* stabs.texinfo: Document the format for C++ nested types.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
41abdfbd 1/* Target-dependent code for GDB, the GNU debugger.
ecf4059f 2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
41abdfbd
JG
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
41abdfbd 20#include "defs.h"
41abdfbd
JG
21#include "frame.h"
22#include "inferior.h"
23#include "symtab.h"
24#include "target.h"
25
26#include <sys/param.h>
27#include <sys/dir.h>
28#include <sys/user.h>
29#include <signal.h>
30#include <sys/ioctl.h>
31#include <fcntl.h>
32
33#include <sys/ptrace.h>
34#include <sys/reg.h>
35
36#include <a.out.h>
37#include <sys/file.h>
38#include <sys/stat.h>
39#include <sys/core.h>
ecf4059f 40#include <sys/ldr.h>
41abdfbd 41
d6434f39
JG
42
43extern struct obstack frame_cache_obstack;
44
41abdfbd 45extern int errno;
41abdfbd
JG
46
47/* Nonzero if we just simulated a single step break. */
48int one_stepped;
49
41abdfbd
JG
50/* Breakpoint shadows for the single step instructions will be kept here. */
51
52static struct sstep_breaks {
53 int address;
54 int data;
55} stepBreaks[2];
56
ecf4059f
JG
57/* Static function prototypes */
58
59static void
60add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr));
61
62static CORE_ADDR
63find_toc_address PARAMS ((CORE_ADDR pc));
64
65static CORE_ADDR
66branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
67
68static void
69frame_get_cache_fsr PARAMS ((struct frame_info *fi,
70 struct aix_framedata *fdatap));
41abdfbd
JG
71
72/*
73 * Calculate the destination of a branch/jump. Return -1 if not a branch.
74 */
ecf4059f 75static CORE_ADDR
41abdfbd 76branch_dest (opcode, instr, pc, safety)
ecf4059f
JG
77 int opcode;
78 int instr;
79 CORE_ADDR pc;
80 CORE_ADDR safety;
41abdfbd
JG
81{
82 register long offset;
ecf4059f 83 CORE_ADDR dest;
41abdfbd
JG
84 int immediate;
85 int absolute;
86 int ext_op;
87
88 absolute = (int) ((instr >> 1) & 1);
89
90 switch (opcode) {
91 case 18 :
ecf4059f 92 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
41abdfbd
JG
93
94 case 16 :
95 if (opcode != 18) /* br conditional */
96 immediate = ((instr & ~3) << 16) >> 16;
97 if (absolute)
98 dest = immediate;
99 else
100 dest = pc + immediate;
101 break;
102
103 case 19 :
104 ext_op = (instr>>1) & 0x3ff;
105
106 if (ext_op == 16) /* br conditional register */
107 dest = read_register (LR_REGNUM) & ~3;
108
109 else if (ext_op == 528) /* br cond to count reg */
110 dest = read_register (CTR_REGNUM) & ~3;
111
112 else return -1;
113 break;
114
115 default: return -1;
116 }
818de002 117 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
41abdfbd
JG
118}
119
120
121
122/* AIX does not support PT_STEP. Simulate it. */
123
124int
125single_step (signal)
126int signal;
127{
128#define INSNLEN(OPCODE) 4
129
130 static char breakp[] = BREAKPOINT;
131 int ii, insn, ret, loc;
132 int breaks[2], opcode;
133
134 if (!one_stepped) {
41abdfbd
JG
135 loc = read_pc ();
136
137 ret = read_memory (loc, &insn, sizeof (int));
138 if (ret)
139 printf ("Error in single_step()!!\n");
140
141 breaks[0] = loc + INSNLEN(insn);
142 opcode = insn >> 26;
143 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
144
818de002
PB
145 /* Don't put two breakpoints on the same address. */
146 if (breaks[1] == breaks[0])
147 breaks[1] = -1;
148
41abdfbd
JG
149 stepBreaks[1].address = -1;
150
151 for (ii=0; ii < 2; ++ii) {
152
153 /* ignore invalid breakpoint. */
154 if ( breaks[ii] == -1)
155 continue;
156
157 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
158
159 ret = write_memory (breaks[ii], breakp, sizeof(int));
160 stepBreaks[ii].address = breaks[ii];
161 }
162
163 one_stepped = 1;
e676a15f 164 ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal, 0);
41abdfbd
JG
165 }
166 else {
167
168 /* remove step breakpoints. */
169 for (ii=0; ii < 2; ++ii)
170 if (stepBreaks[ii].address != -1)
171 write_memory
172 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
173
174 one_stepped = 0;
175 }
818de002 176 errno = 0;
41abdfbd
JG
177 return 1;
178}
41abdfbd
JG
179
180
181/* return pc value after skipping a function prologue. */
182
183skip_prologue (pc)
ecf4059f 184CORE_ADDR pc;
41abdfbd
JG
185{
186 unsigned int tmp;
ecf4059f 187 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
41abdfbd
JG
188
189 if (target_read_memory (pc, (char *)&op, sizeof (op)))
190 return pc; /* Can't access it -- assume no prologue. */
191 SWAP_TARGET_AND_HOST (&op, sizeof (op));
192
193 /* Assume that subsequent fetches can fail with low probability. */
194
195 if (op == 0x7c0802a6) { /* mflr r0 */
196 pc += 4;
197 op = read_memory_integer (pc, 4);
198 }
41abdfbd
JG
199
200 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
201 pc += 4;
202 op = read_memory_integer (pc, 4);
203 }
204
205 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
206 pc += 4;
207 op = read_memory_integer (pc, 4);
1eeba686
PB
208
209 /* At this point, make sure this is not a trampoline function
210 (a function that simply calls another functions, and nothing else).
