2002-09-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
2a873819 3 1998, 1999, 2000, 2001, 2002
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e 37
2fccf04a 38#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 39#include "coff/internal.h" /* for libcoff.h */
2fccf04a 40#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
41#include "coff/xcoff.h"
42#include "libxcoff.h"
7a78ae4e 43
9aa1e687 44#include "elf-bfd.h"
7a78ae4e 45
6ded7999 46#include "solib-svr4.h"
9aa1e687 47#include "ppc-tdep.h"
7a78ae4e
ND
48
49/* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56#define SIG_FRAME_PC_OFFSET 96
57#define SIG_FRAME_LR_OFFSET 108
58#define SIG_FRAME_FP_OFFSET 284
59
7a78ae4e
ND
60/* To be used by skip_prologue. */
61
62struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 69 int saved_vr; /* smallest # of saved vr */
96ff0de4 70 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 76 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 77 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
6be8bc0c 80 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
81 };
82
83/* Description of a single register. */
84
85struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
489461e2 91 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
92 };
93
c906108c
SS
94/* Breakpoint shadows for the single step instructions will be kept here. */
95
c5aa993b
JM
96static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103stepBreaks[2];
c906108c
SS
104
105/* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
7a78ae4e
ND
109CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111/* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
115
116/* Static function prototypes */
117
a14ed312
KB
118static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
077276e8
KB
120static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
7a78ae4e
ND
122static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 125
64b84175
KB
126/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127int
128altivec_register_p (int regno)
129{
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135}
136
7a78ae4e 137/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 138
7a78ae4e
ND
139static CORE_ADDR
140read_memory_addr (CORE_ADDR memaddr, int len)
141{
142 return read_memory_unsigned_integer (memaddr, len);
143}
c906108c 144
7a78ae4e
ND
145static CORE_ADDR
146rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
147{
148 struct rs6000_framedata frame;
077276e8 149 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
150 return pc;
151}
152
153
c906108c
SS
154/* Fill in fi->saved_regs */
155
156struct frame_extra_info
157{
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
c5aa993b 163 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
164};
165
9aa1e687 166void
7a78ae4e 167rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 168{
c5aa993b 169 fi->extra_info = (struct frame_extra_info *)
c906108c
SS
170 frame_obstack_alloc (sizeof (struct frame_extra_info));
171 fi->extra_info->initial_sp = 0;
172 if (fi->next != (CORE_ADDR) 0
173 && fi->pc < TEXT_SEGMENT_BASE)
7a292a7a 174 /* We're in get_prev_frame */
c906108c
SS
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 fi->signal_handler_caller = 1;
179}
180
7a78ae4e
ND
181/* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
c906108c 186
7a78ae4e
ND
187/* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
9aa1e687 191void
7a78ae4e 192rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
193{
194 frame_get_saved_regs (fi, NULL);
195}
196
7a78ae4e
ND
197static CORE_ADDR
198rs6000_frame_args_address (struct frame_info *fi)
c906108c
SS
199{
200 if (fi->extra_info->initial_sp != 0)
201 return fi->extra_info->initial_sp;
202 else
203 return frame_initial_stack_address (fi);
204}
205
7a78ae4e
ND
206/* Immediately after a function call, return the saved pc.
207 Can't go through the frames for this because on some machines
208 the new frame is not set up until the new function executes
209 some instructions. */
210
211static CORE_ADDR
212rs6000_saved_pc_after_call (struct frame_info *fi)
213{
2188cbdd 214 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 215}
c906108c
SS
216
217/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
218
219static CORE_ADDR
7a78ae4e 220branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
221{
222 CORE_ADDR dest;
223 int immediate;
224 int absolute;
225 int ext_op;
226
227 absolute = (int) ((instr >> 1) & 1);
228
c5aa993b
JM
229 switch (opcode)
230 {
231 case 18:
232 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
233 if (absolute)
234 dest = immediate;
235 else
236 dest = pc + immediate;
237 break;
238
239 case 16:
240 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
241 if (absolute)
242 dest = immediate;
243 else
244 dest = pc + immediate;
245 break;
246
247 case 19:
248 ext_op = (instr >> 1) & 0x3ff;
249
250 if (ext_op == 16) /* br conditional register */
251 {
2188cbdd 252 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
253
254 /* If we are about to return from a signal handler, dest is
255 something like 0x3c90. The current frame is a signal handler
256 caller frame, upon completion of the sigreturn system call
257 execution will return to the saved PC in the frame. */
258 if (dest < TEXT_SEGMENT_BASE)
259 {
260 struct frame_info *fi;
261
262 fi = get_current_frame ();
263 if (fi != NULL)
7a78ae4e 264 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
21283beb 265 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
266 }
267 }
268
269 else if (ext_op == 528) /* br cond to count reg */
270 {
2188cbdd 271 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
272
273 /* If we are about to execute a system call, dest is something
274 like 0x22fc or 0x3b00. Upon completion the system call
275 will return to the address in the link register. */
276 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 277 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
278 }
279 else
280 return -1;
281 break;
c906108c 282
c5aa993b
JM
283 default:
284 return -1;
285 }
c906108c
SS
286 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
287}
288
289
290/* Sequence of bytes for breakpoint instruction. */
291
292#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
293#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
294
f4f9705a 295const static unsigned char *
7a78ae4e 296rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
297{
298 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
299 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
300 *bp_size = 4;
d7449b42 301 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
302 return big_breakpoint;
303 else
304 return little_breakpoint;
305}
306
307
308/* AIX does not support PT_STEP. Simulate it. */
309
310void
379d08a1
AC
311rs6000_software_single_step (enum target_signal signal,
312 int insert_breakpoints_p)
c906108c 313{
7c40d541
KB
314 CORE_ADDR dummy;
315 int breakp_sz;
f4f9705a 316 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
317 int ii, insn;
318 CORE_ADDR loc;
319 CORE_ADDR breaks[2];
320 int opcode;
321
c5aa993b
JM
322 if (insert_breakpoints_p)
323 {
c906108c 324
c5aa993b 325 loc = read_pc ();
c906108c 326
c5aa993b 327 insn = read_memory_integer (loc, 4);
c906108c 328
7c40d541 329 breaks[0] = loc + breakp_sz;
c5aa993b
JM
330 opcode = insn >> 26;
331 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 332
c5aa993b
JM
333 /* Don't put two breakpoints on the same address. */
334 if (breaks[1] == breaks[0])
335 breaks[1] = -1;
c906108c 336
c5aa993b 337 stepBreaks[1].address = 0;
c906108c 338
c5aa993b
JM
339 for (ii = 0; ii < 2; ++ii)
340 {
c906108c 341
c5aa993b
JM
342 /* ignore invalid breakpoint. */
343 if (breaks[ii] == -1)
344 continue;
7c40d541 345 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
346 stepBreaks[ii].address = breaks[ii];
347 }
c906108c 348
c5aa993b
JM
349 }
350 else
351 {
c906108c 352
c5aa993b
JM
353 /* remove step breakpoints. */
354 for (ii = 0; ii < 2; ++ii)
355 if (stepBreaks[ii].address != 0)
7c40d541
KB
356 target_remove_breakpoint (stepBreaks[ii].address,
357 stepBreaks[ii].data);
c5aa993b 358 }
c906108c 359 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 360 /* What errors? {read,write}_memory call error(). */
c906108c
SS
361}
362
363
364/* return pc value after skipping a function prologue and also return
365 information about a function frame.
366
367 in struct rs6000_framedata fdata:
c5aa993b
JM
368 - frameless is TRUE, if function does not have a frame.
369 - nosavedpc is TRUE, if function does not save %pc value in its frame.
370 - offset is the initial size of this stack frame --- the amount by
371 which we decrement the sp to allocate the frame.
372 - saved_gpr is the number of the first saved gpr.
373 - saved_fpr is the number of the first saved fpr.
6be8bc0c 374 - saved_vr is the number of the first saved vr.
96ff0de4 375 - saved_ev is the number of the first saved ev.
c5aa993b
JM
376 - alloca_reg is the number of the register used for alloca() handling.
377 Otherwise -1.
378 - gpr_offset is the offset of the first saved gpr from the previous frame.
379 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 380 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 381 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
382 - lr_offset is the offset of the saved lr
383 - cr_offset is the offset of the saved cr
6be8bc0c 384 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 385 */
c906108c
SS
386
387#define SIGNED_SHORT(x) \
388 ((sizeof (short) == 2) \
389 ? ((int)(short)(x)) \
390 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
391
392#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
393
55d05f3b
KB
394/* Limit the number of skipped non-prologue instructions, as the examining
395 of the prologue is expensive. */
396static int max_skip_non_prologue_insns = 10;
397
398/* Given PC representing the starting address of a function, and
399 LIM_PC which is the (sloppy) limit to which to scan when looking
400 for a prologue, attempt to further refine this limit by using
401 the line data in the symbol table. If successful, a better guess
402 on where the prologue ends is returned, otherwise the previous
403 value of lim_pc is returned. */
404static CORE_ADDR
405refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
406{
407 struct symtab_and_line prologue_sal;
408
409 prologue_sal = find_pc_line (pc, 0);
410 if (prologue_sal.line != 0)
411 {
412 int i;
413 CORE_ADDR addr = prologue_sal.end;
414
415 /* Handle the case in which compiler's optimizer/scheduler
416 has moved instructions into the prologue. We scan ahead
417 in the function looking for address ranges whose corresponding
418 line number is less than or equal to the first one that we
419 found for the function. (It can be less than when the
420 scheduler puts a body instruction before the first prologue
421 instruction.) */
422 for (i = 2 * max_skip_non_prologue_insns;
423 i > 0 && (lim_pc == 0 || addr < lim_pc);
424 i--)
425 {
426 struct symtab_and_line sal;
427
428 sal = find_pc_line (addr, 0);
429 if (sal.line == 0)
430 break;
431 if (sal.line <= prologue_sal.line
432 && sal.symtab == prologue_sal.symtab)
433 {
434 prologue_sal = sal;
435 }
436 addr = sal.end;
437 }
438
439 if (lim_pc == 0 || prologue_sal.end < lim_pc)
440 lim_pc = prologue_sal.end;
441 }
442 return lim_pc;
443}
444
445
7a78ae4e 446static CORE_ADDR
077276e8 447skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
448{
449 CORE_ADDR orig_pc = pc;
55d05f3b 450 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 451 CORE_ADDR li_found_pc = 0;
c906108c
SS
452 char buf[4];
453 unsigned long op;
454 long offset = 0;
6be8bc0c 455 long vr_saved_offset = 0;
482ca3f5
KB
456 int lr_reg = -1;
457 int cr_reg = -1;
6be8bc0c 458 int vr_reg = -1;
96ff0de4
EZ
459 int ev_reg = -1;
460 long ev_offset = 0;
6be8bc0c 461 int vrsave_reg = -1;
c906108c
SS
462 int reg;
463 int framep = 0;
464 int minimal_toc_loaded = 0;
ddb20c56 465 int prev_insn_was_prologue_insn = 1;
55d05f3b 466 int num_skip_non_prologue_insns = 0;
96ff0de4
EZ
467 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
468
55d05f3b
KB
469 /* Attempt to find the end of the prologue when no limit is specified.
