Commit | Line | Data |
---|---|---|
9058f767 KB |
1 | /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger. |
2 | ||
28e7fd62 | 3 | Copyright (C) 2011-2013 Free Software Foundation, Inc. |
9058f767 KB |
4 | |
5 | Contributed by Red Hat, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "arch-utils.h" | |
24 | #include "prologue-value.h" | |
25 | #include "target.h" | |
26 | #include "regcache.h" | |
27 | #include "opcode/rl78.h" | |
28 | #include "dis-asm.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "frame.h" | |
31 | #include "frame-unwind.h" | |
32 | #include "frame-base.h" | |
33 | #include "value.h" | |
34 | #include "gdbcore.h" | |
35 | #include "dwarf2-frame.h" | |
c47a44f4 | 36 | #include "reggroups.h" |
9058f767 KB |
37 | |
38 | #include "elf/rl78.h" | |
39 | #include "elf-bfd.h" | |
40 | ||
41 | /* Register Banks. */ | |
42 | ||
43 | enum | |
44 | { | |
45 | RL78_BANK0 = 0, | |
46 | RL78_BANK1 = 1, | |
47 | RL78_BANK2 = 2, | |
48 | RL78_BANK3 = 3, | |
49 | RL78_NUMBANKS = 4, | |
50 | RL78_REGS_PER_BANK = 8 | |
51 | }; | |
52 | ||
53 | /* Register Numbers. */ | |
54 | ||
55 | enum | |
56 | { | |
57 | /* All general purpose registers are 8 bits wide. */ | |
c47a44f4 KB |
58 | RL78_RAW_BANK0_R0_REGNUM = 0, |
59 | RL78_RAW_BANK0_R1_REGNUM, | |
60 | RL78_RAW_BANK0_R2_REGNUM, | |
61 | RL78_RAW_BANK0_R3_REGNUM, | |
62 | RL78_RAW_BANK0_R4_REGNUM, | |
63 | RL78_RAW_BANK0_R5_REGNUM, | |
64 | RL78_RAW_BANK0_R6_REGNUM, | |
65 | RL78_RAW_BANK0_R7_REGNUM, | |
66 | ||
67 | RL78_RAW_BANK1_R0_REGNUM, | |
68 | RL78_RAW_BANK1_R1_REGNUM, | |
69 | RL78_RAW_BANK1_R2_REGNUM, | |
70 | RL78_RAW_BANK1_R3_REGNUM, | |
71 | RL78_RAW_BANK1_R4_REGNUM, | |
72 | RL78_RAW_BANK1_R5_REGNUM, | |
73 | RL78_RAW_BANK1_R6_REGNUM, | |
74 | RL78_RAW_BANK1_R7_REGNUM, | |
75 | ||
76 | RL78_RAW_BANK2_R0_REGNUM, | |
77 | RL78_RAW_BANK2_R1_REGNUM, | |
78 | RL78_RAW_BANK2_R2_REGNUM, | |
79 | RL78_RAW_BANK2_R3_REGNUM, | |
80 | RL78_RAW_BANK2_R4_REGNUM, | |
81 | RL78_RAW_BANK2_R5_REGNUM, | |
82 | RL78_RAW_BANK2_R6_REGNUM, | |
83 | RL78_RAW_BANK2_R7_REGNUM, | |
84 | ||
85 | RL78_RAW_BANK3_R0_REGNUM, | |
86 | RL78_RAW_BANK3_R1_REGNUM, | |
87 | RL78_RAW_BANK3_R2_REGNUM, | |
88 | RL78_RAW_BANK3_R3_REGNUM, | |
89 | RL78_RAW_BANK3_R4_REGNUM, | |
90 | RL78_RAW_BANK3_R5_REGNUM, | |
91 | RL78_RAW_BANK3_R6_REGNUM, | |
92 | RL78_RAW_BANK3_R7_REGNUM, | |
93 | ||
94 | RL78_PSW_REGNUM, /* 8 bits */ | |
95 | RL78_ES_REGNUM, /* 8 bits */ | |
96 | RL78_CS_REGNUM, /* 8 bits */ | |
97 | RL78_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */ | |
98 | ||
99 | /* Fixed address SFRs (some of those above are SFRs too.) */ | |
100 | RL78_SPL_REGNUM, /* 8 bits; lower half of SP */ | |
101 | RL78_SPH_REGNUM, /* 8 bits; upper half of SP */ | |
102 | RL78_PMC_REGNUM, /* 8 bits */ | |
103 | RL78_MEM_REGNUM, /* 8 bits ?? */ | |
104 | ||
105 | RL78_NUM_REGS, | |
106 | ||
107 | /* Pseudo registers. */ | |
108 | RL78_SP_REGNUM = RL78_NUM_REGS, | |
109 | ||
110 | RL78_X_REGNUM, | |
111 | RL78_A_REGNUM, | |
112 | RL78_C_REGNUM, | |
113 | RL78_B_REGNUM, | |
114 | RL78_E_REGNUM, | |
115 | RL78_D_REGNUM, | |
116 | RL78_L_REGNUM, | |
117 | RL78_H_REGNUM, | |
118 | ||
119 | RL78_AX_REGNUM, | |
120 | RL78_BC_REGNUM, | |
121 | RL78_DE_REGNUM, | |
122 | RL78_HL_REGNUM, | |
123 | ||
124 | RL78_BANK0_R0_REGNUM, | |
9058f767 KB |
125 | RL78_BANK0_R1_REGNUM, |
126 | RL78_BANK0_R2_REGNUM, | |
127 | RL78_BANK0_R3_REGNUM, | |
128 | RL78_BANK0_R4_REGNUM, | |
129 | RL78_BANK0_R5_REGNUM, | |
130 | RL78_BANK0_R6_REGNUM, | |
131 | RL78_BANK0_R7_REGNUM, | |
132 | ||
133 | RL78_BANK1_R0_REGNUM, | |
134 | RL78_BANK1_R1_REGNUM, | |
135 | RL78_BANK1_R2_REGNUM, | |
136 | RL78_BANK1_R3_REGNUM, | |
137 | RL78_BANK1_R4_REGNUM, | |
138 | RL78_BANK1_R5_REGNUM, | |
139 | RL78_BANK1_R6_REGNUM, | |
140 | RL78_BANK1_R7_REGNUM, | |
141 | ||
142 | RL78_BANK2_R0_REGNUM, | |
143 | RL78_BANK2_R1_REGNUM, | |
144 | RL78_BANK2_R2_REGNUM, | |
145 | RL78_BANK2_R3_REGNUM, | |
146 | RL78_BANK2_R4_REGNUM, | |
147 | RL78_BANK2_R5_REGNUM, | |
148 | RL78_BANK2_R6_REGNUM, | |
149 | RL78_BANK2_R7_REGNUM, | |
150 | ||
151 | RL78_BANK3_R0_REGNUM, | |
152 | RL78_BANK3_R1_REGNUM, | |
153 | RL78_BANK3_R2_REGNUM, | |
154 | RL78_BANK3_R3_REGNUM, | |
155 | RL78_BANK3_R4_REGNUM, | |
156 | RL78_BANK3_R5_REGNUM, | |
157 | RL78_BANK3_R6_REGNUM, | |
158 | RL78_BANK3_R7_REGNUM, | |
159 | ||
c47a44f4 | 160 | RL78_BANK0_RP0_REGNUM, |
9058f767 KB |
161 | RL78_BANK0_RP1_REGNUM, |
162 | RL78_BANK0_RP2_REGNUM, | |
163 | RL78_BANK0_RP3_REGNUM, | |
164 | ||
165 | RL78_BANK1_RP0_REGNUM, | |
166 | RL78_BANK1_RP1_REGNUM, | |
167 | RL78_BANK1_RP2_REGNUM, | |
168 | RL78_BANK1_RP3_REGNUM, | |
169 | ||
170 | RL78_BANK2_RP0_REGNUM, | |
171 | RL78_BANK2_RP1_REGNUM, | |
172 | RL78_BANK2_RP2_REGNUM, | |
173 | RL78_BANK2_RP3_REGNUM, | |
174 | ||
175 | RL78_BANK3_RP0_REGNUM, | |
176 | RL78_BANK3_RP1_REGNUM, | |
177 | RL78_BANK3_RP2_REGNUM, | |
178 | RL78_BANK3_RP3_REGNUM, | |
179 | ||
9058f767 KB |
180 | RL78_NUM_TOTAL_REGS, |
181 | RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS | |
