
190 Fetching all real regs might not account for all pseudo-regs. */
32178cab
MS
191}
192
193/* read_register_bytes and write_register_bytes are generally a *BAD*
194 idea. They are inefficient because they need to check for partial
195 updates, which can only be done by scanning through all of the
196 registers and seeing if the bytes that are being read/written fall
197 inside of an invalid register. [The main reason this is necessary
198 is that register sizes can vary, so a simple index won't suffice.]
199 It is far better to call read_register_gen and write_register_gen
200 if you want to get at the raw register contents, as it only takes a
5ebd2499 201 regnum as an argument, and therefore can't do a partial register
32178cab
MS
202 update.
203
204 Prior to the recent fixes to check for partial updates, both read
205 and write_register_bytes always checked to see if any registers
206 were stale, and then called target_fetch_registers (-1) to update
207 the whole set. This caused really slowed things down for remote
208 targets. */
209
210/* Copy INLEN bytes of consecutive data from registers
211 starting with the INREGBYTE'th byte of register data
212 into memory at MYADDR. */
213
214void
61a0eb5b 215read_register_bytes (int in_start, char *in_buf, int in_len)
32178cab 216{
61a0eb5b 217 int in_end = in_start + in_len;
5ebd2499 218 int regnum;
61a0eb5b 219 char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
32178cab
MS
220
221 /* See if we are trying to read bytes from out-of-date registers. If so,
222 update just those registers. */
223
5ebd2499 224 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
32178cab 225 {
61a0eb5b
AC
226 int reg_start;
227 int reg_end;
228 int reg_len;
229 int start;
230 int end;
231 int byte;
32178cab 232
5ebd2499 233 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
32178cab
MS
234 continue;
235
61a0eb5b
AC
236 reg_start = REGISTER_BYTE (regnum);
237 reg_len = REGISTER_RAW_SIZE (regnum);
238 reg_end = reg_start + reg_len;
32178cab 239
61a0eb5b 240 if (reg_end <= in_start || in_end <= reg_start)
5ebd2499 241 /* The range the user wants to read doesn't overlap with regnum. */
32178cab
MS
242 continue;
243
61a0eb5b
AC
244 /* Force the cache to fetch the entire register. */
245 read_register_gen (regnum, reg_buf);
32178cab 246
61a0eb5b
AC
247 /* Legacy note: This function, for some reason, allows a NULL
248 input buffer. If the buffer is NULL, the registers are still
249 fetched, just the final transfer is skipped. */
250 if (in_buf == NULL)
251 continue;
252
253 /* start = max (reg_start, in_start) */
254 if (reg_start > in_start)
255 start = reg_start;
256 else
257 start = in_start;
258
259 /* end = min (reg_end, in_end) */
260 if (reg_end < in_end)
261 end = reg_end;
262 else
263 end = in_end;
264
265 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
266 for (byte = start; byte < end; byte++)
165cd47f 267 {
61a0eb5b 268 in_buf[byte - in_start] = reg_buf[byte - reg_start];
165cd47f 269 }
32178cab 270 }
32178cab
MS
271}
272
5ebd2499
ND
273/* Read register REGNUM into memory at MYADDR, which must be large
274 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
32178cab
MS
275 register is known to be the size of a CORE_ADDR or smaller,
276 read_register can be used instead. */
277
61a0eb5b
AC
278static void
279legacy_read_register_gen (int regnum, char *myaddr)
32178cab 280{
61a0eb5b 281 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
39f77062 282 if (! ptid_equal (registers_ptid, inferior_ptid))
32178cab
MS
283 {
284 registers_changed ();
39f77062 285 registers_ptid = inferior_ptid;
32178cab
MS
286 }
287
7302a204
ND
288 if (!register_cached (regnum))
289 fetch_register (regnum);
290
291 memcpy (myaddr, register_buffer (regnum),
5ebd2499 292 REGISTER_RAW_SIZE (regnum));
32178cab
MS
293}
294
61a0eb5b
AC
295void
296regcache_read (int rawnum, char *buf)
297{