470 Note that refine_prologue_limit() has been written so that it may
471 be used to "refine" the limits of non-zero PC values too, but this
472 is only safe if we 1) trust the line information provided by the
473 compiler and 2) iterate enough to actually find the end of the
474 prologue.
475
476 It may become a good idea at some point (for both performance and
477 accuracy) to unconditionally call refine_prologue_limit(). But,
478 until we can make a clear determination that this is beneficial,
479 we'll play it safe and only use it to obtain a limit when none
480 has been specified. */
481 if (lim_pc == 0)
482 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 483
ddb20c56 484 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
485 fdata->saved_gpr = -1;
486 fdata->saved_fpr = -1;
6be8bc0c 487 fdata->saved_vr = -1;
96ff0de4 488 fdata->saved_ev = -1;
c906108c
SS
489 fdata->alloca_reg = -1;
490 fdata->frameless = 1;
491 fdata->nosavedpc = 1;
492
55d05f3b 493 for (;; pc += 4)
c906108c 494 {
ddb20c56
KB
495 /* Sometimes it isn't clear if an instruction is a prologue
496 instruction or not. When we encounter one of these ambiguous
497 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
498 Otherwise, we'll assume that it really is a prologue instruction. */
499 if (prev_insn_was_prologue_insn)
500 last_prologue_pc = pc;
55d05f3b
KB
501
502 /* Stop scanning if we've hit the limit. */
503 if (lim_pc != 0 && pc >= lim_pc)
504 break;
505
ddb20c56
KB
506 prev_insn_was_prologue_insn = 1;
507
55d05f3b 508 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
509 if (target_read_memory (pc, buf, 4))
510 break;
511 op = extract_signed_integer (buf, 4);
c906108c 512
c5aa993b
JM
513 if ((op & 0xfc1fffff) == 0x7c0802a6)
514 { /* mflr Rx */
515 lr_reg = (op & 0x03e00000) | 0x90010000;
516 continue;
c906108c 517
c5aa993b
JM
518 }
519 else if ((op & 0xfc1fffff) == 0x7c000026)
520 { /* mfcr Rx */
521 cr_reg = (op & 0x03e00000) | 0x90010000;
522 continue;
c906108c 523
c906108c 524 }
c5aa993b
JM
525 else if ((op & 0xfc1f0000) == 0xd8010000)
526 { /* stfd Rx,NUM(r1) */
527 reg = GET_SRC_REG (op);
528 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
529 {
530 fdata->saved_fpr = reg;
531 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
532 }
533 continue;
c906108c 534
c5aa993b
JM
535 }
536 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
537 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
538 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
539 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
540 {
541
542 reg = GET_SRC_REG (op);
543 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
544 {
545 fdata->saved_gpr = reg;
7a78ae4e
ND
546 if ((op & 0xfc1f0003) == 0xf8010000)
547 op = (op >> 1) << 1;
c5aa993b
JM
548 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
549 }
550 continue;
c906108c 551
ddb20c56
KB
552 }
553 else if ((op & 0xffff0000) == 0x60000000)
554 {
96ff0de4 555 /* nop */
ddb20c56
KB
556 /* Allow nops in the prologue, but do not consider them to
557 be part of the prologue unless followed by other prologue
558 instructions. */
559 prev_insn_was_prologue_insn = 0;
560 continue;
561
c906108c 562 }
c5aa993b
JM
563 else if ((op & 0xffff0000) == 0x3c000000)
564 { /* addis 0,0,NUM, used
565 for >= 32k frames */
566 fdata->offset = (op & 0x0000ffff) << 16;
567 fdata->frameless = 0;
568 continue;
569
570 }
571 else if ((op & 0xffff0000) == 0x60000000)
572 { /* ori 0,0,NUM, 2nd ha
573 lf of >= 32k frames */
574 fdata->offset |= (op & 0x0000ffff);
575 fdata->frameless = 0;
576 continue;
577
578 }
482ca3f5 579 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
580 { /* st Rx,NUM(r1)
581 where Rx == lr */
582 fdata->lr_offset = SIGNED_SHORT (op) + offset;
583 fdata->nosavedpc = 0;
584 lr_reg = 0;
585 continue;
586
587 }
482ca3f5 588 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
589 { /* st Rx,NUM(r1)
590 where Rx == cr */
591 fdata->cr_offset = SIGNED_SHORT (op) + offset;
592 cr_reg = 0;
593 continue;
594
595 }
596 else if (op == 0x48000005)
597 { /* bl .+4 used in
598 -mrelocatable */
599 continue;
600
601 }
602 else if (op == 0x48000004)
603 { /* b .+4 (xlc) */
604 break;
605
c5aa993b 606 }
6be8bc0c
EZ
607 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
608 in V.4 -mminimal-toc */
c5aa993b
JM
609 (op & 0xffff0000) == 0x3bde0000)
610 { /* addi 30,30,foo@l */
611 continue;
c906108c 612
c5aa993b
JM
613 }
614 else if ((op & 0xfc000001) == 0x48000001)
615 { /* bl foo,
616 to save fprs??? */
c906108c 617
c5aa993b 618 fdata->frameless = 0;
6be8bc0c
EZ
619 /* Don't skip over the subroutine call if it is not within
620 the first three instructions of the prologue. */
c5aa993b
JM
621 if ((pc - orig_pc) > 8)
622 break;
623
624 op = read_memory_integer (pc + 4, 4);
625
6be8bc0c
EZ
626 /* At this point, make sure this is not a trampoline
627 function (a function that simply calls another functions,
628 and nothing else). If the next is not a nop, this branch
629 was part of the function prologue. */
c5aa993b
JM
630
631 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
632 break; /* don't skip over
633 this branch */
634 continue;
635
636 /* update stack pointer */
637 }
7a78ae4e
ND
638 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
639 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
640 {
c5aa993b 641 fdata->frameless = 0;
7a78ae4e
ND
642 if ((op & 0xffff0003) == 0xf8210001)
643 op = (op >> 1) << 1;
c5aa993b
JM
644 fdata->offset = SIGNED_SHORT (op);
645 offset = fdata->offset;
646 continue;
647
648 }
649 else if (op == 0x7c21016e)
650 { /* stwux 1,1,0 */
651 fdata->frameless = 0;
652 offset = fdata->offset;
653 continue;
654
655 /* Load up minimal toc pointer */
656 }
657 else if ((op >> 22) == 0x20f
658 && !minimal_toc_loaded)
659 { /* l r31,... or l r30,... */
660 minimal_toc_loaded = 1;
661 continue;
662
f6077098
KB
663 /* move parameters from argument registers to local variable
664 registers */
665 }
666 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
667 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
668 (((op >> 21) & 31) <= 10) &&
96ff0de4 669 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
670 {
671 continue;
672
c5aa993b
JM
673 /* store parameters in stack */
674 }
6be8bc0c 675 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 676 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
677 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
678 {
c5aa993b 679 continue;
c906108c 680
c5aa993b
JM
681 /* store parameters in stack via frame pointer */
682 }
683 else if (framep &&
684 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
685 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
686 (op & 0xfc1f0000) == 0xfc1f0000))
687 { /* frsp, fp?,NUM(r1) */
688 continue;
689
690 /* Set up frame pointer */
691 }
692 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
693 || op == 0x7c3f0b78)
694 { /* mr r31, r1 */
695 fdata->frameless = 0;
696 framep = 1;
697 fdata->alloca_reg = 31;
698 continue;
699
700 /* Another way to set up the frame pointer. */
701 }
702 else if ((op & 0xfc1fffff) == 0x38010000)
703 { /* addi rX, r1, 0x0 */
704 fdata->frameless = 0;
705 framep = 1;
706 fdata->alloca_reg = (op & ~0x38010000) >> 21;
707 continue;
c5aa993b 708 }
6be8bc0c
EZ
709 /* AltiVec related instructions. */
710 /* Store the vrsave register (spr 256) in another register for
711 later manipulation, or load a register into the vrsave
712 register. 2 instructions are used: mfvrsave and
713 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
714 and mtspr SPR256, Rn. */
715 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
716 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
717 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
718 {
719 vrsave_reg = GET_SRC_REG (op);
720 continue;
721 }
722 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
723 {
724 continue;
725 }
726 /* Store the register where vrsave was saved to onto the stack:
727 rS is the register where vrsave was stored in a previous
728 instruction. */
729 /* 100100 sssss 00001 dddddddd dddddddd */
730 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
731 {
732 if (vrsave_reg == GET_SRC_REG (op))
733 {
734 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
735 vrsave_reg = -1;
736 }
737 continue;
738 }
739 /* Compute the new value of vrsave, by modifying the register
740 where vrsave was saved to. */
741 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
742 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
743 {
744 continue;
745 }
746 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
747 in a pair of insns to save the vector registers on the
748 stack. */
749 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
750 /* 001110 01110 00000 iiii iiii iiii iiii */
751 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
752 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
753 {
754 li_found_pc = pc;
755 vr_saved_offset = SIGNED_SHORT (op);
756 }
757 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
758 /* 011111 sssss 11111 00000 00111001110 */
759 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
760 {
761 if (pc == (li_found_pc + 4))
762 {
763 vr_reg = GET_SRC_REG (op);
764 /* If this is the first vector reg to be saved, or if
765 it has a lower number than others previously seen,
766 reupdate the frame info. */
767 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
768 {
769 fdata->saved_vr = vr_reg;
770 fdata->vr_offset = vr_saved_offset + offset;
771 }
772 vr_saved_offset = -1;
773 vr_reg = -1;
774 li_found_pc = 0;
775 }
776 }
777 /* End AltiVec related instructions. */
96ff0de4
EZ
778
779 /* Start BookE related instructions. */
780 /* Store gen register S at (r31+uimm).
781 Any register less than r13 is volatile, so we don't care. */
782 /* 000100 sssss 11111 iiiii 01100100001 */
783 else if (arch_info->mach == bfd_mach_ppc_e500
784 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
785 {
786 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
787 {
788 unsigned int imm;
789 ev_reg = GET_SRC_REG (op);
790 imm = (op >> 11) & 0x1f;
791 ev_offset = imm * 8;
792 /* If this is the first vector reg to be saved, or if
793 it has a lower number than others previously seen,
794 reupdate the frame info. */
795 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
796 {
797 fdata->saved_ev = ev_reg;
798 fdata->ev_offset = ev_offset + offset;
799 }
800 }
801 continue;
802 }
803 /* Store gen register rS at (r1+rB). */
804 /* 000100 sssss 00001 bbbbb 01100100000 */
805 else if (arch_info->mach == bfd_mach_ppc_e500
806 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
807 {
808 if (pc == (li_found_pc + 4))
809 {
810 ev_reg = GET_SRC_REG (op);
811 /* If this is the first vector reg to be saved, or if
812 it has a lower number than others previously seen,
813 reupdate the frame info. */
814 /* We know the contents of rB from the previous instruction. */
815 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
816 {
817 fdata->saved_ev = ev_reg;
818 fdata->ev_offset = vr_saved_offset + offset;
819 }
820 vr_saved_offset = -1;
821 ev_reg = -1;
822 li_found_pc = 0;
823 }
824 continue;
825 }
826 /* Store gen register r31 at (rA+uimm). */
827 /* 000100 11111 aaaaa iiiii 01100100001 */
828 else if (arch_info->mach == bfd_mach_ppc_e500
829 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
830 {
831 /* Wwe know that the source register is 31 already, but
832 it can't hurt to compute it. */
833 ev_reg = GET_SRC_REG (op);
834 ev_offset = ((op >> 11) & 0x1f) * 8;
835 /* If this is the first vector reg to be saved, or if
836 it has a lower number than others previously seen,
837 reupdate the frame info. */
838 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
839 {
840 fdata->saved_ev = ev_reg;
841 fdata->ev_offset = ev_offset + offset;
842 }
843
844 continue;
845 }
846 /* Store gen register S at (r31+r0).