182 | }; | |
183 | ||
184 | /* Architecture specific data. */ | |
185 | ||
186 | struct gdbarch_tdep | |
187 | { | |
188 | /* The ELF header flags specify the multilib used. */ | |
189 | int elf_flags; | |
190 | ||
191 | struct type *rl78_void, | |
192 | *rl78_uint8, | |
193 | *rl78_int8, | |
194 | *rl78_uint16, | |
195 | *rl78_int16, | |
196 | *rl78_uint32, | |
197 | *rl78_int32, | |
198 | *rl78_data_pointer, | |
199 | *rl78_code_pointer; | |
200 | }; | |
201 | ||
202 | /* This structure holds the results of a prologue analysis. */ | |
203 | ||
204 | struct rl78_prologue | |
205 | { | |
206 | /* The offset from the frame base to the stack pointer --- always | |
207 | zero or negative. | |
208 | ||
209 | Calling this a "size" is a bit misleading, but given that the | |
210 | stack grows downwards, using offsets for everything keeps one | |
211 | from going completely sign-crazy: you never change anything's | |
212 | sign for an ADD instruction; always change the second operand's | |
213 | sign for a SUB instruction; and everything takes care of | |
214 | itself. */ | |
215 | int frame_size; | |
216 | ||
217 | /* Non-zero if this function has initialized the frame pointer from | |
218 | the stack pointer, zero otherwise. */ | |
219 | int has_frame_ptr; | |
220 | ||
221 | /* If has_frame_ptr is non-zero, this is the offset from the frame | |
222 | base to where the frame pointer points. This is always zero or | |
223 | negative. */ | |
224 | int frame_ptr_offset; | |
225 | ||
226 | /* The address of the first instruction at which the frame has been | |
227 | set up and the arguments are where the debug info says they are | |
228 | --- as best as we can tell. */ | |
229 | CORE_ADDR prologue_end; | |
230 | ||
231 | /* reg_offset[R] is the offset from the CFA at which register R is | |
232 | saved, or 1 if register R has not been saved. (Real values are | |
233 | always zero or negative.) */ | |
234 | int reg_offset[RL78_NUM_TOTAL_REGS]; | |
235 | }; | |
236 | ||
237 | /* Implement the "register_type" gdbarch method. */ | |
238 | ||
239 | static struct type * | |
240 | rl78_register_type (struct gdbarch *gdbarch, int reg_nr) | |
241 | { | |
242 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
243 | ||
244 | if (reg_nr == RL78_PC_REGNUM) | |
245 | return tdep->rl78_code_pointer; | |
246 | else if (reg_nr <= RL78_MEM_REGNUM | |
c47a44f4 KB |
247 | || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM) |
248 | || (RL78_BANK0_R0_REGNUM <= reg_nr | |
249 | && reg_nr <= RL78_BANK3_R7_REGNUM)) | |
9058f767 KB |
250 | return tdep->rl78_int8; |
251 | else | |
252 | return tdep->rl78_data_pointer; | |
253 | } | |
254 | ||
255 | /* Implement the "register_name" gdbarch method. */ | |
256 | ||
257 | static const char * | |
258 | rl78_register_name (struct gdbarch *gdbarch, int regnr) | |
259 | { | |
260 | static const char *const reg_names[] = | |
261 | { | |
c47a44f4 KB |
262 | "", /* bank0_r0 */ |
263 | "", /* bank0_r1 */ | |
264 | "", /* bank0_r2 */ | |
265 | "", /* bank0_r3 */ | |
266 | "", /* bank0_r4 */ | |
267 | "", /* bank0_r5 */ | |
268 | "", /* bank0_r6 */ | |
269 | "", /* bank0_r7 */ | |
270 | ||
271 | "", /* bank1_r0 */ | |
272 | "", /* bank1_r1 */ | |
273 | "", /* bank1_r2 */ | |
274 | "", /* bank1_r3 */ | |
275 | "", /* bank1_r4 */ | |
276 | "", /* bank1_r5 */ | |
277 | "", /* bank1_r6 */ | |
278 | "", /* bank1_r7 */ | |
279 | ||
280 | "", /* bank2_r0 */ | |
281 | "", /* bank2_r1 */ | |
282 | "", /* bank2_r2 */ | |
283 | "", /* bank2_r3 */ | |
284 | "", /* bank2_r4 */ | |
285 | "", /* bank2_r5 */ | |
286 | "", /* bank2_r6 */ | |
287 | "", /* bank2_r7 */ | |
288 | ||
289 | "", /* bank3_r0 */ | |
290 | "", /* bank3_r1 */ | |
291 | "", /* bank3_r2 */ | |
292 | "", /* bank3_r3 */ | |
293 | "", /* bank3_r4 */ | |
294 | "", /* bank3_r5 */ | |
295 | "", /* bank3_r6 */ | |
296 | "", /* bank3_r7 */ | |
297 | ||
298 | "psw", | |
299 | "es", | |
300 | "cs", | |
301 | "pc", | |
302 | ||
303 | "", /* spl */ | |
304 | "", /* sph */ | |
305 | "pmc", | |
306 | "mem", | |
307 | ||
308 | "sp", | |
309 | ||
310 | "x", | |
311 | "a", | |
312 | "c", | |
313 | "b", | |
314 | "e", | |
315 | "d", | |
316 | "l", | |
317 | "h", | |
318 | ||
319 | "ax", | |
320 | "bc", | |
321 | "de", | |
322 | "hl", | |
323 | ||
9058f767 KB |
324 | "bank0_r0", |
325 | "bank0_r1", | |
326 | "bank0_r2", | |
327 | "bank0_r3", | |
328 | "bank0_r4", | |
329 | "bank0_r5", | |
330 | "bank0_r6", | |
331 | "bank0_r7", | |
332 | ||
333 | "bank1_r0", | |
334 | "bank1_r1", | |
335 | "bank1_r2", | |
336 | "bank1_r3", | |
337 | "bank1_r4", | |
338 | "bank1_r5", | |
339 | "bank1_r6", | |
340 | "bank1_r7", | |
341 | ||
342 | "bank2_r0", | |
343 | "bank2_r1", | |
344 | "bank2_r2", | |
345 | "bank2_r3", | |
346 | "bank2_r4", | |
347 | "bank2_r5", | |
348 | "bank2_r6", | |
349 | "bank2_r7", | |
350 | ||
351 | "bank3_r0", | |
352 | "bank3_r1", | |
353 | "bank3_r2", | |
354 | "bank3_r3", | |
355 | "bank3_r4", | |
356 | "bank3_r5", | |
357 | "bank3_r6", | |
358 | "bank3_r7", | |
359 | ||