211 If the next is not a nop, this branch was part of the function
212 prologue. */
213
214 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
215 op == 0x0)
216 return pc - 4; /* don't skip over this branch */
41abdfbd
JG
217 }
218
41abdfbd
JG
219 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
220 pc += 4;
221 op = read_memory_integer (pc, 4);
222 }
223
224 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
225 (tmp == 0x9421) || /* stu r1, NUM(r1) */
226 (op == 0x93e1fffc)) /* st r31,-4(r1) */
227 {
228 pc += 4;
229 op = read_memory_integer (pc, 4);
230 }
231
232 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
233 pc += 4; /* l r30, ... */
234 op = read_memory_integer (pc, 4);
235 }
236
507e4004 237 /* store parameters into stack */
818de002
PB
238 while(
239 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
240 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
241 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
242 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
243 {
244 pc += 4; /* store fpr double */
245 op = read_memory_integer (pc, 4);
246 }
41abdfbd
JG
247
248 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
249 pc += 4; /* this happens if r31 is used as */
250 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
251
818de002
PB
252 tmp = 0;
253 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
254 pc += 4; /* st r4, NUM(r31), ... */
41abdfbd 255 op = read_memory_integer (pc, 4);
818de002 256 tmp += 0x20;
41abdfbd
JG
257 }
258 }
507e4004
PB
259#if 0
260/* I have problems with skipping over __main() that I need to address
261 * sometime. Previously, I used to use misc_function_vector which
262 * didn't work as well as I wanted to be. -MGO */
263
264 /* If the first thing after skipping a prolog is a branch to a function,
265 this might be a call to an initializer in main(), introduced by gcc2.
266 We'd like to skip over it as well. Fortunately, xlc does some extra
267 work before calling a function right after a prologue, thus we can
268 single out such gcc2 behaviour. */
269
270
271 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
272 op = read_memory_integer (pc+4, 4);
273
274 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
275
276 /* check and see if we are in main. If so, skip over this initializer
277 function as well. */
278
279 tmp = find_pc_misc_function (pc);
280 if (tmp >= 0 && !strcmp (misc_function_vector [tmp].name, "main"))
281 return pc + 8;
282 }
283 }
284#endif /* 0 */
285
41abdfbd
JG
286 return pc;
287}
288
818de002 289
41abdfbd
JG
290/*************************************************************************
291 Support for creating pushind a dummy frame into the stack, and popping
292 frames, etc.
