Remove regcache_cooked_write
[deliverable/binutils-gdb.git] / gdb / regcache.c
CommitLineData
32178cab 1/* Cache and manage the values of registers for GDB, the GNU debugger.
3fadccb3 2
e2882c85 3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
32178cab
MS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
32178cab
MS
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
32178cab
MS
19
20#include "defs.h"
32178cab
MS
21#include "inferior.h"
22#include "target.h"
23#include "gdbarch.h"
705152c5 24#include "gdbcmd.h"
4e052eda 25#include "regcache.h"
b59ff9d5 26#include "reggroups.h"
76727919 27#include "observable.h"
0b309272 28#include "regset.h"
94bb8dfe 29#include <forward_list>
32178cab
MS
30
31/*
32 * DATA STRUCTURE
33 *
34 * Here is the actual register cache.
35 */
36
3fadccb3 37/* Per-architecture object describing the layout of a register cache.
0df8b418 38 Computed once when the architecture is created. */
3fadccb3
AC
39
40struct gdbarch_data *regcache_descr_handle;
41
42struct regcache_descr
43{
44 /* The architecture this descriptor belongs to. */
45 struct gdbarch *gdbarch;
46
bb1db049
AC
47 /* The raw register cache. Each raw (or hard) register is supplied
48 by the target interface. The raw cache should not contain
49 redundant information - if the PC is constructed from two
d2f0b918 50 registers then those registers and not the PC lives in the raw
bb1db049 51 cache. */
3fadccb3 52 long sizeof_raw_registers;
3fadccb3 53
d138e37a
AC
54 /* The cooked register space. Each cooked register in the range
55 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
56 register. The remaining [NR_RAW_REGISTERS
02f60eae 57 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
d138e37a 58 both raw registers and memory by the architecture methods
02f60eae 59 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
d138e37a 60 int nr_cooked_registers;
067df2e5 61 long sizeof_cooked_registers;
d138e37a 62
86d31898 63 /* Offset and size (in 8 bit bytes), of each register in the
d138e37a 64 register cache. All registers (including those in the range
99e42fd8
PA
65 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
66 offset. */
3fadccb3 67 long *register_offset;
3fadccb3 68 long *sizeof_register;
3fadccb3 69
bb425013
AC
70 /* Cached table containing the type of each register. */
71 struct type **register_type;
3fadccb3
AC
72};
73
3fadccb3
AC
74static void *
75init_regcache_descr (struct gdbarch *gdbarch)
76{
77 int i;
78 struct regcache_descr *descr;
79 gdb_assert (gdbarch != NULL);
80
bb425013 81 /* Create an initial, zero filled, table. */
116f06ea 82 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
3fadccb3 83 descr->gdbarch = gdbarch;
3fadccb3 84
d138e37a
AC
85 /* Total size of the register space. The raw registers are mapped
86 directly onto the raw register cache while the pseudo's are
3fadccb3 87 either mapped onto raw-registers or memory. */
214e098a
UW
88 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
89 + gdbarch_num_pseudo_regs (gdbarch);
3fadccb3 90
bb425013 91 /* Fill in a table of register types. */
116f06ea 92 descr->register_type
3e43a32a
MS
93 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
94 struct type *);
bb425013 95 for (i = 0; i < descr->nr_cooked_registers; i++)
336a3131 96 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
bb425013 97
bb1db049
AC
98 /* Construct a strictly RAW register cache. Don't allow pseudo's
99 into the register cache. */
bb1db049 100
067df2e5 101 /* Lay out the register cache.
3fadccb3 102
bb425013
AC
103 NOTE: cagney/2002-05-22: Only register_type() is used when
104 constructing the register cache. It is assumed that the
105 register's raw size, virtual size and type length are all the
106 same. */
3fadccb3
AC
107
108 {
109 long offset = 0;
123f5f96 110
116f06ea
AC
111 descr->sizeof_register
112 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
113 descr->register_offset
114 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
d999647b 115 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
99e42fd8
PA
116 {
117 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
118 descr->register_offset[i] = offset;
119 offset += descr->sizeof_register[i];
99e42fd8
PA
120 }
121 /* Set the real size of the raw register cache buffer. */
122 descr->sizeof_raw_registers = offset;
123
124 for (; i < descr->nr_cooked_registers; i++)
3fadccb3 125 {
bb425013 126 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
3fadccb3
AC
127 descr->register_offset[i] = offset;
128 offset += descr->sizeof_register[i];
3fadccb3 129 }
99e42fd8 130 /* Set the real size of the readonly register cache buffer. */
067df2e5 131 descr->sizeof_cooked_registers = offset;
3fadccb3
AC
132 }
133
3fadccb3
AC
134 return descr;
135}
136
137static struct regcache_descr *
138regcache_descr (struct gdbarch *gdbarch)
139{
19ba03f4
SM
140 return (struct regcache_descr *) gdbarch_data (gdbarch,
141 regcache_descr_handle);
3fadccb3
AC
142}
143
bb425013
AC
144/* Utility functions returning useful register attributes stored in
145 the regcache descr. */
146
147struct type *
148register_type (struct gdbarch *gdbarch, int regnum)
149{
150 struct regcache_descr *descr = regcache_descr (gdbarch);
123f5f96 151
bb425013
AC
152 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
153 return descr->register_type[regnum];
154}
155
0ed04cce
AC
156/* Utility functions returning useful register attributes stored in
157 the regcache descr. */
158
08a617da
AC
159int
160register_size (struct gdbarch *gdbarch, int regnum)
161{
162 struct regcache_descr *descr = regcache_descr (gdbarch);
163 int size;
123f5f96 164
f57d151a 165 gdb_assert (regnum >= 0
214e098a
UW
166 && regnum < (gdbarch_num_regs (gdbarch)
167 + gdbarch_num_pseudo_regs (gdbarch)));
08a617da 168 size = descr->sizeof_register[regnum];
08a617da
AC
169 return size;
170}
171
8d689ee5
YQ
172/* See common/common-regcache.h. */
173
174int
175regcache_register_size (const struct regcache *regcache, int n)
176{
ac7936df 177 return register_size (regcache->arch (), n);
8d689ee5
YQ
178}
179
31716595
YQ
180reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
181 : m_has_pseudo (has_pseudo)
3fadccb3 182{
ef79d9a3
YQ
183 gdb_assert (gdbarch != NULL);
184 m_descr = regcache_descr (gdbarch);
4621115f 185
31716595 186 if (has_pseudo)
4621115f 187 {
ef79d9a3
YQ
188 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
189 m_register_status = XCNEWVEC (signed char,
6c5218df 190 m_descr->nr_cooked_registers);
4621115f
YQ
191 }
192 else
193 {
ef79d9a3 194 m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
d999647b 195 m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
4621115f 196 }
31716595
YQ
197}
198
796bb026
YQ
199regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
200/* The register buffers. A read/write register cache can only hold
201 [0 .. gdbarch_num_regs). */
202 : detached_regcache (gdbarch, false), m_aspace (aspace_)
31716595 203{
ef79d9a3
YQ
204 m_ptid = minus_one_ptid;
205}
4621115f 206
deb1fa3e
YQ
207static enum register_status
208do_cooked_read (void *src, int regnum, gdb_byte *buf)
209{
210 struct regcache *regcache = (struct regcache *) src;
211
dca08e1f 212 return regcache->cooked_read (regnum, buf);
deb1fa3e
YQ
213}
214
daf6667d
YQ
215readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
216 : readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
217{
218}
219
ef79d9a3 220gdbarch *
31716595 221reg_buffer::arch () const
ef79d9a3
YQ
222{
223 return m_descr->gdbarch;
224}
3fadccb3 225
b292235f 226/* Cleanup class for invalidating a register. */
b94ade42 227
b292235f 228class regcache_invalidator
b94ade42 229{
b292235f 230public:
b94ade42 231
b292235f
TT
232 regcache_invalidator (struct regcache *regcache, int regnum)
233 : m_regcache (regcache),
234 m_regnum (regnum)
235 {
236 }
b94ade42 237
b292235f
TT
238 ~regcache_invalidator ()
239 {
240 if (m_regcache != nullptr)
6aa7d724 241 m_regcache->invalidate (m_regnum);
b292235f 242 }
b94ade42 243
b292235f 244 DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
