Commit | Line | Data |
---|---|---|
c906108c | 1 | /* IBM RS/6000 native-dependent code for GDB, the GNU debugger. |
b6ba6518 KB |
2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, |
3 | 1998, 1999, 2000, 2001 | |
c5aa993b | 4 | Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "inferior.h" | |
25 | #include "target.h" | |
26 | #include "gdbcore.h" | |
27 | #include "xcoffsolib.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
c5aa993b | 30 | #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */ |
c906108c SS |
31 | #include "bfd.h" |
32 | #include "gdb-stabs.h" | |
4e052eda | 33 | #include "regcache.h" |
c906108c SS |
34 | |
35 | #include <sys/ptrace.h> | |
36 | #include <sys/reg.h> | |
37 | ||
38 | #include <sys/param.h> | |
39 | #include <sys/dir.h> | |
40 | #include <sys/user.h> | |
41 | #include <signal.h> | |
42 | #include <sys/ioctl.h> | |
43 | #include <fcntl.h> | |
7a78ae4e | 44 | #include <errno.h> |
c906108c SS |
45 | |
46 | #include <a.out.h> | |
47 | #include <sys/file.h> | |
48 | #include "gdb_stat.h" | |
49 | #include <sys/core.h> | |
7a78ae4e ND |
50 | #define __LDINFO_PTRACE32__ /* for __ld_info32 */ |
51 | #define __LDINFO_PTRACE64__ /* for __ld_info64 */ | |
c906108c | 52 | #include <sys/ldr.h> |
7a78ae4e | 53 | #include <sys/systemcfg.h> |
c906108c | 54 | |
7a78ae4e ND |
55 | /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for |
56 | debugging 32-bit and 64-bit processes. Define a typedef and macros for | |
57 | accessing fields in the appropriate structures. */ | |
58 | ||
59 | /* In 32-bit compilation mode (which is the only mode from which ptrace() | |
60 | works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */ | |
61 | ||
62 | #ifdef __ld_info32 | |
63 | # define ARCH3264 | |
64 | #endif | |
65 | ||
66 | /* Return whether the current architecture is 64-bit. */ | |
67 | ||
68 | #ifndef ARCH3264 | |
69 | # define ARCH64() 0 | |
70 | #else | |
71 | # define ARCH64() (REGISTER_RAW_SIZE (0) == 8) | |
72 | #endif | |
73 | ||
74 | /* Union of 32-bit and 64-bit ".reg" core file sections. */ | |
75 | ||
76 | typedef union { | |
77 | #ifdef ARCH3264 | |
78 | struct __context64 r64; | |
79 | #else | |
80 | struct mstsave r64; | |
81 | #endif | |
82 | struct mstsave r32; | |
83 | } CoreRegs; | |
84 | ||
85 | /* Union of 32-bit and 64-bit versions of ld_info. */ | |
86 | ||
87 | typedef union { | |
88 | #ifndef ARCH3264 | |
89 | struct ld_info l32; | |
90 | struct ld_info l64; | |
91 | #else | |
92 | struct __ld_info32 l32; | |
93 | struct __ld_info64 l64; | |
94 | #endif | |
95 | } LdInfo; | |
96 | ||
97 | /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x), | |
98 | declare and initialize a variable named VAR suitable for use as the arch64 | |
99 | parameter to the various LDI_*() macros. */ | |
100 | ||
101 | #ifndef ARCH3264 | |
102 | # define ARCH64_DECL(var) | |
103 | #else | |
104 | # define ARCH64_DECL(var) int var = ARCH64 () | |
105 | #endif | |
106 | ||
107 | /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process | |
108 | otherwise. This technique only works for FIELDs with the same data type in | |
109 | 32-bit and 64-bit versions of ld_info. */ | |
110 | ||
111 | #ifndef ARCH3264 | |
112 | # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field | |
113 | #else | |
114 | # define LDI_FIELD(ldi, arch64, field) \ | |
115 | (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field) | |
116 | #endif | |
117 | ||
118 | /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit | |
119 | process otherwise. */ | |
120 | ||
121 | #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next) | |
122 | #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd) | |
123 | #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename) | |
c906108c | 124 | |
a14ed312 | 125 | extern struct vmap *map_vmap (bfd * bf, bfd * arch); |
c906108c SS |
126 | |
127 | extern struct target_ops exec_ops; | |
128 | ||
a14ed312 | 129 | static void vmap_exec (void); |
c906108c | 130 | |
7a78ae4e | 131 | static void vmap_ldinfo (LdInfo *); |
c906108c | 132 | |
7a78ae4e | 133 | static struct vmap *add_vmap (LdInfo *); |
c906108c | 134 | |
7a78ae4e | 135 | static int objfile_symbol_add (void *); |
c906108c | 136 | |
a14ed312 | 137 | static void vmap_symtab (struct vmap *); |
c906108c | 138 | |
a14ed312 | 139 | static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR); |
c906108c | 140 | |
a14ed312 | 141 | static void exec_one_dummy_insn (void); |
c906108c SS |
142 | |
143 | extern void | |
a14ed312 | 144 | fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta); |
c906108c | 145 | |
7a78ae4e | 146 | /* Conversion from gdb-to-system special purpose register numbers. */ |
c906108c | 147 | |
c5aa993b JM |
148 | static int special_regs[] = |
149 | { | |
150 | IAR, /* PC_REGNUM */ | |
151 | MSR, /* PS_REGNUM */ | |
152 | CR, /* CR_REGNUM */ | |
153 | LR, /* LR_REGNUM */ | |
154 | CTR, /* CTR_REGNUM */ | |
c906108c | 155 | XER, /* XER_REGNUM */ |
c5aa993b | 156 | MQ /* MQ_REGNUM */ |
c906108c SS |
157 | }; |
158 | ||
7a78ae4e | 159 | /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */ |
c906108c | 160 | |
7a78ae4e ND |
161 | static int |