9058f767 KB |
360 | "bank0_rp0", |
361 | "bank0_rp1", | |
362 | "bank0_rp2", | |
363 | "bank0_rp3", | |
364 | ||
365 | "bank1_rp0", | |
366 | "bank1_rp1", | |
367 | "bank1_rp2", | |
368 | "bank1_rp3", | |
369 | ||
370 | "bank2_rp0", | |
371 | "bank2_rp1", | |
372 | "bank2_rp2", | |
373 | "bank2_rp3", | |
374 | ||
375 | "bank3_rp0", | |
376 | "bank3_rp1", | |
377 | "bank3_rp2", | |
c47a44f4 KB |
378 | "bank3_rp3" |
379 | }; | |
9058f767 | 380 | |
c47a44f4 KB |
381 | return reg_names[regnr]; |
382 | } | |
9058f767 | 383 | |
c47a44f4 | 384 | /* Implement the "register_reggroup_p" gdbarch method. */ |
9058f767 | 385 | |
c47a44f4 KB |
386 | static int |
387 | rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
388 | struct reggroup *group) | |
389 | { | |
390 | if (group == all_reggroup) | |
391 | return 1; | |
9058f767 | 392 | |
c47a44f4 KB |
393 | /* All other registers are saved and restored. */ |
394 | if (group == save_reggroup || group == restore_reggroup) | |
395 | { | |
396 | if (regnum < RL78_NUM_REGS) | |
397 | return 1; | |
398 | else | |
399 | return 0; | |
400 | } | |
401 | ||
402 | if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM) | |
403 | || regnum == RL78_ES_REGNUM | |
404 | || regnum == RL78_CS_REGNUM | |
405 | || regnum == RL78_SPL_REGNUM | |
406 | || regnum == RL78_SPH_REGNUM | |
407 | || regnum == RL78_PMC_REGNUM | |
408 | || regnum == RL78_MEM_REGNUM | |
409 | || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM)) | |
410 | return group == system_reggroup; | |
411 | ||
412 | return group == general_reggroup; | |
9058f767 KB |
413 | } |
414 | ||
415 | /* Strip bits to form an instruction address. (When fetching a | |
416 | 32-bit address from the stack, the high eight bits are garbage. | |
417 | This function strips off those unused bits.) */ | |
418 | ||
419 | static CORE_ADDR | |
420 | rl78_make_instruction_address (CORE_ADDR addr) | |
421 | { | |
422 | return addr & 0xffffff; | |
423 | } | |
424 | ||
425 | /* Set / clear bits necessary to make a data address. */ | |
426 | ||
427 | static CORE_ADDR | |
428 | rl78_make_data_address (CORE_ADDR addr) | |
429 | { | |
430 | return (addr & 0xffff) | 0xf0000; | |
431 | } | |
432 | ||
433 | /* Implement the "pseudo_register_read" gdbarch method. */ | |
434 | ||
435 | static enum register_status | |
436 | rl78_pseudo_register_read (struct gdbarch *gdbarch, | |
437 | struct regcache *regcache, | |
438 | int reg, gdb_byte *buffer) | |
439 | { | |
440 | enum register_status status; | |
441 | ||
c47a44f4 KB |
442 | if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM) |
443 | { | |
444 | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM | |
445 | + (reg - RL78_BANK0_R0_REGNUM); | |
446 | ||
447 | status = regcache_raw_read (regcache, raw_regnum, buffer); | |
448 | } | |
449 | else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM) | |
9058f767 KB |
450 | { |
451 | int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM) | |
c47a44f4 | 452 | + RL78_RAW_BANK0_R0_REGNUM; |
9058f767 KB |
453 | |
454 | status = regcache_raw_read (regcache, raw_regnum, buffer); | |
455 | if (status == REG_VALID) | |
456 | status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1); | |
457 | } | |
458 | else if (reg == RL78_SP_REGNUM) | |
459 | { | |
460 | status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer); | |
461 | if (status == REG_VALID) | |
462 | status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1); | |
463 | } | |
464 | else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM) | |
465 | { | |
466 | ULONGEST psw; | |
467 | ||
468 | status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); | |
469 | if (status == REG_VALID) | |
470 | { | |
471 | /* RSB0 is at bit 3; RSBS1 is at bit 5. */ | |
472 | int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | |
c47a44f4 | 473 | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK |
9058f767 KB |
474 | + (reg - RL78_X_REGNUM); |
475 | status = regcache_raw_read (regcache, raw_regnum, buffer); | |
476 | } | |
477 | } | |
478 | else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM) | |
479 | { | |
480 | ULONGEST psw; | |
481 | ||
482 | status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); | |
483 | if (status == REG_VALID) | |
484 | { | |
485 | /* RSB0 is at bit 3; RSBS1 is at bit 5. */ | |
486 | int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | |
c47a44f4 | 487 | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK |
9058f767 KB |
488 | + 2 * (reg - RL78_AX_REGNUM); |
489 | status = regcache_raw_read (regcache, raw_regnum, buffer); | |
490 | if (status == REG_VALID) | |
491 | status = regcache_raw_read (regcache, raw_regnum + 1, | |
492 | buffer + 1); | |
493 | } | |
494 | } | |
495 | else | |
496 | gdb_assert_not_reached ("invalid pseudo register number"); | |
497 | return status; | |
498 | } | |
499 | ||
500 | /* Implement the "pseudo_register_write" gdbarch method. */ | |
501 | ||
502 | static void | |
503 | rl78_pseudo_register_write (struct gdbarch *gdbarch, | |