b94ade42 245
b292235f
TT
246 void release ()
247 {
248 m_regcache = nullptr;
249 }
250
251private:
252
253 struct regcache *m_regcache;
254 int m_regnum;
255};
b94ade42 256
51b1fe4e
AC
257/* Return a pointer to register REGNUM's buffer cache. */
258
ef79d9a3 259gdb_byte *
31716595 260reg_buffer::register_buffer (int regnum) const
51b1fe4e 261{
ef79d9a3 262 return m_registers + m_descr->register_offset[regnum];
51b1fe4e
AC
263}
264
ef79d9a3 265void
daf6667d
YQ
266reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
267 void *src)
ef79d9a3
YQ
268{
269 struct gdbarch *gdbarch = m_descr->gdbarch;
2d28509a 270 int regnum;
123f5f96 271
daf6667d
YQ
272 /* It should have pseudo registers. */
273 gdb_assert (m_has_pseudo);
2d28509a 274 /* Clear the dest. */
ef79d9a3 275 memset (m_registers, 0, m_descr->sizeof_cooked_registers);
6c5218df 276 memset (m_register_status, 0, m_descr->nr_cooked_registers);
2d28509a 277 /* Copy over any registers (identified by their membership in the
f57d151a
UW
278 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
279 gdbarch_num_pseudo_regs) range is checked since some architectures need
5602984a 280 to save/restore `cooked' registers that live in memory. */
ef79d9a3 281 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
2d28509a
AC
282 {
283 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
284 {
50d6adef
AH
285 gdb_byte *dst_buf = register_buffer (regnum);
286 enum register_status status = cooked_read (src, regnum, dst_buf);
123f5f96 287
50d6adef
AH
288 gdb_assert (status != REG_UNKNOWN);
289
290 if (status != REG_VALID)
291 memset (dst_buf, 0, register_size (gdbarch, regnum));
05d1431c 292
ef79d9a3 293 m_register_status[regnum] = status;
2d28509a
AC
294 }
295 }
296}
297
ef79d9a3 298void
daf6667d 299regcache::restore (readonly_detached_regcache *src)
2d28509a 300{
ef79d9a3 301 struct gdbarch *gdbarch = m_descr->gdbarch;
2d28509a 302 int regnum;
123f5f96 303
fc5b8736 304 gdb_assert (src != NULL);
daf6667d 305 gdb_assert (src->m_has_pseudo);
fc5b8736
YQ
306
307 gdb_assert (gdbarch == src->arch ());
308
2d28509a 309 /* Copy over any registers, being careful to only restore those that
f57d151a
UW
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
5602984a 312 to save/restore `cooked' registers that live in memory. */
ef79d9a3 313 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
2d28509a 314 {
5602984a 315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
2d28509a 316 {
ef79d9a3
YQ
317 if (src->m_register_status[regnum] == REG_VALID)
318 cooked_write (regnum, src->register_buffer (regnum));
2d28509a
AC
319 }
320 }
321}
322
ef79d9a3 323enum register_status
c8ec2f33 324reg_buffer::get_register_status (int regnum) const
ef79d9a3 325{
c8ec2f33 326 assert_regnum (regnum);
6ed7ea50 327
ef79d9a3 328 return (enum register_status) m_register_status[regnum];
3fadccb3
AC
329}
330
ef79d9a3 331void
796bb026 332detached_regcache::invalidate (int regnum)
ef79d9a3 333{
4e888c28 334 assert_regnum (regnum);
ef79d9a3
YQ
335 m_register_status[regnum] = REG_UNKNOWN;
336}
9c5ea4d9 337
4e888c28 338void
31716595 339reg_buffer::assert_regnum (int regnum) const
4e888c28 340{
31716595
YQ
341 gdb_assert (regnum >= 0);
342 if (m_has_pseudo)
343 gdb_assert (regnum < m_descr->nr_cooked_registers);
344 else
345 gdb_assert (regnum < gdbarch_num_regs (arch ()));
4e888c28
YQ
346}
347
3fadccb3 348/* Global structure containing the current regcache. */
3fadccb3 349
5ebd2499 350/* NOTE: this is a write-through cache. There is no "dirty" bit for
32178cab
MS
351 recording if the register values have been changed (eg. by the
352 user). Therefore all registers must be written back to the
353 target when appropriate. */
e521e87e 354std::forward_list<regcache *> regcache::current_regcache;
c2250ad1
UW
355
356struct regcache *
e2d96639
YQ
357get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
358 struct address_space *aspace)
c2250ad1 359{
e521e87e 360 for (const auto &regcache : regcache::current_regcache)
94bb8dfe
YQ
361 if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
362 return regcache;
594f7785 363
796bb026 364 regcache *new_regcache = new regcache (gdbarch, aspace);
594f7785 365
e521e87e 366 regcache::current_regcache.push_front (new_regcache);
ef79d9a3 367 new_regcache->set_ptid (ptid);
e2d96639 368
e2d96639
YQ
369 return new_regcache;
370}
371
372struct regcache *
373get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
374{
ed4227b7 375 address_space *aspace = target_thread_address_space (ptid);
b78974c3 376
e2d96639 377 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
594f7785
UW
378}
379
c2250ad1
UW
380static ptid_t current_thread_ptid;
381static struct gdbarch *current_thread_arch;
382
383struct regcache *
384get_thread_regcache (ptid_t ptid)
385{
386 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
387 {
388 current_thread_ptid = ptid;
389 current_thread_arch = target_thread_architecture (ptid);
390 }
391
392 return get_thread_arch_regcache (ptid, current_thread_arch);
393}
394
395struct regcache *
396get_current_regcache (void)
594f7785
UW
397{
398 return get_thread_regcache (inferior_ptid);
399}
32178cab 400
361c8ade
GB
401/* See common/common-regcache.h. */
402
403struct regcache *
404get_thread_regcache_for_ptid (ptid_t ptid)
405{
406 return get_thread_regcache (ptid);
407}
32178cab 408
f4c5303c
OF
409/* Observer for the target_changed event. */
410
2c0b251b 411static void
f4c5303c
OF
412regcache_observer_target_changed (struct target_ops *target)
413{
414 registers_changed ();
415}
416
5231c1fd
PA
417/* Update global variables old ptids to hold NEW_PTID if they were
418 holding OLD_PTID. */
e521e87e
YQ
419void
420regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 421{
e521e87e 422 for (auto &regcache : regcache::current_regcache)
94bb8dfe
YQ
423 {
424 if (ptid_equal (regcache->ptid (), old_ptid))
425 regcache->set_ptid (new_ptid);
426 }
5231c1fd
PA
427}
428
32178cab
MS
429/* Low level examining and depositing of registers.
430
431 The caller is responsible for making sure that the inferior is
432 stopped before calling the fetching routines, or it will get
433 garbage. (a change from GDB version 3, in which the caller got the
434 value from the last stop). */
435
436/* REGISTERS_CHANGED ()
437
438 Indicate that registers may have changed, so invalidate the cache. */
439
440void
e66408ed 441registers_changed_ptid (ptid_t ptid)
32178cab 442{
e521e87e 443 for (auto oit = regcache::current_regcache.before_begin (),
94bb8dfe 444 it = std::next (oit);
e521e87e 445 it != regcache::current_regcache.end ();
94bb8dfe 446 )
c2250ad1 447 {
94bb8dfe 448 if (ptid_match ((*it)->ptid (), ptid))
e66408ed 449 {
94bb8dfe 450 delete *it;
e521e87e 451 it = regcache::current_regcache.erase_after (oit);
e66408ed 452 }
94bb8dfe
YQ
453 else
454 oit = it++;
c2250ad1 455 }
32178cab 456
c34fd852 457 if (ptid_match (current_thread_ptid, ptid))
041274d8
PA
458 {
459 current_thread_ptid = null_ptid;
460 current_thread_arch = NULL;
461 }
32178cab 462
c34fd852 463 if (ptid_match (inferior_ptid, ptid))
041274d8
PA
464 {
465 /* We just deleted the regcache of the current thread. Need to
466 forget about any frames we have cached, too. */
467 reinit_frame_cache ();
468 }
469}
c2250ad1 470
041274d8
PA
471void
472registers_changed (void)
473{
474 registers_changed_ptid (minus_one_ptid);
a5d9d57d 475
32178cab
MS
476 /* Force cleanup of any alloca areas if using C alloca instead of
477 a builtin alloca. This particular call is used to clean up
478 areas allocated by low level target code which may build up
479 during lengthy interactions between gdb and the target before
480 gdb gives control to the user (ie watchpoints). */
481 alloca (0);
32178cab
MS
482}
483
ef79d9a3
YQ
484void
485regcache::raw_update (int regnum)
486{
4e888c28 487 assert_regnum (regnum);
8e368124 488
3fadccb3
AC
489 /* Make certain that the register cache is up-to-date with respect
490 to the current thread. This switching shouldn't be necessary
491 only there is still only one target side register cache. Sigh!