293*************************************************************************/
294
818de002
PB
295/* The total size of dummy frame is 436, which is;
296
297 32 gpr's - 128 bytes
298 32 fpr's - 256 "
299 7 the rest - 28 "
300 and 24 extra bytes for the callee's link area. The last 24 bytes
301 for the link area might not be necessary, since it will be taken
302 care of by push_arguments(). */
303
304#define DUMMY_FRAME_SIZE 436
305
41abdfbd
JG
306#define DUMMY_FRAME_ADDR_SIZE 10
307
308/* Make sure you initialize these in somewhere, in case gdb gives up what it
818de002 309 was debugging and starts debugging something else. FIXMEibm */
41abdfbd
JG
310
311static int dummy_frame_count = 0;
312static int dummy_frame_size = 0;
313static CORE_ADDR *dummy_frame_addr = 0;
314
315extern int stop_stack_dummy;
316
317/* push a dummy frame into stack, save all register. Currently we are saving
318 only gpr's and fpr's, which is not good enough! FIXMEmgo */
319
ecf4059f 320void
41abdfbd
JG
321push_dummy_frame ()
322{
323 int sp, pc; /* stack pointer and link register */
324 int ii;
325
6c6afbb9
PB
326 fetch_inferior_registers (-1);
327
41abdfbd
JG
328 if (dummy_frame_count >= dummy_frame_size) {
329 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
330 if (dummy_frame_addr)
331 dummy_frame_addr = (CORE_ADDR*) xrealloc
332 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
333 else
334 dummy_frame_addr = (CORE_ADDR*)
335 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
336 }
337
338 sp = read_register(SP_REGNUM);
339 pc = read_register(PC_REGNUM);
340
341 dummy_frame_addr [dummy_frame_count++] = sp;
342
343 /* Be careful! If the stack pointer is not decremented first, then kernel
6c6afbb9 344 thinks he is free to use the space underneath it. And kernel actually
41abdfbd
JG
345 uses that area for IPC purposes when executing ptrace(2) calls. So
346 before writing register values into the new frame, decrement and update
347 %sp first in order to secure your frame. */
348
818de002 349 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
41abdfbd 350
41abdfbd
JG
351 /* gdb relies on the state of current_frame. We'd better update it,
352 otherwise things like do_registers_info() wouldn't work properly! */
353
354 flush_cached_frames ();
818de002 355 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
41abdfbd
JG
356
357 /* save program counter in link register's space. */
358 write_memory (sp+8, &pc, 4);
359
6c6afbb9 360 /* save all floating point and general purpose registers here. */
41abdfbd
JG
361
362 /* fpr's, f0..f31 */
363 for (ii = 0; ii < 32; ++ii)
364 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
365
366 /* gpr's r0..r31 */
367 for (ii=1; ii <=32; ++ii)
368 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
369
818de002
PB
370 /* so far, 32*2 + 32 words = 384 bytes have been written.
371 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
372
373 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
374 write_memory (sp-384-(ii*4),
375 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
376 }
377
378 /* Save sp or so called back chain right here. */
379 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
380 sp -= DUMMY_FRAME_SIZE;
41abdfbd
JG
381
382 /* And finally, this is the back chain. */
383 write_memory (sp+8, &pc, 4);
384}
385
386
387/* Pop a dummy frame.
388
389 In rs6000 when we push a dummy frame, we save all of the registers. This
390 is usually done before user calls a function explicitly.
391
818de002
PB
392 After a dummy frame is pushed, some instructions are copied into stack,
393 and stack pointer is decremented even more. Since we don't have a frame
394 pointer to get back to the parent frame of the dummy, we start having
395 trouble poping it. Therefore, we keep a dummy frame stack, keeping
396 addresses of dummy frames as such. When poping happens and when we
397 detect that was a dummy frame, we pop it back to its parent by using
398 dummy frame stack (`dummy_frame_addr' array).
ecf4059f
JG
399
400FIXME: This whole concept is broken. You should be able to detect
401a dummy stack frame *on the user's stack itself*. When you do,
402then you know the format of that stack frame -- including its
403saved SP register! There should *not* be a separate stack in the
d6434f39 404GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
41abdfbd
JG
405 */
406
407pop_dummy_frame ()
408{
409 CORE_ADDR sp, pc;
410 int ii;
411 sp = dummy_frame_addr [--dummy_frame_count];
412
413 /* restore all fpr's. */
414 for (ii = 1; ii <= 32; ++ii)
415 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
416
417 /* restore all gpr's */
418 for (ii=1; ii <= 32; ++ii) {
419 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
420 }
421
818de002
PB
422 /* restore the rest of the registers. */
423 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
424 read_memory (sp-384-(ii*4),
425 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
426
427 read_memory (sp-(DUMMY_FRAME_SIZE-8),