504 | struct regcache *regcache, | |
505 | int reg, const gdb_byte *buffer) | |
506 | { | |
c47a44f4 KB |
507 | if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM) |
508 | { | |
509 | int raw_regnum = RL78_RAW_BANK0_R0_REGNUM | |
510 | + (reg - RL78_BANK0_R0_REGNUM); | |
511 | ||
512 | regcache_raw_write (regcache, raw_regnum, buffer); | |
513 | } | |
514 | else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM) | |
9058f767 KB |
515 | { |
516 | int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM) | |
c47a44f4 | 517 | + RL78_RAW_BANK0_R0_REGNUM; |
9058f767 KB |
518 | |
519 | regcache_raw_write (regcache, raw_regnum, buffer); | |
520 | regcache_raw_write (regcache, raw_regnum + 1, buffer + 1); | |
521 | } | |
522 | else if (reg == RL78_SP_REGNUM) | |
523 | { | |
524 | regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer); | |
525 | regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1); | |
526 | } | |
527 | else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM) | |
528 | { | |
529 | ULONGEST psw; | |
530 | int bank; | |
531 | int raw_regnum; | |
532 | ||
533 | regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); | |
534 | bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | |
535 | /* RSB0 is at bit 3; RSBS1 is at bit 5. */ | |
c47a44f4 | 536 | raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK |
9058f767 KB |
537 | + (reg - RL78_X_REGNUM); |
538 | regcache_raw_write (regcache, raw_regnum, buffer); | |
539 | } | |
540 | else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM) | |
541 | { | |
542 | ULONGEST psw; | |
543 | int bank, raw_regnum; | |
544 | ||
545 | regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw); | |
546 | bank = ((psw >> 3) & 1) | ((psw >> 4) & 1); | |
547 | /* RSB0 is at bit 3; RSBS1 is at bit 5. */ | |
c47a44f4 | 548 | raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK |
9058f767 KB |
549 | + 2 * (reg - RL78_AX_REGNUM); |
550 | regcache_raw_write (regcache, raw_regnum, buffer); | |
551 | regcache_raw_write (regcache, raw_regnum + 1, buffer + 1); | |
552 | } | |
553 | else | |
554 | gdb_assert_not_reached ("invalid pseudo register number"); | |
555 | } | |
556 | ||
557 | /* Implement the "breakpoint_from_pc" gdbarch method. */ | |
558 | ||
693be288 | 559 | static const gdb_byte * |
9058f767 KB |
560 | rl78_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, |
561 | int *lenptr) | |
562 | { | |
563 | /* The documented BRK instruction is actually a two byte sequence, | |
564 | {0x61, 0xcc}, but instructions may be as short as one byte. | |
565 | Correspondence with Renesas revealed that the one byte sequence | |
566 | 0xff is used when a one byte breakpoint instruction is required. */ | |
567 | static gdb_byte breakpoint[] = { 0xff }; | |
568 | ||
569 | *lenptr = sizeof breakpoint; | |
570 | return breakpoint; | |
571 | } | |
572 | ||
573 | /* Define a "handle" struct for fetching the next opcode. */ | |
574 | ||
575 | struct rl78_get_opcode_byte_handle | |
576 | { | |
577 | CORE_ADDR pc; | |
578 | }; | |
579 | ||
580 | /* Fetch a byte on behalf of the opcode decoder. HANDLE contains | |
581 | the memory address of the next byte to fetch. If successful, | |
582 | the address in the handle is updated and the byte fetched is | |
583 | returned as the value of the function. If not successful, -1 | |
584 | is returned. */ | |
585 | ||
586 | static int | |
587 | rl78_get_opcode_byte (void *handle) | |
588 | { | |
589 | struct rl78_get_opcode_byte_handle *opcdata = handle; | |
590 | int status; | |
591 | gdb_byte byte; | |
592 | ||
593 | status = target_read_memory (opcdata->pc, &byte, 1); | |
594 | if (status == 0) | |
595 | { | |
596 | opcdata->pc += 1; | |
597 | return byte; | |
598 | } | |
599 | else | |
600 | return -1; | |
601 | } | |
602 | ||
603 | /* Function for finding saved registers in a 'struct pv_area'; this | |
604 | function is passed to pv_area_scan. | |
605 | ||
606 | If VALUE is a saved register, ADDR says it was saved at a constant | |
607 | offset from the frame base, and SIZE indicates that the whole | |
608 | register was saved, record its offset. */ | |
609 | ||
610 | static void | |
611 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, | |
612 | pv_t value) | |
613 | { | |
614 | struct rl78_prologue *result = (struct rl78_prologue *) result_untyped; | |
615 | ||
616 | if (value.kind == pvk_register | |
617 | && value.k == 0 | |
618 | && pv_is_register (addr, RL78_SP_REGNUM) | |
f5656ead | 619 | && size == register_size (target_gdbarch (), value.reg)) |
9058f767 KB |
620 | result->reg_offset[value.reg] = addr.k; |
621 | } | |
622 | ||
623 | /* Analyze a prologue starting at START_PC, going no further than | |
624 | LIMIT_PC. Fill in RESULT as appropriate. */ | |
625 | ||
626 | static void | |
627 | rl78_analyze_prologue (CORE_ADDR start_pc, | |
628 | CORE_ADDR limit_pc, struct rl78_prologue *result) | |
629 | { | |
630 | CORE_ADDR pc, next_pc; | |
631 | int rn; | |
632 | pv_t reg[RL78_NUM_TOTAL_REGS]; | |
633 | struct pv_area *stack; | |