492 On the bright side, at least there is a regcache object. */
8e368124 493
796bb026 494 if (get_register_status (regnum) == REG_UNKNOWN)
3fadccb3 495 {
ef79d9a3 496 target_fetch_registers (this, regnum);
788c8b10
PA
497
498 /* A number of targets can't access the whole set of raw
499 registers (because the debug API provides no means to get at
500 them). */
ef79d9a3
YQ
501 if (m_register_status[regnum] == REG_UNKNOWN)
502 m_register_status[regnum] = REG_UNAVAILABLE;
3fadccb3 503 }
8e368124
AH
504}
505
ef79d9a3 506enum register_status
849d0ba8 507readable_regcache::raw_read (int regnum, gdb_byte *buf)
8e368124
AH
508{
509 gdb_assert (buf != NULL);
ef79d9a3 510 raw_update (regnum);
05d1431c 511
ef79d9a3
YQ
512 if (m_register_status[regnum] != REG_VALID)
513 memset (buf, 0, m_descr->sizeof_register[regnum]);
05d1431c 514 else
ef79d9a3
YQ
515 memcpy (buf, register_buffer (regnum),
516 m_descr->sizeof_register[regnum]);
05d1431c 517
ef79d9a3 518 return (enum register_status) m_register_status[regnum];
61a0eb5b
AC
519}
520
05d1431c 521enum register_status
28fc6740 522regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
ef79d9a3
YQ
523{
524 gdb_assert (regcache != NULL);
6f98355c 525 return regcache->raw_read (regnum, val);
ef79d9a3
YQ
526}
527
6f98355c 528template<typename T, typename>
ef79d9a3 529enum register_status
849d0ba8 530readable_regcache::raw_read (int regnum, T *val)
28fc6740 531{
2d522557 532 gdb_byte *buf;
05d1431c 533 enum register_status status;
123f5f96 534
4e888c28 535 assert_regnum (regnum);
ef79d9a3
YQ
536 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
537 status = raw_read (regnum, buf);
05d1431c 538 if (status == REG_VALID)
6f98355c
YQ
539 *val = extract_integer<T> (buf,
540 m_descr->sizeof_register[regnum],
541 gdbarch_byte_order (m_descr->gdbarch));
05d1431c
PA
542 else
543 *val = 0;
544 return status;
28fc6740
AC
545}
546
05d1431c 547enum register_status
28fc6740
AC
548regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
549 ULONGEST *val)
ef79d9a3
YQ
550{
551 gdb_assert (regcache != NULL);
6f98355c 552 return regcache->raw_read (regnum, val);
28fc6740
AC
553}
554
c00dcbe9
MK
555void
556regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
ef79d9a3
YQ
557{
558 gdb_assert (regcache != NULL);
6f98355c 559 regcache->raw_write (regnum, val);
ef79d9a3
YQ
560}
561
6f98355c 562template<typename T, typename>
ef79d9a3 563void
6f98355c 564regcache::raw_write (int regnum, T val)
c00dcbe9 565{
7c543f7b 566 gdb_byte *buf;
123f5f96 567
4e888c28 568 assert_regnum (regnum);
ef79d9a3 569 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
6f98355c
YQ
570 store_integer (buf, m_descr->sizeof_register[regnum],
571 gdbarch_byte_order (m_descr->gdbarch), val);
ef79d9a3 572 raw_write (regnum, buf);
c00dcbe9
MK
573}
574
575void
576regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
577 ULONGEST val)
ef79d9a3
YQ
578{
579 gdb_assert (regcache != NULL);
6f98355c 580 regcache->raw_write (regnum, val);
c00dcbe9
MK
581}
582
9fd15b2e
YQ
583LONGEST
584regcache_raw_get_signed (struct regcache *regcache, int regnum)
585{
586 LONGEST value;
587 enum register_status status;
588
589 status = regcache_raw_read_signed (regcache, regnum, &value);
590 if (status == REG_UNAVAILABLE)
591 throw_error (NOT_AVAILABLE_ERROR,
592 _("Register %d is not available"), regnum);
593 return value;
594}
595
ef79d9a3 596enum register_status
849d0ba8 597readable_regcache::cooked_read (int regnum, gdb_byte *buf)
68365089 598{
d138e37a 599 gdb_assert (regnum >= 0);
ef79d9a3 600 gdb_assert (regnum < m_descr->nr_cooked_registers);
d999647b 601 if (regnum < num_raw_registers ())
ef79d9a3 602 return raw_read (regnum, buf);
849d0ba8 603 else if (m_has_pseudo
ef79d9a3 604 && m_register_status[regnum] != REG_UNKNOWN)
05d1431c 605 {
ef79d9a3
YQ
606 if (m_register_status[regnum] == REG_VALID)
607 memcpy (buf, register_buffer (regnum),
608 m_descr->sizeof_register[regnum]);
05d1431c 609 else
ef79d9a3 610 memset (buf, 0, m_descr->sizeof_register[regnum]);
05d1431c 611
ef79d9a3 612 return (enum register_status) m_register_status[regnum];
05d1431c 613 }
ef79d9a3 614 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
3543a589
TT
615 {
616 struct value *mark, *computed;
617 enum register_status result = REG_VALID;
618
619 mark = value_mark ();
620
ef79d9a3
YQ
621 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
622 this, regnum);
3543a589
TT
623 if (value_entirely_available (computed))
624 memcpy (buf, value_contents_raw (computed),
ef79d9a3 625 m_descr->sizeof_register[regnum]);
3543a589
TT
626 else
627 {
ef79d9a3 628 memset (buf, 0, m_descr->sizeof_register[regnum]);
3543a589
TT
629 result = REG_UNAVAILABLE;
630 }
631
632 value_free_to_mark (mark);
633
634 return result;
635 }
d138e37a 636 else
ef79d9a3 637 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
05d1431c 638 regnum, buf);
61a0eb5b
AC
639}
640
3543a589
TT
641struct value *
642regcache_cooked_read_value (struct regcache *regcache, int regnum)
ef79d9a3
YQ
643{
644 return regcache->cooked_read_value (regnum);
645}
646
647struct value *
849d0ba8 648readable_regcache::cooked_read_value (int regnum)
3543a589
TT
649{
650 gdb_assert (regnum >= 0);
ef79d9a3 651 gdb_assert (regnum < m_descr->nr_cooked_registers);
3543a589 652
d999647b 653 if (regnum < num_raw_registers ()
849d0ba8 654 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
ef79d9a3 655 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
3543a589
TT
656 {
657 struct value *result;
658
ef79d9a3 659 result = allocate_value (register_type (m_descr->gdbarch, regnum));
3543a589
TT
660 VALUE_LVAL (result) = lval_register;
661 VALUE_REGNUM (result) = regnum;
662
663 /* It is more efficient in general to do this delegation in this
664 direction than in the other one, even though the value-based
665 API is preferred. */
ef79d9a3
YQ
666 if (cooked_read (regnum,
667 value_contents_raw (result)) == REG_UNAVAILABLE)
3543a589
TT
668 mark_value_bytes_unavailable (result, 0,
669 TYPE_LENGTH (value_type (result)));
670
671 return result;
672 }
673 else
ef79d9a3
YQ
674 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
675 this, regnum);
3543a589
TT
676}
677
05d1431c 678enum register_status
a378f419
AC
679regcache_cooked_read_signed (struct regcache *regcache, int regnum,
680 LONGEST *val)
ef79d9a3
YQ
681{
682 gdb_assert (regcache != NULL);
6f98355c 683 return regcache->cooked_read (regnum, val);
ef79d9a3
YQ
684}
685
6f98355c 686template<typename T, typename>
ef79d9a3 687enum register_status
849d0ba8 688readable_regcache::cooked_read (int regnum, T *val)
a378f419 689{
05d1431c 690 enum register_status status;
2d522557 691 gdb_byte *buf;
123f5f96 692
ef79d9a3
YQ
693 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
694 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
695 status = cooked_read (regnum, buf);
05d1431c 696 if (status == REG_VALID)
6f98355c
YQ
697 *val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
698 gdbarch_byte_order (m_descr->gdbarch));
05d1431c
PA
699 else
700 *val = 0;
701 return status;
a378f419
AC
702}
703
05d1431c 704enum register_status