162 | ptrace32 (int req, int id, int *addr, int data, int *buf) | |
163 | { | |
164 | int ret = ptrace (req, id, (int *)addr, data, buf); | |
165 | #if 0 | |
166 | printf ("ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n", | |
167 | req, id, (unsigned int)addr, data, (unsigned int)buf, ret); | |
168 | #endif | |
169 | return ret; | |
170 | } | |
c906108c | 171 | |
7a78ae4e | 172 | /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */ |
c906108c | 173 | |
7a78ae4e ND |
174 | static int |
175 | ptrace64 (int req, int id, long long addr, int data, int *buf) | |
176 | { | |
177 | #ifdef ARCH3264 | |
178 | int ret = ptracex (req, id, addr, data, buf); | |
179 | #else | |
180 | int ret = 0; | |
181 | #endif | |
182 | #if 0 | |
183 | printf ("ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n", | |
184 | req, id, addr, data, (unsigned int)buf, ret); | |
185 | #endif | |
186 | return ret; | |
187 | } | |
c906108c | 188 | |
7a78ae4e | 189 | /* Fetch register REGNO from the inferior. */ |
c906108c | 190 | |
7a78ae4e ND |
191 | static void |
192 | fetch_register (int regno) | |
193 | { | |
194 | int *addr = (int *) ®isters[REGISTER_BYTE (regno)]; | |
195 | int nr; | |
c906108c | 196 | |
7a78ae4e ND |
197 | /* Retrieved values may be -1, so infer errors from errno. */ |
198 | errno = 0; | |
c906108c | 199 | |
7a78ae4e ND |
200 | /* Floating-point registers. */ |
201 | if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM) | |
202 | { | |
203 | nr = regno - FP0_REGNUM + FPR0; | |
204 | ptrace32 (PT_READ_FPR, inferior_pid, addr, nr, 0); | |
c5aa993b | 205 | } |
c906108c | 206 | |
7a78ae4e ND |
207 | /* Bogus register number. */ |
208 | else if (regno > LAST_UISA_SP_REGNUM) | |
c5aa993b | 209 | fprintf_unfiltered (gdb_stderr, |
c906108c SS |
210 | "gdb error: register no %d not implemented.\n", |
211 | regno); | |
212 | ||
7a78ae4e ND |
213 | /* Fixed-point registers. */ |
214 | else | |
215 | { | |
216 | if (regno >= FIRST_UISA_SP_REGNUM) | |
217 | nr = special_regs[regno - FIRST_UISA_SP_REGNUM]; | |
218 | else | |
219 | nr = regno; | |
220 | ||
221 | if (!ARCH64 ()) | |
222 | *addr = ptrace32 (PT_READ_GPR, inferior_pid, (int *)nr, 0, 0); | |
223 | else | |
224 | { | |
225 | /* PT_READ_GPR requires the buffer parameter to point to long long, | |
226 | even if the register is really only 32 bits. */ | |
227 | long long buf; | |
228 | ptrace64 (PT_READ_GPR, inferior_pid, nr, 0, (int *)&buf); | |
229 | if (REGISTER_RAW_SIZE (regno) == 8) | |
230 | memcpy (addr, &buf, 8); | |
231 | else | |
232 | *addr = buf; | |
233 | } | |
234 | } | |
235 | ||
236 | if (!errno) | |
237 | register_valid[regno] = 1; | |
238 | else | |
239 | { | |
240 | #if 0 | |
241 | /* FIXME: this happens 3 times at the start of each 64-bit program. */ | |
242 | perror ("ptrace read"); | |
243 | #endif | |
244 | errno = 0; | |
245 | } | |
c906108c SS |
246 | } |
247 | ||
7a78ae4e | 248 | /* Store register REGNO back into the inferior. */ |
c906108c | 249 | |
7a78ae4e ND |
250 | static void |
251 | store_register (int regno) | |
c906108c | 252 | { |
7a78ae4e ND |
253 | int *addr = (int *) ®isters[REGISTER_BYTE (regno)]; |
254 | int nr; | |
c906108c | 255 | |
7a78ae4e | 256 | /* -1 can be a successful return value, so infer errors from errno. */ |
c906108c SS |
257 | errno = 0; |
258 | ||
7a78ae4e ND |
259 | /* Floating-point registers. */ |
260 | if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM) | |
261 | { | |
262 | nr = regno - FP0_REGNUM + FPR0; | |
263 | ptrace32 (PT_WRITE_FPR, inferior_pid, addr, nr, 0); | |
264 | } | |
c906108c | 265 | |
7a78ae4e ND |
266 | /* Bogus register number. */ |
267 | else if (regno > LAST_UISA_SP_REGNUM) | |
268 | { | |
269 | if (regno >= NUM_REGS) | |
270 | fprintf_unfiltered (gdb_stderr, | |
271 | "gdb error: register no %d not implemented.\n", | |
272 | regno); | |
273 | } | |
c906108c | 274 | |
7a78ae4e ND |
275 | /* Fixed-point registers. */ |
276 | else | |
277 | { | |
278 | if (regno == SP_REGNUM) | |
279 | /* Execute one dummy instruction (which is a breakpoint) in inferior | |
280 | process to give kernel a chance to do internal housekeeping. | |
281 | Otherwise the following ptrace(2) calls will mess up user stack | |
282 | since kernel will get confused about the bottom of the stack | |
283 | (%sp). */ | |
284 | exec_one_dummy_insn (); | |
c906108c | 285 | |
7a78ae4e ND |
286 | if (regno >= FIRST_UISA_SP_REGNUM) |
287 | nr = special_regs[regno - FIRST_UISA_SP_REGNUM]; | |
288 | else | |
289 | nr = regno; | |
c906108c | 290 | |
7a78ae4e ND |
291 | if (!ARCH64 ()) |
292 | ptrace32 (PT_WRITE_GPR, inferior_pid, (int *)nr, *addr, 0); | |
293 | else | |
c906108c | 294 | { |
7a78ae4e ND |
295 | /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte |
296 | area, even if the register is really only 32 bits. */ | |
297 | long long buf; | |
298 | if (REGISTER_RAW_SIZE (regno) == 8) | |
299 | memcpy (&buf, addr, 8); | |
300 | else | |
301 | buf = *addr; | |
302 | ptrace64 (PT_WRITE_GPR, inferior_pid, nr, 0, (int *)&buf); | |
c906108c SS |
303 | } |
304 | } | |
305 | ||
7a78ae4e | 306 | if (errno) |
c906108c | 307 | { |
7a78ae4e ND |
308 | perror ("ptrace write"); |