428 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
41abdfbd
JG
429
430 /* when a dummy frame was being pushed, we had to decrement %sp first, in
431 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
432 one we should restore. Change it with the one we need. */
433
434 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
435
436 /* Now we can restore all registers. */
437
438 store_inferior_registers (-1);
439 pc = read_pc ();
440 flush_cached_frames ();
441 set_current_frame (create_new_frame (sp, pc));
442}
443
444
445/* pop the innermost frame, go back to the caller. */
446
ecf4059f 447void
41abdfbd
JG
448pop_frame ()
449{
450 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
6c6afbb9 451 struct aix_framedata fdata;
41abdfbd 452 FRAME fr = get_current_frame ();
41abdfbd 453 int addr, ii;
41abdfbd
JG
454
455 pc = read_pc ();
456 sp = FRAME_FP (fr);
457
458 if (stop_stack_dummy && dummy_frame_count) {
459 pop_dummy_frame ();
460 return;
461 }
462
463 /* figure out previous %pc value. If the function is frameless, it is
464 still in the link register, otherwise walk the frames and retrieve the
465 saved %pc value in the previous frame. */
466
467 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
6c6afbb9 468 function_frame_info (addr, &fdata);
41abdfbd
JG
469
470 read_memory (sp, &prev_sp, 4);
6c6afbb9 471 if (fdata.frameless)
41abdfbd
JG
472 lr = read_register (LR_REGNUM);
473 else
474 read_memory (prev_sp+8, &lr, 4);
475
476 /* reset %pc value. */
477 write_register (PC_REGNUM, lr);
478
479 /* reset register values if any was saved earlier. */
6c6afbb9 480 addr = prev_sp - fdata.offset;
41abdfbd 481
6c6afbb9
PB
482 if (fdata.saved_gpr != -1)
483 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
41abdfbd
JG
484 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
485 addr += sizeof (int);
486 }
487
6c6afbb9
PB
488 if (fdata.saved_fpr != -1)
489 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
41abdfbd
JG
490 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
491 addr += 8;
492 }
493
494 write_register (SP_REGNUM, prev_sp);
495 store_inferior_registers (-1);
496 flush_cached_frames ();
497 set_current_frame (create_new_frame (prev_sp, lr));
498}
499
500
501/* fixup the call sequence of a dummy function, with the real function address.
502 its argumets will be passed by gdb. */
503
ecf4059f 504void
41abdfbd
JG
505fix_call_dummy(dummyname, pc, fun, nargs, type)
506 char *dummyname;
ecf4059f
JG
507 CORE_ADDR pc;
508 CORE_ADDR fun;
41abdfbd
JG
509 int nargs; /* not used */
510 int type; /* not used */
41abdfbd
JG
511{
512#define TOC_ADDR_OFFSET 20
513#define TARGET_ADDR_OFFSET 28
514
515 int ii;
ecf4059f
JG
516 CORE_ADDR target_addr;
517 CORE_ADDR tocvalue;
41abdfbd
JG
518
519 target_addr = fun;
520 tocvalue = find_toc_address (target_addr);
521
522 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
523 ii = (ii & 0xffff0000) | (tocvalue >> 16);
524 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
525
526 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
527 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
528 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
529
530 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
531 ii = (ii & 0xffff0000) | (target_addr >> 16);
532 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
533
534 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
535 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
536 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
537}
538
539
41abdfbd 540/* return information about a function frame.
6c6afbb9 541 in struct aix_frameinfo fdata:
41abdfbd
JG
542 - frameless is TRUE, if function does not save %pc value in its frame.
543 - offset is the number of bytes used in the frame to save registers.
544 - saved_gpr is the number of the first saved gpr.
545 - saved_fpr is the number of the first saved fpr.
6c6afbb9
PB
546 - alloca_reg is the number of the register used for alloca() handling.
547 Otherwise -1.
41abdfbd 548 */
ecf4059f 549void
6c6afbb9 550function_frame_info (pc, fdata)
d6434f39 551 CORE_ADDR pc;
6c6afbb9 552 struct aix_framedata *fdata;
41abdfbd
JG
553{
554 unsigned int tmp;
555 register unsigned int op;
556
6c6afbb9
PB
557 fdata->offset = 0;
558 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
41abdfbd 559
41abdfbd
JG
560 op = read_memory_integer (pc, 4);
561 if (op == 0x7c0802a6) { /* mflr r0 */
562 pc += 4;
563 op = read_memory_integer (pc, 4);
6c6afbb9 564 fdata->frameless = 0;
41abdfbd
JG
565 }
566 else /* else, this is a frameless invocation */
6c6afbb9 567 fdata->frameless = 1;
41abdfbd
JG
568
569
570 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
571 pc += 4;
572 op = read_memory_integer (pc, 4);
573 }
574
575 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
576 pc += 4;
577 op = read_memory_integer (pc, 4);
1eeba686
PB
578 /* At this point, make sure this is not a trampoline function
579 (a function that simply calls another functions, and nothing else).