298 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
299 /* For moment, just use underlying legacy code. Ulgh!!! */
300 legacy_read_register_gen (rawnum, buf);
301}
302
303void
304read_register_gen (int regnum, char *buf)
305{
306 if (! gdbarch_register_read_p (current_gdbarch))
307 {
308 legacy_read_register_gen (regnum, buf);
309 return;
310 }
311 gdbarch_register_read (current_gdbarch, regnum, buf);
312}
313
314
5ebd2499
ND
315/* Write register REGNUM at MYADDR to the target. MYADDR points at
316 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
32178cab 317
61a0eb5b
AC
318static void
319legacy_write_register_gen (int regnum, char *myaddr)
32178cab
MS
320{
321 int size;
61a0eb5b 322 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
32178cab
MS
323
324 /* On the sparc, writing %g0 is a no-op, so we don't even want to
325 change the registers array if something writes to this register. */
5ebd2499 326 if (CANNOT_STORE_REGISTER (regnum))
32178cab
MS
327 return;
328
39f77062 329 if (! ptid_equal (registers_ptid, inferior_ptid))
32178cab
MS
330 {
331 registers_changed ();
39f77062 332 registers_ptid = inferior_ptid;
32178cab
MS
333 }
334
5ebd2499 335 size = REGISTER_RAW_SIZE (regnum);
32178cab 336
7302a204 337 if (real_register (regnum))
1297a2f0
MS
338 {
339 /* If we have a valid copy of the register, and new value == old
340 value, then don't bother doing the actual store. */
341 if (register_cached (regnum)
342 && memcmp (register_buffer (regnum), myaddr, size) == 0)
343 return;
344 else
345 target_prepare_to_store ();
346 }
32178cab 347
7302a204 348 memcpy (register_buffer (regnum), myaddr, size);
32178cab 349
7302a204
ND
350 set_register_cached (regnum, 1);
351 store_register (regnum);
32178cab
MS
352}
353
61a0eb5b
AC
354void
355regcache_write (int rawnum, char *buf)
356{
357 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
358 /* For moment, just use underlying legacy code. Ulgh!!! */
359 legacy_write_register_gen (rawnum, buf);
360}
361
362void
363write_register_gen (int regnum, char *buf)
364{
365 if (! gdbarch_register_write_p (current_gdbarch))
366 {
367 legacy_write_register_gen (regnum, buf);
368 return;
369 }
370 gdbarch_register_write (current_gdbarch, regnum, buf);
371}
372
32178cab
MS
373/* Copy INLEN bytes of consecutive data from memory at MYADDR
374 into registers starting with the MYREGSTART'th byte of register data. */
375
376void
377write_register_bytes (int myregstart, char *myaddr, int inlen)
378{
379 int myregend = myregstart + inlen;
5ebd2499 380 int regnum;
32178cab
MS
381
382 target_prepare_to_store ();
383
384 /* Scan through the registers updating any that are covered by the
385 range myregstart<=>myregend using write_register_gen, which does
386 nice things like handling threads, and avoiding updates when the
387 new and old contents are the same. */
388
5ebd2499 389 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
32178cab
MS
390 {
391 int regstart, regend;
392
5ebd2499
ND
393 regstart = REGISTER_BYTE (regnum);
394 regend = regstart + REGISTER_RAW_SIZE (regnum);
32178cab
MS
395
396 /* Is this register completely outside the range the user is writing? */
397 if (myregend <= regstart || regend <= myregstart)
398 /* do nothing */ ;
399
400 /* Is this register completely within the range the user is writing? */
401 else if (myregstart <= regstart && regend <= myregend)
5ebd2499 402 write_register_gen (regnum, myaddr + (regstart - myregstart));
32178cab
MS
403
404 /* The register partially overlaps the range being written. */
405 else
406 {
e6cbd02a 407 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
32178cab
MS
408 /* What's the overlap between this register's bytes and
409 those the caller wants to write? */
410 int overlapstart = max (regstart, myregstart);
411 int overlapend = min (regend, myregend);
412
413 /* We may be doing a partial update of an invalid register.