309 | errno = 0; | |
c906108c | 310 | } |
7a78ae4e | 311 | } |
c906108c | 312 | |
7a78ae4e ND |
313 | /* Read from the inferior all registers if REGNO == -1 and just register |
314 | REGNO otherwise. */ | |
c906108c | 315 | |
7a78ae4e ND |
316 | void |
317 | fetch_inferior_registers (int regno) | |
318 | { | |
319 | if (regno != -1) | |
320 | fetch_register (regno); | |
321 | ||
322 | else | |
c906108c | 323 | { |
7a78ae4e ND |
324 | /* read 32 general purpose registers. */ |
325 | for (regno = 0; regno < 32; regno++) | |
326 | fetch_register (regno); | |
327 | ||
328 | /* read general purpose floating point registers. */ | |
329 | for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++) | |
330 | fetch_register (regno); | |
331 | ||
332 | /* read special registers. */ | |
333 | for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++) | |
334 | fetch_register (regno); | |
c906108c | 335 | } |
7a78ae4e | 336 | } |
c906108c | 337 | |
7a78ae4e ND |
338 | /* Store our register values back into the inferior. |
339 | If REGNO is -1, do this for all registers. | |
340 | Otherwise, REGNO specifies which register (so we can save time). */ | |
341 | ||
342 | void | |
343 | store_inferior_registers (int regno) | |
344 | { | |
345 | if (regno != -1) | |
346 | store_register (regno); | |
347 | ||
348 | else | |
f6077098 | 349 | { |
7a78ae4e ND |
350 | /* write general purpose registers first! */ |
351 | for (regno = GPR0; regno <= GPR31; regno++) | |
352 | store_register (regno); | |
353 | ||
354 | /* write floating point registers now. */ | |
355 | for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++) | |
356 | store_register (regno); | |
357 | ||
358 | /* write special registers. */ | |
359 | ||
360 | for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++) | |
361 | store_register (regno); | |
f6077098 | 362 | } |
7a78ae4e | 363 | } |
f6077098 | 364 | |
7a78ae4e ND |
365 | /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child |
366 | process, which is 64-bit if ARCH64 and 32-bit otherwise. Return | |
367 | success. */ | |
368 | ||
369 | static int | |
370 | read_word (CORE_ADDR from, int *to, int arch64) | |
371 | { | |
372 | /* Retrieved values may be -1, so infer errors from errno. */ | |
373 | errno = 0; | |
374 | ||
375 | if (arch64) | |
376 | *to = ptrace64 (PT_READ_I, inferior_pid, from, 0, NULL); | |
c906108c | 377 | else |
7a78ae4e | 378 | *to = ptrace32 (PT_READ_I, inferior_pid, (int *)(long) from, 0, NULL); |
c906108c | 379 | |
7a78ae4e ND |
380 | return !errno; |
381 | } | |
382 | ||
383 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR | |
384 | to debugger memory starting at MYADDR. Copy to inferior if | |
385 | WRITE is nonzero. | |
386 | ||
387 | Returns the length copied, which is either the LEN argument or zero. | |
388 | This xfer function does not do partial moves, since child_ops | |
389 | doesn't allow memory operations to cross below us in the target stack | |
390 | anyway. */ | |
391 | ||
392 | int | |
393 | child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, | |
d737ece6 PS |
394 | int write, struct mem_attrib *attrib, |
395 | struct target_ops *target) | |
7a78ae4e ND |
396 | { |
397 | /* Round starting address down to 32-bit word boundary. */ | |
398 | int mask = sizeof (int) - 1; | |
399 | CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask; | |
400 | ||
401 | /* Round ending address up to 32-bit word boundary. */ | |
402 | int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask) | |
403 | / sizeof (int); | |
404 | ||
405 | /* Allocate word transfer buffer. */ | |
406 | int *buf = (int *) alloca (count * sizeof (int)); | |
407 | ||
408 | int arch64 = ARCH64 (); | |
409 | int i; | |
410 | ||
411 | if (!write) | |
c906108c | 412 | { |
7a78ae4e ND |
413 | /* Retrieve memory a word at a time. */ |
414 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
415 | { | |
416 | if (!read_word (addr, buf + i, arch64)) | |
417 | return 0; | |
418 | QUIT; | |
419 | } | |
420 | ||
421 | /* Copy memory to supplied buffer. */ | |
422 | addr -= count * sizeof (int); | |
423 | memcpy (myaddr, (char *)buf + (memaddr - addr), len); | |
c906108c | 424 | } |
7a78ae4e ND |
425 | else |
426 | { | |
427 | /* Fetch leading memory needed for alignment. */ | |
428 | if (addr < memaddr) | |
429 | if (!read_word (addr, buf, arch64)) | |
430 | return 0; | |
431 | ||
432 | /* Fetch trailing memory needed for alignment. */ | |
433 | if (addr + count * sizeof (int) > memaddr + len) | |
434 | if (!read_word (addr, buf + count - 1, arch64)) | |
435 | return 0; | |
436 | ||
437 | /* Copy supplied data into memory buffer. */ | |
438 | memcpy ((char *)buf + (memaddr - addr), myaddr, len); | |
439 | ||
440 | /* Store memory one word at a time. */ | |
441 | for (i = 0, errno = 0; i < count; i++, addr += sizeof (int)) | |
442 | { | |
443 | if (arch64) | |
444 | ptrace64 (PT_WRITE_D, inferior_pid, addr, buf[i], NULL); | |
445 | else | |
446 | ptrace32 (PT_WRITE_D, inferior_pid, (int *)(long) addr, | |
447 | buf[i], NULL); | |
448 | ||
449 | if (errno) | |
450 | return 0; | |
451 | QUIT; | |
452 | } | |
453 | } | |
454 | ||
455 | return len; | |
c906108c SS |