580 If the next is not a nop, this branch was part of the function
581 prologue. */
582
583 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
584 op == 0x0)
585 return; /* prologue is over */
41abdfbd
JG
586 }
587
588 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
589 pc += 4; /* store floating register double */
590 op = read_memory_integer (pc, 4);
591 }
592
593 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
594 int tmp2;
6c6afbb9 595 fdata->saved_gpr = (op >> 21) & 0x1f;
41abdfbd
JG
596 tmp2 = op & 0xffff;
597 if (tmp2 > 0x7fff)
598 tmp2 = 0xffff0000 | tmp2;
599
600 if (tmp2 < 0) {
601 tmp2 = tmp2 * -1;
6c6afbb9
PB
602 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
603 if ( fdata->saved_fpr > 0)
604 fdata->saved_fpr = 32 - fdata->saved_fpr;
41abdfbd 605 else
6c6afbb9 606 fdata->saved_fpr = -1;
41abdfbd 607 }
6c6afbb9
PB
608 fdata->offset = tmp2;
609 pc += 4;
610 op = read_memory_integer (pc, 4);
41abdfbd 611 }
6c6afbb9
PB
612
613 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
614 (tmp == 0x9421) || /* stu r1, NUM(r1) */
615 (op == 0x93e1fffc)) /* st r31,-4(r1) */
616 {
617 /* gcc takes a short cut and uses this instruction to save r31 only. */
618
619 if (op == 0x93e1fffc) {
620 if (fdata->offset)
621/* fatal ("Unrecognized prolog."); */
622 printf ("Unrecognized prolog!\n");
623
624 fdata->saved_gpr = 31;
625 fdata->offset = 4;
626 }
627 pc += 4;
628 op = read_memory_integer (pc, 4);
629 }
630
631 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
632 pc += 4; /* l r30, ... */
633 op = read_memory_integer (pc, 4);
634 }
635
636 /* store parameters into stack */
637 while(
638 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
639 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
640 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
641 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
642 {
643 pc += 4; /* store fpr double */
644 op = read_memory_integer (pc, 4);
645 }
646
647 if (op == 0x603f0000) /* oril r31, r1, 0x0 */
648 fdata->alloca_reg = 31;
41abdfbd
JG
649}
650
651
652/* Pass the arguments in either registers, or in the stack. In RS6000, the first
653 eight words of the argument list (that might be less than eight parameters if
654 some parameters occupy more than one word) are passed in r3..r11 registers.
655 float and double parameters are passed in fpr's, in addition to that. Rest of
656 the parameters if any are passed in user stack. There might be cases in which
657 half of the parameter is copied into registers, the other half is pushed into
658 stack.
659
660 If the function is returning a structure, then the return address is passed
661 in r3, then the first 7 words of the parametes can be passed in registers,
662 starting from r4. */
663
664CORE_ADDR
665push_arguments (nargs, args, sp, struct_return, struct_addr)
666 int nargs;
667 value *args;
668 CORE_ADDR sp;
669 int struct_return;
670 CORE_ADDR struct_addr;
671{
672 int ii, len;
673 int argno; /* current argument number */
674 int argbytes; /* current argument byte */
675 char tmp_buffer [50];
676 value arg;
677 int f_argno = 0; /* current floating point argno */
678
679 CORE_ADDR saved_sp, pc;
680
681 if ( dummy_frame_count <= 0)
682 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
683
684 /* The first eight words of ther arguments are passed in registers. Copy
685 them appropriately.
686
687 If the function is returning a `struct', then the first word (which
688 will be passed in r3) is used for struct return address. In that
689 case we should advance one word and start from r4 register to copy
690 parameters. */
691
692 ii = struct_return ? 1 : 0;
693
694 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
695
696 arg = value_arg_coerce (args[argno]);
697 len = TYPE_LENGTH (VALUE_TYPE (arg));
698
699 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
700
701 /* floating point arguments are passed in fpr's, as well as gpr's.