a378f419
AC
705regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
706 ULONGEST *val)
ef79d9a3
YQ
707{
708 gdb_assert (regcache != NULL);
6f98355c 709 return regcache->cooked_read (regnum, val);
a378f419
AC
710}
711
a66a9c23
AC
712void
713regcache_cooked_write_signed (struct regcache *regcache, int regnum,
714 LONGEST val)
ef79d9a3
YQ
715{
716 gdb_assert (regcache != NULL);
6f98355c 717 regcache->cooked_write (regnum, val);
ef79d9a3
YQ
718}
719
6f98355c 720template<typename T, typename>
ef79d9a3 721void
6f98355c 722regcache::cooked_write (int regnum, T val)
a66a9c23 723{
7c543f7b 724 gdb_byte *buf;
123f5f96 725
ef79d9a3
YQ
726 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
727 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
6f98355c
YQ
728 store_integer (buf, m_descr->sizeof_register[regnum],
729 gdbarch_byte_order (m_descr->gdbarch), val);
ef79d9a3 730 cooked_write (regnum, buf);
a66a9c23
AC
731}
732
733void
734regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
735 ULONGEST val)
ef79d9a3
YQ
736{
737 gdb_assert (regcache != NULL);
6f98355c 738 regcache->cooked_write (regnum, val);
a66a9c23
AC
739}
740
ef79d9a3
YQ
741void
742regcache::raw_write (int regnum, const gdb_byte *buf)
61a0eb5b 743{
594f7785 744
ef79d9a3 745 gdb_assert (buf != NULL);
4e888c28 746 assert_regnum (regnum);
3fadccb3 747
3fadccb3
AC
748 /* On the sparc, writing %g0 is a no-op, so we don't even want to
749 change the registers array if something writes to this register. */
ef79d9a3 750 if (gdbarch_cannot_store_register (arch (), regnum))
3fadccb3
AC
751 return;
752
3fadccb3 753 /* If we have a valid copy of the register, and new value == old
0df8b418 754 value, then don't bother doing the actual store. */
ef79d9a3
YQ
755 if (get_register_status (regnum) == REG_VALID
756 && (memcmp (register_buffer (regnum), buf,
757 m_descr->sizeof_register[regnum]) == 0))
3fadccb3
AC
758 return;
759
ef79d9a3 760 target_prepare_to_store (this);
c8ec2f33 761 raw_supply (regnum, buf);
b94ade42 762
b292235f
TT
763 /* Invalidate the register after it is written, in case of a
764 failure. */
765 regcache_invalidator invalidator (this, regnum);
b94ade42 766
ef79d9a3 767 target_store_registers (this, regnum);
594f7785 768
b292235f
TT
769 /* The target did not throw an error so we can discard invalidating
770 the register. */
771 invalidator.release ();
61a0eb5b
AC
772}
773
ef79d9a3
YQ
774void
775regcache::cooked_write (int regnum, const gdb_byte *buf)
68365089 776{
d138e37a 777 gdb_assert (regnum >= 0);
ef79d9a3 778 gdb_assert (regnum < m_descr->nr_cooked_registers);
d999647b 779 if (regnum < num_raw_registers ())
ef79d9a3 780 raw_write (regnum, buf);
d138e37a 781 else
ef79d9a3 782 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
d8124050 783 regnum, buf);
61a0eb5b
AC
784}
785
06c0b04e
AC
786/* Perform a partial register transfer using a read, modify, write
787 operation. */
788
ef79d9a3 789enum register_status
849d0ba8
YQ
790readable_regcache::read_part (int regnum, int offset, int len, void *in,
791 bool is_raw)
792{
793 struct gdbarch *gdbarch = arch ();
794 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
795
796 gdb_assert (in != NULL);
797 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
798 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
799 /* Something to do? */
800 if (offset + len == 0)
801 return REG_VALID;
802 /* Read (when needed) ... */
803 enum register_status status;
804
805 if (is_raw)
806 status = raw_read (regnum, reg);
807 else
808 status = cooked_read (regnum, reg);
809 if (status != REG_VALID)
810 return status;
811
812 /* ... modify ... */
813 memcpy (in, reg + offset, len);
814
815 return REG_VALID;
816}
817
818enum register_status
819regcache::write_part (int regnum, int offset, int len,
d3037ba6 820 const void *out, bool is_raw)
ef79d9a3
YQ
821{
822 struct gdbarch *gdbarch = arch ();
9890e433 823 gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
123f5f96 824
849d0ba8 825 gdb_assert (out != NULL);
ef79d9a3
YQ
826 gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
827 gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
06c0b04e
AC
828 /* Something to do? */
829 if (offset + len == 0)
05d1431c 830 return REG_VALID;
0df8b418 831 /* Read (when needed) ... */
849d0ba8 832 if (offset > 0
ef79d9a3 833 || offset + len < m_descr->sizeof_register[regnum])
06c0b04e 834 {
05d1431c
PA
835 enum register_status status;
836
d3037ba6
YQ
837 if (is_raw)
838 status = raw_read (regnum, reg);
839 else
840 status = cooked_read (regnum, reg);
05d1431c
PA
841 if (status != REG_VALID)
842 return status;
06c0b04e 843 }
849d0ba8
YQ
844
845 memcpy (reg + offset, out, len);
06c0b04e 846 /* ... write (when needed). */
849d0ba8
YQ
847 if (is_raw)
848 raw_write (regnum, reg);
849 else
850 cooked_write (regnum, reg);
05d1431c
PA
851
852 return REG_VALID;
06c0b04e
AC
853}
854
ef79d9a3 855enum register_status
849d0ba8 856readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
ef79d9a3 857{
4e888c28 858 assert_regnum (regnum);
849d0ba8 859 return read_part (regnum, offset, len, buf, true);
06c0b04e
AC
860}
861
4f0420fd 862/* See regcache.h. */
123f5f96 863
ef79d9a3
YQ
864void
865regcache::raw_write_part (int regnum, int offset, int len,
866 const gdb_byte *buf)
867{
4e888c28 868 assert_regnum (regnum);
849d0ba8 869 write_part (regnum, offset, len, buf, true);
06c0b04e
AC
870}
871
05d1431c 872enum register_status
06c0b04e 873regcache_cooked_read_part (struct regcache *regcache, int regnum,
2d522557 874 int offset, int len, gdb_byte *buf)
06c0b04e 875{
ef79d9a3
YQ
876 return regcache->cooked_read_part (regnum, offset, len, buf);
877}
123f5f96 878
ef79d9a3
YQ
879
880enum register_status
849d0ba8
YQ
881readable_regcache::cooked_read_part (int regnum, int offset, int len,
882 gdb_byte *buf)
ef79d9a3
YQ
883{
884 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
849d0ba8 885 return read_part (regnum, offset, len, buf, false);
06c0b04e
AC
886}
887
888void
889regcache_cooked_write_part (struct regcache *regcache, int regnum,
2d522557 890 int offset, int len, const gdb_byte *buf)
06c0b04e 891{
ef79d9a3
YQ
892 regcache->cooked_write_part (regnum, offset, len, buf);
893}
123f5f96 894
ef79d9a3
YQ
895void
896regcache::cooked_write_part (int regnum, int offset, int len,
897 const gdb_byte *buf)
898{
899 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
849d0ba8 900 write_part (regnum, offset, len, buf, false);
06c0b04e 901}
32178cab 902
a16d75cc 903/* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
9a661b68
MK
904
905void
6618125d 906regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
ef79d9a3
YQ
907{
908 gdb_assert (regcache != NULL);
909 regcache->raw_supply (regnum, buf);
910}
911
912void
c8ec2f33 913detached_regcache::raw_supply (int regnum, const void *buf)
9a661b68
MK
914{
915 void *regbuf;
916 size_t size;
917
4e888c28 918 assert_regnum (regnum);
9a661b68 919
ef79d9a3
YQ
920 regbuf = register_buffer (regnum);
921 size = m_descr->sizeof_register[regnum];
9a661b68
MK
922
923 if (buf)
ee99023e
PA
924 {
925 memcpy (regbuf, buf, size);
ef79d9a3 926 m_register_status[regnum] = REG_VALID;