456 | } |
457 | ||
458 | /* Execute one dummy breakpoint instruction. This way we give the kernel | |
459 | a chance to do some housekeeping and update inferior's internal data, | |
460 | including u_area. */ | |
461 | ||
462 | static void | |
7a78ae4e | 463 | exec_one_dummy_insn (void) |
c906108c SS |
464 | { |
465 | #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200 | |
466 | ||
c5aa993b | 467 | char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */ |
7a78ae4e | 468 | int ret, status, pid; |
c906108c SS |
469 | CORE_ADDR prev_pc; |
470 | ||
471 | /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We | |
472 | assume that this address will never be executed again by the real | |
473 | code. */ | |
474 | ||
475 | target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents); | |
476 | ||
c906108c SS |
477 | /* You might think this could be done with a single ptrace call, and |
478 | you'd be correct for just about every platform I've ever worked | |
479 | on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up -- | |
480 | the inferior never hits the breakpoint (it's also worth noting | |
481 | powerpc-ibm-aix4.1.3 works correctly). */ | |
482 | prev_pc = read_pc (); | |
483 | write_pc (DUMMY_INSN_ADDR); | |
7a78ae4e ND |
484 | if (ARCH64 ()) |
485 | ret = ptrace64 (PT_CONTINUE, inferior_pid, 1, 0, NULL); | |
486 | else | |
487 | ret = ptrace32 (PT_CONTINUE, inferior_pid, (int *)1, 0, NULL); | |
c906108c | 488 | |
7a78ae4e | 489 | if (ret != 0) |
c906108c SS |
490 | perror ("pt_continue"); |
491 | ||
c5aa993b JM |
492 | do |
493 | { | |
494 | pid = wait (&status); | |
495 | } | |
496 | while (pid != inferior_pid); | |
497 | ||
c906108c SS |
498 | write_pc (prev_pc); |
499 | target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents); | |
500 | } | |
501 | ||
7a78ae4e ND |
502 | /* Fetch registers from the register section in core bfd. */ |
503 | ||
c906108c | 504 | static void |
7a78ae4e ND |
505 | fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, |
506 | int which, CORE_ADDR reg_addr) | |
c906108c | 507 | { |
7a78ae4e ND |
508 | CoreRegs *regs; |
509 | double *fprs; | |
510 | int arch64, i, size; | |
511 | void *gprs, *sprs[7]; | |
512 | ||
513 | if (which != 0) | |
c906108c | 514 | { |
7a78ae4e ND |
515 | fprintf_unfiltered |
516 | (gdb_stderr, | |
517 | "Gdb error: unknown parameter to fetch_core_registers().\n"); | |
518 | return; | |
c906108c SS |
519 | } |
520 | ||
7a78ae4e ND |
521 | arch64 = ARCH64 (); |
522 | regs = (CoreRegs *) core_reg_sect; | |
c906108c | 523 | |
7a78ae4e ND |
524 | /* Retrieve register pointers. */ |
525 | ||
526 | if (arch64) | |
527 | { | |
528 | gprs = regs->r64.gpr; | |
529 | fprs = regs->r64.fpr; | |
530 | sprs[0] = ®s->r64.iar; | |
531 | sprs[1] = ®s->r64.msr; | |
532 | sprs[2] = ®s->r64.cr; | |
533 | sprs[3] = ®s->r64.lr; | |
534 | sprs[4] = ®s->r64.ctr; | |
535 | sprs[5] = ®s->r64.xer; | |
536 | } | |
c906108c | 537 | else |
7a78ae4e ND |
538 | { |
539 | gprs = regs->r32.gpr; | |
540 | fprs = regs->r32.fpr; | |
541 | sprs[0] = ®s->r32.iar; | |
542 | sprs[1] = ®s->r32.msr; | |
543 | sprs[2] = ®s->r32.cr; | |
544 | sprs[3] = ®s->r32.lr; | |
545 | sprs[4] = ®s->r32.ctr; | |
546 | sprs[5] = ®s->r32.xer; | |
547 | sprs[6] = ®s->r32.mq; | |
548 | } | |
549 | ||
550 | /* Copy from pointers to registers[]. */ | |
551 | ||
552 | memcpy (registers, gprs, 32 * (arch64 ? 8 : 4)); | |
553 | memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8); | |
554 | for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++) | |
555 | { | |
556 | size = REGISTER_RAW_SIZE (i); | |
557 | if (size) | |
558 | memcpy (registers + REGISTER_BYTE (i), | |
559 | sprs[i - FIRST_UISA_SP_REGNUM], size); | |
560 | } | |
c906108c SS |
561 | } |
562 | \f | |
7a78ae4e ND |
563 | |
564 | /* Copy information about text and data sections from LDI to VP for a 64-bit | |
565 | process if ARCH64 and for a 32-bit process otherwise. */ | |
566 | ||
567 | static void | |
568 | vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64) | |
569 | { | |
570 | if (arch64) | |
571 | { | |
572 | vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg; | |
573 | vp->tend = vp->tstart + ldi->l64.ldinfo_textsize; | |
574 | vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg; | |
575 | vp->dend = vp->dstart + ldi->l64.ldinfo_datasize; | |
576 | } | |
577 | else | |
578 | { | |
579 | vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg; | |
580 | vp->tend = vp->tstart + ldi->l32.ldinfo_textsize; | |
581 | vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg; | |
582 | vp->dend = vp->dstart + ldi->l32.ldinfo_datasize; | |
583 | } | |
584 | ||
585 | /* The run time loader maps the file header in addition to the text | |
586 | section and returns a pointer to the header in ldinfo_textorg. | |
587 | Adjust the text start address to point to the real start address | |
588 | of the text section. */ | |
589 | vp->tstart += vp->toffs; | |
590 | } | |
591 | ||
c906108c SS |
592 | /* handle symbol translation on vmapping */ |
593 | ||
594 | static void | |
7a78ae4e | 595 | vmap_symtab (struct vmap *vp) |
c906108c SS |
596 | { |
597 | register struct objfile *objfile; | |