702 There are 13 fpr's reserved for passing parameters. At this point
703 there is no way we would run out of them. */
704
705 if (len > 8)
706 printf (
707"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
708
709 bcopy (VALUE_CONTENTS (arg),
710 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
711 ++f_argno;
712 }
713
714 if (len > 4) {
715
716 /* Argument takes more than one register. */
717 while (argbytes < len) {
718
719 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
720 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
721 &registers[REGISTER_BYTE(ii+3)],
722 (len - argbytes) > 4 ? 4 : len - argbytes);
723 ++ii, argbytes += 4;
724
725 if (ii >= 8)
726 goto ran_out_of_registers_for_arguments;
727 }
728 argbytes = 0;
729 --ii;
730 }
731 else { /* Argument can fit in one register. No problem. */
732 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
733 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
734 }
735 ++argno;
736 }
737
738ran_out_of_registers_for_arguments:
739
740 /* location for 8 parameters are always reserved. */
741 sp -= 4 * 8;
742
743 /* another six words for back chain, TOC register, link register, etc. */
744 sp -= 24;
745
746 /* if there are more arguments, allocate space for them in
747 the stack, then push them starting from the ninth one. */
748
749 if ((argno < nargs) || argbytes) {
750 int space = 0, jj;
751 value val;
752
753 if (argbytes) {
754 space += ((len - argbytes + 3) & -4);
755 jj = argno + 1;
756 }
757 else
758 jj = argno;
759
760 for (; jj < nargs; ++jj) {
761 val = value_arg_coerce (args[jj]);
762 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
763 }
764
765 /* add location required for the rest of the parameters */
766 space = (space + 7) & -8;
767 sp -= space;
768
769 /* This is another instance we need to be concerned about securing our
770 stack space. If we write anything underneath %sp (r1), we might conflict
771 with the kernel who thinks he is free to use this area. So, update %sp
772 first before doing anything else. */
773
774 write_register (SP_REGNUM, sp);
775
41abdfbd
JG
776 /* if the last argument copied into the registers didn't fit there
777 completely, push the rest of it into stack. */
778
779 if (argbytes) {
780 write_memory (
781 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
782 ++argno;
783 ii += ((len - argbytes + 3) & -4) / 4;
784 }
785
786 /* push the rest of the arguments into stack. */
787 for (; argno < nargs; ++argno) {
788
789 arg = value_arg_coerce (args[argno]);
790 len = TYPE_LENGTH (VALUE_TYPE (arg));
791
792
793 /* float types should be passed in fpr's, as well as in the stack. */
794 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
795
796 if (len > 8)
797 printf (
798"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
799
800 bcopy (VALUE_CONTENTS (arg),
801 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
802 ++f_argno;
803 }
804
805 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
806 ii += ((len + 3) & -4) / 4;
807 }
808 }
6c6afbb9 809 else
41abdfbd
JG
810 /* Secure stack areas first, before doing anything else. */
811 write_register (SP_REGNUM, sp);
812
41abdfbd
JG
813 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
814 read_memory (saved_sp, tmp_buffer, 24);
815 write_memory (sp, tmp_buffer, 24);
816
817 write_memory (sp, &saved_sp, 4); /* set back chain properly */
818
819 store_inferior_registers (-1);
820 return sp;
821}
822
823/* a given return value in `regbuf' with a type `valtype', extract and copy its
824 value into `valbuf' */
825
ecf4059f 826void
41abdfbd
JG
827extract_return_value (valtype, regbuf, valbuf)
828 struct type *valtype;
829 char regbuf[REGISTER_BYTES];
830 char *valbuf;
831{
832
833 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
834
835 double dd; float ff;
836 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
837 We need to truncate the return value into float size (4 byte) if
838 necessary. */
839
840 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
841 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
842 TYPE_LENGTH (valtype));
843 else { /* float */
844 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
845 ff = (float)dd;
846 bcopy (&ff, valbuf, sizeof(float));
847 }
848 }
849 else
850 /* return value is copied starting from r3. */
851 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
852}
853
854
ecf4059f
JG
855/* keep structure return address in this variable.
856 FIXME: This is a horrid kludge which should not be allowed to continue
857 living. This only allows a single nested call to a structure-returning
858 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
41abdfbd
JG
859
860CORE_ADDR rs6000_struct_return_address;
861
862
863/* Throw away this debugging code. FIXMEmgo. */
ecf4059f 864void
41abdfbd
JG
865print_frame(fram)
866int fram;
867{
868 int ii, val;
869 for (ii=0; ii<40; ++ii) {
870 if ((ii % 4) == 0)
871 printf ("\n");
872 val = read_memory_integer (fram + ii * 4, 4);
873 printf ("0x%08x\t", val);
874 }
875 printf ("\n");
876}
877
878
879
c2e4669f
JG
880/* Indirect function calls use a piece of trampoline code to do context
881 switching, i.e. to set the new TOC table. Skip such code if we are on
882 its first instruction (as when we have single-stepped to here).