ee99023e 927 }
9a661b68 928 else
ee99023e
PA
929 {
930 /* This memset not strictly necessary, but better than garbage
931 in case the register value manages to escape somewhere (due
932 to a bug, no less). */
933 memset (regbuf, 0, size);
ef79d9a3 934 m_register_status[regnum] = REG_UNAVAILABLE;
ee99023e 935 }
9a661b68
MK
936}
937
b057297a
AH
938/* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
939 address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
940 the register size is greater than ADDR_LEN, then the integer will be sign or
941 zero extended. If the register size is smaller than the integer, then the
942 most significant bytes of the integer will be truncated. */
943
944void
796bb026
YQ
945detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
946 int addr_len, bool is_signed)
b057297a
AH
947{
948 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
949 gdb_byte *regbuf;
950 size_t regsize;
951
4e888c28 952 assert_regnum (regnum);
b057297a
AH
953
954 regbuf = register_buffer (regnum);
955 regsize = m_descr->sizeof_register[regnum];
956
957 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
958 byte_order);
959 m_register_status[regnum] = REG_VALID;
960}
961
f81fdd35
AH
962/* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
963 as calling raw_supply with NULL (which will set the state to
964 unavailable). */
965
966void
796bb026 967detached_regcache::raw_supply_zeroed (int regnum)
f81fdd35
AH
968{
969 void *regbuf;
970 size_t size;
971
4e888c28 972 assert_regnum (regnum);
f81fdd35
AH
973
974 regbuf = register_buffer (regnum);
975 size = m_descr->sizeof_register[regnum];
976
977 memset (regbuf, 0, size);
978 m_register_status[regnum] = REG_VALID;
979}
980
9a661b68
MK
981/* Collect register REGNUM from REGCACHE and store its contents in BUF. */
982
983void
6618125d 984regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
ef79d9a3
YQ
985{
986 gdb_assert (regcache != NULL && buf != NULL);
987 regcache->raw_collect (regnum, buf);
988}
989
990void
991regcache::raw_collect (int regnum, void *buf) const
9a661b68
MK
992{
993 const void *regbuf;
994 size_t size;
995
ef79d9a3 996 gdb_assert (buf != NULL);
4e888c28 997 assert_regnum (regnum);
9a661b68 998
ef79d9a3
YQ
999 regbuf = register_buffer (regnum);
1000 size = m_descr->sizeof_register[regnum];
9a661b68
MK
1001 memcpy (buf, regbuf, size);
1002}
1003
0b309272
AA
1004/* Transfer a single or all registers belonging to a certain register
1005 set to or from a buffer. This is the main worker function for
1006 regcache_supply_regset and regcache_collect_regset. */
1007
b057297a
AH
1008/* Collect register REGNUM from REGCACHE. Store collected value as an integer
1009 at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
1010 If ADDR_LEN is greater than the register size, then the integer will be sign
1011 or zero extended. If ADDR_LEN is smaller than the register size, then the
1012 most significant bytes of the integer will be truncated. */
1013
1014void
1015regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1016 bool is_signed) const
1017{
1018 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1019 const gdb_byte *regbuf;
1020 size_t regsize;
1021
4e888c28 1022 assert_regnum (regnum);
b057297a
AH
1023
1024 regbuf = register_buffer (regnum);
1025 regsize = m_descr->sizeof_register[regnum];
1026
1027 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1028 byte_order);
1029}
1030
ef79d9a3
YQ
1031void
1032regcache::transfer_regset (const struct regset *regset,
1033 struct regcache *out_regcache,
1034 int regnum, const void *in_buf,
1035 void *out_buf, size_t size) const
0b309272
AA
1036{
1037 const struct regcache_map_entry *map;
1038 int offs = 0, count;
1039
19ba03f4
SM
1040 for (map = (const struct regcache_map_entry *) regset->regmap;
1041 (count = map->count) != 0;
1042 map++)
0b309272
AA
1043 {
1044 int regno = map->regno;
1045 int slot_size = map->size;
1046
1047 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
ef79d9a3 1048 slot_size = m_descr->sizeof_register[regno];
0b309272
AA
1049
1050 if (regno == REGCACHE_MAP_SKIP
1051 || (regnum != -1
1052 && (regnum < regno || regnum >= regno + count)))
1053 offs += count * slot_size;
1054
1055 else if (regnum == -1)
1056 for (; count--; regno++, offs += slot_size)
1057 {
1058 if (offs + slot_size > size)
1059 break;
1060
1061 if (out_buf)
ef79d9a3 1062 raw_collect (regno, (gdb_byte *) out_buf + offs);
0b309272 1063 else
ef79d9a3
YQ
1064 out_regcache->raw_supply (regno, in_buf
1065 ? (const gdb_byte *) in_buf + offs
1066 : NULL);
0b309272
AA
1067 }
1068 else
1069 {
1070 /* Transfer a single register and return. */
1071 offs += (regnum - regno) * slot_size;
1072 if (offs + slot_size > size)
1073 return;
1074
1075 if (out_buf)
ef79d9a3 1076 raw_collect (regnum, (gdb_byte *) out_buf + offs);
0b309272 1077 else
ef79d9a3
YQ
1078 out_regcache->raw_supply (regnum, in_buf
1079 ? (const gdb_byte *) in_buf + offs
1080 : NULL);
0b309272
AA
1081 return;
1082 }
1083 }
1084}
1085
1086/* Supply register REGNUM from BUF to REGCACHE, using the register map
1087 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1088 If BUF is NULL, set the register(s) to "unavailable" status. */
1089
1090void
1091regcache_supply_regset (const struct regset *regset,
1092 struct regcache *regcache,
1093 int regnum, const void *buf, size_t size)
1094{
ef79d9a3
YQ
1095 regcache->supply_regset (regset, regnum, buf, size);
1096}
1097
1098void
1099regcache::supply_regset (const struct regset *regset,
1100 int regnum, const void *buf, size_t size)
1101{
1102 transfer_regset (regset, this, regnum, buf, NULL, size);
0b309272
AA
1103}
1104
1105/* Collect register REGNUM from REGCACHE to BUF, using the register
1106 map in REGSET. If REGNUM is -1, do this for all registers in
1107 REGSET. */
1108
1109void
1110regcache_collect_regset (const struct regset *regset,
1111 const struct regcache *regcache,
1112 int regnum, void *buf, size_t size)
1113{
ef79d9a3
YQ
1114 regcache->collect_regset (regset, regnum, buf, size);
1115}
1116
1117void
1118regcache::collect_regset (const struct regset *regset,
1119 int regnum, void *buf, size_t size) const
1120{
1121 transfer_regset (regset, NULL, regnum, NULL, buf, size);
0b309272
AA
1122}
1123
193cb69f 1124
515630c5 1125/* Special handling for register PC. */
32178cab
MS
1126
1127CORE_ADDR
515630c5 1128regcache_read_pc (struct regcache *regcache)
32178cab 1129{
ac7936df 1130 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 1131
32178cab
MS
1132 CORE_ADDR pc_val;
1133
61a1198a
UW
1134 if (gdbarch_read_pc_p (gdbarch))
1135 pc_val = gdbarch_read_pc (gdbarch, regcache);
cde9ea48 1136 /* Else use per-frame method on get_current_frame. */
214e098a 1137 else if (gdbarch_pc_regnum (gdbarch) >= 0)
cde9ea48 1138 {
61a1198a 1139 ULONGEST raw_val;
123f5f96 1140
05d1431c
PA
1141 if (regcache_cooked_read_unsigned (regcache,
1142 gdbarch_pc_regnum (gdbarch),
1143 &raw_val) == REG_UNAVAILABLE)
1144 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1145
214e098a 1146 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
cde9ea48