847 Store param on stack when offset from SP bigger than 4 bytes. */
848 /* 000100 sssss 11111 00000 01100100000 */
849 else if (arch_info->mach == bfd_mach_ppc_e500
850 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
851 {
852 if (pc == (li_found_pc + 4))
853 {
854 if ((op & 0x03e00000) >= 0x01a00000)
855 {
856 ev_reg = GET_SRC_REG (op);
857 /* If this is the first vector reg to be saved, or if
858 it has a lower number than others previously seen,
859 reupdate the frame info. */
860 /* We know the contents of r0 from the previous
861 instruction. */
862 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
863 {
864 fdata->saved_ev = ev_reg;
865 fdata->ev_offset = vr_saved_offset + offset;
866 }
867 ev_reg = -1;
868 }
869 vr_saved_offset = -1;
870 li_found_pc = 0;
871 continue;
872 }
873 }
874 /* End BookE related instructions. */
875
c5aa993b
JM
876 else
877 {
55d05f3b
KB
878 /* Not a recognized prologue instruction.
879 Handle optimizer code motions into the prologue by continuing
880 the search if we have no valid frame yet or if the return
881 address is not yet saved in the frame. */
882 if (fdata->frameless == 0
883 && (lr_reg == -1 || fdata->nosavedpc == 0))
884 break;
885
886 if (op == 0x4e800020 /* blr */
887 || op == 0x4e800420) /* bctr */
888 /* Do not scan past epilogue in frameless functions or
889 trampolines. */
890 break;
891 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 892 /* Never skip branches. */
55d05f3b
KB
893 break;
894
895 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
896 /* Do not scan too many insns, scanning insns is expensive with
897 remote targets. */
898 break;
899
900 /* Continue scanning. */
901 prev_insn_was_prologue_insn = 0;
902 continue;
c5aa993b 903 }
c906108c
SS
904 }
905
906#if 0
907/* I have problems with skipping over __main() that I need to address
908 * sometime. Previously, I used to use misc_function_vector which
909 * didn't work as well as I wanted to be. -MGO */
910
911 /* If the first thing after skipping a prolog is a branch to a function,
912 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 913 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 914 work before calling a function right after a prologue, thus we can
64366f1c 915 single out such gcc2 behaviour. */
c906108c 916
c906108c 917
c5aa993b
JM
918 if ((op & 0xfc000001) == 0x48000001)
919 { /* bl foo, an initializer function? */
920 op = read_memory_integer (pc + 4, 4);
921
922 if (op == 0x4def7b82)
923 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 924
64366f1c
EZ
925 /* Check and see if we are in main. If so, skip over this
926 initializer function as well. */
c906108c 927
c5aa993b 928 tmp = find_pc_misc_function (pc);
51cc5b07 929 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
930 return pc + 8;
931 }
c906108c 932 }
c906108c 933#endif /* 0 */
c5aa993b
JM
934
935 fdata->offset = -fdata->offset;
ddb20c56 936 return last_prologue_pc;
c906108c
SS
937}
938
939
940/*************************************************************************
f6077098 941 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
942 frames, etc.
943*************************************************************************/
944
c906108c 945
64366f1c 946/* Pop the innermost frame, go back to the caller. */
c5aa993b 947
c906108c 948static void
7a78ae4e 949rs6000_pop_frame (void)
c906108c 950{
470d5666 951 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
952 struct rs6000_framedata fdata;
953 struct frame_info *frame = get_current_frame ();
470d5666 954 int ii, wordsize;
c906108c
SS
955
956 pc = read_pc ();
957 sp = FRAME_FP (frame);
958
58223630 959 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 960 {
7a78ae4e
ND
961 generic_pop_dummy_frame ();
962 flush_cached_frames ();
963 return;
c906108c
SS
964 }
965
966 /* Make sure that all registers are valid. */
967 read_register_bytes (0, NULL, REGISTER_BYTES);
968
64366f1c 969 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 970 still in the link register, otherwise walk the frames and retrieve the
64366f1c 971 saved %pc value in the previous frame. */
c906108c
SS
972
973 addr = get_pc_function_start (frame->pc);
077276e8 974 (void) skip_prologue (addr, frame->pc, &fdata);
c906108c 975
21283beb 976 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
977 if (fdata.frameless)
978 prev_sp = sp;
979 else
7a78ae4e 980 prev_sp = read_memory_addr (sp, wordsize);
c906108c 981 if (fdata.lr_offset == 0)
2188cbdd 982 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 983 else
7a78ae4e 984 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
985
986 /* reset %pc value. */
987 write_register (PC_REGNUM, lr);
988
64366f1c 989 /* reset register values if any was saved earlier. */
c906108c
SS
990
991 if (fdata.saved_gpr != -1)
992 {
993 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
994 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
995 {
7a78ae4e
ND
996 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
997 addr += wordsize;
c5aa993b 998 }
c906108c
SS
999 }
1000
1001 if (fdata.saved_fpr != -1)
1002 {
1003 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1004 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1005 {
1006 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1007 addr += 8;
1008 }
c906108c
SS
1009 }
1010
1011 write_register (SP_REGNUM, prev_sp);
1012 target_store_registers (-1);
1013 flush_cached_frames ();
1014}
1015
7a78ae4e 1016/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1017 address. Its arguments will be passed by gdb. */
c906108c 1018
7a78ae4e
ND
1019static void
1020rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1021 int nargs, struct value **args, struct type *type,
7a78ae4e 1022 int gcc_p)
c906108c 1023{
c906108c
SS
1024 int ii;
1025 CORE_ADDR target_addr;
1026
7a78ae4e 1027 if (rs6000_find_toc_address_hook != NULL)
f6077098 1028 {
7a78ae4e 1029 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1030 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1031 tocvalue);
f6077098 1032 }
c906108c
SS
1033}
1034
7a78ae4e 1035/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1036 the first eight words of the argument list (that might be less than
1037 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1038 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1039 passed in fpr's, in addition to that. Rest of the parameters if any
1040 are passed in user stack. There might be cases in which half of the
c906108c
SS
1041 parameter is copied into registers, the other half is pushed into
1042 stack.
1043
7a78ae4e
ND
1044 Stack must be aligned on 64-bit boundaries when synthesizing
1045 function calls.
1046
c906108c
SS
1047 If the function is returning a structure, then the return address is passed
1048 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1049 starting from r4. */
c906108c 1050
7a78ae4e 1051static CORE_ADDR
ea7c478f 1052rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1053 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1054{
1055 int ii;
1056 int len = 0;
c5aa993b
JM
1057 int argno; /* current argument number */
1058 int argbytes; /* current argument byte */
1059 char tmp_buffer[50];
1060 int f_argno = 0; /* current floating point argno */
21283beb 1061 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1062
ea7c478f 1063 struct value *arg = 0;
c906108c
SS
1064 struct type *type;
1065
1066 CORE_ADDR saved_sp;
1067
64366f1c
EZ
1068 /* The first eight words of ther arguments are passed in registers.
1069 Copy them appropriately.
c906108c
SS
1070
1071 If the function is returning a `struct', then the first word (which
64366f1c 1072 will be passed in r3) is used for struct return address. In that
c906108c 1073 case we should advance one word and start from r4 register to copy
64366f1c 1074 parameters. */
c906108c 1075
c5aa993b 1076 ii = struct_return ? 1 : 0;
c906108c
SS
1077
1078/*
c5aa993b
JM
1079 effectively indirect call... gcc does...
1080
1081 return_val example( float, int);
1082
1083 eabi:
1084 float in fp0, int in r3
1085 offset of stack on overflow 8/16
1086 for varargs, must go by type.
1087 power open:
1088 float in r3&r4, int in r5
1089 offset of stack on overflow different
1090 both:
1091 return in r3 or f0. If no float, must study how gcc emulates floats;
1092 pay attention to arg promotion.
1093 User may have to cast\args to handle promotion correctly
1094 since gdb won't know if prototype supplied or not.