598 | struct section_offsets *new_offsets; | |
599 | int i; | |
c5aa993b | 600 | |
c906108c SS |
601 | objfile = vp->objfile; |
602 | if (objfile == NULL) | |
603 | { | |
604 | /* OK, it's not an objfile we opened ourselves. | |
c5aa993b JM |
605 | Currently, that can only happen with the exec file, so |
606 | relocate the symbols for the symfile. */ | |
c906108c SS |
607 | if (symfile_objfile == NULL) |
608 | return; | |
609 | objfile = symfile_objfile; | |
610 | } | |
63f58cc5 PS |
611 | else if (!vp->loaded) |
612 | /* If symbols are not yet loaded, offsets are not yet valid. */ | |
613 | return; | |
c906108c | 614 | |
d4f3574e | 615 | new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS); |
c906108c SS |
616 | |
617 | for (i = 0; i < objfile->num_sections; ++i) | |
f0a58b0b | 618 | new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i); |
c5aa993b | 619 | |
c906108c SS |
620 | /* The symbols in the object file are linked to the VMA of the section, |
621 | relocate them VMA relative. */ | |
f0a58b0b EZ |
622 | new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma; |
623 | new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma; | |
624 | new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma; | |
c906108c SS |
625 | |
626 | objfile_relocate (objfile, new_offsets); | |
627 | } | |
628 | \f | |
629 | /* Add symbols for an objfile. */ | |
630 | ||
631 | static int | |
7a78ae4e | 632 | objfile_symbol_add (void *arg) |
c906108c SS |
633 | { |
634 | struct objfile *obj = (struct objfile *) arg; | |
635 | ||
2acceee2 | 636 | syms_from_objfile (obj, NULL, 0, 0); |
c906108c SS |
637 | new_symfile_objfile (obj, 0, 0); |
638 | return 1; | |
639 | } | |
640 | ||
63f58cc5 PS |
641 | /* Add symbols for a vmap. Return zero upon error. */ |
642 | ||
643 | int | |
644 | vmap_add_symbols (struct vmap *vp) | |
645 | { | |
646 | if (catch_errors (objfile_symbol_add, vp->objfile, | |
647 | "Error while reading shared library symbols:\n", | |
648 | RETURN_MASK_ALL)) | |
649 | { | |
650 | /* Note this is only done if symbol reading was successful. */ | |
651 | vp->loaded = 1; | |
652 | vmap_symtab (vp); | |
653 | return 1; | |
654 | } | |
655 | return 0; | |
656 | } | |
657 | ||
c906108c SS |
658 | /* Add a new vmap entry based on ldinfo() information. |
659 | ||
660 | If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a | |
661 | core file), the caller should set it to -1, and we will open the file. | |
662 | ||
663 | Return the vmap new entry. */ | |
664 | ||
665 | static struct vmap * | |
7a78ae4e | 666 | add_vmap (LdInfo *ldi) |
c906108c SS |
667 | { |
668 | bfd *abfd, *last; | |
7a78ae4e | 669 | register char *mem, *objname, *filename; |
c906108c SS |
670 | struct objfile *obj; |
671 | struct vmap *vp; | |
7a78ae4e ND |
672 | int fd; |
673 | ARCH64_DECL (arch64); | |
c906108c SS |
674 | |
675 | /* This ldi structure was allocated using alloca() in | |
676 | xcoff_relocate_symtab(). Now we need to have persistent object | |
677 | and member names, so we should save them. */ | |
678 | ||
7a78ae4e ND |
679 | filename = LDI_FILENAME (ldi, arch64); |
680 | mem = filename + strlen (filename) + 1; | |
c906108c | 681 | mem = savestring (mem, strlen (mem)); |
7a78ae4e | 682 | objname = savestring (filename, strlen (filename)); |
c906108c | 683 | |
7a78ae4e ND |
684 | fd = LDI_FD (ldi, arch64); |
685 | if (fd < 0) | |
c906108c SS |
686 | /* Note that this opens it once for every member; a possible |
687 | enhancement would be to only open it once for every object. */ | |
688 | abfd = bfd_openr (objname, gnutarget); | |
689 | else | |
7a78ae4e | 690 | abfd = bfd_fdopenr (objname, gnutarget, fd); |
c906108c | 691 | if (!abfd) |
63f58cc5 PS |
692 | { |
693 | warning ("Could not open `%s' as an executable file: %s", | |
694 | objname, bfd_errmsg (bfd_get_error ())); | |
695 | return NULL; | |
696 | } | |
c906108c SS |
697 | |
698 | /* make sure we have an object file */ | |
699 | ||
700 | if (bfd_check_format (abfd, bfd_object)) | |
701 | vp = map_vmap (abfd, 0); | |
702 | ||
703 | else if (bfd_check_format (abfd, bfd_archive)) | |
704 | { | |
705 | last = 0; | |
706 | /* FIXME??? am I tossing BFDs? bfd? */ | |
707 | while ((last = bfd_openr_next_archived_file (abfd, last))) | |
708 | if (STREQ (mem, last->filename)) | |
709 | break; | |
710 | ||
711 | if (!last) | |
712 | { | |
63f58cc5 | 713 | warning ("\"%s\": member \"%s\" missing.", objname, mem); |
c906108c | 714 | bfd_close (abfd); |
63f58cc5 | 715 | return NULL; |
c906108c SS |
716 | } |
717 | ||
c5aa993b | 718 | if (!bfd_check_format (last, bfd_object)) |
c906108c | 719 | { |
63f58cc5 PS |
720 | warning ("\"%s\": member \"%s\" not in executable format: %s.", |
721 | objname, mem, bfd_errmsg (bfd_get_error ())); | |
722 | bfd_close (last); | |
723 | bfd_close (abfd); | |
724 | return NULL; | |
c906108c SS |
725 | } |
726 | ||
727 | vp = map_vmap (last, abfd); | |
728 | } | |
729 | else | |
730 | { | |
63f58cc5 PS |
731 | warning ("\"%s\": not in executable format: %s.", |
732 | objname, bfd_errmsg (bfd_get_error ())); | |
c906108c | 733 | bfd_close (abfd); |
63f58cc5 | 734 | return NULL; |
c906108c | 735 | } |