AC
1147 }
1148 else
515630c5
UW
1149 internal_error (__FILE__, __LINE__,
1150 _("regcache_read_pc: Unable to find PC"));
32178cab
MS
1151 return pc_val;
1152}
1153
32178cab 1154void
515630c5 1155regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
32178cab 1156{
ac7936df 1157 struct gdbarch *gdbarch = regcache->arch ();
61a1198a 1158
61a1198a
UW
1159 if (gdbarch_write_pc_p (gdbarch))
1160 gdbarch_write_pc (gdbarch, regcache, pc);
214e098a 1161 else if (gdbarch_pc_regnum (gdbarch) >= 0)
3e8c568d 1162 regcache_cooked_write_unsigned (regcache,
214e098a 1163 gdbarch_pc_regnum (gdbarch), pc);
61a1198a
UW
1164 else
1165 internal_error (__FILE__, __LINE__,
515630c5 1166 _("regcache_write_pc: Unable to update PC"));
edb3359d
DJ
1167
1168 /* Writing the PC (for instance, from "load") invalidates the
1169 current frame. */
1170 reinit_frame_cache ();
32178cab
MS
1171}
1172
d999647b 1173int
31716595 1174reg_buffer::num_raw_registers () const
d999647b
YQ
1175{
1176 return gdbarch_num_regs (arch ());
1177}
1178
ed771251 1179void
ef79d9a3 1180regcache::debug_print_register (const char *func, int regno)
ed771251 1181{
ef79d9a3 1182 struct gdbarch *gdbarch = arch ();
ed771251
AH
1183
1184 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1185 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1186 && gdbarch_register_name (gdbarch, regno) != NULL
1187 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1188 fprintf_unfiltered (gdb_stdlog, "(%s)",
1189 gdbarch_register_name (gdbarch, regno));
1190 else
1191 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1192 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1193 {
1194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1195 int size = register_size (gdbarch, regno);
ef79d9a3 1196 gdb_byte *buf = register_buffer (regno);
ed771251
AH
1197
1198 fprintf_unfiltered (gdb_stdlog, " = ");
1199 for (int i = 0; i < size; i++)
1200 {
1201 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1202 }
1203 if (size <= sizeof (LONGEST))
1204 {
1205 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1206
1207 fprintf_unfiltered (gdb_stdlog, " %s %s",
1208 core_addr_to_string_nz (val), plongest (val));
1209 }
1210 }
1211 fprintf_unfiltered (gdb_stdlog, "\n");
1212}
32178cab 1213
705152c5 1214static void
0b39b52e 1215reg_flush_command (const char *command, int from_tty)
705152c5
MS
1216{
1217 /* Force-flush the register cache. */
1218 registers_changed ();
1219 if (from_tty)
a3f17187 1220 printf_filtered (_("Register cache flushed.\n"));
705152c5
MS
1221}
1222
4c74fe6b
YQ
1223void
1224register_dump::dump (ui_file *file)
af030b9a 1225{
4c74fe6b
YQ
1226 auto descr = regcache_descr (m_gdbarch);
1227 int regnum;
1228 int footnote_nr = 0;
1229 int footnote_register_offset = 0;
1230 int footnote_register_type_name_null = 0;
1231 long register_offset = 0;
af030b9a 1232
4c74fe6b
YQ
1233 gdb_assert (descr->nr_cooked_registers
1234 == (gdbarch_num_regs (m_gdbarch)
1235 + gdbarch_num_pseudo_regs (m_gdbarch)));
af030b9a 1236
4c74fe6b
YQ
1237 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1238 {
1239 /* Name. */
1240 if (regnum < 0)
1241 fprintf_unfiltered (file, " %-10s", "Name");
1242 else
1243 {
1244 const char *p = gdbarch_register_name (m_gdbarch, regnum);
123f5f96 1245
4c74fe6b
YQ
1246 if (p == NULL)
1247 p = "";
1248 else if (p[0] == '\0')
1249 p = "''";
1250 fprintf_unfiltered (file, " %-10s", p);
1251 }
af030b9a 1252
4c74fe6b
YQ
1253 /* Number. */
1254 if (regnum < 0)
1255 fprintf_unfiltered (file, " %4s", "Nr");
1256 else
1257 fprintf_unfiltered (file, " %4d", regnum);
af030b9a 1258
4c74fe6b
YQ
1259 /* Relative number. */
1260 if (regnum < 0)
1261 fprintf_unfiltered (file, " %4s", "Rel");
1262 else if (regnum < gdbarch_num_regs (m_gdbarch))
1263 fprintf_unfiltered (file, " %4d", regnum);
1264 else
1265 fprintf_unfiltered (file, " %4d",
1266 (regnum - gdbarch_num_regs (m_gdbarch)));
af030b9a 1267
4c74fe6b
YQ
1268 /* Offset. */
1269 if (regnum < 0)
1270 fprintf_unfiltered (file, " %6s ", "Offset");
1271 else
af030b9a 1272 {
4c74fe6b
YQ
1273 fprintf_unfiltered (file, " %6ld",
1274 descr->register_offset[regnum]);
1275 if (register_offset != descr->register_offset[regnum]
1276 || (regnum > 0
1277 && (descr->register_offset[regnum]
1278 != (descr->register_offset[regnum - 1]
1279 + descr->sizeof_register[regnum - 1])))
1280 )
af030b9a 1281 {
4c74fe6b
YQ
1282 if (!footnote_register_offset)
1283 footnote_register_offset = ++footnote_nr;
1284 fprintf_unfiltered (file, "*%d", footnote_register_offset);
af030b9a 1285 }
4c74fe6b
YQ
1286 else
1287 fprintf_unfiltered (file, " ");
1288 register_offset = (descr->register_offset[regnum]
1289 + descr->sizeof_register[regnum]);
af030b9a
AC
1290 }
1291
4c74fe6b
YQ
1292 /* Size. */
1293 if (regnum < 0)
1294 fprintf_unfiltered (file, " %5s ", "Size");
1295 else
1296 fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
f3384e66 1297
4c74fe6b 1298 /* Type. */
f3384e66 1299 {
4c74fe6b
YQ
1300 const char *t;
1301 std::string name_holder;
b59ff9d5 1302
4c74fe6b
YQ
1303 if (regnum < 0)
1304 t = "Type";
215c69dc
YQ
1305 else
1306 {
4c74fe6b 1307 static const char blt[] = "builtin_type";
123f5f96 1308
4c74fe6b
YQ
1309 t = TYPE_NAME (register_type (m_gdbarch, regnum));
1310 if (t == NULL)
f3384e66 1311 {
4c74fe6b
YQ
1312 if (!footnote_register_type_name_null)
1313 footnote_register_type_name_null = ++footnote_nr;
1314 name_holder = string_printf ("*%d",
1315 footnote_register_type_name_null);
1316 t = name_holder.c_str ();
f3384e66 1317 }
4c74fe6b
YQ
1318 /* Chop a leading builtin_type. */
1319 if (startswith (t, blt))
1320 t += strlen (blt);
f3384e66 1321 }
4c74fe6b 1322 fprintf_unfiltered (file, " %-15s", t);
f3384e66 1323 }
f3384e66 1324
4c74fe6b
YQ
1325 /* Leading space always present. */
1326 fprintf_unfiltered (file, " ");
af030b9a 1327
4c74fe6b 1328 dump_reg (file, regnum);
ed4227b7 1329
4c74fe6b 1330 fprintf_unfiltered (file, "\n");
ed4227b7
PA
1331 }
1332
4c74fe6b
YQ
1333 if (footnote_register_offset)
1334 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1335 footnote_register_offset);
1336 if (footnote_register_type_name_null)
1337 fprintf_unfiltered (file,
1338 "*%d: Register type's name NULL.\n",
1339 footnote_register_type_name_null);
c21236dc
PA
1340}
1341
8248946c
YQ
1342#if GDB_SELF_TEST
1343#include "selftest.h"
1b30aaa5
YQ
1344#include "selftest-arch.h"
1345#include "gdbthread.h"
ec7a5fcb 1346#include "target-float.h"
8248946c
YQ
1347
1348namespace selftests {
1349
e521e87e 1350class regcache_access : public regcache
8248946c 1351{
e521e87e
YQ
1352public:
1353
1354 /* Return the number of elements in current_regcache. */
1355
1356 static size_t
1357 current_regcache_size ()
1358 {
1359 return std::distance (regcache::current_regcache.begin (),
1360 regcache::current_regcache.end ());
1361 }
1362};
8248946c
YQ
1363
1364static void
1365current_regcache_test (void)
1366{
1367 /* It is empty at the start. */
e521e87e 1368 SELF_CHECK (regcache_access::current_regcache_size () == 0);
8248946c
YQ
1369
1370 ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
1371