1095 */
c906108c 1096
c5aa993b
JM
1097 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1098 {
f6077098 1099 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1100
1101 arg = args[argno];
1102 type = check_typedef (VALUE_TYPE (arg));
1103 len = TYPE_LENGTH (type);
1104
1105 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1106 {
1107
64366f1c 1108 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1109 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1110 there is no way we would run out of them. */
c5aa993b
JM
1111
1112 if (len > 8)
1113 printf_unfiltered (
1114 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1115
1116 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1117 VALUE_CONTENTS (arg),
1118 len);
1119 ++f_argno;
1120 }
1121
f6077098 1122 if (len > reg_size)
c5aa993b
JM
1123 {
1124
64366f1c 1125 /* Argument takes more than one register. */
c5aa993b
JM
1126 while (argbytes < len)
1127 {
f6077098 1128 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
c5aa993b
JM
1129 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1130 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1131 (len - argbytes) > reg_size
1132 ? reg_size : len - argbytes);
1133 ++ii, argbytes += reg_size;
c5aa993b
JM
1134
1135 if (ii >= 8)
1136 goto ran_out_of_registers_for_arguments;
1137 }
1138 argbytes = 0;
1139 --ii;
1140 }
1141 else
64366f1c
EZ
1142 {
1143 /* Argument can fit in one register. No problem. */
d7449b42 1144 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
f6077098
KB
1145 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1146 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1147 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1148 }
1149 ++argno;
c906108c 1150 }
c906108c
SS
1151
1152ran_out_of_registers_for_arguments:
1153
7a78ae4e 1154 saved_sp = read_sp ();
cc9836a8 1155
64366f1c 1156 /* Location for 8 parameters are always reserved. */
7a78ae4e 1157 sp -= wordsize * 8;
f6077098 1158
64366f1c 1159 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1160 sp -= wordsize * 6;
f6077098 1161
64366f1c 1162 /* Stack pointer must be quadword aligned. */
7a78ae4e 1163 sp &= -16;
c906108c 1164
64366f1c
EZ
1165 /* If there are more arguments, allocate space for them in
1166 the stack, then push them starting from the ninth one. */
c906108c 1167
c5aa993b
JM
1168 if ((argno < nargs) || argbytes)
1169 {
1170 int space = 0, jj;
c906108c 1171
c5aa993b
JM
1172 if (argbytes)
1173 {
1174 space += ((len - argbytes + 3) & -4);
1175 jj = argno + 1;
1176 }
1177 else
1178 jj = argno;
c906108c 1179
c5aa993b
JM
1180 for (; jj < nargs; ++jj)
1181 {
ea7c478f 1182 struct value *val = args[jj];
c5aa993b
JM
1183 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1184 }
c906108c 1185
64366f1c 1186 /* Add location required for the rest of the parameters. */
f6077098 1187 space = (space + 15) & -16;
c5aa993b 1188 sp -= space;
c906108c 1189
64366f1c
EZ
1190 /* This is another instance we need to be concerned about
1191 securing our stack space. If we write anything underneath %sp
1192 (r1), we might conflict with the kernel who thinks he is free
1193 to use this area. So, update %sp first before doing anything
1194 else. */
c906108c 1195
c5aa993b 1196 write_register (SP_REGNUM, sp);
c906108c 1197
64366f1c
EZ
1198 /* If the last argument copied into the registers didn't fit there
1199 completely, push the rest of it into stack. */
c906108c 1200
c5aa993b
JM
1201 if (argbytes)
1202 {
1203 write_memory (sp + 24 + (ii * 4),
1204 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1205 len - argbytes);
1206 ++argno;
1207 ii += ((len - argbytes + 3) & -4) / 4;
1208 }
c906108c 1209
64366f1c 1210 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1211 for (; argno < nargs; ++argno)
1212 {
c906108c 1213
c5aa993b
JM
1214 arg = args[argno];
1215 type = check_typedef (VALUE_TYPE (arg));
1216 len = TYPE_LENGTH (type);
c906108c
SS
1217
1218
64366f1c
EZ
1219 /* Float types should be passed in fpr's, as well as in the
1220 stack. */
c5aa993b
JM
1221 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1222 {
c906108c 1223
c5aa993b
JM
1224 if (len > 8)
1225 printf_unfiltered (
1226 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1227
c5aa993b
JM
1228 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1229 VALUE_CONTENTS (arg),
1230 len);
1231 ++f_argno;
1232 }
c906108c 1233
c5aa993b
JM
1234 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1235 ii += ((len + 3) & -4) / 4;
1236 }
c906108c 1237 }
c906108c 1238 else
64366f1c 1239 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1240 write_register (SP_REGNUM, sp);
1241
c906108c
SS
1242 /* set back chain properly */
1243 store_address (tmp_buffer, 4, saved_sp);
1244 write_memory (sp, tmp_buffer, 4);
1245
1246 target_store_registers (-1);
1247 return sp;
1248}
c906108c
SS
1249
1250/* Function: ppc_push_return_address (pc, sp)
64366f1c 1251 Set up the return address for the inferior function call. */
c906108c 1252
7a78ae4e
ND
1253static CORE_ADDR
1254ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1255{
2188cbdd
EZ
1256 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1257 CALL_DUMMY_ADDRESS ());
c906108c
SS
1258 return sp;
1259}
1260
7a78ae4e 1261/* Extract a function return value of type TYPE from raw register array
64366f1c 1262 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1263static void
46d79c04 1264e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1265{
1266 int offset = 0;
1267 int vallen = TYPE_LENGTH (valtype);
1268 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1269
1270 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1271 && vallen == 8
1272 && TYPE_VECTOR (valtype))
1273 {
1274 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1275 }
1276 else
1277 {
1278 /* Return value is copied starting from r3. Note that r3 for us
1279 is a pseudo register. */
1280 int offset = 0;
1281 int return_regnum = tdep->ppc_gp0_regnum + 3;
1282 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1283 int reg_part_size;
1284 char *val_buffer;
1285 int copied = 0;
1286 int i = 0;
1287
1288 /* Compute where we will start storing the value from. */
1289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1290 {
1291 if (vallen <= reg_size)
1292 offset = reg_size - vallen;
1293 else
1294 offset = reg_size + (reg_size - vallen);
1295 }
1296
1297 /* How big does the local buffer need to be? */
1298 if (vallen <= reg_size)
1299 val_buffer = alloca (reg_size);
1300 else
1301 val_buffer = alloca (vallen);
1302
1303 /* Read all we need into our private buffer. We copy it in
1304 chunks that are as long as one register, never shorter, even
1305 if the value is smaller than the register. */
1306 while (copied < vallen)
1307 {
1308 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1309 /* It is a pseudo/cooked register. */
1310 regcache_cooked_read (regbuf, return_regnum + i,
1311 val_buffer + copied);
1312 copied += reg_part_size;
1313 i++;
1314 }
1315 /* Put the stuff in the return buffer. */
1316 memcpy (valbuf, val_buffer + offset, vallen);
1317 }
1318}
c906108c 1319
7a78ae4e
ND
1320static void
1321rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1322{
1323 int offset = 0;
ace1378a 1324 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1325
c5aa993b
JM
1326 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1327 {
c906108c 1328
c5aa993b
JM
1329 double dd;
1330 float ff;
1331 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1332 We need to truncate the return value into float size (4 byte) if
64366f1c 1333 necessary. */
c906108c 1334
c5aa993b
JM
1335 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1336 memcpy (valbuf,
1337 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1338 TYPE_LENGTH (valtype));
1339 else
1340 { /* float */
1341 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1342 ff = (float) dd;
1343 memcpy (valbuf, &ff, sizeof (float));
1344 }
1345 }
ace1378a
EZ
1346 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1347 && TYPE_LENGTH (valtype) == 16
1348 && TYPE_VECTOR (valtype))
1349 {
1350 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1351 TYPE_LENGTH (valtype));
1352 }
c5aa993b
JM
1353 else
1354 {
1355 /* return value is copied starting from r3. */
d7449b42 1356 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1357 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1358 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1359
1360 memcpy (valbuf,
1361 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1362 TYPE_LENGTH (valtype));
c906108c 1363 }
c906108c
SS
1364}
1365
7a78ae4e 1366/* Keep structure return address in this variable.
c906108c
SS
1367 FIXME: This is a horrid kludge which should not be allowed to continue
1368 living. This only allows a single nested call to a structure-returning
1369 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1370
7a78ae4e 1371static CORE_ADDR rs6000_struct_return_address;
c906108c 1372
977adac5
ND
1373/* Return whether handle_inferior_event() should proceed through code
1374 starting at PC in function NAME when stepping.
1375
1376 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1377 handle memory references that are too distant to fit in instructions
1378 generated by the compiler. For example, if 'foo' in the following
1379 instruction:
1380
1381 lwz r9,foo(r2)
1382
1383 is greater than 32767, the linker might replace the lwz with a branch to
1384 somewhere in @FIX1 that does the load in 2 instructions and then branches
1385 back to where execution should continue.
1386
1387 GDB should silently step over @FIX code, just like AIX dbx does.
1388 Unfortunately, the linker uses the "b" instruction for the branches,
1389 meaning that the link register doesn't get set. Therefore, GDB's usual
1390 step_over_function() mechanism won't work.
1391
1392 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1393 in handle_inferior_event() to skip past @FIX code. */
1394
1395int
1396rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1397{
1398 return name && !strncmp (name, "@FIX", 4);
1399}
1400
1401/* Skip code that the user doesn't want to see when stepping:
1402
1403 1. Indirect function calls use a piece of trampoline code to do context
1404 switching, i.e. to set the new TOC table. Skip such code if we are on
1405 its first instruction (as when we have single-stepped to here).
1406
1407 2. Skip shared library trampoline code (which is different from
c906108c 1408 indirect function call trampolines).
977adac5
ND
1409
1410 3. Skip bigtoc fixup code.
1411
c906108c 1412 Result is desired PC to step until, or NULL if we are not in
977adac5 1413 code that should be skipped. */
c906108c
SS
1414
1415CORE_ADDR
7a78ae4e 1416rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1417{
1418 register unsigned int ii, op;
977adac5 1419 int rel;
c906108c 1420 CORE_ADDR solib_target_pc;
977adac5 1421 struct minimal_symbol *msymbol;
c906108c 1422
c5aa993b
JM
1423 static unsigned trampoline_code[] =
1424 {
1425 0x800b0000, /* l r0,0x0(r11) */
1426 0x90410014, /* st r2,0x14(r1) */
1427 0x7c0903a6, /* mtctr r0 */
1428 0x804b0004, /* l r2,0x4(r11) */
1429 0x816b0008, /* l r11,0x8(r11) */
1430 0x4e800420, /* bctr */
1431 0x4e800020, /* br */
1432 0
c906108c
SS
1433 };
1434
977adac5
ND
1435 /* Check for bigtoc fixup code. */
1436 msymbol = lookup_minimal_symbol_by_pc (pc);
1437 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1438 {
1439 /* Double-check that the third instruction from PC is relative "b". */
1440 op = read_memory_integer (pc + 8, 4);
1441 if ((op & 0xfc000003) == 0x48000000)
1442 {
1443 /* Extract bits 6-29 as a signed 24-bit relative word address and
1444 add it to the containing PC. */
1445 rel = ((int)(op << 6) >> 6);
1446 return pc + 8 + rel;
1447 }
1448 }
1449
c906108c
SS
1450 /* If pc is in a shared library trampoline, return its target. */
1451 solib_target_pc = find_solib_trampoline_target (pc);
1452 if (solib_target_pc)
1453 return solib_target_pc;
1454
c5aa993b
JM
1455 for (ii = 0; trampoline_code[ii]; ++ii)
1456 {
1457 op = read_memory_integer (pc + (ii * 4), 4);
1458 if (op != trampoline_code[ii])
1459 return 0;
1460 }
1461 ii = read_register (11); /* r11 holds destination addr */
21283beb 1462 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1463 return pc;
1464}
1465
1466/* Determines whether the function FI has a frame on the stack or not. */
1467
9aa1e687 1468int
c877c8e6 1469rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1470{
1471 CORE_ADDR func_start;
1472 struct rs6000_framedata fdata;
1473
1474 /* Don't even think about framelessness except on the innermost frame
1475 or if the function was interrupted by a signal. */
1476 if (fi->next != NULL && !fi->next->signal_handler_caller)
1477 return 0;
c5aa993b 1478
c906108c
SS
1479 func_start = get_pc_function_start (fi->pc);
1480
1481 /* If we failed to find the start of the function, it is a mistake
64366f1c 1482 to inspect the instructions. */
c906108c
SS
1483
1484 if (!func_start)
1485 {
1486 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1487 function pointer, normally causing an immediate core dump of the
64366f1c 1488 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1489 of setting up a stack frame. */
c906108c
SS
1490 if (fi->pc == 0)
1491 return 1;
1492 else
1493 return 0;
1494 }
1495
077276e8 1496 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1497 return fdata.frameless;
1498}
1499
64366f1c 1500/* Return the PC saved in a frame. */
c906108c 1501
9aa1e687 1502CORE_ADDR
c877c8e6 1503rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1504{
1505 CORE_ADDR func_start;
1506 struct rs6000_framedata fdata;
21283beb 1507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1508 int wordsize = tdep->wordsize;
c906108c
SS
1509
1510 if (fi->signal_handler_caller)
7a78ae4e 1511 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
c906108c 1512
7a78ae4e 1513 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
135c175f 1514 return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
1515
1516 func_start = get_pc_function_start (fi->pc);
1517
1518 /* If we failed to find the start of the function, it is a mistake
64366f1c 1519 to inspect the instructions. */
c906108c
SS
1520 if (!func_start)
1521 return 0;
1522
077276e8 1523 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1524
1525 if (fdata.lr_offset == 0 && fi->next != NULL)
1526 {
1527 if (fi->next->signal_handler_caller)
7a78ae4e
ND
1528 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1529 wordsize);
c906108c 1530 else
a88376a3 1531 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1532 wordsize);
c906108c
SS
1533 }
1534
1535 if (fdata.lr_offset == 0)
2188cbdd 1536 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1537
7a78ae4e 1538 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1539}
1540
1541/* If saved registers of frame FI are not known yet, read and cache them.