414 Update it from the target before scribbling on it. */
5ebd2499 415 read_register_gen (regnum, regbuf);
32178cab
MS
416
417 memcpy (registers + overlapstart,
418 myaddr + (overlapstart - myregstart),
419 overlapend - overlapstart);
420
7302a204 421 store_register (regnum);
32178cab
MS
422 }
423 }
424}
425
426
5ebd2499 427/* Return the contents of register REGNUM as an unsigned integer. */
32178cab 428
173155e8 429ULONGEST
5ebd2499 430read_register (int regnum)
32178cab 431{
61a0eb5b
AC
432 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
433 read_register_gen (regnum, buf);
434 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
32178cab
MS
435}
436
173155e8 437ULONGEST
39f77062 438read_register_pid (int regnum, ptid_t ptid)
32178cab 439{
39f77062 440 ptid_t save_ptid;
32178cab
MS
441 int save_pid;
442 CORE_ADDR retval;
443
39f77062 444 if (ptid_equal (ptid, inferior_ptid))
5ebd2499 445 return read_register (regnum);
32178cab 446
39f77062 447 save_ptid = inferior_ptid;
32178cab 448
39f77062 449 inferior_ptid = ptid;
32178cab 450
5ebd2499 451 retval = read_register (regnum);
32178cab 452
39f77062 453 inferior_ptid = save_ptid;
32178cab
MS
454
455 return retval;
456}
457
5ebd2499 458/* Return the contents of register REGNUM as a signed integer. */
173155e8
AC
459
460LONGEST
5ebd2499 461read_signed_register (int regnum)
173155e8 462{
61a0eb5b
AC
463 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
464 read_register_gen (regnum, buf);
465 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
173155e8
AC
466}
467
468LONGEST
39f77062 469read_signed_register_pid (int regnum, ptid_t ptid)
173155e8 470{
39f77062 471 ptid_t save_ptid;
173155e8
AC
472 LONGEST retval;
473
39f77062 474 if (ptid_equal (ptid, inferior_ptid))
5ebd2499 475 return read_signed_register (regnum);
173155e8 476
39f77062 477 save_ptid = inferior_ptid;
173155e8 478
39f77062 479 inferior_ptid = ptid;
173155e8 480
5ebd2499 481 retval = read_signed_register (regnum);
173155e8 482
39f77062 483 inferior_ptid = save_ptid;
173155e8
AC
484
485 return retval;
486}
487
5ebd2499 488/* Store VALUE into the raw contents of register number REGNUM. */
32178cab
MS
489
490void
5ebd2499 491write_register (int regnum, LONGEST val)
32178cab 492{
61a0eb5b 493 void *buf;
32178cab 494 int size;
5ebd2499 495 size = REGISTER_RAW_SIZE (regnum);
32178cab
MS
496 buf = alloca (size);
497 store_signed_integer (buf, size, (LONGEST) val);
61a0eb5b 498 write_register_gen (regnum, buf);
32178cab
MS
499}
500
501void
39f77062 502write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
32178cab 503{
39f77062 504 ptid_t save_ptid;
32178cab 505
39f77062 506 if (ptid_equal (ptid, inferior_ptid))
32178cab 507 {
5ebd2499 508 write_register (regnum, val);
32178cab
MS
509 return;
510 }
511
39f77062 512 save_ptid = inferior_ptid;
32178cab 513
39f77062 514 inferior_ptid = ptid;
32178cab 515
5ebd2499 516 write_register (regnum, val);
32178cab 517
39f77062 518 inferior_ptid = save_ptid;
32178cab
MS
519}
520
521/* SUPPLY_REGISTER()
522
5ebd2499 523 Record that register REGNUM contains VAL. This is used when the
32178cab
MS
524 value is obtained from the inferior or core dump, so there is no
525 need to store the value there.