1372 /* Get regcache from ptid1, a new regcache is added to
1373 current_regcache. */
1374 regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
1375 target_gdbarch (),
1376 NULL);
1377
1378 SELF_CHECK (regcache != NULL);
1379 SELF_CHECK (regcache->ptid () == ptid1);
e521e87e 1380 SELF_CHECK (regcache_access::current_regcache_size () == 1);
8248946c
YQ
1381
1382 /* Get regcache from ptid2, a new regcache is added to
1383 current_regcache. */
1384 regcache = get_thread_arch_aspace_regcache (ptid2,
1385 target_gdbarch (),
1386 NULL);
1387 SELF_CHECK (regcache != NULL);
1388 SELF_CHECK (regcache->ptid () == ptid2);
e521e87e 1389 SELF_CHECK (regcache_access::current_regcache_size () == 2);
8248946c
YQ
1390
1391 /* Get regcache from ptid3, a new regcache is added to
1392 current_regcache. */
1393 regcache = get_thread_arch_aspace_regcache (ptid3,
1394 target_gdbarch (),
1395 NULL);
1396 SELF_CHECK (regcache != NULL);
1397 SELF_CHECK (regcache->ptid () == ptid3);
e521e87e 1398 SELF_CHECK (regcache_access::current_regcache_size () == 3);
8248946c
YQ
1399
1400 /* Get regcache from ptid2 again, nothing is added to
1401 current_regcache. */
1402 regcache = get_thread_arch_aspace_regcache (ptid2,
1403 target_gdbarch (),
1404 NULL);
1405 SELF_CHECK (regcache != NULL);
1406 SELF_CHECK (regcache->ptid () == ptid2);
e521e87e 1407 SELF_CHECK (regcache_access::current_regcache_size () == 3);
8248946c
YQ
1408
1409 /* Mark ptid2 is changed, so regcache of ptid2 should be removed from
1410 current_regcache. */
1411 registers_changed_ptid (ptid2);
e521e87e 1412 SELF_CHECK (regcache_access::current_regcache_size () == 2);
8248946c
YQ
1413}
1414
1b30aaa5
YQ
1415class target_ops_no_register : public test_target_ops
1416{
1417public:
1418 target_ops_no_register ()
1419 : test_target_ops {}
f6ac5f3d 1420 {}
1b30aaa5
YQ
1421
1422 void reset ()
1423 {
1424 fetch_registers_called = 0;
1425 store_registers_called = 0;
1426 xfer_partial_called = 0;
1427 }
1428
f6ac5f3d
PA
1429 void fetch_registers (regcache *regs, int regno) override;
1430 void store_registers (regcache *regs, int regno) override;
1431
1432 enum target_xfer_status xfer_partial (enum target_object object,
1433 const char *annex, gdb_byte *readbuf,
1434 const gdb_byte *writebuf,
1435 ULONGEST offset, ULONGEST len,
1436 ULONGEST *xfered_len) override;
1437
1b30aaa5
YQ
1438 unsigned int fetch_registers_called = 0;
1439 unsigned int store_registers_called = 0;
1440 unsigned int xfer_partial_called = 0;
1441};
1442
f6ac5f3d
PA
1443void
1444target_ops_no_register::fetch_registers (regcache *regs, int regno)
1b30aaa5 1445{
1b30aaa5
YQ
1446 /* Mark register available. */
1447 regs->raw_supply_zeroed (regno);
f6ac5f3d 1448 this->fetch_registers_called++;
1b30aaa5
YQ
1449}
1450
f6ac5f3d
PA
1451void
1452target_ops_no_register::store_registers (regcache *regs, int regno)
1b30aaa5 1453{
f6ac5f3d 1454 this->store_registers_called++;
1b30aaa5
YQ
1455}
1456
f6ac5f3d
PA
1457enum target_xfer_status
1458target_ops_no_register::xfer_partial (enum target_object object,
1459 const char *annex, gdb_byte *readbuf,
1460 const gdb_byte *writebuf,
1461 ULONGEST offset, ULONGEST len,
1462 ULONGEST *xfered_len)
1b30aaa5 1463{
f6ac5f3d 1464 this->xfer_partial_called++;
1b30aaa5
YQ
1465
1466 *xfered_len = len;
1467 return TARGET_XFER_OK;
1468}
1469
1470class readwrite_regcache : public regcache
1471{
1472public:
1473 readwrite_regcache (struct gdbarch *gdbarch)
796bb026 1474 : regcache (gdbarch, nullptr)
1b30aaa5
YQ
1475 {}
1476};
1477
1478/* Test regcache::cooked_read gets registers from raw registers and
1479 memory instead of target to_{fetch,store}_registers. */
1480
1481static void
1482cooked_read_test (struct gdbarch *gdbarch)
1483{
1484 /* Error out if debugging something, because we're going to push the
1485 test target, which would pop any existing target. */
f6ac5f3d 1486 if (target_stack->to_stratum >= process_stratum)
1b30aaa5
YQ
1487 error (_("target already pushed"));
1488
1489 /* Create a mock environment. An inferior with a thread, with a
1490 process_stratum target pushed. */
1491
1492 target_ops_no_register mock_target;
1493 ptid_t mock_ptid (1, 1);
1494 inferior mock_inferior (mock_ptid.pid ());
1495 address_space mock_aspace {};
1496 mock_inferior.gdbarch = gdbarch;
1497 mock_inferior.aspace = &mock_aspace;
1498 thread_info mock_thread (&mock_inferior, mock_ptid);
1499
1500 scoped_restore restore_thread_list
1501 = make_scoped_restore (&thread_list, &mock_thread);
1502
1503 /* Add the mock inferior to the inferior list so that look ups by
1504 target+ptid can find it. */
1505 scoped_restore restore_inferior_list
1506 = make_scoped_restore (&inferior_list);
1507 inferior_list = &mock_inferior;
1508
1509 /* Switch to the mock inferior. */
1510 scoped_restore_current_inferior restore_current_inferior;
1511 set_current_inferior (&mock_inferior);
1512
1513 /* Push the process_stratum target so we can mock accessing
1514 registers. */
1515 push_target (&mock_target);
1516
1517 /* Pop it again on exit (return/exception). */
1518 struct on_exit
1519 {
1520 ~on_exit ()
1521 {
1522 pop_all_targets_at_and_above (process_stratum);
1523 }
1524 } pop_targets;
1525
1526 /* Switch to the mock thread. */
1527 scoped_restore restore_inferior_ptid
1528 = make_scoped_restore (&inferior_ptid, mock_ptid);
1529
1530 /* Test that read one raw register from regcache_no_target will go
1531 to the target layer. */
1532 int regnum;
1533
1534 /* Find a raw register which size isn't zero. */
1535 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1536 {
1537 if (register_size (gdbarch, regnum) != 0)
1538 break;
1539 }
1540
1541 readwrite_regcache readwrite (gdbarch);
1542 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1543
1544 readwrite.raw_read (regnum, buf.data ());
1545
1546 /* raw_read calls target_fetch_registers. */
1547 SELF_CHECK (mock_target.fetch_registers_called > 0);
1548 mock_target.reset ();
1549
1550 /* Mark all raw registers valid, so the following raw registers
1551 accesses won't go to target. */
1552 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1553 readwrite.raw_update (i);
1554
1555 mock_target.reset ();
1556 /* Then, read all raw and pseudo registers, and don't expect calling
1557 to_{fetch,store}_registers. */
1558 for (int regnum = 0;
1559 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1560 regnum++)
1561 {
1562 if (register_size (gdbarch, regnum) == 0)
1563 continue;
1564
1565 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1566
1567 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
1568
dc711524
YQ
1569 SELF_CHECK (mock_target.fetch_registers_called == 0);
1570 SELF_CHECK (mock_target.store_registers_called == 0);
1b30aaa5
YQ
1571
1572 /* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
1573 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1574 SELF_CHECK (mock_target.xfer_partial_called == 0);
1575
1576 mock_target.reset ();
1577 }
a63f2d2f 1578
215c69dc 1579 readonly_detached_regcache readonly (readwrite);
a63f2d2f
YQ
1580
1581 /* GDB may go to target layer to fetch all registers and memory for
1582 readonly regcache. */