1542 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1543 in which case the framedata are read. */
1544
1545static void
7a78ae4e 1546frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1547{
c5aa993b 1548 CORE_ADDR frame_addr;
c906108c 1549 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1550 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1551 int wordsize = tdep->wordsize;
c906108c
SS
1552
1553 if (fi->saved_regs)
1554 return;
c5aa993b 1555
c906108c
SS
1556 if (fdatap == NULL)
1557 {
1558 fdatap = &work_fdata;
077276e8 1559 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
c906108c
SS
1560 }
1561
1562 frame_saved_regs_zalloc (fi);
1563
1564 /* If there were any saved registers, figure out parent's stack
64366f1c 1565 pointer. */
c906108c 1566 /* The following is true only if the frame doesn't have a call to
64366f1c 1567 alloca(), FIXME. */
c906108c 1568
6be8bc0c
EZ
1569 if (fdatap->saved_fpr == 0
1570 && fdatap->saved_gpr == 0
1571 && fdatap->saved_vr == 0
96ff0de4 1572 && fdatap->saved_ev == 0
6be8bc0c
EZ
1573 && fdatap->lr_offset == 0
1574 && fdatap->cr_offset == 0
96ff0de4
EZ
1575 && fdatap->vr_offset == 0
1576 && fdatap->ev_offset == 0)
c906108c 1577 frame_addr = 0;
c906108c 1578 else
bf75c8c1
AC
1579 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1580 address of the current frame. Things might be easier if the
1581 ->frame pointed to the outer-most address of the frame. In the
1582 mean time, the address of the prev frame is used as the base
1583 address of this frame. */
1584 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1585
c906108c
SS
1586 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1587 All fpr's from saved_fpr to fp31 are saved. */
1588
1589 if (fdatap->saved_fpr >= 0)
1590 {
1591 int i;
7a78ae4e 1592 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1593 for (i = fdatap->saved_fpr; i < 32; i++)
1594 {
7a78ae4e
ND
1595 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1596 fpr_addr += 8;
c906108c
SS
1597 }
1598 }
1599
1600 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1601 All gpr's from saved_gpr to gpr31 are saved. */
1602
1603 if (fdatap->saved_gpr >= 0)
1604 {
1605 int i;
7a78ae4e 1606 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1607 for (i = fdatap->saved_gpr; i < 32; i++)
1608 {
7a78ae4e
ND
1609 fi->saved_regs[i] = gpr_addr;
1610 gpr_addr += wordsize;
c906108c
SS
1611 }
1612 }
1613
6be8bc0c
EZ
1614 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1615 All vr's from saved_vr to vr31 are saved. */
1616 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1617 {
1618 if (fdatap->saved_vr >= 0)
1619 {
1620 int i;
1621 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1622 for (i = fdatap->saved_vr; i < 32; i++)
1623 {
1624 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1625 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1626 }
1627 }
1628 }
1629
96ff0de4
EZ
1630 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1631 All vr's from saved_ev to ev31 are saved. ????? */
1632 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1633 {
1634 if (fdatap->saved_ev >= 0)
1635 {
1636 int i;
1637 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1638 for (i = fdatap->saved_ev; i < 32; i++)
1639 {
1640 fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr;
1641 fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1642 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1643 }
1644 }
1645 }
1646
c906108c
SS
1647 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1648 the CR. */
1649 if (fdatap->cr_offset != 0)
6be8bc0c 1650 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1651
1652 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1653 the LR. */
1654 if (fdatap->lr_offset != 0)
6be8bc0c
EZ
1655 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1656
1657 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1658 the VRSAVE. */
1659 if (fdatap->vrsave_offset != 0)
1660 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1661}
1662
1663/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1664 was first allocated. For functions calling alloca(), it might be saved in
1665 an alloca register. */
c906108c
SS
1666
1667static CORE_ADDR
7a78ae4e 1668frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1669{
1670 CORE_ADDR tmpaddr;
1671 struct rs6000_framedata fdata;
1672 struct frame_info *callee_fi;
1673
64366f1c
EZ
1674 /* If the initial stack pointer (frame address) of this frame is known,
1675 just return it. */
c906108c
SS
1676
1677 if (fi->extra_info->initial_sp)
1678 return fi->extra_info->initial_sp;
1679
64366f1c 1680 /* Find out if this function is using an alloca register. */
c906108c 1681
077276e8 1682 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
c906108c 1683
64366f1c
EZ
1684 /* If saved registers of this frame are not known yet, read and
1685 cache them. */
c906108c
SS
1686
1687 if (!fi->saved_regs)
1688 frame_get_saved_regs (fi, &fdata);
1689
1690 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1691 this frame, and it is good enough. */
c906108c
SS
1692
1693 if (fdata.alloca_reg < 0)
1694 {
1695 fi->extra_info->initial_sp = fi->frame;
1696 return fi->extra_info->initial_sp;
1697 }
1698
953836b2
AC
1699 /* There is an alloca register, use its value, in the current frame,
1700 as the initial stack pointer. */
1701 {
1702 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1703 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1704 {
1705 fi->extra_info->initial_sp
1706 = extract_unsigned_integer (tmpbuf,
1707 REGISTER_RAW_SIZE (fdata.alloca_reg));
1708 }
1709 else
1710 /* NOTE: cagney/2002-04-17: At present the only time
1711 frame_register_read will fail is when the register isn't
1712 available. If that does happen, use the frame. */
1713 fi->extra_info->initial_sp = fi->frame;
1714 }
c906108c
SS
1715 return fi->extra_info->initial_sp;
1716}
1717
7a78ae4e
ND
1718/* Describe the pointer in each stack frame to the previous stack frame
1719 (its caller). */
1720
1721/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1722 and produces the frame's chain-pointer. */
7a78ae4e
ND
1723
1724/* In the case of the RS/6000, the frame's nominal address
1725 is the address of a 4-byte word containing the calling frame's address. */
1726
9aa1e687 1727CORE_ADDR
7a78ae4e 1728rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1729{
7a78ae4e 1730 CORE_ADDR fp, fpp, lr;
21283beb 1731 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1732
7a78ae4e
ND
1733 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1734 return thisframe->frame; /* dummy frame same as caller's frame */
c906108c 1735
c5aa993b 1736 if (inside_entry_file (thisframe->pc) ||
c906108c
SS
1737 thisframe->pc == entry_point_address ())
1738 return 0;
1739
1740 if (thisframe->signal_handler_caller)
7a78ae4e
ND
1741 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1742 wordsize);
c906108c
SS
1743 else if (thisframe->next != NULL
1744 && thisframe->next->signal_handler_caller
c877c8e6 1745 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1746 /* A frameless function interrupted by a signal did not change the
1747 frame pointer. */
1748 fp = FRAME_FP (thisframe);
1749 else
7a78ae4e 1750 fp = read_memory_addr ((thisframe)->frame, wordsize);
c906108c 1751
2188cbdd 1752 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e
ND
1753 if (lr == entry_point_address ())
1754 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1755 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1756 return fpp;
1757
1758 return fp;
1759}
1760
1761/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1762 isn't available with that word size, return 0. */
7a78ae4e
ND
1763
1764static int
1765regsize (const struct reg *reg, int wordsize)
1766{
1767 return wordsize == 8 ? reg->sz64 : reg->sz32;
1768}
1769
1770/* Return the name of register number N, or null if no such register exists
64366f1c 1771 in the current architecture. */
7a78ae4e 1772
fa88f677 1773static const char *
7a78ae4e
ND
1774rs6000_register_name (int n)
1775{
21283beb 1776 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1777 const struct reg *reg = tdep->regs + n;
1778
1779 if (!regsize (reg, tdep->wordsize))
1780 return NULL;
1781 return reg->name;
1782}
1783
1784/* Index within `registers' of the first byte of the space for
1785 register N. */
1786
1787static int
1788rs6000_register_byte (int n)
1789{
21283beb 1790 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1791}
1792
1793/* Return the number of bytes of storage in the actual machine representation
64366f1c 1794 for register N if that register is available, else return 0. */
7a78ae4e
ND
1795
1796static int
1797rs6000_register_raw_size (int n)
1798{
21283beb 1799 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1800 const struct reg *reg = tdep->regs + n;
1801 return regsize (reg, tdep->wordsize);
1802}
1803
7a78ae4e
ND
1804/* Return the GDB type object for the "standard" data type
1805 of data in register N. */
1806
1807static struct type *
fba45db2 1808rs6000_register_virtual_type (int n)
7a78ae4e 1809{
21283beb 1810 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1811 const struct reg *reg = tdep->regs + n;
1812
1fcc0bb8
EZ
1813 if (reg->fpr)
1814 return builtin_type_double;
1815 else
1816 {
1817 int size = regsize (reg, tdep->wordsize);
1818 switch (size)
1819 {
1820 case 8:
c8001721
EZ
1821 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1822 return builtin_type_vec64;
1823 else
1824 return builtin_type_int64;
1fcc0bb8
EZ
1825 break;
1826 case 16:
08cf96df 1827 return builtin_type_vec128;
1fcc0bb8
EZ
1828 break;
1829 default:
1830 return builtin_type_int32;
1831 break;
1832 }
1833 }
7a78ae4e
ND
1834}
1835
1836/* For the PowerPC, it appears that the debug info marks float parameters as
1837 floats regardless of whether the function is prototyped, but the actual
1838 values are always passed in as doubles. Tell gdb to always assume that
64366f1c 1839 floats are passed as doubles and then converted in the callee. */
7a78ae4e
ND
1840
1841static int
1842rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1843{
1844 return 1;
1845}
1846
1847/* Return whether register N requires conversion when moving from raw format
1848 to virtual format.