634 | struct cleanup *back_to; | |
635 | CORE_ADDR after_last_frame_setup_insn = start_pc; | |
636 | int bank = 0; | |
637 | ||
638 | memset (result, 0, sizeof (*result)); | |
639 | ||
640 | for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++) | |
641 | { | |
642 | reg[rn] = pv_register (rn, 0); | |
643 | result->reg_offset[rn] = 1; | |
644 | } | |
645 | ||
f5656ead | 646 | stack = make_pv_area (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ())); |
9058f767 KB |
647 | back_to = make_cleanup_free_pv_area (stack); |
648 | ||
649 | /* The call instruction has saved the return address on the stack. */ | |
650 | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4); | |
651 | pv_area_store (stack, reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]); | |
652 | ||
653 | pc = start_pc; | |
654 | while (pc < limit_pc) | |
655 | { | |
656 | int bytes_read; | |
657 | struct rl78_get_opcode_byte_handle opcode_handle; | |
658 | RL78_Opcode_Decoded opc; | |
659 | ||
660 | opcode_handle.pc = pc; | |
661 | bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte, | |
662 | &opcode_handle); | |
663 | next_pc = pc + bytes_read; | |
664 | ||
665 | if (opc.id == RLO_sel) | |
666 | { | |
667 | bank = opc.op[1].addend; | |
668 | } | |
669 | else if (opc.id == RLO_mov | |
670 | && opc.op[0].type == RL78_Operand_PreDec | |
671 | && opc.op[0].reg == RL78_Reg_SP | |
672 | && opc.op[1].type == RL78_Operand_Register) | |
673 | { | |
674 | int rsrc = (bank * RL78_REGS_PER_BANK) | |
675 | + 2 * (opc.op[1].reg - RL78_Reg_AX); | |
676 | ||
677 | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1); | |
678 | pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc]); | |
679 | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1); | |
680 | pv_area_store (stack, reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]); | |
681 | after_last_frame_setup_insn = next_pc; | |
682 | } | |
683 | else if (opc.id == RLO_sub | |
684 | && opc.op[0].type == RL78_Operand_Register | |
685 | && opc.op[0].reg == RL78_Reg_SP | |
686 | && opc.op[1].type == RL78_Operand_Immediate) | |
687 | { | |
688 | int addend = opc.op[1].addend; | |
689 | ||
690 | reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], | |
691 | -addend); | |
692 | after_last_frame_setup_insn = next_pc; | |
693 | } | |
694 | else | |
695 | { | |
696 | /* Terminate the prologue scan. */ | |
697 | break; | |
698 | } | |
699 | ||
700 | pc = next_pc; | |
701 | } | |
702 | ||
703 | /* Is the frame size (offset, really) a known constant? */ | |
704 | if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM)) | |
705 | result->frame_size = reg[RL78_SP_REGNUM].k; | |
706 | ||
707 | /* Record where all the registers were saved. */ | |
708 | pv_area_scan (stack, check_for_saved, (void *) result); | |
709 | ||
710 | result->prologue_end = after_last_frame_setup_insn; | |
711 | ||
712 | do_cleanups (back_to); | |
713 | } | |
714 | ||
715 | /* Implement the "addr_bits_remove" gdbarch method. */ | |
716 | ||
717 | static CORE_ADDR | |
718 | rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) | |
719 | { | |
720 | return addr & 0xffffff; | |
721 | } | |
722 | ||
723 | /* Implement the "address_to_pointer" gdbarch method. */ | |
724 | ||
725 | static void | |
726 | rl78_address_to_pointer (struct gdbarch *gdbarch, | |
727 | struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
728 | { | |
729 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
730 | ||
731 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, | |
732 | addr & 0xffffff); | |
733 | } | |
734 | ||
735 | /* Implement the "pointer_to_address" gdbarch method. */ | |
736 | ||
737 | static CORE_ADDR | |
738 | rl78_pointer_to_address (struct gdbarch *gdbarch, | |
739 | struct type *type, const gdb_byte *buf) | |
740 | { | |
741 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
742 | CORE_ADDR addr | |
743 | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | |
744 | ||
745 | /* Is it a code address? */ | |
746 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
747 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
748 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)) | |
749 | || TYPE_LENGTH (type) == 4) | |
750 | return rl78_make_instruction_address (addr); | |
751 | else | |
752 | return rl78_make_data_address (addr); | |
753 | } | |
754 | ||
755 | /* Implement the "skip_prologue" gdbarch method. */ | |
756 | ||
757 | static CORE_ADDR | |
758 | rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
759 | { | |
e4569f1e | 760 | const char *name; |
9058f767 KB |
761 | CORE_ADDR func_addr, func_end; |
762 | struct rl78_prologue p; | |
763 | ||
764 | /* Try to find the extent of the function that contains PC. */ | |
765 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
766 | return pc; | |
767 | ||
768 | rl78_analyze_prologue (pc, func_end, &p); | |
769 | return p.prologue_end; | |
770 | } | |
771 | ||
772 | /* Implement the "unwind_pc" gdbarch method. */ | |
773 | ||
774 | static CORE_ADDR | |
775 | rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame) | |