2df3850c | 736 | obj = allocate_objfile (vp->bfd, 0); |
c906108c SS |
737 | vp->objfile = obj; |
738 | ||
63f58cc5 PS |
739 | /* Always add symbols for the main objfile. */ |
740 | if (vp == vmap || auto_solib_add) | |
741 | vmap_add_symbols (vp); | |
c906108c SS |
742 | return vp; |
743 | } | |
744 | \f | |
745 | /* update VMAP info with ldinfo() information | |
746 | Input is ptr to ldinfo() results. */ | |
747 | ||
748 | static void | |
7a78ae4e | 749 | vmap_ldinfo (LdInfo *ldi) |
c906108c SS |
750 | { |
751 | struct stat ii, vi; | |
752 | register struct vmap *vp; | |
753 | int got_one, retried; | |
754 | int got_exec_file = 0; | |
7a78ae4e ND |
755 | uint next; |
756 | int arch64 = ARCH64 (); | |
c906108c SS |
757 | |
758 | /* For each *ldi, see if we have a corresponding *vp. | |
759 | If so, update the mapping, and symbol table. | |
760 | If not, add an entry and symbol table. */ | |
761 | ||
c5aa993b JM |
762 | do |
763 | { | |
7a78ae4e | 764 | char *name = LDI_FILENAME (ldi, arch64); |
c5aa993b | 765 | char *memb = name + strlen (name) + 1; |
7a78ae4e | 766 | int fd = LDI_FD (ldi, arch64); |
c5aa993b JM |
767 | |
768 | retried = 0; | |
769 | ||
7a78ae4e | 770 | if (fstat (fd, &ii) < 0) |
c5aa993b JM |
771 | { |
772 | /* The kernel sets ld_info to -1, if the process is still using the | |
773 | object, and the object is removed. Keep the symbol info for the | |
774 | removed object and issue a warning. */ | |
775 | warning ("%s (fd=%d) has disappeared, keeping its symbols", | |
7a78ae4e | 776 | name, fd); |
c906108c | 777 | continue; |
c5aa993b JM |
778 | } |
779 | retry: | |
780 | for (got_one = 0, vp = vmap; vp; vp = vp->nxt) | |
781 | { | |
782 | struct objfile *objfile; | |
c906108c | 783 | |
c5aa993b JM |
784 | /* First try to find a `vp', which is the same as in ldinfo. |
785 | If not the same, just continue and grep the next `vp'. If same, | |
786 | relocate its tstart, tend, dstart, dend values. If no such `vp' | |
787 | found, get out of this for loop, add this ldi entry as a new vmap | |
788 | (add_vmap) and come back, find its `vp' and so on... */ | |
789 | ||
790 | /* The filenames are not always sufficient to match on. */ | |
791 | ||
792 | if ((name[0] == '/' && !STREQ (name, vp->name)) | |
793 | || (memb[0] && !STREQ (memb, vp->member))) | |
c906108c | 794 | continue; |
c906108c | 795 | |
c5aa993b JM |
796 | /* See if we are referring to the same file. |
797 | We have to check objfile->obfd, symfile.c:reread_symbols might | |
798 | have updated the obfd after a change. */ | |
799 | objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile; | |
800 | if (objfile == NULL | |
801 | || objfile->obfd == NULL | |
802 | || bfd_stat (objfile->obfd, &vi) < 0) | |
803 | { | |
804 | warning ("Unable to stat %s, keeping its symbols", name); | |
805 | continue; | |
806 | } | |
c906108c | 807 | |
c5aa993b JM |
808 | if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino) |
809 | continue; | |
c906108c | 810 | |
c5aa993b | 811 | if (!retried) |
7a78ae4e | 812 | close (fd); |
c906108c | 813 | |
c5aa993b | 814 | ++got_one; |
c906108c | 815 | |
c5aa993b | 816 | /* Found a corresponding VMAP. Remap! */ |
c906108c | 817 | |
7a78ae4e | 818 | vmap_secs (vp, ldi, arch64); |
c906108c | 819 | |
c5aa993b JM |
820 | /* The objfile is only NULL for the exec file. */ |
821 | if (vp->objfile == NULL) | |
822 | got_exec_file = 1; | |
c906108c | 823 | |
c5aa993b JM |
824 | /* relocate symbol table(s). */ |
825 | vmap_symtab (vp); | |
c906108c | 826 | |
c5aa993b JM |
827 | /* There may be more, so we don't break out of the loop. */ |
828 | } | |
829 | ||
830 | /* if there was no matching *vp, we must perforce create the sucker(s) */ | |
831 | if (!got_one && !retried) | |
832 | { | |
833 | add_vmap (ldi); | |
834 | ++retried; | |
835 | goto retry; | |
836 | } | |
837 | } | |
7a78ae4e ND |
838 | while ((next = LDI_NEXT (ldi, arch64)) |
839 | && (ldi = (void *) (next + (char *) ldi))); | |
c906108c SS |
840 | |
841 | /* If we don't find the symfile_objfile anywhere in the ldinfo, it | |
842 | is unlikely that the symbol file is relocated to the proper | |
843 | address. And we might have attached to a process which is | |
844 | running a different copy of the same executable. */ | |
845 | if (symfile_objfile != NULL && !got_exec_file) | |
846 | { | |
847 | warning_begin (); | |
848 | fputs_unfiltered ("Symbol file ", gdb_stderr); | |
849 | fputs_unfiltered (symfile_objfile->name, gdb_stderr); | |
850 | fputs_unfiltered ("\nis not mapped; discarding it.\n\ | |
851 | If in fact that file has symbols which the mapped files listed by\n\ | |
852 | \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\ | |
853 | \"add-symbol-file\" commands (note that you must take care of relocating\n\ | |
854 | symbols to the proper address).\n", gdb_stderr); | |
855 | free_objfile (symfile_objfile); | |
856 | symfile_objfile = NULL; | |
857 | } | |
858 | breakpoint_re_set (); | |
859 | } | |
860 | \f | |
861 | /* As well as symbol tables, exec_sections need relocation. After | |
862 | the inferior process' termination, there will be a relocated symbol | |
863 | table exist with no corresponding inferior process. At that time, we | |