883 Result is desired PC to step until, or NULL if we are not in
884 trampoline code. */
41abdfbd 885
ecf4059f 886CORE_ADDR
41abdfbd 887skip_trampoline_code (pc)
ecf4059f 888CORE_ADDR pc;
41abdfbd
JG
889{
890 register unsigned int ii, op;
891
892 static unsigned trampoline_code[] = {
893 0x800b0000, /* l r0,0x0(r11) */
894 0x90410014, /* st r2,0x14(r1) */
895 0x7c0903a6, /* mtctr r0 */
896 0x804b0004, /* l r2,0x4(r11) */
897 0x816b0008, /* l r11,0x8(r11) */
898 0x4e800420, /* bctr */
899 0x4e800020, /* br */
900 0
901 };
902
903 for (ii=0; trampoline_code[ii]; ++ii) {
904 op = read_memory_integer (pc + (ii*4), 4);
905 if (op != trampoline_code [ii])
906 return NULL;
907 }
908 ii = read_register (11); /* r11 holds destination addr */
909 pc = read_memory_integer (ii, 4); /* (r11) value */
910 return pc;
911}
912
ecf4059f
JG
913
914/* Determines whether the function FI has a frame on the stack or not.
915 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h. */
916
917int
918frameless_function_invocation (fi)
919struct frame_info *fi;
920{
921 CORE_ADDR func_start;
922 struct aix_framedata fdata;
923
924 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
925
926 /* If we failed to find the start of the function, it is a mistake
927 to inspect the instructions. */
928
929 if (!func_start)
930 return 0;
931
932 function_frame_info (func_start, &fdata);
933 return fdata.frameless;
934}
935
936
937/* If saved registers of frame FI are not known yet, read and cache them.
938 &FDATAP contains aix_framedata; TDATAP can be NULL,
939 in which case the framedata are read. */
940
941static void
942frame_get_cache_fsr (fi, fdatap)
943 struct frame_info *fi;
944 struct aix_framedata *fdatap;
945{
946 int ii;
947 CORE_ADDR frame_addr;
948 struct aix_framedata work_fdata;
949
950 if (fi->cache_fsr)
951 return;
952
953 if (fdatap == NULL) {
954 fdatap = &work_fdata;
955 function_frame_info (get_pc_function_start (fi->pc), fdatap);
956 }
957
958 fi->cache_fsr = (struct frame_saved_regs *)
959 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
960 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
961
962 if (fi->prev && fi->prev->frame)
963 frame_addr = fi->prev->frame;
964 else
965 frame_addr = read_memory_integer (fi->frame, 4);
966
967 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
968 All fpr's from saved_fpr to fp31 are saved right underneath caller
969 stack pointer, starting from fp31 first. */
970
971 if (fdatap->saved_fpr >= 0) {
972 for (ii=31; ii >= fdatap->saved_fpr; --ii)
973 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
974 frame_addr -= (32 - fdatap->saved_fpr) * 8;
975 }
976
977 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
978 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
979 starting from r31 first. */
980
981 if (fdatap->saved_gpr >= 0)
982 for (ii=31; ii >= fdatap->saved_gpr; --ii)
983 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
984}
985
986/* Return the address of a frame. This is the inital %sp value when the frame
987 was first allocated. For functions calling alloca(), it might be saved in
988 an alloca register. */
989
990CORE_ADDR
991frame_initial_stack_address (fi)
992 struct frame_info *fi;
993{
994 CORE_ADDR tmpaddr;
995 struct aix_framedata fdata;
996 struct frame_info *callee_fi;
997
998 /* if the initial stack pointer (frame address) of this frame is known,
999 just return it. */
1000
1001 if (fi->initial_sp)
1002 return fi->initial_sp;
1003
1004 /* find out if this function is using an alloca register.. */
1005
1006 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1007
1008 /* if saved registers of this frame are not known yet, read and cache them. */
1009
1010 if (!fi->cache_fsr)
1011 frame_get_cache_fsr (fi, &fdata);
1012
1013 /* If no alloca register used, then fi->frame is the value of the %sp for
1014 this frame, and it is good enough. */
1015
1016 if (fdata.alloca_reg < 0) {
1017 fi->initial_sp = fi->frame;
1018 return fi->initial_sp;
1019 }
1020
1021 /* This function has an alloca register. If this is the top-most frame
1022 (with the lowest address), the value in alloca register is good. */
1023
1024 if (!fi->next)
1025 return fi->initial_sp = read_register (fdata.alloca_reg);
1026
1027 /* Otherwise, this is a caller frame. Callee has usually already saved
1028 registers, but there are exceptions (such as when the callee
1029 has no parameters). Find the address in which caller's alloca
1030 register is saved. */
1031
1032 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1033
1034 if (!callee_fi->cache_fsr)
1035 frame_get_cache_fsr (fi, NULL);
1036
1037 /* this is the address in which alloca register is saved. */
1038
1039 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1040 if (tmpaddr) {
1041 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1042 return fi->initial_sp;
1043 }
1044
1045 /* Go look into deeper levels of the frame chain to see if any one of
1046 the callees has saved alloca register. */
1047 }
1048
1049 /* If alloca register was not saved, by the callee (or any of its callees)
1050 then the value in the register is still good. */
1051
1052 return fi->initial_sp = read_register (fdata.alloca_reg);
1053}
1054
1055/* xcoff_relocate_symtab - hook for symbol table relocation.