776 | { | |
777 | return rl78_addr_bits_remove | |
778 | (arch, frame_unwind_register_unsigned (next_frame, | |
779 | RL78_PC_REGNUM)); | |
780 | } | |
781 | ||
782 | /* Implement the "unwind_sp" gdbarch method. */ | |
783 | ||
784 | static CORE_ADDR | |
785 | rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame) | |
786 | { | |
787 | return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM); | |
788 | } | |
789 | ||
790 | /* Given a frame described by THIS_FRAME, decode the prologue of its | |
791 | associated function if there is not cache entry as specified by | |
792 | THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and | |
793 | return that struct as the value of this function. */ | |
794 | ||
795 | static struct rl78_prologue * | |
796 | rl78_analyze_frame_prologue (struct frame_info *this_frame, | |
797 | void **this_prologue_cache) | |
798 | { | |
799 | if (!*this_prologue_cache) | |
800 | { | |
801 | CORE_ADDR func_start, stop_addr; | |
802 | ||
803 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue); | |
804 | ||
805 | func_start = get_frame_func (this_frame); | |
806 | stop_addr = get_frame_pc (this_frame); | |
807 | ||
808 | /* If we couldn't find any function containing the PC, then | |
809 | just initialize the prologue cache, but don't do anything. */ | |
810 | if (!func_start) | |
811 | stop_addr = func_start; | |
812 | ||
813 | rl78_analyze_prologue (func_start, stop_addr, *this_prologue_cache); | |
814 | } | |
815 | ||
816 | return *this_prologue_cache; | |
817 | } | |
818 | ||
819 | /* Given a frame and a prologue cache, return this frame's base. */ | |
820 | ||
821 | static CORE_ADDR | |
822 | rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | |
823 | { | |
824 | struct rl78_prologue *p | |
825 | = rl78_analyze_frame_prologue (this_frame, this_prologue_cache); | |
826 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM); | |
827 | ||
828 | return rl78_make_data_address (sp - p->frame_size); | |
829 | } | |
830 | ||
831 | /* Implement the "frame_this_id" method for unwinding frames. */ | |
832 | ||
833 | static void | |
834 | rl78_this_id (struct frame_info *this_frame, | |
835 | void **this_prologue_cache, struct frame_id *this_id) | |
836 | { | |
837 | *this_id = frame_id_build (rl78_frame_base (this_frame, | |
838 | this_prologue_cache), | |
839 | get_frame_func (this_frame)); | |
840 | } | |
841 | ||
842 | /* Implement the "frame_prev_register" method for unwinding frames. */ | |
843 | ||
844 | static struct value * | |
845 | rl78_prev_register (struct frame_info *this_frame, | |
846 | void **this_prologue_cache, int regnum) | |
847 | { | |
848 | struct rl78_prologue *p | |
849 | = rl78_analyze_frame_prologue (this_frame, this_prologue_cache); | |
850 | CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache); | |
851 | ||
852 | if (regnum == RL78_SP_REGNUM) | |
853 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
854 | ||
855 | else if (regnum == RL78_SPL_REGNUM) | |
856 | return frame_unwind_got_constant (this_frame, regnum, | |
857 | (frame_base & 0xff)); | |
858 | ||
859 | else if (regnum == RL78_SPH_REGNUM) | |
860 | return frame_unwind_got_constant (this_frame, regnum, | |
861 | ((frame_base >> 8) & 0xff)); | |
862 | ||
863 | /* If prologue analysis says we saved this register somewhere, | |
864 | return a description of the stack slot holding it. */ | |
865 | else if (p->reg_offset[regnum] != 1) | |
866 | { | |
867 | struct value *rv = | |
868 | frame_unwind_got_memory (this_frame, regnum, | |
869 | frame_base + p->reg_offset[regnum]); | |
870 | ||
871 | if (regnum == RL78_PC_REGNUM) | |
872 | { | |
873 | ULONGEST pc = rl78_make_instruction_address (value_as_long (rv)); | |
874 | ||
875 | return frame_unwind_got_constant (this_frame, regnum, pc); | |
876 | } | |
877 | return rv; | |
878 | } | |
879 | ||
880 | /* Otherwise, presume we haven't changed the value of this | |
881 | register, and get it from the next frame. */ | |
882 | else | |
883 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
884 | } | |
885 | ||
886 | static const struct frame_unwind rl78_unwind = | |
887 | { | |
888 | NORMAL_FRAME, | |
889 | default_frame_unwind_stop_reason, | |
890 | rl78_this_id, | |
891 | rl78_prev_register, | |
892 | NULL, | |
893 | default_frame_sniffer | |
894 | }; | |
895 | ||
896 | /* Implement the "dwarf_reg_to_regnum" gdbarch method. */ | |
897 | ||
898 | static int | |
899 | rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | |
900 | { | |
901 | if (0 <= reg && reg <= 31) | |
902 | { | |
903 | if ((reg & 1) == 0) | |
904 | /* Map even registers to their 16-bit counterparts. This | |
905 | is usually what is required from the DWARF info. */ | |
906 | return (reg >> 1) + RL78_BANK0_RP0_REGNUM; | |
907 | else | |
908 | return reg; | |
909 | } | |
910 | else if (reg == 32) | |
911 | return RL78_SP_REGNUM; | |
912 | else if (reg == 33) | |
913 | return RL78_PC_REGNUM; | |
914 | else | |
915 | internal_error (__FILE__, __LINE__, | |