864 | need to use `exec' bfd, rather than the inferior process's memory space | |
865 | to look up symbols. | |
866 | ||
867 | `exec_sections' need to be relocated only once, as long as the exec | |
868 | file remains unchanged. | |
c5aa993b | 869 | */ |
c906108c SS |
870 | |
871 | static void | |
7a78ae4e | 872 | vmap_exec (void) |
c906108c SS |
873 | { |
874 | static bfd *execbfd; | |
875 | int i; | |
876 | ||
877 | if (execbfd == exec_bfd) | |
878 | return; | |
879 | ||
880 | execbfd = exec_bfd; | |
881 | ||
882 | if (!vmap || !exec_ops.to_sections) | |
883 | error ("vmap_exec: vmap or exec_ops.to_sections == 0\n"); | |
884 | ||
c5aa993b | 885 | for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++) |
c906108c | 886 | { |
c5aa993b | 887 | if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name)) |
c906108c SS |
888 | { |
889 | exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma; | |
890 | exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma; | |
891 | } | |
c5aa993b | 892 | else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name)) |
c906108c SS |
893 | { |
894 | exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma; | |
895 | exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma; | |
896 | } | |
c5aa993b | 897 | else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name)) |
c906108c SS |
898 | { |
899 | exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma; | |
900 | exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma; | |
901 | } | |
902 | } | |
903 | } | |
7a78ae4e ND |
904 | |
905 | /* Set the current architecture from the host running GDB. Called when | |
906 | starting a child process. */ | |
907 | ||
908 | static void | |
909 | set_host_arch (int pid) | |
910 | { | |
911 | enum bfd_architecture arch; | |
912 | unsigned long mach; | |
913 | bfd abfd; | |
914 | struct gdbarch_info info; | |
915 | ||
916 | if (__power_rs ()) | |
917 | { | |
918 | arch = bfd_arch_rs6000; | |
919 | mach = bfd_mach_rs6k; | |
920 | } | |
921 | else | |
922 | { | |
923 | arch = bfd_arch_powerpc; | |
924 | mach = bfd_mach_ppc; | |
925 | } | |
926 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
927 | ||
928 | memset (&info, 0, sizeof info); | |
929 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
930 | ||
16f33e29 AC |
931 | if (!gdbarch_update_p (info)) |
932 | { | |
8e65ff28 AC |
933 | internal_error (__FILE__, __LINE__, |
934 | "set_host_arch: failed to select architecture"); | |
16f33e29 | 935 | } |
7a78ae4e ND |
936 | } |
937 | ||
c906108c | 938 | \f |
c5aa993b | 939 | /* xcoff_relocate_symtab - hook for symbol table relocation. |
c906108c SS |
940 | also reads shared libraries.. */ |
941 | ||
942 | void | |
7a78ae4e | 943 | xcoff_relocate_symtab (unsigned int pid) |
c906108c | 944 | { |
c18e0d23 | 945 | int load_segs = 64; /* number of load segments */ |
380b774b | 946 | int rc; |
7a78ae4e ND |
947 | LdInfo *ldi = NULL; |
948 | int arch64 = ARCH64 (); | |
949 | int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32); | |
950 | int size; | |
c906108c | 951 | |
c18e0d23 GM |
952 | do |
953 | { | |
7a78ae4e | 954 | size = load_segs * ldisize; |
3a84337c | 955 | ldi = (void *) xrealloc (ldi, size); |
c906108c | 956 | |
7a78ae4e | 957 | #if 0 |
380b774b GM |
958 | /* According to my humble theory, AIX has some timing problems and |
959 | when the user stack grows, kernel doesn't update stack info in time | |
960 | and ptrace calls step on user stack. That is why we sleep here a | |
961 | little, and give kernel to update its internals. */ | |
380b774b | 962 | usleep (36000); |
7a78ae4e ND |
963 | #endif |
964 | ||
965 | if (arch64) | |
966 | rc = ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL); | |
967 | else | |
968 | rc = ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL); | |
c906108c | 969 | |
c18e0d23 GM |
970 | if (rc == -1) |
971 | { | |
380b774b GM |
972 | if (errno == ENOMEM) |
973 | load_segs *= 2; | |
974 | else | |
975 | perror_with_name ("ptrace ldinfo"); | |
c18e0d23 GM |
976 | } |
977 | else | |
978 | { | |
380b774b GM |
979 | vmap_ldinfo (ldi); |
980 | vmap_exec (); /* relocate the exec and core sections as well. */ | |
c18e0d23 GM |
981 | } |
982 | } while (rc == -1); | |
380b774b | 983 | if (ldi) |
b8c9b27d | 984 | xfree (ldi); |
c906108c SS |
985 | } |
986 | \f | |
987 | /* Core file stuff. */ | |
988 | ||
989 | /* Relocate symtabs and read in shared library info, based on symbols | |
990 | from the core file. */ | |
991 | ||
992 | void | |
7a78ae4e | 993 | xcoff_relocate_core (struct target_ops *target) |
c906108c | 994 | { |
c906108c SS |
995 | sec_ptr ldinfo_sec; |
996 | int offset = 0; | |
7a78ae4e | 997 | LdInfo *ldi; |
c906108c | 998 | struct vmap *vp; |
7a78ae4e ND |
999 | int arch64 = ARCH64 (); |
1000 | ||
1001 | /* Size of a struct ld_info except for the variable-length filename. */ | |
1002 | int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64); | |
c906108c SS |
1003 | |
1004 | /* Allocated size of buffer. */ | |
7a78ae4e | 1005 | int buffer_size = nonfilesz; |
c906108c SS |
1006 | char *buffer = xmalloc (buffer_size); |