1056 also reads shared libraries.. */
1057
1058xcoff_relocate_symtab (pid)
1059unsigned int pid;
1060{
1061#define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1062
1063 struct ld_info *ldi;
1064 int temp;
1065
1066 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1067
1068 /* According to my humble theory, AIX has some timing problems and
1069 when the user stack grows, kernel doesn't update stack info in time
1070 and ptrace calls step on user stack. That is why we sleep here a little,
1071 and give kernel to update its internals. */
1072
1073 usleep (36000);
1074
1075 errno = 0;
1076 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1077 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1078 if (errno) {
1079 perror_with_name ("ptrace ldinfo");
1080 return 0;
1081 }
1082
1083 vmap_ldinfo(ldi);
1084
1085 do {
1086 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1087 } while (ldi->ldinfo_next
1088 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1089
1090#if 0
1091 /* Now that we've jumbled things around, re-sort them. */
1092 sort_minimal_symbols ();
1093#endif
1094
1095 /* relocate the exec and core sections as well. */
1096 vmap_exec ();
1097}
1098\f
1099/* Keep an array of load segment information and their TOC table addresses.
1100 This info will be useful when calling a shared library function by hand. */
1101
1102struct loadinfo {
1103 CORE_ADDR textorg, dataorg;
1104 unsigned long toc_offset;
1105};
1106
1107#define LOADINFOLEN 10
1108
1109/* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1110 tm-rs6000.h. */
1111
1112static struct loadinfo *loadinfo = NULL;
1113static int loadinfolen = 0;
1114static int loadinfotocindex = 0;
1115int loadinfotextindex = 0;
1116
1117
1118void
1119xcoff_init_loadinfo ()
1120{
1121 loadinfotocindex = 0;
1122 loadinfotextindex = 0;
1123
1124 if (loadinfolen == 0) {
1125 loadinfo = (struct loadinfo *)
1126 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1127 loadinfolen = LOADINFOLEN;
1128 }
1129}
1130
1131
1132/* FIXME -- this is never called! */
1133void
1134free_loadinfo ()
1135{
1136 if (loadinfo)
1137 free (loadinfo);
1138 loadinfo = NULL;
1139 loadinfolen = 0;
1140 loadinfotocindex = 0;
1141 loadinfotextindex = 0;
1142}
1143
1144/* this is called from xcoffread.c */
1145
1146void
1147xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1148{
1149 while (loadinfotocindex >= loadinfolen) {
1150 loadinfolen += LOADINFOLEN;
1151 loadinfo = (struct loadinfo *)
1152 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1153 }
1154 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1155}
1156
1157
1158static void
1159add_text_to_loadinfo (textaddr, dataaddr)
1160 CORE_ADDR textaddr;
1161 CORE_ADDR dataaddr;
1162{
1163 while (loadinfotextindex >= loadinfolen) {
1164 loadinfolen += LOADINFOLEN;
1165 loadinfo = (struct loadinfo *)
1166 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1167 }
1168 loadinfo [loadinfotextindex].textorg = textaddr;
1169 loadinfo [loadinfotextindex].dataorg = dataaddr;
1170 ++loadinfotextindex;
1171}
1172
1173
1174/* FIXME: This assumes that the "textorg" and "dataorg" elements
1175 of a member of this array are correlated with the "toc_offset"
1176 element of the same member. But they are sequentially assigned in wildly
1177 different places, and probably there is no correlation. FIXME! */
1178
1179static CORE_ADDR
1180find_toc_address (pc)
1181 CORE_ADDR pc;
1182{
1183 int ii, toc_entry, tocbase = 0;
1184
1185 for (ii=0; ii < loadinfotextindex; ++ii)
1186 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1187 toc_entry = ii;
1188 tocbase = loadinfo[ii].textorg;
1189 }
1190
1191 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1192}
This page took 0.097224 seconds and 4 git commands to generate.