916 | _("Undefined dwarf2 register mapping of reg %d"), | |
917 | reg); | |
918 | } | |
919 | ||
c47a44f4 KB |
920 | /* Implement the `register_sim_regno' gdbarch method. */ |
921 | ||
922 | static int | |
923 | rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum) | |
924 | { | |
925 | gdb_assert (regnum < RL78_NUM_REGS); | |
926 | ||
927 | /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We | |
928 | just want to override the default here which disallows register | |
929 | numbers which have no names. */ | |
930 | return regnum; | |
931 | } | |
932 | ||
9058f767 KB |
933 | /* Implement the "return_value" gdbarch method. */ |
934 | ||
935 | static enum return_value_convention | |
936 | rl78_return_value (struct gdbarch *gdbarch, | |
6a3a010b | 937 | struct value *function, |
9058f767 KB |
938 | struct type *valtype, |
939 | struct regcache *regcache, | |
940 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
941 | { | |
942 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
943 | ULONGEST valtype_len = TYPE_LENGTH (valtype); | |
944 | ||
945 | if (valtype_len > 8) | |
946 | return RETURN_VALUE_STRUCT_CONVENTION; | |
947 | ||
948 | if (readbuf) | |
949 | { | |
950 | ULONGEST u; | |
c47a44f4 | 951 | int argreg = RL78_RAW_BANK1_R0_REGNUM; |
9058f767 KB |
952 | int offset = 0; |
953 | ||
954 | while (valtype_len > 0) | |
955 | { | |
956 | regcache_cooked_read_unsigned (regcache, argreg, &u); | |
957 | store_unsigned_integer (readbuf + offset, 1, byte_order, u); | |
958 | valtype_len -= 1; | |
959 | offset += 1; | |
960 | argreg++; | |
961 | } | |
962 | } | |
963 | ||
964 | if (writebuf) | |
965 | { | |
966 | ULONGEST u; | |
c47a44f4 | 967 | int argreg = RL78_RAW_BANK1_R0_REGNUM; |
9058f767 KB |
968 | int offset = 0; |
969 | ||
970 | while (valtype_len > 0) | |
971 | { | |
972 | u = extract_unsigned_integer (writebuf + offset, 1, byte_order); | |
973 | regcache_cooked_write_unsigned (regcache, argreg, u); | |
974 | valtype_len -= 1; | |
975 | offset += 1; | |
976 | argreg++; | |
977 | } | |
978 | } | |
979 | ||
980 | return RETURN_VALUE_REGISTER_CONVENTION; | |
981 | } | |
982 | ||
983 | ||
984 | /* Implement the "frame_align" gdbarch method. */ | |
985 | ||
986 | static CORE_ADDR | |
987 | rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
988 | { | |
989 | return rl78_make_data_address (align_down (sp, 2)); | |
990 | } | |
991 | ||
992 | ||
993 | /* Implement the "dummy_id" gdbarch method. */ | |
994 | ||
995 | static struct frame_id | |
996 | rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
997 | { | |
998 | return | |
999 | frame_id_build (rl78_make_data_address | |
1000 | (get_frame_register_unsigned | |
1001 | (this_frame, RL78_SP_REGNUM)), | |
1002 | get_frame_pc (this_frame)); | |
1003 | } | |
1004 | ||
1005 | ||
1006 | /* Implement the "push_dummy_call" gdbarch method. */ | |
1007 | ||
1008 | static CORE_ADDR | |
1009 | rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1010 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1011 | int nargs, struct value **args, CORE_ADDR sp, | |
1012 | int struct_return, CORE_ADDR struct_addr) | |
1013 | { | |
1014 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1015 | gdb_byte buf[4]; | |
1016 | int i; | |
1017 | ||
1018 | /* Push arguments in reverse order. */ | |
1019 | for (i = nargs - 1; i >= 0; i--) | |
1020 | { | |
1021 | struct type *value_type = value_enclosing_type (args[i]); | |
1022 | int len = TYPE_LENGTH (value_type); | |
1023 | int container_len = (len + 1) & ~1; | |
9058f767 KB |
1024 | |
1025 | sp -= container_len; | |
1026 | write_memory (rl78_make_data_address (sp), | |
1027 | value_contents_all (args[i]), len); | |
1028 | } | |
1029 | ||
1030 | /* Store struct value address. */ | |
1031 | if (struct_return) | |
1032 | { | |
1033 | store_unsigned_integer (buf, 2, byte_order, struct_addr); | |
1034 | sp -= 2; | |
1035 | write_memory (rl78_make_data_address (sp), buf, 2); | |
1036 | } | |
1037 | ||
1038 | /* Store return address. */ | |
1039 | sp -= 4; | |
1040 | store_unsigned_integer (buf, 4, byte_order, bp_addr); | |
1041 | write_memory (rl78_make_data_address (sp), buf, 4); | |
1042 | ||
1043 | /* Finally, update the stack pointer... */ | |
1044 | regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp); | |
1045 | ||
1046 | /* DWARF2/GCC uses the stack address *before* the function call as a | |
1047 | frame's CFA. */ | |
1048 | return rl78_make_data_address (sp + 4); | |
1049 | } | |
1050 | ||
1051 | /* Allocate and initialize a gdbarch object. */ | |
1052 | ||
1053 | static struct gdbarch * | |
1054 | rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1055 | { | |
1056 | struct gdbarch *gdbarch; | |
1057 | struct gdbarch_tdep *tdep; | |
1058 | int elf_flags; | |
1059 | ||
1060 | /* Extract the elf_flags if available. */ | |
1061 | if (info.abfd != NULL | |
1062 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1063 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
1064 | else | |
1065 | elf_flags = 0; | |
1066 | ||
1067 | ||