526
527 If VAL is a NULL pointer, then it's probably an unsupported register.
5ebd2499 528 We just set its value to all zeros. We might want to record this
32178cab
MS
529 fact, and report it to the users of read_register and friends. */
530
531void
5ebd2499 532supply_register (int regnum, char *val)
32178cab
MS
533{
534#if 1
39f77062 535 if (! ptid_equal (registers_ptid, inferior_ptid))
32178cab
MS
536 {
537 registers_changed ();
39f77062 538 registers_ptid = inferior_ptid;
32178cab
MS
539 }
540#endif
541
7302a204 542 set_register_cached (regnum, 1);
32178cab 543 if (val)
7302a204 544 memcpy (register_buffer (regnum), val,
5ebd2499 545 REGISTER_RAW_SIZE (regnum));
32178cab 546 else
7302a204 547 memset (register_buffer (regnum), '\000',
5ebd2499 548 REGISTER_RAW_SIZE (regnum));
32178cab
MS
549
550 /* On some architectures, e.g. HPPA, there are a few stray bits in
551 some registers, that the rest of the code would like to ignore. */
552
61a0eb5b
AC
553 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
554 going to be deprecated. Instead architectures will leave the raw
555 register value as is and instead clean things up as they pass
556 through the method gdbarch_register_read() clean up the
557 values. */
558
32178cab 559#ifdef CLEAN_UP_REGISTER_VALUE
7302a204 560 CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
32178cab
MS
561#endif
562}
563
564/* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
565 Special handling for registers PC, SP, and FP. */
566
4e052eda
AC
567/* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
568 read_pc_pid(), read_pc(), generic_target_write_pc(),
569 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
570 generic_target_write_sp(), write_sp(), generic_target_read_fp(),
571 read_fp(), generic_target_write_fp(), write_fp will eventually be
572 moved out of the reg-cache into either frame.[hc] or to the
573 multi-arch framework. The are not part of the raw register cache. */
574
32178cab
MS
575/* This routine is getting awfully cluttered with #if's. It's probably
576 time to turn this into READ_PC and define it in the tm.h file.
577 Ditto for write_pc.
578
579 1999-06-08: The following were re-written so that it assumes the
8e1a459b 580 existence of a TARGET_READ_PC et.al. macro. A default generic
32178cab
MS
581 version of that macro is made available where needed.
582
583 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
584 by the multi-arch framework, it will eventually be possible to
585 eliminate the intermediate read_pc_pid(). The client would call
586 TARGET_READ_PC directly. (cagney). */
587
32178cab 588CORE_ADDR
39f77062 589generic_target_read_pc (ptid_t ptid)
32178cab
MS
590{
591#ifdef PC_REGNUM
592 if (PC_REGNUM >= 0)
593 {
39f77062 594 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
32178cab
MS
595 return pc_val;
596 }
597#endif
8e65ff28
AC
598 internal_error (__FILE__, __LINE__,
599 "generic_target_read_pc");
32178cab
MS
600 return 0;
601}
602
603CORE_ADDR
39f77062 604read_pc_pid (ptid_t ptid)
32178cab 605{
39f77062 606 ptid_t saved_inferior_ptid;
32178cab
MS
607 CORE_ADDR pc_val;
608
39f77062
KB
609 /* In case ptid != inferior_ptid. */
610 saved_inferior_ptid = inferior_ptid;
611 inferior_ptid = ptid;
32178cab 612
39f77062 613 pc_val = TARGET_READ_PC (ptid);
32178cab 614
39f77062 615 inferior_ptid = saved_inferior_ptid;
32178cab
MS
616 return pc_val;
617}
618
619CORE_ADDR
620read_pc (void)
621{
39f77062 622 return read_pc_pid (inferior_ptid);
32178cab
MS
623}
624
32178cab 625void
39f77062 626generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
32178cab
MS
627{
628#ifdef PC_REGNUM
629 if (PC_REGNUM >= 0)
39f77062 630 write_register_pid (PC_REGNUM, pc, ptid);
32178cab 631 if (NPC_REGNUM >= 0)