1849
1850 The register format for RS/6000 floating point registers is always
64366f1c 1851 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1852
1853static int
1854rs6000_register_convertible (int n)
1855{
21283beb 1856 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1857 return reg->fpr;
1858}
1859
1860/* Convert data from raw format for register N in buffer FROM
64366f1c 1861 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1862
1863static void
1864rs6000_register_convert_to_virtual (int n, struct type *type,
1865 char *from, char *to)
1866{
1867 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1868 {
7a78ae4e
ND
1869 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1870 store_floating (to, TYPE_LENGTH (type), val);
1871 }
1872 else
1873 memcpy (to, from, REGISTER_RAW_SIZE (n));
1874}
1875
1876/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1877 to raw format for register N in buffer TO. */
7a292a7a 1878
7a78ae4e
ND
1879static void
1880rs6000_register_convert_to_raw (struct type *type, int n,
1881 char *from, char *to)
1882{
1883 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1884 {
1885 double val = extract_floating (from, TYPE_LENGTH (type));
1886 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1887 }
7a78ae4e
ND
1888 else
1889 memcpy (to, from, REGISTER_RAW_SIZE (n));
1890}
c906108c 1891
c8001721
EZ
1892static void
1893e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1894 int reg_nr, void *buffer)
1895{
1896 int base_regnum;
1897 int offset = 0;
1898 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1899 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1900
1901 if (reg_nr >= tdep->ppc_gp0_regnum
1902 && reg_nr <= tdep->ppc_gplast_regnum)
1903 {
1904 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1905
1906 /* Build the value in the provided buffer. */
1907 /* Read the raw register of which this one is the lower portion. */
1908 regcache_raw_read (regcache, base_regnum, temp_buffer);
1909 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1910 offset = 4;
1911 memcpy ((char *) buffer, temp_buffer + offset, 4);
1912 }
1913}
1914
1915static void
1916e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1917 int reg_nr, const void *buffer)
1918{
1919 int base_regnum;
1920 int offset = 0;
1921 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1923
1924 if (reg_nr >= tdep->ppc_gp0_regnum
1925 && reg_nr <= tdep->ppc_gplast_regnum)
1926 {
1927 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1928 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1930 offset = 4;
1931
1932 /* Let's read the value of the base register into a temporary
1933 buffer, so that overwriting the last four bytes with the new
1934 value of the pseudo will leave the upper 4 bytes unchanged. */
1935 regcache_raw_read (regcache, base_regnum, temp_buffer);
1936
1937 /* Write as an 8 byte quantity. */
1938 memcpy (temp_buffer + offset, (char *) buffer, 4);
1939 regcache_raw_write (regcache, base_regnum, temp_buffer);
1940 }
1941}
1942
1943/* Convert a dwarf2 register number to a gdb REGNUM. */
1944static int
1945e500_dwarf2_reg_to_regnum (int num)
1946{
1947 int regnum;
1948 if (0 <= num && num <= 31)
1949 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1950 else
1951 return num;
1952}
1953
2188cbdd 1954/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1955 REGNUM. */
2188cbdd
EZ
1956static int
1957rs6000_stab_reg_to_regnum (int num)
1958{
1959 int regnum;
1960 switch (num)
1961 {
1962 case 64:
1963 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1964 break;
1965 case 65:
1966 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1967 break;
1968 case 66:
1969 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1970 break;
1971 case 76:
1972 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1973 break;
1974 default:
1975 regnum = num;
1976 break;
1977 }
1978 return regnum;
1979}
1980
7a78ae4e
ND
1981/* Store the address of the place in which to copy the structure the
1982 subroutine will return. This is called from call_function.
1983
1984 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1985 In function return, callee is not responsible of returning this address
1986 back. Since gdb needs to find it, we will store in a designated variable
64366f1c 1987 `rs6000_struct_return_address'. */
7a78ae4e
ND
1988
1989static void
1990rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1991{
1992 write_register (3, addr);
1993 rs6000_struct_return_address = addr;
1994}
1995
1996/* Write into appropriate registers a function return value
1997 of type TYPE, given in virtual format. */
96ff0de4
EZ
1998static void
1999e500_store_return_value (struct type *type, char *valbuf)
2000{
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2002
2003 /* Everything is returned in GPR3 and up. */
2004 int copied = 0;
2005 int i = 0;
2006 int len = TYPE_LENGTH (type);
2007 while (copied < len)
2008 {
2009 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2010 int reg_size = REGISTER_RAW_SIZE (regnum);
2011 char *reg_val_buf = alloca (reg_size);
2012
2013 memcpy (reg_val_buf, valbuf + copied, reg_size);
2014 copied += reg_size;
2015 write_register_gen (regnum, reg_val_buf);
2016 i++;
2017 }
2018}
7a78ae4e
ND
2019
2020static void
2021rs6000_store_return_value (struct type *type, char *valbuf)
2022{
ace1378a
EZ
2023 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2024
7a78ae4e
ND
2025 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2026
2027 /* Floating point values are returned starting from FPR1 and up.
2028 Say a double_double_double type could be returned in
64366f1c 2029 FPR1/FPR2/FPR3 triple. */
7a78ae4e
ND
2030
2031 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2032 TYPE_LENGTH (type));
ace1378a
EZ
2033 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2034 {
2035 if (TYPE_LENGTH (type) == 16
2036 && TYPE_VECTOR (type))
2037 write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2038 valbuf, TYPE_LENGTH (type));
2039 }
7a78ae4e 2040 else
64366f1c 2041 /* Everything else is returned in GPR3 and up. */
2188cbdd
EZ
2042 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2043 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2044}
2045
2046/* Extract from an array REGBUF containing the (raw) register state
2047 the address in which a function should return its structure value,
2048 as a CORE_ADDR (or an expression that can be used as one). */
2049
2050static CORE_ADDR
2051rs6000_extract_struct_value_address (char *regbuf)
2052{
2053 return rs6000_struct_return_address;
2054}
2055
2056/* Return whether PC is in a dummy function call.
2057
2058 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2059 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2060
2061static int
2062rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2063{
2064 return sp < pc && pc < fp;
2065}
2066
64366f1c 2067/* Hook called when a new child process is started. */
7a78ae4e
ND
2068
2069void
2070rs6000_create_inferior (int pid)
2071{
2072 if (rs6000_set_host_arch_hook)
2073 rs6000_set_host_arch_hook (pid);
c906108c
SS
2074}
2075\f
7a78ae4e
ND
2076/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2077
2078 Usually a function pointer's representation is simply the address
2079 of the function. On the RS/6000 however, a function pointer is
2080 represented by a pointer to a TOC entry. This TOC entry contains
2081 three words, the first word is the address of the function, the
2082 second word is the TOC pointer (r2), and the third word is the
2083 static chain value. Throughout GDB it is currently assumed that a
2084 function pointer contains the address of the function, which is not
2085 easy to fix. In addition, the conversion of a function address to
2086 a function pointer would require allocation of a TOC entry in the
2087 inferior's memory space, with all its drawbacks. To be able to
2088 call C++ virtual methods in the inferior (which are called via
f517ea4e 2089 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2090 function address from a function pointer. */
2091
f517ea4e
PS
2092/* Return real function address if ADDR (a function pointer) is in the data
2093 space and is therefore a special function pointer. */
c906108c 2094
7a78ae4e
ND
2095CORE_ADDR
2096rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2097{
2098 struct obj_section *s;
2099
2100 s = find_pc_section (addr);
2101 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2102 return addr;
c906108c 2103
7a78ae4e 2104 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2105 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2106}
c906108c 2107\f
c5aa993b 2108
7a78ae4e 2109/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2110
2111
7a78ae4e
ND
2112/* The arrays here called registers_MUMBLE hold information about available
2113 registers.
c906108c
SS
2114
2115 For each family of PPC variants, I've tried to isolate out the
2116 common registers and put them up front, so that as long as you get
2117 the general family right, GDB will correctly identify the registers
2118 common to that family. The common register sets are:
2119
2120 For the 60x family: hid0 hid1 iabr dabr pir
2121
2122 For the 505 and 860 family: eie eid nri
2123
2124 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2125 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2126 pbu1 pbl2 pbu2
c906108c
SS
2127
2128 Most of these register groups aren't anything formal. I arrived at
2129 them by looking at the registers that occurred in more than one
6f5987a6
KB
2130 processor.