1583 mock_target.reset ();
1584
1585 for (int regnum = 0;
1586 regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1587 regnum++)
1588 {
a63f2d2f
YQ
1589 if (register_size (gdbarch, regnum) == 0)
1590 continue;
1591
1592 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
1593 enum register_status status = readonly.cooked_read (regnum,
1594 buf.data ());
1595
1596 if (regnum < gdbarch_num_regs (gdbarch))
1597 {
1598 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1599
1600 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1601 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1602 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1603 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1604 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1605 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
ea005f31
AB
1606 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1607 || bfd_arch == bfd_arch_riscv)
a63f2d2f
YQ
1608 {
1609 /* Raw registers. If raw registers are not in save_reggroup,
1610 their status are unknown. */
1611 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1612 SELF_CHECK (status == REG_VALID);
1613 else
1614 SELF_CHECK (status == REG_UNKNOWN);
1615 }
1616 else
1617 SELF_CHECK (status == REG_VALID);
1618 }
1619 else
1620 {
1621 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1622 SELF_CHECK (status == REG_VALID);
1623 else
1624 {
1625 /* If pseudo registers are not in save_reggroup, some of
1626 them can be computed from saved raw registers, but some
1627 of them are unknown. */
1628 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1629
1630 if (bfd_arch == bfd_arch_frv
1631 || bfd_arch == bfd_arch_m32c
1632 || bfd_arch == bfd_arch_mep
1633 || bfd_arch == bfd_arch_sh)
1634 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1635 else if (bfd_arch == bfd_arch_mips
1636 || bfd_arch == bfd_arch_h8300)
1637 SELF_CHECK (status == REG_UNKNOWN);
1638 else
1639 SELF_CHECK (status == REG_VALID);
1640 }
1641 }
1642
1643 SELF_CHECK (mock_target.fetch_registers_called == 0);
1644 SELF_CHECK (mock_target.store_registers_called == 0);
1645 SELF_CHECK (mock_target.xfer_partial_called == 0);
1646
1647 mock_target.reset ();
1648 }
1b30aaa5
YQ
1649}
1650
ec7a5fcb
YQ
1651/* Test regcache::cooked_write by writing some expected contents to
1652 registers, and checking that contents read from registers and the
1653 expected contents are the same. */
1654
1655static void
1656cooked_write_test (struct gdbarch *gdbarch)
1657{
1658 /* Error out if debugging something, because we're going to push the
1659 test target, which would pop any existing target. */
f6ac5f3d 1660 if (target_stack->to_stratum >= process_stratum)
ec7a5fcb
YQ
1661 error (_("target already pushed"));
1662
1663 /* Create a mock environment. A process_stratum target pushed. */
1664
1665 target_ops_no_register mock_target;
1666
1667 /* Push the process_stratum target so we can mock accessing
1668 registers. */
1669 push_target (&mock_target);
1670
1671 /* Pop it again on exit (return/exception). */
1672 struct on_exit
1673 {
1674 ~on_exit ()
1675 {
1676 pop_all_targets_at_and_above (process_stratum);
1677 }
1678 } pop_targets;
1679
1680 readwrite_regcache readwrite (gdbarch);
1681
1682 const int num_regs = (gdbarch_num_regs (gdbarch)
1683 + gdbarch_num_pseudo_regs (gdbarch));
1684
1685 for (auto regnum = 0; regnum < num_regs; regnum++)
1686 {
1687 if (register_size (gdbarch, regnum) == 0
1688 || gdbarch_cannot_store_register (gdbarch, regnum))
1689 continue;
1690
1691 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1692
1693 if ((bfd_arch == bfd_arch_sparc
1694 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1695 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1696 && gdbarch_ptr_bit (gdbarch) == 64
1697 && (regnum >= gdbarch_num_regs (gdbarch)
1698 && regnum <= gdbarch_num_regs (gdbarch) + 4))
ec7a5fcb
YQ
1699 || (bfd_arch == bfd_arch_spu
1700 /* SPU pseudo registers except SPU_SP_REGNUM are got by
1701 TARGET_OBJECT_SPU. */
1702 && regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
1703 continue;
1704
1705 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1706 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1707 const auto type = register_type (gdbarch, regnum);
1708
1709 if (TYPE_CODE (type) == TYPE_CODE_FLT
1710 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
1711 {
1712 /* Generate valid float format. */
1713 target_float_from_string (expected.data (), type, "1.25");
1714 }
1715 else if (TYPE_CODE (type) == TYPE_CODE_INT
1716 || TYPE_CODE (type) == TYPE_CODE_ARRAY
1717 || TYPE_CODE (type) == TYPE_CODE_PTR
1718 || TYPE_CODE (type) == TYPE_CODE_UNION
1719 || TYPE_CODE (type) == TYPE_CODE_STRUCT)
1720 {
1721 if (bfd_arch == bfd_arch_ia64
1722 || (regnum >= gdbarch_num_regs (gdbarch)
1723 && (bfd_arch == bfd_arch_xtensa
1724 || bfd_arch == bfd_arch_bfin
1725 || bfd_arch == bfd_arch_m32c
1726 /* m68hc11 pseudo registers are in memory. */
1727 || bfd_arch == bfd_arch_m68hc11
1728 || bfd_arch == bfd_arch_m68hc12
1729 || bfd_arch == bfd_arch_s390))
1730 || (bfd_arch == bfd_arch_frv
1731 /* FRV pseudo registers except iacc0. */
1732 && regnum > gdbarch_num_regs (gdbarch)))
1733 {
1734 /* Skip setting the expected values for some architecture
1735 registers. */
1736 }
1737 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
1738 {
1739 /* RL78_PC_REGNUM */
1740 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
1741 expected[j] = j;
1742 }
1743 else
1744 {
1745 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
1746 expected[j] = j;
1747 }
1748 }
1749 else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
1750 {
1751 /* No idea how to test flags. */
1752 continue;
1753 }
1754 else
1755 {
1756 /* If we don't know how to create the expected value for the
1757 this type, make it fail. */
1758 SELF_CHECK (0);
1759 }
1760
1761 readwrite.cooked_write (regnum, expected.data ());
1762
1763 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
1764 SELF_CHECK (expected == buf);
1765 }
1766}
1767
8248946c
YQ
1768} // namespace selftests
1769#endif /* GDB_SELF_TEST */
1770
32178cab
MS
1771void
1772_initialize_regcache (void)
1773{
3e43a32a
MS
1774 regcache_descr_handle
1775 = gdbarch_data_register_post_init (init_regcache_descr);
705152c5 1776
76727919
TT
1777 gdb::observers::target_changed.attach (regcache_observer_target_changed);
1778 gdb::observers::thread_ptid_changed.attach
1779 (regcache::regcache_thread_ptid_changed);
f4c5303c 1780
705152c5 1781 add_com ("flushregs", class_maintenance, reg_flush_command,
1bedd215 1782 _("Force gdb to flush its register cache (maintainer command)"));
39f77062 1783
8248946c 1784#if GDB_SELF_TEST
1526853e 1785 selftests::register_test ("current_regcache", selftests::current_regcache_test);
1b30aaa5
YQ
1786
1787 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
1788 selftests::cooked_read_test);
ec7a5fcb
YQ
1789 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
1790 selftests::cooked_write_test);
8248946c 1791#endif
32178cab 1792}
This page took 1.764105 seconds and 4 git commands to generate.