39f77062 632 write_register_pid (NPC_REGNUM, pc + 4, ptid);
32178cab 633 if (NNPC_REGNUM >= 0)
39f77062 634 write_register_pid (NNPC_REGNUM, pc + 8, ptid);
32178cab 635#else
8e65ff28
AC
636 internal_error (__FILE__, __LINE__,
637 "generic_target_write_pc");
32178cab
MS
638#endif
639}
640
641void
39f77062 642write_pc_pid (CORE_ADDR pc, ptid_t ptid)
32178cab 643{
39f77062 644 ptid_t saved_inferior_ptid;
32178cab 645
39f77062
KB
646 /* In case ptid != inferior_ptid. */
647 saved_inferior_ptid = inferior_ptid;
648 inferior_ptid = ptid;
32178cab 649
39f77062 650 TARGET_WRITE_PC (pc, ptid);
32178cab 651
39f77062 652 inferior_ptid = saved_inferior_ptid;
32178cab
MS
653}
654
655void
656write_pc (CORE_ADDR pc)
657{
39f77062 658 write_pc_pid (pc, inferior_ptid);
32178cab
MS
659}
660
661/* Cope with strage ways of getting to the stack and frame pointers */
662
32178cab
MS
663CORE_ADDR
664generic_target_read_sp (void)
665{
666#ifdef SP_REGNUM
667 if (SP_REGNUM >= 0)
668 return read_register (SP_REGNUM);
669#endif
8e65ff28
AC
670 internal_error (__FILE__, __LINE__,
671 "generic_target_read_sp");
32178cab
MS
672}
673
674CORE_ADDR
675read_sp (void)
676{
677 return TARGET_READ_SP ();
678}
679
32178cab
MS
680void
681generic_target_write_sp (CORE_ADDR val)
682{
683#ifdef SP_REGNUM
684 if (SP_REGNUM >= 0)
685 {
686 write_register (SP_REGNUM, val);
687 return;
688 }
689#endif
8e65ff28
AC
690 internal_error (__FILE__, __LINE__,
691 "generic_target_write_sp");
32178cab
MS
692}
693
694void
695write_sp (CORE_ADDR val)
696{
697 TARGET_WRITE_SP (val);
698}
699
32178cab
MS
700CORE_ADDR
701generic_target_read_fp (void)
702{
703#ifdef FP_REGNUM
704 if (FP_REGNUM >= 0)
705 return read_register (FP_REGNUM);
706#endif
8e65ff28
AC
707 internal_error (__FILE__, __LINE__,
708 "generic_target_read_fp");
32178cab
MS
709}
710
711CORE_ADDR
712read_fp (void)
713{
714 return TARGET_READ_FP ();
715}
716
32178cab
MS
717void
718generic_target_write_fp (CORE_ADDR val)
719{
720#ifdef FP_REGNUM
721 if (FP_REGNUM >= 0)
722 {
723 write_register (FP_REGNUM, val);
724 return;
725 }
726#endif
8e65ff28
AC
727 internal_error (__FILE__, __LINE__,
728 "generic_target_write_fp");
32178cab
MS
729}
730
731void
732write_fp (CORE_ADDR val)
733{
734 TARGET_WRITE_FP (val);
735}
736
705152c5
MS
737/* ARGSUSED */
738static void
739reg_flush_command (char *command, int from_tty)
740{
741 /* Force-flush the register cache. */
742 registers_changed ();
743 if (from_tty)
744 printf_filtered ("Register cache flushed.\n");
745}
746
747
32178cab
MS
748static void
749build_regcache (void)
750{
751 /* We allocate some extra slop since we do a lot of memcpy's around
752 `registers', and failing-soft is better than failing hard. */
753 int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
fcdc5976
MS
754 int sizeof_register_valid =
755 (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid);
32178cab
MS
756 registers = xmalloc (sizeof_registers);
757 memset (registers, 0, sizeof_registers);
758 register_valid = xmalloc (sizeof_register_valid);
759 memset (register_valid, 0, sizeof_register_valid);
760}
761
762void
763_initialize_regcache (void)
764{
765 build_regcache ();
766
767 register_gdbarch_swap (&registers, sizeof (registers), NULL);
768 register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
769 register_gdbarch_swap (NULL, 0, build_regcache);
705152c5
MS
770
771 add_com ("flushregs", class_maintenance, reg_flush_command,
772 "Force gdb to flush its register cache (maintainer command)");
39f77062
KB
773
774 /* Initialize the thread/process associated with the current set of
775 registers. For now, -1 is special, and means `no current process'. */
776 registers_ptid = pid_to_ptid (-1);
32178cab 777}
This page took 0.122124 seconds and 4 git commands to generate.