2131
2132 Note: kevinb/2002-04-30: Support for the fpscr register was added
2133 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2134 for Power. For PowerPC, slot 70 was unused and was already in the
2135 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2136 slot 70 was being used for "mq", so the next available slot (71)
2137 was chosen. It would have been nice to be able to make the
2138 register numbers the same across processor cores, but this wasn't
2139 possible without either 1) renumbering some registers for some
2140 processors or 2) assigning fpscr to a really high slot that's
2141 larger than any current register number. Doing (1) is bad because
2142 existing stubs would break. Doing (2) is undesirable because it
2143 would introduce a really large gap between fpscr and the rest of
2144 the registers for most processors. */
7a78ae4e 2145
64366f1c 2146/* Convenience macros for populating register arrays. */
7a78ae4e 2147
64366f1c 2148/* Within another macro, convert S to a string. */
7a78ae4e
ND
2149
2150#define STR(s) #s
2151
2152/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2153 and 64 bits on 64-bit systems. */
489461e2 2154#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2155
2156/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2157 systems. */
489461e2 2158#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2159
2160/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2161 systems. */
489461e2 2162#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2163
1fcc0bb8 2164/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2165 systems. */
489461e2 2166#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2167
64366f1c 2168/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2169#define F(name) { STR(name), 8, 8, 1, 0 }
2170
64366f1c 2171/* Return a struct reg defining a pseudo register NAME. */
489461e2 2172#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2173
2174/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2175 systems and that doesn't exist on 64-bit systems. */
489461e2 2176#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2177
2178/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2179 systems and that doesn't exist on 32-bit systems. */
489461e2 2180#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2181
64366f1c 2182/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2183#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2184
2185/* UISA registers common across all architectures, including POWER. */
2186
2187#define COMMON_UISA_REGS \
2188 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2189 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2190 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2191 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2192 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2193 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2194 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2195 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2196 /* 64 */ R(pc), R(ps)
2197
ebeac11a
EZ
2198#define COMMON_UISA_NOFP_REGS \
2199 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2200 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2201 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2202 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2203 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2204 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2205 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2206 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2207 /* 64 */ R(pc), R(ps)
2208
7a78ae4e
ND
2209/* UISA-level SPRs for PowerPC. */
2210#define PPC_UISA_SPRS \
e3f36dbd 2211 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2212
c8001721
EZ
2213/* UISA-level SPRs for PowerPC without floating point support. */
2214#define PPC_UISA_NOFP_SPRS \
2215 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2216
7a78ae4e
ND
2217/* Segment registers, for PowerPC. */
2218#define PPC_SEGMENT_REGS \
2219 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2220 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2221 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2222 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2223
2224/* OEA SPRs for PowerPC. */
2225#define PPC_OEA_SPRS \
2226 /* 87 */ R4(pvr), \
2227 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2228 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2229 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2230 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2231 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2232 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2233 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2234 /* 116 */ R4(dec), R(dabr), R4(ear)
2235
64366f1c 2236/* AltiVec registers. */
1fcc0bb8
EZ
2237#define PPC_ALTIVEC_REGS \
2238 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2239 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2240 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2241 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2242 /*151*/R4(vscr), R4(vrsave)
2243
c8001721
EZ
2244/* Vectors of hi-lo general purpose registers. */
2245#define PPC_EV_REGS \
2246 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2247 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2248 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2249 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2250
2251/* Lower half of the EV registers. */
2252#define PPC_GPRS_PSEUDO_REGS \
2253 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2254 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2255 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2256 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2257
7a78ae4e 2258/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2259 user-level SPR's. */
7a78ae4e 2260static const struct reg registers_power[] =
c906108c 2261{
7a78ae4e 2262 COMMON_UISA_REGS,
e3f36dbd
KB
2263 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2264 /* 71 */ R4(fpscr)
c906108c
SS
2265};
2266
7a78ae4e 2267/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2268 view of the PowerPC. */
7a78ae4e 2269static const struct reg registers_powerpc[] =
c906108c 2270{
7a78ae4e 2271 COMMON_UISA_REGS,
1fcc0bb8
EZ
2272 PPC_UISA_SPRS,
2273 PPC_ALTIVEC_REGS
c906108c
SS
2274};
2275
ebeac11a
EZ
2276/* PowerPC UISA - a PPC processor as viewed by user-level
2277 code, but without floating point registers. */
2278static const struct reg registers_powerpc_nofp[] =
2279{
2280 COMMON_UISA_NOFP_REGS,
2281 PPC_UISA_SPRS
2282};
2283
64366f1c 2284/* IBM PowerPC 403. */
7a78ae4e 2285static const struct reg registers_403[] =
c5aa993b 2286{
7a78ae4e
ND
2287 COMMON_UISA_REGS,
2288 PPC_UISA_SPRS,
2289 PPC_SEGMENT_REGS,
2290 PPC_OEA_SPRS,
2291 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2292 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2293 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2294 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2295 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2296 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2297};
2298
64366f1c 2299/* IBM PowerPC 403GC. */
7a78ae4e 2300static const struct reg registers_403GC[] =
c5aa993b 2301{
7a78ae4e
ND
2302 COMMON_UISA_REGS,
2303 PPC_UISA_SPRS,
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2307 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2308 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2309 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2310 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2311 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2312 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2313 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2314};
2315
64366f1c 2316/* Motorola PowerPC 505. */
7a78ae4e 2317static const struct reg registers_505[] =
c5aa993b 2318{
7a78ae4e
ND
2319 COMMON_UISA_REGS,
2320 PPC_UISA_SPRS,
2321 PPC_SEGMENT_REGS,
2322 PPC_OEA_SPRS,
2323 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2324};
2325
64366f1c 2326/* Motorola PowerPC 860 or 850. */
7a78ae4e 2327static const struct reg registers_860[] =
c5aa993b 2328{
7a78ae4e
ND
2329 COMMON_UISA_REGS,
2330 PPC_UISA_SPRS,
2331 PPC_SEGMENT_REGS,
2332 PPC_OEA_SPRS,
2333 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2334 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2335 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2336 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2337 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2338 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2339 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2340 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2341 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2342 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2343 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2344 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2345};
2346
7a78ae4e
ND
2347/* Motorola PowerPC 601. Note that the 601 has different register numbers
2348 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2349 register is the stub's problem. */
7a78ae4e 2350static const struct reg registers_601[] =
c5aa993b 2351{
7a78ae4e
ND
2352 COMMON_UISA_REGS,
2353 PPC_UISA_SPRS,
2354 PPC_SEGMENT_REGS,
2355 PPC_OEA_SPRS,
2356 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2357 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2358};
2359
64366f1c 2360/* Motorola PowerPC 602. */
7a78ae4e 2361static const struct reg registers_602[] =
c5aa993b 2362{
7a78ae4e
ND
2363 COMMON_UISA_REGS,
2364 PPC_UISA_SPRS,
2365 PPC_SEGMENT_REGS,
2366 PPC_OEA_SPRS,
2367 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2368 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2369 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2370};
2371
64366f1c 2372/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2373static const struct reg registers_603[] =
c5aa993b 2374{
7a78ae4e
ND
2375 COMMON_UISA_REGS,
2376 PPC_UISA_SPRS,
2377 PPC_SEGMENT_REGS,
2378 PPC_OEA_SPRS,
2379 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2380 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2381 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2382};
2383
64366f1c 2384/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2385static const struct reg registers_604[] =
c5aa993b 2386{
7a78ae4e
ND
2387 COMMON_UISA_REGS,
2388 PPC_UISA_SPRS,
2389 PPC_SEGMENT_REGS,
2390 PPC_OEA_SPRS,
2391 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2392 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2393 /* 127 */ R(sia), R(sda)
c906108c
SS
2394};
2395
64366f1c 2396/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2397static const struct reg registers_750[] =
c5aa993b 2398{
7a78ae4e
ND
2399 COMMON_UISA_REGS,
2400 PPC_UISA_SPRS,
2401 PPC_SEGMENT_REGS,
2402 PPC_OEA_SPRS,
2403 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2404 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2405 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2406 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2407 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2408 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2409};
2410
2411
64366f1c 2412/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2413static const struct reg registers_7400[] =
2414{
2415 /* gpr0-gpr31, fpr0-fpr31 */
2416 COMMON_UISA_REGS,
2417 /* ctr, xre, lr, cr */
2418 PPC_UISA_SPRS,
2419 /* sr0-sr15 */
2420 PPC_SEGMENT_REGS,
2421 PPC_OEA_SPRS,
2422 /* vr0-vr31, vrsave, vscr */
2423 PPC_ALTIVEC_REGS
2424 /* FIXME? Add more registers? */
2425};
2426
c8001721
EZ
2427/* Motorola e500. */
2428static const struct reg registers_e500[] =
2429{
2430 R(pc), R(ps),
2431 /* cr, lr, ctr, xer, "" */
2432 PPC_UISA_NOFP_SPRS,
2433 /* 7...38 */
2434 PPC_EV_REGS,
2435 /* 39...70 */
2436 PPC_GPRS_PSEUDO_REGS
2437};
2438
c906108c 2439/* Information about a particular processor variant. */
7a78ae4e 2440
c906108c 2441struct variant
c5aa993b
JM
2442 {
2443 /* Name of this variant. */
2444 char *name;
c906108c 2445
c5aa993b
JM
2446 /* English description of the variant. */
2447 char *description;
c906108c 2448
64366f1c 2449 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2450 enum bfd_architecture arch;
2451
64366f1c 2452 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2453 unsigned long mach;
2454
489461e2
EZ
2455 /* Number of real registers. */
2456 int nregs;
2457
2458 /* Number of pseudo registers. */
2459 int npregs;
2460
2461 /* Number of total registers (the sum of nregs and npregs). */
2462 int num_tot_regs;
2463
c5aa993b
JM
2464 /* Table of register names; registers[R] is the name of the register
2465 number R. */
7a78ae4e 2466 const struct reg *regs;
c5aa993b 2467 };
c906108c 2468
489461e2
EZ
2469#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2470
2471static int
2472num_registers (const struct reg *reg_list, int num_tot_regs)
2473{
2474 int i;
2475 int nregs = 0;
2476
2477 for (i = 0; i < num_tot_regs; i++)
2478 if (!reg_list[i].pseudo)
2479 nregs++;
2480
2481 return nregs;
2482}
2483
2484static int
2485num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2486{
2487 int i;
2488 int npregs = 0;
2489
2490 for (i = 0; i < num_tot_regs; i++)
2491 if (reg_list[i].pseudo)
2492 npregs ++;
2493
2494 return npregs;
2495}
c906108c 2496
c906108c
SS
2497/* Information in this table comes from the following web sites:
2498 IBM: http://www.chips.ibm.com:80/products/embedded/
2499 Motorola: http://www.mot.com/SPS/PowerPC/
2500
2501 I'm sure I've got some of the variant descriptions not quite right.
2502 Please report any inaccuracies you find to GDB's maintainer.
2503
2504 If you add entries to this table, please be sure to allow the new
2505 value as an argument to the --with-cpu flag, in configure.in. */
2506
489461e2 2507static struct variant variants[] =
c906108c 2508{
489461e2 2509
7a78ae4e 2510 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2511 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2512 registers_powerpc},
7a78ae4e 2513 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2514 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2515 registers_power},
7a78ae4e 2516 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2517 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2518 registers_403},
7a78ae4e 2519 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2520 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2521 registers_601},
7a78ae4e 2522 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2523 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2524 registers_602},
7a78ae4e 2525 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2526 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2527 registers_603},
7a78ae4e 2528 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2529 604, -1, -1, tot_num_registers (registers_604),
2530 registers_604},
7a78ae4e 2531 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2532 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2533 registers_403GC},
7a78ae4e 2534 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2535 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2536 registers_505},
7a78ae4e 2537 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2538 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2539 registers_860},
7a78ae4e 2540 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2541 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2542 registers_750},
1fcc0bb8 2543 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2544 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2545 registers_7400},
c8001721
EZ
2546 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2547 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2548 registers_e500},
7a78ae4e 2549
5d57ee30
KB
2550 /* 64-bit */
2551 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2552 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2553 registers_powerpc},
7a78ae4e 2554 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2555 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2556 registers_powerpc},
5d57ee30 2557 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2558 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2559 registers_powerpc},
7a78ae4e 2560 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2561 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2562 registers_powerpc},
5d57ee30 2563 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2564 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2565 registers_powerpc},
5d57ee30 2566 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2567 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2568 registers_powerpc},
5d57ee30 2569
64366f1c 2570 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2571 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2572 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2573 registers_power},
7a78ae4e 2574 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2575 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2576 registers_power},
7a78ae4e 2577 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2578 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2579 registers_power},
7a78ae4e 2580
489461e2 2581 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2582};
2583
64366f1c 2584/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2585
2586static void
2587init_variants (void)
2588{
2589 struct variant *v;
2590
2591 for (v = variants; v->name; v++)
2592 {
2593 if (v->nregs == -1)
2594 v->nregs = num_registers (v->regs, v->num_tot_regs);
2595 if (v->npregs == -1)
2596 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2597 }
2598}
c906108c 2599
7a78ae4e 2600/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2601 MACH. If no such variant exists, return null. */
c906108c 2602
7a78ae4e
ND
2603static const struct variant *
2604find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2605{
7a78ae4e 2606 const struct variant *v;
c5aa993b 2607
7a78ae4e
ND
2608 for (v = variants; v->name; v++)
2609 if (arch == v->arch && mach == v->mach)
2610 return v;
c906108c 2611
7a78ae4e 2612 return NULL;
c906108c 2613}
9364a0ef
EZ
2614
2615static int
2616gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2617{
2618 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2619 return print_insn_big_powerpc (memaddr, info);
2620 else
2621 return print_insn_little_powerpc (memaddr, info);
2622}
7a78ae4e 2623\f
7a78ae4e
ND
2624/* Initialize the current architecture based on INFO. If possible, re-use an
2625 architecture from ARCHES, which is a list of architectures already created
2626 during this debugging session.