1068 | /* Try to find the architecture in the list of already defined | |
1069 | architectures. */ | |
1070 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
1071 | arches != NULL; | |
1072 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
1073 | { | |
1074 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) | |
1075 | continue; | |
1076 | ||
1077 | return arches->gdbarch; | |
1078 | } | |
1079 | ||
1080 | /* None found, create a new architecture from the information | |
1081 | provided. */ | |
1082 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
1083 | gdbarch = gdbarch_alloc (&info, tdep); | |
1084 | tdep->elf_flags = elf_flags; | |
1085 | ||
1086 | /* Initialize types. */ | |
1087 | tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); | |
1088 | tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t"); | |
1089 | tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t"); | |
1090 | tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t"); | |
1091 | tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t"); | |
1092 | tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t"); | |
1093 | tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t"); | |
1094 | ||
1095 | tdep->rl78_data_pointer | |
1096 | = arch_type (gdbarch, TYPE_CODE_PTR, 16 / TARGET_CHAR_BIT, | |
1097 | xstrdup ("rl78_data_addr_t")); | |
1098 | TYPE_TARGET_TYPE (tdep->rl78_data_pointer) = tdep->rl78_void; | |
1099 | TYPE_UNSIGNED (tdep->rl78_data_pointer) = 1; | |
1100 | ||
1101 | tdep->rl78_code_pointer | |
1102 | = arch_type (gdbarch, TYPE_CODE_PTR, 32 / TARGET_CHAR_BIT, | |
1103 | xstrdup ("rl78_code_addr_t")); | |
1104 | TYPE_TARGET_TYPE (tdep->rl78_code_pointer) = tdep->rl78_void; | |
1105 | TYPE_UNSIGNED (tdep->rl78_code_pointer) = 1; | |
1106 | ||
1107 | /* Registers. */ | |
1108 | set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS); | |
1109 | set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS); | |
1110 | set_gdbarch_register_name (gdbarch, rl78_register_name); | |
1111 | set_gdbarch_register_type (gdbarch, rl78_register_type); | |
1112 | set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM); | |
1113 | set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM); | |
1114 | set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read); | |
1115 | set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write); | |
1116 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum); | |
c47a44f4 KB |
1117 | set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p); |
1118 | set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno); | |
9058f767 KB |
1119 | |
1120 | /* Data types. */ | |
1121 | set_gdbarch_char_signed (gdbarch, 0); | |
1122 | set_gdbarch_short_bit (gdbarch, 16); | |
1123 | set_gdbarch_int_bit (gdbarch, 16); | |
1124 | set_gdbarch_long_bit (gdbarch, 32); | |
1125 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1126 | set_gdbarch_ptr_bit (gdbarch, 16); | |
1127 | set_gdbarch_addr_bit (gdbarch, 32); | |
1128 | set_gdbarch_float_bit (gdbarch, 32); | |
1129 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
1130 | set_gdbarch_double_bit (gdbarch, 32); | |
1131 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1132 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
1133 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
1134 | set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address); | |
1135 | set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer); | |
1136 | set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove); | |
1137 | ||
1138 | /* Breakpoints. */ | |
1139 | set_gdbarch_breakpoint_from_pc (gdbarch, rl78_breakpoint_from_pc); | |
1140 | set_gdbarch_decr_pc_after_break (gdbarch, 1); | |
1141 | ||
1142 | /* Disassembly. */ | |
1143 | set_gdbarch_print_insn (gdbarch, print_insn_rl78); | |
1144 | ||
1145 | /* Frames, prologues, etc. */ | |
1146 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1147 | set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue); | |
1148 | set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc); | |
1149 | set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp); | |
1150 | set_gdbarch_frame_align (gdbarch, rl78_frame_align); | |
1151 | frame_unwind_append_unwinder (gdbarch, &rl78_unwind); | |
1152 | ||
1153 | /* Dummy frames, return values. */ | |
1154 | set_gdbarch_dummy_id (gdbarch, rl78_dummy_id); | |
1155 | set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call); | |
1156 | set_gdbarch_return_value (gdbarch, rl78_return_value); | |
1157 | ||
1158 | /* Virtual tables. */ | |
1159 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
1160 | ||
1161 | return gdbarch; | |
1162 | } | |
1163 | ||
693be288 JK |
1164 | /* -Wmissing-prototypes */ |
1165 | extern initialize_file_ftype _initialize_rl78_tdep; | |
1166 | ||
9058f767 KB |
1167 | /* Register the above initialization routine. */ |
1168 | ||
1169 | void | |
1170 | _initialize_rl78_tdep (void) | |
1171 | { | |
1172 | register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init); | |
1173 | } |