1007 | struct cleanup *old = make_cleanup (free_current_contents, &buffer); | |
c5aa993b | 1008 | |
c906108c SS |
1009 | ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); |
1010 | if (ldinfo_sec == NULL) | |
1011 | { | |
1012 | bfd_err: | |
1013 | fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n", | |
1014 | bfd_errmsg (bfd_get_error ())); | |
1015 | do_cleanups (old); | |
1016 | return; | |
1017 | } | |
1018 | do | |
1019 | { | |
1020 | int i; | |
1021 | int names_found = 0; | |
1022 | ||
1023 | /* Read in everything but the name. */ | |
1024 | if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer, | |
7a78ae4e | 1025 | offset, nonfilesz) == 0) |
c906108c SS |
1026 | goto bfd_err; |
1027 | ||
1028 | /* Now the name. */ | |
7a78ae4e | 1029 | i = nonfilesz; |
c906108c SS |
1030 | do |
1031 | { | |
1032 | if (i == buffer_size) | |
1033 | { | |
1034 | buffer_size *= 2; | |
1035 | buffer = xrealloc (buffer, buffer_size); | |
1036 | } | |
1037 | if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i], | |
1038 | offset + i, 1) == 0) | |
1039 | goto bfd_err; | |
1040 | if (buffer[i++] == '\0') | |
1041 | ++names_found; | |
c5aa993b JM |
1042 | } |
1043 | while (names_found < 2); | |
c906108c | 1044 | |
7a78ae4e | 1045 | ldi = (LdInfo *) buffer; |
c906108c SS |
1046 | |
1047 | /* Can't use a file descriptor from the core file; need to open it. */ | |
7a78ae4e ND |
1048 | if (arch64) |
1049 | ldi->l64.ldinfo_fd = -1; | |
1050 | else | |
1051 | ldi->l32.ldinfo_fd = -1; | |
c5aa993b | 1052 | |
c906108c | 1053 | /* The first ldinfo is for the exec file, allocated elsewhere. */ |
63f58cc5 | 1054 | if (offset == 0 && vmap != NULL) |
c906108c SS |
1055 | vp = vmap; |
1056 | else | |
7a78ae4e | 1057 | vp = add_vmap (ldi); |
c906108c | 1058 | |
63f58cc5 | 1059 | /* Process next shared library upon error. */ |
7a78ae4e | 1060 | offset += LDI_NEXT (ldi, arch64); |
63f58cc5 PS |
1061 | if (vp == NULL) |
1062 | continue; | |
1063 | ||
7a78ae4e | 1064 | vmap_secs (vp, ldi, arch64); |
c906108c SS |
1065 | |
1066 | /* Unless this is the exec file, | |
c5aa993b | 1067 | add our sections to the section table for the core target. */ |
c906108c SS |
1068 | if (vp != vmap) |
1069 | { | |
c906108c | 1070 | struct section_table *stp; |
6426a772 JM |
1071 | |
1072 | target_resize_to_sections (target, 2); | |
c906108c SS |
1073 | stp = target->to_sections_end - 2; |
1074 | ||
1075 | stp->bfd = vp->bfd; | |
1076 | stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text"); | |
1077 | stp->addr = vp->tstart; | |
1078 | stp->endaddr = vp->tend; | |
1079 | stp++; | |
c5aa993b | 1080 | |
c906108c SS |
1081 | stp->bfd = vp->bfd; |
1082 | stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data"); | |
1083 | stp->addr = vp->dstart; | |
1084 | stp->endaddr = vp->dend; | |
1085 | } | |
1086 | ||
1087 | vmap_symtab (vp); | |
c5aa993b | 1088 | } |
7a78ae4e | 1089 | while (LDI_NEXT (ldi, arch64) != 0); |
c906108c SS |
1090 | vmap_exec (); |
1091 | breakpoint_re_set (); | |
1092 | do_cleanups (old); | |
1093 | } | |
1094 | ||
1095 | int | |
7a78ae4e | 1096 | kernel_u_size (void) |
c906108c SS |
1097 | { |
1098 | return (sizeof (struct user)); | |
1099 | } | |
1100 | \f | |
1101 | /* Under AIX, we have to pass the correct TOC pointer to a function | |
1102 | when calling functions in the inferior. | |
1103 | We try to find the relative toc offset of the objfile containing PC | |
1104 | and add the current load address of the data segment from the vmap. */ | |
1105 | ||
1106 | static CORE_ADDR | |
7a78ae4e | 1107 | find_toc_address (CORE_ADDR pc) |
c906108c SS |
1108 | { |
1109 | struct vmap *vp; | |
7a78ae4e | 1110 | extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */ |
c906108c SS |
1111 | |
1112 | for (vp = vmap; vp; vp = vp->nxt) | |
1113 | { | |
1114 | if (pc >= vp->tstart && pc < vp->tend) | |
1115 | { | |
1116 | /* vp->objfile is only NULL for the exec file. */ | |
1117 | return vp->dstart + get_toc_offset (vp->objfile == NULL | |
1118 | ? symfile_objfile | |
1119 | : vp->objfile); | |
1120 | } | |
1121 | } | |
1122 | error ("Unable to find TOC entry for pc 0x%x\n", pc); | |
1123 | } | |
1124 | \f | |
1125 | /* Register that we are able to handle rs6000 core file formats. */ | |
1126 | ||
1127 | static struct core_fns rs6000_core_fns = | |
1128 | { | |
7a78ae4e | 1129 | bfd_target_xcoff_flavour, /* core_flavour */ |
2acceee2 JM |
1130 | default_check_format, /* check_format */ |
1131 | default_core_sniffer, /* core_sniffer */ | |
1132 | fetch_core_registers, /* core_read_registers */ | |
1133 | NULL /* next */ | |
c906108c SS |
1134 | }; |
1135 | ||
1136 | void | |
7a78ae4e | 1137 | _initialize_core_rs6000 (void) |
c906108c SS |
1138 | { |
1139 | /* Initialize hook in rs6000-tdep.c for determining the TOC address when | |
1140 | calling functions in the inferior. */ | |
7a78ae4e ND |
1141 | rs6000_find_toc_address_hook = find_toc_address; |
1142 | ||
1143 | /* Initialize hook in rs6000-tdep.c to set the current architecture when | |
1144 | starting a child process. */ | |
1145 | rs6000_set_host_arch_hook = set_host_arch; | |
c906108c | 1146 | |
c906108c SS |
1147 | add_core_fns (&rs6000_core_fns); |
1148 | } |