c906108c 2627
7a78ae4e 2628 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2629 a binary file. */
c906108c 2630
7a78ae4e
ND
2631static struct gdbarch *
2632rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2633{
2634 struct gdbarch *gdbarch;
2635 struct gdbarch_tdep *tdep;
9aa1e687 2636 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2637 struct reg *regs;
2638 const struct variant *v;
2639 enum bfd_architecture arch;
2640 unsigned long mach;
2641 bfd abfd;
7b112f9c
JT
2642 int sysv_abi;
2643 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5bf1c677 2644 asection *sect;
7a78ae4e 2645
9aa1e687 2646 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2647 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2648
9aa1e687
KB
2649 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2650 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2651
2652 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2653
7b112f9c
JT
2654 if (info.abfd)
2655 osabi = gdbarch_lookup_osabi (info.abfd);
9aa1e687 2656
e712c1cf 2657 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2658 that, else choose a likely default. */
9aa1e687 2659 if (from_xcoff_exec)
c906108c 2660 {
11ed25ac 2661 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2662 wordsize = 8;
2663 else
2664 wordsize = 4;
c906108c 2665 }
9aa1e687
KB
2666 else if (from_elf_exec)
2667 {
2668 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2669 wordsize = 8;
2670 else
2671 wordsize = 4;
2672 }
c906108c 2673 else
7a78ae4e 2674 {
27b15785
KB
2675 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2676 wordsize = info.bfd_arch_info->bits_per_word /
2677 info.bfd_arch_info->bits_per_byte;
2678 else
2679 wordsize = 4;
7a78ae4e 2680 }
c906108c 2681
64366f1c 2682 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2683 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2684 arches != NULL;
2685 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2686 {
2687 /* Word size in the various PowerPC bfd_arch_info structs isn't
2688 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2689 separate word size check. */
7a78ae4e 2690 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2691 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2692 return arches->gdbarch;
2693 }
c906108c 2694
7a78ae4e
ND
2695 /* None found, create a new architecture from INFO, whose bfd_arch_info
2696 validity depends on the source:
2697 - executable useless
2698 - rs6000_host_arch() good
2699 - core file good
2700 - "set arch" trust blindly
2701 - GDB startup useless but harmless */
c906108c 2702
9aa1e687 2703 if (!from_xcoff_exec)
c906108c 2704 {
b732d07d 2705 arch = info.bfd_arch_info->arch;
7a78ae4e 2706 mach = info.bfd_arch_info->mach;
c906108c 2707 }
7a78ae4e 2708 else
c906108c 2709 {
7a78ae4e
ND
2710 arch = bfd_arch_powerpc;
2711 mach = 0;
2712 bfd_default_set_arch_mach (&abfd, arch, mach);
2713 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2714 }
2715 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2716 tdep->wordsize = wordsize;
9aa1e687 2717 tdep->osabi = osabi;
5bf1c677
EZ
2718
2719 /* For e500 executables, the apuinfo section is of help here. Such
2720 section contains the identifier and revision number of each
2721 Application-specific Processing Unit that is present on the
2722 chip. The content of the section is determined by the assembler
2723 which looks at each instruction and determines which unit (and
2724 which version of it) can execute it. In our case we just look for
2725 the existance of the section. */
2726
2727 if (info.abfd)
2728 {
2729 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2730 if (sect)
2731 {
2732 arch = info.bfd_arch_info->arch;
2733 mach = bfd_mach_ppc_e500;
2734 bfd_default_set_arch_mach (&abfd, arch, mach);
2735 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2736 }
2737 }
2738
7a78ae4e
ND
2739 gdbarch = gdbarch_alloc (&info, tdep);
2740 power = arch == bfd_arch_rs6000;
2741
489461e2
EZ
2742 /* Initialize the number of real and pseudo registers in each variant. */
2743 init_variants ();
2744
64366f1c 2745 /* Choose variant. */
7a78ae4e
ND
2746 v = find_variant_by_arch (arch, mach);
2747 if (!v)
dd47e6fd
EZ
2748 return NULL;
2749
7a78ae4e
ND
2750 tdep->regs = v->regs;
2751
2188cbdd
EZ
2752 tdep->ppc_gp0_regnum = 0;
2753 tdep->ppc_gplast_regnum = 31;
2754 tdep->ppc_toc_regnum = 2;
2755 tdep->ppc_ps_regnum = 65;
2756 tdep->ppc_cr_regnum = 66;
2757 tdep->ppc_lr_regnum = 67;
2758 tdep->ppc_ctr_regnum = 68;
2759 tdep->ppc_xer_regnum = 69;
2760 if (v->mach == bfd_mach_ppc_601)
2761 tdep->ppc_mq_regnum = 124;
e3f36dbd 2762 else if (power)
2188cbdd 2763 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2764 else
2765 tdep->ppc_mq_regnum = -1;
2766 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2767
c8001721
EZ
2768 set_gdbarch_pc_regnum (gdbarch, 64);
2769 set_gdbarch_sp_regnum (gdbarch, 1);
2770 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2771 set_gdbarch_deprecated_extract_return_value (gdbarch,
2772 rs6000_extract_return_value);
46d79c04 2773 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2774
1fcc0bb8
EZ
2775 if (v->arch == bfd_arch_powerpc)
2776 switch (v->mach)
2777 {
2778 case bfd_mach_ppc:
2779 tdep->ppc_vr0_regnum = 71;
2780 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2781 tdep->ppc_ev0_regnum = -1;
2782 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2783 break;
2784 case bfd_mach_ppc_7400:
2785 tdep->ppc_vr0_regnum = 119;
2786 tdep->ppc_vrsave_regnum = 153;
c8001721
EZ
2787 tdep->ppc_ev0_regnum = -1;
2788 tdep->ppc_ev31_regnum = -1;
2789 break;
2790 case bfd_mach_ppc_e500:
2791 tdep->ppc_gp0_regnum = 39;
2792 tdep->ppc_gplast_regnum = 70;
2793 tdep->ppc_toc_regnum = -1;
2794 tdep->ppc_ps_regnum = 1;
2795 tdep->ppc_cr_regnum = 2;
2796 tdep->ppc_lr_regnum = 3;
2797 tdep->ppc_ctr_regnum = 4;
2798 tdep->ppc_xer_regnum = 5;
2799 tdep->ppc_ev0_regnum = 7;
2800 tdep->ppc_ev31_regnum = 38;
2801 set_gdbarch_pc_regnum (gdbarch, 0);
2802 set_gdbarch_sp_regnum (gdbarch, 40);
2803 set_gdbarch_fp_regnum (gdbarch, 40);
2804 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2805 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2806 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2807 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2808 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2809 break;
2810 default:
2811 tdep->ppc_vr0_regnum = -1;
2812 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2813 tdep->ppc_ev0_regnum = -1;
2814 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2815 break;
2816 }
2817
a88376a3
KB
2818 /* Set lr_frame_offset. */
2819 if (wordsize == 8)
2820 tdep->lr_frame_offset = 16;
2821 else if (sysv_abi)
2822 tdep->lr_frame_offset = 4;
2823 else
2824 tdep->lr_frame_offset = 8;
2825
2826 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2827 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2828 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2829 {
2830 tdep->regoff[i] = off;
2831 off += regsize (v->regs + i, wordsize);
c906108c
SS
2832 }
2833
56a6dfb9
KB
2834 /* Select instruction printer. */
2835 if (arch == power)
9364a0ef 2836 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2837 else
9364a0ef 2838 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2839
7a78ae4e
ND
2840 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2841 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2842 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2843 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2844 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2845
2846 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2847 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2848 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2849 set_gdbarch_register_size (gdbarch, wordsize);
2850 set_gdbarch_register_bytes (gdbarch, off);
2851 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2852 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2853 set_gdbarch_max_register_raw_size (gdbarch, 16);
b2e75d78 2854 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2a873819 2855 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2856 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2857
2858 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2859 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2860 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2861 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2862 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2863 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2864 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2865 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2866 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e
ND
2867
2868 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2869 set_gdbarch_call_dummy_length (gdbarch, 0);
2870 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2871 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2872 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2873 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2874 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
fe794dc6 2875 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
7a78ae4e
ND
2876 set_gdbarch_call_dummy_p (gdbarch, 1);
2877 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
dd486634 2878 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
7a78ae4e
ND
2879 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2880 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2881 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2882 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2883 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2884 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2885
2886 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2887 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2888 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2889 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2890 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2891 is correct for the SysV ABI when the wordsize is 8, but I'm also
2892 fairly certain that ppc_sysv_abi_push_arguments() will give even
2893 worse results since it only works for 32-bit code. So, for the moment,
2894 we're better off calling rs6000_push_arguments() since it works for
2895 64-bit code. At some point in the future, this matter needs to be
2896 revisited. */
2897 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2898 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2899 else
2900 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2901
d0403e00 2902 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
26e9b323 2903 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2904 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2905
2906 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2907 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2908 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2909 set_gdbarch_function_start_offset (gdbarch, 0);
2910 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2911
2912 /* Not sure on this. FIXMEmgo */
2913 set_gdbarch_frame_args_skip (gdbarch, 8);
2914
8e0662df 2915 if (sysv_abi)
7b112f9c
JT
2916 set_gdbarch_use_struct_convention (gdbarch,
2917 ppc_sysv_abi_use_struct_convention);
8e0662df 2918 else
7b112f9c
JT
2919 set_gdbarch_use_struct_convention (gdbarch,
2920 generic_use_struct_convention);
8e0662df 2921
7a78ae4e 2922 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687 2923
7b112f9c
JT
2924 set_gdbarch_frameless_function_invocation (gdbarch,
2925 rs6000_frameless_function_invocation);
2926 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2927 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2928
2929 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2930 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2931
15813d3f
AC
2932 if (!sysv_abi)
2933 {
2934 /* Handle RS/6000 function pointers (which are really function
2935 descriptors). */
f517ea4e
PS
2936 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2937 rs6000_convert_from_func_ptr_addr);
9aa1e687 2938 }
7a78ae4e
ND
2939 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2940 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2941 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2942
2943 /* We can't tell how many args there are
2944 now that the C compiler delays popping them. */
2945 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2946
7b112f9c
JT
2947 /* Hook in ABI-specific overrides, if they have been registered. */
2948 gdbarch_init_osabi (info, gdbarch, osabi);
2949
7a78ae4e 2950 return gdbarch;
c906108c
SS
2951}
2952
7b112f9c
JT
2953static void
2954rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2955{
2956 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2957
2958 if (tdep == NULL)
2959 return;
2960
2961 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2962 gdbarch_osabi_name (tdep->osabi));
2963}
2964
1fcc0bb8
EZ
2965static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2966
2967static void
2968rs6000_info_powerpc_command (char *args, int from_tty)
2969{
2970 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2971}
2972
c906108c
SS
2973/* Initialization code. */
2974
2975void
fba45db2 2976_initialize_rs6000_tdep (void)
c906108c 2977{
7b112f9c
JT
2978 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2979 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2980
2981 /* Add root prefix command for "info powerpc" commands */
2982 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2983 "Various POWERPC info specific commands.",
2984 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2985}
This page took 0.399389 seconds and 4 git commands to generate.